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Abstract

Voices and faces play pivotal roles in our social interactions. Despite their different phys-

ical manifestations, voices and faces contain highly similar types of information, including

linguistic information (phonemes for voice and viseme for faces), affective state, and iden-

tity characteristics (weight, gender, age, etc.). For this reason, the associations between

voices and faces have gathered significant research interest in psychology, cognitive science,

artificial intelligence, and many other fields.

In this thesis, we attempt to explore the identity associations between voices and faces by

developing computational mechanisms for reconstructing faces from voices. More specifically,

the task is designed to answer the question: Given an unheard audio clip spoken by an unseen

person, can we algorithmically picture a face that has as many associations as possible with

the speaker, in terms of identity?

The link between voice and face has been established from many perspectives. Direct

relationships include the effect of the underlying skeletal and articulator structure of the face

and the tissue covering them, all of which govern the shapes, sizes, and acoustic properties

of the vocal tract that produces the voice. Less directly, the same genetic, physical, and

environmental influences that affect the development of the face also affect the voice. Given

these demonstrable dependencies, it is reasonable to hypothesize that it may be possible

to reconstruct faces from voice signals algorithmically. Our hypothesis is that if any facial

parameter influences the speaker’s voice, its effects on the voice must be discoverable by a

properly designed computational model.

This thesis presents how we approach the goal of generating faces from voices in three

stages. First, we consider the cross-modal matching problem: given a voice recording, one

must select the speaker’s face from a gallery of face images. To this end, we propose dis-

joint mapping networks to learn representations of voices and faces in a shared space, such

that their representations can be compared to one another. The results of matching em-

pirically demonstrate the possibility of disambiguating faces from the voice. Second, we
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address the problem of reconstructing 2D face images from voices. We propose a simple

but effective computational framework based on generative adversarial networks (GANs).

The generated face images are visually plausible and have identity associations with the true

speaker. Last, we investigate the problem of reconstructing 3D facial shapes from voices. We

propose an anthropometry-guided framework that identifies which anthropometric measure-

ments (AMs) are predictable from voice, and then reconstructs the 3D facial shapes from

those predictable AMs. Compared to baseline methods, our results demonstrate notable

improvements, especially in reconstructing the shapes of speakers’ noses.
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Chapter 1

Introduction and Background

Voices and faces play pivotal roles in our social interactions. They are special in human neu-

ral selectivity [12]. Neurocognitive studies have shown that listening to a voice or viewing a

face engages psychological and neural mechanisms that are not engaged by other categories

of nonvocal sounds or other object categories [13, 14]. Despite their different physical man-

ifestations, voices and faces contain highly similar types of information, including linguistic

information (phonemes for voice and viseme for faces [15]), affective state, and identity char-

acteristics (weight, gender, age, etc.). For this reason, the associations between voices and

faces have gathered significant research interest in psychology [16, 17, 18], cognitive science

[19, 20], and many other fields.

Researchers in artificial intelligence have also attempted to investigate such audiovisual

associations algorithmically. A number of computational models have been developed for

animating given faces with the linguistic information and affective state from voice signals

[21, 22, 23]. Such animated faces are loosely referred to as “talking faces”. The fact that this

can be done demonstrates that voices can be accurately associated to the motions and shapes

of lip, tongue, teeth, jaw, etc. Research shows that the performance of talking faces can be

further improved by leveraging facial landmarks as intermediate representations [24, 25, 26].

Compared to linguistic and affective information, identity associations between voices and

faces have received comparatively little scientific attention.

1
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Figure 1.1: Anatomy of the vocal tract.

In this thesis, we attempt to explore the identity associations between voices and faces by

developing computational mechanisms for reconstructing faces from voices. More specifically,

the task is designed to answer the question: Given an unheard audio clip spoken by an unseen

person, can we algorithmically picture a face that has as many associations as possible with

the speaker, in terms of identity? It seems magical or impossible, but we as humans do this

all the time. When we hear a song, we may imagine what the singer looks like without being

aware of it. Or when we talk to someone over telephone, we may form a metal picture of

the person we are talking with.

1.1 Motivation

A person’s voice is incontrovertibly predictive of their face. Direct relationships stem from

the voice production mechanism [27, 28], as shown in Fig. 1.1. The underlying skeletal and

articulator structures of the face and the tissue covering them, govern the shapes, sizes, and

acoustic properties of the vocal tract that produces the voice. The structures related to the

nose affect the nasalence and nasal resonances [29, 30].

Less directly, demographic factors affect the face morphology as well as the voice pitch.

For example, aging not only changes the facial appearance (e.g. skin texture), but also

changes the tissue composition of the vocal cords and the dimensions of the vocal chambers
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General low level auditory analysis

Voice structural analysis

Vocal speech 

analysis

Vocal affect analysis

Voice recognition units

Person identity nodes

General low level auditory analysis

Voice structural analysis

Vocal speech 

analysis

Vocal affect analysis

Voice recognition units

Figure 1.2: A model for voice and face perception. Reproduced from [1]

[31]. Gender also affects voice. Biologically, with higher testosterone levels, males are prone

to have a prominent eyebrow ridge, broad chin, small eyes, and thin lips [32], while the vocal

folds situated in the larynx also increase in thickness and length, leading to a lower voice

pitch [33].

Neurocognitive studies indicate that neuro-cognitive pathways for voices share a common

structure with that for faces [34, 1, 35] – the two may follow parallel pathways within a

common recognition framework, as shown in Fig. 1.2. In empirical studies humans have

demonstrated the ability to associate voices of unknown individuals to pictures of their faces

[19, 18]. They have been observed to show improved ability to memorize and recall voices

when the pictures of the speaker’s face (but not imposter faces) are previously shown to

them [36, 37, 38].

Given these demonstrable dependencies, it is reasonable to hypothesize that it may be

possible to reconstruct faces from voice signals algorithmically. Our hypothesis is that if any

facial parameter influences the speaker’s voice, its effects on the voice must be discoverable

by a properly designed computational model.
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1.2 Related Work

In the past few years, much effort has been devoted to the audiovisual association learning.

SVHF [39] presents a cross-modal matching setting, where given a voice recording and many

face images, one must choose a face image such that the chosen face matches the speaker

of the voice recording. A similar setting of matching a face image to many voice recordings

is also included. Results show that the correct voice or face can be chosen with more than

80% accuracy in a two-alternative forced-choice setting. Furthermore, experiments also show

that the matching accuracy is greatly dependent on demographic factors such as gender and

age. This problem is formulated as metric learning in [40, 41]. [42] adopts self-supervised

learning for the voice and face matching problem, so that a predictive model can be trained

on unlabeled video data.

Recently, Speech2Face [43] has been proposed to generate 2D face images from voice. In

this study, the authors have produced average-looking faces and these faces are shown to have

consistent ages and facial measurements with the those of real speakers. [44] produce more

realistic face images from voices using conditional generative adversarial networks (cGANs)

[45, 46] in a closed-set setting. [47] extends the cGANs-based framework with advanced

generator architecture, achieving improved quality for the generated images.

1.3 Roadmap

In this thesis, we explore the problem of reconstructing faces from voice and approach the

research objective step by step. Specifically, we start with a cross modal selection problem.

We develop a disjoint mapping network (DIMNet) to map a voice recording to the face

image of the speaker, or vice versa. While matching is not reconstruction, this can be

considered as a nonparametric approach for generating faces from voice. The selected face

is the reconstruction result. Moreover, voice to face matching can be accurately evaluated

objectively – we can quantify how accurate the “reconstruction” is. So we believe this is a
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good starting point.

However, we also see the limitation of the matching problem, which relies heavily on

a large-scale high-quality gallery set. Motivated by this, we work on the problem of 2D

face image reconstruction from voice, where we develop a voice to face model based on

generative adversarial networks (GANs). For unheard voices spoken by unseen persons, we

obtain perceptually plausible results. In a test based on human judgment, we show that the

generated faces do have identity associations with the true speaker.

Nonetheless, the generated images include many identity-unrelated factors, like the hair,

hat, illumination, background, etc. We cannot control their presence or absence. These

limitations motivate us to work on reconstructing 3D facial shapes from voices. The solutions

are twofold. First, we propose a self-supervised approach for 3D face reconstruction from

videos. This method can then be used to construct an audiovisual dataset, which comprises

paired voices and 3D facial shapes. Secondly, we propose a “3D facial shape from voice”

(SfV) approach based on anthropometric measurements (AMs). With SfV, we discover many

facial AMs that are predictable from voice, and we can reconstruct 3D facial shapes from

these measurements. Compared to the baseline methods, our results demonstrate notable

improvements, especially in reconstructing the noses of female speakers.

1.4 Applications

This work has a number of potential applications, including those for law enforcement (e.g.

supporting facial sketches generated by police artists based on eyewitness testimonies with

more objective and accurate technologies), forensics, health services, gaming, entertainment,

etc. As it becomes more accurate, more uses for it will emerge. Here we introduce two real

world applications which have adopted the techniques in this work.

Voice profiling. Voice profiling refers to the process of deducing personal characteristics

and bio-relevant parameters from their voices [48, 49], like gender, ethnicity, emotion, height,

weights, and so on. Our work enables a new physical entity – the face – to be derived from
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Figure 1.3: A live demonstration of voice profiling.

voice. We demonstrated a live system for voice profiling at the World Economic Forum

in Tianjin, China from September 18 to 20, 2018. A snapshot of the system is shown in

Fig. 1.3. It was tested by nearly a thousand people within a span of 3 days. The system

demonstrated made multiple profile deductions from voice, and also recreated the speaker’s

3D facial shape in virtual reality. People found it to be surprisingly accurate even in its then

nascent state.

Public education. We worked with Wunderman Thompson, a digital marketing and

advertising company based in New York with 200 offices in 90 markets and over 20,000

employees, on a project for revealing the “faces behind fraud”. This project attempts to

create videos, where scammers tell the truth about their scams and reveal how they con

people out of money. Previously, such videos were made with the voices and faces from

selected voice actors reading a script. With the work we have done in this thesis, we can

now use the voices of real scammers to generate their faces. In other words, we can now

generate videos that are made using real scammers’ voices and the faces generated from them

by our techniques. We present some examples of faces generated from real scammers’ voices
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(a)

(b)

(c)

(d)

Figure 1.4: (a) 2D face images generated from the voice of real scammers. (b)(c)(d) Snap-
shots of intermediate images in the process of 2D face generation.

in Fig. 1.4.

1.5 Privacy and Fairness

Privacy. Voices carry a wealth of profile information about the speaker (such age, gender,

ethnicity, health status, etc.). Generating faces from voice may further increase the risk

of privacy leakage. For this reason, the algorithms that we developed must be used in an

ethical way. Facial reconstruction must not be done if the speakers’ voice is not completely

public or if the speaker it not a public figure and not in agreement with (or has not given

consent for) such use of their voice. From a technical perspective, de-identifying voices and
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faces [50, 51] is an effective solution to protect the privacy of speakers, and our work can be

used for detecting and visualizing the the remaining identity information.

Fairness. It is important for an algorithm to be equitable in its performance for different

demographic groups, since biased performance may adversely affect users and even lead to

discrimination. In this thesis, where possible, we explicitly take fairness into consideration

and perform separate evaluations for different groups of individuals based on the demographic

and other factors.

1.6 Thesis Organization

This thesis is organized as follows. In Chapter 2 we introduce a cross modal matching

framework for voices and faces and show that it can be used as a nonparametric approach

for voice to face generation. In Chapter 3 we present a voice to 2D face image generation

model. In Chapter 4 we explore the conditional estimation and apply it to a self-supervised

approach for 3D face reconstruction from video. In Chapter 5 we introduce the use of

anthropometric measurement, and apply it to 3D facial shape reconstruction from voice.

We present our conclusions in Chapter 6.



Chapter 2

Voice and Face Matching

In this chapter, we investigate the associations between voice and face by cross-modal match-

ing. The specific problem we look at is the one wherein we have an existing database of

samples of people’s voices and images of their faces, and we aim to automatically and accu-

rately determine which voices match to which faces.

2.1 Introduction

A person’s face is predictive of their voice. Biologically, the genetic, physical and environ-

mental influences that affect the face also affect the voice.

Humans have been shown to be able to associate voices of unknown individuals to pictures

of their faces [19]. Humans also show improved ability to memorize and recall voices when

previously exposed to pictures of the speaker’s face, but not imposter faces [36, 37, 38]. Cog-

nitively, studies indicate that neuro-cognitive pathways for voices and faces share common

structure [34], possibly following parallel pathways within a common recognition framework

[1, 35]. The above studies lend credence to the hypothesis that it may be possible to find

associations between voices and faces algorithmically as well.

This problem has seen significant research interest, in particular since the recent introduc-

tion of the VoxCeleb corpus [3], which comprises collections of video and audio recordings of

9
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a large number of celebrities. The existing approaches [39, 40, 42] have generally attempted

to directly relate subjects’ voice recordings and their face images, in order to find the corre-

spondences between the two. [39] formulates the mapping as a binary selection task: given a

voice recording, one must successfully select the speaker’s face from a pair of face images (or

the reverse – given a face image, one must correctly select the subject’s voice from a pair of

voice recordings). They model the mapping as a neural network that is trained through joint

presentation of voices and faces to determine if they belong to the same person. In [42, 40],

the authors attempt to learn common embeddings (i.e., vector representations) for voices

and faces that can be compared to one another to identify associations. The networks that

compute the embeddings are also trained through joint presentation of voices and faces, to

maximize the similarity of embeddings derived from them if they belong to the same speaker.

In all cases, the voice and face are implicitly assumed to directly inform about one another.

In reality, though, it is unclear how much these models capture the direct influence of

the voice and face on one another, and how much is explained through implicit capture

of higher-level variables such as gender, age, ethnicity etc., which individually predict the

two. These higher-level variables, which we will refer to as covariates1 can, in fact, explain

much of our ability to match voices to faces (and vice versa) under the previously mentioned

“select-from-a-pair” test (where a voice must be used to distinguish the speaker’s face from

a randomly-chosen imposter). For instance, simply matching the gender of the voice and

the face can result in an apparent accuracy of match of up to 75% in a gender-balanced

testing setting. Even in a seemingly less constrained “verification” test, where one must

only verify if a given voice matches a given face, matching them based on gender alone can

result in an equal error rate of 33% [52]. Even matching the voice and the face by age (e.g.

matching older-looking faces to older-sounding voices) could result in match accuracy that’s

significantly better than random.

Previous studies [39, 42] attempt to disambiguate the effect of multiple covariates through
1To be clear, these are covariates, factors that vary jointly with voice and face, possibly due to some

other common causative factors such as genetics, environment, etc. They are usually not claimed to be
causative factors themselves.
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Figure 2.1: Overview of the proposed DIMNet and its comparison to other approaches.

stratified tests that separate the data by covariate value. The results show that at least some

of the learned associations are explained by the covariate, indicating that their learning ap-

proaches do utilize the covariate information, albeit only implicitly. In this chapter, we

propose a novel framework to learn mappings between voices and faces that do not consider

any direct dependence between the two, but instead explicitly exploit their individual de-

pendence on the covariates. We define covariate as the identity-sensitive factors that can

simultaneously affect voice and face, e.g. nationality, gender, identity (ID), etc. We do

not require the value these factors take to be the same between the training and test set,

since what we are learning is the nature of the covariation with the variable in general, not

merely the covariation with the specific values the variable takes in the training set. In

contrast to existing methods where supervision is provided through the correspondence of

voices and faces, our learning framework, Disjoint Mapping Network (DIMNet), obtains su-

pervision from common covariates, applied separately to voices and faces, to learn common

embeddings for the two. The comparison between the existing approaches and DIMNets are

illustrated in Fig. 2.1 ((a) from [39], (b) from [40], (c) from [42], and (d) from our proposed

DIMNets). Compared to other methods, DIMNets present a voice-face embedding frame-

work via multi-task classification and require no pair construction (i.e., both voices and faces

can be input sequentially without forming pairs).

DIMNet comprises individual feature learning modules that learn identically-dimensioned

features for data from each modality, and a unified input-modality-agnostic classifier that at-



CHAPTER 2. VOICE AND FACE MATCHING 12

tempts to predict covariates from the learned feature. Data from each modality are presented

separately during learning; however the unified classifier forces the feature representations

learned from the individual modalities to be comparable. Once trained, the classifier can be

removed and the learned feature representations are used to compare data across modalities.

The proposed approach greatly simplifies the learning process and, by considering the

modalities individually rather than as coupled pairs, makes much more effective use of the

data. Moreover, if multiple covariates are known, they can be simultaneously used for the

training through multi-task learning in our framework. As shown in Fig. 2.2, the input

training data can be either voice or face, and there is no need for voices and faces to form

pairs. Modality switch is to control which embedding network (voice or face) to process the

data. While the embeddings are obtained, a multi-task classification network is applied to

supervise the learning.

Compared to current methods [39, 40, 42], DIMNets achieve consistently better per-

formance, indicating that direct supervision through covariates is more effective in these

settings. We find that of all the covariates, ID provides the strongest supervision. The re-

sults obtained from supervision through other covariates also match what may be expected.

Our contributions of this chapter are summarized as follows:

• We propose DIMNets, a framework that formulates the problem of cross-modal match-

ing of voices and faces as learning common embeddings for the two through individual

supervision from one or more covariates, in contrast to current approaches that at-

tempt to map voices to faces directly. An overview of our framework is given in Fig.

2.2.

• In this framework, we can make full use of multiple kinds of label information (provided

by covariates) with a multi-task objective function.

