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Abstract

Multi-Armed bandit (MAB) framework is a widely used sequential decision making framework in which a

decision-maker needs to select one of the available K actions in each round, with the objective of maximizing

their long-term reward. This framework has been used in practice for several applications including web

advertising, medical testing by viewing the use of different ads/treatments as the arms in the MAB problem.

The user’s response corresponding to these different actions generates a reward for the decision-maker.

Under the classical MAB framework, it is implicitly assumed that the rewards corresponding to different

actions are independent of each other. But, this may not be the case in practice as rewards corresponding

to different actions (i.e., ads/drugs) are likely to be correlated. Motivated by this, we study the structured

and correlated MAB problem in this thesis.

First, we study the structured MAB problem where the mean rewards corresponding to different actions

are a known function of a hidden parameter θ∗, thereby imposing a structured on the mean rewards of

different actions. We study this problem in the most general form by imposing no restriction on the form of

mean reward functions and as a result subsume the setting of several previously studied structured bandit

frameworks where the mean reward function is assumed to be of a specific form. While mean rewards of

different actions may be related to one another in the structured bandit setup, the reward realizations may

not necessarily be correlated.

Motivated by this, we propose a novel correlated MAB framework which explicitly captures the

correlation in reward across different actions. For both these frameworks, we design novel algorithms that

allow us to extend any classical bandit algorithm to the structured and correlated bandit settings. Through

rigorous analysis, we show that our proposed algorithms sample certain sub-optimal actions, termed as

non-competitive actions, only O(1) times as opposed to the typical O(log T) samples required by classical

algorithms such as Upper Confidence Bound (UCB), Thompson sampling. These significant theoretical

performance gains are reflected in our experiments performed on real-world recommendation system

datasets such as Movielens, Goodreads. For our proposed correlated bandit framework, we also design

best-arm identification algorithms where the task is to identify the best action in as few samples as possible.

We demonstrate the achieved performance gains theoretically through sample complexity analysis and

empirically through experiments on recommendation system datasets.

To further demonstrate the utility of our proposed correlated bandit framework, we show how the

framework can be employed to solve online resource allocation problems, which frequently arise in tasks

such as power allocation in wireless systems, financial optimization and multi-server scheduling. This

is done by extending our correlated bandit framework and algorithms to the setting of online resource



vii

allocation. The performance gains are demonstrated theoretically through regret analysis and empirically

through synthetic experiments on the task of online power allocation in wireless systems, job scheduling in

multi-server systems and channel assignment under the ALOHA protocol.
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Chapter 1

Overview

Classical Multi-armed Bandit. The multi-armed bandit (MAB) problem falls under the class of sequential

decision making problems. In the classical multi-armed bandit problem, there are K arms, with each arm

having an unknown reward distribution. At each round t, we need to decide an arm kt ∈ K and we receive

a random reward Rkt drawn from the reward distribution of arm kt. The goal in the classical multi-armed

bandit is to maximize the long-term cumulative reward. In order to maximize cumulative reward, it is

important to balance the exploration-exploitation trade-off, i.e., pulling each arm enough number of times to

identify the one with the highest mean reward, while trying to make sure that the arm with the highest

mean reward is played as many times as possible. This problem has been well studied starting with the

work of Lai and Robbins [1] that proposed the upper confidence bound (UCB) arm-selection algorithm and

studied its fundamental limits in terms of bounds on regret, which is defined as the difference between

the cumulative reward of a genie policy that knows that best-arm apriori and the cumulative reward

attained by a bandit algorithm. Subsequently, several other algorithms including Thompson Sampling

(TS) [2] and KL-UCB [3], have been proposed for this setting. The generality of the classical multi-armed

bandit model allows it to be useful in numerous applications. For example, MAB algorithms are useful in

medical diagnosis [4], where the arms correspond to the different treatment mechanisms/drugs and are

widely used for the problem of ad optimization [5] by viewing different version of ads as the arms in the

MAB problem. The MAB framework is also useful in system testing [6], scheduling in computing systems

[7, 8, 9], and web optimization [10, 5].

To see the utility, consider an example where a company needs to run a display advertising campaign

for one of their products, and their creative team have designed several different versions that can be

displayed (See Figure 1.1. It is expected that the user engagement (in terms of click probability and time

spent looking at the ad) depends the version of the ad that is displayed. In order to maximize the total user

1
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Figure 1.1: By viewing different designs as arms in the bandit problem, the problem of displaying ad
designs on a web platform can be viewed as a multi-armed bandit problem. At each round, one of the ads
is displayed to the user and reward is observed in terms of the user engagement (i.e., clicks or the time
spent viewing the design).

engagement over the course of the ad campaign, multi-armed bandit algorithms can be used; different

versions of the ad correspond to the arms and the reward from selecting an arm is given by the clicks or

time spent looking at the ad version corresponding to that arm. The classical MAB problem implicitly

assumes that rewards corresponding different arms are independent of each other. But, this may not be the

case in many practical applications as the rewards corresponding to different ads/drugs are likely to be

correlated. Motivated by this, we study structured and correlated multi-armed bandit problems in this

thesis.

Structured Multi-Armed Bandit. We first study a fundamental variant of classical multi-armed bandits

called the structured multi-armed bandit problem, where mean rewards of the arms are functions of a hidden

parameter θ. That is, the expected reward E [Rk|θ] = µk(θ) of arm k is a known function of the parameter θ

that lies in a (known) set Θ. However, the true value of θ, denoted as θ∗, is unknown. The dependence of

mean rewards on the common parameter introduces a structure in the MAB problem. For example, rewards

observed from an arm may provide partial information about the mean rewards of other arms, making it

possible to significantly lower the resulting cumulative regret as compared to the classical MAB setting. To

see its connection with classical multi-armed bandits and previously studied variants let’s revisit the ad

optimization example presented in Figure 1.1.

Personalized recommendations using Contextual and Structured bandit. Although the ad-selection prob-

lem can be solved by standard MAB algorithms, there are several specialized MAB variants that are

designed to give better performance. For instance, the contextual bandit problem [11, 12] has been studied

to provide personalized displays of the ads to the users. Here, before making a choice at each time step

(i.e., deciding which version to show to a user), we observe the context associated with that user (e.g.,

age/occupation/income features). Contextual bandit algorithms learn the mappings from the context

θ to the most favored version of ad k∗(θ) in an online manner and thus are useful for personalized

recommendations. Under the structured bandit framework, the context θ (age/ income/ occupational

features) is hidden but the mean rewards for different versions of ad (arms) as a function of hidden context
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Context vector θ (unknown, 
user not sign in)

Reward μ1 (θ), known
Learnt from previous 
context-aware studies

Reward μK (θ)
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Figure 1.2: Ad-selection application of the structured bandit framework studied in this paper. The context
θ (for example, the age/location/income of the user) is unknown because the user is not signed in.

θ are known. Therefore, the structured bandit model proves useful for personalized recommendation in

which the context of the user is unknown, but the reward mappings µk(θ) are known through surveyed

data. (See Figure 1.2.)

While the structured bandit setting was studied previously by several researchers [13, 14, 15, 16, 17, 18],

we make several new contributions to the field of structured bandits. The details of these can be seen in

Chapter 2.

1. We study structured bandits in a general setting without making any assumptions on the nature of

mean reward functions µk(θ), which allows our work to subsume several previously studied settings

such as the global and regional multi-armed bandits [17, 16]

2. We propose a novel algorithmic approach, which extends any classical bandit algorithm to the

structured bandit setting. Previously, only extensions of UCB were known to the structured bandit

setting in [13]. As algorithms such as TS, KL-UCB perform much better than UCB empirically,

extending them to the structured bandits setting offers significant performance gains.

3. The proposed algorithms are easy to implement and require only the knowledge of µk(θ) and not the

full conditional reward distribution Pr(Rk|θ), unlike other works [14, 15]. We show the use of our

proposed structured bandit algorithms to provide personalized recommendation for users without

viewing their hidden context θ. We do so by performing experiments on the Movielens dataset [19].

4. Our proposed algorithms work even when only upper and lower bounds on µk(θ) are known. This is

a key advantage, as the mean reward functions are often learned empirically and it is unreasonable
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to obtain accurate estimate of µk(θ) from the data. To the best of our knowledge, our proposed

algorithms are the only known algorithms in the setting where only upper and lower bounds on

µk(θ).

Novel Correlated Multi-Armed Bandit model. While mean rewards of different arms are related to one

another in structured bandits, they are not necessarily correlated. Motivated by this, in Chapter 3, we study

a novel variant of the classical multi-armed bandit problem in which rewards corresponding to different

arms are correlated to each other, i.e., the conditional reward distribution satisfies fRℓ |Rk
(rℓ|rk) ̸= fRℓ

(rℓ),

whence E [Rℓ|Rk] ̸= E [Rℓ]. Such correlations can only be learned upon obtaining samples from different

arms simultaneously, i.e., by pulling multiple arms at a time. As that is not allowed in the classical

Multi-Armed Bandit formulation, we assume the knowledge of such correlations in the form of prior

knowledge that might be obtained through domain expertise or from controlled surveys. One way of

capturing correlations is through the knowledge of the joint reward distribution. However, if the complete

joint reward distribution is known, then the best-arm is known trivially. Instead, in our work, we only

assume restrictive information about correlations in the form of pseudo-rewards that constitute an upper

bound on conditional expected rewards. This makes our model more general and suitable for practical

applications.

…

Reward realization r

𝑅" 𝑅# 𝑅$ 𝑅%

E[R`|R1 = r]  s`,1(r)

Figure 1.3: Upon observing a reward r from an arm k, pseudo-rewards sℓ,k(r), give us an upper bound on
the conditional expectation of the reward from arm ℓ given that we observed reward r from arm k. These
pseudo-rewards model the correlation in rewards corresponding to different arms.

Fig. 1.3 presents an illustration of our model, where the pseudo-rewards, denoted by sℓ,k(r), provide

an upper bound on the reward that we could have received from arm ℓ given that pulling arm k led to a

reward of r; i.e.,

E[Rℓ|Rk = r] ≤ sℓ,k(r). (1.1)

Note that pseudo-rewards are only upper bounds on the conditional expected reward and can be arbitrarily
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loose. In the extreme case, when no prior knowledge is available, these pseudo-rewards could be replaced

by maximum possible reward and the formulation and our proposed algorithm reduce to the classical

Multi-Armed Bandit framework. To view the utility of our proposed correlated multi-armed bandit model

and how it contrasts with structured and contextual bandit models, let’s revisit the ad recommendation

example in Figure 1.1.

…

Unknown population 
composition

Correlated events

XYZ
SPORTS

XYZ
SPORTS

XYZ
SPORTS

Figure 1.4: The ratings of a user corresponding to different versions of the same ad are likely to be
correlated. For example, if a person likes first version, there is a good chance that they will also like the
2nd one as it also related to tennis. However, the population composition is unknown, i.e., the fraction of
people liking the first/second or the last version is unknown.

Global Recommendations using Correlated-Reward Bandits. In many practical settings, the reward we get

from different arms at any given step are likely to be correlated. In the ad-selection example given in

Figure 1.4, a user reacting positively (by clicking, ordering, etc.) to the first version of the ad with a

girl playing tennis might also be more likely to click the second version as it is also related to tennis; of

course one can construct examples where there is negative correlation between click events to different

ads. The model we study in this paper explicitly captures these correlations through the knowledge

of pseudo-rewards sℓ,k(r) (See Figure 1.3). Similar to the classical MAB setting, the goal here is to

display versions of the ad to maximize user engagement. In addition, unlike contextual bandits, we do

not observe the context (age/occupational/income) features of the user and do not focus on providing

personalized recommendation. Instead our goal is to provide global recommendations to a population

whose demographics is unknown.

Regret minimization and Best-Arm Identification in Correlated MAB. In Chapter 3, we show that the

knowledge of such bounds in the form of pseudo-rewards sℓ,k(r), even when they are not all tight, can

lead to significant improvement in the cumulative reward obtained by reducing the amount of exploration

compared to classical MAB algorithms. Our proposed MAB model and algorithm can be applied in

all real-world applications of the classical Multi-Armed bandit problem, where it is possible to know
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pseudo-rewards from domain knowledge or through surveyed data. We also design best-arm identification

algorithms in the correlated MAB setting in Chapter 4, where the goal is to find the best-arm (i.e., the arm

with the highest mean reward) in as few samples as possible with confidence 1− δ. Our results show that

the partial knowledge of existing correlations can lead to significant reduction in the sample complexity

of the designed algorithms. These theoretical results are validated through experiments for the task of

providing a global recommendation to a community. We do so by studying the task of recommending best

movie in the Movielens dataset [19] and the task of identifying best book for a community through the

Goodreads dataset [20].

Correlated bandits for online resource allocation. To further demonstrate the utility of our proposed

correlated multi-armed bandit framework, we show how the framework can be employed to solve online

resource allocation problems in Chapter 5, which frequently arise in tasks such as power allocation in

wireless systems, financial optimization and multi-server scheduling. In the case of financial optimization,

the company needs to decide the investment of its limited financial budget across different products with

the goal of maximizing its overall revenue. In such problems, the task is to distribute a limited budget

(i.e., money, power, etc.) among available entities (i.e., product teams, channel etc.) with the objective of

maximizing the reward attained (i.e., revenue, throughput, etc.). These budget allocation problem can be

framed as the following optimization,

maximize
S=(a1,a2,...aK)

K

∑
k=1

fk(ak) s.t.
K

∑
k=1

ak ≤ Q, ak ∈ A, (1.2)

with S being the budget allocation vector (a1, a2, . . . aK) and Q representing the total available budget. The

function fk(ak) represents the reward attained from entity k upon allocating a budget of ak to entity k.

Moreover, in these problems, the reward obtained upon allocating a budget of ak to entity k may be random

and may depend on the underlying randomness associated with entity k. For instance, the revenue of the

product may depend on the underlying unknown demand/market factors.

maximize
S=(a1,a2,...aK)

E

[
K

∑
k=1

fk(ak, Xk)

]

subject to
K

∑
k=1

ak ≤ Q, ak ∈ A.

(1.3)

In this scenario, the optimization problem can be solved if E [ fk(ak, Xk)] is known for all (ak, k) pairs, i.e.,

the mean reward of each entity k is known at all budget allocations ak for entity k. In view of this, we refer

to (1.3) as the offline budget allocation problem. In practice, the reward function may be unknown and the Xk’s

may be unknown parameters in the reward function. For instance, in the financial optimization, the reward

obtained for a given budget allocation ak for product k may depend on underlying market conditions Xk
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Reward correlation 
within the same entity

Reward correlation 
across entities

E [Rj,1|R1,1 = r]  s(j,1),(i,1)(r)

E [Rj,`|R1,1 = r]  s(j,`),(i,1)(r)

Figure 1.5: Upon observing a reward r from a base arm, pseudo-rewards s(j,ℓ),(i,k)(r), give us an upper
bound on the conditional expectation of the reward from base arm (j, ℓ) given that we observed reward r
from arm (i, k). Reward received for entity k at a given budget i may provide some information on what
the reward would have been if budget j were allocated to entity k, leading to correlations within entity. The
rewards of different entities may also be correlated.

and one may not know the corresponding reward function fk. As a result, E [ fk(ak, Xk)] remains unknown.

Motivated by this, we study the online resource allocation problem, where the goal is to sequentially decide

a budget allocation St = (a1,t, a2,t . . . ak,t, . . . ak,t) for each round t, so as to maximize the cumulative reward

attained over a total of T rounds. To perform this allocation, there is a need to estimate E [ fk(ak, Xk)] for

each (ak, k) pair and subsequently use these estimates to decide a budget allocation St that generates the

maximum possible reward in round t. First, we view this problem as a combinatorial multi-armed bandit

problem as done in [21]. Under the combinatorial MAB framework, the goal is to maximize the long term

cumulative reward while being able to select multiple arms in each round under certain constraints. In

the budget allocation problem, we can view the assignment of budget ak to entity k as an arm to view

the problem as a combinatorial bandit problem. Next, we note that the rewards received under different

budget allocations (and correspondingly the arms in combinatorial bandit problem) are correlated as

the reward attained for a given budget allocation i to entity k may give some information on what the

reward would have been if budget j were allocated to entity ℓ as illustrated in Figure 1.5. Such correlations

can be modeled through our pseudo-reward framework and subsequently used to design better budget

allocation schemes as presented in Chapter 5. We theoretically show that using these correlations can lead

to significant performance improvements and subsequently validate these through synthetic experiments

on the task of online power allocation in wireless systems, job scheduling in multi-server systems and

channel assignment under the ALOHA protocol.

Finally, we conclude the thesis by exploring potential future directions in Chapter 6. We look at potential

application areas where our correlated bandit framework could be applied and discuss challenges for

developing new multi-armed bandit frameworks.



Chapter 2

Structured Multi-Armed Bandits

2.1 Introduction

2.1.1 Overview

In this chapter, we study a fundamental variant of classical multi-armed bandits called the structured

multi-armed bandit problem, where mean rewards of the arms are functions of a hidden parameter θ. That

is, the expected reward E [Rk|θ] = µk(θ) of arm k is a known function of the parameter θ that lies in a

(known) set Θ. However, the true value of θ, denoted as θ∗, is unknown. The dependence of mean rewards

on the common parameter introduces a structure in the MAB problem. For example, rewards observed

from an arm may provide partial information about the mean rewards of other arms, making it possible to

significantly lower the resulting cumulative regret as compared to the classical MAB setting.

Structured bandit models arise in many applications and have been studied by several authors with

motivating applications including dynamic pricing (described in [17]), cellular coverage optimization

(by [22]), drug dosage optimization (discussed in [16]) and system diagnosis; see Section 2.1.2 for an

illustrative application of the structured MAB framework. In this chapter, we consider a general version

of the structured MAB framework that subsumes and generalizes several previously considered settings.

More importantly, we propose a novel and unified approach that would allow extending any current or

future MAB algorithm (UCB, TS, KL-UCB, etc.) to the structured setting; see Sections 2.1.3 and 2.2.2 for

our main contributions and a comparison of our work with related literature.

2.1.2 An Illustrative Example

For illustration purposes, consider the example of movie recommendation, where a company would like

to decide which movie(s) to recommend to each user with the goal of maximizing user engagement (e.g.,

8
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Context θ*, unknown 
because user is not 

signed in

Reward µ1 (θ), known
Learnt from previous 
context-aware studies 

Reward µK (θ)

Figure 2.1: Movie recommendation application of the structured bandit framework studied in this chapter.
The context θ (for example, the age of the user) is unknown because the user is not signed in. But if a user
gives a high rating the first movie (Frozen) one could infer that the age θ is small, which in turn implies
that the user will give a high rating to the third movie (Finding Nemo).

in terms of click probability and time spent watching, etc.). In order to achieve this, the company needs

to identify the most appealing movie for the user in an online manner and this is where multi-armed

bandit algorithms can be helpful. However, classical MAB algorithms are typically based on the (implicit)

assumption that rewards from different arms (i.e., different movies in this context) are independent of

each other. This assumption is unlikely to hold in reality since the user choices corresponding to different

movies are likely to be related to each other; e.g., the engagement corresponding to different movies may

depend on the age/occupation/income/taste of the user.

To address this, contextual bandits [23, 24] have been proposed and studied widely for personalized

recommendations. There, it is assumed that before making a choice (of which movie to recommend), a

context feature of the user is observed; the context can include personal information of the user including

age, occupation, income, or previous browsing information. Contextual bandit algorithms aim to learn

the mapping from context information to the most appealing arm, and can prove useful in applications

involving personalized recommendations (or, advertising). However in several use cases, observing

contextual features leads to privacy concerns. In addition, the contextual features may not be visible for

new users or users who are signed in anonymously to protect their identity.

The structured bandit setting considered in this chapter (and by many others [17, 22, 16]) can be viewed

as the same problem setting with contextual bandits with the following difference. Unlike contextual

bandits, the context of the users are hidden in the structured setting, but in return it is assumed that the

mappings from the contexts to mean rewards of arms are known a priori. It is anticipated that the mean

reward mappings can be learned from paid surveys in which users participate with their consent. The

proposed structured bandit framework’s goal is to use this information to provide the best recommendation

to an anonymous user whose context vector θ is unknown; e.g., see Figure 2.1. Thus, our problem formulation
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is complementary to contextual bandits; in contextual bandits the context θ is known while the reward mappings

µk(θ) are unknown, whereas in our setting θ is unknown and the mean rewards µk(θ) are known. A detailed

problem formulation discussing the assumptions and extensions of this set-up is given in Section 2.2.

2.1.3 Main Contributions and Organization

We summarize the key contributions of the chapter below. The upcoming sections will develop each of

these in detail.

1. General Setting Subsuming Previous Works: Structured bandits have been studied in the past

[17, 16, 18, 25, 26, 27] but with certain restrictions (e.g., being linear, invertible, etc.) on the mean

reward mappings µk(θ). We consider a general setting that puts no restrictions on the mean reward

mappings. In fact, our setting subsumes recently studied models such as Global Bandits [17],

Regional Bandits [16] and structured bandits with linear rewards [18]; see Section 2.2.2 for a detailed

comparison with previous works.

There are a couple of recent works [13, 14] that do consider a general structured bandit setting similar

to our work – see Section 2.2.2 for details. Our approach differs from these in its flexibility to extend

any classical bandit algorithm (UCB, Thompson sampling, etc.) to the structured bandit setting. In

particular, using Thompson sampling [28, 29] as the underlying bandit algorithm yields a robust

and empirically superior way (see Section 2.4.4) to minimize superfluous exploration. The UCB-S

algorithm proposed in [13] extends the UCB algorithm to structured setting. However, the approach

presented in [13] can not be extended to Thompson sampling or other classical bandit algorithms; in

fact, this point was highlighted in [13] as an open question for future work. In [14], there are several

assumptions in the model that are not imposed here, including the assumption that the conditional

reward distributions are known and reward mappings are continuous. In addition, the main focus of

[14] is the parameter regime where regret scales logarithmically with time T, while our approach

demonstrates the possibility of achieving bounded regret.

2. Extending any classical bandit algorithm to the structured bandit setting: We propose a novel

and unified approach that would allow extending any classical or future MAB algorithm (that is

developed for the non-structured setting) to the structured bandit framework given in Figure 2.2. Put

differently, we propose a class of structured bandit algorithms referred to as Algorithm-C, where

“Algorithm" can be any classical bandit algorithm including UCB, TS, KL-UCB, etc. A detailed

description of the resulting algorithms, e.g., UCB-C, TS-C, etc., are given in Section 2.3 with their

steps illustrated in Figure 2.3.
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Figure 2.2: Structured bandit setup: mean rewards of different arms share a common hidden parameter.
This example illustrates a 3-armed bandit problem with shaded regions indicating the values of θ for which
the particular arm is optimal.

3. Unified regret analysis: A key benefit of our algorithms is that they pull a subset of the arms (referred

to as the non-competitive arms) only O(1) times. Intuitively, an arm is non-competitive if it can be

identified as sub-optimal with high probability using only the samples from the optimal arm k∗. This

is in contrast to classical MAB algorithms where all sub-optimal arms are pulled O(log T) times,

where T is the total number of rounds. This is shown by analyzing the expected regret E [Reg(T)],

which is the difference between the expected cumulative reward obtained by using the proposed

algorithm and the expected cumulative reward of a genie policy that always pulls the optimal arm k∗.

In particular, we provide rigorous regret analysis for UCB-C as summarized in the theorem below,

and describe how our proof technique can be extended to other classical MAB algorithms.

Theorem 1 (Expected Regret Scaling). The expected regret of the UCB-C algorithm has the following scaling

with respect to the number of rounds T:

E [Reg(T)] ≤ (C(θ∗)− 1) ·O(log T) + (K− C(θ∗))O(1) (2.1)

where C(θ∗) is the number of competitive arms (including the optimal arm k∗) and θ∗ is the true value

of the hidden parameter. The remaining K − C(θ∗) arms are called non-competitive. An arm is said to be

non-competitive if there exists an ϵ > 0 such that µk(θ) < µk∗(θ) for all θ ∈ Θ∗(ϵ), where Θ∗(ϵ) = {θ ∈ Θ :

|µk∗(θ)− µk∗(θ
∗)| ≤ ϵ} (more details in Section 2.4).

The exact regret upper bound with all the constants follows from Theorem 2 and Theorem 3 in

Section 2.4. Recall that for the standard MAB setting [1], the regret upper bound is (K− 1)O(log T),

where K is the total number of arms. Theorem 1 reveals that with our algorithms only C(θ∗)− 1 out

of the K− 1 sub-optimal arms are pulled O(log T) times. The other arms are pulled only O(1) times.
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4. Reduction in the effective number of arms. For any given set of reward functions µk(θ), the number

C(θ∗) of competitive arms depends on the unknown parameter θ∗; see Figure 2.4 in Section 2.4 for

an illustration of this fact. We show that C(θ∗) can be much smaller than K in many practical cases.

This is because, the reward functions (particularly that corresponding to the optimal arm) can provide

enough information about the hidden θ∗, which in turn can help infer the sub-optimality of several

other arms. More specifically, this happens when the reward functions are not flat around θ∗, that

is, the pre-image set of {θ ∈ Θ : µk(θ) = µk(θ
∗)} is small. In the special case where the optimal arm

k∗ is invertible or has a unique maximum at µk∗(θ
∗), C(θ∗) = 1 and our algorithms can achieve O(1)

regret.

5. Evaluation on real-world datasets: In Section 2.4, we present extensive simulations comparing the

regret of the proposed algorithm with previous methods such as GLM-UCB [25] and UCB-S [13]. We

also present simulation results for the case where the hidden parameter θ is a vector. In Section 2.6,

we perform experiments on the Movielens dataset to demonstrate the applicability of the UCB-C

and TS-C algorithms. Our experimental results show that both UCB-C and TS-C lead to significant

improvement over the performance of existing bandit strategies. In particular, TS-C is shown to

consistently outperform all other algorithms across a wide range of settings.

2.2 Problem Formulation

2.2.1 Structured bandits setup

Consider a multi-armed bandit setting with the set of arms K = {1, 2, . . . , K}. At each round t, the

player pulls arm kt ∈ K and observes a reward rkt . The reward rkt is a random variable with mean

µkt(θ) = E
[
rkt |θ, kt

]
, where θ is a fixed, but unknown parameter which lies in a known set Θ; see Figure 2.2.

We denote the (unknown) true value of θ by θ∗. There are no restrictions on the set Θ. Although we

focus on scalar θ in this chapter for brevity, the proposed algorithms and regret analysis can be generalized

to the case where we have a hidden parameter vector θ⃗ = [θ1, θ2, . . . θm]. In Section 2.4, we present simulation

results for the case of a parameter vector `. The mean reward functions µk(θ) = E[Rk|θ] for k ∈ K can be

arbitrary functions of θ with no linearity or continuity constraints imposed. While µk(θ) are known to the

player, the conditional distribution of rewards, i.e., p(rk|θ) is not known.

We assume that the rewards Rk are sub-Gaussian with variance proxy σ2, i.e.,

E [exp (s (Rk −E [Rk]))] ≤ exp
(

σ2s2

2

)
∀s ∈ R, and σ is known to the player. Both assumptions are common

in the multi-armed bandit literature [30, 31, 17, 13]. In particular, the sub-Gaussianity of rewards enables
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us to apply Hoeffding’s inequality, which is essential for the analysis of regret (defined below).

The objective of the player is to select arm kt in round t so as to maximize her cumulative reward

∑T
t=1 rkt after T rounds. If the player had known the hidden θ∗, then she would always pull arm k∗ =

arg maxk∈K µk(θ
∗) that yields the highest mean reward at θ = θ∗. We refer to k∗ as the optimal arm.

Maximizing the cumulative reward is equivalent to minimizing the cumulative regret, which is defined as

Reg(T) ≜
T

∑
t=1

(
µk∗(θ

∗)− µkt(θ
∗)
)
= ∑

k ̸=k∗
nk(T)∆k,

where nk(T) is the number of times arm k is pulled in T slots and ∆k ≜ µk∗(θ
∗)− µk(θ

∗) is the sub-optimality

gap of arm k. Minimizing the cumulative regret is in turn equivalent to minimizing nk(T), the number of

times each sub-optimal arm k ̸= k∗ is pulled.

Remark 1 (Connection to classical Multi-armed Bandits). The classical multi-armed bandit setting, which

does not explicitly consider a structure among the mean rewards of different arms, is a special case of the proposed

structured bandit framework. It corresponds to having a hidden parameter vector θ⃗ = (θ1, θ2, . . . , θK) and the mean

reward of each arm being µk = θk. In fact, our proposed algorithm described in Section 2.3 reduces to standard UCB

or Thompson sampling ([1, 32]) in this special case.

The proposed structured bandit subsumes several previously considered models where the rewards are

assumed to be linear [18, 26], invertible and Hölder continuous [17, 16], etc. See Section 2.2.2 for a detailed

comparison with these works.

2.2.2 Related Work

Since we do not make any assumptions on the mean reward functions µ1(θ), µ2(θ), . . . , µK(θ), our model

subsumes several previously studied frameworks [17, 16, 18]. The similarities and differences between our

model and existing works are discussed below.

Structured bandits with linear rewards [18]. In [18], the authors consider a similar model with a common

hidden parameter θ ∈ R, but the mean reward functions, µk(θ) are linear in θ. Under this assumption, they

design a greedy policy that achieves bounded regret. Our formulation does not make linearity assumptions

on the reward functions. In the special case when µk(θ) are linear, our proposed algorithm also achieves

bounded regret.

Global and regional bandits. The papers [17, 16] generalize this to invertible and Hölder-continuous reward

functions. Instead of scalar θ, [16] considers M common unknown parameters, that is, θ = (θ1, θ2, . . . , θM).

Under these assumptions, [17, 16] demonstrate that it is possible to achieve bounded regret through a

greedy policy. In contrast, our work makes no invertibility or continuity assumptions on the reward
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functions µk(θ). In the special case when µk(θ) are invertible, our proposed algorithm also achieves

bounded regret.

Finite-armed generalized linear bandits. In the finite-armed linear bandit setting [26], the reward function

of arm xk is θ⃗⊺xk, which is subsumed by our formulation. For the case when µk(θ) = g(⃗θ⊺xk), our setting

becomes the generalized linear bandit setting [25], for some known function g. Here, θ is the shared

unknown parameter. Due to the particular form of the mean reward functions, linear bandit algorithms

construct confidence ellipsoid for θ∗ to make decisions. This approach cannot be easily extended to

non-linear settings. Although designed for the more general non-linear setting, our algorithms demonstrate

comparable regret to the GLM-UCB [25], which is designed for linear bandits.

Minimal exploration in structured bandits [14] The problem formulation in [14] is very similar to this

chapter. However, [14] assumes knowledge of the conditional reward distribution p(Rk|θ) in addition to

knowing the mean reward functions µk(θ). It also assumes that the mappings θ → µk(θ) are continuous.

As noted before, none of these assumptions are imposed in this chapter. Another major difference of [14]

with our work is that they focus on obtaining asymptotically optimal results for the regimes where regret

scales as log(T). When all arms are non-competitive (the case where our algorithms lead to O(1) regret),

the solution to the optimization problem described in [14, Theorem 1] becomes 0, causing the algorithm

to get stuck in the exploitation phase. Put differently, the algorithm proposed in [14] is not applicable to

cases where C(θ∗) = 1. An important contribution of [14] is that it provides a lower bound on the regret of

structured bandit algorithms. In fact, the lower bound presented in this chapter is directly based on the

lower bound in [14].

Finite-armed structured bandits [13]. The work closest to ours is [13]. They consider the same model

that we consider and propose the UCB-S algorithm, which is a UCB-style algorithm for this setting.

Our approach allows us to extend our UCB-style algorithm to other classical bandit algorithms such as

Thompson sampling. In Section 2.4 and Section 2.6, we extensively compare our proposed algorithms (both

qualitatively and empirically) with the UCB-S algorithm proposed in [13]. As observed in the simulations,

UCB-S is susceptible to small changes in the mean reward functions and θ∗, whereas the UCB-C algorithm

that we propose here is seen to be much more robust to such variations.

Connection to information-directed sampling. Works such as [15, 33] consider a similar structured setting

but assume that the conditional reward distributions p(Rk|θ) and the prior p(θ) are known, whereas we

only consider that the mean reward functions µk(θ) = E [Rk|θ] are known. The proposed algorithms are

based on Thompson sampling from the posterior distribution of θ. Firstly, this approach will require a

good prior over θ, and secondly, updating the posterior can be computationally expensive since it requires
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computing integrals over possibly high-dimensional spaces. The focus of [15] is on worst-case regret bounds

(which are typically O(
√

T)), where the minimum gap between two arms can scale as O(log T/T), while

[33] gives gap-dependent regret bounds in regimes where the regret scales as O(log T). In addition to

providing gap-dependent regret bounds, we also identify regimes where it is possible to achieve O(1)

regret.

Best-arm identification. In several applications such as as hyper-parameter optimization [34] and crowd-

sourced ranking [35, 36, 37], the objective is to maximize the probability of identifying the arm with the

highest expected reward within a given time budget of T slots instead of maximizing the cumulative

reward; that is, the focus is on exploration rather than exploitation. Best-arm identification started to

be studied fairly recently [38, 39, 40]. A variant of the fixed-time budget setting is the fixed-confidence

setting [31, 41, 42, 43, 44], where the aim is to minimize the number of slots required to reach a δ-error in

identifying the best arm. Very few best-arm identification works consider structured rewards [45, 46, 47, 48],

and they mostly assume linear rewards. The algorithm design and analysis tools are quite different in

the best-armed bandit identification problem as compared to regret minimization. Thus, extending our

approach to best-arm identification would be a non-trivial future research direction.

2.3 Proposed Algorithm: Algorithm-C

For the problem formulation described in Section 2.2, we propose the following three-step algorithm called

Algorithm-Competitive, or, in short, Algorithm-C. Figure 2.3 illustrates the algorithm steps for the mean

reward functions shown in Figure 2.2. Step 3 can employ any classical multi-armed bandit algorithm such

as UCB or Thompson Sampling (TS), which we denote by Algorithm. Thus, we give a unified approach

to translate any classical bandit algorithm to the structured bandit setting. The formal description of

Algorithm-C with UCB and TS as final steps is given in Algorithm 1 and Algorithm 2, respectively.

At each round t + 1, the algorithm performs the following steps:

Step 1: Constructing a confidence set, Θ̂t. From the samples observed till round t, we define the confidence

set as follows:

Θ̂t =

{
θ : ∀k ∈ K, |µk(θ)− µ̂k(t)| <

√
2ασ2 log t

nk(t)

}
.

Here, µ̂k(t) is the empirical mean of rewards obtained from the nk(t) pulls of arm k. For each arm k,

we construct a confidence set of θ such that the true mean µk(θ) is within an interval of size
√

2ασ2 log t
nk(t)

from µ̂k(t). This is illustrated by the error bars along the y-axis in Figure 2.3(a), with the corresponding

confidence sets shown in grey for each arm. Taking the intersection of these K confidence sets gives us Θ̂t,

wherein θ lies with high probability, as shown in Figure 2.3(b).
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Figure 2.3: Illustration of the steps of the proposed algorithm. In step 1, for each arm k we find the set
of θ such that |µk(θ)− µ̂k(t)| <

√
2ασ2 log t/nk(t) (shaded in gray in part (a)). The intersection of these

sets gives the confidence set Θ̂t shown in part (b). Next, we observe that the mean reward µ3(θ) of Arm
3 (shown in green) cannot be optimal if the unknown parameter θ∗ lies in set Θ̂t. Thus, it is declared as
Θ̂t-non-competitive and not considered in Step 3. In step 3, we pull one of the Θ̂t-competitive arms (shown
in (c)) using a classical bandit algorithm such as UCB, Thompson Sampling, KL-UCB, etc.

Step 2: Finding the set Ct of Θ̂t-Competitive arms. We let Ct denote the set of Θ̂t-Competitive arms at

round t, defined as follows.

Definition 1 (Θ̂t-Competitive arm). An arm k is said to be Θ̂t-Competitive if its mean reward is the highest among

all arms for some θ ∈ Θ̂t; i.e., ∃θ ∈ Θ̂t such that µk(θ) = maxℓ∈K µℓ(θ).

Definition 2 (Θ̂t-Non-competitive arm). An arm k is said to be Θ̂t-Non-competitive if it is not Θ̂t-Competitive;

i.e., if µk(θ) < maxℓ∈K µℓ(θ) for all θ ∈ Θ̂t.

If an arm is Θ̂t-Non-competitive, then it cannot be optimal if the true parameter lies inside the confidence

set Θ̂t. These Θ̂t-Non-competitive arms are not considered in Step 3 of the algorithm for round t + 1.

However, these arms can be Θ̂t-Competitive in subsequent rounds; see also Remark 2. For example, in

Figure 2.3(b), the mean reward of Arm 3 (shown in green) is strictly lower than the two other arms for

all θ ∈ Θ̂t. Hence, this arm is declared as Θ̂t-Non-competitive and only Arms 1 and 2 are included in the

competitive set Ct. In the rare case when Θ̂t is empty, we set Ct = {1, . . . , K} and go directly to step 3

below.

Step 3: Pull an arm from the set Ct using a classical bandit algorithm. At round t + 1, we choose one

of the Θ̂t-Competitive arms using any classical bandit Algorithm (for e.g., UCB, Thompson sampling,

KL-UCB, or any algorithm to be developed for the classical bandit framework which does not explicitly

model a structure connecting the rewards of different arms). Formal descriptions for UCB-C and TS-C, i.e.,

the structured bandit versions on UCB [1, 32] and Thompson Sampling [28] algorithms, are presented in

Algorithm 1 and Algorithm 2, respectively. The ability to employ any bandit algorithm in its last step is an
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Algorithm 1 UCB-Competitive (UCB-C)

1: Input: Reward Functions {µ1, µ2 . . . µK}
2: Initialize: nk = 0 for all k ∈ {1, 2, . . . K}
3: for each round t + 1 do
4: Confidence set construction:

Θ̂t =

{
θ : ∀k ∈ K, | µk(θ)− ϕ̂k(t) |<

√
2ασ2 log t

nk(t)

}
.

If Θ̂t is an empty set, then define Ct = {1, . . . , K} and go to step 6
5: Define competitive set Ct:

Ct =

{
k : µk(θ) = max

ℓ∈K
µℓ(θ) for some θ ∈ Θ̂t

}
.

6: UCB among competitive arms

kt+1 = arg max
k∈Ct

(
µ̂k(t) +

√
2ασ2 log t

nk(t)

)
.

7: Update empirical mean µ̂k(t + 1) and nk(t + 1) for arm kt+1.
8: end for

Algorithm 2 Competitive Thompson Samp. (TS-C)

1: Steps 1 to 5 as in Algorithm 1
2: Apply Thompson sampling on Ct:
for k ∈ Ct do

Sample Sk,t ∼ N
(

µ̂k(t),
βσ2

nk(t)

)
.

end for
kt+1 = arg maxk∈Ct Sk,t
3: Update empirical mean, µ̂k and nk for arm kt+1.

important advantage of our algorithm. In particular, Thompson sampling has attracted a lot of attention

[28, 49, 2, 50] due to its superior empirical performance. Extending it to the structured bandit setting

results in significant regret improvement over previously proposed structured bandit algorithms.

Remark 2 (Connection to successive elimination algorithms for best-arm identification). Note that the

empirically competitive set is updated at every round t. Thus, an arm that is empirically non-competitive at some

round τ can be empirically competitive in subsequent rounds. Hence, the proposed algorithm is different from

successive elimination methods used for best-arm identification [38, 39, 31, 40]. Unlike successive elimination

methods, the proposed algorithm does not permanently eliminate empirically non-competitive arms but allows them to

become competitive again in subsequent rounds.

Remark 3 (Comparison with UCB-S proposed in [13]). The paper [13] proposes an algorithm called UCB-S

for the same structured bandit framework considered in this work. UCB-S constructs the confidence set Θ̂t in the
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same way as Step 1 described above. It then pulls the arm k = arg maxk∈K supθ∈Θ̂t
µk(θ). Taking the supremum

of µk(θ) over θ makes UCB-S sensitive to small changes in µk(θ) and to the confidence set Θ̂t. Our approach of

identifying competitive arms is more robust, as observed in Section 2.4 and Section 2.6. Moreover, the flexibility of

using Thompson Sampling in Step 3 results in a significant reduction in regret over UCB-S. As noted in [13], the

approach used to design UCB-S cannot be directly generalized to Thompson Sampling and other bandit algorithms.

Remark 4 (Computational complexity of Algorithm-C). The computational complexity of Algorithm-C

depends on the construction of Θ̂t and identifying Θ̂t-competitive arms. The algorithm is easy to implement in cases

where the set Θ is small or in situations where the pre-image of mean reward functions µk(θ) can be easily computed.

For our simulations and experiments, we discretize the set Θ wherever Θ is uncountable.

2.4 Regret Analysis and Insights

In this section, we evaluate the performance of the UCB-C algorithm through a finite-time analysis of the

expected cumulative regret defined as

E [Reg(T)] =
K

∑
k=1

E [nk(T)]∆k, (2.2)

where ∆k = µk∗(θ
∗) − µk(θ

∗) and nk(T) is the number of times arm k is pulled in a total of T time

steps. To analyze the expected regret, we need to determine E [nk(T)] for each sub-optimal arm k ̸= k∗.

We derive E [nk(T)] separately for competitive and non-competitive arms. Our proof presents a novel

technique to show that each non-competitive arm is pulled only O(1) times; i.e., our algorithms stop

pulling non-competitive arms after some finite time. To establish the fact that competitive arms are pulled

O(log T) times each, we prove that the proposed algorithm effectively reduces a K-armed bandit problem

to a C(θ∗)-armed bandit problem, allowing us to extend the regret analysis of the underlying classical

multi-armed bandit algorithm (UCB, Thompson Sampling, etc.)

2.4.1 Competitive and Non-competitive Arms

In Section 2.3, we defined the notion of competitiveness of arms with respect to the confidence set Θ̂t at a

fixed round t. For our regret analysis, we need asymptotic notions of competitiveness of arms, which are

given below.

Definition 3 (Non-competitive and Competitive Arms). For any ϵ > 0, let

Θ∗(ϵ) = {θ : |µk∗(θ
∗)− µk∗(θ)| < ϵ}.
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Figure 2.4: (a) Illustration of how the number of competitive arms C(θ∗) depends on the value of θ∗

and the mean reward functions, when θ∗ = 3. To identify the competitive arms, we first find the set
Θ∗(ϵ) = {θ : |µk∗(θ

∗)− µk∗(θ)| < ϵ} for small ϵ > 0. Since Arm 3 (shown in green) is sub-optimal for
all θ ∈ Θ∗(ϵ) it is non-competitive. As a result, C(θ∗) = C(3) = 2. (b) The number of competitive arms
depend on the value of θ∗. The grey region illustrates range of θ∗ where C(θ∗) = 1 and the yellow region
indicates the range of values for which C(θ∗) = 2.

An arm k is said to be non-competitive if there exists an ϵ > 0 such that k is not the optimal arm for any θ ∈ Θ∗(ϵ);

i.e., if µk(θ) < maxℓ∈K µℓ(θ) for all θ ∈ Θ∗(ϵ). Otherwise, the arm is said to be competitive; i.e., if for all ϵ > 0,

∃θ ∈ Θ∗(ϵ) such that µk(θ) = maxℓ∈K µℓ(θ). The number of competitive arms is denoted by C(θ∗).

Since the optimal arm k∗ is competitive by definition, we have

1 ≤ C(θ∗) ≤ K.

We can think of Θ∗(ϵ) as a confidence set for θ obtained from the samples of the best arm k∗. To intuitively

understand the meaning of non-competitiveness, recall that the observed rewards µ̂k(t) from the arms help

infer that θ∗ lies in the confidence set Θ̂t with high probability. The observed reward µ̂k∗(t) of arm k∗ will

dominate the construction of the confidence set Θ̂t because a good multi-armed bandit strategy pulls the

optimal arm O(t) times, while other arms are pulled at most O(log t) times. Thus, for any ϵ > 0, we expect

the confidence set Θ̂t to converge to Θ∗(ϵ) as the number nk∗(t) of pulls for the optimal arm gets larger. As

a result, if a sub-optimal arm k is non-competitive as per the definition above, i.e., µk(θ) < maxℓ∈K µℓ(θ)

for all θ ∈ Θ∗(ϵ), then the proposed algorithm will identify k as Θ̂t-non-competitive (and thus not pull it)

with increasing probability at every round t. In fact, our regret analysis shows that the likelihood of a

non-competitive arm being pulled at time t decays as t−1−γ for some γ > 0, leading to such arms being

pulled only finitely many times.

We note that the number of competitive C(θ∗) arms is a function of the unknown parameter θ∗ and

the mean reward functions µk(θ). Figure 2.4(a) illustrates how C(θ∗) is determined for the set of reward

functions in Figure 2.2 and when θ∗ = 3. If θ∗ = 3, arm 2 (shown in red) is optimal. The corresponding

confidence set Θ∗(ϵ) = [2− 2ϵ
3 , 4 + 2ϵ

3 ] is a slightly expanded version of the range of θ corresponding to the

flat part of the reward function around θ∗. Arm 3 (shown in green) has sub-optimal mean reward µ3(θ)
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for all θ ∈ Θ∗(ϵ), and thus it is non-competitive. On the other hand, Arm 1 (shown in blue) is competitive.

Therefore, the number of competitive arms C(θ∗) = 2 when θ∗ = 3. Figure 2.4(b) shows how C(θ∗) changes

with the value of θ∗. When θ∗ is outside of [2, 4], i.e., the the flat portion of Arm 2, Θ∗(ϵ) is a much smaller

set and it is possible to show that both Arms 1 and 3 are non-competitive. Therefore, the number of

competitive arms C(θ∗) = 1 when θ∗ is outside [2, 4].

2.4.2 Upper Bounds on Regret

Definition 4 (Degree of Non-competitiveness, ϵk). The degree of non-competitiveness ϵk of a non-competitive arm

k is the largest ϵ for which µk(θ) < maxℓ∈K µℓ(θ) for all θ ∈ Θ∗(ϵ), where Θ∗(ϵ) = {θ : |µk∗(θ
∗)− µk∗(θ)| < ϵ}.

In other words, ϵk is the largest ϵ for which arm k is Θ∗(ϵ)-non-competitive.

Our first result shows that the expected pulls for non-competitive arms are bounded with respect to

time T. Arms with a larger degree of non-competitiveness ϵk are pulled fewer times.

Theorem 2 (Expected pulls of each of the K− C(θ∗) non-competitive Arms). If arm k is non-competitive, then

the number of times it is pulled by UCB-C is upper bounded as

E [nk(T)] ≤ Kt0 +
T

∑
t=1

2Kt1−α + K3
T

∑
t=Kt0

6
(

t
K

)2−α

(2.3)

= O(1) for α > 3.

Here,

t0 = inf
{

τ ≥ 2 : ∆min, ϵk ≥ 4

√
Kασ2 log τ

τ

}
; ∆min = min

k∈K
∆k.

The O(1) constant depends on the degree of competitiveness ϵk through t0. If ϵk is large, it means that

t0 is small and hence E [nk(T)] is bounded above by a small constant. The second and third terms in (2.3)

sum up to a constant for α > 3, β > 1.

The next result shows that expected pulls for any competitive arm is O(log T). This result holds for

any sub-optimal arm, but for non-competitive arms we have a stronger upper bound (of O(1)) as given in

Theorem 2. Regret analysis of UCB-C is presented in Section 2.9.4. In Section 2.9.3, we present a unified

technique to prove results for any other Algorithm-C, going beyond UCB-C. We present the regret analysis

of TS-C (with Beta prior and K = 2) in Section 2.9.5.
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Theorem 3 (Expected pulls for each of the C(θ∗)− 1 competitive sub-optimal arms). The expected number of

times a competitive sub-optimal arm is pulled by UCB-C Algorithm is upper bounded as

E [nk(T)] ≤ 8ασ2 log T
∆2

k
+

2α

α− 2
+

T

∑
t=1

2Kt1−α

= O(log T) for α > 2,

Plugging the results of Theorem 2 and Theorem 3 in (2.2) yields the bound on the expected regret in

Theorem 1. Note that in this work we consider a finite-armed setting where the number of arms K is a

fixed constant that does not scale with T – we focus on understanding how the cumulative regret scales

with T while K remains constant.

2.4.3 Proof Sketch

We now present the proof sketch for Theorem 2. The detail proof is given in the full proofs. For UCB-C,

the proof can be divided into three steps presented below. The analysis is unique to our work and allows

us to prove that the UCB-C algorithm pulls the non-competitive arms only O(1) times. The key strength of

our approach is that the analysis can be easily extended to any Algorithm-C.

i) The probability of arm k∗ being Θ̂t-Non-Competitive is small. Observe that θ∗ ∈ Θ̂t implies that k∗ is

Θ̂t-competitive. Let E1(t) denote the event that the optimal arm k∗ is Θ̂t-non-competitive at round t. As

we obtain more and more samples, the probability of θ∗ lying outside Θ̂t decreases with t. Using this, we

show that

Pr(E1(t)) ≤ 2Kt1−α. (2.4)

This enable us to bound the expected number of pulls of a competitive arm as follows.

E [nk(t)] ≤
T

∑
t=1

Pr(E1(t)) +
T−1

∑
t=0

Pr(Ik(t) > Ik∗(t), kt+1 = k). (2.5)

In view of (2.4), the first term in (2.5) sums up to a constant for α > 2. The term Ik(t) represents the UCB

Index if the last step in the algorithm is UCB, i.e., Ik(t) = µ̂k(t) +
√

2ασ2 log t
nk(t)

. The analysis of second term is

exactly same as that for the UCB algorithm [32]. Due to this, the upper bound on expected number of pulls

of competitive arms using UCB-C has the same pre-log constants as UCB.

ii) The probability of a non-competitive arm being pulled jointly with the event that nk∗(t) > t/K is

small. Consider the joint event that a non-competitive arm with parameter ϵk is pulled at round t + 1 and

the number of pulls of optimal arm till round t is at least t/K. In Lemma 4, we show that this event is

unlikely. Intuitively, this is because when arm k∗ is pulled sufficiently many times, the confidence interval
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of mean of optimal arm is unlikely to contain any value outside [µk∗(θ
∗)− ϵk, µk∗(θ

∗) + ϵk]. Due to this,

with high probability, arm k is eliminated for round t + 1 in step 2 of the algorithm itself. This leads to the

result in Lemma 4,

Pr
(

kt+1 = k, nk∗(t) >
t
K

)
≤ 2t1−α ∀t > t0 (2.6)

iii) The probability that a sub-optimal arm is pulled more than t
K times till round t is small. We show

that

Pr
(

nk(t) >
t
K

)
≤ 6K2

(
t
K

)2−α

∀t > Kt0. (2.7)

This result is specific to the last step used in Algorithm-C. To show (2.7) we first derive an intermediate

result for UCB-C which states that

Pr(kt+1 = k, nk(t) ≥ s) ≤ (2K + 4)t1−α for s ≥ t
2K

.

Intuitively, if we have large number of samples of arm k, its UCB index is likely to be close to µk, which is

unlikely to be larger than the UCB index of optimal arm k∗ (which is around µk∗ if nk∗ is also large, or even

higher if nk∗ is small due to the exploration term added in UCB index).

The analysis of steps ii) and iii) are unique to our work and help us obtain the O(1) regret for non-

competitive arms. Using these results, we can write the expected number of pulls for a non-competitive

arm as

E [nk(t)] ≤ Kt0 +
T−1

∑
t=Kt0

Pr
(

kt+1 = k, nk∗(t) = max
k∈K

nk(t)
)

+
T−1

∑
t=Kt0

∑
k∈K,k ̸=k∗

Pr(nk(t) = max
k∈K

nk(t)). (2.8)

The second term in (2.8) is bounded through step ii) (viz. (2.6)) and the third term in (2.8) is bounded

for each sub-optimal arm through step iii) (viz. (2.7)). Together, steps ii) and iii) imply that the expected

number of pulls for a non-competitive arm is bounded.

2.4.4 Discussion on Regret Bounds

Reduction in the effective number of arms. The classical multi-armed bandit algorithms, which are

agnostic to the structure of the problem, pull each of the (K − 1) sub-optimal arms O(log T) times. In

contrast, our UCB-C algorithm pulls only a subset of the sub-optimal arms O(log T) times, with the rest

(i.e., non-competitive arms) being pulled only O(1) times. More precisely, our algorithms pull each of

the C(θ∗)− 1 ≤ K− 1 arms that are competitive but sub-optimal O(log T) times. It is important to note

that the upper bound on the pulls of these competitive arms by UCB-C has the same pre-log constants
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Figure 2.5: (left) Arm 2 is optimal for θ∗ ∈ [0, 1], Arm 3 is optimal for θ∗ ∈ [1, 2.5] and Arm 1 is optimal for
θ∗ ∈ [2.5, 6], (right) the number of competitive arms for different ranges of θ shaded in grey (C(θ) = 1),
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Figure 2.6: Cumulative regret of Algorithm-C vs. Algorithm (UCB in row 1, TS in row 2 and KL-UCB
in row 3) for the setting in Figure 2.5. The number of competitive arms is C(θ∗) = 1 in the first column,
C(θ∗) = 2 in second column and C(θ∗) = 3 in third column. Unlike UCB-S which only extends UCB, our
approach generalizes any classical bandit algorithm such as UCB, TS, and KL-UCB to the structured bandit
setting.

with that of the UCB, as shown in Theorem 1. Consequently, the ability of UCB-C to reduce the pulls of

non-competitive arms from O(log T) to O(1) results directly in it achieving a smaller cumulative regret

than its non-structured counterpart.

The number of competitive arms, i.e., C(θ∗), depends on the functions µ1(θ), . . . , µK(θ) as well as the

hidden parameter θ∗. Depending on θ∗, it is possible to have C(θ∗) = 1, or C(θ∗) = K, or any number in

between. When C(θ∗) = 1, all sub-optimal arms are non-competitive due to which our proposed algorithms

achieve O(1) regret. What makes our algorithms appealing is the fact that even though they do not explicitly

try to predict the set (or, the number) of competitive arms, they stop pulling any non-competitive arm after

finitely many steps.



CHAPTER 2. STRUCTURED MULTI-ARMED BANDITS 24

0 2 4 6

3
4
5

θ

µk(θ)
Arm 1
Arm 2

1
2

6

0 2 4 6
θ∗

C(θ∗) =1 2 1

Figure 2.7: Arm 2 is optimal for θ∗ ∈ [0, 3] and Arm 1 is optimal for θ∗ ∈ [3, 5]. For θ ∈ [0, 3] ∪ [5, 6],
C(θ) = 1 and C(θ) = 2 for θ ∈ [3, 5].

0 1 2 3 4 5
*

0

200

400

600

800

1000

1200

C
u
m

u
la

ti
v
e
 R

e
g
re

t

UCB
UCB-S
UCB-C
TS-C
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50000 runs. UCB-S is sensitive to the value of θ∗ and the reward functions as it is seen to achieve a small
regret for θ∗ = 2.75, but obtains a worse regret than UCB for θ∗ = 3.25.

Empirical performance of Algorithm-C. In Figure 2.6 we compare the regret of Algorithm-C against the

regret of Algorithm (UCB/TS/KL-UCB). We plot the cumulative regret attained under Algorithm-C

vs. Algorithm of the example shown in Figure 2.5 for three different values of θ∗ : 0.5, 1.5 and 2.6.

Refer to Figure 2.5 to see that C = 1, 2 and 3 for θ∗ = 0.5,1.5 and 2.6, respectively. Due to this, we

see that Algorithm-C achieves bounded regret for θ∗ = 0.5, and reduced regret relative to Algorithm

for θ∗ = 1.5 as only one arm is pulled O(log T) times. For θ∗ = 2.6, even though C = 3 (i.e., all arms

are competitive), Algorithm-C achieves empirically smaller regret than Algorithm. We also see the

advantage of using TS-C and KL-UCB-C over UCB-C in Figure 2.6 as Thompson Sampling and KL-UCB

are known to outperform UCB empirically. For all the simulations, we set α = 3, β = 1. Rewards are drawn

from the distribution N (µk(θ
∗), 4), i.e, σ = 2. We average the regret over 100 experiments. For a given

experiment, all algorithms use the same reward realizations.

Performance comparison with UCB-S. In the first row of Figure 2.6, we also plot the performance of

the UCB-S algorithm proposed in [13], alongside UCB and UCB-C. The UCB-S algorithm constructs the

confidence set Θ̂t just like UCB-C, and then in the next step selects the arm kt+1 = arg maxk∈K supθ∈Θ̂t
µk(θ).
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Figure 2.9: Cumulative regret of UCB, GLM-UCB, UCB-C and TS-C in the linear bandit setting, with
x1 = (2, 1), x2 = (1, 1.5) and x3 = (3,−1). Mean rewards are (⃗θ∗)⊺xk, with θ∗ = (0.9, 0.9) in (a) and
θ∗ = (0.5, 0.5) in (b). While UCB-C and TS-C are designed for a much broader class of problems, they
show competitive performance relative to GLM-UCB, which is a specialized algorithm for the linear bandit
setting.

Informally, it finds the maximum possible mean reward µk(θ) over θ ∈ Θ̂ for each arm k. As a result,

UCB-S tends to favor pulling arms that have the largest mean reward for θ ∈ Θ∗(ϵ). This bias renders the

performance of UCB-S to depend heavily on θ∗. When θ∗ = 0.5, UCB-S has the smallest regret among the

three algorithms compared in Figure 2.6, but when θ∗ = 2.6 it gives even worse regret than UCB. A similar

observation can be made in another simulation setting described below.

Figure 2.8 compares UCB, UCB-S, UCB-C and TS-C for the functions shown in Figure 2.7. We plot the

cumulative regret after 50000 rounds for different values of θ∗ ∈ [0, 5] and observe that TS-C performs the

best for most θ∗ values. As before, the performance of UCB-S varies significantly with θ∗. In particular,

UCB-S has the smallest regret of all when θ∗ = 2.75, but achieves worse regret even compared to UCB

when θ∗ = 3.25. On the other hand, our UCB-C performs better than or at least as good as UCB for all θ∗.

While UCB-S also achieves the regret bound of Theorem 1, the ability to employ any Algorithm in the

last step of Algorithm-C is a key advantage over UCB-S, as Thompson Sampling and KL-UCB can have

significantly better empirical performance over UCB.

Comparison in linear bandit and multi-dimensional θ settings. As highlighted in Section 2.2, our problem

formulation allows θ to be multi-dimensional as well. Figure 2.9 shows the performance of UCB-C and

TS-C relative to GLM-UCB in a linear bandit setting. In a linear bandit setting, mean reward of arm k is

µk(θ
∗) = (θ∗)⊺xk. Here xk is a vector associated with arm k, which is known to the player. The parameter

θ∗ is unknown to the player, and hence it fits in our structured bandit framework. It is important to see

that while UCB-C and TS-C are designed for a much broader class of problems, they still show competitive

performance relative to specialized algorithms (i.e., GLM-UCB) in the linear bandit setting (Figure 2.9).
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Figure 2.10: Cumulative regret for UCB,UCB-C and TS-C for the case in which θ ∈ [−1, 1]× [−1, 1]. The
reward functions are µ1 (⃗θ) = θ1 + θ2, µ2 (⃗θ) = θ1 − θ2, and µ3 (⃗θ) = max(|θ1|, |θ2|). The true parameter θ⃗∗

is (0.9, 0.2) in (a) and (−0.2, 0.1) in (b). The value of C(θ∗) is 1, 3 in (a) and (b) respectively.

Figure 2.10 shows a setting in which θ is multi-dimensional, but the reward mappings are non-linear

and hence the setting is not captured through a linear bandit framework. Our results in Figure 2.10

demonstrate that the UCB-C and TS-C algorithms work in such settings as well while providing significant

improvements over UCB in certain cases.

2.4.5 When do we get bounded regret?

When C(θ∗) = 1, all sub-optimal arms are pulled only O(1) times, leading to a bounded regret. Cases

with C(θ∗) = 1 can arise quite often in practical settings. For example, when functions are continuous or

Θ is countable, this occurs when the optimal arm k∗ is invertible, or has a unique maximum at µk∗(θ
∗),

or any case where the set Θ∗ = {θ : µk∗(θ) = µk∗(θ
∗)} is a singleton. These cases lead to all sub-optimal

arms being non-competitive, whence UCB-C achieves bounded (i.e., O(1)) regret. There are more general

scenarios where bounded regret is possible. To formally present such cases, we utilize a lower bound

obtained in [14].

Proposition 1 (Lower bound). For any uniformly good algorithm [1], and for any θ ∈ Θ, we have:

lim inf
T→∞

Reg(T)
log T

≥ L(θ), where

L(θ) =


0 if C̃(θ∗) = 1,

> 0 if C̃(θ∗) > 1.

An algorithm π is uniformly good if Regπ(T, θ) = o(Ta) for all a > 0 and all θ ∈ Θ. Here C̃(θ∗) is the number of

arms that are Θ∗-Competitive, with Θ∗ being the set {θ : µk∗(θ) = µk∗(θ
∗)}.
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Figure 2.11: For values of θ ∈ [2, 4] Arm 2 is Θ∗-Non-Competitive but it is still Competitive. As for any set
slightly bigger than Θ, i.e., Θ∗(ϵ), it is Θ∗(ϵ)-Competitive. Hence this is one of the corner case situations
where C(θ) and C̃(θ∗) are different.

This suggests that bounded regret is possible only when C̃(θ) = 1 and logarithmic regret is unavoidable

in all other cases. The proof of this proposition follows from a bound derived in [14] and it is given in the

full proofs section.

There is a subtle difference between C(θ∗) and C̃(θ∗). This arises in corner case situations when

a Θ∗-Non-Competitive arm is competitive. Note that the set Θ∗ = {θ : µk∗(θ
∗) = µk∗(θ)} can be

interpreted as the confidence set obtained when we pull the optimal arm k∗ infinitely many times. In

practice, if we sample the optimal arm a large number of times, we can only obtain the confidence set

Θ∗(ϵ) = {θ : |µk∗(θ
∗)− µk∗(θ)| < ϵ} for some ϵ > 0. Due to this, there is a difference between C̃(θ∗) and

C(θ∗). Consider the case shown in Figure 2.11 with θ∗ = 3. For θ∗ = 3, Arm 1 is optimal. In this case

Θ∗ = [2, 4]. For all values of θ ∈ Θ∗, µ2(θ) ≤ µ1(θ) and hence Arm 2 is Θ∗-Non-Competitive. However, for

any ϵ > 0, Arm 2 is Θ∗(ϵ)-competitive and hence Competitive. Due to this, we have C̃(3) = 1 and C(3) = 2

in this case.

If Θ is a countable set, a Θ∗-Non-Competitive arm is always Θ∗(ϵ)-Non-Competitive, that is, C̃(θ∗) =

C(θ∗). This occurs because one can always choose ϵ = min{θ∈Θ\Θ∗}{|µk∗(θ
∗)− µk∗(θ)|} so that a Θ∗-Non-

Competitive arm is also Θ∗(ϵ)-Non-Competitive. This shows that when Θ is a countable set (which is true

for most practical situations where the hidden parameter θ is discrete), UCB-C achieves bounded regret

whenever possible, that is, whenever C̃(θ∗) = 1. While this property holds true for the case when Θ is a

countable set, there can be more general cases where C(θ) = C̃(θ). Our algorithms and regret analysis are

valid regardless of Θ being countable or not.
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2.5 Additional Exploration of Non-competitive But Informative Arms

The previous discussion shows that the UCB-C and TS-C algorithms enable substantial reductions in the

effective number of arms and the expected cumulative regret. A strength of the proposed algorithms that

can be a weakness in some cases is that they stop pulling non-competitive arms that are unlikely to be

optimal after some finite number of steps. Although an arm may be non-competitive in terms of its reward

yield, it can be useful in inferring the hidden parameter θ∗, which in turn may help reduce the regret

incurred in subsequent steps. For instance, consider the example shown in Figure 2.12. Here, Arm 3 is

sub-optimal for all values of θ∗ ∈ [0, 6] and is never pulled by UCB-C, but it can help identify whether

θ∗ ≥ 3 or θ∗ < 3. Motivated by this, we propose an add-on to Algorithm-C, named as the Informative

Algorithm-C (Algorithm 3), that takes the informativeness of arms into account and performs additional

exploration of the most informative arm with a probability that decreases over time.

0 1 2 3 4 5 6

θ∗

µk(θ)
Arm 1
Arm 2
Arm 3

1
2
3
4
5
6

C(θ∗) =1 2

Figure 2.12: In this example, Arm 3 has µ3(θ
∗) = 1 for θ∗ < 3 and µ3(θ

∗) = 4 for θ∗ ≥ 3. See that Arm 3 is
sub-optimal for all values of θ∗, and hence is non-competitive for all θ∗. However, a few pulls of Arm 3 can
still be useful in getting some information on whether θ∗ ≥ 3 or θ∗ < 3.

2.5.1 Informativeness of an Arm

Intuitively, an arm is informative if it helps us to obtain information about the hidden parameter θ∗. At the

end of round t, we know a confidence interval Θ̂t for the hidden parameter θ∗. We aim to quantify the

informativeness of an arm with respect to this confidence set Θ̂t. For instance, if Θ̂t ∈ [2, 4] in Figure 2.12,

we see that the reward function of Arm 3 µ3(θ) has high variance and it suggests that the samples of

Arm 3 could be helpful in knowing about θ∗. On the other hand, samples of Arm 2 will not be useful in

identifying θ∗ if Θ̂t = [2, 4]. There can be several ways of defining the informativeness Ik(Θ̂t) of an arm

with respect to set Θ̂t. We consider the following two metrics in this work.

KL-Divergence. Assuming that θ has a uniform distribution in Θ̂t, we can define the informative-
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ness Ik(Θ̂t) of an arm as the expected KL-Divergence between two samples of arm k, i.e., Ik(Θ̂t) =

Eθ1,θ2

[
DKL( fRk (Rk|θ1), fRk (Rk|θ2))

]
. Our intuition here is that larger expected KL-divergence for an arm

indicates that samples from it have substantially different distributions under different θ∗ values, which in

turn indicates that those samples will be useful in inferring the true value of θ∗. Assuming that Pr(Rk|θ)
is a Gaussian distribution with mean µk(θ) and variance σ2, then the expected KL-Divergence can be

simplified as

Eθ1,θ2

[
DKL( fRk (Rk|θ1), fRk (Rk|θ2))

]
= Eθ1,θ2

[
DKL(N (µk(θ1), σ2),N (µk(θ2), σ2))

]
= Eθ1,θ2

[
1
2
(µk(θ1)− µk(θ2))

2
]

=
∫

Θ̂t

(
µk(θ)−

∫
Θ̂t

µk(θ)U(θ)dθ

)2
U(θ)dθ = Vk(Θ̂t),

where, Vk(Θ̂t) is the variance in the mean reward function µk(θ), calculated when θ is uniformly distributed

over the current confidence set Θ̂t. Observe that the metric Ik(Θ̂t) = Vk(Θ̂t) is easy to evaluate given the

functions µk(θ) and the confidence set obtained from Step 1.

Entropy. Alternatively, µk(θ) can be viewed as a derived random variable of θ, where θ is uniformly

distributed over the current confidence set Θ̂t. The informativeness of arm k can then be defined as

Ik(Θ̂t) = H(µk(θ)). When µk(θ) is discrete this will be the Shannon entropy H(µk(θ)) =

∑θ∈Θ̂t
−Pr(µk(θ)) log(Pr(µk(θ))), while for continuous µk(θ) it will be the differential entropy H(µk(θ)) =∫

Θ̂t
− fµk(θ)

log( fµk(θ)
)d(µk(θ)) where fµk(θ)

is the probability density function of the derived random

variable µk(θ). Observe that differential entropy takes into account the shape as well as the range of µk(θ).

For example, if two reward functions are linear in θ, the one with a higher slope will have higher differential

entropy, as we would desire from an informativeness metric. Evaluating the differential entropy in µk(θ),

i.e., , can be computationally challenging.

Other than the two metrics described above, there might be alternative (and potentially more compli-

cated) ways of quantifying the informativeness of an arm. Another candidate would be the information gain

metric proposed in [15], which defines informativeness in terms of identifying the best arm, rather than

inferring θ∗. However, as already mentioned in [15] by the authors, information gain is computationally

challenging to implement in practice outside of certain specific class of problems where prior distribution

of θ is Beta or Gaussian.
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Algorithm 3 Informative UCB-C

1: Steps 1 to 5 as in Algorithm 1
2: Identify kΘ̂t

, i.e., the most informative arm for set Θ̂t:
kΘ̂t

= arg maxk∈K Ik(Θ̂t)

3: Play informative arm with probability γ
td , play UCB-C otherwise:

kt+1 =

kΘ̂t
w.p. γ

td ,

arg maxk∈Ct

(
µ̂k(t) +

√
2ασ2 log t

nk(t)

)
w.p. 1− γ

td

4: Update empirical mean, µ̂k and nk for arm kt+1.