• We achieve the state-of-the-art results on multiple tasks. We are also able to isolate

and analyze the effect of the individual covariate on the performance.
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Moreover, we note that the proposed framework is applicable in any setting where match-

ing of different types of data which have common covariates is required.

2.2 The Proposed Framework

Our goal is to learn common vector representations for both voices and faces, that permit

them to be compared to one another. In the following sections we first describe how we learn

them from their relationship to common covariates. Subsequently, we describe how we will

use them for comparison of voices to faces.

2.2.1 Leveraging Covariates to Learn Embeddings

The relationship between voices and faces is largely predicted by covariates – factors that

individually relate to both the voice and the face. To cite a trivial example, a person’s

gender relates their voice to their face: male subjects will have male voices and faces, while

female subjects will have female voices and faces. More generally, many covariates may be

found that relate to both voice and face [53].

Our model attempts to find common representations for both face images and voice

recordings by leveraging their relationship to these covariates (rather than to each other).

We will do so by attempting to predict covariates from voice and face data in a common

embedding space, such that the derived embeddings from the two types of data can be
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compared to one another.

Let V represent a set of voice recordings, and F represent a set of face images. Let C

be the set of covariates we consider. For the purpose of this chapter, we assume that all

covariates are discrete valued (although this is not necessary). Every voice recording in V

and every face in F can be related to each of the covariates in C. For every covariate C ∈ C

we represent the value of that covariate for any voice recording v as C(v), and similarly

the value of the covariate for any face f as C(f). For example, C could be ID, gender, or

nationality. When C is ID, C(v) and C(f) are the ID of voice v and face f , respectively.

Let Fv(v; θv) : v 7→ Rd be a voice embedding function with parameters θv that maps any

voice recording v into a d-dimensional vector. Similarly, let Ff (f ; θf ) be a face embedding

function that maps any face f into a d-dimensional vector. We aim to learn θv and θf such

that the embeddings of the voice and face for any person are comparable.

For each covariate C ∈ C we define a classifier HC(x;ϕC) with parameter ϕC , which

assigns any input x ∈ Rd to one of the values taken by C. The classifier HC(·) is agnostic

to which modality its input x was derived from; thus, given an input voice v, it operates on

features Fv(v; θv) derived from the voice, whereas given a face f , it operates on Ff (f ; θf ).

For each v (or f) and each covariate C, we define a loss L(HC(Fv(v; θv);ϕC), C(v))

between the covariate predicted by HC(.) and the true value of the covariate for v, C(v).

We can now define a total loss L over the set of all voices V and the set of all faces F , over

all covariates as

L(θv, θf , {ϕC}) =
∑
C∈C

λC

(∑
v∈V

L(HC(Fv(v; θv);ϕC), C(v))

+
∑
f∈F

L(HC(Ff (f ; θf );ϕC), C(f))

) (2.1)

λC is the weight for each covariate. In order to learn the parameters of the embedding

functions, θf and θv, we perform the following optimization.

θ∗v, θ
∗
f = argmin

θv ,θf
min
{ϕC}

L(θv, θf , {ϕC}) (2.2)
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2.2.2 Disjoint Mapping Networks

In DIMNet, we instantiate Fv(v; θv), Ff (f ; θf ) and HC(x;ϕC) as neural networks. Fig.

2.2 shows the network architecture we use to train our embeddings. It comprises three

components. The first, labelled Voice Network in the figure, represents Fv(v; θv) and is a

neural network that extracts d-dimensional embeddings of the voice recordings. The second,

labelled Face Network in the figure, represents Ff (f ; θf ) and is a network that extracts d-

dimensional embeddings of face recordings. The third component, labelled Classification

Networks in the figure, is a bank of one or more classification networks, one per covariate

considered. Each of the classification networks operates on the d-dimensional features output

by the embedding networks to classify one covariate, e.g. gender.

The training data comprise voice recordings and face images. Voice recordings are sent

to the voice-embedding network, while face images are sent to the face-embedding network.

This switching operation is illustrated by the switch at the input in Fig.2.2. In either case,

the output of the embedding network is sent to the covariate classifiers.

As can be seen, at any time the system either operates on a voice, or on a face, i.e. the

operations on voices and faces are disjoint. During the learning phase too, the updates of

the two networks are disjoint – loss gradients computed when the input is voice only update

the voice network, while loss gradients derived from face inputs update the face network,

while both contribute to updates of the classification networks.

In our implementation, specifically, Fv(·) is a convolutional neural network that operates

on Mel-Spectrographic representations of the speech signal. The output of the final layer is

pooled over time to obtain a final d-dimensional representation. Ff (·) is also a convolutional

network with a pooled output at the final layer that produces a d-dimensional representation

of input images. The classifiers HC(·) are all simple multi-class logistic-regression classifiers

comprising a single softmax layer.

Finally, in keeping with the standard paradigms for training neural network systems, we

use the cross-entropy loss to optimize the networks. Also, instead of the optimization in Eq.
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2.2, the actual optimization performed is the one below. The difference is inconsequential.

θ∗v, θ
∗
f , {ϕ∗

C} = argmin
θv ,θf ,{ϕC}

L(θv, θf , {ϕC}) (2.3)

2.2.3 Training the DIMNet

All parameters of the network are trained through backpropagation, using stochastic gradient

descent. During training, we construct the minibatches with a mixture of speech segments

and face images, as the network learns more robust cross-modal features with mixed inputs.

Taking voice as an example, we compute the voice embeddings using Fv(v; θv), and obtain

the losses using classifiers HC(·) for all the covariates. We back-propagate the loss gradient

to update the voice network as well as the covariate classifiers. The same procedure is also

applied to face data: the backpropagated loss gradients are used to update the face network

and the covariate classifiers. Thus, the embedding functions are learned using the data from

their modalities individually, while the classifiers are learned using data from all modalities.

2.2.4 Using the Embeddings

Once trained, the embedding networks Fv(v; θv) and Ff (f ; θf ) can be used to extract em-

beddings from any voice recording or face image. Given a voice recording v and a face

image f , we can now compute a similarity between the two through the cosine similarity

S(v, f) =
F⊤
v Ff

∥Fv∥2∥Ff∥2
. We can employ this similarity to evaluate the match of any face image

to any voice recording. This enables us, for instance, to attempt to rank a collection of faces

f1, · · · , fK in order of estimated match to a given voice recording v, according to S(v, fi),

or conversely, to rank a collection of voices v1, · · · , vK according to their match to a face f ,

on order of decreasing S(vi, f).
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2.3 Experiments

We ran experiments on matching voices to faces, to evaluate the embeddings derived by

DIMNets. The details of the experiments are given below.

Datasets. Our experiments were conducted on the Voxceleb [3] and VGGFace [54]

datasets. The Voxceleb dataset consists of 153,516 audio segments from 1,251 speakers.

Each audio segment is taken from an online video clip with an average duration of 8.2

seconds. For the face dataset, we used a manually filtered version of VGGFace. After face

detection, there remain 759,643 images from 2,554 subjects.

We use the intersection of the two datasets, i.e. subjects who figure in both corpora,

for our final corpus, which thus includes 1,225 IDs with 667 males and 558 females from 36

nationalities. We use ID, gender and nationality as our covariates, all of which are provided

by the datasets. The data are split into train/validation/test sets, following the settings in

[39]. Details are shown in Table 2.1.

Table 2.1: Statistics for the data appearing in VoxCeleb and VGGFace.

# of samples train validation test total
speech segments 112,697 14,160 21,799 148,656
face images 313,593 36,716 58,420 408,729
IDs 924 112 189 1,225
genders 2 2 2 2
nationalities 32 11 18 36
testing instances - 4,678,897 6,780,750 11,459,647

The visual data used in Section 2.3.4 is densely extracted from the video in VoxCeleb1

dataset at 25/6 fps. It contains 100,000 segmented speaking face-tracks obtained by SyncNet

[55], leading to 1,218,575 frames (images). For fair comparison, we follow the train/val/test

split strategy from [40] in our experiments. The evaluations are performed based on the

provided lists [40], which specify the testing pairs of voices and faces.

Preprocessing. Separated preprocessing pipelines are employed to data from differ-

ent modalities, i.e. audio segments and face images. For audio segments, we use a voice

activity detector interface from the WebRTC project to isolate speech-bearing regions of
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the recordings. Subsequently, 64-dimensional log Mel-spectrograms are generated, using an

analysis window of 25ms, with hop of 10ms between frames. We perform mean and variance

normalization of each mel-frequency bin.

For training, we randomly crop out regions of varying lengths of 300 to 800 frames (so

the size of the input spectrogram ranges from 300 × 64 to 800 × 64 for each mini-batch,

around 3 to 8 seconds). For the face data, facial landmarks in all images are detected using

MTCNN [56]. The cropped RGB face images of size 128×128×3 are obtained by similarity

transformation. Each pixel in the RGB images is normalized by subtracting 127.5 and then

dividing by 127.5. We perform data augmentation by horizontally flipping the images with

50% probability in minibatches (effectively doubling the number of face images).

Training. The detailed network configurations are given in Table 2.2. For the voice

network, we use 1D convolutional layers, where the convolution is performed along the axis

that corresponds to time. The face network employs 2D convolutional layers. For both, the

convolutional layers are followed by batch normalization (BN) [57] and rectified linear unit

activations (ReLU) [58]. The numbers within the parentheses represent the size and number

of filters, while the subscripts represent the stride and padding. So, for example, (3, 64)/2,1

denotes a 1D convolutional layer with 64 filters of size 3, where the stride and padding are 2

and 1 respectively, while (3×3, 64)/2,1 represents a 2-D convolutional layer of 64 3×3 filters,

with stride 2 and padding 1 in both directions. Note that 924, 2, and 32 are the number

of unique values taken by the ID, gender, and nationality covariates, respectively. The final

face embedding is obtained by averaging the feature maps from the final layer, i.e. through

average pooling. The final voice embedding is obtained by averaging the feature maps at the

final convolutional layer along the time axis alone. Note that the classification networks are

single-layer softmax units with as many outputs as the number of unique values the class

can take (2 for gender, 32 for nationalities, and 924 for IDs in our case).

We follow the typical settings of SGD for optimization. Minibatch size is 256. The

momentum and weight decay values are 0.9 and 0.001 respectively. To learn the networks

from scratch, the learning rate is initialized at 0.1 and divided by 10 after 16K iterations
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Table 2.2: CNN architectures: details.

layer voice face

embedding
network

Conv

(3, 256)/2,1[
(3, 256)/1,1

(3, 256)/1,1

] (3× 3, 64)/2,1[
(3× 3, 64)/1,1

(3× 3, 64)/1,1

]
(3, 384)/2,1[
(3, 384)/1,1

(3, 384)/1,1

] (3× 3, 128)/2,1[
(3× 3, 128)/1,1

(3× 3, 128)/1,1

]
(3, 576)/2,1[
(3, 576)/1,1

(3, 576)/1,1

] (3× 3, 256)/2,1[
(3× 3, 256)/1,1

(3× 3, 256)/1,1

]
(3, 864)/2,1[
(3, 864)/1,1

(3, 864)/1,1

] (3× 3, 512)/2,1[
(3× 3, 512)/1,1

(3× 3, 512)/1,1

]
(3, 64)/2,1 (3× 3, 64)/2,1

AvgPool t× 1 h× w × 1
classification

network FC 64× 924, 64× 2, 64× 32

and again after 24K iterations. The training is completed at 28K iterations.

Testing. We use the following protocols for evaluation:

• 1:2 Matching. Here, we are given a probe input from one modality (voice or face),

and a gallery of two inputs from the other modality (face or voice), including one that

belongs to the same subject as the probe, and another of an “imposter” that does not

match the probe. The task is to identify which entry in the gallery matches the probe.

We report performance in terms of matching accuracy – namely what fraction of the

time we correctly identify the right instance in the gallery.

To minimize the influence of random selection, we construct as many testing instances

as possible through exhaustive enumeration all positive matched pairs (of voice and

face). To each pair, we include a randomly drawn imposter in the gallery. We thus

have a total of 4,678,897 trials in the validation set, and 6,780,750 trials in the test set.

• 1:N Matching. This is the same as the 1:2 matching, except that the gallery now
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includes N − 1 imposters. Thus, we must now identify which of the N entries in the

gallery matches the probe. Here too results are reported in terms of matching accuracy.

We use the same validation and test sets as the 1:2 case, by augmenting each trial with

N − 2 additional imposters. So the number of trials in validation and test sets is the

same as earlier.

• Verification. We are given two inputs, one a face, and another a voice. The task is to

determine if they are matched, i.e. both belong to the same subject. In this problem

setting the similarity between the two is compared to a threshold to decide a match.

The threshold can be adjusted to trade off false rejections (FR), i.e. wrongly rejecting

true matches, with false alarms (FA), i.e. wrongly accepting mismatches. We report

results in terms of equal error rate, i.e. when FR = FA. We construct our validation

and test sets from those used for the 1:2 matching tests, by separating each trial into

two, one comprising a matched pair, and the other a mismatched pair. Thus, our

validation and test sets are exactly twice as large as those for the 1:2 test.

• Retrieval. The gallery comprises a large number of instances, one or more of which

might match the probe. The task is to order the gallery such that the entries in the

gallery that match the probe lie at the top of the ordering. Here, we report performance

in terms of Mean Average Precision (MAP) [59]. Here we use the entire collection of

58,420 test faces as the gallery for each of our 21,799 test voices, when retrieving faces

from voices. For the reverse (retrieving voices from faces), the numbers are reversed.

Each result is obtained by averaging the performances of 5 models, which are individually

trained.

Covariates in Training and Testing. We use the three covariates provided in the

dataset, namely identity (I), gender (G), and nationality (N) for our experiments. The

treatment of covariates differs for training and test.

• Training. For training, supervision may be provided by any set of (one two or three)
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Table 2.3: Acc. (%) of covariate prediction.

method gender classification nationality classification
voice face voice face

DIMNet-I - - - -
DIMNet-G 97.48 99.22 - -
DIMNet-N - - 74.86 60.13
DIMNet-IG 97.70 99.42 - -
DIMNet-IN - - 74.17 60.27
DIMNet-GN 97.59 99.06 74.62 60.50
DIMNet-IGN 97.69 99.15 74.37 59.88

covariates. We consider all combinations of covariates, I, G, N, (I,G), (I,N), (G,N)

and (I,G,N). Increasing the number of covariates effectively increases the supervision

provided to training. All chosen covariates were assigned a weight of 1.0.

• Testing. As pointed out in [52], simply recognizing a covariate such as gender can

result in seemingly significant matching performance. For instance, just recognizing the

subjects’ gender from their voice and images can result in a 33% EER for verification,

and 25% error in matching for the 1 : 2 tests. In order to isolate the effect of covariates

on performance hence we also stratify our test data by them. Thus we construct 4

testing groups based on the covariates, including the unstratified (U) group, stratified

by gender (G), stratified by nationality (N), and stratified by gender and nationality

(G, N). In each group the test set itself is separated into multiple strata, such that for

all instances within any stratum the covariate values are the same.

2.3.1 Cross-modal Matching

In this section, we report results on the 1:2 and 1:N matching tests. In order to ensure

that the embedding networks do indeed leverage on accurate modelling of covariates, we

first evaluate the classification accuracy of the classification networks for the covariates

themselves. Table 2.3 shows the results.

The rows of the table show the covariates used to supervise the learning. Thus, for in-

stance, the row labelled “DIMNet-I” shows results obtained when the networks have been
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trained using ID alone as covariate, the row labelled “DIMNet-G” shows results when super-

vision is provided by gender, “DIMNet-IG” has been trained using ID and gender, etc.

The columns of the table show the specific covariate being evaluated. Since the identities

of subjects in the training and test set do not overlap, we are unable to evaluate the accuracy

of ID classification. Note that we can only test the accuracy of the classification network for

a covariate if it has been used in the training. Thus, classification accuracy for gender can

be evaluated for DIMNet-G, DIMNet-GN and DIMNet-IGN, while that for nationality can

be evaluated for DIMNet-N, DIMNet-GN and DIMNet-IGN.

The results in Table 2.3 show that gender is learned very well, and in all cases gender

recognition accuracy is quite high. Nationality, on the other hand, is not a well-learned

classifier, presumably because the distribution of nationalities in the data set is highly skewed

[39], with nearly 65% of all subjects belonging to the USA. It is to be expected therefore that

nationality as a covariate will not provide sufficient supervision to learn good embeddings.

1:2 matching. Table 2.4 shows the results for the 1:2 matching tests. In the table, the

row labelled “SVHF-Net” gives results obtained with the model of [39].

The columns are segregated into two groups, one labelled “voice → face” and the other

labelled “face → voice”. In the former, the probe is a voice recording, while the gallery

comprises faces. In the later the modalities are reversed. Within each group the columns

represent the stratification of the test set. “U” represents test sets that are not stratified,

and include the various covariates in the same proportion that they occur in the overall

test set. The columns labelled “G” and “N” have been stratified by gender and nationality,

respectively, while the column “G, N” represents data that have been stratified by both

gender and nationality. In the stratified tests, we have ensured that all data within a test

instance have the same value for the chosen covariate. Thus, for instance, in a test instance

for voice → face in the “G” column, the voice and both faces belong to the same gender.

This does not reduce the overall number of test instances, since it only requires ensuring

that the gender of the imposter matches that of the probe instance.