2.5.2 Proposed Informative Algorithm-C and its Expected Regret

Given an informativeness metric Ik(Θ̂t), we define the most informative arm for the confidence set Θ̂t as

kΘ̂t
= arg maxk∈K Ik(Θ̂t). At round t, Informative Algorithm-C (described in Algorithm 3) picks the most

informative arm kΘ̂t
with probability γ

td where d > 1, and otherwise uses UCB-C or TS-C to pull one of

the competitive arms.Here, γ and d are hyperparameters of the Informative UCB-C algorithm. Larger

γ or small d results in more exploration during the initial rounds. Setting the probability of pulling the

most informative arm as γ
td ensures that the algorithm pulls the informative arms more frequently at the

beginning. This helps shrink Θ̂t faster. Setting d > 1 ensures that informative but non-competitive arms are

only pulled ∑∞
t=1

γ
td = O(1) times in expectation. Thus, asymptotically the algorithm will behave exactly as

the underlying Algorithm-C and the regret of Informative-Algorithm-C is at most an O(1) constant worse

than the Algorithm-C algorithm.

2.5.3 Simulation results

We implement two versions of Informative-Algorithm-C, namely Algorithm-C-KLdiv and Algorithm-C-

Entropy, which use the KL-divergence and Entropy metrics respectively to identify the most informative

arm kΘ̂t
at round t. Algorithm-C-KLdiv picks the arm with highest variance in Θ̂t, i.e., Ik(Θ̂t) =

arg maxk Vk(Θ̂t). Algorithm-C-Entropy picks an arm whose mean reward function, µk(θ), has largest

shannon entropy for θ ∈ Θ̂t (assuming θ to be a uniform random variable in Θ̂t). As a baseline for assessing

the effectiveness of the informativeness metrics, we also implement Algorithm-C-Random which selects

kΘ̂t
by sampling one of the arms uniformly at random from the set of all arms K at round t.

Figure 2.13 shows the cumulative regret of the aforementioned algorithms for the reward functions

shown in Figure 2.12, where the hidden parameter θ∗ = 3.1. Among UCB-C, UCB-C-KLdiv, UCB-C-Entropy

and UCB-C-Random, UCB-C-KLdiv has the smallest cumulative regret. This is because UCB-C-KLdiv
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Figure 2.13: Performance comparison of Algorithm, Algorithm-C and Informative Algorithm-C
algorithms (with parameter γ = 30, d = 1.1) for the example shown in Figure 2.12 with θ∗ = 3.1. UCB-C,
TS-C do not pull Arm 3 at all, but UCB-C-KLdiv, TS-C-KLdiv pull it in the initial rounds to determine
whether θ∗ > 3 or not. As a result, UCB-C-KLdiv and TS-C-KLdiv shrink Θ̂t faster initially and have a
better empirical performance than UCB-C and TS-C, while retaining similar regret guarantees of UCB-C
and TS-C respectively.

identifies Arm 3 as the most informative arm, samples of which are helpful in identifying whether θ∗ > 3

or θ∗ < 3. Hence, occasional pulls of Arm 3 lead to fast shrinkage of the set Θ̂t. In contrast to UCB-C-KLdiv,

UCB-C-Entropy identifies Arm 2 as the most informative arm for Θ̂ = [0, 6], due to which UCB-C-Entropy

samples Arm 2 more often in the initial stages of the algorithm. As the information obtained from Arm

2 is relatively less useful in deciding whether θ∗ > 3 or not, we see that UCB-C-Entropy/TS-C-Entropy

does not perform as well as UCB-C-KLdiv/TS-C-KLdiv in this scenario. UCB-C-Random picks the most

informative arm by selecting an arm uniformly at random from the available set of arms. The additional

exploration through random sampling is helpful, but the cumulative regret is larger than UCB-C-KLdiv as

UCB-C-Random pulls Arm 3 fewer times relative to UCB-C-KLdiv. For this particular example, cumulative

regret of UCB-S was 2500, whereas other UCB style algorithms achieve cumulative regret of 600-800 as

shown in the Figure 2.13(a). This is due to the preference of UCB-S to pick Arm 1 in this example. We

see similar trends among TS-C, TS-C-KLdiv, TS-C-Entropy and TS-C-Random. The cumulative regret is

smaller for Thompson sampling variants as Thompson sampling is known to outperform UCB empirically.

We would like to highlight that the additional exploration by Informative-Algorithm-C is helpful only

in cases where non-competitive arms help significantly shrink the confidence set Θ̂t. For the experimental

setup presented in Section 2.6 below, the reward functions are mostly flat as seen in Figure 2.16 and thus,

Informative Algorithm-C does not give a significant improvement over the corresponding Algorithm-C.

Therefore for clarity of the plots, we do not present experiments results for Informative-C in other settings

of this work.
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2.6 Experiments with Movielens data

We now show the performance of UCB-C and TS-C on a real-world dataset. We use the Movielens

dataset [19] to demonstrate how UCB-C and TS-C can be deployed in practice and demonstrate their

superiority over classical UCB and TS. Since movie recommendations is one of many applications of

structured bandits, we do not compare with methods such as collaborative filtering that are specific to

recommendation systems. Also, we do not compare with contextual bandits since the structured bandit

setting has a different goal of making recommendations without accessing a user’s contextual features.

The Movielens dataset contains a total of 1M ratings made by 6040 users for 3883 movies. There are

106 different user types (based on having distinct age and occupation features) and 18 different genres of

movies. The users have given ratings to the movies on a scale of 1 to 5. Each movie is associated with

one (and in some cases, multiple) genres. For the experiments, of the possibly multiple genres for each

movie, we choose one uniformly at random. The set of users that belong to a given type is referred to

as a meta-user; thus there are 106 different meta-users. These 106 different meta-users correspond to the

different values that the hidden parameter θ can take in our setting. For example, one of the meta-users in

the data-set represents college students whose age is between 18 and 24, and this corresponds to the case

θ∗ = 25. We split the dataset into two equal parts, training and test. This split is done at random, while

ensuring that the training dataset has samples from all 106 meta-users.

For a particular meta-user whose features are unknown (i.e., the true value of θ is hidden), we need to

sequentially choose one of the genres (i.e., one of the arms) and recommend a movie from that genre to the

user. In doing so, our goal is to maximize the total rating given by this user to the movies we recommended.

We use the training dataset (50% of the whole data) to learn the mean reward mappings from meta-users

(θ) to different genres (arms); these mappings are shown in Figure 2.16. The learned mappings indicate that

the mean-reward mappings of meta-users for different genres are related to one another. For example, on

average 56+ year old retired users may like documentaries more than children’s movies. In our experiments,

these dependencies are learned during the training. In practical settings of recommendations or advertising,

these mappings can be learned from pilot surveys in which users participate with their consent.

We test the algorithm for three different meta-users, i.e., for three different values of θ∗. The movie

rating samples for these meta-users are obtained from the test dataset, (the remaining 50% of the data).

Figure 2.14 shows that UCB-C and TS-C achieve significantly lower regret than UCB, TS as only a few arms

are pulled O(log T) times. This is because only C(θ∗)− 1 of the sub-optimal arms are pulled O(log T)

times by our UCB-C and TS-C algorithms. For our experimental setting, the value of C depends on θ∗

(which is unknown to the algorithm). Figure 2.15 shows how C(θ∗) varies with θ∗, where it is seen that
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Figure 2.14: Regret plots for UCB, UCB-S, UCB-C, TS and TS-C for (a) θ∗ = 67 (35-44 year old grad/college
students), (b) θ∗ = 87 (45-49 year old clerical/admin), (c) θ∗ = 25 (18-24 year old college students) and (d)
θ∗ = 93 (56+ Sales and Marketing employees). The value of C(θ∗) is 6, 6, 3 and 1 for (a), (b), (c) and (d)
respectively – in all cases C(θ∗) is much smaller than K = 18.

C(θ∗) is significantly smaller than K for all θ∗. As a result, the performance improvements observed in

Figure 2.14 for our UCB-C and TS-C algorithms will apply to other θ∗ values as well. There are θ∗ values

for which UCB-C is better than UCB-S, and vice versa. But, TS-C always outperforms UCB-C and UCB-S in

our experiments. We tried Informative UCB-C in this setting as well, but the results were similar to that of

UCB-C because the arms in this setting are not too informative.

2.7 Noisy mean reward functions

Under the structured bandit framework studied so far, it is assumed that the mean reward mappings µk(θ)

are known exactly. We now aim to study structured bandit formulations where we only know mean reward

functions within certain bounds, e.g.,

µ
(l)
k (θ) ≤ µk(θ) ≤ µ

(u)
k (θ),

where µ
(l)
k (θ), µ

(u)
k (θ) are known. This formulation is important for several practical applications. For

example, consider the example of personalized recommendation where the goal is to recommend best
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Figure 2.15: The value of C(θ∗) varies with the unknown hidden parameter θ∗ (i.e., the age and occupation
of the anonymous user). We see that for all θ∗, C(θ∗) < K. While the total number of arms, K = 18,
the value of C(θ∗) ranges between 1 and 9. This suggests that the Algorithm-C approach can lead to
significant performance improvement for this problem.

movie genre to a user with feature θ∗. The mean reward mappings µk(θ) are learned by taking average of

ratings of movie genre k by users with context θ. The learned mapping may indicate that the mean rating

given to children’s movies by adults 65+ is 2.4. However, if we were to use personalized recommendation

for an adult with age 65+, their mean rating for children’s movies may not exactly be 2.4. As a result,

the structured bandit model used with exact mean reward mappings may not be the best model in this

case. The typical structured bandit works [14, 13, 15] work under this assumption that the mean reward

mappings are known exactly, which makes their use restrictive in such envisioned applications.

2.7.1 Knowledge on upper and lower bounds on mean reward functions

Consider a scenario where only partial information is known about the mean reward functions µk(θ). We

show in this section that our proposed algorithmic approach is flexible enough to accommodate for such

scenarios. The flexibility in our framework can be maintained as long as we have some upper and lower

bound on mean reward functions. Suppose the mean reward functions are noisy, but it is known that

µ
(l)
k (θ) ≤ µk(θ) ≤ µ

(u)
k (θ). In such a case, we can alter the definition of Θ̂t as follows,

Θ̂t = Θ̂(u)
t ∩ Θ̂(l)

t ,

where Θ̂(u)
t and Θ̂(l)

t are defined as follows,

Θ̂(u)
t =

{
θ : ∀k ∈ K, µ

(l)
k (θ) ≤ µ̂k(t) +

√
2ασ2 log t

nk(t)

}
,

Θ̂(l)
t =

{
θ : ∀k ∈ K, µ

(u)
k (θ) ≥ µ̂k(t)−

√
2ασ2 log t

nk(t)

}
.
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Figure 2.16: Learned reward mappings from 106 meta-users to each of the movie genres, i.e., the µk(θ)
in the problem setup, with θ representing different meta-users and k(arm) representing different movie
genres.
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Subsequently, we call an arm k to be Θ̂t−Non-Competitive if µ
(u)
k (θ) < maxℓ∈K µ

(l)
ℓ (θ) for all θ ∈ Θ̂t.

On doing so, our algorithmic approach can be extended to this framework as well. Additionally, we can

re-define the notion of non-competitive and competitive arms in this setting as follows.

Definition 5 (Non-Competitive and Competitive arms in the noisy setting). For any ϵ > 0, let

Θ∗(ϵ) = {θ : µ
(l)
k∗ (θ

∗)− ϵ < µ
(u)
k∗ (θ), µ

(l)
k∗ (θ) < µ

(u)
k∗ (θ

∗) + ϵ}.

An arm k is said to be non-competitive if there exists an ϵ > 0 such that µ
(u)
k (θ) < maxℓ∈K µ

(l)
ℓ (θ) for all θ ∈ Θ∗(ϵ).

Otherwise, the arm is said to be competitive; i.e., if for all ϵ > 0, ∃θ ∈ Θ∗(ϵ) such that µ
(u)
k (θ) ≥ maxℓ∈K µ

(l)
ℓ (θ).

The number of competitive arms is denoted by C(θ∗).

After doing so, the analysis can be easily extended to prove the desired regret bounds in this setting. In

particular, one can show that Pr(θ∗ /∈ Θ̂t) ≤ 2Kt1−α, and subsequently all other results of our work will

follow through. As there is lesser information in this newer framework, one can expect the number of

competitive arms to be greater than the number of competitive arms in the setting where µ
(l)
k (θ) = µ

(u)
k (θ).

As the algorithm, results and analysis can extend beyond the framework described in the work, it makes

our proposed approach even more promising. This is an important advantage over other approaches which

require the exact knowledge of µk(θ), as the mean reward functions are often obtained empirically from

past-data and it is unreasonable to expect exact knowledge on mean-reward functions from sampled data.

To the best of our knowledge, our proposed algorithms are the only known algorithms in the setting where

only upper and lower bounds on µk(θ).

2.7.2 Knowledge on probabilistic upper and lower bounds on mean reward functions

Next, we focus on a setting where the upper and lower bounds on mean reward functions are probabilistic,

i.e.,

µ
(l)
k (θ) ≤ µk(θ) ≤ µ

(u)
k (θ), w.p. 1− η,

where µ
(l)
k (θ), µ

(u)
k (θ), η are known. In this setting, it can be shown that O(log T) regret is unavoidable.

This can be seen by constructing an example where µk(θ) fails to lie between µ
(l)
k (θ) and µ

(u)
k (θ) for all k. In

such a setting, we need to adapt our algorithmic approach to account for the fact that the upper and lower

bounds are probabilistic. We can do so by performing UCB-C/TS-C with probability 1− ϵ and select an

arm using classical UCB/TS algorithm with probability ϵ. To further improve the empirical performance,

we can tune ϵ as a function of t, based on the samples observed so far. For instance, the value of ϵ can be

decreased as a function of t, if µk(θ
∗) is within µ

(l)
k (θ∗) and µ

(u)
k (θ∗) and increased otherwise.
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2.8 Concluding Remarks

In this work, we studied a structured bandit problem in which the mean rewards of different arms are

related through a common hidden parameter. Our problem setting makes no assumptions on mean reward

functions, due to which it subsumes several previously studied frameworks [17, 16, 18]. We developed an

approach that allows us to extend a classical bandit Algorithm to the structured bandit setting, which we

refer to as Algorithm-C. We provide a regret analysis of UCB-C (structured bandit versions of UCB). A key

insight from this analysis is that Algorithm-C pulls only C(θ∗)− 1 of the K− 1 sub-optimal arms O(log T)

times and all other arms, termed as non-competitive arms, are pulled only O(1) times. Through experiments

on the Movielens dataset, we demonstrated that UCB-C and TS-C give significant improvements in regret

as compared to previously proposed approaches. Thus, the main implication of this work is that it provides

a unified approach to exploit the structured rewards to drastically reduce exploration in a principled

manner.

For cases where non-competitive arms can provide information about θ that can shrink the confidence set

Θ̂t, we propose a variant of Algorithm-C called informative-Algorithm-C that takes the informativeness

of arms into account without increasing unnecessary exploration. Linear bandit algorithms [51, 25, 26]

shrink the confidence set Θ̂t in a better manner by taking advantage of the linearity of the mean reward

functions to estimate θ∗ as the solution to least squares problem [51]. Moreover, linearity helps them to use

self-normalized concentration bound for vector valued martingale, (Theorem 1 in [51]) to construct the

confidence intervals. Extending this approach to the general structured bandit setting is a non-trivial open

question due to the absence of constraints on the nature of mean reward functions µk(θ). The paper [14]

proposes a statistical hypothesis testing method for the case of known conditional reward distributions.

Generalizing it to the setting considered in this work is an open future direction. While we state our results

for a scenario where mean reward functions are known, our algorithmic approach, analysis and results can

also be extended to a setting where only lower and upper bounds on the mean reward function µk(θ) are

known. Another open direction in this field is to study the problem of structured best-arm identification

where the goal is to conduct pure exploration and identify the best arm in the fewest number of rounds.
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2.9 Full proofs

2.9.1 Lower bound: Proof for Proposition 1

Proof for Proposition 1: We use the following result of [14] to state Proposition 1.

Theorem 4 (Lower bound, Theorem 1 in [14].). For any uniformly good algorithm [1], and for any θ ∈ Θ, we

have:

lim inf
T→∞

Reg(T)
log T

≥ L(θ),

where L(θ) is the solution of the optimization problem:

min
η(k)≥0,k∈K ∑

k∈K
η(k)

(
max
ℓ∈K

µℓ(θ)− µk(θ)

)
subject to ∑

k∈K
η(k)D(θ, λ, k) ≥ 1, ∀λ ∈ Λ(Θ), (2.9)

where Λ(θ) = {λ ∈ Θ∗ : k∗ ̸= arg max
k∈K

µk(λ)}.

Here, D(θ, λ, k) is the KL-Divergence between distributions fR(Rk|θ, k) and fR(Rk|λ, k). An algorithm, π, is

uniformly good if Regπ(T, θ) = o(Ta) for all a > 0 and all θ ∈ Θ.

We see that the solution to the optimization problem (2.9) is L(θ) = 0 only when the set Λ(θ) is empty.

The set Λ(θ) being empty corresponds to a case where all sub-optimal arms are Θ∗-non-competitive. This

implies that sub-logarithmic regret is possible only when C̃(θ∗) = 1, i.e there is only one Θ∗-competitive

arm, which is the optimal arm, and all other arms are non-competitive. It is assumed that reward

distribution of an arm k is parameterized by the mean µk of arm k; this ensures that if µk(θ) = µk(λ) then

we have D(θ, λ, k) = 0.

2.9.2 Results valid for any Algorithm-C

We now present results that depend only on Step 1 and Step 2 of our algorithm and hence are valid for any

Algorithm-C, where Algorithm can be UCB, Thompson sampling or any other method designed for

classical multi-armed bandits with independent arms.

Fact 1 (Hoeffding’s inequality). Let Z1, Z2, . . . ZT be i.i.d. random variables, where Zi is σ2 sub-gaussian with

mean µ, then

Pr(| µ̂− µ |) ≥ ϵ) ≤ 2 exp
(
− ϵ2T

2σ2

)
,

Here µ̂ is the empirical mean of the Z1, Z2 . . . ZT .
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Lemma 1 (Standard result used in bandit literature (Used in Theorem 2.1 of [32])). If µ̂k,nk(t) denotes the

empirical mean of arm k by pulling arm k nk(t) times through any algorithm and µk denotes the mean reward of arm

k, then we have

Pr(|µ̂k,nk(t) − µk| ≥ ϵ, τ2 ≥nk(t) ≥ τ1) ≤
τ2

∑
s=τ1

2 exp
(
− sϵ2

2σ2

)

Proof. Let Z1, Z2, ...Zt be the reward samples of arm k drawn separately. If the algorithm chooses to

play arm k for mth time, then it observes reward Zm. Then the probability of observing the event

(µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1) can be upper bounded as follows,

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
= Pr

((
∑

nk(t)
i=1 Zi

nk(t)
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)

≤ Pr

((
τ2⋃

m=τ1

{
∑m

i=1 Zi

m
− µk ≥ ϵ

})
, τ2 ≥ nk(t) ≥ τ1

)
(2.10)

≤ Pr

(
τ2⋃

m=τ1

{
∑m

i=1 Zi

m
− µk ≥ ϵ

})

≤
τ2

∑
s=τ1

Pr
(

∑s
i=1 Zi

s
− µk ≥ ϵ

)

≤
τ2

∑
s=τ1

exp
(
− sϵ2

2σ2

)
. (2.11)

Lemma 2. The probability that the difference between the true mean of arm k and its empirical mean after t time

slots is more than
√

2ασ2 log t
nk(t)

is upper bounded by 2t1−α, i.e.,

Pr

(
|µk(θ

∗)− ϕ̂k| ≥
√

2ασ2 log t
nk(t)

)
≤ 2t1−α.

Proof. See that,

Pr

(
|µk(θ

∗)− ϕ̂k,nk(t)| ≥
√

2ασ2 log t
nk(t)

)
≤

t

∑
m=1

Pr

(
|µk(θ

∗)− ϕ̂k,m| ≥
√

2ασ2 log t
m

)
(2.12)

≤
t

∑
m=1

2t−α (2.13)

= 2t1−α.

We have (2.12) from union bound and is a standard trick to deal with the random variable nk(t) as it

can take values from 1 to t (Lemma 1). The true mean of arm k is µk(θ
∗). Therefore, if µ̂k,m denotes the
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empirical mean of arm k taken over m pulls of arm k then, (2.13) follows from Fact 1 with ϵ in Fact 1 being

equal to
√

2ασ2 log t
nk(t)

.

Lemma 3. Define E1(t) to be the event that arm k∗ is Θt-non-competitive for the round t + 1, then,

Pr(E1(t)) ≤ 2Kt1−α.

Proof. Observe that

Pr(E1(t)) ≤ Pr(θ∗ /∈ Θ̂t) = Pr

(⋃
k∈K
|µk(θ

∗)− µ̂k,nk(t)| ≥
√

2ασ2 log t
nk(t)

)
(2.14)

≤
K

∑
k=1

Pr

(
|µk(θ

∗)− µ̂k,nk(t)| ≥
√

2ασ2 log t
nk(t)

)
(2.15)

≤
K

∑
k=1

t

∑
m=1

Pr

(
|µk(θ

∗)− µ̂k,m| ≥
√

2ασ2 log t
m

)
(2.16)

≤ K
t

∑
m=1

2t−α (2.17)

= 2Kt1−α.

In order for Arm k∗ to be Θ̂t-non-competitive, we need µk∗(θ) < maxk∈K µk(θ) ∀θ ∈ Θ̂t. See that θ∗ ∈ Θ̂t

implies that arm k∗ is Θ̂t-Competitive. Therefore, θ∗ /∈ Θ̂t is a necessary condition for Arm k∗ to be

Θ̂t-Non-Competitive. Due to this, we have Pr(E1(t)) ≤ Pr(θ∗ /∈ Θ̂t) in (2.14). We are using µ̂k,m to denote

the empirical mean of rewards from arm k obtained from it’s m pulls. Here (2.14) follows from definition

of confidence set and (2.15) follows from union bound. We have (2.16) from union bound and is a standard

trick to deal with the random variable nk(t) as it can take values from 1 to t (Lemma 1). The inequality

(2.17) follows from Hoeffding’s lemma.

Lemma 4. Consider a suboptimal arm k ̸= k∗, which is Θ∗(ϵk)-non-competitive. If ϵk ≥
√

8ασ2K log t0
t0

for some

constant t0 > 0, then,

Pr(kt+1 = k, k∗ = kmax) ≤ 2t1−α,

where kmax = arg maxk∈K nk(t).



CHAPTER 2. STRUCTURED MULTI-ARMED BANDITS 41

Proof. We now bound this probability as,

Pr(kt+1 = k, k∗ = kmax)

= Pr(k ∈ Ct, Ik = max
ℓ∈C

Iℓ, k∗ = kmax)

≤ Pr(k ∈ Ct, k∗ = kmax)

≤ Pr(|µ̂k∗ − µk∗(θ
∗)| > ϵk

2
, k∗ = kmax) (2.18)

≤ 2t exp
(
− ϵ2t

8Kσ2

)
(2.19)

≤ 2t1−α ∀t > t0. (2.20)

See that |µ̂kmax − µkmax | < ϵk
2 ⇒ |µkmax(θ)− µkmax(θ∗)| < ϵ for θ ∈ Θ̃t. This holds as

√
2ασ2 log t0

t0
≤ ϵk

2 and if

θ ∈ Θ̃t, then |µkmax(θ)− µ̂kmax | ≤
√

2ασ2 log t0
t0

≤ ϵk
2 . Therefore in order for arm k to be Θt-competitive, we

need at least |µ̂k∗ − µk∗(θ
∗)| > ϵk/2, which leads to (2.18) as arm k is ϵk non-competitive. Inequality (2.19)

follows from Hoeffding’s inequality. The term t before the exponent in (2.19) arises as the random variable

nk∗ can take values from t
K to t (Lemma 1).

2.9.3 Unified Regret Analysis

In this section, we show a sketch of how regret analysis of Algorithm-C can be performed, where

Algorithm is a bandit algorithm that works for classical multi-armed bandit problem. In later section, we

provide rigorous proof for the regret analysis of the UCB-C algorithm.

Bound on expected number of pulls for Non-Competitive arms

For non-competitive arms, we show that the expected number of pulls is O(1). Intuition behind the

proof of the result is that non-competitive arms can be identified as sub-optimal based on enough pulls of

the optimal arm, due to which pulling a sub-optimal arm O(log T) becomes unnecessary and it ends up

being pulled only O(1) times. We now provide a mathematical proof sketch of this idea:

We bound E [nk(t)] as

E [nk(T)] = E

[
T

∑
t=1

1{kt=k}

]
(2.21)

=
T−1

∑
t=0

Pr(kt+1 = k)

=
Kt0

∑
t=1

Pr(kt = k) +
T−1

∑
t=Kt0

Pr(kt+1 = k)
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≤ Kt0 +
T−1

∑
t=Kt0

Pr(kt+1 = k, nk∗(t) = max
k′

nk′(t))+

T−1

∑
t=Kt0

∑
k′ ̸=k∗

(
Pr(nk′(t) = max

k′′
nk′′(t))× Pr(kt+1 = k|nk′(t) = max

k′′
nk′′(t))

)

≤ Kt0 +
T−1

∑
t=Kt0

Pr(kt+1 = k, nk∗(t) = max
k′

nk′(t)) +
T−1

∑
t=Kt0

∑
k′ ̸=k∗

Pr(nk′(t) = max
k′′

nk′′(t))

≤ Kt0 +
T−1

∑
t=Kt0

2t1−α +
T−1

∑
t=Kt0

∑
k′ ̸=k∗

Pr(nk′(t) = max
k′′

nk′′(t)) (2.22)

≤ Kt0 +
T−1

∑
t=Kt0

2t1−α +
T

∑
t=Kt0

∑
k′ ̸=k∗

Pr
(

nk′(t) ≥
t
K

)
∀t > t0

Here (2.22) follows from plugging the result of Lemma 4.

In order to prove that Algorithm-C achieves bounded regret, we need to show that Pr
(
nk′(t) ≥ t

K
)
≤

η

t1+ϵ , for k′ ̸= k∗, for some η, ϵ > 0. Intuitively, this means that the probability of selecting a sub-optimal

arm more than t
K times decays with the number of rounds. This property should intuitively hold true for

any good performing bandit algorithm. We prove this rigorously for UCB-C.

Bound on expected number of pulls for Competitive arms

For any suboptimal arm k ̸= k∗,

E [nk(T)] ≤
T

∑
t=1

Pr(kt = k)

=
T

∑
t=1

Pr((kt = k, E1(t)) ∪ (Ec
1(t), kt = k)) (2.23)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k)

=
T

∑
t=1

2Kt1−α +
T

∑
t=1

Pr(Ec
1(t), kt = k) (2.24)

Here (2.24) follows from the result of Lemma 3 with E1(t) being the event that arm k∗ is Θt-non-

competitive for the round t + 1.

See that the event E(c)
1 (t) ∩ kt = k corresponds to the event that a sub-optimal arm k and optimal arm

k∗ are both present in the competitive set, and the Algorithm selects the sub-optimal arm k. The analysis

of this term is exactly equivalent to selecting a sub-optimal arm over optimal arm by Algorithm. This

leads to a O(log T) bound on the expected pulls of the competitive arms as classical bandit algorithms pull

each arm O(log T) times.
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2.9.4 Proof for the UCB-C Algorithm

Lemma 5. If ∆min ≥ 4
√

Kασ2 log t0
t0

for some constant t0 > 0, then,

Pr(kt+1 = k, nk(t) ≥ s) ≤ (2K + 4)t1−α for s ≥ t
2K

,

∀t > t0, where k ̸= k∗ is a suboptimal arm.

Proof. The probability that arm k is pulled at step t + 1, given it has been pulled s times can be bounded as

follows:

Pr(kt+1 = k, nk(t) ≥ s) = Pr(Ik(t) = max
k′∈Ct

Ik′(t), nk(t) ≥ s)

≤ Pr(E1(t) ∪ (Ec
1(t), Ik(t) > Ik∗(t)), nk(t) ≥ s)

≤ Pr(E1(t), nk(t) ≥ s) + Pr(Ec
1(t), Ik(t) > Ik∗(t), nk ≥ s) (2.25)

≤ 2Kt1−α + Pr (Ik(t) > Ik∗(t), nk(t) ≥ s) (2.26)

Here, (2.25) follows from union bound and (2.26) follows from Lemma 3. We now bound the second term

as,

Pr(Ik(t) > Ik∗(t), nk(t) ≥ s) = Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) +

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s|µk∗ > Ik∗(t))× Pr (µk∗ > Ik∗(t)) (2.27)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + Pr (µk∗ > Ik∗(t)) (2.28)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + 2t1−α (2.29)

= Pr (Ik(t) > µk∗ , nk(t) ≥ s) + 2t1−α

= Pr

(
µ̂k +

√
2ασ2 log t

nk(t)
> µk∗ , nk(t) ≥ s

)
+ 2t1−α

= Pr

(
µ̂k − µk(θ

∗) > ∆k −
√

2ασ2 log t
nk(t)

, nk(t) ≥ s

)
+ 2t1−α

≤ 2t exp

− s
2σ2

(
∆k −

√
2ασ2 log t

s

)2
+ 2t1−α (2.30)

= 2t1−α exp

(
− s

2σ2

(
∆2

k − 2∆k

√
2ασ2 log t

s

))
+ 2t1−α

= 4t1−α for all t > t0. (2.31)

Equation (2.27) follows from the fact that P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). Inequality (2.28) arrives

from dropping P(B) and P(A|Bc) in the previous expression. We have (2.29) from Lemma 2 and the fact

that Ik(t) = µ̂k +

√
2ασ2 log t

nk(t)
. Inequality (2.30) follows from the Hoeffding’s inequality and the term t before
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the exponent in (2.30) arises as the random variable,nk(t), can take values between s and t (Lemma 1).

Equation (2.31) results from the definition of t0 and the fact that s > t
2K .

Plugging the result of (2.31) in the expression (2.26) completes the proof of Lemma 5.

Lemma 6. Let t0 be the minimum integer satisfying ∆min ≥ 4
√

Kασ2 log t0
t0

then ∀t > Kt0, and ∀k ̸= k∗, we have,

Pr
(

nk(t) >
t
K

)
≤ 6K2

(
t
K

)2−α

.

Proof. We expand Pr
(
nk(t) > t

K
)

as,

Pr
(

nk(t) ≥
t
K

)
=

(
Pr
(

nk(t) ≥
t
K
| nk(t− 1) ≥ t

K

)
× Pr

(
nk(t− 1) ≥ t

K

))
+(

Pr
(

kt = k | nk(t− 1) =
t
K
− 1
)
× Pr

(
nk(t− 1) =

n
K
− 1
))

≤ Pr
(

nk(t− 1) ≥ t
K

)
+ Pr

(
kt = k, nk(t− 1) =

t
K
− 1
)

≤ Pr
(

nk(t− 1) ≥ t
K

)
+ 6K(t− 1)1−α ∀(t− 1) > t0. (2.32)

Here (2.32) follows from Lemma 5.

This gives us that ∀(t− 1) > t0, we have,

Pr
(

nk(t) ≥
t
K

)
− Pr

(
nk(t− 1) ≥ t

K

)
≤ 6K(t− 1)1−α.

Now consider the summation

t

∑
τ= t

K

Pr
(

nk(τ) ≥
t
K

)
− Pr

(
nk(τ − 1) ≥ t

K

)
≤

t

∑
τ= t

K

6K(τ − 1)1−α.

This gives us,

Pr
(

nk(t) ≥
t
K

)
− Pr

(
nk

(
t
K
− 1
)
≥ t

K

)
≤

t

∑
τ= t

K

6K(τ − 1)1−α.

Since Pr
(
nk
( t

K − 1
)
≥ t

K
)
= 0, we have,

Pr
(

nk(t) ≥
t
K

)
≤

t

∑
τ= t

K

6K(τ − 1)1−α

≤ 6K2
(

t
K

)2−α

∀t > Kt0.
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Proof of Theorem 2 We bound E [nk(t)] as

E [nk(T)] = E

[
T

∑
t=1

1{kt=k}

]

=
T−1

∑
t=0

Pr(kt+1 = k)

=
Kt0

∑
t=1

Pr(kt = k) +
T−1

∑
t=Kt0

Pr(kt+1 = k)

≤ Kt0 +
T−1

∑
t=Kt0

Pr(kt+1 = k, nk∗(t) = max
k′

nk′(t))+

T−1

∑
t=Kt0

∑
k′ ̸=k∗

(
Pr(nk′(t) = max

k′′
nk′′(t))× Pr(kt+1 = k|nk′(t) = max

k′′
nk′′(t))

)

≤ Kt0 +
T−1

∑
t=Kt0

Pr(kt+1 = k, nk∗(t) = max
k′

nk′(t)) +
T−1

∑
t=Kt0

∑
k′ ̸=k∗

Pr(nk′(t) = max
k′′

nk′′(t))

≤ Kt0 +
T−1

∑
t=Kt0

2t1−α +
T

∑
t=Kt0

∑
k′ ̸=k∗

Pr
(

nk′(t) ≥
t
K

)
(2.33)

≤ Kt0 +
T

∑
t=1

2Kt1−α + K2(K− 1)
T

∑
t=Kt0

6
(

t
K

)2−α

. (2.34)

Here, (2.33) follows from Lemma 4 and (2.34) follows from Lemma 6.

Proof of Theorem 3 For any sub-optimal arm k ̸= k∗,

E [nk(T)] ≤
T

∑
t=1

Pr(kt = k)

=
T

∑
t=1

Pr((kt = k, E1(t)) ∪ (Ec
1(t), kt = k)) (2.35)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k, Ik(t− 1) > Ik∗(t− 1)) (2.36)

≤
T

∑
t=1

Pr(E1(t)) +
T−1

∑
t=0

Pr(Ik(t) > Ik∗(t), kt+1 = k)

=
T

∑
t=1

2Kt1−α +
T−1

∑
t=0

Pr (Ik(t) > Ik∗(t), kt+1 = k) (2.37)

≤ 8ασ2 log(T)
∆2

k
+

2α

α− 2
+

T

∑
t=1

2Kt1−α. (2.38)

Here, (2.37) follows from Lemma 3. We have (2.38) from the analysis of UCB for the classical bandit problem.