We make several observations. First, DIMNet-I performs better than SVHF-Net, im-
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Table 2.4: Performance comparison of 1:2 matching for models trained using different sets
of covariates.

method voice → face (ACC %) face → voice (ACC %)
U G N G, N U G N G, N

SVHF-Net 81.0 63.9 - - 79.5 63.4 - -
DIMNet-I 83.5± 0.4 70.9±0.6 82.0±0.5 69.9±0.8 83.5±0.5 71.8±0.6 82.4±0.5 70.9±0.8
DIMNet-G 72.9±0.6 50.3±0.7 71.9±0.5 50.2±0.7 72.5±0.5 50.5±0.7 72.2±0.5 50.6±0.7
DIMNet-N 57.5±0.5 55.3±0.7 53.0±0.4 52.0±0.6 56.2±0.4 54.3±0.6 53.9±0.4 52.0±0.6
DIMNet-IG 84.1±0.4 71.3±0.6 82.7±0.6 70.4±0.8 84.0±0.4 71.7±0.6 83.0±0.5 70.8±0.5
DIMNet-IN 83.0±0.4 70.0±0.7 81.0±0.6 68.6±0.8 82.9±0.4 70.9±0.6 81.9±0.5 70.2±0.8
DIMNet-GN 75.9±0.4 56.7±0.6 72.9±0.5 53.5±0.7 73.8±0.7 54.9±0.5 72.6±0.5 53.5±0.9
DIMNet-IGN 83.7±0.5 70.8±0.3 81.8±0.5 69.2±0.7 83.6±0.7 71.4±0.5 82.5±0.4 70.5±0.6

proving the accuracies by 2.45%-4.02% for the U group, and 7.01%-8.38% for the G group.

It shows that mapping voices and faces to their common covariates is an effective strategy

to learn representations for cross-modal matching.

Second, DIMNet-I produces significantly better embeddings that DIMNet-G and DIMNet-

N, highlighting the rather unsurprising fact that ID provides the more useful information

than the other two covariates. In particular, DIMNet-G respectively achieves 72.90% and

72.47% for voice to face and face to voice matching using only gender as a covariate. This

verifies our hypothesis that we can achieve almost 75% matching accuracy by only using

the gender. These numbers also agree with the performance expected from the numbers in

Table 2.3. As expected, nationality as a covariate does not provide as good supervision as

gender. DIMNet-IG is marginally better than DIMNet-I, indicating that gender supervision

provides additional support over ID alone.

Third, we note that while DIMNet-I is able to achieve good performance on the dataset

stratified by gender, DIMNet-G only achieves random performance. The performance achieved

by DIMNet-G on the U dataset is hence completely explained by gender matching. Once

again, the numbers match to those in [52].

1:N Matching. We also experiment for N > 2. Unlike SVHF-Net [39] that needs to

train different models for different N in this setting, we use the same model for different N .

The results in Fig. 2.3 shows accuracy as a function of N for various models.

All the results in Fig. 2.3 are consistent with Table 2.4. As expected, the performance
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Figure 2.3: Performance of 1:N matching

Table 2.5: Verification results.

method verification (EER %)
U G N G, N

DIMNet-I 25.0±0.2 35.0±0.5 25.9±0.7 35.7±0.9
DIMNet-G 34.9±0.1 49.7±0.2 35.1±0.4 49.7±0.5
DIMNet-N 45.9±0.4 47.0±0.6 47.9±0.8 48.9±1.1
DIMNet-IG 24.6±0.2 34.8±0.4 25.5±0.7 35.7±0.8
DIMNet-IN 25.5±0.2 36.2±0.4 27.3±0.7 37.4±0.8
DIMNet-GN 33.3±0.5 46.7±0.2 34.8±0.3 48.1±0.5
DIMNet-IGN 25.0±0.2 35.8±0.4 26.8±0.7 37.3±0.7

of all methods degrades with increasing N . In general, DIMNets that use ID as supervision

outperform SVHF-Net by a considerable margin, showing that DIMNets are able to make

best use of the ID information. We obtain the best results when both ID and gender are

used as supervision covariates. However, the results obtained using only gender information

as covariate is much worse, which is also consistent with the analysis in [52].
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Table 2.6: Retrieval performance (mAP).

method voice → face (mAP %) face → voice (mAP %)
ID gender nationality ID gender nationality

Random 0.6 52.6 40.7 0.6 52.6 40.7
DIMNet-I 4.3±0.1 89.6±0.4 43.3±0.2 4.2±0.1 88.5±0.4 43.7±0.2
DIMNet-G 1.1±0.1 97.8±0.6 41.6±0.2 1.2±0.1 97.2±0.6 42.0±0.2
DIMNet-N 1.2±0.1 57.0±0.3 45.7±0.7 1.0±0.1 56.9±0.3 49.3±0.6
DIMNet-IG 4.4±0.1 93.1±0.5 43.2±0.1 4.2±0.1 92.2±0.4 43.9±0.2
DIMNet-IN 3.9±0.1 89.7±0.4 44.0±0.7 4.0±0.14 88.4±0.39 45.9±0.66
DIMNet-GN 1.89±0.1 95.9±0.4 45.2±0.6 1.6±0.1 94.00±0.4 48.4±0.5
DIMNet-IGN 4.1±0.1 92.3±0.6 44.1±0.6 4.1±0.1 91.3±0.6 45.8±0.6

2.3.2 Cross-modal Verification

For verification, we need to determine whether an audio segment and a face image are from

the same ID or not. We report the equal error rate (EER) for verification in Table 2.5.

In general, DIMNets that use ID as a covariate achieve an EER of about 25%, which is

considerably lower than the 33% expected if the verification were based on gender matching

alone. The results in Table 2.5 show that using both gender and ID information as covariates

can further improve the performance over using ID alone, well validating the superiority of

our multi-task learning framework.

Using proper combination of covariates is crucial to the performance. ID is arguably

the most effective covariate supervision. More interestingly, nationality is seen to be an

ineffective covariate, while gender alone as a covariate produces results that well matches

our expectation.

2.3.3 Cross-modal Retrieval

We also perform retrieval experiments using voice or face as query. Table 2.6 lists the mean

average precision (mAP) of the retrieval for various models.

The columns in the table represent the covariate being retrieved. Thus, for example, in

the “ID” column, the objective is to retrieve gallery items with the same ID as the query,

whereas in the “gender” column the objective is to retrieve the same gender.
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Table 2.7: AUCs (%) of DIMNets under different testing groups.

Seen-Heard Unseen-Unheard
U G N A G, N, A U G N A G, N, A

[40] 87.0 74.2 85.9 86.6 74.0 78.5 61.1 77.2 74.9 58.8
DIMNet-I 95.1±0.2 90.8±0.3 93.4±0.2 95.2±0.1 88.9±0.2 82.5±0.1 71.0±0.3 81.1±0.1 77.7±0.1 62.8±0.4
DIMNet-IG 94.7±0.2 89.8±0.2 93.2±0.1 94.8±0.1 87.8±0.2 83.2±0.1 71.2±0.4 81.9±0.2 78.0±0.1 62.8±0.4

We note that ID-based DIMNets produce the best features for retrieval, with the best

performance obtained with DIMNet-IG. Also, as may be expected, the covariates used in

training result in the best retrieval of that covariate. Thus, DIMNet-G achieves an mAP of

nearly 98% on gender, though on retrieval of ID it is very poor. As in other experiments,

nationality remains a poor covariate in general. Compared to gender (2 classes) and nation-

ality (unbalanced 28 classes), retrieving ID is a challenging problem given the large amount

of identities (182 classes). The significant and consistent improvements over chance-level

results show that the DIMNet models do learn some useful associations between voices and

faces.

2.3.4 Comparisons to the current state-of-the-art

We compare DIMNet with the state of the art [40]. The results are reported in Table 2.7.

Note that it is fair comparison because the DIMNet models in this section are trained with

and evaluated on the same released datasets in [40]. There are two evaluation protocols,

including Seen-Heard and Unseen-Unheard scenarios. The identities of the training and

testing set have overlaps in Seen-Heard scenario (closed-set), while they are fully disjoint in

Unseen-Unheard scenario (open-set). For each scenario, there are 5 testing groups based on

the covariates, including the unstratified group (U), group, stratified by gender (G), stratified

by nationality (N), stratified by age (A), and stratified by (G, N, A). We compute the area

under the curve (AUC) for different testing groups.

It is clear that DIMNets produce better embeddings than [40] for pair-wise verification

on both seen-heard and unseen-unheard scenarios. Specifically, DIMNets achieve 8%-15%

absolute and 3%-10% absolute improvements on seen-heard and unseen-unheard test set,
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respectively. Compared to DIMNet-IG, DIMNet-I performs better on the seen-heard test

set while DIMNet-IG is better on the unseen-unheard test set. It implies that introducing

useful covariates improves the generalization capability of DIMNet.

2.4 Discussion

We have proposed that it is possible to learn common embeddings for multi-modal inputs,

particularly voices and faces, by mapping them individually to common covariates. In par-

ticular, the proposed DIMNet architecture is able to extract embeddings for both modalities

that achieves consistently better performance than the methods that directly map faces to

voices.

The approach also provides us the ability to tease out the influence of each of the co-

variates of voice and face data, in determining their relation. The results show that the

strongest covariate, not unexpectedly, is ID. The results also indicate that prior results by

other researchers who have attempted to directly match voices to faces may perhaps not

be learning any direct relation between the two, but implicitly learning about the common

covariates, such as ID, gender, etc.

Our experiments also show that although we have achieved possibly the best reported

performance on this task, thus far, the performance is not anywhere close to prime-time.

In the 1 : N matching task, performance degrades rapidly with increasing N , indicating a

rather poor degree of true match.

To better understand the problem, we have visualized the learned embeddings from

DIMNet-I in Fig. 2.4 to provide more insights. The left panel shows subjects from the

training set, while the right panel is from the test set. The visualization method we used

is multi-dimensional scaling (MDS) [2], rather than the currently more popular t-SNE [60].

This is because MDS tends to preserve distances and global structure, while t-SNE attempts

to retain statistical properties and highlights clusters, but does not preserve distances.

From Fig. 2.4, we immediately notice that the voice and face data for a subject are only
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Figure 2.4: Visualization of voice and face embeddings using multi-dimensional scaling [2].

weakly proximate. While voice and face embeddings for a speaker are generally relatively

close to each other, they are often closer to other subjects. Interestingly, the genders separate

(even though gender has not been used as a covariate for this particular network), showing

that at least some of the natural structure of the data is learned. Fig. 2.4 shows embeddings

obtained from both training and test data. We can observe similar behaviors in both,

showing that the the general characteristics observed are not just the outcome of overfitting

to training data. The visualization in Fig. 2.4 also shows that there is still significant room

for improvement. For example, it may be possible to force compactness of the distributions

of voice and face embeddings through modified loss functions such as the center loss [61] or

angular softmax loss [62], or through an appropriately designed loss function that is specific

to this task.



Chapter 3

2D Face Reconstruction from Voice

In this chapter, we focus on the problem of reconstructing face images from voices. Specifi-

cally, we generate a face image from any given voice recording. The face image is expected

to have as many identity associations as possible with the true face of the speaker.

3.1 Introduction

A person’s voice is incontrovertibly statistically related to their facial structure. The rela-

tionship is, in fact, multi-faceted. Direct relationships include the effect of the underlying

skeletal and articulator structure of the face and the tissue covering them, all of which gov-

ern the shapes, sizes, and acoustic properties of the vocal tract that produces the voice

[27, 28]. Less directly, the same genetic, physical and environmental influences that affect

the development of the face also affect the voice. Demographic factors, such as gender, age

and ethnicity too influence both voice and face (and can in fact be independently inferred

from the voice [63, 64] or the face [65]), providing additional links between the two.

Neurocognitive studies have shown that human perception implicitly recognizes the asso-

ciation of faces to voices [1]. Studies indicate that neuro-cognitive pathways for voices share

a common structure with that for faces [34] – the two may follow parallel pathways within a

common recognition framework [1, 35]. In empirical studies, humans have shown the ability

29
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to associate voices of unknown individuals to pictures of their faces [19]. They are seen to

show improved ability to memorize and recall voices when previously shown pictures of the

speaker’s face, but not imposter faces [36, 37, 38].

On the other hand, reconstructing the face from voice is a challenging, maybe even im-

possible task for several reasons [66]. First, it is an ill-posed cross-modal problem: Although

many face-related factors affect the voice, it may not be possible to entirely disambiguate

them from the voice. Even if this were not the case, it is unknown a priori exactly what

features of the voice encode information about any given facial feature (although one may

take guesses [66]). Moreover, the signatures of the different facial characteristics may lie in

different spoken sounds; thus, in order to obtain sufficient evidence, the voice recordings must

be long enough to have sufficient coverage of sounds to derive all the necessary information.

The information containing in a single audio clip may not be sufficient for constructing a

face image.

In particular, we aim at addressing this task in an open-set scenario, where reconstruction

is performed on unheard and unseen identities, which are never presented during training.

Thus the voice-feature to face-feature associations must be learned in a manner that gener-

alizes beyond the set of examples provided in training.

Yet, although prima facie the problem seems extremely hard, recent advances in neu-

ral network based generative models have shown that they are able to perform similarly

challenging generative tasks in a variety of scenarios, when properly structured and trained

[67, 68]. In particular, generative adversarial networks (GANs) [45] have demonstrated the

ability to learn to generate highly sophisticated imagery, given only signals about the validity

of the generated image, rather than detailed supervision of the content of the image itself

[46, 69]. We use this ability to learn to generate faces from voices.

For our solution, we propose a simple but effective data-driven framework based on

generative adversarial networks (GANs), as illustrated in Fig. 3.1. It includes 4 major com-

ponents: voice embedding network, generator, discriminator, and classifier. The objective of

the network is simple: given a voice recording it must generate a face image that plausibly
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Figure 3.1: The proposed GANs-based framework for generating faces from voices.

belongs to that voice. The voice recording itself is input to the generator network in the

form of a voice embedding vector extracted by a voice embedding network. The generator

is trained using a pair of discriminators. The first evaluates if the images it generates are

realistic face images. The second discriminator (classifier) verifies that the identity of face

image output by the generator does indeed match the actual identity of the speaker.

We present both qualitative and quantitative evaluations of the results produced by our

model. The qualitative results show that our framework is able to map the voice manifold to

face manifold. We can observe many identity associations between the generated faces and

the input voices. The generated faces are generally age and gender appropriate, frequently

matching the real face of the speaker. Additionally, given non-speech input the outputs

become unrealistic, showing that the learned mapping is at least somewhat specific, in that

the face manifold it learns are derived primarily from the voice manifold and not elsewhere.

In addition, for different speech segments from the same person, the generated faces exhibit

reasonable intra-class variation.

We also propose a number of quantitative evaluation metrics to evaluate the output of our

network, based on how specific the model is in mapping voices to faces, how well the high-

level attributes of the generated face match that of the speaker, and how well the generated

faces match the identity (ID) of the speaker itself. For the last metric (ID matching), we

leverage the cross-modal matching task [39], wherein, specifically, we need to match a speech

segment to one of the two faces, where one is the true face of the speaker, and another is
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an “imposter.” Our tests reveal that the network is highly specific in generating faces in

response to voices, produces quantifiably gender-appropriate faces from voices, and that the

matching accuracy is much better than chance, or what may be obtained merely by matching

gender. We refer the reader to the experiments section for actual numbers.

Overall, our contributions are summarized as follows:

• We introduce a new task of generating faces from voice in voice profiling. It could be

used to explore the relationship between voice and face modalities.

• We propose a simple but effective framework based on generative adversarial networks

for this task. Each component in the framework is well motivated.

• We propose to quantitatively evaluate the generated faces by using a cross-modal

matching task. Both the qualitative and quantitative results show that our framework

is able to generate faces that have identity association with the input voice.

3.2 The Proposed Framework

Before we begin, we first specify some of the notation we will use. We represent voice record-

ings by the symbol v, using super or subscripts to identify specific recordings. Similarly, we

represent face images by the symbol f . We will represent the identity of a subject who

provides voice or face data as y. We will represent the true identity of (the subject of) voice

recording v as yv and face f as yf . We represent the function that maps a voice or face

recording to its idenitity as ID(), i.e. yv = ID(v) and yf = ID(f). Additional notation will

become apparent as we introduce it.

Our objective is to train a model F (v; Θ) (with parameter Θ) that takes as input a voice

recording v and produces, as output a face image f̂ = F (v; Θ) that belongs to the speaker

of v, i.e. such that ID(f̂) = ID(v).

We use the framework shown in Figure 2.2 for our model, which decomposes F (v; Θ) into

a sequence of two components, Fe(v; θe) and Fg(e; θg). Fe(v; θe) : v → e is a voice embedding
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function with parameter θe that takes in a voice recording v and outputs an embedding

vector e that captures all the salient information in v. Fg(e; θg) : e → f is a generator

function that takes in an embedding vector and generates a face image f̂ .

We must learn θe and θg such that ID(Fg(Fv(v; θe); θg) = ID(v).

3.2.1 Training the network

Data. We assume the availability of face and voice data from a set of subjects Y =

{y1, y2, · · · , yk}. Correspondingly, we also have a set of voice recordings V = {v1, v2, ..., vN},

with identity labels Yv = {yv1 , yv2 , ..., yvN} and a set of faces F = {f1, f2, ..., fM} with identity

labels Yf = {yf1 , y
f
2 , ..., y

f
M}, such that yv ∈ Y ∀yv ∈ Yv and yf ∈ Y ∀yf ∈ Yf . N may not

be equal to M .

In addition, we define two sets of labels R = {r1, r2, ..., rM | ∀i, ri = 1} and R̂ =

{r̂1, r̂2, ..., r̂N | ∀i, r̂i = 0} corresponding Yf and Yv respectively. R is a set of labels that

indicates that all faces in F are “real.” R̂ is a set of labels that indicates that any faces

generated from any v ∈ V are synthetic or “fake.”

GAN framework. In training the model, we impose two supervision signals. First, the

output f̂ of the generator in response to any actual voice input v must be a realistic face

image. Second, it must belong to the same identity as the voice, i.e. ID(f̂) = f v. As

explained in Section 1, we will use a GAN framework to train Fe(.; θe) and Fg(.; θg). This

will require the definition of adversary that provide losses that can be used to learn the

model parameters.

We define an adversarial objective. First, the discriminator Fd determines if any input

image (f or f̂) is a genuine picture of a face, or one generated by the generator, i.e. assigns

any face image (f or f̂) to its real/fake label (r or r̂). The loss function for Fd is defined as

Ld(Fd(f), r) (or Ld(Fd(f̂), r̂)). Second, classifier Fc learns to assign any real face image f to

its identity label yf . Accordingly, the loss function for Fc is Lc(Fc(f), y
f ).

Last, the generator Fg takes in a voice recording v and attempts to generate any face
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image f̂ that can be classified to real label r and identity label yv by Fd and Fg, respectively.

The corresponding loss function for Fg is Ld(Fd(Fg(v), r) + Lc(Fc(Fg(v)), y
v).

In our implementation, we instantiate Fe(v; θe), Fg(e; θg), Fd(f ; θd) and Fc(f ; θc) as convo-

lutional neural networks, shown in Fig. 2.2. Fe is the component labeled as Voice Embedding

Network. v is the Mel-Spectrographic representations of speech signal. The output of the

final convolutional layer is pooled over time, leading to a q-dimensional vector e. Fg is la-

beled as Generator. f and f̂ are RGB images with the same resolution of w× h. Fd and Fc

are labeled as Discriminator and Classifier, respectively. The loss functions Ld and Lc of

these two components are the cross-entropy loss.

Training the network. The training data comprise a set of voice recordings V and a set of

face images F . From the voice recordings in V we could obtain the corresponding generated

face images F̂ = {f̂ = Fg(Fe(v)) | ∀v ∈ V}.

The framework is trained in an adversarial manner. To simplify, we use a pretrained voice

embedding network Fe(v; θe) from a speaker recognition task, and freeze the parameter θe

when training our framework. Fc is trained to maximize
∑M

i=1 Lc(Fc(fi), yi) with fixed θe, θg

and θd. Similarly, Fd is trained to maximize
∑M

i=1 Ld(Fd(fi), ri) +
∑N

i=1 Ld(Fd(f̂i), r̂i) with

fixed θe, θg and θc. The Fg is trained to maximize
∑N

i=1 Ld(Fd(f̂i), ri) + Lc(Fc(f̂i), y
v
i ) with

θe, θd and θc fixed, where f̂i = Fg(Fe(vi)). The training pipeline is summarized in Algorithm

1.

Once trained, Fd(f ; θd) and Fc(f ; θc) can be removed. Only Fd(f ; θd) and Fc(f ; θc) are

used for face generation from voice during the inference phase. It is worth noting that the

targeted scenario is open-set. In our evaluations, the model is required to work on previously

unseen and unheard identities, i.e. yv ∈ Y in the training phase, while yv /∈ Y in the testing

phase.
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Algorithm 1 The training algorithm of the proposed framework
Input: A set of voice recordings with identity label (V ,Yv). A set of labeled face images

with identity label (F ,Yf ). A voice embedding network Fe(v; θe) trained on V with
speaker recognition task. θe is fixed during the training. Randomly initialized θg, θd,
and θc

Output: The parameters θg.
1: while not converged do
2: Randomly sample a minibatch of n voice recordings {v1, v2, ..., vn} from V
3: Randomly sample a minibatch of m face images {f1, f2, ..., fm} from F
4: Update the discriminator Fd(f ; θd) by ascending the gradient

∇θd

(∑n
i=1 log(1− Fd(f̂i)) +

∑m
i=1 logFd(fi)

)
5: Update the classifier Fc(f ; θc) by ascending the gradient (a[i] indicates the i-th element

of vector a)
∇θc

(∑m
i=1 logFc(fi)[y

f
i ]
)

6: Update the generator Fg(f ; θc) by ascending the gradient
∇θg

(∑n
i=1 logFc(Fg(Fe(vi)))[y

v
i ] +

∑m
i=1 logFd(Fg(Fe(vi)))

)
7: end while

3.3 Experiments

In our experiments, the voice recordings are from the Voxceleb [39] dataset and the face

images are from the manually filtered version of VGGFace [54] dataset. Both datasets have

identity labels. We use the intersection of the two datasets with the common identities,

leading to 149,354 voice recordings and 139,572 frontal face images of 1,225 subjects. We

follow the train/validation/test split in [39]. The details are shown in Table 3.1.

Separated data pre-processing pipelines are employed to audio segments and face images.

For audio segments, we use a voice activity detector interface from the WebRTC project to

isolate speech-bearing regions of the recordings. Subsequently, we extract 64-dimensional log

Mel-spectrograms using an analysis window of 25ms, with a hop of 10ms between frames.

We perform mean and variance normalization of each mel-frequency bin. We randomly crop

an audio clips around 3 to 8 seconds for training, but use the entire recording for testing.

For the face data, facial landmarks in all images are detected using [70]. The cropped RGB

face images of size 3× 64× 64 are obtained by similarity transformation. Each pixel in the

RGB images is normalized by subtracting 127.5 and then dividing by 127.5.

Training. The network architecture is given in Table 3.2. The parameters in the con-



CHAPTER 3. 2D FACE RECONSTRUCTION FROM VOICE 36

Table 3.1: Statistics of the datasets used in our experiments

train validation test total
# of speech segments 113,322 14,182 21,850 149,354
# of face images 106,584 12,533 20,455 139572
# of subjects 924 112 189 1,225

(a) 1s (b) 2s (d) 5s (e) 10s(c) 3s

White Gaussian noise

Babble noise

Pink noise

Brown noise

Figure 3.2: The generated face images from noise input. (a)-(e) are 1, 2, 3, 5, and 10 seconds,
respectively.

volutional layers of discriminator and classifier are shared in our experiments. For the voice

embedding network, we use 1D convolutional layers. Conv 3/2,1 denotes 1D convoluitonal

layer with kernel size of 3, where the stride and padding are 2 and 1, respectively. Each

convolutional layer is followed by a Batch Normalization (BN) [57] layer and Rectified Linear

Units (ReLU) [58]. The output shape is shown accordingly, where ti+1 = ⌈(ti − 1)/2⌉ + 1.

The final outputs are pooled over time, yielding a 64-dimensional embedding. We use 2D

deconvolutional layers with ReLU for the generator and 2D convolutional layers with Leaky

ReLU (LReLU) for the discriminator and classifier. The final output is given by fully con-

nected (FC) layer. We basically follow the hyperparameter setting in [71]. We used the

Adam optimizer [72] with learning rate of 0.0002. β1 and β2 are 0.5 and 0.999, respectively.

We use a minibatch size of 128 samples. The training is completed at 100K iterations.
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Table 3.2: CNN architectures: details.

Voice Embedding Network Generator
Layer Act. Output shape Layer Act. Output shape
Input - 64× t0 Input - 64× 1× 1

Conv 3/2,1 BN + ReLU 256× t1 Deconv 4× 4/1,0 ReLU 1024× 4× 4
Conv 3/2,1 BN + ReLU 384× t2 Deconv 3× 3/2,1 ReLU 512× 8× 8
Conv 3/2,1 BN + ReLU 576× t3 Deconv 3× 3/2,1 ReLU 256× 16× 16
Conv 3/2,1 BN + ReLU 864× t4 Deconv 3× 3/2,1 ReLU 128× 32× 32
Conv 3/2,1 BN + ReLU 64× t5 Deconv 3× 3/2,1 ReLU 64× 64× 64

AvePool 1× t5 - 64×1 Deconv 1× 1/1,0 - 3× 64× 64

Discriminator Classifier
Layer Act. Output shape Layer Act. Output shape
Input - 3× 64× 64 Input - 3× 64× 64

Conv 1× 1/1,0 LReLU 32× 64× 64 Conv 1× 1/1,0 LReLU 32× 64× 64
Conv 3× 3/2,1 LReLU 64× 32× 32 Conv 3× 3/2,1 LReLU 64× 32× 32
Conv 3× 3/2,1 LReLU 128× 16× 16 Conv 3× 3/2,1 LReLU 128× 16× 16
Conv 3× 3/2,1 LReLU 256× 8× 8 Conv 3× 3/2,1 LReLU 256× 8× 8
Conv 3× 3/2,1 LReLU 512× 4× 4 Conv 3× 3/2,1 LReLU 512× 4× 4
Conv 4× 4/1,0 LReLU 64× 1× 1 Conv 4× 4/1,0 LReLU 64× 1× 1

FC 64× 1 Sigmoid 1 FC 64× k Softmax k

3.3.1 Qualitative Results

As a first experiment, we compared the outputs of the network in response to various noise

signals to outputs obtained from actual speech recordings. Figure 3.2 shows outputs gener-

ated for four different types of noise. Each row shows the generated faces using one of the

four noise audio segments with different durations.

We evaluated noise segments of different durations (1, 2, 3, 5, and 10 seconds) to observe

how the generated faces change with the duration. The generated images are seen to be

blurry, unrecognizable and generally alike, since there is no identity information in noise.

With longer noise recordings, the results do not improve. Similar results are obtained over

a variety of noises.

On the other hand, when we use regular speech recordings with the aforementioned

durations as inputs, outputs tend to be realistic faces, as seen in Figure 3.3. The results

indicate that while the generator does learn to produce face-like images, actual faces are

produced chiefly in response to actual voice. We infer that while the generator has learned
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(a) 1s (b) 2s (d) 5s (e) 10s(c) 3s (f) Reference images

Figure 3.3: (a)-(e) The generated face images from regular speech recordings with different
durations. (f) the corresponding reference face images.

to map the speech manifold to the manifold of faces, it maps other inputs outside of this

manifold.

Figure 3.3 also enables us to subjectively evaluate the actual output of the network.

These four speakers (from top to bottom) are Danica McKellar, Cindy Williams, Damian

Lewis, and Eva Green. These results are typical and not cherry-picked for presentation

(several of our reconstructions match the actual speaker closely, but we have chosen not to

selectively present those to avoid misrepresenting the actual performance of the system).

The generated images are on the left, while the reference images (the actual faces of

the speakers) are on the right. To reduce the perceptual bias and better illustration, we

show multiple reference face images for each speaker. Although the generated and the

reference face indicate different persons, the identity information of these two are matched

in some sense (like gender, ethnicity, etc.). With longer speech segments, the generated

faces gradually converge to faces associatable with the speaker. Figure 3.4 shows additional

examples demonstrating that the synthesized images are generally age- and gender-matched

with the speaker. For each group, images on the left are the generated images and images

on the right are the references.

In the next experiment, we select 7 different speech recordings of each speaker and

generate the faces from the entire recordings. The results are shown in Figure 3.5 (reference
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(a) (b) (c)

Figure 3.4: The generated faces from (a) old voices, (b) male voices, (c) female voices.

(a) Generated face images (b) Reference images

Figure 3.5: Faces generated from different segments of speech from the same speaker, and
the reference faces. Each row shows the results for the same speaker.

images are also provided for comparison). Once again, the results are typical and not

cherrypicked. We believe that the images in each row exhibit reasonable variations of the

same person (except the fourth image in the first row), indicating that our model is able to

build a mapping between the speech group to face group, thus retaining the identity of the

face across speech segments from the same speaker.

3.3.2 Quantitative Results

We attempt to quantitatively distinguish between the faces generated in response to noise

from those generated from voice using the discriminator Fd() itself. Note that Fd() is biased,

and has explicitly been trained to tag synthesized faces as fake. The mean and standard
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deviation (obtained from 1000 samples) of its output value in response to actual voices are

0.09 and 0.13 respectively, while for (an identical number of) noise inputs they are 0.06 and

0.07 respectively. Even a biased discriminator is clearly able to distinguish between faces

generated from voices, and those obtained from noise.

As a first test, we attempted to ID (classify) faces derived from test recordings of the

speakers in the training set. On a set of 4620 recordings, from 924 identities, we achieved a

top-1 accuracy of 61.7% and a top-5 accuracy of 82.3%, showing that the voice-based face

reconstructions do actually faithfully capture the identities of known subjects.

For unknown subjects, we ran a gender classifier on 21,850 generated faces (from the

speech segments in test set). The classifier was trained on the face images in the training set

using the network architecture of the discriminator, with an accuracy of 98.97% on real face

images. The classifier obtained a 96.45% accuracy in matching the gender of the generated

faces to the known gender of the speaker, showing that the generated faces are almost always

of the correct gender.

Finally, we evaluated our model by leveraging the task of voice to face matching. Here,

we are given a voice recording, a face image of the true speaker, and a face image of an

imposter. We must match the voice to the face of the true speaker. Ideally, the probe voice

could be replaced by the generated face image if they carry the same identity information. So

the voice to face matching problem reduces to a typical face verification or face recognition

problem. The resulting matching accuracy could be used to quantitatively evaluate the

association between the speech segment and the generated face.

We construct the testing instances (a probe voice recording, a true face image, and an

“imposter” face) using data in the testing set, leading to 2,353,560 trials. We also compute

the matching accuracy on about 50k trials constructed from a small part of the training set

to see how well the model fit to the training data. We also perform stratified experiments

based on gender where we select the imposter face with the same gender as the true face. In

this case, gender information cannot be used for matching anymore, leading to a more fair

test.
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The results are shown in Table 3.3. Our results are given by replacing the probe voice

embeddings by the embeddings of the generated face. The high accuracies obtained on the

training set for the unstratified and gender stratified tests (96.83% and 93.98% respectively)

show that generated faces do carry correct identity information for the training set. The

results on the test set on unstratified and gender stratified tests (76.07% and 59.69% re-

spectively) are better than those in DIMNets-G [73], indicating that our model learns more

associations than gender. The large drop compared to the results on the training set shows

however that considerable room remains to improve generalizability in the model.

Table 3.3: The voice to face matching accuracies.

unstratified group (ACC. %) stratified group by gender (ACC. %)
(training set / testing set) (training set / testing set)

DIMNets-I [73] - / 83.45 - / 70.91
DIMNets-G [73] - / 72.90 - / 50.32

ours 96.83 / 76.07 93.98 / 59.69

3.4 Discussion

The proposed GAN-based framework is seen to achieve reasonable reconstruction results.

The generated faces have identity associations with the true speaker. There remains consid-

erable room for improvement. Firstly, there are obvious issues with the GAN-based output:

The produced faces have features such as hair that are presumably not predicted by voice,

but simply obtained from their co-occurrence with other features. The model may be more

appropriately learned through data cleaning that removes obviously unrelated aspects of the

facial image, such as hair and background. The proposed model is vanilla in many ways.

For instance [74, 75] describe several explicit correspondences between speech and face fea-

tures, e.g. different phonetic units are known to relate to different facial features. We are

investigating models that explicitly consider these issues.



Chapter 4

3D Face Reconstruction from Video

In this chapter, we propose a self-supervised approach for reconstructing 3D faces from video.

This method is used for collecting a 3D audiovisual dataset from video data, where we can

extract paired 3D faces and voice recordings for subsequent research.

4.1 Introduction

Reconstructing 3D faces from single-view 2D images has been a longstanding problem in

computer vision. The common approach represents the 3D face as a combination of its

shape, as represented by the 3D coordinates of a number of points on its surface called

vertices, and its texture, as represented by the reflectances of red, green and blue at these

vertices [76]. The problem then becomes learning a regression model between the 2D images,

and vertices and their reflectances.

The regression itself may be learned using training data where both, the 2D images and

the corresponding 3D parameters are available. However, these data are scarce, and even the

ones that are available generally only have shape information [77, 78, 79]; the ones that do

have other parameters are usually captured in a controlled environment [80] or are synthetic

[81], which is not representative of real-world images. Consequently, there is great interest in

self-supervised learning methods, which learn the regression model from natural in-the-wild

42
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Figure 4.1: Conventional 3D face reconstruction and our CEST framework. The dotted lines
separate the modules used for inference from those used for training.

2D images or videos, without explicit access to 3D training data [5, 82].

The problem is complicated by the fact that the actual image formation depends not

only on the shape and texture of the face, but also on the illumination (the intensity and

direction of the incident light), and other factors such as the viewpoint (incorporating the

orientation of the face and the position of the camera), etc. Thus, the learned regression

model must also account for these factors. To this end, the general approach is one where

shape, reflectance, illumination and viewpoint parameters are all extracted from the 2D

image. The regression model that extracts these facial parameters are learned through self-

supervision: the extracted facial parameters are recombined to render the original 2D image,

and the model parameters are learned to minimize the reconstruction error.

The solution, however, remains ambiguous because a 2D image may be obtained from

different combinations of shape, texture, illumination and viewpoint. To ensure that the self-
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Figure 4.2: The overall training pipeline of the proposed CEST framework.

supervision provides meaningful disentanglement, the manner in which the facial parameters

are recombined to reconstruct the 2D image are based on the actual physics of image for-

mation [5, 82, 81]. To further reduce potential ambiguities, regularizations are necessary.

Reflectance symmetry has been proposed as a regularizer [83, 4, 84], wherein the reflectance

of a face image and its mirror reflection are assumed to be identical. Smoothness has also

been employed to regularize the shape and reflectance [82, 4]. Additional regularization may

be obtained by considering correspondences between multiple images of the same face [85, 7],

particularly when they are obtained under near identical conditions such as the sequence

of images from a video. The approach in [7] has considered reflectance consistency, where

reflectances of all image frames in a video clip are assumed to be similar.