This is because the term ∑T−1
t=0 Pr (Ik(t) > Ik∗(t), kt+1 = k) counts the number of times Ik(t) > Ik∗(t) and

kt+1 = k, which is the exact same term counted in the analysis of the UCB algorithm [32] to bound

the expected number of pulls of arm k. In particular, we can see from analysis of Theorem 1 in [32]
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(equivalently analysis of Theorem 2.1 in [30]) that Pr
(

Ik(t) > Ik∗(t), kt+1 = k, nk(t) ≥ 8ασ2 log T
∆2

k

)
≤ 2t1−α

and the event 1{kt+1 = k, Ik(t) > Ik∗(t), nk(t) ≤ 8ασ2 log T
∆2

k
} can happen only at-most 8ασ2 log T

∆2
k

times. [32]

does this analysis for [0, 1] bounded random variables (i.e., σ = 1/2) and α = 4 in their proof of Theorem 1.

The analysis is replicated in the proof of Theorem 2.1 in [30] for a general α. For further details we refer

the reader to the analysis of UCB done in Theorem 2.1 of [30].

2.9.5 Regret analysis for the TS-C Algorithm

We now present results for TS-C in the scenario where K = 2 and Thompson sampling is employed

with Beta priors [52]. In order to prove results for TS-C, we assume that rewards are either 0 or

1. The Thompson sampling algorithm with beta prior, maintains a posterior distribution on mean of

arm k as Beta (nk(t)× µ̂k(t) + 1, nk(t)× (1− µ̂k(t)) + 1). Subsequently, it generates a sample Sk(t) ∼
Beta (nk(t)× µ̂k(t) + 1, nk(t)× (1− µ̂k(t)) + 1) for each arm k and selects the arm kt+1 = arg maxk∈K Sk(t).

The TS-C algorithm with Beta prior uses this Thompson sampling procedure in its last step, i.e., kt+1 =

arg maxk∈Ct
Sk(t), where Ct is the set of Θ̂t-Competitive arms at round t. We show that in a 2-armed bandit

problem, the regret is O(1) if the sub-optimal arm k is non-competitive and is O(log T) otherwise.

For the purpose of regret analysis of TS-C, we define two thresholds, a lower threshold Lk(θ
∗), and an

upper threshold Uk(θ
∗) for arm k ̸= k∗,

Uk(θ
∗) = µk(θ

∗) +
∆k
3

, Lk(θ
∗) = µk∗(θ

∗)− ∆k
3

. (2.39)

Let Eµ
i (t) and ES

i (t) be the events that,

Eµ
k (t) = {µ̂k(t) ≤ Uk(θ

∗)}

ES
k (t) = {Sk(t) ≤ Lk(θ

∗)}. (2.40)

To analyse the regret of TS-C, we first show that the number of times arm k is pulled jointly with the

event that nk(t− 1) ≥ t
2 is bounded above by an O(1) constant, which is independent of the total number

of rounds T.

Lemma 7. If ∆k ≥ 3
√

α log t0
t0

for some constant t0 > 0, then,

T

∑
t=2t0

Pr
(

kt = k, nk(t− 1) ≥ t
2

)
= O(1)

where k ̸= k∗ is a sub-optimal arm.
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Proof. We start by bounding the probability of the pull of k-th arm at round t as follows,

Pr
(

kt = k, nk(t− 1) ≥ t
2

)
(a)
≤ Pr

(
E1(t), kt = k, nk(t− 1) ≥ t

2

)
+

Pr
(

E1(t), kt = k, nk(t− 1) ≥ t
2

)
(b)
≤2Kt1−α + Pr

(
E1(t), kt = k, nk(t− 1) ≥ t

2

)
(c)
≤2Kt1−α + Pr

(
kt = k, Eµ

k (t), ES
k (t), nk(t− 1) ≥ t

2

)
︸ ︷︷ ︸

term A

+

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
︸ ︷︷ ︸

term B

+

Pr
(

kt = k, Eµ
k (t), nk(t− 1) ≥ t

2

)
︸ ︷︷ ︸

term C

(2.41)

(2.42)

where (b), comes from Lemma 3. Now we treat each term in (2.41) individually. To bound term A, we note

that Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
≤ Pr

(
kt = k, Eµ

k (t), ES
k (t)

)
. From the analysis in [52] (equation

6), we see that ∑T
t=1 Pr

(
kt = k, Eµ

k (t), ES
k (t)

)
= O(1) as it is shown through Lemma 2 in [52] that,

∑T
t=1 Pr

(
kt = k, Eµ

k (t), ES
k (t)

)
≤ 224

∆2
k
+ ∑T

j=0 Θ

(
e−

∆2
k j

18 + 1

e
∆2

k j
36 −1

+ 9
(j+1)∆2

k
e−Dk j

)
.

Here, Dk = Lk(θ
∗) log Lk(θ

∗)
µk∗ (θ∗)

+ (1− Lk(θ
∗)) log 1−Lk(θ

∗)
1−µk∗ (θ∗)

. Due to this,

∑T
t=2t0

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
= O(1).

We now bound the sum of term B from t = 1 to T by noting that

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
≤ Pr

(
kt = k, ES

k (t)
)

. Additionally, from Lemma 3 in [52], we get

that ∑T
t=1 Pr

(
kt = k, ES

k (t)
)
≤ 1

d(Uk(θ∗),µk(θ∗))
+ 1, where d(x, y) = x log x

y + (1− x) log 1−x
1−y . As a result, we

see that ∑T
t=1 Pr

(
kt = k, Eµ

k (t), ES
k (t), nk(t− 1) ≥ t

2

)
= O(1).

Finally, for the last term C we can show that,

(C) = Pr
(

kt = k, Eµ
k (t), nk(t− 1) ≥ t

2

)
≤ Pr

(
Eµ

k (t), nk(t− 1) ≥ t
2

)
= Pr

(
µ̂k − µk >

∆k
3

, nk(t− 1) ≥ t
2

)
≤ t exp

(
− t∆2

k
9

)
(2.43)

≤ t1−α



CHAPTER 2. STRUCTURED MULTI-ARMED BANDITS 48

Here (2.43) follows from hoeffding’s inequality and the union bound trick to handle random variable

nk(t− 1). After plugging these results in (2.41), we get that

T

∑
t=2t0

Pr
(

kt = k, nk(t− 1) ≥ t
2

)
≤

T

∑
t=2t0

2Kt1−α +
T

∑
t=2t0

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
+

T

∑
t=2t0

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
+

T

∑
t=2t0

Pr
(

kt = k, Eµ
k (t), nk(t− 1) ≥ t

2

)
(2.44)

≤
T

∑
t=2t0

2Kt1−α + O(1) + O(1) +
T

∑
t=2t0

t1−α (2.45)

= O(1) (2.46)

We now show that the expected number of pulls by TS-C for a non-competitive arm is bounded above

by an O(1) constant.

Expected number of pulls by TS-C for a non-competitive arm. We bound E [nk(t)] as

E [nk(T)] = E

[
T

∑
t=1

1{kt=k}

]

=
T−1

∑
t=0

Pr(kt+1 = k)

=
2t0

∑
t=1

Pr(kt = k) +
T−1

∑
t=2t0

Pr(kt+1 = k)

≤ 2t0 +
T−1

∑
t=2t0

Pr
(

kt+1 = k, nk∗(t) ≥
t
2

)
+

T−1

∑
t=2t0

Pr
(

kt+1 = k, nk(t) ≥
t
2

)
(2.47)

≤ 2t0 +
T−1

∑
t=2t0

2t1−α +
T−1

∑
t=2t0

Pr
(

kt+1 = k, nk(t) ≥
t
2

)
(2.48)

= O(1) (2.49)

Here, (2.48) follows from Lemma 4 and (2.49) follows from Lemma 7 and the fact that the sum of 2t1−α is

bounded for α > 1 and t0 = inf
{

τ > 0 : ∆min, ϵk ≥ 3
√

α log τ
τ

}
.

We now show that when the sub-optimal arm k is competitive, the expected pulls of arm k is O(log T).
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Expected number of pulls by TS-C for a competitive arm k ̸= k∗: For any sub-optimal arm k ̸= k∗,

E [nk(T)] ≤
T

∑
t=1

Pr(kt = k)

=
T

∑
t=1

Pr((kt = k, E1(t)) ∪ (Ec
1(t), kt = k)) (2.50)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k, Sk(t− 1) > Sk∗(t− 1)) (2.51)

≤
T

∑
t=1

Pr(E1(t)) +
T−1

∑
t=0

Pr(Sk(t) > Sk∗(t), kt+1 = k)

=
T

∑
t=1

2Kt1−α +
T−1

∑
t=0

Pr (Sk(t) > Sk∗(t), kt+1 = k) (2.52)

≤ 9 log(T)
∆2

k
+ O(1) +

T

∑
t=1

2Kt1−α. (2.53)

= O(log T). (2.54)

Here, (2.52) follows from Lemma 3. We have (2.53) from the analysis of Thompson Sampling for the classical

bandit problem in [52]. This arises as the term Pr (Sk(t) > Sk∗(t), kt+1 = k) counts the number of times

Sk(t) > Sk∗(t) and kt+1 = k. This is precisely the term analysed in Theorem 3 of [52] to bound the expected

pulls of sub-optimal arms by TS. In particular, [52] analyzes the expected number of pull of sub-optimal

arm (termed as E [ki(T)] in their paper) by evaluating ∑T−1
t=0 Pr(Sk(t) > Sk∗(t), kt+1 = k) and it is shown in

their Section 2.1 (proof of Theorem 1 of [52]) that ∑T−1
t=0 Pr(Sk(t) > Sk∗(t), kt+1 = k) ≤ O(1) + log(T)

d(xi ,yi)
. The

term xi is equivalent to Uk(θ
∗) and yi is equal to Lk(θ

∗) in our notations. Moreover d(Uk(θ
∗), Lk(θ

∗)) ≤ ∆2
k

9 ,

giving us the desired result of (2.53).



Chapter 3

Multi-Armed Bandits with Correlated Arms

In the last chapter, we studied the structured multi-armed bandit framework where the mean rewards

corresponding to different arms are a known function of a hidden parameter θ∗. While the structured

bandit armed bandit framework is able to model structure in the mean rewards across different arms,

the reward realizations across arms may not necessarily be correlated. In this chapter, we fill this gap by

proposing a novel correlated MAB framework which explicitly captures the correlation in reward across

different arms. We first motivate the need for correlated multi-armed bandits and contrast them with

previously studied MAB models such as contextual and structured bandits.

3.1 Introduction

3.1.1 Background and Motivation

Correlated Multi-Armed Bandits. The classical MAB setting implicitly assumes that the rewards are

independent across arms, i.e., pulling an arm k does not provide any information about the reward we

would have received from arm ℓ. However, this may not be true in practice as the reward corresponding

to different treatment/drugs/ad-versions are likely to be correlated with each other. For instance, similar

ads/drugs may generate similar reward for the user/patient. These correlations, when modeled and

accounted for, can allow us to significantly improve the cumulative reward by reducing the amount of

exploration in bandit algorithms.

Motivated by this, we study a variant of the classical multi-armed bandit problem in which rewards

corresponding to different arms are correlated to each other, i.e., the conditional reward distribution satisfies

fRℓ |Rk
(rℓ|rk) ̸= fRℓ

(rℓ), whence E [Rℓ|Rk] ̸= E [Rℓ]. Such correlations can only be learned upon obtaining

samples from different arms simultaneously, i.e., by pulling multiple arms at a time. As that is not allowed

50
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…

Reward realization r

𝑅" 𝑅# 𝑅$ 𝑅%

E[R`|R1 = r]  s`,1(r)

Figure 3.1: Upon observing a reward r from an arm k, pseudo-rewards sℓ,k(r), give us an upper bound on
the conditional expectation of the reward from arm ℓ given that we observed reward r from arm k. These
pseudo-rewards models the correlation in rewards corresponding to different arms.

in the classical Multi-Armed Bandit formulation, we assume the knowledge of such correlations in the

form of prior knowledge that might be obtained through domain expertise or from controlled surveys. One

way of capturing correlations is through the knowledge of the joint reward distribution. However, if the

complete joint reward distribution is known, then the best-arm is known trivially. Instead, in our work,

we only assume restrictive information about correlations in the form of pseudo-rewards that constitute

an upper bound on conditional expected rewards. This makes our model more general and suitable for

practical applications. Fig. 3.1 presents an illustration of our model, where the pseudo-rewards, denoted by

sℓ,k(r), provide an upper bound on the reward that we could have received from arm ℓ given that pulling

arm k led to a reward of r; i.e.,

E[Rℓ|Rk = r] ≤ sℓ,k(r). (3.1)

We show that the knowledge of such bounds, even when they are not all tight, can lead to significant

improvement in the cumulative reward obtained by reducing the amount of exploration compared to

classical MAB algorithms. Our proposed MAB model and algorithm can be applied in all real-world

applications of the classical Multi-Armed bandit problem, where it is possible to know pseudo-rewards

from domain knowledge or through surveyed data. In the next section, we illustrate the applicability of our

novel correlated Multi-Armed Bandit model and its differences with the existing contextual and structured

bandit works through the example of optimal ad-selection.

3.1.2 An Illustrative Example

Suppose that a company is to run a display advertising campaign for one of their products, and its creative

team have designed several different versions that can be displayed. It is expected that the user engagement
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…

Unknown population 
composition

Correlated events

XYZ
SPORTS

XYZ
SPORTS

XYZ
SPORTS

Figure 3.2: The ratings of a user corresponding to different versions of the same ad are likely to be
correlated. For example, if a person likes first version, there is a good chance that they will also like the
2nd one as it also related to tennis. However, the population composition is unknown, i.e., the fraction of
people liking the first/second or the last version is unknown.

(in terms of click probability and time spent looking at the ad) depends the version of the ad that is

displayed. In order to maximize the total user engagement over the course of the ad campaign, multi-armed

bandit algorithms can be used; different versions of the ad correspond to the arms and the reward from

selecting an arm is given by the clicks or time spent looking at the ad version corresponding to that arm.

Personalized recommendations using Contextual and Structured bandits. Although the ad-selection

problem can be solved by standard MAB algorithms, there are several specialized MAB variants that

are designed to give better performance. For instance, the contextual bandit problem [11, 12] has been

studied to provide personalized displays of the ads to the users. Here, before making a choice at each

time step (i.e., deciding which version to show to a user), we observe the context associated with that

user (e.g., age/occupation/income features). Contextual bandit algorithms learn the mappings from the

context θ to the most favored version of ad k∗(θ) in an online manner and thus are useful for personalized

recommendations. A closely related problem is the structured bandit problem [14, 13, 51, 53], in which

the context θ (age/ income/ occupational features) is hidden but the mean rewards for different versions

of ad (arms) as a function of hidden context θ are known. Such models prove useful for personalized

recommendation in which the context of the user is unknown, but the reward mappings µk(θ) are known

through surveyed data.

Global Recommendations using Correlated-Reward Bandits. In this work we study a variant of the

classical multi-armed bandit problem in which rewards corresponding to different arms are correlated to

each other. In many practical settings, the reward we get from different arms at any given step are likely
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to be correlated. In the ad-selection example given in Figure 3.2, a user reacting positively (by clicking,

ordering, etc.) to the first version of the ad with a girl playing tennis might also be more likely to click

the second version as it is also related to tennis; of course one can construct examples where there is

negative correlation between click events to different ads. The model we study in this chapter explicitly

captures these correlations through the knowledge of pseudo-rewards sℓ,k(r) (See Figure 3.1). Similar to

the classical MAB setting, the goal here is to display versions of the ad to maximize user engagement. In

addition, unlike contextual bandits, we do not observe the context (age/occupational/income) features

of the user and do not focus on providing personalized recommendation. Instead our goal is to provide

global recommendations to a population whose demographics is unknown. Unlike structured bandits, we

do not assume that the mean rewards are functions of a hidden context parameter θ. In structured bandits,

although the mean rewards depend on θ the reward realizations can still be independent. See Section 3.2.4

for more details.

3.1.3 Main Contributions and Organization

i) A General and Previously Unexplored Correlated Multi-Armed Bandit Model. In Section 3.2 we

describe our novel correlated multi-armed bandit model, in which rewards of a user corresponding to

different arms are correlated with each other. This correlation is captured by the knowledge of pseudo-

rewards, which are upper bounds on the conditional mean reward of arm ℓ given reward of arm k. In

practice, pseudo-rewards can be obtained via expert/domain knowledge (for example, common ingredients

in two drugs that are being considered to treat an ailment) or controlled surveys (for example, beta-testing

users who are asked to rate different versions of an ad). A key advantage of our framework is that pseudo-

rewards are just upper bounds on the conditional expected rewards and can be arbitrarily loose. This also

makes the proposed framework and algorithm directly usable in practice – if some pseudo-rewards are

unknown due to lack of domain knowledge/data, they can simply be replaced by the maximum possible

reward entries, which serves a natural upper bound.

ii) An approach to generalize algorithms to the Correlated MAB setting. We propose a novel approach in

Section 3.3 that extends any classical bandit (such as UCB, TS, KL-UCB etc.) algorithm to the correlated

MAB setting studied in this chapter. This is done by making use of the pseudo-rewards to reduce

exploration in standard bandit algorithms. We refer to this algorithm as C-Bandit where Bandit refers to

the classical bandit algorithm used in the last step of the algorithm (i.e., UCB/TS/KL-UCB).

iii) Unified Regret Analysis We study the performance of our proposed algorithms by analyzing their

expected regret, E [Reg(T)]. The regret of an algorithm is defined as the difference between the cumulative
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reward of a genie policy, that always pulls the optimal arm k∗, and the cumulative reward obtained by the

algorithm over T rounds. By doing regret analysis of C-UCB, we obtain the following upper bound on the

expected regret of C-UCB.

Proposition 2 (Upper Bound on Expected Regret). The expected cumulative regret of the C-UCB algorithm is

upper bounded as

E [Reg(T)] ≤ (C− 1) ·O(log T) + O(1), (3.2)

Here C denotes the number of competitive arms. An arm k is said to be competitive if expected pseudo-

reward of arm k with respect to the optimal arm k∗ is larger than the mean reward of arm k∗, that is,

if E [sk,k∗(r)] ≥ µk∗ , otherwise, the arm is said to be non-competitive. The result in Proposition 2 arises

from the fact that the C-UCB algorithm ends up pulling the non-competitive arms only O(1) times and

only the competitive sub-optimal arms are pulled O(log T) times. In contrast to UCB, that pulls all K− 1

sub-optimal arms O(log T) times, our proposed C-UCB algorithm pulls only C− 1 ≤ K− 1 arms O(log T)

times. In fact, when C = 1, our proposed algorithm achieves bounded regret meaning that after some finite

step, no arm but the optimal one will be selected. In this sense, we reduce a K-armed bandit problem

to a C-armed bandit problem. We emphasize that k∗, µ∗ and C are all unknown to the algorithm at the

beginning.

We present our detailed regret bounds and analysis in Section 3.4. A rigorous analysis of the regret

achieved under C-UCB is given through a unified technique. This technique can be of broad interest as

we also provide a recipe to obtain regret analysis for any C-Bandit algorithm. For instance, the analysis of

C-KL-UCB can be easily done through our provided outline.

iv) Evaluation using real-world datasets.

We perform simulations to validate our theoretical results in Section 3.5. In Section 3.6, we do extensive

validation of our results by performing experiments on two real-world datasets, namely Movielens

and Goodreads, which show that the proposed approach yields drastically smaller regret than classical

Multi-Armed Bandit strategies.

3.2 Problem Formulation

3.2.1 Correlated Multi-Armed Bandit Model

Consider a Multi-Armed Bandit setting with K arms {1, 2, . . . K}. At each round t, a user enters the system

and we need to decide an arm kt to display to the user. Upon pulling arm kt, we receive a random reward
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r s2,1(r) r s1,2(r)
0 0.7 0 0.8
1 0.4 1 0.5

(a) R1 = 0 R1 = 1
R2 = 0 0.2 0.4
R2 = 1 0.2 0.2

(b) R1 = 0 R1 = 1
R2 = 0 0.2 0.3
R2 = 1 0.4 0.1

Table 3.1: The top row shows the pseudo-rewards of arms 1 and 2, i.e., upper bounds on the conditional
expected rewards (which are known to the player). The bottom row depicts two possible joint probability
distribution (unknown to the player). Under distribution (a), Arm 1 is optimal whereas Arm 2 is optimal
under distribution (b).

Rkt ∈ [0, B]. Our goal is to maximize the cumulative reward over time. The expected reward of arm k,

is denoted by µk. If we knew the arm with highest mean, i.e., k∗ = arg maxk∈K µk beforehand, then we

would always pull arm k∗ to maximize expected cumulative reward. We now define the cumulative regret,

minimizing which is equivalent to maximizing cumulative reward:

Reg(T) =
T

∑
t=1

µkt − µk∗ = ∑
k ̸=k∗

nk(T)∆k. (3.3)

Here, nk(T) denotes the number of times a sub-optimal arm is pulled till round T and ∆k denotes the

sub-optimality gap of arm k, i.e., ∆k = µk∗ − µk.

The classical multi-Armed bandit setting implicitly assumes the rewards R1, R2 . . . RK are indepen-

dent, that is, Pr(Rℓ = rℓ|Rk = r) = Pr(Rℓ = rℓ) ∀rℓ, r&∀ℓ, k, which implies that, E [Rℓ|Rk = r] =

E [Rℓ] ∀r, ℓ, k. However, in most practical scenarios this assumption is unlikely to be true. In fact, rewards

of a user corresponding to different arms are likely to be correlated. Motivated by this we consider a setup

where the conditional distribution of the reward from arm ℓ given reward from arm k is not equal to the

probability distribution of the reward from arm ℓ, i.e., fRℓ |Rk
(rℓ|rk) ̸= fRℓ

(rℓ), with fRℓ
(rℓ) denoting the

probability distribution function of the reward from arm ℓ. Consequently, due to such correlations, we

have E [Rℓ|Rk] ̸= E [Rℓ].

In our problem setting, we consider that the player has partial knowledge about the joint distribution of

correlated arms in the form of pseudo-rewards, as defined below:

Definition 6 (Pseudo-Reward). Suppose we pull arm k and observe reward r, then the pseudo-reward of arm ℓ

with respect to arm k, denoted by sℓ,k(r), is an upper bound on the conditional expected reward of arm ℓ, i.e.,

E[Rℓ|Rk = r] ≤ sℓ,k(r), (3.4)

without loss of generality, we define sℓ,ℓ(r) = r.

The pseudo-rewards information consists of a set of K× K functions sℓ,k(r) over [0, B]. This information

can be obtained in practice through either domain/expert knowledge or from controlled surveys. For
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r s2,1(r) s3,1(r)
0 0.7 2
1 0.8 1.2
2 2 1

r s1,2(r) s3,2(r)
0 0.5 1.5
1 1.3 2
2 2 0.8

r s1,3(r) s2,3(r)
0 1.5 2
1 2 1.3
2 0.7 0.75

Table 3.2: If some pseudo-reward entries are unknown (due to lack of prior-knowledge/data), those entries
can be replaced with the maximum possible reward and then used in the C-BANDIT algorithm. We do
that here by entering 2 for the entries where pseudo-rewards are unknown.

instance, in the context of medical testing, where the goal is to identify the best drug to treat an ailment

from among a set of K possible options, the effectiveness of two drugs is correlated when the drugs share

some common ingredients. Through domain knowledge of doctors, it is possible answer questions such as

“what are the chances that drug B would be effective given drug A was not effective?", through which we

can infer the pseudo-rewards.

3.2.2 Computing Pseudo-Rewards from prior-data/surveys

The pseudo-rewards can also be learned from prior-available data, or through offline surveys in which

users are presented with all K arms allowing us to sample R1, . . . , RK jointly. Through such data, we can

evaluate an estimate on the conditional expected rewards. For example in Table 3.1, we can look at all

users who obtained 0 reward for Arm 1 and calculate their average reward for Arm 2, say µ̂2,1(0). This

average provides an estimate on the conditional expected reward. Since we only need an upper bound on

E [R2|R1 = 0], we can use several approaches to construct the pseudo-rewards.

1. If the training data is large, one can use the empirical estimate µ̂2,1(0) directly as s2,1(0), because

through law of large numbers, the empirical average equals the E [R2|R1 = 0].

2. Alternatively, we can set s2,1(0) = µ̂2,1(0) + σ̂2,1(0), with σ̂2,1(0) denoting the empirical standard

deviation on the conditional reward of arm 2, to ensure that pseudo-reward is an upper bound on

the conditional expected reward.

3. In addition, pseudo-rewards for any unknown conditional mean reward could be filled with the

maximum possible reward for the corresponding arm. Table 3.2 shows an example of a 3-armed

bandit problem where some pseudo-reward entries are unknown, e.g., due to lack of data. We can fill

these missing entries with maximum possible reward (i.e., 2) as shown in Table 3.2 to complete the

pseudo-reward entries.

4. If through the training data, we obtain a soft upper bound u on E [R2|R1 = 0] that holds with

probability 1 − δ, then we can translate it to the pseudo-reward s2,1(0) = u × (1 − δ) + 2 × δ,

(assuming maximum possible reward is 2).
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Figure 3.3: A special case of our proposed problem framework is a setting in which rewards for different
arms are correlated through a hidden random variable X. At each round X takes a realization in X . The
reward obtained from an arm k is Yk(X). The figure illustrates lower bounds and upper bounds on Yk(X)
(through dotted lines). For instance, when X takes the realization 1, reward of arm 3 is a random variable
bounded between 1 and 3.

Remark 5. Note that the pseudo-rewards are upper bounds on the expected conditional reward and not hard bounds

on the conditional reward itself. This makes our problem setup practical as upper bounds on expected conditional

reward are easier to obtain, as illustrated in the previous paragraph.

Remark 6 (Reduction to Classical Multi-Armed Bandits). When all pseudo-reward entries are unknown, then all

pseudo-reward entries can be filled with maximum possible reward for each arm, that is, sℓ,k(r) = B ∀r, ℓ, k. In such a

case, the problem framework studied in this chapter reduces to the setting of the classical Multi-Armed Bandit problem

and our proposed C-Bandit algorithm performs exactly as standard bandit (for e.g., UCB, TS etc.) algorithms.

While the pseudo-rewards are known in our setup, the underlying joint probability distribution of

rewards is unknown. For instance, Table 3.1 (a) and Table 3.1 (b) show two joint probability distributions of

the rewards that are both possible given the pseudo-rewards at the top of Table 3.1. If the joint distribution

is as given in Table 3.1 (a), then Arm 1 is optimal, while Arm 2 is optimal if the joint distribution is as given

in Table 3.1(b).

Remark 7. For a setting where reward domain is large or there are a large number of arms, it may be difficult to

learn the pseudo-reward entries from prior-data. In such scenarios, the knowledge of additional correlation structure

may be helpful to know the value of pseudo-rewards. We describe one such structure in the next section where rewards

are correlated through a latent random source and show how to evaluate pseudo-rewards in such a scenario.

3.2.3 Special Case: Correlated Bandits with a Latent Random Source

Our proposed correlated multi-armed bandit framework subsumes many interesting and previously

unexplored multi-armed bandit settings. One such special case is the correlated multi-armed bandit model
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Figure 3.4: An illustration on how to calculate pseudo-rewards in CMAB with latent random source. Upon
observing a reward of 4 from arm 1, we can see that the maximum possible reward for arms 2 and 3 is 3.5
and 4 respectively. Therefore, s2,1(4) = 3.5 and s3,1(4) = 4.

where the rewards depend on a common latent source of randomness [54]. More concretely, the rewards

of different arms are correlated through a hidden random variable X (see Figure 3.3). At each round t,

X takes a an i.i.d. realization Xt ∈ X (unobserved to the player) and upon pulling arm k, we observe a

random reward Yk(Xt). The latent random variable X here could represent the features (i.e., age/occupation

etc.) of the user arriving to the system, to whom we show one of the K arms. These features of the user are

hidden in the problem due to privacy concerns. The random reward Yk(Xt) represents the preference of

user with context Xt for the kth version of the ad, for the application of ad-selection.

In this problem setup, upper and lower bounds on Yk(X), namely ḡk(X) and g
k
(X) are known. For

instance, the information on upper and lower bounds of Yk(Xt) could represent knowledge of the form that

children of age 5-10 rate documentaries only in the range 1-3 out of 5. Such information can be known or learned

through prior available data. While the bounds on Yk(X) are known, the distribution of X and reward

distribution within the bounds is unknown, due to which the optimal arm is not known beforehand. Thus,

an online approach is needed to minimize the regret.

It is possible to translate this setting to the general framework described in the problem by transforming

the mappings Yk(X) to pseudo-rewards sℓ,k(r). Recall the pseudo-rewards represent an upper bound on

the conditional expectation of the rewards. In this framework, sℓ,k(r) can be calculated as:

sℓ,k(r) = max
{x:g

k
(x)≤r≤ḡk(x)}

ḡℓ(x),

where g
k
(x) and ḡk(x) represent upper and lower bounds on Yk(x). Upon observing a realization from

arm k, it is possible to estimate the maximum possible reward that would have been obtained from arm ℓ

through the knowledge of bounds on Yk(X).
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Figure 3.4 illustrates how pseudo-reward is evaluated when we obtain a reward r = 4 by pulling arm 1.

We first infer that X lies in [0, 0.8] if r = 4 and then find the maximum possible reward for arm 2 and arm 3

in [0, 0.8]. Once these pseudo-rewards are constructed, the problem fits in the general framework described

in this chapter and we can use the algorithms proposed for this setting directly.

Remark 8. In the scenario where g
k
(x) and ḡk(x) are soft lower and upper bounds, i.e., g

k
(x) ≤ Yk(x) ≤ ḡk(x)

w.p. 1− δ, we can still construct pseudo-reward as follows:

sℓ,k(r) = (1− δ)2 ×
(

max
{x:g

k
(x)≤r≤ḡk(x)}

ḡℓ(x)

)
+ (1− (1− δ)2)×M,

where M is the maximum possible reward an arm can provide. Thus our proposed framework and algorithms work

under this setting as well.1

3.2.4 Comparison with parametric (structured) models

As mentioned in Section 3.1, a seemingly related model is the structured bandits model [14, 13, 55].

Structured bandits is a class of problems that cover linear bandits [51], generalized linear bandits [25],

Lipschitz bandits [56], global bandits [17], regional bandits [16] etc. In the structured bandits setup, mean

rewards corresponding to different arms are related to one another through a hidden parameter θ. The

underlying value of θ is fixed and the mean reward mappings θ → µk(θ) are known. Similarly, [57] studies

a dependent armed bandit problem, that also has mean rewards corresponding to different arms related to

one another. It considers a parametric model, where mean rewards of different arms are drawn from one

of the K clusters, each having an unknown parameter πi. All of these models are fundamentally different

from the problem setting considered in this chapter. We list some of the differences with the structured

bandits (and the model in [57]) below.

1. In this work we explicitly model the correlations in the rewards of a user corresponding to different

arms. While mean rewards are related to each other in structured bandits and [57], the reward

realizations are not necessarily correlated.

2. The model studied here is non-parametric in the sense that there is no hidden feature space as is the

case in structured bandits and the work of Pandey et al. [57].

3. In structured bandits, the reward mappings from θ to µk(θ) need to be exact. If they happen to be

incorrect, then the algorithms for structured bandit cannot be used as they rely on the correctness of

1We evaluate a range of values within which x lies based on the reward with probability 1− δ. The maximum possible reward of
arm ℓ for values of x is then identified with probability 1− δ. Due to this, with probability (1− δ)2, conditional reward of arm ℓ is
at-most max{x:gk(x)≤r≤ḡk(x)} ḡℓ(x).
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µk(θ) to construct confidence intervals on the unknown parameter θ. In contrast, the model studied

here relies on the pseudo-rewards being upper bounds on conditional expectations. These bounds

need not be tight and the proposed C-Bandit algorithms adjust accordingly and perform at least as

well as the corresponding classical bandit algorithm.

4. Similar to the structured bandits, the unimodal bandit framework [58, 59] also assumes a structure on

the mean rewards and does not capture the reward correlations explicitly. Under the unimodal frame-

work, it is assumed that the mean reward µk as a function of the arms k has a single mode. Instead

of assuming that mean rewards are related to one another, our framework explicitly captures the

inherent correlations in the form of pseudo-reward. Unimodal bandits have often been used to model

the problem of link-rate adaptation in wireless networks, where the mean-reward corresponding to

different choices of arms is a unimodal function [60, 61, 62]. The same problem can also be dealt by

modeling the correlations explicitly through the pseudo-reward framework described in this chapter.

3.3 The Proposed C-BANDIT Algorithms

We now propose an approach that extends the classical multi-armed bandit algorithms (such as UCB,

Thompson Sampling, KL-UCB) to the correlated MAB setting. At each round t + 1, the UCB algorithm [32]

selects the arm with the highest UCB index Ik,t, i.e.,

kt+1 = arg max
k∈K

Ik,t, Ik,t = µ̂k(t) + B

√
2 log(t)

nk(t)
, (3.5)

where µ̂k(t) is the empirical mean of the rewards received from arm k until round t, and nk(t) is the

number of times arm k is pulled till round t. The second term in the UCB index causes the algorithm to

explore arms that have been pulled only a few times (i.e., those with small nk(t)). Recall that we assume all

rewards to be bounded within an interval of size B. When the index t is implied by context, we abbreviate

µ̂k(t) and Ik(t) to µ̂k and Ik respectively in the rest of the chapter.

Under Thompson sampling [52], the arm kt+1 = arg maxk∈K Sk,t is selected at time step t + 1. Here, Sk,t

is the sample obtained from the posterior distribution of µk, That is,

kt+1 = arg max
k∈K

Sk,t, Sk,t ∼ N
(

µ̂k(t),
βB

nk(t) + 1

)
, (3.6)

here β is a hyperparameter for the Thompson Sampling algorithm

In the correlated MAB framework, the rewards observed from one arm can help estimate the rewards

from other arms. Our key idea is to use this information to reduce the amount of exploration required.

We do so by evaluating the empirical pseudo-reward of every other arm ℓ with respect to an arm k at each



CHAPTER 3. MULTI-ARMED BANDITS WITH CORRELATED ARMS 61

round t. Using this additional information, we identify some arms as empirically non-competitive at round t,

and only for this round, do not consider them as a candidate in the UCB/Thompson Sampling/(any other

bandit algorithm).