In all of these prior works, the target parameters, namely the shape, reflectance, illumi-

nation and viewpoint parameters are all individually estimated, without considering their

direct influences on one another, although they are jointly optimized. In effect, at inference

time they assume that the estimate of, e.g. the reflectance, is conditionally independent of

the estimated shape or viewpoint, given the original 2D image. The coupling among the

four is only considered during (self-supervised) training, where they must all combine to

faithfully recreate the input 2D image [86, 87, 6, 83, 7]. This is illustrated in Fig. 4.1(a).

In reality, 2D images are reduced-dimensional projections, and thus imperfect represen-

tations of the full three-dimensional structure of the face, and the aspects of reflectance and
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illumination imprinted in them are not independent of the underlying shape of the object or

the viewpoint they were captured from. Therefore, the captured 2D image represents a joint

interaction among viewpoint, shape, reflectance and illumination. Consequently, the statisti-

cal estimates of any of these four factors may not, in fact, be truly conditionally independent

of one another given only the 2D image (although, given the entire 3D model they might

have been). Thus, modelling all of these variables as being conditionally independent effec-

tively represents a lost opportunity since, by predicting them individually, the constraints

they impose on one another are ignored. Optimization-based approaches [88, 85, 89] do

attempt to capture the dependence by iteratively estimating shape and reflectance from one

another. However, these methods require correspondence information of the image sequence

in a video and suffer from costly inference.

In this chapter, we propose a novel learning-based framework based on conditional es-

timation (CEST). CEST explicitly considers the statistical dependency of the various 3D

facial parameters (shape, viewpoint, reflectance and illumination) upon one another, when

derived from single 2D image. The specific form of the dependencies adopted in this chapter

is shown in Fig. 4.1(b). We note that the CEST framework is very general and allows us

to consider any other dependency structures. Our paper serves as one of the many poten-

tial choices that work well in practice. To this end, we present a specific, and intuitive,

solution in CEST, where the viewpoint, facial shape, facial reflectance, and illumination are

predicted sequentially and conditionally. In this context, the prediction of facial shape is

conditioned on the input image and the derived viewpoint; the prediction of facial reflectance

is conditioned on the input image, derived viewpoint and facial shape; and so forth.

As before, learning remains self-supervised, through comparison of re-rendered 2D im-

ages obtained with the estimated 3D face parameters to the original images. As additional

regularizers, we also employ reflectance symmetry constraints [83, 4, 84], and reflectance

consistency constraints (across frames in a short video clip) [7]. These are included in the

form of cross-frame reconstruction error terms, the number of which increases quadratically

with the number of video frames considered together for self-supervision. To address the
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dramatically increased number of reconstruction terms, we propose a stochastic optimization

strategy to improve training efficiency.

We present ablation studies and comparisons to state-of-the-art methods [5, 83, 7] to

evaluate CEST. We show that CEST produces better reflectance and structured illumination,

leading to more realistic rendered faces with fine facial details, compared to all other tested

methods. It also achieves better shape estimation accuracy on AFLW2000-3D [90] and MICC

[91] datasets than current state-of-the-art self-supervised and fully supervised approaches.

Overall, our contributions can be summarized as follows:

• We propose CEST, a conditional estimation framework for 3D face reconstruction that

explicitly considers the statistical dependencies among 3D face parameters.

• We propose a specific design for the decomposition of conditional estimation, where

the viewpoint, shape, reflectance, and the illumination are derived sequentially.

• We propose a stochastic optimization strategy to efficiently incorporate reflectance

symmetry and consistency constraints into CEST. As the number of video frames

increase, the computational complexity of CEST is increased linearly, rather than

quadratically.

4.2 Related Work

Monocular 3D face reconstruction by self-supervised learning. Many research stud-

ies published recently aim to learn 3D facial parameters from a single image in a self-

supervised manner. In [6], the authors propose a coarse-to-fine framework to improve the

details in reconstructed 3D faces. Ayush et al. [5] present a model-based deep convolutional

face autoencoder (MoFA) to fit a 3DMM to shape, reflectance, and illuminance. Inverse-

FaceNet [92] trains a direct regression model on a synthetic training corpus that is gener-

ated by self-supervised bootstrapping. SfSNet [81] combines labeled synthetic and unlabeled

real-world images in learning, and produces accurate depth map, and reflectance and shade
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disentanglement. To better characterize facial details, 3DMM is generalized to a nonlinear

model in [82, 83]. [93] uses mesh convolutions for 3D faces, leading to a light-weight model

with competitive performance. [11] incorporates the multi-view consistency from geometry,

pixel, and depth as constraints.

However, these approaches generally do not consider correspondences across frames in a

video. FML [7] is the first self-supervised framework that incorporates video clues in training.

The shape and reflectance for each video frame are approximated by averaging the shapes

and reflectances in a video clip. However, models trained on the averaged representations

may not work well for a single image if the number of multi-frame images is large, due to the

large gap between averaged and isolated images. On the contrary, CEST uses representations

from single images. More importantly, it uses conditional estimation for predicting the

facial parameters, and does not assume conditional independence between them, an often

unrealistic assumption employed in the previously mentioned approaches.

Optimization-based 3D face reconstruction. [85] proposes to fit a template model

to photo-collections by updating the viewpoint, geometry, lighting, and texture iteratively.

[89] fits a face model to detected 3D landmarks, and refines the texture and geometry details.

[86] learns facial subspaces for identity and expression variations with a parametric shape

prior. [94] considers 3D face reconstruction as a global variational energy minimization

problem, and estimates dense low-rank 3D shapes for video frames.

While these approaches can be considered conditional estimation, they focus on deriving

3D facial parameters from video, and are not relevant to the problem of deriving them from

single-frame images, the problem addressed in our work. For CEST, video clips are viewed

as consistent collections of images used to better learn the model.

4.3 The Proposed Framework

In this work, we adopt a common practice from 3D Morphable Model (3DMM) [76], which

represents a 3D face as a combination of shape and reflectance. The shape comprises a
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collection of vertices S = [S(1);S(2); ...;S(K)] ∈ RK×3, where K is the number of ver-

tices and S(i) = [S(i, 1),S(i, 2),S(i, 3)] denotes the xyz coordinates in the Cartesian

coordinate system. The typology for S is consistent for different faces. The reflectance

comprises a collection of pixel values R = [R(1);R(2); ...;R(K)] ∈ RK×3. Each row

R(i) = [R(i, 1),R(i, 2),R(i, 3)] comprises the pixel values (ie, RGB) at position S(i).

4.3.1 Framework Overview

The problem of 3D face reconstruction from a 2D image is that of obtaining estimates of the

shape S, reflectance R, viewpoint v and illumination ℓ, given an input image I. Statistically,

we aim to estimate the most likely values for these variables, given the input image:

Ŝ, R̂, v̂, ℓ̂ = arg max
S,R,v,ℓ

P (S,R,v, ℓ|I) (4.1)

The challenges of the aforementioned estimation are twofold: first P (S,R,v, ℓ|I) must be

modelled, and second, argmaxS,R,v,ℓ P (S,R,v, ℓ|I) must be computed.

Modelling P (S,R,v, ℓ|I) directly is a challenging problem, and the problem must be

factored down. Prior approaches [82, 5, 93] have decomposed this problem by assuming that

shape, reflectance, viewpoint and illumination are all conditionally independent, given the

image. We formulate this decomposition as P (S,R,v, ℓ|I) = P (S|I)P (R|I)P (v|I)P (ℓ|I).

This leads to simplified estimates where each of the variables can be independently estimated,

i.e. Ŝ = argmaxS P (S|I), R̂ = argmaxR P (R|I), etc. As we have discussed earlier, the

conditional independence assumption is questionable, since the conditioning variable, I, is

a lower-dimensional projection of the 3D face that entangles the four variables.

In CEST we explicitly model the conditional dependence, as shown in Fig. 4.1(b). Specif-

ically we decompose the joint probability as

P (S,R,v, ℓ|I)

= P (v|I)P (S|I,v)P (R|I,v,S)P (ℓ|I,v,S,R)

(4.2)

Coupling the variables in this manner results in a complication: even factored as above,

maximizing the joint probability with respect to S, R, v, and ℓ must be jointly performed,
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since the variables are coupled. We approximate it instead with the following sequential

estimate, based on the sequential decomposition above:

v̂ = argmax
v

P (v|I) Ŝ = argmax
S

P (S|I, v̂)

R̂ = argmax
R

P (R|I, v̂, Ŝ) ℓ̂ = argmax
ℓ

P (ℓ|I, v̂, Ŝ, R̂)

(4.3)

The second challenge is that of actually computing the argmax operations in Equation

3. Rather than attempting to model the probability distributions explicitly and maximizing

them, we will, instead, model the estimators in Equation 3 as parametric functions:

v̂ = fv(I; θv) Ŝ = fs(I, v̂; θs)

R̂ = fr(I, v̂, Ŝ; θr) ℓ̂ = fℓ(I, v̂, Ŝ, R̂; θℓ)

(4.4)

The problem of learning to estimate the 3D facial parameters thus effectively reduces to

that of estimating the parameters θv, θs, θr and θl.

Using the common approach, we formulate the learning process for these parameters

through an autoencoder. fv(), fs(), fr() and fℓ() are, together, viewed as the learnable

encoder in the autoencoder, which estimate v, S, R and ℓ respectively. The decoder is a

deterministic differentiable renderer R() with no learnable parameters, which reconstructs

the original input I from the values derived by the encoder as Î = R(S,R,v, ℓ). The

parameters of the encoder are learned to minimize the error between Î and I.

4.3.2 Facial Parameters Inference

Viewpoint. We first predict the viewpoint parameters from the given image, using a func-

tion fv(I;θv) : I → v ∈ R7. Here v is used to parameterize the weak perspective transfor-

mation [95], including 3D spatial rotation (SO(3)), the translation (xyz coordinates), and

the scaling factor.

Shape. The prediction of shape is conditioned on the given image I and the predicted

v. Since the same face captured with different viewpoints should be correspond to the

same facial shape, it is beneficial to exclude as much viewpoint information from the image
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I as possible before the shape prediction. With the predicted v, we can align the image

to its canonical view in 2D plane, as shown in Fig. 4.2. The viewpoint v comprises the

scale factor v1, 3D spatial rotation parameters [v2,v3,v4], and 3D translation parameters

[v5,v6,v7]. The original image I is cropped to its canonical view in 2D plane with viewpoint

v. The cropping is given by (I ◦ v)(x′, y′) = I(x, y), where the transformation from (x′, y′)

to (x, y) is formulated in the following. x

y

 =

 exp(v1) · cosv4 exp(v1) · sinv4 v5

− exp(v1) · sinv4 exp(v1) · cosv4 v6


 x′

y′

 (4.5)

Bilinear interpolation is used if x or y is not an integer.

The cropped image is denoted by I ◦ v. A function fs(I ◦ v;θs) : I ◦ v → α ∈ R228×1

with learnable parameter θs is constructed to predict the shape coefficients α. The shape

coefficients α are defined by a statistical model of 3D facial shape:

S⃗ = S̄ +Uα, (4.6)

where S⃗ ∈ R3K×1 is the vectorized S, and S̄ ∈ R3K×1 is the mean shape. U ∈ R3K×228 is the

PCA basis from Basel Face Model (BFM) [96] and 3DFFA [90] for identity and expression

variation, respectively. S̄ and U are fixed during the training and testing of CEST. With

the predicted α, the shape S can be obtained using equation 4.6.

Reflectance. Previous approaches usually predict the reflectance coefficients in a prede-

fined model [5, 4], unwrapped UV map of reflectance [82, 83, 80, 97], or graph representation

of the reflectance [98, 93] from the image directly. In CEST, we adopt the UV map repre-

sentation for reflectance. However, the prediction of the reflectance is conditioned not only

on the given image I, but also on the predicted viewpoint v and shape S.

The process is illustrated in Fig. 4.2. We first compute the image-coordinate facial

shape Q ∈ RK×2 by projecting the world-coordinate facial shape S with viewpoint v using

weak perspective transformation. The 3D spatial rotation is represented by a rotation vector

w = [v2;v3;v4] ∈ R3×1: the unit vector u = w
∥w∥2 is the axis of rotation, and the magnitude

ϕ = ∥w∥2 is the rotation angle. The weak perspective transformation is used to project the
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world-coordinate facial shape S to image-coordinate Q, as formulated in
Q(i, 1)

Q(i, 2)

Q(i, 3)

 = exp(v1)·

((
ww⊺+(cosϕ)·(1−ww⊺)

)


S(i, 1)

S(i, 2)

S(i, 3)

+ (sinϕ)·w×


S(i, 1)

S(i, 2)

S(i, 3)


)
+


v5

v6

v7

 . (4.7)

Next, we construct an intermediate representation, i.e. UV map of the illuminated

texture T [95], which is obtained by unwrapping the given image I based on the predicted

face shape Q. Subsequently, the UV map of reflectance A is predicted from the illuminated

texture T by a reflectance function fr(T ;θr). The reflectance R can be recovered from A

by UV wrapping.

The basic idea for computing the T is illustrated in Fig. 4.3. For each T (x′, y′) (the pixel

values at position (x′, y′)), we trace its corresponding position (x, y) in I. The illuminated

texture can be simply obtained by T (x′, y′) = I(x, y), where bilinear interpolation is used for

inferring the pixel values of I at position (x, y) if x or y is not an integer. The computation of

(x, y) is as follows. First, the canonical face shape S̄ is mapped to the UV space by cylinder

unwrapping. We determine the triangle enclosing the point (x′, y′) on a grid based on the

vertex connectivity, which is provided by the 3DMM. The triangle is represented by its three

vertices Q′(i), Q′(j), and Q′(k). Since the topology of the facial shape in image space and UV

space are the same, the vertices in these two space have one-to-one correspondence. We could
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easily get the corresponding vertices Q(i), Q(j), and Q(k). Now the position (x, y) can be

computed by x = κ1Q(i, 1)+κ2Q(j, 1)+κ3Q(k, 1) and y = κ1Q(i, 2)+κ2Q(j, 2)+κ3Q(k, 2),

where the κs are the coefficients computed by Q′(i), Q′(j), Q′(k), and (x′, y′) in barycentric

coordinate system [99]. Given the vertices of a triangle (Q(i),Q(j),Q(k)) and its enclosing

grid point (x, y) on image. The barycentric coefficients can be computed by

di =

 Q(j, 1)−Q(i, 1)

Q(j, 2)−Q(i, 2)

 , dj =

 Q(k, 1)−Q(i, 1)

Q(k, 2)−Q(i, 2)

 , dk =

 x−Q(i, 1)

y −Q(i, 2)

 ,

dii = d⊺
i di, djj = d⊺

jdj , dij = d⊺
i dj , dki = d⊺

kdi, dkj = d⊺
kdi,

κ2 =
djjdki − dijdkj
diidjj − dijdij

, κ3 =
diidkj − dijdki
diidjj − dijdij

, κ1 = 1− κ2 − κ3.

(4.8)

The barycenteric coefficients κ1, κ2, and κ3 are in the range of [0, 1] if the grid point (x, y) is

in the triangle. For the invisible triangles (caused by self-occlusion), we simply ignore them.

With the illuminated texture T , the UV map of the reflectance A can be produced by a

function fr(T ;θr), where θr is the learnable parameters. It is worth noting that the input

(T ) and output (A) of fr are spatially aligned in UV space, so the learning process can

be greatly facilitated. Subsequently, the reflectance R is obtained by a wrapping function

R = Ψ(A) [95], which has no learnable parameters. The wrapping function Ψ : A ∈

R256×256×3 → R ∈ RK×3 is defined as R(i) = A(U(i, 1),U(i, 2)), where i is the index for

the vertices of a 3D face. R(i) and A(U(i, 1),U(i, 2)) are 3-dimensional vectors. U ∈ RK×2

is the coordinates of shape in UV space from 3DMM [76]. Again, bilinear interpolation is

used if U (i, 1) or U(i, 2) is not an integer.

Illumination. Following the previous studies [87, 83], we assume the distant smooth

illumination and purely Lambertian surface properties [100]. Spherical Harmonics (SH) [101]

are employed to approximate the incident radiance at a surface. We use 3 SH bands, leading

to 9 SH coefficients. The illumination function is defined as fℓ(I,T ,A;θℓ) : (I,T ,A) →

ℓ ∈ R9×1, which takes the given image, illuminated texture map and UV map of reflectance

as input, and produces the illumination parameters.

So far, the 3D face model parameters R, S, v, and ℓ are predicted, and we are able
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to recombine them and render the image by the expert-designed rendering module, Î =

R(S,R,v, ℓ).

4.3.3 Objectives for Self-Supervised Learning

The functions fs, fr, fv, and fℓ are modelled by convolutional neural networks (CNNs) with

learnable parameters θs, θr, θv, and θℓ, respectively. Since all the learning modules and

expert-designed renderer are differentiable, the proposed framework is end-to-end trainable.

The learning objective is to minimize the differences between the original image I and the

rendered image Î. Following the practices in previous work, the learning objective does

not include the pixels in nonface region, e.g. hair, sunglasses, scarf, etc. We identify if a

pixel belongs to face or nonface region by a face segmentation network fseg, which is trained

on CelebAMask-HQ dataset [102] with the segmentation labels provided in the dataset.

Once trained, fseg is fixed during the training and testing of CEST. We denote the effective

face region as a mask M , so the pixel at position (x, y) is included in reconstruction if

M (i, j) = 1, and excluded if M (i, j) = 0. The photometric loss can be written as

Lph = E(I,S,R,v, ℓ,M )

= ∥M ⊗ I −M ⊗ Î∥1

= ∥M ⊗ I −M ⊗R(S,R,v, ℓ)∥1,

(4.9)

where ∥·∥1 measure the ℓ1 distance and ⊗ denotes the element-wise multiplication. However,

if we simply optimize Lph, CEST will learn a degraded solution, where the reflectance A

simply copies the pixel values from T , and ℓ yields an isotropic radiator, radiating the

same intensity of radiation in all directions. In this case, CEST does not learn semantically

disentangled facial parameters, but leads to a perfect reconstruction for Î.

To avoid this, we adopt the symmetry and consistency constraints for reflectance. The

facial reflectance is assumed to be horizontally symmetric and consistent in a video clip.

Suppose Ii and Ij are two face images from the same video clip. One of the possible

solutions is to add the regularization terms ∥Ri −R⋊⋉
i ∥, ∥Rj −R⋊⋉

j ∥, and ∥Ri −Rj∥ to the
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learning objective, where R⋊⋉
i and R⋊⋉

j are the horizontally flipped versions of Ri and Rj.

However, it is difficult to tune loss weights to balance the reconstruction and regularization

terms. Instead, we adopt an alternative solution by constructing additional reconstruction

terms as constraints [84]. The learning objective for reconstructing Ii and Ij can be written

as
Lph = E(Ii,Si,Ri,vi, ℓi,Mi) + E(Ij,Sj,Rj,vj, ℓj,Mj)

+ E(Ii,Si,Rj,vi, ℓi,Mi) + E(Ij,Sj,Ri,vj, ℓj,Mj)

+ E(Ii,Si,R
⋊⋉
i ,vi, ℓi,Mi) + E(Ij,Sj,R

⋊⋉
j ,vj, ℓj,Mj)

+ E(Ii,Si,R
⋊⋉
j ,vi, ℓi,Mi) + E(Ij,Sj,R

⋊⋉
i ,vj, ℓj,Mj)

(4.10)

Stochastic optimization. As can be seen, the number of reconstruction terms is increased

dramatically. From n frames of the same video, 2n2 reconstruction terms can be constructed.

This is not scalable. To address this problem, we propose to optimize the learning objective

in a stochastic way. For each training iteration, only a subset of the reconstruction terms

are optimized. Specifically, a set of video frames {I1, I2, ..., IN} are randomly sampled from

different videos. The frames are grouped by videos, labeled as ξ = {ξ1, ξ2, ..., ξN}. For any Ii,

instead of enumerating all the possible reflectances and obtaining numerous reconstruction

terms, we randomly select some other frame from the same video, denoted as Ij (under the

condition of ξj = ξi), and use Rj and R⋊⋉
i to construct two reconstruction terms for Ii. With

this strategy, the number of reconstruction terms is reduced from O(n2) to O(n). Formally,

the learning objective can be written as

Lph =
1

N

N∑
i=1,ξj=ξi

(
E(Ii,Si,Rj,vi, ℓi,Mi) + E(Ii,Si,R

⋊⋉
i ,vi, ℓi,Mi)

)
. (4.11)

To stabilize the training of CEST, we use 2D key points via Lkp =
1

NNkp

∑N
i=1

∑Nkp

j=1 ∥Qi(kj)−

qi(j)∥1 where q(j) is the set of detected 2D key points on image, and kj is the index

of the vertex associating to the 2D key point. We also regularize the energies of shape

coefficients with Lrg = 1
N

∑N
i=1 ∥αi∥22. An off-the-shelf landmark detector [70] is used to

produce Nkp = 68 key points for a detected face. The total loss consists of the following
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terms:

L = Lph + λ1Lkp + λ2Lrg (4.12)

where λ1 and λ2 are hyperparameters.

4.4 Experiments

We qualitatively and quantitatively evaluate CEST with ablation experiments and com-

parisons to state-of-the-art methods [5, 42, 7, 103]. In ablation experiments, we compare

CEST to the independent version of CEST (IEST) where facial parameters are estimated in

a uncoupled way, and other variants trained with different constraints. Qualitative results

include the predicted shape, reflectance, illumination, reconstructed face, etc. We also show

the relighted faces, which are obtained by illuminating reflectances with different illumina-

tions. Quantitative results evaluate the qualities of the predicted shape and rendered face.

The metrics we used are normalized mean error (NME) [104] and photometric error for

shape and rendered face, respectively. NME is defined as the average per-vertex Euclidean

distance between the predicted and targeted point clouds normalized by the outer 3D inte-

rocular distance. Photometric error is the mean absolute errors between pixel values in the

original images and reconstruction images.

4.4.1 Experimental Settings

For fair comparison, we train two separate CEST models with VoxCeleb1 [3] and 300W-LP

[90] respectively. VoxCeleb1 is a video dataset collected from the Internet. The videos of

speakers are captured in different in-the-wild scenarios. A subset of 4,727 videos of 267

persons are used in the training, leading to 6,279,609 video frames. The faces in video

frames are cropped to the size of 256 × 256 based on the detected facial key points using

[70]. 300W-LP is a synthetic image dataset, containing 122,450 images provided with dense
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Table 4.1: CNN architectures for viewpoint, illumination, and shape networks: details.

Viewpoint & Illumination Network Shape Network
Layer Act. Output shape Layer Act. Output shape
Input - 256× 256× 3 Input - 256× 256× 3

Conv 4× 4/2,1 BN + ReLU 128× 128× 32 Conv 4× 4/2,1 BN + ReLU 128× 128× 64
Conv 4× 4/2,1 BN + ReLU 64× 64× 32 Conv 4× 4/2,1 BN + ReLU 64× 64× 64
Conv 4× 4/2,1 BN + ReLU 32× 32× 64 Conv 4× 4/2,1 BN + ReLU 32× 32× 128
Conv 4× 4/2,1 BN + ReLU 16× 16× 64 Conv 4× 4/2,1 BN + ReLU 16× 16× 128[
Conv3× 3/1,1

Conv3× 3/1,1

]
BN + ReLU
BN + ReLU

16× 16× 64

16× 16× 64

[
Conv3× 3/1,1

Conv3× 3/1,1

]
BN + ReLU
BN + ReLU

16× 16× 128

16× 16× 128

Conv 4× 4/2,1 BN + ReLU 8× 8× 128 Conv 4× 4/2,1 BN + ReLU 8× 8× 256[
Conv3× 3/1,1

Conv3× 3/1,1

]
BN + ReLU
BN + ReLU

8× 8× 128

8× 8× 128

[
Conv3× 3/1,1

Conv3× 3/1,1

]
BN + ReLU
BN + ReLU

8× 8× 256

8× 8× 256

Conv 4× 4/2,1 BN + ReLU 4× 4× 128 Conv 4× 4/2,1 BN + ReLU 4× 4× 256
Conv 4× 4/2,1 - 1× 1× d Conv 4× 4/2,1 - 1× 1× 228

landmarks. Since we focus on self-supervised learning, we only use a sparse set of 68 sparse

landmarks as a regularization in training.

Network Architecture. We use standard encoder networks for viewpoint, shape and

illumination predictions, and a network similar to U-Net [105] for reflectance prediction.

The detailed configurations are given in Table 4.1. Parameter d is 7 for viewpoint network

fv and 9 for illumination network fℓ. Conv 3/2,1 denotes convoluitonal layer with kernel

size of 3, where the stride and padding are 2 and 1, respectively. Each convolutional layer

is followed by a Batch Normalization (BN) [57] layer and Rectified Linear Units (ReLU).

Bilinear interpolation is adopted for the upsampling operation. Specifically, in Table 4.1,

the layers in brackets are residual blocks. In Table 4.2, we use shortcut to connect the

feature maps of encoder and decoder, but different from U-Net, we use addition rather than

concatenation to integrate information in the feature maps. For those encoder output shapes

in brackets (e.g. “[128×128×64]”), the feature map will be added as a shortcut to the decoder

feature map (also with the same brackets).

Training. For the training with VoxCeleb1, the minibatch consists of 128 video frames

from 32 clips. For each video clip, we randomly selected 4 video frames. The training is

completed at 50K iterations. For the training with 300W-LP, the minibatch consisted 128
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Table 4.2: CNN architectures for reflectance networks: details. The layers in the decoder
(from input to output) are listed from bottom to top.

Reflectance Network
U-Net Encoder (↓) U-Net Decoder (↑)

Encoder Layer Act. Output shape Decoder Layer Act. Output shape
Input - 256× 256× 3 Output - 256× 256× 3

- - - Conv 3× 3/1,1 Tanh 256× 256× 3
- - - Conv 3× 3/1,1 BN + ReLU 256× 256× 3

Conv 4× 4/2,1 BN + ReLU 128× 128× 64 Upsample (2×) - 256× 256× 64
Conv 3× 3/1,1 BN + ReLU [128× 128× 64] Conv 3× 3/1,1 BN + ReLU [128× 128× 64]

- - - Conv 3× 3/1,1 BN + ReLU 128× 128× 64
Conv 4× 4/2,1 BN + ReLU 64× 64× 64 Upsample (2×) - 128× 128× 64
Conv 3× 3/1,1 BN + ReLU [64× 64× 64] Conv 3× 3/1,1 BN + ReLU [64× 64× 64]

- - - Conv 3× 3/1,1 BN + ReLU 64× 64× 64
Conv 4× 4/2,1 BN + ReLU 32× 32× 128 Upsample (2×) - 64× 64× 128
Conv 3× 3/1,1 BN + ReLU [32× 32× 128] Conv 3× 3/1,1 BN + ReLU [32× 32× 128]

- - - Conv 3× 3/1,1 BN + ReLU 32× 32× 128
Conv 4× 4/2,1 BN + ReLU 16× 16× 128 Upsample (2×) - 32× 32× 128
Conv 3× 3/1,1 BN + ReLU [16× 16× 128] Conv 3× 3/1,1 BN + ReLU [16× 16× 128]

- - - Conv 3× 3/1,1 BN + ReLU 16× 16× 128
Conv 4× 4/2,1 BN + ReLU 8× 8× 256 Upsample (2×) - 16× 16× 256
Conv 3× 3/1,1 BN + ReLU [8× 8× 256] Conv 3× 3/1,1 BN + ReLU [8× 8× 256]
Conv 4× 4/2,1 BN + ReLU 4× 4× 256 Conv 3× 3/1,1 BN + ReLU 8× 8× 256
Conv 3× 3/1,1 BN + ReLU 4× 4× 256 Upsample (2×) - 8× 8× 256

randomly selected images, and the total iteration is 20K. For both models, we used Adam

[72] optimizer with learning rate of 0.001. λ1 and λ2 are 1 and 0.1 unless stated otherwise.

4.4.2 Ablation Experiments

The results of ablation study are shown in Fig. 4.4. We first present the original and recon-

structed image (overlay) for comparison, following by the reflectance, illuminated texture,

facial shape (geometry), and illumination in canonical view. The results are (a) CEST with

two constraints; (b) uncoupled CEST with two constraints; (c) CEST with only reflectance

consistency constraint; (d) CEST with reflectance symmetry constraint (the number of video

frames is 1); (e) CEST with no constraint on reflectance; (f) reflectance consistency is applied

to videos, not video clips.

CEST and IEST. IEST is trained with the same settings as CEST, except the fa-

cial parameters are estimated independently from image during training and testing. The
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(a)

(b)

(c)
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(e)
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Figure 4.4: Ablation studies with different constraints.

results are shown in Fig. 4.4 (a) and (b), respectively. We can see that CEST produces

realistic overlay, disentangled reflectance and illumination, and geometry with personal char-

acteristics and expressions. Compared to CEST, IEST achieves reasonable results, but the

reflectances are not as detailed as those from CEST, resulting in inferior overlays and illumi-

nated textures. It validates our hypothesis that the coupled estimation can better formulate

the problem and facilitate the learning.

Reflectance symmetry and consistency constraints. We train multiple variants

of CEST with only symmetry constraint, only consistency constraints, and without the two

constraints, and show their results in Fig. 4.4 (c), (d), and (e), respectively. Compared (a)

and (c) we observe that the reflectance symmetry constraint leads to better reflectance and

illumination separation. This is because the horizontally flipped video frames can provide

more illumination variations to the training set, enabling CEST to learn to model different

illuminations properly. On the other hand, if the reflectance consistency in video clip is

not used, the decomposition of reflectance and illumination is not performed well. Some

illumination remains around the eyes region in the reflectance (see the right hand side of
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Figure 4.5: Comparisons with MoFA. (a) and (c) are results from CEST. (b) and (d) are
results from MoFA.

the Fig. 4.4 (d)). Lastly, if we do not use any constraints on reflectance, CEST learns the

degraded solution (Fig. 4.4(e)), where the reflectance simply copies the pixel values from the

image, and illumination is an isotropic radiator, radiating the same intensity of radiation

in all directions. Moreover, we note that the degraded solution also affects the learned

facial shape, which has less personal characteristics in Fig. 4.4 (e). Fig. 4.4 (f) shows the

results from CEST trained with reflectance consistency across video. The performance is

comparable to those from CEST trained with default setting (reflectance consistency across

video clip). It shows that consistency constraint can be generalized to longer videos if the

recording environments are not changed dramatically.

4.4.3 Qualitative Results

In this section, we compare CEST to most relevant state-of-art methods with qualitative

results.

Comparison to MoFA [5]. MoFA is a fully model-based framework. Its representation

power is limited by the linear 3DMM model. In addition, all facial parameters from MoFA

are independently predicted from the original image. On the contrary, we use a model-free

method for reflectance, and the whole inference process is based on coupled estimation. We
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Figure 4.6: Comparisons with nonlinear 3DMM. (a), (c), and (e) are results from CEST.
(b), (d), and (f) are results from N3DMM.

visualize the overlay, reflectance, geometry, illumination , as well as the errors between input

and rendered image (overlays) in Fig. 4.5. As can be observed, results from MoFA suffer from

out-of-subspace reflectance variations. Compared to MoFA, we obtain comparable shape, but

significantly better reflectance, illumination, and rendered face by capturing more details.

Comparison to N3DMM [83]. N3DMM generalizes 3DMM model to a nonlinear

space and improves the quality of rendered faces. However, N3DMM also infers the re-

flectance from the input image only, and uses too many heuristic constraints, e.g. reflectance

constancy, shape smoothness, supervised pretraining, etc. So their models can only capture

low-frequency variations on reflectance. For example, in Fig. 4.6 (b) the lip stick is missing

in the reflectance, and the skin colors in reflectances are almost identical for different per-

sons. These limitations lead to higher reconstruction error. In contrast, our results produce

realistic reconstruction, with more accurate reflectance and illumination, as well as lower

reconstructed error (Fig. 4.6).

Comparison to FML [7]. FML properly incorporates video clues in training and can
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Figure 4.7: Comparisons with FML. (a), (c), and (e) are results from CEST. (b), (d), and
(f) are results from FML. Images are from the video frames in VoxCeleb1 dataset [3]

render realistic faces. However, its reconstructed reflectances are prone to an average skin

color. In comparison, CEST yields more accurate skin color (see Fig. 4.7 (a), (c), and (e))

by incorporating the learned shape and viewpoint in the estimation of reflectance. Quali-

tative results clearly show that our results have more reasonable disentanglement between

reflectance and illumination. They also contribute to better visual quality of rendered faces.

Notably, there are considerable differences in the eye and nose regions from the overlay in

Fig. 4.7.

Relighting. Since CEST predicts the reflectances of faces, they can be easily re-lighted

with different lighting conditions. Fig. 4.8 shows the re-lit faces in canonical view. In partic-

ular, the last two target faces are under harsh lighting, which also examines the illumination

removal ability of CEST. The re-lit results again validate that CEST is capable of estimating

well-disentangled facial parameters and capturing the reflectance and illumination variations

in real-world face images.
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Re-litInput

Figure 4.8: Lighting transfer results.

4.4.4 Quantitative Results

We first perform quantitative evaluations on the AFLW2000-3D dataset, including 2,000

unconstrained face images with large pose variations. The ground truth of AFLW2000-3D

is given by the results from 3DMM fitting, which may be somewhat noisy. The second

evaluation is on MICC Florence 3D Face dataset, which consists of high-resolution 3D scans

from 53 subjects. We follow the practices in [104] to render 2,550 testing images using the

provided 3D scans. Each subject is rendered in 20 difference poses using a pitch of -15, 20

or 25 degrees and a yaw of -80, -40, 0, 40 or 80 degrees.

In order to compare with previous work, NME is computed based on a set of 19,618

vertices defined by [104] in their evaluation. The point correspondences are determined

by the iterative closest point (ICP) algorithm [106]. We compute the cumulative errors

distribution (CED) curves and compare it to current prevailing methods such as 3DDFA [90],

DeFA [107], and PRN [103] on AFLW2000-3D. For MICC, we compare CEST to 3DDFA [90],

VRN [104], and PRN [103]. The results are given in Fig. 4.9. CEST achieves 3.37 and 3.14

NME on AFLW2000-3D and MICC datasets, respectively. More interestingly, our method
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(a) CED Curves on AFLW2000-3D dataset (b) CED Curves on MICC dataset

Figure 4.9: CED curves on AFLW2000-3D and MICC datasets. For example, a point at (4,
63) means that 63% of images have NME less than 4.
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Figure 4.10: Comparisons to [4]. (a) and (c) Results from CEST. (b) and (d) Results from
[4].

performs better than the fully supervised techniques for shape estimation, e.g. 3DDFA

(5.37 on AFLW2000-3D and 6.38 on MICC) and PRN (3.96 on AFLW2000-3D and 3.76 on

MICC). Additionally, our method can also estimate facial reflectance and illumination, while

both 3DDFA and PRN can not. Compared to N3DMM on MICC dataset, CEST achieves

slightly lower NME (3.14 vs. 3.20). Notably, N3DMM uses dense landmarks for supervised

pretraining while CEST only uses the 68 sparse landmarks.