3.3.1 Empirical Pseudo-Rewards

In our correlated MAB framework, pseudo-reward of arm ℓ with respect to arm k provides us an estimate

on the reward of arm ℓ through the reward sample obtained from arm k. We now define the notion of

empirical pseudo-reward which can be used to obtain an optimistic estimate of µℓ through just reward

samples of arm k.

Definition 7 (Empirical and Expected Pseudo-Reward). After t rounds, arm k is pulled nk(t) times. Using

these nk(t) reward realizations, we can construct the empirical pseudo-reward ϕ̂ℓ,k(t) for each arm ℓ with respect to

arm k as follows.

ϕ̂ℓ,k(t) ≜
∑t

τ=1 1kτ=k sℓ,k(rkτ
)

nk(t)
, ℓ ∈ {1, . . . , K} \ {k}, (3.7)

The expected pseudo-reward of arm ℓ with respect to arm k is defined as

ϕℓ,k ≜ E [sℓ,k(Rk)] . (3.8)

For convenience, we set ϕ̂k,k(t) = µ̂k(t) and ϕk,k = µk.

Observe that E [sℓ,k(Rk)] ≥ E [E [Rℓ|Rk = r]] = µℓ. Due to this, empirical pseudo-reward ϕ̂ℓ,k(t) can be

used to obtain an estimated upper bound on µℓ. Note that the empirical pseudo-reward ϕ̂ℓ,k(t) is defined

with respect to arm k and it is only a function of the rewards observed by pulling arm k.

3.3.2 The C-Bandit Algorithm

Using the notion of empirical pseudo-rewards, we now describe a 3-step procedure to fundamentally

generalize classical bandit algorithms for the correlated MAB setting.

Step 1: Identify the set St of significant arms: At each round t, define St to be the set of arms that have

at least t/K samples, i.e., St = {k ∈ K : nk(t) > t
K}. As St is the set of arms that have relatively large

number of samples, we use these arms for the purpose of identifying empirically competitive and empirically

non-competitive arms. Furthermore, define kemp(t) to be the arm that has the highest empirical mean in set

St, i.e., kemp(t) = arg maxk∈St
µ̂k(t). 2

2If one were to use all arms (even those that have few samples) to identify empirically non-competitive arms, it can lead to
incorrect inference, as pseudo-rewards with few samples will have larger noise, which can in-turn lead to elimination of the optimal
arm. Using only the arms that have been pulled t

K times in St, allows us to ensure that the non-competitive arms are pulled only
O(1) times as we show in Section 3.4.
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Step 2: Identify the set of empirically competitive arms At :

Using the empirical mean, µ̂kemp(t), of the arm with highest empirical reward in the set St, we define

the notions of empirically non-competitive and empirically competitive arms below.

Definition 8 (Empirically Non-Competitive arm at round t). An arm k is said to be Empirically Non-Competitive

at round t, if minℓ∈St ϕ̂k,ℓ(t) < µ̂kemp(t).

Definition 9 (Empirically Competitive arm at round t). An arm k is said to be Empirically Competitive at round

t if minℓ∈St ϕ̂k,ℓ(t) ≥ µ̂kemp(t). The set of all empirically competitive arms at round t is denoted by At.

The expression minℓ∈St ϕ̂k,ℓ(t) provides the tightest estimated upper bound on mean of arm k, through

the samples of arms in St. If this estimated upper bound is smaller than the estimated mean of kemp(t),

then we call arm k as empirically non-competitive as it seems unlikely to be optimal through the samples of

arms in St. If the estimated upper bound of arm k is greater than µ̂kemp(t) , i.e., minℓ∈St ϕ̂k,ℓ(t) ≥ µ̂kemp(t),

we call arm k as empirically competitive at round t, as it cannot be inferred as sub-optimal through

samples of arms in St. Note that the set of empirically competitive and empirically non-competitive arms

is evaluated at each round t and hence an arm that is empirically non-competitive at round t may be

empirically competitive in subsequent rounds.

Step 3: Play BANDIT algorithm in {At ∪ {kemp(t)}} As empirically non-competitive arm seem sub-

optimal to be selected at round t, we only consider the set of empirically competitive arms along with

kemp(t) in this step of the algorithm. At round t, we play a BANDIT algorithm from the set At ∪ {kemp(t)}.
For instance, the C-UCB pulls the arm

kt = arg max
k∈{At∪kemp(t)}

Ik,t−1,

where Ik,t−1 is the UCB index defined in (3.5).

Similarly, C-TS pulls the arm

kt = arg max
k∈{At∪kemp(t)}

Sk,t−1,

where Sk,t is the Thompson sample defined in (3.6)). At the end of each round we update the empirical

pseudo-rewards ϕ̂ℓ,kt(t) for all ℓ, the empirical reward for arm kt.

Note that our C-BANDIT approach allows using any classical Multi-Armed Bandit algorithm in the

correlated Multi-Armed Bandit setting. This is important because some algorithms such as Thompson

Sampling and KL-UCB are known to obtain much better empirical performance over UCB. Extending those

to the correlated MAB setting allows us to have the superior empirical performance over UCB even in the

correlated setting. This benefit is demonstrated in our simulations and experiments described in Section 3.5

and Section 3.6.
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Algorithm 4 C-UCB Correlated UCB Algorithm

1: Input: Pseudo-rewards sℓ,k(r)
2: Initialize: nk = 0, Ik = ∞ for all k ∈ {1, 2, . . . K}
3: for each round t do
4: Find St = {k : nk(t) ≥ t

K}, the arm that have been pulled significant number of times till t − 1.
Define kemp(t) = arg maxk∈St

µ̂k(t).
5: Initialize the empirically competitive set At as an empty set {}.
6: for k ∈ K do
7: if minℓ∈St ϕ̂k,ℓ(t) ≥ µ̂kemp(t) then
8: Add arm k to the empirically competitive set: At = At ∪ {k}
9: end if

10: end for
11: Apply UCB1 over arms in At ∪ {kemp(t)} by pulling arm kt = arg maxk∈At∪{kemp(t)} Ik(t− 1)
12: Receive reward rt, and update nkt(t) = nkt(t) + 1

13: Update Empirical reward: µ̂kt(t) =
µ̂kt (t−1)(nkt (t)−1)+rt

nkt (t)

14: Update the UCB Index: Ikt(t) = µ̂kt(t) + B
√

2 log t
nkt (t)

15: Update empirical pseudo-rewards for all k ̸= kt: ϕ̂k,kt(t) = ∑τ:kτ=kt sk,kτ
(rτ)/nkt(t)

16: end for

Algorithm 5 C-TS Correlated TS Algorithm

1: Steps 1 - 10 as in C-UCB
2: Apply TS over arms in At ∪ {kemp(t)} by pulling arm kt = arg maxk∈At∪{kemp(t)} Sk,t, where Sk,t ∼
N
(

µ̂k(t),
βB

nk(t)+1

)
.

3: Receive reward rt, and update nkt(t), µ̂kt(t) and empirical pseudo-rewards ϕ̂k,kt(t).

Remark 9 (Pseudo-lower bounds). If suppose one had the information about pseudo-lower bounds (which are lower

bounds on conditional expected rewards), then it is possible to use this in our correlated bandit framework. In step 2 of

our algorithm, we identify an arm k as empirically non-competitive if minℓ∈St ϕ̂k,ℓ(t) < µ̂
emp
k (t). We can maintain

empirical pseudo-lower bound ŵi,j(t) of each arm i with respect to every other arm j. Then, we can replace the step 2

of our algorithm by calling an arm empirically non-competitive if minℓ∈St ϕ̂k,ℓ(t) < maxi∈St maxj∈St ŵi,j(t). In the

situation where pseudo-lower bounds are unknown, they can be set to −∞ and the algorithm reduces to the C-Bandit

algorithm proposed in the chapter. We can expect the empirical performance of this algorithm (which is aware of

pseudo-lower bounds) to be slightly better than the C-Bandit algorithm. However, its regret guarantees will be the

same as that of the C-Bandit algorithm. This is because pseudo-upper bounds are crucial to deciding whether an arm

is competitive/non-competitive (defined in the next section), and pseudo-lower bounds are not. Put differently, even in

the presence of pseudo-lower bound, the definition of non-competitive and competitive arms (Definition 5) remains the

same.
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3.4 Regret Analysis and Bounds

We now characterize the performance of the C-UCB algorithm by analyzing the expected value of the

cumulative regret (3.3). The expected regret can be expressed as

E [Reg(T)] =
K

∑
k=1

E [nk(T)]∆k, (3.9)

where ∆k = µk∗ − µk is the sub-optimality gap of arm k with respect to the optimal arm k∗, and nk(T) is

the number of times arm k is pulled in T slots.

For the regret analysis, we assume without loss of generality that the rewards are between 0 and 1

for all k ∈ {1, 2, . . . K}. Note that the C-Bandit algorithms do not require this condition, and the regret

analysis can also be generalized to any bounded rewards.

3.4.1 Competitive and Non-competitive arms with respect to Arm k

For the purpose of regret analysis in Section 3.4, we need to understand which arms are empirically

competitive as t→ ∞. We do so by defining the notions of Competitive and Non-Competitive arms.

Definition 10 (Non-Competitive and Competitive arms). An arm ℓ is said to be non-competitive if the expected

reward of optimal arm k∗ is larger than the expected pseudo-reward of arm ℓ with respect to the optimal arm k∗, i.e, if,

∆̃ℓ,k∗ ≜ µk∗ − ϕℓ,k∗ > 0. Similarly, an arm ℓ is said to be competitive if ∆̃ℓ,k∗ = µk∗ − ϕℓ,k∗ <= 0. The unique best

arm k∗ has ∆̃k∗ ,k∗ = µk∗ − ϕk∗ ,k∗ = 0 and is counted in the set of competitive arms.3

We refer to ∆̃ℓ,k∗ as the pseudo-gap of arm ℓ in the rest of the chapter. These notions of competitiveness

are used in the regret analysis in Section 3.4. The central idea behind our correlated C-BANDIT approach

is that after pulling the optimal arm k∗ sufficiently large number of times, the non-competitive (and thus

sub-optimal) arms can be classified as empirically non-competitive with increasing confidence, and thus

need not be explored. As a result, the non-competitive arms will be pulled only O(1) times. However,

the competitive arms cannot be discerned as sub-optimal by just using the rewards observed from the

optimal arm, and have to be explored O(log T) times each. Thus, we are able to reduce a K-armed bandit

to a C-armed bandit problem, where C is the number of competitive arms. 4 We show this by bounding

the regret of C-BANDIT approach.

3As t→ ∞, only the optimal arm will remain in St, and hence the definition of competitive arms only compares the expected
mean of arm k∗ and expected pseudo-reward of arm k with respect to arm k∗

4Observe that k∗ and subsequently C are both unknown to the algorithm. Before the start of the algorithm, it is not known
which arm is optimal/competitive/non-competitive. Algorithm works in an online manner by evaluating the noisy notions of
competitiveness, i.e., empirically competitive arms, and ensures that only C− 1 of the arms are pulled O(log T) times.
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3.4.2 Regret Bounds

In order to bound E [Reg(T)] in (3.9), we can analyze the expected number of times sub-optimal arms are

pulled, that is, E [nk(T)], for all k ̸= k∗. Theorem 5 and Theorem 6 below show that E [nk(T)] scales as

O(1) and O(log T) for non-competitive and competitive arms respectively. Recall that a sub-optimal arm is

said to be non-competitive if its pseudo-gap ∆̃k,k∗ > 0, and competitive otherwise.

Theorem 5 (Expected Pulls of a Non-competitive Arm). The expected number of times a non-competitive arm

with pseudo-gap ∆̃k,k∗ is pulled by C-UCB is upper bounded as

E [nk(T)] ≤ Kt0 + K3
T

∑
t=Kt0

2
(

t
K

)−2
+

T

∑
t=1

3t−3, (3.10)

= O(1), (3.11)

where,

t0 = inf
{

τ ≥ 2 : ∆min, ∆̃k,k∗ ≥ 4

√
2K log τ

τ

}
.

Theorem 6 (Expected Pulls of a Competitive Arm). The expected number of times a competitive arm is pulled by

C-UCB algorithm is upper bounded as

E [nk(T)] ≤ 8
log(T)

∆2
k

+

(
1 +

π2

3

)
+

T

∑
t=1

2Kt exp

(
− t∆2

min
2K

)
, (3.12)

= O(log T) where ∆min = min
k

∆k > 0. (3.13)

Substituting the bounds on E [nk(T)] derived in Theorem 5 and Theorem 6 into (3.9), we get the

following upper bound on expected regret.

Corollary 1 (Upper Bound on Expected Regret). The expected cumulative regret of the C-UCB and C-TS

algorithms is upper bounded as

E [Reg(T)] ≤ ∑
k∈C\{k∗}

∆kU(c)
k (T) + ∑

k′∈{1,...,K}\{C}
∆k′U

(nc)
k′ (T), (3.14)

= (C− 1) ·O(log T) + O(1), (3.15)

where C ⊆ {1, . . . , K} is set of competitive arms with cardinality C, U(c)
k (T) is the upper bound on E [nk(T)] for

competitive arms given in (6), and U(nc)
k (T) is the upper bound for non-competitive arms given in (5).
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3.4.3 Proof Sketch

We now present an outline of our regret analysis of C-UCB. A key strength of our analysis is that it can be

extended very easily to any C-BANDIT algorithm. The results independent of last step in the algorithm are

presented in Section 3.8.2, while the rigorous regret upper bounds for C-UCB is presented in Section 3.8.3.

We also present a regret analysis for C-TS in a scenario where K = 2, and TS is employed with Beta priors

in Section 3.8.5.

There are three key components to prove the result in Theorem 5 and Theorem 6. The first two

components hold independent of which bandit algorithm (UCB/TS/KL-UCB) is used for selecting the arm

from the set of competitive arms, which makes our analysis easy to extend to any C-BANDIT algorithm.

The third step is specific to the last step in C-BANDIT algorithm. We analyse the third component for

C-UCB to provide its rigorous regret results.

i) Probability of optimal arm being identified as empirically non-competitive at round t (denoted by

Pr(E1(t))) is small. In particular, we show that

Pr(E1(t)) ≤ 2Kt exp

(
− t∆2

min
2K

)
.

This ensures that the optimal arm is identified as empirically non-competitive only O(1) times. We show

that the number of times a competitive arm is pulled is bounded as

E [nk(T)] ≤
T

∑
t=1

Pr(E1(t)) + Pr(Ec
1(t), kt = k, Ik,t−1 > Ik∗ ,t−1). (3.16)

The first term sums to a constant, while the second term is upper bounded by the number of times UCB

pulls the sub-optimal arm k. Due to this the upper bound on the number of pulls of competitive arm by

C-UCB / C-TS is only an additive constant more than the upper bound on the number of pulls for an arm

by UCB / TS algorithms and hence we have same pre-log constants for the upper bound on the pulls of

competitive arms.

ii) Probability of identifying a non-competitive arm as empirically competitive jointly with optimal

arm being pulled more than t
K times is small. Notice that the first two steps of our algorithm involve

identifying the set of arms St that have been pulled at least t
K times, and eliminating arms which are

empirically non-competitive with respect to the set St for round t. We show that the joint event that arm

k∗ ∈ St and a non-competitive arm k is identified as empirically non-competitive is small. Formally,

Pr
(

kt+1 = k, nk∗(t) ≥
t
K

)
≤ t exp

(
− t∆̃k,k∗

2K

)
. (3.17)

This occurs because upon obtaining a large number of samples of arm k∗, expected reward of arm k∗

(i.e., µk∗ ) and expected pseudo-reward of arm k with respect to arm k∗ (i.e., ϕk,k∗ ) can be estimated fairly
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accurately. Since the pseudo-gap of arm k is positive (i.e., µk∗ > ϕk,k∗ ), the probability that arm k is

identified as empirically competitive is small. An implication of (3.17) is that the expected number of times

a non-competitive arm is identified as empirically competitive jointly with the optimal arm having at least

t
K pulls at round t is bounded above by a constant.

iii) Probability that a sub-optimal arm is pulled more than t/K times at round t is small. Formally, we

show that for C-UCB, we have

Pr
(

nk(t) ≥
t
K

)
≤ (2K + 2)

(
t
K

)−2
∀t > Kt0, k ̸= k∗ (3.18)

This component of our analysis is specific to the classical bandit algorithm used in C-BANDIT. Intuitively,

a result of this kind should hold for any good performing classical multi-armed bandit algorithm. We reach

the result of (3.18) in C-UCB by showing that

Pr
(

kt+1 = k, nk(t) >
t

2K

)
≤ t−3 ∀t > t0, k ̸= k∗ (3.19)

The probability of selecting a sub-optimal arm k after it has been pulled significantly many times is small

as with more number of pulls, the exploration component in UCB index of arm k becomes small, and

consequently it is likely to be smaller than the UCB index of optimal arm k∗ (as it has larger empirical mean

reward or has been pulled fewer number of times). Our analysis in Lemma 16 shows how the result in

(3.19) can be translated to obtain (3.18) (this translation is again not dependent on which bandit algorithm

is used in C-BANDIT).

We show that the expected number of pulls of a non-competitive arm k can be bounded as

E [nk(T)] ≤
T

∑
t=1

Pr

(
kt+1 = k, k∗ = arg max

k
nk(t)

)
+ Pr

(
k∗ ̸= arg max

k
nk(t)

)
(3.20)

The first term in (3.20) is O(1) due to (3.17) and the second term is O(1) due to (3.18). Refer to Section 3.8.3

for rigorous regret analysis of C-UCB.

3.4.4 Discussion on Regret Bounds

Competitive Arms. Recall than an arm is said to be competitive if µk∗ (i.e., expected reward from arm

k∗) > E [ϕk,k∗ ] = E
[
Ẽ[Rk′ |Rk]

]
. Since the distribution of reward of each arm is unknown, initially the

Algorithm does not know which arm is competitive and which arm is non-competitive.

Reduction in effective number of arms. Interestingly, our result from Theorem 5 shows that the C-UCB

algorithm, that operates in a sequential fashion, makes sure that non-competitive arms are pulled only O(1)

times. Due to this, only the competitive arms are pulled O(log T) times. Moreover, the pre-log terms in

the upper bound of UCB and C-UCB for these arms is the same. In this sense, our C-BANDIT approach
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p1(r) r s2,1(r) s3,1(r)
0.2 0 0.7 2
0.2 1 0.8 1.2
0.6 2 2 1

Table 3.3: Suppose Arm 1 is optimal and its unknown probability distribution is (0.2, 0.2, 0.6), then µ1 = 1.4,
while ϕ2,1 = 1.5 and ϕ3,1 = 1.2. Due to this Arm 2 is Competitive while Arm 3 is non-competitive

reduces a K-armed bandit problem to a C-armed bandit problem. Effectively only C− 1 ≤ K− 1 arms are

pulled O(log T) times, while other arms are stopped being pulled after a finite time.

Depending on the joint probability distribution, different arms can be optimal, competitive or non-

competitive. Table 3.3 shows a case where arm 1 is optimal and the reward distribution of arm 1 is

(0.2, 0.2, 0.6), which leads to µ1 = 1.4 > ϕ3,1 = 1.2 and µ1 = 1.4 < ϕ2,1 = 1.5. Due to this Arm 2 is

competitive while Arm 3 is non-competitive.

Achieving Bounded Regret. If the set of competitive arms C is a singleton set containing only the

optimal arm (i.e., the number of competitive arms C = 1), then our algorithm will lead to (see (3.15))

an expected regret of O(1), instead of the typical O(log T) regret scaling in classic multi-armed bandits.

One such scenarion in which this can happen is if pseudo-rewards sk,k∗ of all arms with respect to

optimal arm k∗ match the conditional expectation of arm k. Formally, if sk,k∗ = E [Rk|Rk∗ ] ∀k, then

E [sk,k∗ ] = E [Rk] = µk < µk∗ . Due to this, all sub-optimal arms are non-competitive and our algorithms

achieve only O(1) regret. We now evaluate a lower bound result for a special case of our model, where

rewards are correlated through a latent random variable X as described in Section 3.2.3.

We present a lower bound on the expected regret for the model described in Section 3.2.3. Intuitively,

if an arm ℓ is competitive, it can not be deemed sub-optimal by only pulling the optimal arm k∗ infinitely

many times. This indicates that exploration is necessary for competitive sub-optimal arms. The proof of

this bound closely follows that of the 2-armed classical bandit problem [1]; i.e., we construct a new bandit

instance under which a previously sub-optimal arm becomes optimal without affecting reward distribution

of any other arm.

Theorem 7 (Lower Bound for Correlated MAB with latent random source). For any algorithm that achieves a

sub-polynomial regret, the expected cumulative regret for the model described in Section 3.2.3 is lower bounded as

lim
T→∞

inf
E [Reg(T)]

log(T)
≥


maxk∈C

∆k
D( fRk

|| fR̃k
)

if C > 1

0 if C = 1.
(3.21)

Here fRk is the reward distribution of arm k, which is linked with fX since Rk = Yk(X). The term fR̃k

represents the reward distribution of arm k in the new bandit instance where arm k becomes optimal and
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r s2,1(r) r s1,2(r)
0 0.7 0 0.8
1 0.4 1 0.5

(a) R1 = 0 R1 = 1
R2 = 0 0.2 0.4
R2 = 1 0.2 0.2

(b) R1 = 0 R1 = 1
R2 = 0 0.2 0.3
R2 = 1 0.4 0.1

Table 3.4: The top row shows the pseudo-rewards of arms 1 and 2, i.e., upper bounds on the conditional
expected rewards (which are known to the player). The bottom row depicts two possible joint probability
distribution (unknown to the player). Under distribution (a), Arm 1 is optimal whereas Arm 2 is optimal
under distribution (b).

distribution fRk∗ is unaffected. The divergence term represents "the amount of distortion needed in reward

distribution of arm k to make it better than arm k∗", and hence captures the problem difficulty in the lower

bound expression.

Bounded regret whenever possible for the special case of Section 3.2.3. From Corollary 1, we see that

whenever C > 1, our proposed algorithm achieves O(log T) regret matching the lower bound given in

Theorem 7 order-wise. Also, when C = 1, our algorithm achieves O(1) regret. Thus, our algorithm achieves

bounded regret whenever possible, i.e., when C = 1 for the model described in Section 3.2.3. In the general

problem setting, a lower bound Ω(log T) exists whenever it is possible to change the joint distribution of

rewards such that the marginal distribution of optimal arm k∗ is unaffected and pseudo-rewards sℓ,k(r)

still remain an upper bound on E [Rℓ|Rk = r] under the new joint probability distribution. In general, this

can happen even if C = 1, we discuss one such scenario in the Section 3.8.6 and explain the challenges that

need to come from the algorithmic side to meet the lower bound.

3.5 Simulations

We now present the empirical performance of proposed algorithms. For all the results presented in this

section, we compare the performance of all algorithms on the same reward realizations and plot the

cumulative regret averaged over 100 independent trials. The shaded area represents error bars with one

standard deviation. We set β = 1 for all TS and C-TS plots.

3.5.1 Simulations with known pseudo-rewards

Consider the example shown in Table 3.1, with the top row showing the pseudo-rewards, which are known

to the player, and the bottom row showing two possible joint probability distributions (a) and (b), which

are unknown to the player. We show the simulation result of our proposed algorithms C-UCB, C-TS against

UCB, TS in Figure 3.5 for the setting considered in Table 3.1.
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Figure 3.5: Cumulative regret for UCB, C-UCB, TS and C-TS corresponding to the problem shown in
Table 3.4. For the setting (a) in Table 3.4, Arm 1 is optimal and Arm 2 is non-competitive, in setting (b) of
Table 3.4 Arm 2 is optimal while Arm 1 is competitive.

Case (a): Bounded regret. For the probability distribution (a), notice that Arm 1 is optimal with µ1 =

0.6, µ2 = 0.4. Moreover, ϕ2,1 = 0.4× 0.7 + 0.6× 0.4 = 0.52. Since ϕ2,1 < µ1, Arm 2 is non-competitive.

Hence, in Figure 3.5(a), we see that our proposed C-UCB and C-TS Algorithms achieve bounded regret,

whereas UCB, TS show logarithmic regret.

Case (b): All competitive arms. For the probability distribution (b), Arm 2 is optimal with µ2 = 0.5 and

µ1 = 0.4. The expected pseudo-reward of arm 1 w.r.t to arm 2 in this case is ϕ1,2 = 0.8× 0.5+ 0.5× 0.5 = 0.65.

Since ϕ1,2 > µ2, the sub-optimal arm (i.e., Arm 1) is competitive and hence C-UCB and C-TS also end up

exploring Arm 1. Due to this we see that C-UCB, C-TS achieve a regret similar to UCB, TS in Figure 3.5(b).

C-TS has empirically smaller regret than C-UCB as Thompson Sampling performs better empirically than

the UCB algorithm. The design of our C-Bandit approach allows the use of any other bandit algorithm in

the last step, e.g., KL-UCB.

3.5.2 Simulations for the latent random source model in Section 3.2.3

We now show the performance of C-UCB and C-TS against UCB, TS for the model considered in Section 3.2.3,

where rewards corresponding to different arms are correlated through a latent random variable X. We

consider a setting where reward obtained from Arm 1, given a realization x of X, is bounded between

2x− 1 and 2x + 1, i.e., 2X− 1 ≤ Y1(X) ≤ 2X + 1. Similarly, conditional reward of Arm 2 is, (3− X)2 − 1 ≤
Y2(X) ≤ (3− X)2 + 1. Figure 3.6 demonstrates these upper and lower bounds on Yk(X). We run C-UCB,

C-TS, TS and UCB for this setting for two different distributions of X. For the simulations, we set the

conditional reward of both the arms to be distributed uniformly between the upper and lower bounds,

however this information is not known to the Algorithms.
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Figure 3.6: Rewards corresponding to the two arms are correlated through a random variable X lying in
(0, 6). The lines represent lower and upper bounds on reward of Arms 1 ,Y1(X), and 2, Y2(X), given the
realization of random variable X.
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Figure 3.7: Simulation results for the example shown in Figure 3.6. In (a), X ∼ Beta(1, 1) and in (b)
X ∼ Beta(1.5, 5). In case (a), Arm 1 is optimal while Arm 2 is non-competitive (C = 1), due to which we see
that C-UCB and C-TS obtain bounded regret. Arm 2 is optimal for the distribution in (b) and Arm 1 is
competitive, due to which C = 2 and we see that C-UCB and C-TS attain a performance similar to UCB
and TS.

Case (a): X ∼ Beta(1, 1). When X is distributed as X ∼ Beta(1, 1), Arm 1 is optimal while Arm 2 is

non-competitive. Due to this, we observe that C-UCB and C-TS achieve bounded regret in Figure 3.7(a).

Case (b): X ∼ Beta(1.5, 5). In the scenario where X has the distribution Beta(1.5, 5), Arm 2 is optimal

while Arm 1 is competitive. Due to this, C-UCB and C-TS do not stop exploring Arm 1 in finite time and

we see the cumulative regret similar to UCB, TS in Figure 3.7(b).

Our next simulation result considers a setting where the known upper and lower bounds on Yk(X)

match and the reward Yk corresponding to a realization of X is deterministic, i.e., Yk(X) = gk(X). We show

our simulation results for the reward functions described in Figure 3.8 with three different distributions

of X. Corresponding to X ∼ Beta(4, 4), Arm 1 is optimal and Arms 2,3 are non-competitive leading to
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Figure 3.8: Reward Functions used for the simulation results presented in Figure 3.9. The reward gk(X) is
a function of a latent random variable X. For instance, when X = 0.5, reward from Arms 1,2 and 3 are
g1(X) = 1, g2(X) = 0.7135 and g3(X) = 0.5.
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Figure 3.9: The cumulative regret of C-UCB and C-TS depend on C, the number of competitive arms. The
value of C depends on the unknown joint probability distribution of rewards and is not known beforehand.
We consider a setup where C = 1 in (a), C = 2 in (b) and C = 3 in (c). Our proposed algorithm pull
only the C− 1 competitive sub-optimal arms O(log T) times, as opposed to UCB, TS that pull all K− 1
sub-optimal arms O(log T) times. Due to this, we see that our proposed algorithms achieve bounded regret
when C = 1. When C = 3, our proposed algorithms perform as well as the UCB, TS algorithms.

bounded regret for C-UCB, C-TS in Figure 3.9(a). In setting (b), we consider X ∼ Beta(2, 5) in which Arm 1

is optimal, Arm 2 is competitive and Arm 3 is non-competitive. Due to this, our proposed C-UCB and C-TS

Algorithms stop pulling Arm 3 after some time and hence achieve significantly reduced regret relative

to UCB in Figure 3.9(b). For third scenario (c), we set X ∼ Beta(1, 5), which makes Arm 3 optimal while

Arms 1 and 2 are competitive. Hence, our algorithms explore both the sub-optimal arms and have a regret

comparable to that of UCB, TS in Figure 3.9(c).
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Figure 3.10: Cumulative regret for UCB, C-UCB, TS and C-TS for the application of recommending the best
genre in the Movielens dataset, where p fraction of the pseudo-entries are replaced with maximum reward
i.e., 5. In (a), p = 0.25, for (b), p = 0.50 and p = 0.7 in (c). The value of C is 4, 11 and 13 in (a), (b) and (c)
respectively. As C is smaller than K (i.e., 18) in each case, we see that C-UCB and C-TS outperform UCB
and TS significantly.

3.6 Experiments

We now show the performance of our proposed algorithms in real-world settings. Through the use of

MovieLens and Goodreads datasets, we demonstrate how the correlated MAB framework can be used in

practical settings for recommendation system applications. In such systems, it is possible to use the prior

available data (from a certain population) to learn the correlation structure in the form of pseudo-rewards.

When trying to design a campaign to maximize user engagement in a new unknown demographic, the

learned correlation information in the form of pseudo-rewards can help significantly reduce the regret as

we show from our results described below.

3.6.1 Experiments on the MovieLens dataset

The MovieLens dataset [19] contains a total of 1M ratings for a total of 3883 Movies rated by 6040 Users.

Each movie is rated on a scale of 1-5 by the users. Moreover, each movie is associated with one (and in

some cases, multiple) genres. For our experiments, of the possibly several genres associated with each

movie, one is picked uniformly at random. To perform our experiments, we split the data into two parts,

with the first half containing ratings of the users who provided the most number of ratings. This half

is used to learn the pseudo-reward entries, the other half is the test set which is used to evaluate the

performance of the proposed algorithms. Doing such a split ensures that the rating distribution is different

in the training and test data.

Recommending the Best Genre. In our first experiment, the goal is to provide the best genre recommenda-

tions to a population with unknown demographic. We use the training dataset to learn the pseudo-reward
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Figure 3.11: Cumulative regret of UCB, C-UCB, TS and C-TS for providing the best movie recommendations
in the Movielens dataset. Each pseudo-reward entry is added by 0.1 in (a), 0.4 in (b) and 0.6 in (c). The
value of C is 6, 24 and 39 in (a), (b) and (c) respectively. As C is smaller than K (i.e., 50) in each case, we
see the superior performance of C-UCB, C-TS over UCB and TS.

entries. The pseudo-reward entry sℓ,k(r) is evaluated by taking the empirical average of the ratings of genre

ℓ that are rated by the users who rated genre k as r. To capture the fact that it might not be possible in

practice to fill all pseudo-reward entries, we randomly remove p-fraction of the pseudo-reward entries.

The removed pseudo-reward entries are replaced by the maximum possible rating, i.e., 5 (as that gives

a natural upper bound on the conditional mean reward). Using these pseudo-rewards, we evaluate our

proposed algorithms on the test data. Upon recommending a particular genre (arm), the rating (reward) is

obtained by sampling one of the ratings for the chosen arm in the test data. Our experimental results for

this setting are shown in Figure 3.10, with p = 0.25, 0.50 and 0.70 (i.e., fraction of pseudo-reward entries

that are removed). We see that the proposed C-UCB and C-TS algorithms significantly outperform UCB

and TS in all three settings. For each of the three cases we also evaluate the value of C (which is unknown

to the algorithm), by always pulling the optimal arm and finding the size of empirically competitive set at

T = 5000. The value of C turned out to be 4, 11 and 13 for p = 0.25, 0.50 and 0.70. As C < 18 in each case,

some of the 18 arms are stopped being pulled after some time and due to this, C-UCB and C-TS significantly

outperform UCB and TS respectively. This shows that even when only a subset of the correlations are

known, it is possible to exploit them to improve the performance of classical bandit algorithms.

Recommending the Best Movie. We now consider the goal of providing the best movie recommendations

to the population. To do so, we consider the 50 most rated movies in the dataset. containing 109,804 user-

ratings given by 6,025 users. In the testing phase, the goal is to recommend one of these 50 movies to each

user. As was the case in previous experiment, we learn the pseudo-reward entries from the training data.

Instead of using the learned pseudo-reward directly, we add a safety buffer to each of the pseudo-reward

entry; i.e., we set the pseudo-reward as the empirical conditional mean plus the safety buffer. Adding a

buffer will be needed in practice, as the conditional expectations learned from the training data are likely to
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Figure 3.12: Cumulative regret of UCB, C-UCB, TS and C-TS for providing best poetry book recom-
mendation in the Goodreads dataset. Every pseudo-reward entry is added by q and p fraction of the
pseudo-reward entries are removed, with (a) p = 0.1, q = 0.1 and (b) p = 0.3, q = 0.1. The value of C is 8
and 11 in (a) and (b) respectively. As C is much smaller than K (i.e., 25) in each case, we see that C-UCB
and C-TS outperform UCB and TS significantly.

have some noise and adding a safety buffer allows us to make sure that pseudo-rewards constitute an upper

bound on the conditional expectations. Our experimental result in Figure 3.11 shows the performance

of C-UCB and C-TS relative to UCB for this setting with safety buffer set to 0.1 in Figure 3.11(a), 0.4 in

Figure 3.11(b) and 0.6 in Figure 3.11(c). In all three cases, even after addition of safety buffers, our proposed

C-UCB and C-TS algorithms outperform the UCB algorithm.

3.6.2 Experiments on the Goodreads dataset

The Goodreads dataset [20] contains the ratings for 1,561,465 books by a total of 808,749 users. Each

rating is on a scale of 1-5. For our experiments, we only consider the poetry section and focus on the goal

of providing best poetry recommendations to the whole population whose demographics is unknown.