Qualitative comparisons. we show more comparisons to the state-of-art methods

[8, 9, 6, 108]. Since there is no publicly available implementations for these methods, we

compare to the results presented in their papers.

Overall, CEST produces more stable and reasonable geometries, detailed reflectances,

and realistic reconstructions of the 3D faces. As shown in Fig. 4.10 (a) (b), Fig. 4.11,

Fig. 4.12, and Fig. 4.13, the facial shapes predicted by CEST are more accurate in facial
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expressions and lip closure. In addition, the predicted reflectances show more personal

characteristics, but less remaining illumination, as illustrated in Fig. 4.12. Lastly, CEST

yields faithful 3D reconstructions, capturing more details than the other methods (see Fig

4.11).

Input
CEST MoFA Richardson16

Reconstruction Geometry Geometry GeometryReconstruction Reconstruction

Figure 4.11: Comparisons to MoFA [5] and [6]. Our estimated shapes show more accurate
expressions.

Input
Reflectance Geometry

CEST CESTBooth17 Booth17FMLFML

Figure 4.12: Comparing CEST to FML [7] and [8].

Input CEST Tewari17Sela17 FML19Richardson17 MGCNetRingNet

Figure 4.13: Comparing the estimated shapes from CEST to those from [6], [9], [5], [7], [10],
and [11] (from left to right). Our estimated shapes are more stable and accurate.

Challenging Cases. We present some examples with dark skin in Fig. 4.14. Although

most people in the training set (VoxCeleb) are Caucasian, CEST still produces reasonable
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illumination and albedo for these examples. One limitation is that the reconstruction of the

non-lambertian surface is inaccurate, e.g. eyes with unusual gaze directions.

Input
Illuminated 

texture Reflectance
Illuminated 

texture Reflectance Input Input
Illuminated 

texture Reflectance

Figure 4.14: Some challenging examples.

Photometric Error. We compare CEST, IEST, FML [7] and Garrido [109] on overlay

face reconstruction. To measure the quality of the overlay images, we compute the average

photometric error (R,G,B pixel values are from 0 to 255) between the input face image and

the overlay face image. We experiment on 1,000 images in CelebA dataset [110]. Table 4.3

shows that the conditional estimation is beneficial for reconstructing the 3D face, and the

proposed CEST outperforms existing methods by a large margin.

Table 4.3: Photometric errors obtained by different methods.

Method CEST IEST FML [7] Garrido16 [109]
Photometric Error 10.74 13.76 20.65 21.95

4.5 Discussion

We have proposed a conditional estimation framework, called CEST, for 3D face reconstruc-

tion from single-view images. CEST addresses the reconstruction problem with a more gen-

eral formulation, which does not assume conditional independence. We have also proposed

a specific decomposition for the conditional probability of different 3D facial parameters.

Together with the reflectance symmetry and consistency constraints, CEST can be trained

efficiently with video datasets. Both qualitative and quantitative results prove that the con-

ditional estimation is useful. CEST is able to produce high quality and well-disentangled

facial parameters for single-view images.
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The proposed CEST can be improved from many aspects. Firstly, more accurate and

unambiguous facial parameters can be obtained by exploring the temporal information in

video. Second, the performance of shape estimation can be boosted by a more advanced

morphable model, which also benefits the subsequent estimations of other facial parameters.

Moreover, adding perceptual loss could also be an effective way to improve the visual quality

of the facial parameters.



Chapter 5

3D Facial Shape Reconstruction from

Voice

So far, we are able to generate visually plausible 2D face images from voice, and the gener-

ated faces do have common demographic attributes with the true speakers. However, image

representation has several inevitable limitations. First, there are many voice-unrelated as-

pects in the reconstructed images, such as hair, glasses, make-up, hat, etc. The varying

viewpoints, illuminations, and background also introduce unexpected variations to the re-

construction, making the results even less explainable. Second, it is nontrivial to compare

the generated and real faces objectively. The most commonly used metrics for image recon-

struction are Fréchet inception distance (FID) [111] and inception score (IS) [112]. These

metrics compare the differences of generated and real images, rather than the faces, so they

can not serve as objective metrics to quantify how close the generated faces are to the ground

truths. Motivated by the limitations of image representations, we propose to reconstruct 3D

facial shapes from voice.

67
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5.1 Introduction

General 3D facial shape is represented by the 3D coordinates of a number of points on

its surface called vertices [76]. We can visually perceive the facial characteristics from

these vertices, like nose, eyes, mouth, jaw, etc. This representation inherently excludes

the identity-unrelated factors like expressions1, hairs, glasses, illumination, background, etc.

More importantly, since the topology of 3D facial shape is predefined and consistent across

different faces, we can easily measure the reconstruction accuracy with distances between

the predicted vertices and their ground truths.

However, reconstructing 3D facial shapes from voice is a challenging problem. The exact

association between voice and 3D facial shape is still unknown. The information in voices

may only encode some key characteristics of the 3D facial shape, and we do not know which

they are. Even if this were not the case, which voice features have higher correspondence

to reconstruct the 3D face remains an open question. On the other hand, there is no

large-scale publicly available dataset with paired voice recordings and accurate 3D facial

shapes. Learning or discovering audiovisual associations is impractical by a purely data-

driven method, which further complicates the problem. Suppose we directly apply voice-

to-vertex regression on a mixed-gender dataset (including male and female samples). In

that case, the learned regressor takes a shortcut [113] – disambiguating 3D facial shape

by the gender information in voice, as shown on the left of Fig. 5.1(b). Subsequently,

we perform two follow-up experiments, where we perform regressions on male and female

subsets, respectively. The slight improvement on the mixed-gender dataset immediately

disappears. These results clearly show the challenges of learning audiovisual associations

beyond gender.

Given these challenges, we take an alternative view on the reconstruction problem. In-

stead of directly reconstructing the entire 3D facial shapes from voice, we consider its prereq-

uisite: what features in 3D facial shape can be estimated from voice? By explicitly exploring
1Note that the 3D facial shapes refer to those of neutral expressions since this thesis focuses on the

identity-related associations between voices and faces, rather than the instantaneous expression information.
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① ③

AMs summarized from literature

...

AMs predictable from voice

②

② Estimate AMs from voice

③ Select AMs by hypothesis testing

④ Reconstruct 3D facial shapes from the predictable AMs

...

(a) (b)

voice to female
anthropometric measurements (AMs)

(c)

④

① Summarize AMs (distances, proportions, and angles) and compute them from 3D facial shape

voice to vertices

Figure 5.1: (a)(c) Comparison of the voice-to-vertex regression and the proposed SfV. (b)
Improvements of voice-to-vertex regression (left) and SfV (right). 0 indicates the chance
level performance.

the features that are predictable from voice and can be used in the reconstruction, we can

effectively prevent the data-driven model from taking unintended shortcuts and improve the

generalization.

In this chapter, we propose an anthropometry-guided framework for reconstructing 3D

facial shapes from voice. The method, called shape from voice (SfV), is motivated by the

voice production mechanism [75], in which studies have shown the anthropometric mea-

surements (AMs) like the dimensions of nasal cavities [114] or cranium [115, 116] directly
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influence the speaker’s voices. SfV first identifies which AMs are predictable from voice,

and reconstruct the 3D facial shape from those predictable AMs. The predictable AMs act

as intermediate variables that bridge the gap between the voice and 3D facial shape. In

addition, the AMs are more robust than 3D coordinates since they are invariant to any rigid

transformation, which is neither predictable from voice nor of interest to this work.

The proposed SfV is illustrated in Fig. 5.1(c), including four key steps. First, we sum-

marize and compute a number of AMs that are potentially correlated with voice production

from the anthropometry literature [117, 118, 119, 120, 121]. Second, we predict the AMs

from voice by training estimators with uncertainty learning. The reliability of the estimators

can be significantly enhanced with the ability to predict the uncertainty [122]. Third, we

select the AMs predictable from voice by hypothesis testing. The null hypothesis is made

for each AM and states the AM is unpredictable from voice. We can successfully reject

the corresponding null hypothesis if any AM estimation is better than chance on a held-out

validation set with statistical significance. We present several predictable AMs on the right

of the Fig. 5.1 (b). Last, we reconstruct the 3D facial shapes by a fitting process [76] based

on the predictable AMs. This is done by adjusting a set of coefficients in low-dimensional

space, such that the differences between the AMs of the generated 3D facial shape and

the predicted AMs are minimized. Intuitively, if there are more predictable AMs spanning

different locations of a face, the reconstruction can be more indistinguishable.

In the experiments stratified by gender, we discover a number of female AMs that are

predictable from voice. We visualize the predictable AMs and find that most of them are

located around noses. Moreover, the accuracy of the AM estimation is greatly improved by

filtering out a proportion of voice samples with high uncertainties. The further improvements

suggest that more AMs are discovered to be predictable from voice, including a few male

AMs. With the discovered AMs, we achieve visible improvements in the reconstructed 3D

facial shapes, especially the noses of the female speakers.
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5.2 The Proposed Framework

Our objective is to reconstruct any speaker’s 3D facial shape from their voice recordings.

In this section, we first formulate our problem and introduce some necessary notations.

Subsequently, we describe the proposed SfV method in detail, followed by discussions on the

results.

Our problem is formulated as follows. We are given a set of paired voice recordings and

3D facial shapes {(v1,f1), (v2,f2), ...} from different people, where vi is a voice recording

spoken by the i-th person and fi is a 3D facial shape scanned from the speaker of vi. Our

goal is to reconstruct the 3D facial shape f of any speaker from their voice recording v. To

do so, we leverage a set of AMs {m(1),m(2), ...,m(K)} that are computed from f , where K

is a positive integer and m(k) (k ∈ [1, K]) represents the k-th AM. Accordingly, the overall

dataset is denoted as D = {(v1,f1,m1), (v2,f2,m2), ...}, where each triplet consists of a

voice recording, a scanned 3D facial shape, and K AMs from the same person.

SfV addresses the problem of reconstructing 3D facial shapes from voice by a 4-step

pipeline: (i) compute the ground truth AMs from 3D facial shapes; (ii) estimate AMs from

voices; (iii) identify which AMs are predictable from voice; (iv) reconstruct 3D facial shapes

from the predictable AMs. Unlike regular regression, SfV does not assume the dependency

between the input (voice) and output (AM) of the estimators. For this reason, we construct

an additional validation set for empirically validating the dependency. Specifically, we split

the dataset D into a training set Dt for estimator learning, a validation set Dv1 for estimator

selection, a validation set Dv2 for AM selection, and an evaluation set (or testing set) De for

evaluating the reconstructed 3D facial shapes, among which there is no overlapping.

5.2.1 Training AM estimators

There is a large body of literature on anthropometry. Many AMs of human faces are discov-

ered and have been shown to associate with voice production [117, 118, 119, 120, 121]. We

summarize the most commonly used AMs in Fig. 5.2 and Table 5.1. The chosen AMs are
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Figure 5.2: The selected landmarks.

Table 5.1: The summarized AMs.

distance proportion angle
11-15 19-23 15-19 11-23 5-6 32-38 / 28-31 33-37 / 28-31 58-62 / 28-31 57-58-59 56-57-58
1-10 3-8 59-61 58-62 57-63 57-63 / 28-31 56-64 / 28-31 55-65 / 28-31 55-56-57 54-55-56
56-64 55-65 32-38 33-37 34-36 39-45 / 28-31 32-38 / 60-54 33-37 / 60-54 65-54-55 64-65-54
49-47 41-43 55-54 54-65 39-45 58-62 / 60-54 57-63 / 60-54 56-64 / 60-54 63-64-65 62-63-64
49-47 40-44 42-48 13-17 21-25 55-65 / 60-54 39-45 / 60-54 59-61 / 58-62 61-62-63 32-30-38
60-28 60-31 60-35 60-51 60-52 58-62 / 57-63 57-63 / 56-64 56-64 / 55-65 32-31-38 28-31-35
60-54 28-31 27-51 31-35 31-52 58-62 / 32-38 57-63 / 32-38 56-64 / 32-38 52-53-54 28-31-32
31-53 31-54 35-51 42-48 52-53 59-61 / 32-38 55-65 / 32-38 39-45 / 32-38 38-31-28 38-51-32
53-54 51-54 55-56 56-57 57-58 60-54 / 28-31 52-53 / 53-54 51-52 / 51-54 64-54-56 30-31-35
58-59 61-62 62-63 63-64 64-65 28-31 / 28-54

categorized as distance, proportion, and angles. For example, “11-15” denotes the distance

between the 11-th and 15-th landmarks, and “32-38 / 28-31” denotes the proportion of two

distances. For angle “57-58-59”, the arms are the line segments of 57-58 and 59-58, and the

vertex is the 58-th landmark. These features are more robust than 3D coordinate represen-

tations since the variations caused by spatial misalignment are completely eliminated. As a

comparison, 3D coordinates encode the position, orientation, and shape information of the

3D face, of which the first two might introduce unexpected noises.

In SfV, we use convolutional neural networks (CNNs) to estimate the AM from voice. Let
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Fk(v; θk) : v 7→ R be an estimator that maps any voice recording v into the k-th predicted

AM2, where θk is the learnable CNN parameters. This is a regular regression problem, so

the learning objective for the k-th AM is

θ∗k = argmin
θk

1

|Dt|
∑

(v,m(k))∈Dt

(Fk(v; θk)−m(k))2, (5.1)

where |Dt| is the number of the triplets (voice, face, and AMs) in dataset Dt. By incorpo-

rating uncertainty into the estimator learning, the prediction becomes a random variable,

rather than a singe value. Following [122], Gaussian distribution is employed to the predic-

tion. Now estimator Fk(v; θk) maps v into the mean of the i-th predicted AM. Similarly,

we define an uncertainty estimator Gk(v;ϕk) : v → R+ ∪ {0} that v into the variance of

the k-th predicted AM. Again, ϕk is the learnable CNN parameters. The predicted AM and

its ground truth become N (Fk(v), Gk(v)) and N (m(k), 0), respectively [122]. Given two

random variables, a more reasonable learning objective is to minimize their KL divergence

[122].

{θ∗k, ϕ∗
k} = argmin

θk,ϕk

1

|Dt|
∑

(v,m(k))∈Dt

(Fk(v; θk)−m(k))2

Gk(v;ϕk)
+ lnGk(v;ϕk), (5.2)

As can be observed from Eqn. 5.2, for a fixed (Fk(v; θk) − m(k))2, there is an optimal

variance Gk(v;ϕk) = (Fk(v; θk) − m(k))2 such that the loss function is minimized. So the

uncertainty estimator Gk is learned to produce a small variance if the prediction error is

small, and vice versa. On the contrary, a smaller variance indicates that the predicted AM

is more likely to yield small prediction error, i.e. closed to the ground truth. Therefore, we

can choose to trust the predicted AMs when the predicted variances are small, and defer

the voice recordings to human experts otherwise. An extreme case is Gk(v) ≡ 1, where the

uncertainty learning model (Eqn. 5.2) degrades to the regular regression model (Eqn. 5.1).

Fusion. In practice, a long voice recording v is fed into CNNs (Fk and Gk) in the form

of multiple short segment inputs {v(1),v(2), ...,v(L)}. So we obtain a sequence of means

and variances for the predicted AM. In the training phase, we compute the loss for each
2While each estimator is assumed to predict one AM here, they can be easily extended to predict multiple

AMs.
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segment individually and average them as the training loss. While in the testing phase, the

predicted AM and its uncertainty are given by aggregating the predictions from all voice

segments. Assuming the short segments from a long voice recording are class-conditionally

independent, the formulations of aggregation are

m̂(k) =
L∑
l=1

w(k)

Gk(v(l))
· Fk(v

(l)),

1

w(k)
=

L∑
l=1

1

Gk(v(l))
,

(5.3)

where m̂(k) is the aggregated mean and also the predicted k-th AM. However, the aggregated

variance w(k) is not used as the uncertainty of the predicted k-th AM. Since the conditional

independence assumption does not always hold in cases such as noises, silences, the computed

aggregated variance will be biased by the number of voice segments in the long recording.

So we calibrate the uncertainty as ŵ(k) = L ·w(k).

5.2.2 Identifying predictable AMs

We have collected a number of AMs and trained estimators for predicting them. However,

only few of the AMs are actually predictable from voice, which we had anticipated while

designing the task. To identify those AMs, we use hypothesis testing to them individually.

Formally, we can write the null and alternative hypotheses for the k-th AM as

H0 : the AM m(k) is NOT predictable from voice

H1 : the AM m(k) is predictable from voice

In order to reject H0, we only need to find an counterexample to show that voice is indeed

useful in predicting AM m(k). An effective example is to compare the estimators with and

without the voice input. If there exists a learned estimator Fk(v) performing better than

the chance-level estimator Ck without using voice input and the results are statistically

significant, we can successfully reject H0 and accept H1. Here the chance-level estimator for

the k-th AM is a constant Ck = 1
|Dt|
∑

m(k)∈Dt
m(k), which is the mean m(k) of the training
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set Dt. So the null and alternative hypotheses can be rewritten as

H0 : µ(Ek/EC
k ) ≥ 1

H1 : µ(Ek/EC
k ) < 1,

where Ek and EC
k are the mean square errors of estimators with and without voice inputs on

validation set Dv2 , respectively. The formulations of Ek and EC
k are given below.

Ek =
1

|Dv2|
∑

m(k)∈Dv2

(m̂(k) −m(k))2,

EC
k =

1

|Dv2 |
∑

m(k)∈Dv2

(Ck −m(k))2.