The poetry dataset has 36,182 different poems rated by 267,821 different users. We do the pre-processing

of goodreads dataset in the same manner as that of the MovieLens dataset, by splitting the dataset into

two halves, train and test. The train dataset contains the ratings of the users with most number of

recommendations.

Recommending the best poetry book. We consider the 25 most rated books in the dataset and use these

as the set of arms to recommend in the testing phase. These 25 poems have 349,523 user-ratings given

by 171,433 users. As with the MovieLens dataset, the pseudo-reward entries are learned on the training

data. In practical situations it might not be possible to obtain all pseudo-reward entries. Therefore, we

randomly select p fraction of the pseudo-reward entries and replace them with maximum possible reward

(i.e. 5). Among the remaining pseudo-reward entries we add a safety buffer of q to each entry. Our result

in Figure 3.12 shows the performance of C-UCB and C-TS relative to UCB and TS in two scenarios. In
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Figure 3.13: Cumulative regret for UCB, C-UCB, TS and C-TS for the application of recommending the
best genre in the Movielens dataset, where p fraction of the pseudo-entries are replaced with maximum
reward i.e., 5. In (a), p = 0.25, for (b), p = 0.50 and p = 0.7 in (c). We used 10% of the dataset to learn the
pseudo-reward entry and the algorithms are tested on the remaining dataset. The value of C is 5, 11 and 15
in (a), (b) and (c) respectively. As C is smaller than K (i.e., 18) in each case, we see that C-UCB and C-TS
outperform UCB and TS significantly. Note that the value of C is larger in the case where only 10% data is
used for learning the pseudo-reward.

scenario (a), 10% of the pseudo-reward entries are replaced by 5 and remaining are padded with a safety

buffer of 0.1. For case (b), 30% entries are replaced by 5 and safety buffer is 0.1. Under both cases, our

proposed C-UCB and C-TS algorithms are able to outperform UCB and TS significantly.

3.6.3 Pseudo-rewards learned on a smaller dataset

In our previous set of experiments, half of the dataset was used to learn the pseudo-reward entries. We did

additional experiments in a setup where only 10% of the data was used for learning the pseudo-reward

entries and tested our algorithms on the remaining dataset. On doing so, we observed that C-UCB and

C-TS were still able to outperform UCB and TS in most of our experimental setups. One setting in which

the performance of C-UCB was similar to that of UCB is in a scenario where each pseudo-reward entry

was padded by 0.6. As the padding was large, the C-UCB algorithm was not able to identify many arms as

non-competitive, leading to a performance that is similar to that of UCB. In all other scenarios, we noted

that C-UCB and C-TS significantly outperformed UCB and TS, suggesting that even when smaller dataset

is used for learning pseudo-rewards, the C-UCB and C-TS can be quite effective. The results are presented

in Figure 3.13, Figure 3.14 and Figure 3.15.

3.7 Concluding remarks

This work presents a new correlated Multi-Armed bandit problem in which rewards obtained from different

arms are correlated. We capture this correlation through the knowledge of pseudo-rewards. These pseudo-
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Figure 3.14: Cumulative regret of UCB, C-UCB, TS and C-TS for providing the best movie recommendations
in the Movielens dataset. In this experiment 10% of the dataset is used for learning the pseudo-reward
entry and the algorithms are tested on the remaining dataset. Each pseudo-reward entry is added by 0.1 in
(a), 0.4 in (b) and 0.6 in (c). The value of C is 14, 29 and 42 in (a), (b) and (c) respectively. Note that the
value of C is larger in the case where only 10% data is used for learning the pseudo-reward. As C is still
smaller than K (i.e., 50) in each case, we see the superior performance of C-UCB, C-TS over UCB and TS.
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Figure 3.15: Cumulative regret of UCB, C-UCB, TS and C-TS for providing best poetry book recommen-
dation in the Goodreads dataset. We used 10% of the dataset to learn the pseudo-reward entry and the
algorithms are tested on the remaining dataset. Every pseudo-reward entry is added by q and p fraction of
the pseudo-reward entries are removed, with (a) p = 0.1, q = 0.1 and (b) p = 0.3, q = 0.1. The value of C is
7 and 12 in (a) and (b) respectively. As C is much smaller than K (i.e., 25) in each case, we see that C-UCB
and C-TS outperform UCB and TS significantly.

rewards, which represent upper bound on conditional mean rewards, could be known in practice from

either domain knowledge or learned from prior data. Using the knowledge of these pseudo-rewards, we

the propose C-Bandit algorithm which fundamentally generalizes any classical bandit algorithm to the

correlated multi-armed bandit setting. A key strength of our work is that it allows pseudo-rewards to

be loose (in case there is not much prior information) and even then our C-Bandit algorithms adapt and

provide performance at least as good as that of classical bandit algorithms.

We provide a unified method to analyze the regret of C-Bandit algorithms. In particular, the analysis

shows that C-UCB ends up pulling non-competitive arms only O(1) times; i.e., they stop pulling certain arms

after a finite time t. Due to this, C-UCB pulls only C− 1 ≤ K− 1 of the K− 1 sub-optimal arms O(log T)
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times, as opposed to UCB that pulls all K− 1 sub-optimal arms O(log T) times. In this sense, our C-Bandit

algorithms reduce a K-armed bandit to a C-armed bandit problem. We present several cases where C = 1

for which C-UCB achieves bounded regret. For the special case when rewards are correlated through a

latent random variable X, we provide a lower bound showing that bounded regret is possible only when

C = 1; if C > 1, then O(log T) regret is not possible to avoid. Thus, our C-UCB algorithm achieves bounded

regret whenever possible. Simulation results validate the theoretical findings and we perform experiments

on Movielens and Goodreads datasets to demonstrate the applicability of our framework in the context

of recommendation systems. The experiments on real-world datasets show that our C-UCB and C-TS

algorithms significantly outperform the UCB and TS algorithms.

There are several interesting open problems and extensions of this work, some of which we describe

below.

Extension to light tailed and heavy tailed rewards In this work, we assume that the rewards have a

bounded support. The algorithm and analysis can be extended to settings with sub-gaussian rewards as

well. In particular, in step 3 of the algorithm, one would play UCB/TS for sub-gaussian rewards. For

instance, the UCB index in the scenario of sub-gaussian rewards can be redefined as µ̂k +

√
2σ2 log t

nk(t)
, where

σ is the sub-Gaussianity parameter of the reward distribution. Similar regret bounds will hold in this

setting as well because the Hoeffding’s inequality used in our regret analysis is valid for sub-Gaussian

rewards as well. For heavy-tailed rewards, the Hoeffding’s inequality is not valid. Due to which, one

would need to construct confidence bounds for UCB in a different manner as done in [63]. On doing so,

the C-Bandit algorithm can be employed in heavy-tailed reward settings. However, the regret analysis

may not extend directly as one would need to use modified concentration inequalities to obtain bounds on

mean reward of arm k as done in Lemma 1 of [63].

Designing better algorithms. While our proposed algorithms are order-optimal for the model in Section

2.3, they do not match the pre-log constants in the lower bound of the regret. It may be possible to design

algorithms that have smaller pre-log constants in their regret upper bound. Further discussion along

these lines is presented in Section 3.8.6. A key advantage of our approach is that our algorithms are easy

to implement and they incorporate the classical bandit algorithms nicely for the problem of correlated

multi-armed bandits.

Best-Arm Identification. We plan to study the problem of best-arm identification in the correlated

multi-armed bandit setting, i.e., to identify the best arm with a confidence 1− δ in as few samples as

possible. Since rewards are correlated with each other, we believe the sample complexity can be significantly

improved relative to state of the art algorithms, such as LIL-UCB [31, 40], which are designed for classical

multi-armed bandits. Another open direction is to improve the C-Bandit algorithm to make sure that it
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achieves bounded regret whenever possible in the general framework studied in this chapter.

3.8 Full proofs

3.8.1 Standard Results from Previous Works

Fact 2 (Hoeffding’s inequality). Let Z1, Z2 . . . Zn be i.i.d random variables bounded between [a, b] : a ≤ Zi ≤ b,

then for any δ > 0, we have

Pr
(∣∣∣∣∑n

i=1 Zi

n
−E [Zi]

∣∣∣∣ ≥ δ

)
≤ exp

( −2nδ2

(b− a)2

)
.

Lemma 8 (Standard result used in bandit literature). If µ̂k,nk(t) denotes the empirical mean of arm k by pulling

arm k nk(t) times through any algorithm and µk denotes the mean reward of arm k, then we have

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
≤

τ2

∑
s=τ1

exp
(
−2sϵ2

)
.

Proof. Let Z1, Z2, ...Zt be the reward samples of arm k drawn separately. If the algorithm chooses to

play arm k for mth time, then it observes reward Zm. Then the probability of observing the event

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1 can be upper bounded as follows,

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
= Pr

((
∑

nk(t)
i=1 Zi

nk(t)
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)
(3.22)

≤ Pr

((
τ2⋃

m=τ1

∑m
i=1 Zi

m
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)
(3.23)

≤ Pr

(
τ2⋃

m=τ1

∑m
i=1 Zi

m
− µk ≥ ϵ

)
(3.24)

≤
τ2

∑
s=τ1

exp
(
−2sϵ2

)
. (3.25)

Lemma 9 (From Proof of Theorem 1 in [32]). Let Ik(t) denote the UCB index of arm k at round t, and

µk = E [gk(X)] denote the mean reward of that arm. Then, we have

Pr(µk > Ik(t)) ≤ t−3.

Observe that this bound does not depend on the number nk(t) of times arm k is pulled.
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Proof. This proof follows directly from [32]. We present the proof here for completeness as we use this

frequently in the chapter.

Pr(µk > Ik(t)) = Pr

(
µk > µ̂k,nk(t) +

√
2 log t
nk(t)

)
(3.26)

≤
t

∑
m=1

Pr

(
µk > µ̂k,m +

√
2 log t

m

)
(3.27)

=
t

∑
m=1

Pr

(
µ̂k,m − µk < −

√
2 log t

m

)
(3.28)

≤
t

∑
m=1

exp
(
−2m

2 log t
m

)
(3.29)

=
t

∑
m=1

t−4 (3.30)

= t−3. (3.31)

where (3.27) follows from the union bound and is a standard trick (Lemma 8) to deal with random variable

nk(t). We use this trick repeatedly in the proofs. We have (3.29) from the Hoeffding’s inequality.

Lemma 10. Let E
[
1Ik>Ik∗

]
be the expected number of times Ik(t) > Ik∗(t) in T rounds. Then, we have

E
[
1Ik>Ik∗

]
=

T

∑
t=1

Pr(Ik > Ik∗) ≤
8 log(T)

∆2
k

+

(
1 +

π2

3

)
.

The proof follows the analysis in Theorem 1 of [32]. The analysis of Pr(Ik > Ik∗) is done by by

evaluating the joint probability Pr
(

Ik(t) > Ik∗(t), nk(t) ≥ 8 log T
∆2

k

)
. Authors in [32] show that the probability

of pulling arm k jointly with the event that it has had at-least 8 log T
∆2

k
pulls decays down with t, i.e.,

Pr
(

Ik(t) > Ik∗(t), nk(t) ≥ 8 log T
∆2

k

)
≤ t−2.

Lemma 11 (Theorem 2 [1]). Consider a two armed bandit problem with reward distributions Θ = { fR1(r), fR2(r)},
where the reward distribution of the optimal arm is fR1(r) and for the sub-optimal arm is fR2(r), and E

[
fR1(r)

]
>

E
[

fR2(r)
]
; i.e., arm 1 is optimal. If it is possible to create an alternate problem with distributions Θ′ =

{ fR1(r), f̃R2(r)} such that E
[

f̃R2(r)
]
> E

[
fR1(r)

]
and 0 < D( fR2(r)|| f̃R2(r)) < ∞ (equivalent to assump-

tion 1.6 in [1]), then for any policy that achieves sub-polynomial regret, we have

lim inf
T→∞

E [n2(T)]
log T

≥ 1
D( fR2(r)|| f̃R2(r))

.

Proof. Proof of this is derived from the analysis done in [64]. We show the analysis here for completeness.

A bandit instance v is defined by the reward distribution of arm 1 and arm 2. Since policy π achieves
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sub-polynomial regret, for any instance v, Ev,π [(Reg(T))] = O(Tp) as T → ∞, for all p > 0. Consider the

bandit instances Θ = { fR1(r), fR2(r)}, Θ′ = { fR1(r), f̃R2(r)}, where E
[

fR2(r)
]
< E

[
fR1(r)

]
< E

[
f̃R2(r)

]
.

The bandit instance Θ′ is constructed by changing the reward distribution of arm 2 in the original instance,

in such a way that arm 2 becomes optimal in instance Θ′ without changing the reward distribution of arm

1 from the original instance.

From divergence decomposition lemma (derived in [64]), it follows that

D(PΘ,Π||PΘ′ ,Π) = EΘ,π [n2(T)] D( fR2(r)|| f̃R2(r)).

The high probability Pinsker’s inequality (Lemma 2.6 from [65], originally in [66]) gives that for any

event A,

PΘ,π(A) + PΘ′ ,π(Ac) ≥ 1
2

exp
(
−D(PΘ,π ||PΘ′ ,π)

)
,

or equivalently,

D(PΘ,π ||PΘ′ ,π) ≥ log
1

2(PΘ,π(A) + PΘ′ ,π(Ac))
.

If arm 2 is suboptimal in a 2-armed bandit problem, then E [Reg(T)] = ∆2E [n2(T)] . Expected regret in

Θ is

EΘ,π [Reg(T)] ≥ T∆2

2
PΘ,π

(
n2(T) ≥

T
2

)
,

Similarly regret in bandit instance Θ′ is

EΘ′ ,π [Reg(T)] ≥ Tδ

2
PΘ′ ,π

(
n2(T) <

T
2

)
,

since suboptimality gap of arm 1 in Θ′ is δ. Define κ(∆2, δ) = min(∆2,δ)
2 . Then we have,

PΘ,π

(
n2(T) ≥

T
2

)
+ PΘ′ ,π

(
n2(T) <

T
2

)
≤ EΘ,π [Reg(T)] + EΘ′ ,π [Reg(T)]

κ(∆2, δ)T
.

On applying the high probability Pinsker’s inequality and divergence decomposition lemma stated

earlier, we get

D( fR2(r)|| f̃R2(r))EΘ,π [n2(T)] ≥ log
(

κ(∆2, δ)T
2(EΘ,π [Reg(T)] + EΘ′ ,π [Reg(T)])

)
(3.32)

= log
(

κ(∆2, δ)

2

)
+ log(T)

− log(EΘ,π [Reg(T)] + EΘ′ ,π [Reg(T)]). (3.33)
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Since policy π achieves sub-polynomial regret for any bandit instance, EΘ,π [Reg(T)] +EΘ′ ,π [Reg(T)] ≤
γTp for all T and any p > 0, hence,

lim inf
T→∞

D( fR2(r)|| f̃R2(r))
EΘ,π [n2(T)]

log T
≥ 1− lim sup

T→∞

EΘ,π [Reg(T)] + EΘ′ ,π [Reg(T)]
log T

+ lim inf
T→∞

log
(

κ(∆2,δ)
2

)
log T

(3.34)

= 1. (3.35)

Hence, lim inf
T→∞

EΘ,π [n2(T)]
log T ≥ 1

D( fR2 (r)|| f̃R2 (r))
.

3.8.2 Results for any C-Bandit Algorithm

Lemma 12. Define E1(t) to be the event that arm k∗ is empirically non-competitive in round t + 1, then,

Pr(E1(t)) ≤ 2Kt exp

(
−t∆2

min
2K

)
,

where ∆min = mink ∆k, the gap between the best and second-best arms.

Proof. The arm k∗ is empirically non-competitive at round t if k∗ ̸= kemp and the empirical psuedo-reward

of arm k∗ with respect to arms ℓ ∈ St is smaller than µ̂kemp(t). This event can only occur if at-least one of

the two following conditions is satisfied, i) the empirical mean of kemp ̸= k∗ is greater than µ∗k −
∆min

2 or ii)

the empirical pseudo-reward of arm k∗ with respect to arms in St is smaller than µk∗ − ∆min
2 . We use this

observation to analyse the Pr(E1(t)).

Pr(E1(t)) ≤ Pr
((

max
{ℓ:nℓ(t)>t/K,ℓ ̸=k∗}

µ̂ℓ(t) > µk∗ −
∆min

2

)⋃(
min

{ℓ:nℓ(t)>t/K}
ϕ̂k∗ ,ℓ(t) < µk∗ −

∆min

2

))
(3.36)

≤ Pr
(

max
{ℓ:nℓ(t)>t/K,ℓ ̸=k∗}

µ̂ℓ(t) > µk∗ −
∆min

2

)
+ Pr

(
min

{ℓ:nℓ(t)>t/K}
ϕ̂k∗ ,ℓ(t) < µk∗ −

∆min

2

)
(3.37)

≤ ∑
ℓ ̸=k∗

Pr
(

µ̂ℓ(t) > µk∗ −
∆min

2
, nℓ(t) >

t
K

)
+

K

∑
ℓ=1

Pr
(

ϕ̂k∗ ,ℓ(t) < µk∗ −
∆min

2
, nℓ(t) >

t
K

)
(3.38)

= ∑
ℓ ̸=k∗

Pr
(

µ̂ℓ(t)− µℓ > µk∗ − µℓ −
∆min

2
, nℓ(t) >

t
K

)

+
K

∑
ℓ=1

Pr
(

ϕ̂k∗ ,ℓ(t)− ϕk∗ ,ℓ < µk∗ − ϕk∗ ,ℓ −
∆min

2
, nℓ(t) >

t
K

)
(3.39)

≤ ∑
ℓ ̸=k∗

Pr

(
∑t

τ=1 1{kτ=ℓ}rτ

nℓ(t)
− µℓ >

∆min

2
, nℓ(t) >

t
K

)

+
K

∑
ℓ=1

Pr

(
∑t

τ=1 1{kτ=ℓ}sk∗ ,ℓ(rτ)

nℓ(t)
− ϕk∗ ,ℓ < −

∆min

2
, nℓ(t) >

t
K

)
(3.40)

≤ 2Kt exp

(
−t∆2

min
2K

)
, (3.41)
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Here (3.37) follows from union bound. We have (3.41) from the Hoeffding’s inequality, as we note that

rewards {rτ : τ = 1, . . . , t, kτ = k} and pseudo-rewards {sk∗ ,l : τ1, . . . , t, kτ = l} form a collection of i.i.d.

random variables each of which is bounded between [−1, 1] with mean µk and ϕk∗ ,l . The term t before the

exponent in (3.41) arises as the random variable nk(t) can take values from t/K to t (Lemma 8).

Lemma 13. For a sub-optimal arm k ̸= k∗ with sub-optimality gap ∆k,

Pr
(

k = kemp(t), nk∗(t) ≥
t
K

)
≤ t exp

(
−t∆2

k
2K

)
.

Proof. We bound this probability as,

Pr
(

k = kemp(t), nk∗(t) ≥
t
K

)
= Pr

(
k = kemp(t), nk∗(t) ≥

t
K

, nk(t) ≥
t
K

)
(3.42)

≤ Pr
(

µ̂k(t) ≥ µ̂k∗(t), nk(t) ≥
t
K

, nk∗(t) ≥
t
K

)
(3.43)

≤ Pr
((

µ̂k∗(t) < µk∗ −
∆k
2

⋃
µ̂k(t) > µk∗ −

∆k
2

)
, nk(t) ≥

t
K

, nk∗(t) ≥
t
K

)
(3.44)

= Pr
((

µ̂k∗(t) < µk∗ −
∆k
2

⋃
µ̂k(t) > µk +

∆k
2

)
, nk(t) ≥

t
K

, nk∗(t) ≥
t
K

)
(3.45)

≤ Pr
(

µ̂k∗(t)− µk∗ < −
∆k
2

, nk∗(t) ≥
t
K

)
+ Pr

(
µ̂k(t)− µk >

∆k
2

, nk(t) ≥
t
K

)
(3.46)

≤ 2t exp

(
−t∆2

k
2K

)
(3.47)

We have (3.42) as arm k needs to be pulled at least t
K in order to be arm kemp(t) at round t. The selection of

kemp is only done from the set of arms that have been pulled atleast t
K times. Here, (3.47) follows from the

Hoeffding’s inequality. The term t before the exponent in (3.47) arises as the random variable nk(t) can

take values from t/K to t (Lemma 8).

Lemma 14. If for a suboptimal arm k ̸= k∗, ∆̃k,k∗ > 0, then,

Pr(kt+1 = k, nk∗(t) = max
k

nk(t)) ≤ t exp

(
−2t∆̃2

k,k∗

K

)
.

Moreover, if ∆̃k,k∗ ≥
√

2K log t0
t0

for some constant t0 > 0. Then,

Pr(kt+1 = k, nk∗(t) = max
k

nk(t)) ≤ t−3 ∀t > t0.
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Proof. We now bound this probability as,

Pr(kt+1 = k, nk∗(t) = max
k

nk(t))

≤ Pr
(

kt+1 = k, nk∗(t) ≥
t
K

)
(3.48)

= Pr
(

k ∈ {At ∪ {kemp(t)}}, kt+1 = k, nk∗(t) ≥
t
K

)
(3.49)

≤ Pr
(

k ∈ At, kt+1 = k, nk∗(t) ≥
t
K

)
+ Pr

(
k = kemp(t), nk∗(t) ≥

t
K

)
(3.50)

≤ Pr
(

k ∈ At, kt+1 = k, nk∗(t) ≥
t
K

)
+ 2t exp

(
−t∆2

k
2K

)
(3.51)

≤ Pr
(

µ̂k∗(t) < ϕ̂k,k∗(t), kt+1 = k, nk∗(t) ≥
t
K

)
+ 2t exp

(
−t∆2

k
2K

)
(3.52)

≤ Pr
(

µ̂k∗(t) < ϕ̂k,k∗(t), nk∗(t) ≥
t
K

)
+ 2t exp

(
−t∆2

k
2K

)
(3.53)

≤ Pr

(
∑t

τ=1 1{kτ=k∗}rτ

nk∗(t)
<

∑t
τ=1 1{kτ=k∗}sk,k∗(rτ)

nk∗(t)
, nk∗(t) ≥

t
K

)
+ 2t exp

(
−t∆2

k
2K

)
(3.54)

= Pr

(
∑t

τ=1 1{kτ=k∗}(rτ − sk,k∗)

nk∗(t)
− (µk∗ − ϕk,k∗) < −∆̃k,k∗ , nk∗ ≥

t
K

)
+ 2t exp

(
−t∆2

k
2K

)
(3.55)

≤ t exp

(
−t∆̃2

k,k∗

2K

)
+ 2t exp

(
−t∆2

k
2K

)
(3.56)

≤ 3t−3 ∀t > t0. (3.57)

We have (3.48) as nk∗(t) needs to be at-least t
K for nk∗(t) to be maxk nk(t). Equation (3.49) holds as arm

k needs to be in the set {At ∪ {kemp(t)}} to be selected by C-BANDIT at round t. Inequality (3.51) arises

from the result of Lemma 13. The inequality (3.52) follows as ϕk,k∗ > µ̂k∗ is a necessary condition for arm

k to be in the competitive set At at round t. Here, (3.55) follows from the Hoeffding’s inequality as we

note that rewards {rτ − sk,k∗(rτ) : τ = 1, . . . , t, kτ = k∗} form a collection of i.i.d. random variables each of

which is bounded between [−1, 1] with mean (µk − ϕk,k∗). The term t before the exponent in (3.55) arises

as the random variable nk(t) can take values from t/K to t (Lemma 8). Step (3.57) follows from the fact

that ∆̃k,k∗ ≥ 2
√

2K log t0
t0

for some constant t0 > 0.

3.8.3 Algorithm specific results for C-UCB

Lemma 15. If ∆min ≥ 4
√

2K log t0
t0

for some constant t0 > 0, then,

Pr(kt+1 = k, nk(t) ≥ s) ≤ 3t−3 for s >
t

2K
, ∀t > t0.
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Proof. By noting that kt+1 = k corresponds to arm k having the highest index among the set of arms that

are not empirically non-competitive (denoted by A), we have,

Pr(kt+1 = k, nk(t) ≥ s) = Pr(Ik(t) = arg max
k′∈A

Ik′(t), nk(t) ≥ s) (3.58)

≤ Pr(E1(t) ∪ (Ec
1(t), Ik(t) > Ik∗(t)) , nk(t) ≥ s) (3.59)

≤ Pr(E1(t), nk(t) ≥ s) + Pr(Ec
1(t), Ik(t) > Ik∗(t), nk(t) ≥ s) (3.60)

≤ 2Kt exp

(
−t∆2

min
2K

)
+ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s) . (3.61)

Here E1(t) is the event described in Lemma 12. If arm k∗ is not empirically non-competitive at round t,

then arm k can only be pulled in round t + 1 if Ik(t) > Ik∗(t), due to which we have (3.59). Inequalities

(3.60) and (3.61) follow from union bound and Lemma 12 respectively.

We now bound the second term in (3.61).

Pr(Ik(t) > Ik∗(t), nk(t) ≥ s) =

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) +

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s|µk∗ > Ik∗(t))× Pr (µk∗ > Ik∗(t)) (3.62)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + Pr (µk∗ > Ik∗(t)) (3.63)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + t−3 (3.64)

= Pr (Ik(t) > µk∗ , nk(t) ≥ s) + t−4 (3.65)

= Pr

(
µ̂k(t) +

√
2 log t
nk(t)

> µk∗ , nk(t) ≥ s

)
+ t−3 (3.66)

= Pr

(
µ̂k(t)− µk > µk∗ − µk −

√
2 log t
nk(t)

, nk(t) ≥ s

)
+ t−3 (3.67)

= Pr

(
∑t

τ=1 1{kτ=k}rτ

nk(t)
− µk > ∆k −

√
2 log t
nk(t)

, nk(t) ≥ s

)
+ t−3 (3.68)

≤ t exp

−2s

(
∆k −

√
2 log t

s

)2
+ t−3 (3.69)

≤ t−3 exp

(
−2s

(
∆2

k − 2∆k

√
2 log t

s

))
+ t−3 (3.70)

≤ 2t−3 for all t > t0. (3.71)

We have (3.62) holds because of the fact that P(A) = P(A|B)P(B) + P(A|Bc)P(Bc), Inequality (3.64) follows

from Lemma 9. From the definition of Ik(t) we have (3.66). Inequality (3.69) follows from Hoeffding’s

inequality and the term t before the exponent in (3.69) arises as the random variable nk(t) can take values
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from s to t (Lemma 8). Inequality (3.71) follows from the fact that s > t
2K and ∆k ≥ 4

√
2K log t0

t0
for some

constant t0 > 0.

Plugging this in the expression of Pr(kt = k, nk(t) ≥ s) (3.61) gives us,

Pr(kt+1 = k, nk(t) ≥ s) ≤ 2Kt exp

(
−t∆2

min
2K

)
+ Pr(Ik(t) > Ik∗(t), nk(t) ≥ s) (3.72)

≤ 2Kt exp

(
−t∆2

min
2K

)
+ 2t−3 (3.73)

≤ 2(K + 1)t−3. (3.74)

Here, (3.74) follows from the fact that ∆min ≥ 4
√

2K log t0
t0

for some constant t0 > 0.

Lemma 16. If ∆min ≥ 4
√

2K log t0
t0

for some constant t0 > 0, then,

Pr
(

nk(t) >
t
K

)
≤ (2K + 2)K

(
t
K

)−2
∀t > Kt0.

Proof. We expand Pr
(
nk(t) > t

K
)

as,

Pr
(

nk(t) ≥
t
K

)
= Pr

(
nk(t) ≥

t
K
| nk(t− 1) ≥ t

K

)
Pr
(

nk(t− 1) ≥ t
K

)
+

Pr
(

kt = k, nk(t− 1) =
t
K
− 1
)

(3.75)

≤ Pr
(

nk(t− 1) ≥ t
K

)
+ Pr

(
kt = k, nk(t− 1) =

t
K
− 1
)

(3.76)

≤ Pr
(

nk(t− 1) ≥ t
K

)
+ (2K + 2)(t− 1)−3 ∀(t− 1) > t0. (3.77)

Here, (3.77) follows from Lemma 15. This gives us

Pr
(

nk(t) ≥
t
K

)
− Pr

(
nk(t− 1) ≥ t

K

)
≤ (2K + 2)(t− 1)−3, ∀(t− 1) > t0.

Now consider the summation

t

∑
τ= t

K

Pr
(

nk(τ) ≥
t
K

)
− Pr

(
nk(τ − 1) ≥ t

K

)
≤

t

∑
τ= t

K

(2K + 2)(τ − 1)−3.

This gives us,

Pr
(

nk(t) ≥
t
K

)
− Pr

(
nk

(
t
K
− 1
)
≥ t

K

)
≤

t

∑
τ= t

K

(2K + 2)(τ − 1)−3.
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Since Pr
(
nk
( t

K − 1
)
≥ t

K
)
= 0, we have,

Pr
(

nk(t) ≥
t
K

)
≤

t

∑
τ= t

K

(2K + 2)(τ − 1)−3 (3.78)

≤ (2K + 2)K
(

t
K

)−2
∀t > Kt0. (3.79)

3.8.4 Regret Bounds for C-UCB

Proof of Theorem 5 We bound E [nk(T)] as,

E [nk(T)] = E

[
T

∑
t=1

1{kt=k}

]
(3.80)

=
T−1

∑
t=0

Pr(kt+1 = k) (3.81)

=
Kt0

∑
t=1

Pr(kt = k) +
T−1

∑
t=Kt0

Pr(kt+1 = k) (3.82)

≤ Kt0 +
T−1

∑
t=Kt0

Pr(kt+1 = k, nk∗(t) = max
k′

nk′(t))

+
T−1

∑
t=Kt0

∑
k′ ̸=k∗

Pr(nk′(t) = max
k′′

nk′′(t))Pr(kt+1 = k|nk′(t) = max
k′′

nk′′(t)) (3.83)

≤ Kt0 +
T−1

∑
t=Kt0

Pr(kt+1 = k, nk∗(t) = max
k′

nk′(t))

+
T−1

∑
t=Kt0

∑
k′ ̸=k∗

Pr(nk′(t) = max
k′′

nk′′(t)) (3.84)

≤ Kt0 +
T−1

∑
t=Kt0

3t−3 +
T

∑
t=Kt0

∑
k′ ̸=k∗

Pr
(

nk′(t) ≥
t
K

)
(3.85)

≤ Kt0 +
T

∑
t=1

3t−3 + (K + 1)K(K− 1)
T

∑
t=Kt0

2
(

t
K

)−2
. (3.86)

Here, (3.85) follows from Lemma 14 and (3.86) follows from Lemma 16.
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Proof of Theorem 6

For any suboptimal arm k ̸= k∗,

E [nk(T)] ≤
T

∑
t=1

Pr(kt = k) (3.87)

=
T

∑
t=1

Pr(E1(t), kt = k ∪ (Ec
1(t), Ik > Ik∗), kt = k) (3.88)

≤
T

∑
t=1

Pr(E1(t)) + Pr(Ec
1(t), Ik(t− 1) > Ik∗(t− 1), kt = k) (3.89)

≤
T

∑
t=1

Pr(E1(t)) + Pr(Ec
1(t), Ik(t− 1) > Ik∗(t− 1))

≤
T

∑
t=1

Pr(E1(t)) + Pr(Ik(t− 1) > Ik∗(t− 1), kt = k) (3.90)

=
T

∑
t=1

2Kt exp

(
− t∆2

min
2K

)
+

T−1

∑
t=0

Pr (Ik(t) > Ik∗(t), kt = k) (3.91)

=
T

∑
t=1

2Kt exp

(
− t∆2

min
2K

)
+ E

[
1Ik>Ik∗ (T)

]
(3.92)

≤ 8
log(T)

∆2
k

+

(
1 +

π2

3

)
+

T

∑
t=1

2Kt exp

(
− t∆2

min
2K

)
. (3.93)

Here, (3.91) follows from Lemma 12. We have (3.92) from the definition of E
[
nIk>Ik∗ (T)

]
in Lemma 10,

and (3.93) follows from Lemma 10.

3.8.5 Regret analysis for the C-TS Algorithm

We now present results for C-TS in the scenario where K = 2 and Thompson sampling is employed

with Beta priors [52]. In order to prove results for C-TS, we assume that rewards are either 0 or

1. The Thompson sampling algorithm with beta prior, maintains a posterior distribution on mean of

arm k as Beta (nk(t)× µ̂k(t) + 1, nk(t)× (1− µ̂k(t)) + 1). Subsequently, it generates a sample Sk(t) ∼
Beta (nk(t)× µ̂k(t) + 1, nk(t)× (1− µ̂k(t)) + 1) for each arm k and selects the arm kt+1 = arg maxk∈K Sk(t).

The C-TS algorithm with Beta prior uses this Thompson sampling procedure in its last step, i.e., kt+1 =

arg maxk∈Ct
Sk(t), where Ct is the set of empirically competitive arms at round t. We show that in a 2-armed

bandit problem, the regret is O(1) if the sub-optimal arm k is non-competitive and is O(log T) otherwise.

For the purpose of regret analysis of C-TS, we define two thresholds, a lower threshold Lk, and an

upper threshold Uk for arm k ̸= k∗,

Uk = µk +
∆k
3

, Lk = µk∗ −
∆k
3

. (3.94)
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Let Eµ
i (t) and ES

i (t) be the events that,

Eµ
k (t) = {µ̂k(t) ≤ Uk}

ES
k (t) = {Sk(t) ≤ Lk}. (3.95)

To analyse the regret of C-TS, we first show that the number of times arm k is pulled jointly with the

event that nk(t− 1) ≥ t
2 is bounded above by an O(1) constant, which is independent of the total number

of rounds T.

Lemma 17. If ∆k ≥ 4
√

2K log t0
t0

for some constant t0 > 0, then,

T

∑
t=2t0

Pr
(

kt = k, nk(t− 1) ≥ t
2

)
= O(1)

where k ̸= k∗ is a sub-optimal arm.

Proof. We start by bounding the probability of the pull of k-th arm at round t as follows,

Pr
(

kt = k, nk(t− 1) ≥ t
2

)
(a)
≤ Pr

(
E1(t), kt = k, nk(t− 1) ≥ t

2

)
+

Pr
(

E1(t), kt = k, nk(t− 1) ≥ t
2

)
(b)
≤2Kt exp

(
−t∆2

min
2K

)
+ Pr

(
E1(t), kt = k, nk(t− 1) ≥ t

2

)
(c)
≤2Kt−3 + Pr

(
kt = k, Eµ

k (t), ES
k (t), nk(t− 1) ≥ t

2

)
︸ ︷︷ ︸

term A

+

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
︸ ︷︷ ︸

term B

+

Pr
(

kt = k, Eµ
k (t), nk(t− 1) ≥ t

2

)
︸ ︷︷ ︸

term C

(3.96)

where (b), comes from Lemma 12. Here, (3.96) follows from the fact that ∆min ≥ 4
√

2K log t0
t0

for some

constant t0 > 0. Now we treat each term in (3.96) individually. To bound term A, we note that

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
≤ Pr

(
kt = k, Eµ

k (t), ES
k (t)

)
. From the analysis in [52] (equation

6), we see that ∑T
t=1 Pr

(
kt = k, Eµ

k (t), ES
k (t)

)
= O(1) as it is shown through Lemma 2 in [52] that,

∑T
t=1 Pr

(
kt = k, Eµ

k (t), ES
k (t)

)
≤ 216

∆2
k
+ ∑T

j=0 Θ

(
e−

∆2
k j

18 + 1

e
∆2

k j
36 −1

+ 9
(j+1)∆2

k
e−Dk j

)
.

Here, Dk = Lk log Lk
µk∗

+ (1− Lk) log 1−Lk
1−µk∗

. Due to this,

∑T
t=2t0

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
= O(1).
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We now bound the sum of term B from t = 1 to T by noting that

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
≤ Pr

(
kt = k, ES

k (t)
)

. Additionally, from Lemma 3 in [52], we get

that ∑T
t=1 Pr

(
kt = k, ES

k (t)
)
≤ 1

d(Uk ,µk)
+ 1, where d(x, y) = x log x

y + (1− x) log 1−x
1−y . As a result, we see

that ∑T
t=1 Pr

(
kt = k, Eµ

k (t), ES
k (t), nk(t− 1) ≥ t

2

)
= O(1).

Finally, for the last term C we can show that,

(C) = Pr
(

kt = k, Eµ
k (t), nk(t− 1) ≥ t

2

)
≤ Pr

(
Eµ

k (t), nk(t− 1) ≥ t
2

)
= Pr

(
µ̂k − µk >

∆k
3

, nk(t− 1) ≥ t
2

)
≤ t exp

(
−2

t
2

∆2
k

9

)
(3.97)

≤ t−3

Here (3.97) follows from hoeffding’s inequality and the union bound trick to handle random variable

nk(t− 1). After plugging these results in (3.96), we get that

T

∑
t=2t0

Pr
(

kt = k, nk(t− 1) ≥ t
2

)
≤

T

∑
t=2t0

2Kt−3 +
T

∑
t=2t0

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
+

T

∑
t=2t0

Pr
(

kt = k, Eµ
k (t), ES

k (t), nk(t− 1) ≥ t
2

)
+

T

∑
t=2t0

Pr
(

kt = k, Eµ
k (t), nk(t− 1) ≥ t

2

)
(3.98)

≤
T

∑
t=2t0

2Kt−3 + O(1) + O(1) +
T

∑
t=2t0

t−3 (3.99)

= O(1) (3.100)

We now show that the expected number of pulls by C-TS for a non-competitive arm is bounded above

by an O(1) constant.
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Expected number of pulls by C-TS for a non-competitive arm. We bound E [nk(t)] as

E [nk(T)] = E

[
T

∑
t=1

1{kt=k}

]

=
T−1

∑
t=0

Pr(kt+1 = k)

=
2t0

∑
t=1

Pr(kt = k) +
T−1

∑
t=2t0

Pr(kt+1 = k)

≤ 2t0 +
T−1

∑
t=2t0

Pr
(

kt+1 = k, nk∗(t) ≥
t
2

)
+

T−1

∑
t=2t0

Pr
(

kt+1 = k, nk(t) ≥
t
2

)
(3.101)

≤ 2t0 +
T−1

∑
t=2t0

3t−3 +
T−1

∑
t=2t0

Pr
(

kt+1 = k, nk(t) ≥
t
2

)
(3.102)

= O(1) (3.103)

Here, (3.102) follows from Lemma 14 and (3.103) follows from Lemma 17 and the fact that the sum of 3t−3

is bounded and t0 = inf
{

τ > 0 : ∆min, ϵk ≥ 4
√

2K log τ
τ

}
.

We now show that when the sub-optimal arm k is competitive, the expected pulls of arm k is O(log T).

Expected number of pulls by C-TS for a competitive arm k ̸= k∗.: For any sub-optimal arm k ̸= k∗,

E [nk(T)] ≤
T

∑
t=1

Pr(kt = k)

=
T

∑
t=1

Pr((kt = k, E1(t)) ∪ (Ec
1(t), kt = k)) (3.104)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k)

≤
T

∑
t=1

Pr(E1(t)) +
T

∑
t=1

Pr(Ec
1(t), kt = k, Sk(t− 1) > Sk∗(t− 1)) (3.105)

≤
T

∑
t=1

Pr(E1(t)) +
T−1

∑
t=0

Pr(Sk(t) > Sk∗(t), kt+1 = k)

=
T

∑
t=1

2Kt−3 +
T−1

∑
t=0

Pr (Sk(t) > Sk∗(t), kt+1 = k) (3.106)

≤ 9 log(T)
∆2

k
+ O(1) +

T

∑
t=1

2Kt−3. (3.107)

= O(log T). (3.108)

Here, (3.106) follows from Lemma 12. We have (3.107) from the analysis of Thompson Sampling for the

classical bandit problem in [52]. This arises as the term Pr (Sk(t) > Sk∗(t), kt+1 = k) counts the number

of times Sk(t) > Sk∗(t) and kt+1 = k. This is precisely the term analysed in Theorem 3 of [52] to bound

the expected pulls of sub-optimal arms by TS. In particular, [52] analyzes the expected number of pull
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of sub-optimal arm (termed as E [ki(T)] in their chapter) by evaluating ∑T−1
t=0 Pr(Sk(t) > Sk∗(t), kt+1 = k)

and it is shown in their Section 2.1 (proof of Theorem 1 of [52]) that ∑T−1
t=0 Pr(Sk(t) > Sk∗(t), kt+1 =

k) ≤ O(1) + log(T)
d(xi ,yi)

. The term xi is equivalent to Uk and yi is equal to Lk in our notations. Moreover

d(Uk, Lk) ≤
∆2

k
9 , giving us the desired result of (3.107).

3.8.6 Lower Bounds

For the proof we define Rk = Yk(X) and R̃k = gk(X̃), where fX(x) is the probability density function of

random variable X and fX̃(x) is the probability density function of random variable X̃. Similarly, we define

fRk (r) to be the reward distribution of arm k.

Proof of Theorem 7

Let arm k be a Competitive sub-optimal arm, i.e ∆̃k,k∗ < 0. To prove that regret is Ω(log T) in this

setting, we need to create a new bandit instance, in which reward distribution of optimal arm is unaffected,

but a previously competitive sub-optimal arm k becomes optimal in the new environment. We do so by

constructing a bandit instance with latent randomness X̃ and random rewards Ỹk(X). Let’s denote to Ỹk(X̃)

to be the random reward obtained on pulling arm k given the realization of X̃. To make arm k optimal in

the new bandit instance, we construct Ỹk(X) and X̃ in the following manner. Let Yk denote the support of

Yk(X).

Define

Ỹk(X) =


ḡk(X) w.p. 1− ϵ1

Ỹk(X) ∼ Uniform(Yk) w.p. ϵ1

This changes the conditional reward of arm k in the new bandit instance (with increased mean).

Furthermore, Define

X̃ =


S(Rk∗) w.p.1− ϵ2

Uniform ∼ X w.p.ϵ2.
,

with S(Rk∗) = arg maxg
k∗ (x)<Rk∗<ḡk∗ (x) ḡk(x).

Here Rk∗ represents the random reward of arm k∗ in the original bandit instance.

This construction of X̃ is possible for some ϵ1, ϵ2 > 0, whenever arm k is competitive by definition.

Moreover, under such a construction one can change reward distribution of Ỹk∗(X̃) such that reward

R̃k∗ has the same distribution as Rk∗ . This is done by changing the conditional reward distribution,

fỸk∗ |X(r) =
fYk∗ |X(r) fX(x)

fX̃(x) .

Due to this, if an arm is competitive, there exists a new bandit instance with latent randomness X̃

and conditional rewards Ỹk∗ |X and Ỹk|X such that fRk∗ = fR̃∗k
and E

[
R̃k
]
> µk∗ , with fRk denoting the
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probability distribution function of the reward from arm k and R̃k representing the reward from arm k in

the new bandit instance.

Therefore, if these are the only two arms in our problem, then from Lemma 11,

lim
T→∞

inf
E [nk(T)]

log T
≥ 1

D( fRk (r)|| fR̃k
(r))

,

where fR̃k
(r) represents the reward distribution of arm k in the new bandit instance.

Moreover, if we have more K− 1 sub-optimal arms, instead of just 1, then

lim
T→∞

inf
E
[
∑ℓ ̸=k∗ nℓ(T)

]
log T

≥ 1
D( fRk (r)|| fR̃k

(r))
.

Consequently, since E [Reg(T)] = ∑K
ell=1 ∆ℓE [nℓ(T)], we have

lim
T→∞

inf
E [Reg(T)]

log(T)
≥ max

k∈C
∆k

D( fRk || fR̃k
)

. (3.109)

A stronger lower bound valid for the general case A stronger lower bound for the general case can be

shown by using the result in Proposition 1 of [67]. If P denotes the set of all possible joint probability

distribution under which all pseudo-reward constraints are satisfied and P denotes the underlying unknown

joint probability distribution which has k∗ as the optimal arm. Then, the expected cumulative regret for

any algorithm that achieves a sub-polynomial regret is lower bounded as

lim inf
T→∞

Reg(T)
log T

≥ L(P),

where L(P) is the solution of the optimization problem:

min
η(k)≥0,k∈K ∑

k∈K
η(k)

(
max
ℓ∈K

µℓ − µk

)
subject to ∑

k∈K
η(k)D(P, Q, k) ≥ 1, ∀Q ∈ Q, (3.110)

where Q = {Q ∈ P : fR(Rk∗ |Q, k∗) = fR(Rk∗ |P, k∗) and k∗ ̸= arg max
k∈K

µk(Q)}.

Here, D(P, Q, k) is the KL-Divergence between reward distributions of arm k under joint probability

distributions P and Q, i.e., fR(Rk|θ, k) and fR(Rk|λ, k). The term µk(Q) represents the mean reward of arm

k under the joint probability distribution Q.

To interpret the lower bound, one can think of Q as the set of all joint probability distributions, under

which the reward distribution of arm k∗ remains the same, but some other arm k′ ̸= k∗ is optimal under

the joint probability distribution. The optimization problem reflects the amount of samples needed to

distinguish these two joint probability distributions. This result is based on the original result of [27],

which has been used recently in [14, 67] for studying other bandit problems.
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r s2,1(r) r s1,2(r)
0 2

3 0 3
4

1 6
7 1 2

3

(a) R2 = 0 R2 = 1
R1 = 0 0.1 0.2
R1 = 1 0.3 0.4

(b) R2 = 0 R2 = 1
R1 = 0 a b
R1 = 1 c d

Table 3.5: The top row shows the pseudo-rewards of arms 1 and 2, i.e., upper bounds on the conditional
expected rewards (which are known to the player). The bottom row depicts two possible joint probability
distribution (unknown to the player). Under distribution (a), Arm 1 is optimal and all pseudo-reward
except s2,1(1) are tight.

Lower bound discussion in general framework

Consider the example shown in Table 3.5, for the joint probability distribution (a), Arm 1 is optimal.

Moreover, all pseudo-rewards except s2,1(1) are tight, i.e.,sℓ,k(r) = E [Rℓ|Rk = r]. For the joint probability

distribution shown in (a), expected pseudo-reward of Arm 2 is 0.8 and hence it is competitive. Due to this,

our C-UCB and C-TS algorithms pull Arm 2 O(log T) times.

However, it is not possible to construct an alternate bandit environment with joint probability distri-

bution shown in Table 3.5(b), such that Arm 2 becomes optimal while maintaining the same marginal

distribution for Arm 1, and making sure that the pseudo-rewards still remain upper bound on conditional

expected rewards. Formally, there does not exist a, b, c, d such that c + d = 0.7, c
a+c < 3/4, b

a+b < 2/3,

d
b+d < 2/3, d

d+c < 6/7 and a + b + c + d = 1. This suggests that there should be a way to achieve O(1)

regret in this scenario. We believe this can be done by using all the constraints (imposed by the knowledge

of pair-wise pseudo-rewards to shrink the space of possible joint probability distributions) when calculating

empirical pseudo-reward. However, this becomes tough to implement as the ratings can have multiple

possible values and the number of arms is more than 2. We leave the task of coming up with a practically

feasible and easy to implement algorithm that achieves bounded regret whenever possible in a general

setup as an interesting open problem.



Chapter 4

Best-Arm Identification in Correlated Bandits

In the last chapter, we proposed the novel correlated bandit framework and studied the task of cumulative

reward maximization. In this chapter, we focus on an alternative objective, where the goal is to identify the

best-arm in as few samples as possible. This problem is termed as the best-arm identification and it often

requires different design of algorithms (and subsequently different analysis techniques) relative to the task

of cumulative reward maximization. In this chapter, we present a way to design efficient algorithms for the

task of best-arm identification in the correlated multi-armed bandit framework. We begin our discussion

by first contrasting the task of best-arm identification with respect to cumulative reward maximization.

4.1 Introduction

Best-arm Identification in Bandits with Independent Arms. Instead of maximizing the cumulative reward,

an alternative objective in the Multi-Armed Bandit setting is to identify the best arm (i.e., the arm with

the largest mean reward) from as few samples as possible. While reward maximization has been studied

extensively, the best-arm identification problem is seldom explored in settings outside of the classical MAB

framework, i.e., the setting where rewards corresponding to different arms are independent of each other.

The best-arm identification problem can be formulated in two different ways, namely fixed confidence [31]

and fixed budget [38]. In the fixed confidence setting, the player is provided with a confidence parameter δ

and their goal is to achieve the fastest (i.e., with the least number of samples) possible identification of the

best arm with a probability of at least 1− δ. In the fixed budget setting, the number of samples that the

player can receive is fixed, and the goal is to identify the best arm with the highest possible confidence. In

this chapter, we focus on the fixed confidence setting.

The best arm identification problem has been explored in the classical MAB framework [40, 68, 35, 69,

70, 71, 72] and three distinct approaches have shown promise, namely, the racing/successive elimination,

95
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Figure 4.1: The ratings of a user corresponding to different versions of the same ad are likely to be
correlated. For example, if a person likes first version, there is a good chance that they will also like the
2nd one as it also related to tennis. However, the population composition is unknown, i.e., the fraction of
people liking the first/second or the last version is unknown.

law of iterated logarithm upper confidence bound (lil’UCB) and lower and upper confidence bound (LUCB)

based approaches. These algorithms maintain upper and lower confidence bound indices for each arm and

usually stop once the lower confidence index of one arm becomes larger than upper confidence bound of

all other arms (discussed in more detail in Section 4.3). These three approaches differ in their approach

of sampling arms. The successive elimination approach samples arms in a round robin manner, lil’UCB

samples the arm with the largest upper confidence bound index at round t and LUCB samples two distinct

arms at each round, first it samples the arm with the largest empirical mean and then amongst the rest it

samples an arm with the largest upper confidence bound index.

These best-arm identification algorithms have found their use in a wide variety of application settings,

such as clinical trials [4] , ad-selection campaigns [10] , crowd-sourced ranking [35] and hyperparameter

optimization [34] by treating different different drugs/treatments, advertisements, items to be ranked and

hyperparameters as the arms in the multi-armed bandit problem.

Best-arm Identification when Rewards are Correlated across arms. The aforementioned best-arm identifi-

cation algorithms all operate under the assumption that the rewards from different arms are independent

of each other; e.g., at a given round t, the reward obtained from arm k does not provide any information

about the reward that one might have received if they sampled another arm ℓ. However, this may not be the

case in many applications of MABs. For instance, the response of a user for different advertisements in an

ad-campaign is likely to be correlated as the ad designs may be related or starkly different with each other

(see Figure 4.1). One way to learn these correlations would be to pull multiple arms at each round t. Since

this is not allowed in the standard MAB setup, we assume that partial information about such correlations
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…

Reward realization r

𝑅" 𝑅# 𝑅$ 𝑅%

E[R`|R1 = r]  s`,1(r)

Figure 4.2: Upon observing a reward r from an arm k, pseudo-rewards sℓ,k(r), give us an upper bound on
the conditional expectation of the reward from arm ℓ given that we observed reward r from arm k. These
pseudo-rewards models the correlation in rewards corresponding to different arms.

is available a priori. In practice, the presence of such correlations may be known beforehand either through

domain expertise or through controlled studies where each user is presented with multiple arms. For

example, before starting ad campaign, partial information may be known about the expected reward we

would receive from a user by showing that ad version ℓ, given their response to version k. A similar

argument can be made in the application domain of clinical trials, namely in identifying the best drug for

an unknown disease. There, the effect of different drugs on an individual may be correlated if the drugs

share similar or contrasting components among them. In this context, the correlations would be expected

to be known by the domain expertise of the physicians involved. The current best-arm identification

algorithms cannot leverage these correlations to reduce the number of samples required in identifying the

best arm. This work aims to fill this gap in the literature through the use correlated MAB model proposed

in the previous chapter.

Proposed C-LUCB Algorithm and its Sample Complexity. After establishing a correlated bandit model in

Chapter 3, we then focus on designing best-arm identification algorithms, that are able to make use of this

correlation information to identify the best-arm in fewer samples than the classical best-arm identification

algorithms. In particular, we propose an approach that makes use of the pseudo-reward information

and extends the LUCB approach to the correlated bandit setting. Our sample complexity analysis shows

that the proposed C-LUCB approach is able to explore certain arms without explicitly sampling them.

Due to this, we see that these arms, termed as non-competitive contribute only an O(1) term in the

sample complexity as to the typical O
(

log 1
δ

)
contribution by each arm. As a result of this, we are able

to provide better sample complexity results than LUCB in the correlated bandit setting. In particular,
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Figure 4.3: This plot illustrates the number of samples required by different algorithms to identify the
best movie genre out of the 18 possible movie genres in the Movielens dataset with confidence 1− δ. As
δ decreases, the algorithms need more samples to identify the best arm. As our proposed C-LUCB and
C-LUCB++ algorithms utilize correlation information, they identify the best arm in fewer samples relative
to Racing, lil’UCB, LUCB and LUCB++.

the LUCB algorithm stops with probability 1− δ after obtaining at most ∑k∈K
2ζ

∆2
k

log

K log
(

1
∆2

k

)
δ


samples, where ∆k = µk∗ − µk, i.e., the difference in mean reward of optimal arm k∗ and mean reward of

arm k and ∆k∗ = mink ̸=k∗ ∆k, i.e., the gap between best and second best arm and ζ > 0 is a constant. The

C-LUCB stops after at most ∑k∈C
2ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

+ O(1) samples with probability 1− δ. Here,

C ⊆ K with 2 ≤ |C| ≤ K depending on the problem instance. As the size of the set C can be smaller than

K, we improve upon the sample complexity results of standard approaches of best-arm identification.

This theoretical advantage gets reflected in our experiments on two real-world recommendation datasets,

namely, Movielens and Goodreads. For instance, Figure 4.3 illustrates the performance of our proposed

algorithms in a correlated bandit framework, where the goal is to identify the best movie genre from the

set of 18 movie genres in the Movielens dataset. As our proposed approach utilizes the correlations in the

problem, they draw fewer samples than the Racing, lil’UCB and the LUCB based approaches.

Organization of the rest of the chapter. In Section 4.2 of this chapter, we review the correlated multi-

armed bandit framework, where correlation between arms is captured in the form of pseudo-rewards. In

Section 4.3, we review state-of-the-art best-arm identification algorithms such as successive elimination

(or racing), lil’UCB, and LUCB designed for the classical (independent arm) framework. We also discuss

how our work contrasts with other best-arm identification works studied in structured and spectral bandit
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r s2,1(r) r s1,2(r)
0 0.7 0 0.8
1 0.4 1 0.5

R1 = 0 R1 = 1
R2 = 0 0.2 0.4
R2 = 1 0.2 0.2

(a)

R1 = 0 R1 = 1
R2 = 0 0.2 0.3
R2 = 1 0.4 0.1

(b)

Table 4.1: The top row shows the pseudo-rewards of arms 1 and 2, i.e., upper bounds on the conditional
expected rewards (which are known to the player). The bottom row depicts two possible joint probability
distribution (unknown to the player). Under distribution (a), Arm 1 is optimal whereas Arm 2 is optimal
under distribution (b).

frameworks. In Section 4.4 we propose the C-LUCB algorithm, and compare it with state-of-the-art

approaches. We discuss several variants of C-LUCB in Section 4.6. In Section 4.5 we analyze the sample

complexity analysis of C-LUCB and discuss its proof technique and implications. This analysis reveals

that utilizing correlations can lead to significant reduction in the number of samples required to identify

the best-arm. Finally, in Section 4.7 we demonstrate the practical applicability our proposed model and

algorithm via extensive experiments on real-world recommendation datasets.

4.2 The Correlated Multi-Armed Bandit Model

4.2.1 Problem formulation

Consider a Multi-Armed Bandit setting with K arms {1, 2, . . . K}. At each round t, we sample an arm

kt ∈ K and receive a random reward Rkt ∈ [0, b]. Among the set of K arms, we denote the arm with the

largest mean reward as the best-arm k∗, i.e., k∗ = arg maxk∈K µk. In the fixed-confidence setting [31], the

objective is to identify the best-arm in as few samples as possible. In particular, given δ > 0, the goal is to

devise a sampling strategy that stops at some round T (a random variable) and declares an arm kout as the

optimal arm, where,

Pr(kout = k∗) ≥ 1− δ.

Put differently, we aim to find the best arm with probability at least 1− δ while minimizing the total number

of samples drawn from the arms. We note that the number of samples can be different from the number of

rounds T as some algorithms (e.g., LUCB, Racing) sample multiple arms in one round. Using the total

number of samples drawn until round T allows us to compare them fairly against algorithms that draw

only one sample at each round t (e.g., lil’UCB).

The classical multi-armed bandit setting implicitly assumes that the rewards R1, R2, . . . , RK are inde-

pendent. That is, Pr(Rℓ = rℓ|Rk = r) = Pr(Rℓ = rℓ) ∀rℓ, r and ∀ℓ, k, which implies that, E [Rℓ|Rk = r] =
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E [Rℓ] ∀r, ℓ, k. Motivated by the fact that rewards of a user corresponding to different arms might be corre-

lated, we consider a setup where fRℓ |Rk
(rℓ|rk) ̸= fRℓ

(rℓ), with fRℓ
(rℓ) denoting the probability distribution

function of the reward from arm ℓ. Consequently, due to such correlations, we have E [Rℓ|Rk] ̸= E [Rℓ].

In our problem setting, we consider that the player has partial knowledge about the joint distribution of

correlated arms in the form of pseudo-rewards, as defined below:

Definition 11 (Pseudo-Reward). Suppose we sample arm k and observe reward r. Then the pseudo-reward of arm

ℓ with respect to arm k, denoted by sℓ,k(r), is an upper bound on the conditional expected reward of arm ℓ, i.e.,

E[Rℓ|Rk = r] ≤ sℓ,k(r). (4.1)

For convenience, we set sℓ,ℓ(r) = r.

Remark 10. Note that the pseudo-rewards are upper bounds on the expected conditional reward and not hard bounds

on the conditional reward itself. This makes our problem setup practical as upper bounds on expected conditional

reward are easier to obtain, as illustrated below.

The pseudo-reward information consists of a set of K× K functions sℓ,k(r) over [0, b]. This information

can be obtained in practice through either domain and expert knowledge or from controlled surveys. For

instance, in the context of medical testing, where the goal is to identify the best drug to treat an ailment

from among a set of K possible options, the effectiveness of two drugs is correlated when the drugs share

some common ingredients. Through domain knowledge of doctors, it is possible to answer questions such

as “what are the chances that drug B would be effective given drug A was not effective?", through which

we can infer the pseudo-rewards.

Remark 11 (Reduction to Classical Multi-Armed Bandits). When all pseudo-reward entries are unknown, then

all pseudo-reward entries can be filled with maximum possible reward for each arm, that is, sℓ,k(r) = b ∀r, ℓ, k. In

that case, the problem framework studied in this chapter reduces to the setting of the classical Multi-Armed Bandit

problem.

While the pseudo-rewards are known in our setup, the underlying joint probability distribution of

rewards is unknown. For instance, Table 4.1(a) and Table 4.1(b) show two joint probability distributions of

the rewards that are both possible given the pseudo-rewards at the top of Table 4.1. If the joint distribution

is as given in Table 4.1(a), then Arm 1 is optimal, while Arm 2 is optimal if the joint distribution is as given

in Table 4.1(b).
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4.2.2 Application for best-arm identification in correlated multi-armed bandits

Consider a scenario where a company needs to run a display advertising campaign in a community for

one of their products, and their design team has proposed several different designs. The traction (i.e., the

number of clicks, time spent on the ad) that the company generates is likely to be dependent on the design

that is used for publicity. In order to find the best design, the company can run a best-arm identification

algorithm by viewing the problem as a multi-armed bandit problem. Here, at each round t, a new user

of that community enters the system and they show one of the K designs (i.e., arms) to this user. The

reward is received through the response of the user to the ad. A straightforward solution would be to

treat this problem as a classical multi-armed bandit problem and use a well known best-arm identification

algorithm such as lil’UCB, LUCB or successive elimination to identify the best design for the community.

But, in practice, the rewards corresponding to different designs are likely to be correlated to one another.

Consider the example shown in Figure 4.1, over there if a user reacts positively to the first design, the user

is also likely to react positively to the second ad as both ads are related to tennis. Such correlations, when

accounted for in the form of pseudo-rewards, can help us identify the best-arm in much fewer samples

relative to algorithms such as lil’UCB, LUCB and Successive elimination that do not account for correlations

in choices.

These correlations could be known from a controlled survey or a previous advertisement campaign

performed in a different demographic. For instance, from these surveys one can interpret information

such as "users who like ad 1 representing tennis tend to like ad 2 that also represents tennis but not ad K

which represents soccer". If a company wants to identify the best ad in a new demographic, it can use

this learned correlation information to identify the best-ad in a quick manner. Note that the population

composition in the two demographics may be very different, i.e., the fraction of users liking tennis may be

very different, but it is likely that the correlation in choices remain consistent across the two demographics.

One can also consider the example of identifying best policy to publicize for a political campaign, where

users preferences towards different policies (i.e., climate change, gun control, abortion laws) are often

correlated in all demographics, but the marginal distribution of people advocating for a single policy is

very different in different communities. In such scenarios, transferring correlation information from one

demographic to another by modeling them through pseudo-reward in our correlated bandit framework

can help reduce the number of samples needed to identify the best-arm.

These pseudo-rewards can also be known from domain knowledge. Consider the problem of identifying

the best drug for the treatment of an unknown disease. The effectiveness of different drugs is likely to be

correlated as they often contain similar components. In such a situation, the domain expertise of doctors
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can tell us "what are the chances that drug y will be effective given drug x was effective?". One can

use a conservative upper bound on the answer to this question to model pseudo-rewards. Alternatively,

such correlation information could also be obtained on how different people react to different drugs in

a community. As the effectiveness of drugs depends on underlying medical conditions of the patients,

their response would be correlated. This correlation knowledge can then be transferred to identify the best

treatment in a different community, where the distribution of underlying medical conditions may be very

different.

4.3 Related Prior Work

The design of best-arm identification algorithms in the fixed-confidence setting have three key design

components: i) their sampling strategy, i.e., which arm to pick at round t; ii) their elimination criteria, i.e.,

when to declare an arm as sub-optimal and remove it from the rest of the sampling procedure; and iii)

their stopping criteria, i.e., when to stop the algorithm and declare an arm as the best arm.

In order to accomplish the task of best-arm identification, algorithms use the empirical mean µ̂k(t)

for arm k at round t. In addition to this, upper confidence bound and lower confidence bound on the

mean of arm k are maintained based on the number of samples of arm k, nk(t), and the input confidence

parameter δ. In particular, the upper confidence index Uk(nk, δ) = µ̂k(t) + B(nk, δ) and lower confidence

index Lk(nk, δ) = µ̂k(t)− B(nk, δ) are maintained for each arm k ∈ K. Here B(nk, δ) ∝

√
log
(

log(nk)
δ

)
nk

is an

anytime confidence bound [40, 73] constructed such that

Pr
(
∃ nk ≥ 1 : µk /∈ [Lk(nk, δ), Uk(nk, δ)]

)
≤ δ. (4.2)

Note that the anytime confidence interval bound the probability of the mean lying outside the confidence

interval uniformly for all nk ≥ 1, i.e., the probability that the mean lies outside the confidence interval

[Lk(nk, δ), Uk(nk, δ)] at any round t is upper bounded by δ. In contrast to the Hoeffding bound, which

are only valid for a fixed and deterministic nk, the anytime confidence bound holds true uniformly for all

t ≥ 1 and for random nk as well. We refer the reader to [73] for a detailed discussion and developments in

anytime confidence bounds B(nk, δ).

4.3.1 Existing Best-Arm identification strategies

There are three well-known approaches to the best-arm identification problem: i) Successive Elimination

(also called racing) [71, 74, 72]; ii) lil’UCB (Law of Iterated Logarithms Upper Confidence Bound) [40]; and

iii) LUCB [70, 68] (Lower and Upper Confidence Bound). Below, we briefly introduce these algorithms, and
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Algorithm Sampling Strategy Eliminate Arm k if Stopping Criteria

Racing Round Robin in At Uk

(
δ
K

)
< max

ℓ∈At
Lℓ

(
δ
K

)
|At| = 1

lil’UCB Sample kt, kt = arg maxk Uk(δ) N/A nkt ≥ α ∑k ̸=kt nk

LUCB Sample m1, m2, Uk

(
δ
K

)
< max

ℓ∈At
Lℓ

(
δ
K

)
|At| = 1* or

m1 = arg max
k∈At

µ̂k(t), Lm1

(
δ
K

)
> Um2

(
δ
K

)
m2 = arg max

k∈At\{m1}
Uk

(
δ
K

)
LUCB++ Sample m1, m2, Lm1

(
δ

2K

)
> Um2

(
δ
2

)
m1 = arg max

k∈K
µ̂k(t) N/A

m2 = arg max
k∈K\{m1}

Uk

(
δ
2

)
C-LUCB Sample m1, m2, Ũk

(
δ

2K

)
< max

ℓ∈At
Lℓ

(
δ

2K

)
|At| = 1

(ours) m1 = arg max
k∈At

Ik(t),

m2 = arg max
k∈At\{m1}

min
(

Ũk,k

(
δ

2K

)
, Ik(t)

)
C-LUCB++ Sample m1, m2, Ũk

(
δ

3K

)
< max

ℓ∈At
Lℓ

(
δ

3K

)
|At| = 1 or

(ours) m1 = arg max
k∈At

Ik(t), Lm1

(
δ

4K

)
> Ũm2,m2

(
δ
4

)
m2 = arg max

k∈At\{m1}
min

(
Ũk,k

(
δ
2

)
, Ik(t)

)
Table 4.2: All best-arm identification algorithms have three key components, i) Sampling strategy at each
round t, ii) elimination criteria for an arm and iii) the stopping criteria of the algorithm. We compare these
for Racing, lil’UCB, LUCB and LUCB++ algorithms and see the differences in their operation. The indices
used for our proposed C-LUCB and C-LUCB++ are defined in (4.6) and (4.8).

present a summary of their arm sampling strategies and elimination and stopping criteria in Table 4.2 1. For

more details, we refer the reader to [31] that provides a comprehensive survey of best-arm identification in

the fixed confidence setting.

Successive Elimination or Racing: The successive elimination (also called racing) strategy maintains a set

of active arms At at each round. It samples arms in a round-robin fashion from the set of active arms and

at the end of each round, it eliminates an arm k from the set of active arms if the lower confidence index of

some other arm ℓ ̸= k, Lℓ

(
nℓ, δ

K

)
, is strictly larger than the upper confidence index of arm k, Uk

(
nk, δ

K

)
. It

continues this until a single arm is left in the set At and returns that arm as the optimal arm. Two other

algorithms, Exponential-gap elimination [75] and PRISM [76], build upon successive elimination to provide

stronger theoretical guarantees. However, their empirical performance is not promising as noted in [31].

lil’UCB [40]: The lil’UCB algorithm samples the arm with the largest upper confidence index Uk(nk, δ) at

1The confidence bound C(nk(t), δ), and subsequently lower and upper confidence indices Lk(nk(t), δ) and U(nk(t), δ), depend
on the number of rounds t, the number of samples of arm k till round t nk(t) and the confidence parameter δ. For brevity
purposes, at times we represent the confidence bound as C(nk , δ) or C(δ) and the LCB, UCB indices as Lk(t, δ), Lk(nk , δ) or Lk(δ) and
Uk(t, δ), Uk(nk , δ) or Uk(δ) respectively.
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round t and stops when an arm has been sampled more than αt
α+1 times till round t. In practice, the value

of α is taken to be 9. It then declares the most sampled arm as the best-arm.

LUCB [70, 31]: The LUCB approach samples two arms m1(t), m2(t) at each round t. Here, m1(t) is the

arm with the largest empirical reward till round t, and m2(t) is the arm with the largest UCB index

Uk

(
nk, δ

K

)
among the rest. The LUCB algorithm stops if the lower confidence bound of the first arm m1(t)

is larger than the upper confidence index of all other arms. 2 Subsequently, another algorithm LUCB++

[69, 35] was designed that operates in a similar manner to LUCB but constructs the upper confidence and

lower confidence indices with different confidence parameters for m1(t), m2(t). The details of the upper

confidence and lower confidence indices for each of these algorithms are presented in Table 4.2. Note that

our metric for comparison is the total number of samples collectively drawn from the arms. As LUCB

algorithms sample two arms at each round, the total number of samples drawn from the LUCB algorithms

is two times the number of rounds t. By comparing the total number of samples and not the number of

rounds t, we draw a fair comparison between the performance of LUCB and lil’UCB algorithm.