(5.4)

To ensure the statistical significance, we perform multiple experiments, where the Dt, Dv1 ,

and Dv2 are obtained by different random splits. Since the true variance of Ek/EC
k is unknown,

the type of hypothesis testing is one-sided paired-sample t-test. The upper bound of the

confidence interval (CI) is given by

CIl = µ(Ek/EC
k )− t1−α,ν ·

σ(Ek/EC
k )√

N

CIu = µ(Ek/EC
k ) + t1−α,ν ·

σ(Ek/EC
k )√

N

(5.5)

where µ(·) and σ(·) are functions for computing mean and standard deviation, respectively.

N is the number of the repeated experiments and here we use N = 100. α and ν = N − 1

are the significance level and the degree of freedom, respectively. For the purpose of this

section, we adopt the significance level of 5%, then we can immediately read t0.95,N−1 from

t-distribution table (or t table). Now we can determine whether to reject H0 by inspecting

the computed CIu. Specifically, CIu < 1 implies that we can successfully reject H0 and

accept H1, i.e. the AM m(k) is predictable from voice. According to the experimental

results, the probability that the aforementioned decision is correct is higher than 95%, i.e.

statistically significant. In contrast, CIu ≥ 1 implies that we fail to reject H0, for the current

experimental results are not statistically significant enough. Note that failing to reject H0

does not imply we accept H0.
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In a nutshell, we define a set of indicators z = {z(1), z(2), ...z(K)}. z(k) is 1 if the k-th AM

is predictable from voice. Otherwise z(k) is 0, as given in Eqn. 5.6.

z(k) =


1, if CIu < 1.

0, otherwise.
(5.6)

Discussion. We emphasize that it is necessary to compute EC
k and Ek on Dv2 , rather

than Dt or Dv1 . This is because our estimators are trained on Dt and selected by the errors

on Dv1 , we can easily get significantly lower Ek than EC
k on these datasets. In this case,

type I error (false positive) happens, where an AM is actually not predictable from voice,

but we reject H0 and accept H1. On the contrary, if we evaluate the estimator on Dv2 , the

type I error is less likely to happen. Type II error (false negative) happens when an AM is

actually predictable from voice, but we fail to reject H0. It is very likely to happen due to

the small scale of the dataset, noises in data capturing, imperfect learning model, or even

the improper hyperparameters, which indicates there remains considerable room for future

exploration.

5.2.3 Reconstructing 3D Facial Shape

To reconstruct the 3D facial shape, we need to predict AMs of the voice recordings in De first.

Each predicted AM is given by the ensemble of the trained estimators from the repeated

experiments in 5.2.2.

Subsequently, we generate the 3D facial shapes based on the predicted AMs by an

optimization-based method. To do so, we first project the 3D facial shapes into a low-

dimensional linear space [76]. By adjusting the coefficients in low-dimensional space, we

obtain different re-projected 3D facial shapes. The learning objective is to find a set of coef-

ficients, such that the differences between the AMs of the re-projected 3D facial shape and

the predicted AMs are minimized. Specifically, we construct a big matrix B = [b1, b2, ...] ∈

R3T×|Dt| where each column bi ∈ R3T×1 is a long vector obtained by flattening a 3D facial

shape fi ∈ RT×3. T is the number of vertices on 3D faces. Since 3T ≫ |Dt|, we compute
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the projection matrix P ∈ R3T×d(d ≫ 3T ) using eigenfaces [123] on B. Now any flattened

3D facial shape b can be approximated by re-projecting a low-dimensional vector β ∈ Rd×1

in the form of Pβ.

We define the computation of AM as Qk(b) : b 7→ R, which maps any flattened 3D facial

shape b into the k-th AM of b. Since Qk(·) computes a distance, a proportion, or an angle of

the 3D facial shape, it is a differentiable function. The optimizing objective is given below.

β∗ = argmin
β

λ∥β∥22 +
K∑
k=1

(Qk(Pβ)− m̂(k))2 · z(k) (5.7)

where λ is the loss weight balancing two terms. The reconstructed 3D facial shape is given

by b̂ = Pβ∗. The pipeline of SfV is summarized in Algorithm 2.

Algorithm 2 The experiment pipeline of SfV
1: randomly split the audiovisual dataset D into Dt ∪ Dv1 ∪ Dv2 , and De.
2: for k ∈ [1, 2, ..., K] do
3: repeat
4: randomly split Dt ∪ Dv1 ∪ Dv2 into Dt, Dv1 , and Dv2

5: train and select estimators (Fk and Gk) on Dt and Dv1 , respectively (Eqn. 5.2)
6: compute EC

k and Ek on Dv2 (Eqn. 5.3 and Eqn. 5.4)
7: until µ(Ek/EC

k ) is converged
8: compute the upper bound of confidence interval CIu (Eqn. 5.5)
9: compute the indicator z (Eqn. 5.6).

10: end for
11: predict AMs of the voice recordings in De. Each prediction is given by the ensemble of

the trained estimators from the repeated experiments (Eqn. 5.3).
12: reconstruct 3D facial shapes with the predicted AMs (Eqn. 5.7)

5.3 Experiments

Dataset. We perform experiments on an audiovisual dataset D collected by researchers

from Penn State University. The dataset consists of paired voice recordings and scanned 3D

facial shapes from 1,026 people, with 364 males and 662 females. To prevent the estimation

models from taking the gender shortcuts, we split the dataset D by gender, and experiments

are individually performed on male and female subsets. For each subset, we adopt 7/1/1/1



CHAPTER 5. 3D FACIAL SHAPE RECONSTRUCTION FROM VOICE 78

Table 5.2: CNN architectures for Fk and Gk: details.

voice feature backbone head

Fk Spectrogram()
Melscale()

Log()

(3, 64)/2,1[
(3, 64)/1,1

(3, 64)/1,1

] (3, 96)/2,1[
(3, 96)/1,1

(3, 96)/1,1

] (3, 144)/2,1[
(3, 144)/1,1

(3, 144)/1,1

] (3, 216)/2,1[
(3, 216)/1,1

(3, 216)/1,1

] (64, 1)(1,0)

Gk

(64, 1)(1,0)

Exp()

splitting for Dt/Dv1/Dv2/De. In training, the voice recordings are randomly trimmed to

segments of 6 to 8 seconds, while we use the entire recordings in testing. The ground truth

AMs are normalized to zero mean and unit variance. For voice features, we extract 64-

dimensional log Mel-spectrograms using an analysis window of 25ms, with the hop of 10ms

between frames. We perform mean and variance normalization of each Mel-frequency bin.

Training. The CNN architectures are given in Table 5.2. Fk and Gk share the backbone’s

learnable parameters but have individual parameters for their heads. Moreover, we adopt

exp activation for the last layer of Gk to ensure the non-negative output. The numbers within

the parentheses represent the size and number of filters, while the subscripts represent the

stride and padding. So, for example, (3, 64)/2,1 denotes a 1D convolutional layer with 64

filters of size 3, where the stride and padding are 2 and 1, respectively. Modules in brackets

are equipped with shortcut connections. For the variance head, we add an exponential

activation to the last layer of Gk for non-negative positive output.

We follow the typical settings of stochastic gradient descent (SGD) for optimization.

Minibatch size is 64. The momentum, learning rate, and weight decay values are 0.9, 0.1,

and 0.0005, respectively. The training is completed at 5k iterations. To ensure statistical

significance, we perform N = 100 repeated experiments to compute the CIu.

5.3.1 The AM Prediction and Selection

For AM prediction, the estimation models are trained on Dt and selected based on their

performance on Dv1 (hyperparameter tuning). For AM selection, the predictable AMs are

selected based on the upper bound of the CI (CIu) on Dv2 . The performance can be evaluated
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(a) Results on the male subset

(b) Results on the female subset

(c) Results on the self-constructed female subset

Figure 5.3: The normalized errors and CIs of 24 AMs on (a) male subset, (b) female subset,
and (c) a smaller female subset.

by the mean error of each AM and its CI.

The Fig. 5.3 shows the results, including 20 AMs with highest 1−CIu and 4 AMs with

lowest 1 − CIu. The gray bars are the results on the entire validation set Dv2 , while the

red and yellow ones are the results of 75% and 50% voice samples with lowest uncertainty

ŵ in Dv2 , respectively. The self-constructed female subset has the same size as the male

subset. Higher 1 − CIu indicates better results and the normalized error of 0 indicates the

chance-level performance. As suggested by our hypothesis testing formulation, the AMs

with 1 − CIu > 0 are considered predictable from voice. In this sense, we have discovered

a number of predictable female AMs (see the gray bars and their CIs in Fig. 5.3(b)). By
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Figure 5.4: The normalized errors and CIs of 96 AMs on the male subset.

filtering out the voice samples with high uncertainties, we achieve even higher 1− CIu (see

the red and yellow bars and their CIs). The improved performance indicates that more

AMs are discovered as predictable from voice, including a few male AMs. The complete

results of all AMs are given in Fig. 5.4 and 5.5. The results empirically demonstrate that

the information of 3D facial shape is indeed encoded in the voices and can be discovered by

the proposed SfV.
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Figure 5.5: The normalized errors and CIs of 96 AMs on the female subset.

To intuitively locate the predictable AMs on the 3D face, we visualize them in Fig. 5.6.

We clearly observe that most of the predictable AMs are around the nose and mouth, and

many of them are shared between male and female subsets. This is consistent with the fact

that the nose and mouth shapes affect pronunciation.

We also notice that the performance of the female dataset is much better than that of

the male dataset. To investigate whether the improvements come from the larger data scale
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Figure 5.6: Visualization of the predictable AMs. Blue box: male, Red box: female.

(a) (c)(b) (d) (e) (f)

Figure 5.7: (a)(c)(e) are three samples with incorrect landmark labeling. (b)(d)(f) are the
zoom-in views of (a)(c)(e), respectively. Red: the noisy label. Blue: the correct label.

(364 males v.s. 662 females), we perform another set of repeated experiments on a self-

constructed female dataset, which has the same size as the male subset, i.e. 362 females.

Surprisingly, the results on the new dataset are still better than those on the male subset,

as shown in Fig. 5.3(c). This is possibly because the female subjects have higher nasalance

scores on the nasal sentences [124] among other things, which provides useful information

for predicting the AMs around the nose. Here we note that our experiments have revealed

that measurements around the nose are highly correlated to voice. More investigations are

left for future work.

On the other hand, some AMs have not been shown to be predictable from voice. This

observation suggests that voices may only associate with a few specific regions of the 3D

facial shape, like the nose and mouth. For the AMs with higher errors than chance-level,

we do not claim they are not predictable from voice. Instead, we fail to demonstrate their
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100% 90% 80% 70% 60% 50%

male

female

Figure 5.8: Error maps of the reconstructed 3D facial shapes for the male and female subsets.
From left to right: the error maps corresponding to 100% (i.e. the entire test set) to 50% of
the test set.

predictability based on our current empirical results. The possible reasons include imperfect

modeling, limited data, data noise, etc. Here we illustrate the noises of landmark labeling

in 3D facial shapes in Fig. 5.7. These noises may be detrimental to model learning and

generalization.

5.3.2 The Reconstruction of 3D Facial Shape

In the last subsection, we have discovered a number of predictable AMs, from which we

choose 10 AMs with the highest 1 − CIu for the subsequent reconstructions on male and

female subsets.

To evaluate the performance, we compute the per-vertex errors between the reconstructed

3D facial shape and their ground truths. We also filter out a portion of voice samples with

the highest uncertainties and evaluate the errors in the remaining data. The filter out rate

is from 0% to 50%, as shown from left to right in Fig. 5.8.

Unsurprisingly, we achieve the lowest errors around the nose region for male and female

subsets, consistent with the AM estimations. Moreover, the reconstruction errors decrease

significantly by filtering out the voice samples with the highest uncertainties. This indicates

that the learned uncertainty is effectively associated with the reconstruction quality and

allows the system to decide whether to trust the model or not.
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5.4 Discussion

We have proposed a shape from voice method, called SfV, for 3D facial shape reconstruction

from voice. SfV bridges the gap between voices and faces by discovering the predictable AMs.

Specifically, SfV consists of three key steps: (i) predicting AMs with uncertainty learning,

(ii) selecting AMs with hypothesis testing, (iii) reconstructing 3D facial shapes with an

optimization-based method. We have discovered a number of AMs that are predictable from

voice. These AMs are mostly located around noses and mouths, which matches the voice

production mechanism very well. We also achieved improved reconstruction on female noses

based on the predictable AMs.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we have focused on the problem of reconstructing human faces from voices.

Specifically, we have presented how we approach this goal in a step-by-step fashion, summa-

rized as follows.

• We have presented a disjoint mapping framework, called DIMNet, for matching voices

to 2D face images. DIMNet can be viewed as a nonparametric approach for generating

faces from voice. It can recognize the associations between voices and faces with high

accuracy. Our experiments on several stratified evaluation sets have demonstrated that

this approach achieves human-level performance.

• We have proposed a generative approach for reconstructing 2D face images from voice.

The reconstructed faces are perceptually plausible and have identity associations with

the true speakers. We have also illustrated the use of this approach in a real world

application for public education.

• We have proposed a conditional estimation framework, called CEST, for 3D face re-

construction from video. CEST achieves more accurate reconstructions than state of
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art techniques, and can be used for building audiovisual datasets with paired voices

and 3D faces from online video data.

• We have presented a framework for reconstructing 3D facial shapes from voice based

on anthropometric measurements. We have discovered many interesting associations

between voices and faces. In particular, we observe strong identity associations between

voices and the shapes of noses, which are different from the linguistic or affective

associations. We hope our work can be insightful in understanding the associations

between voices and faces and encourage more progress in this research topic.

6.2 Future Directions

The performance of face reconstruction from voice can be further improved from many

perspectives. We summarize some of them below.

6.2.1 Data

More data. Reconstructing faces from voice is still at a very early stage, as illustrated in

the Fig. 6.1. The largest dataset that we have used is still limited to only several hundred

speakers. We believe that the performance of our proposed approaches can be significantly

improved if we scale the dataset to several thousand speakers (or more). In the meantime,

it is also important to balance the datasets by including sufficient samples from different

demographic groups. This would be useful in the performance of stratified experiments and

investigations of fairness issues.

Completed facial topology. The current topology of the 3D face does not include the

tongue and neck. It would be interesting to include these as well, since they are highly im-

portant articulators. Discovering predictable measurements on them is expected to improve

the quality and accuracy of the reconstruction. This will obviously reveal more audiovisual



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 87

performance

data

male

female

Figure 6.1: Illustration of the current stage of research.

associations between voices and faces. By including more and more articulartors in our

framework, the facial topology can be accurately completed.

6.2.2 Method

Robust voice features. In this work, we adopt log Mel-spectrograms as the inputs to

CNNs. These voice features yield the current best performance in our experimental settings.

However, the Mel-spectrogram only contains the magnitudes of the frequency response, and

the phase information is lost. So it is worth exploring the raw waveform as input, and using

a voice encoder like SincNet [125] with it.

On the other hand, it is also promising to consider signal processing based acoustic

features derived from the temporal domain (signal energy, zero-crossing rate, loudness, etc.),

spectral domain (fundamental frequency, harmonics, spectral flux, etc.), composite domain

(rhythm, melody, etc.), or even from the perceptual domain (voice qualities such as nasality,

raspiness, breathiness, roughness, etc.).

Robust facial features. The anthropometric measurements that we used fall into

distance, proportion, and angle categories. These categories are sensitive to the accuracy of

3D shape registration. If we can calibrate the registration or develop features (e.g. curve-

based or surface-based features) that are less sensitive to noise in it, we should be able to

discover more predictable facial features through empirical experiments.

It is also helpful to explore what facial features affect the reconstruction most and con-

versely, what reconstruction methods can fully make use of such facial features. These
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directions can be explored even without any voice data. Observations in this context are

expected to be very useful for enhancing the quality of reconstruction.

Self-supervised pretraining. In recent years, self-supervised pretraining has been an

emerging topic and has demonstrated significant performance improvements on many speech

and vision problems, especially those tasks with limited data. We can adopt a pretrained

model in AM estimation to improve the model generalization and discover more predictable

AMs.

6.2.3 Evaluation

Evaluation metrics. There are currently no objective measures for evaluating the accuracy

of 2D face reconstruction. In this thesis, we have focused on the problem of evaluating 3D

face reconstruction instead. The most commonly used metric for evaluating 3D facial shapes

is either based on vertex-to-vertex or vertex-to-mesh comparisons. Such comparative metrics

are sensitive to vertex permutation and are often not in agreement with human perception of

shape, which is very subjective. For this reason, we can consider alternative representations

for 3D facial shapes, e.g. implicit function [126], volumetric representation [127], etc. More

importantly, it is necessary to develop robust quantitative metrics to evaluate the visual

similarity of 3D facial shapes.

Voice analysis. So far, what aspects of the voice signal are useful for face reconstruction

is not fully explored. Future research will explore how the generated face changes with

evidences in different durations of the voice signal, and with different articulatory units

such as phonemes, syllables, etc. It is desirable to associate the reconstructed faces with

specific voice features, since these associations can provide more insights for understanding

the connections between voices and faces. The effect of reverberation, different kinds of

noises and channel conditions on the quality of facial reconstruction can also be explored.
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6.2.4 Reconstruction of Voices from Face

It is interesting to explore the reverse problem: that of generating voices from facial images,

or face-based voice conversion [128]. We believe that more identity associations between

voices and faces can be discovered by studying the problem from this perspective. The face-

to-voice pipeline can also be incorporated into the existing voice-to-face framework, enabling

cycle consistency for paired learning.
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