All the approaches described above work well for the case where rewards are known to be either

sub-Gaussian or bounded. Furthermore, if the class of distribution is known (e.g., it is known that rewards

are Gaussian with known σ and unknown µ), then there are two more approaches known in the literature,

namely Top Two Thompson Sampling (TTTS) [77] and Tracking [43]. In TTTS, the player computes a

posterior distribution on the mean reward of each arm and then applies Thompson sampling on the

posterior to obtain two samples. It stops when the posterior probability of an arm k being optimal exceeds

a certain threshold τk(nk, δ). The TTTS algorithm can be computationally intensive as it involves the

computation of posterior probability in each round of their algorithm. In [43], authors evaluate a lower

bound for the Multi-Armed bandit problem in the form of an optimization problem. They propose a

tracking based approach, that solves the optimization problem at each round to obtain an estimated rate

at which each arm should be sampled at round t and sample arms in proportion to that rate. More

recently, [78] proposed alternative approaches to the track-and-stop algorithm that do not require solving

an optimization problem at each round. Instead, they view the optimization problem as an unknown game

and have sampling rules based on iterative saddle point strategies. All of the approaches listed above

require knowing the class of reward distribution. Since we only assume that the rewards are bounded

and not the class of distribution, we do not focus on extending TTTS or Tracking based approaches to the

correlated bandit setting in this chapter.

2Equivalently, one can eliminate an arm k from At at the end of each round if the upper confidence index of arm k is smaller than
the lower confidence index of some other arm, and stop the algorithm when the set of active arms |At| = 1. This implementation of
the LUCB algorithm has the same guarantees as the one proposed in [70, 31] while obtaining similar empirical performance.
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Algorithm Confidence Bound B(nk, δ) Type Samples Drawn

Succ Elimination [72]

√
log
(

π2n2
k

3δ

)
2nk

Racing 577209.4

lil Succ Elimination [31] 0.85
√

log(log(0.2585nk))+0.96 log(67.59/δ)
nk

Racing 120498.5

KL-Racing [68] d(B) = 2 log
(

11.1t1.1

δ

)
* Racing 147780.4

Racing with [73] 0.85
√

log(log(0.5nk))+0.72 log(5.2/δ)
nk

Racing 82504.7

LUCB with [68]

√
log
(

405t1.1
δ log

(
405t1.1

δ

))
2nk

LUCB 219510.2

lil LUCB [76] 0.85
√

log(log(0.2585nk))+0.96 log(67.59/δ)
nk

LUCB 90523.0

KL-LUCB [68] d(B) =2 log
(

405.5t1.1

δ

)
+ log log

(
405.5t1.1

δ

)
LUCB 81154.4

LUCB with [73] 0.85
√

log(log(0.5nk))+0.72 log(5.2/δ)
nk

LUCB 62533.2

lil’UCB [40] 0.85
√

log(log(0.2585nk))+0.96 log(67.59/δ)
nk

lil’UCB 140987.0

lil-KL-LUCB [35] d(B) = 1.86 log
(

κ log2

(
2nk

δ

))
LUCB++ 92000.0

LUCB++ with [73] 0.85
√

log(log(0.5nk))+0.72 log(5.2/δ)
nk

LUCB++ 55138.8

Table 4.3: Description of the well-known best-arm identification algorithms and the confidence bound
B(nk, δ) that they use for [0,1] bounded rewards. All the three types of algorithms have evolved with
time due to the development of tighter 1 − δ anytime confidence intervals B(nk, δ). We see that the
algorithms perform best with the confidence bound suggested in [73], and hence we use that for all our
implementations of Racing, LUCB, LUCB++ and our proposed algorithm in the rest of the chapter. The
reported sample complexity is for the task of identifying best movie genre from the set of 18 movie genres
in the Movielens dataset. Experimental setup is described in detail in Section 4.7.

4.3.2 Developments in Confidence sequence B(nk, δ)

It is important to note that the performance of the algorithms described above depends critically on the

tightness of the confidence bound B(nk, δ). For instance, initially the LUCB algorithm was proposed with

the confidence interval B(nk, δ) =

√
log
(

405n1.1
k

δ log
(

405n1.1
k

δ

))
2nk

(See [70]) for [0, 1] bounded random variables.

Subsequently tighter bounds as in [31], [68] were developed, which led to performance improvements in

the LUCB algorithm. See Table 4.3 for a comparison different confidence bound developed over time and

how they affect the empirical performance of the best-arm identification algorithms3. For a more detailed

comparison of different confidence bounds Bk(nk, δ), we refer the reader to Table 2 of [73]. To the best

of our knowledge, the tightest 1− δ anytime confidence interval for bounded and sub-Gaussian random

variables is proposed in [73], which constructs

B(nk, δ) = 0.85

√
log(log(0.5nk)) + 0.72 log(5.2/δ)

nk
. (4.3)

3The bound proposed in [68, 35] are KL based bounds that evaluate the indices Uk(nk , δ), Lk(nk , δ) as inf{j > µ̂k : nk(t)dkl(µ̂k , j) <
d(B)} and sup{j < µ̂k : nk(t)dkl(µ̂k , j) < d(B). The distance dkl(x, y) is evaluated as x log(x/y) + (1− x) log((1− x)/(1− y))
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Due to this observation, which is also supported by empirical evidence in Table 4.3, we use the bound

suggested by [73] in all implementations of Successive Elimination, LUCB and our proposed algorithm.

However, our algorithm and analysis extend to arbitrary 1− δ anytime confidence interval B(nk, δ).

We would also like to highlight the fact that lil’UCB is known to have the best known theoretical

sample complexity (in terms of its dependency on the number of arms K). The LUCB algorithm stops

with probability 1− δ after obtaining at most ∑k∈K
2ζ

∆2
k

log

K log
(

1
∆2

k

)
δ

 samples, where ∆k = µk∗ − µk,

the difference in mean reward of optimal arm k∗ and mean reward of arm k. And ∆k∗ = mink ̸=k∗ ∆k,

the gap between best and second best arm. It is known that lil’UCB algorithm has a sample complexity

O

∑k∈K
1

∆2
k

log

 log
(

1
∆2

k

)
δ

i.e., it avoids the log(K) term in the numerator, and hence has the best known

theoretical sample complexity. However, it has been observed (both in [31] and our experiments) that its

empirical performance is inferior to that of the LUCB algorithm. Due to this reason, we focus on proposing

an algorithm C-LUCB that extends the LUCB approach to the correlated bandit setting. We have included

the performance of lil’UCB in all our experiments.

4.3.3 Algorithms outside the classical setting

Unlike the regret-minimization problem, the best-arm identification problem is relatively unexplored

outside of the classical multi-armed bandit setting. A rare exception is the structured bandit setting, where

mean rewards corresponding to different arms are related to one another through a hidden parameter θ.

The underlying value of θ is fixed and unknown, but the mean reward mappings θ → µk(θ) are known.

The linear bandit setting is a special case of structured bandits, where mean reward mappings are of the

form x⊺k θ with xk known to the player. The best-arm identification problem has been studied in [46, 48] for

linear bandits and in [47] for the general structured bandit setting. Other special cases of structured bandits

include global bandits [17], regional bandits [16] and the generalized linear bandits [22]; to the best of our

knowledge the best arm identification problem has not been addressed in these special cases. Note that in

the full generality, the structured bandit framework is simply a bandit problem with constraints on the joint

probability distribution [67], but that setting has only been studied for the objective of regret minimization

and not best-arm identification. To the best of our knowledge, the structured bandits work studying

best-arm identification [46, 48, 47] assume the presence of a hidden parameter θ through which mean

rewards of different arms are related to one another. Our correlated bandit framework focuses on structured

bandit settings by modeling the correlations explicitly through the knowledge of pseudo-rewards.

Recently, best-arm identification was studied under the spectral bandit framework [79], which assumes



CHAPTER 4. BEST-ARM IDENTIFICATION IN CORRELATED BANDITS 107

that the arms are the nodes of known a weighted graph, with wa,b denoting the weight between arms a

and arms b. The spectral bandit framework poses a restriction on the relationship between mean rewards

of individual arms by assuming that ∑a,b∈K wa,b
(µa−µb)

2

2 ≤ R, where R is known to the player.

The correlated bandit model considered in this chapter is fundamentally different from the structured

bandit framework as detailed below.

1. The model studied here explicitly models the correlations in the rewards of different arms at any given

round t. In structured bandits, the mean rewards are related to each other, but the reward realizations

at a given round are not necessarily correlated. Similar to structured bandits, the work on spectral

bandits [79] considers a setup with constrains between mean rewards of different arms, but does not

capture the correlations explicitly in their framework.

2. It is also possible to use the structured bandit framework for the objective of identify best global

recommendation in an ad-campaign. However, there are two major challenges i) In deciding upon the

hidden parameter θ that we need to use, through which the mean rewards are related to one another.

ii) Secondly, in the structured bandits framework, the reward mappings from θ to µk(θ) need to be

exact. If they happen to be incorrect, then the algorithms for structured bandit cannot be used as

they rely on the correctness of µk(θ) to construct confidence intervals on the unknown parameter θ.

In contrast, the model studied here only relies on the pseudo-rewards being upper bounds on the

conditional expectations E [Rℓ|Rk = r]. Our proposed algorithm works even when these bounds are

not tight. The lack of hidden parameter θ and pseudo-rewards being upper bounds on conditional

expectations make the model studied in this chapter more suitable for practical scenarios where the

goal is to identify the best global recommendation.

4.4 Proposed Correlated-LUCB Best-arm Identification Algorithm

In the correlated MAB framework, the rewards observed from one arm can help estimate the rewards from

other arms. Our key idea is to use this information to reduce the number of samples taken before stopping.

We do so by maintaining the empirical pseudo-rewards of all pairs of distinct arms at each round t.

4.4.1 Empirical Pseudo-Rewards and New UCB indices

In our correlated MAB framework, pseudo-reward of arm ℓ with respect to arm k provides us an estimate

on the reward of arm ℓ through the reward sample obtained from arm k. We now define the notion of
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empirical pseudo-reward which can be used to obtain an optimistic estimate of µℓ through just reward

samples of arm k.

Definition 12 (Empirical and Expected Pseudo-Reward). After t rounds, arm k is sampled nk(t) times. Using

these nk(t) reward realizations, we can construct the empirical pseudo-reward ϕ̂ℓ,k(t) for each arm ℓ with respect to

arm k as follows.

ϕ̂ℓ,k(t) ≜
∑t

τ=1 1kτ=k sℓ,k(rkτ
)

nk(t)
, ℓ ∈ {1, . . . , K} \ {k}. (4.4)

The expected pseudo-reward of arm ℓ with respect to arm k is defined as

ϕℓ,k ≜ E [sℓ,k(Rk)] . (4.5)

For convenience, we set ϕ̂k,k(t) = µ̂k(t) and ϕk,k = µk. Note that the empirical pseudo-reward ϕ̂ℓ,k(t) is defined with

respect to arm k and it is only a function of the rewards observed by sampling arm k.

Observe that E [sℓ,k(Rk)] ≥ E [E [Rℓ|Rk = r]] = µℓ. Due to this, empirical pseudo-reward ϕ̂ℓ,k(t) can

serve as an estimated upper bound on µℓ. Using the definitions of empirical pseudo-reward, we now define

auxiliary UCB indices, namely crossUCB and pseudoUCB indices, which are used in the selection and

elimination strategy of the C-LUCB algorithm.

Definition 13 (CrossUCB Index Ũℓ,k(t, δ)). At the end of round t, we have nk(t) samples of arm k. Using these,

we define the CrossUCB Index of arm ℓ with respect to arm k as

Ũℓ,k(t, δ) ≜ ϕ̂ℓ,k(t) + B(nk, δ). (4.6)

Furthermore, we define

Ũℓ(t, δ) = min
k

Ũℓ,k(t, δ),

i.e., the tightest of the K upper bounds, Ũℓ,k(t, δ), for arm ℓ.

Note that the CrossUCB index for arm ℓ with respect to arm k, Ũℓ,k(t, δ) is constructed only through the

samples obtained from arm k. Furthermore, we have Ũk,k(t, δ) = µ̂k(t) + B(nk, δ), which coincides with the

standard upper confidence index used in the best-arm identification literature. We use the confidence bound

suggested by [73] (see Section 4.3) for the construction of B(nk, δ) for [0, b] bounded random variables, i.e.,

B(nk, δ) =
1.7b

2

√√√√ log
(

log
(

b2nk
2

))
+ 0.72 log(5.2/δ)

nk
. (4.7)

As pseudo-rewards are upper bounds on conditional expected reward, they can only be used to construct

alternative upper bounds on the mean reward of other arms and not alternative lower bounds. Due to
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this reason, we keep the definition of lower confidence index Lk(t, δ) the same as that in the classical

multi-armed bandit setting, i.e., Lk(t, δ) = µ̂k(t)− B(nk, δ). In addition to the CrossUCB and the LCB index

for each arm, we now define the PseudoUCB index of arm ℓ with respect to arm k. The PseudoUCB indices

prove useful for the design and analysis of our proposed algorithm.

Definition 14 (PseudoUCB Index Iℓ,k(t)). We define the PseudoUCB Index of arm ℓ with respect to arm k as

follows.

Iℓ,k(t) ≜ ϕ̂ℓ,k(t) + b

√
2 log t
nk(t)

(4.8)

Furthermore, we define Iℓ(t) = mink Iℓ,k(t), the tightest of the K upper bounds for arm ℓ.

Note that the PseudoUCB Index uses a confidence bound, b
√

2 log t
nk(t)

, which is typically used in the

UCB1 algorithm ([32]) for the objective of cumulative reward maximization. It has the property that

Pr(Iℓ(t) < µℓ) ≤ Kt−3 [See lemma 20], i.e., the probability of mean lying outside the pseudoUCB index

Iℓ(t) at round t decays exponentially with the number of rounds t. This property allows us to show

desirable sample complexity results for our proposed algorithm in Section 4.5. We now present the C-LUCB

algorithm, that makes use of the PseudoUCB, CrossUCB and LCB indices in its strategy for sampling arms,

eliminating arms and stopping the algorithm.

4.4.2 C-LUCB Algorithm

The C-LUCB algorithm maintains a set of active arms At, which is initialized to the set of all arms

K = {1, . . . , K}. At each round t, it samples arms, eliminates arms and then decides whether to stop as

described below.

1. Sampling Strategy: At each round t, the C-LUCB algorithm samples two arms m1(t) and m2(t),

where

m1(t) = arg max
k∈At

Ik(t), m2(t) = arg max
k∈At\{m1(t)}

min
(

Ũk,k

(
t,

δ

2K

)
, Ik(t)

)
.

2. Elimination Criteria: The C-LUCB algorithm removes an arm k from the set At, if the CrossUCB

index of arm k is smaller than the LCB index of some other arm in At, i.e., if

Ũk

(
t,

δ

2K

)
< max

ℓ∈At
Lℓ

(
t,

δ

2K

)
.

Here, Ũℓ

(
t, δ

2K

)
= mink Ũℓ,k

(
t, δ

2K

)
.

3. Stopping Criteria: If |At| = 1, stop the algorithm and declare the arm in At as the optimal arm with

1− δ confidence.
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Both LUCB and C-LUCB sample the top two arms at round t in m1(t) and m2(t) so as to resolve

the ambiguity among them as fast as possible. However, C-LUCB uses the additional pseudo-reward

information to modify its choice of m1(t) and m2(t). In particular, the use of Ik(t) in definition of m2(t)

avoids the sampling of an arm that appears sub-optimal from samples of other arms. Similarly, using

the CrossUCB index Ũk (t, δ/2K) instead of Ũk,k(t, δ/2K), allows the C-LUCB to eliminate some arms

earlier than the LUCB algorithm. A comparison of the operation of C-LUCB with LUCB and Racing based

algorithms is presented in Table 4.2. We show that the proposed C-LUCB algorithm is 1− δ correct and

analyze its sample complexity in the next section. As the key difference between C-LUCB and LUCB is in

its sampling strategy, we explore some other variants of C-LUCB in Section 4.6, where we study the effect

of performance on altering the definitions of m1(t) and m2(t).

4.5 Sample Complexity Results

In this section, we analyze sample complexity of the proposed C-LUCB algorithm, that is, the number of

samples required to identify the best arm with probability 1− δ. We show that some arms, referred to as

non-competitive arms, are explored implicitly through the samples of the optimal arm k∗ and contribute

only an O(1) term in the sample complexity, while other arms called competitive arms have an O (log(1/δ))

contribution in the sample complexity of the C-LUCB algorithm. The correlation information enables us

to identify the non-competitive arms using samples from other arms and eliminate them early. For the

sample complexity analysis, we assume that the rewards are bounded between [0, 1]∀k ∈ K. Note that the

algorithms do not require this condition and the analysis can also be generalized to any bounded rewards.

4.5.1 Competitive and Non-competitive arms

We now define the notion of competitive and non-competitive arms, which are important to interpret our

sample complexity results for the C-LUCB algorithm. Let k∗ denote the arm with the largest mean and k(2)

denote the arm with the second largest mean.

Definition 15 (Non-Competitive and Competitive arms). An arm ℓ is said to be non-competitive if the expected

reward of the second best arm k(2) is strictly larger than the expected pseudo-reward of arm ℓ with respect to the optimal

arm k∗, i.e, ∆̃ℓ ≜ (µk(2) − ϕℓ,k∗) > 0. Similarly, an arm ℓ is said to be competitive if ∆̃ℓ = (µk(2) − ϕℓ,k∗) ≤ 0. We

refer to ∆̃ℓ as the pseudo-gap of arm ℓ in the rest of the chapter. We denote the set of the competitive arms as C and

the total number of competitive arms as C in this chapter.

The best arm k∗ and second best arm k(2) have pseudo-gaps ∆̃k∗ = (µk(2) − ϕk∗ ,k∗) < 0 and ∆̃k(2) =
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(µk(2) − ϕk(2),k∗) ≤ 0 respectively, and hence are counted in the set of competitive arms. As ϕℓ,k∗ ≥ µℓ, the

pseudo-gap ∆̃ℓ ≤ ∆ℓ. Due to this, we have 2 ≤ C ≤ K.

The central idea behind our C-LUCB approach is that after sampling the optimal arm k∗ sufficiently

large number of times, the non-competitive (and thus sub-optimal) arms will not be selected as m1(t) or

m2(t) by the C-LUCB algorithm, and thus will not be explored explicitly. Furthermore, the non-competitive

arms can be eliminated from the information obtained through arm k∗. As a result, the non-competitive

arms contribute only an O(1) term in the sample complexity, i.e., the contribution is independent of the

confidence parameter δ. However, the competitive arms cannot be discerned as sub-optimal by just using

the rewards observed from the optimal arm, and have to be explored O
(

log
(

1
δ

))
times each. Thus, we

are able to reduce a K-armed bandit to a C-armed bandit problem, where C is the number of competitive

arms. 4

4.5.2 Analysis of C-LUCB

We start by first proving the (1− δ)-correctness of C-LUCB algorithm and then analyzing its sample

complexity in terms of the number of samples obtained until the stopping criterion is satisfied.

Theorem 8 ((1− δ) correctness of C-LUCB). Upon stopping, the C-LUCB algorithm declares arm k∗ as the best

arm with probability 1− δ.

Proof Sketch. To prove Theorem 8, we define three events E1, E2 and E3 below. Let E1 be the event that

empirical mean of all arm lie within their confidence intervals uniformly for all t ≥ 1

E1 =

{
∀t ≥ 1, ∀k ∈ K, µ̂k(t)− B

(
nk(t),

δ

2K

)
≤ µk ≤ µ̂k + B

(
nk(t),

δ

2K

)}
(4.9)

Define E2 to be the event that empirical pseudo-reward of optimal arm with respect to all other arms lie

within their CrossUCB indices uniformly for all t ≥ 1, i.e.,

E2 =

{
∀t ≥ 1, ∀ℓ ∈ K, ϕk∗ ,ℓ ≤ ϕ̂k∗ ,ℓ(t) + B

(
nℓ(t),

δ

2K

)}
(4.10)

Similarly define E3 to be the event that the empirical pseudo-reward of the sub-optimal arms with

respect to the optimal arm lies within their CrossUCB indices uniformly for all t ≥ 1, i.e.,

E3 =

{
∀t ≥ 1, ∀ℓ ∈ K, ϕℓ,k∗ ≤ ϕ̂ℓ,k∗(t) + B

(
nk∗(t),

δ

2K

)}
(4.11)

Furthermore, we define E to be the intersection of the three events, i.e.,

E = E1 ∩ E2 ∩ E3. (4.12)
4Observe that k∗ and subsequently C are both unknown to the algorithm. Before the start of the algorithm, it is not known which

arm is optimal/competitive/non-competitive.
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Due to the nature of anytime confidence intervals (See (4.2)) and union bound over the set of arms, we

have Pr(E c
1) ≤ δ

2 , Pr(E c
2) ≤ δ

4 and Pr(E c
3) ≤ δ

4 giving us Pr(E c) ≤ δ. Furthermore, we show that, when

event E occurs, the C-LUCB algorithm always declares k∗ as the best arm. This gives us the desired result

in Theorem 8. A detailed proof is given in the Section 4.9.6.

Theorem 9. Given event E (defined in (4.12)), the expected number of samples drawn by C-LUCB until stopping, is

bounded as

E
[

NC-LUCB | E
]
≤ ∑

k∈C

2ζ

∆2
k

log

2K log
(

1
∆2

k

)
δ

+
3K + 2Kt0

1− δ
+

2
1− δ

(
(K + 1)3

t0
+

2
t2
0

)
, (4.13)

where t0 = inf
{

τ ≥ 2 : ∆k∗ ≥ 4
√

2K log τ
τ ∀k /∈ C

}
and ζ is a universal constant that depends on the type of

confidence bound used to construct B(nk, δ) (Section 3b) – the tighter the bound, the smaller the ζ. The gap ∆k is

defined as ∆k ≜ µk∗ − µk for k ̸= k∗, i.e., the difference in mean reward of optimal arm k∗ and mean reward of arm

k and ∆k∗ ≜ mink ̸=k∗ ∆k, i.e., the gap between best and second best arm.

We present a brief proof outline below, while the detailed proof is available in the Section 4.9.5.

Proof Sketch. In order to bound the total number of samples drawn by C-LUCB, we bound the total number

of rounds T taken by C-LUCB before stopping. As C-LUCB algorithm pulls two arms m1(t) and m2(t) in

each round t, the number of samples NC-LUCB = 2T. We obtain an upper bound on the total number of

rounds T, considering the following four counts of the number of rounds and obtain an upper bound for

each of them under the event E :

1. T(R): Let T(R) denote the number of rounds in which Ik∗(t) < µk∗ , i.e., the count of events in which

the pseudoUCB index of arm k∗ is smaller than the mean of arm k∗ at round t.

2. T(C): Define T(C) to be the number of rounds in which m1(t), m2(t) ∈ C and event Ik∗(t) < µk∗ does

not occur.

3. T(NC): Define T(NC) to be the number of rounds in which m1(t) /∈ C, m2(t) ̸= k∗ or m2(t) /∈
C, m1(t) ̸= k∗.

4. T(∗): Define T(∗) to be the number of rounds in which m1(t) = k∗, m2(t) /∈ C or m2(t) = k∗, m1(t) /∈ C
.

We can now see that T ≤ T(R) + T(C) + T(NC) + T(∗). We show that

Pr(Ik∗(t) < µk∗ |E) =
Pr(Ik∗ < µk∗ , E)

Pr(E) ≤ Pr(Ik∗ < µk∗ , E)
1− δ

≤ Pr(Ik∗ < µk∗)

1− δ
≤ Kt−3

1− δ
,
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giving us E
[

T(R)|E
]
≤ 1

1−δ ∑∞
t=1 Kt−3 ≤ 3K

2(1−δ)
. Next we show that

Pr

T(C) + T(∗) ≥ ∑k∈C
ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

 ∣∣∣E
 = 0. Due to this,

T(C) + T(∗) ≤ ∑
k∈C

ζ

∆2
k

log

2K log
(

1
∆2

k

)
δ

 w.p. 1− δ.

We then evaluate an upper bound on E
[

T(NC)|E
]

and show that it is upper bounded by a O(1) constant,

i.e.,

E
[

T(NC)|E
]
≤ Kt0

1− δ
+

1
1− δ

(
(K + 1)3

t0
+

2
t2
0

)
.

Putting these results together, we obtain the result of Theorem 9.

Furthermore, as E
[

T(NC)|E
]

, E
[

T(R)|E
]

is upper bounded by an O(1) constant as δ → 0, we have

∑∞
t=1 Pr(ENC

t ) < ∞, where ENC
t is the event that m1(t) /∈ C, m2(t) ̸= k∗ or m2(t) /∈ C, m1(t) ̸= k∗. By Borel-

Cantelli Lemma 1, this implies that with probability 1, the event ENC
t takes place only finitely many time

steps t. As a result of this, ∃d1 : Pr(T(NC) > d1|E) = 0 almost surely. Similarly ∃d2 : Pr(T(R) > d2|E) = 0

a.s. As a consequence of this, we have the following result bounding the total number of samples drawn

from the C-LUCB algorithm with probability 1− δ.

Corollary 2. The number of samples obtained by C-LUCB is upper bounded as

NC-LUCB ≤ ∑
k∈C

2ζ

∆2
k

log

2K log
(

1
∆2

k

)
δ

+ d w.p. 1− δ, (4.14)

where d = max(d1, d2). Note that the O
(

log
(

1
δ

))
term is only summed for the set of competitive arms C,

in contrast to the LUCB algorithm where the sample complexity term involves summation of a O
(

log
(

1
δ

))
for all arms k ∈ K. In this sense, our proposed algorithm reduces a K-armed bandit problem to a C-armed

bandit problem.

The key intuition behind our sample complexity result is that the sampling of m1(t) = arg maxk∈At
Ik(t)

ensures that the optimal arm is sampled at least t/K times till round t with high-probability. This in turn

ensures that the non-competitive arms are not selected as m1(t) or m2(t), due to which we see that their

expected number of samples are bounded above by a O(1) constant.
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4.5.3 Comparison with the LUCB algorithm

The LUCB algorithm is known to stop after obtaining at most

∑k∈K
2ζ

∆2
k

log

K log
(

1
∆2

k

)
δ

 samples with

probability at least 1− δ. More formally,

NLUCB ≤

∑
k∈K

2ζ

∆2
k

log

K log
(

1
∆2

k

)
δ


 , w.p. 1− δ.

We compare this result with the one that we prove for C-LUCB algorithm in Theorem 9.

Reduction to a C-Armed Bandit problem: As highlighted earlier, in the C-LUCB approach, the

O
(

log
(

1
δ

))
term only comes from the set of competitive arms, as opposed to the LUCB algorithm

which has O(
(

log
(

1
δ

))
contribution from all its arms. In this sense, C-LUCB algorithm reduces a K-armed

bandit problem to a C-armed bandit problem. Depending on the problem instance, the value of C can vary

between 2 and K.

Slightly larger number of samples from competitive arms: We see that the contribution coming from a

competitive arm in C-LUCB algorithm is 2ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

. This is slightly larger than the contribution

coming from a sub-optimal arm in LUCB algorithm, where each arm contributes 2ζ

∆2
k

log

K log
(

1
∆2

k

)
δ

 in the

sample complexity. This is due to the fact that we construct slightly wider confidence intervals, B
(

nk, δ
2K

)
instead of B

(
nk, δ

K

)
, in C-LUCB to take advantage of the correlations present in the problem. We see in

Section 4.7 that this small increase in the width of confidence intervals does not have a significant impact

on the empirical performance of the algorithm.

Theorem 9’s result is in conditional expectation: While the sample complexity result of the LUCB

algorithm bounds the total number of samples taken with probability 1− δ, our sample complexity result

bounds the expected samples taken by C-LUCB algorithm under the event E (Theorem 9). This arises as the

analysis of our algorithm requires a transient component, because it tries to avoid sampling non-competitive

arm at each round with high probability. We have a result in Corollary 2 that evaluates an upper bound

which holds with probability 1− δ, but we are unable to quantify the constant d in Corollary 2 and can

only characterize d in expectation as done in Theorem 9. An open problem is to evaluate the expected

sample complexity of our C-LUCB algorithm for the cases where the event E does not occur. While such

results are hard to obtain theoretically, in all our experiments we observed that the variance in the number

of samples drawn by C-LUCB is not much, and is in fact similar to that of the LUCB algorithm in all the

experiments performed. This indicates that even when algorithm stops with an incorrect arm, the number
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Algorithm First arm m1(t) Second arm m2(t) Samples drawn

C-LUCB arg max
k∈At

Ik(t) arg max
k∈At\{m1}

min
(

Ũk,k

(
δ

2K

)
, Ik(t)

)
39277.8

maxmin-LUCB arg max
k∈At

minℓ ϕ̂k,ℓ(t) arg max
k∈At\{m1}

Ũk

(
δ

2K

)
36314.2

2-LUCB arg max
k∈At

Ik(t) arg max
k∈At\{m1}

Ũk

(
δ

2K

)
39385.8

Table 4.4: We study two intuitive variants of C-LUCB which differ in their sampling strategy of m1(t) and
m2(t). Both of them have same elimination and stopping criteria as the C-LUCB algorithm. We report the
number of samples needed to identify the best genre from the set of 18 movie genres in the Movielens
dataset. While all of these are smaller than the samples drawn by LUCB (which is 61175.4 in this case),
the difference between the variants of C-LUCB is minimal. Experimental details are described in detail in
Section 4.7, we set the value of p = 0.2 (i.e., the fraction of pseudo-reward entries that are replaced by 5) in
this experiment. Such similarity in empirical performance has also been observed in our other experiments
and we found no clear winner among the three when compared on their empirical performance.

of samples obtained are similar to the samples obtained under the good event E .

The log(K) term in numerator: Just like the sample complexity result of the LUCB algorithm [31],

our sample complexity result also has a log(K) in its sample complexity result. This is avoidable in

the classical MAB framework if one uses the lil’UCB algorithm, which is known to have the optimal

theoretical sample complexity in the classical bandit setting as it avoids the log(K) term in its sample

complexity expression. However the use of lil’UCB algorithm leads to worse empirical performance as

seen in our experiments and prior work [31]. Due to this reason, we focus only on the extension of

LUCB to the correlated bandit setting. The LUCB++ algorithm has a sample complexity of the form of∑k∈K\{k∗}
2ζ1
∆2

k
log

 log
(

1
∆2

k

)
δ

+ 2ζ2
∆2

k∗
log

K log

(
1

∆2
k∗

)
δ


. The LUCB++ algorithm avoids the log(K) term

in the sample complexity for the sub-optimal arms and has it only for the optimal arm k∗. Due to this, it is

seen that LUCB++ slightly outperforms the LUCB algorithm empirically. In our next section, we propose

the C-LUCB++ algorithm, which is a heuristic extension of LUCB++ to the correlated bandit setting and

show that it finds the optimal arm with probability at least 1− δ.

Dependency with K: In our sample complexity results, the dependence with respect to K is loose. For

our theoretical results, we focus on studying the dependence of sample complexity on δ in this chapter. In

Section 4.7, we show that even when δ = 0.1 (i.e., a moderate confidence regime), our proposed algorithms

outperform the classical bandit algorithms (See Figure 4.3).
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4.6 Variants of C-LUCB

In our proposed C-LUCB algorithm, at each round we sample two arms m1(t), m2(t), where m1(t) =

arg maxk∈At
Ik(t) and m2(t) = arg maxk∈At\{m1}min(Ũk,k(δ/2K), Ik(t)). A sampling such as this allowed

us to show 1− δ correctness of the algorithm (Theorem 8) and analyse its sample complexity (Theorem 9).

In this section, we explore two other algorithms, that we call maxmin-LUCB and 2-LUCB, that sample

different m1(t) and m2(t) at round t, but have the same elimination and stopping criteria as that of C-LUCB.

In Table 4.4, we contrast their sampling strategy with respect to C-LUCB. While we are able to show that

both maxmin-LUCB and 2-LUCB algorithm will stop with the best-arm with probability at least 1− δ, we

are unable to provide a sample complexity result for them.

We also evaluated the empirical performance of maxmin-LUCB and 2-LUCB on a real-world recommen-

dation dataset, and found their empirical performance to be similar to C-LUCB. We chose to use C-LUCB as

our proposed algorithm as it is possible to provide theoretical guarantees as in Theorem 8 and Theorem 9.

Moreover, we find its empirical performance to be superior than classical bandit algorithms in correlated

bandit settings, as we illustrate through our experiments in the next section.

4.6.1 C-LUCB++: Heuristic extension of LUCB++

The LUCB++ algorithm as illustrated in Section 4.3, is able to improve upon LUCB, by modifying its

stopping criteria and in its sampling of m1(t) and m2(t). We propose an extension, C-LUCB++, that extends

the LUCB++ algorithm to the correlated bandit setting. The comparison of C-LUCB++ and LUCB++ in its

sampling, elimination and stopping criteria is presented in Table 4.2. While we are able to show that the

C-LUCB++ stops with the best arm with probability at least 1− δ in Section 4.9.7, analysing its sample

complexity remains an open problem. We compare the performance of C-LUCB++, with C-LUCB, LUCB,

Racing and lil’UCB algorithms extensively through our experiments on Movielens and Goodreads datasets

in the next section.

4.7 Experiments

We now evaluate the performance of our proposed C-LUCB and C-LUCB++ algorithms in a real-world

setting. By comparing the performance against classical best-arm identification algorithms on the movielens

and goodreads datasets, we show that our proposed algorithms are able to exploit correlation to identify

the best-arm in fewer samples. All results reported in our chapter are presented after conducting 10

independent trials and computing their average. Additionally, in all our plots we show the error bars of
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Figure 4.4: Number of samples drawn by Racing, lil’UCB, LUCB, LUCB++, C-LUCB and C-LUCB++ to
identify the best movie genre out of 18 possible genres in the Movielens dataset. Here, p represents the
fraction of pseudo-reward entries that are replaced by the maximum possible reward (i.e., 5). When p is
small, there is more correlation information available that our proposed C-LUCB and C-LUCB++ algorithms
exploit to reduce the number of samples needed to identify the best movie genre. When p = 1, there is no
correlation information available, in which case our proposed C-LUCB and C-LUCB++ algorithms have a
performance similar to LUCB and LUCB++ respectively.

width 2σ, where σ is the standard deviation in the number of samples drawn by an algorithm across the 10

independent trials.

4.7.1 Experiments on the MovieLens dataset

The MovieLens dataset [19] contains a total of 1M ratings for a total of 3883 Movies rated by 6040 Users.

Each movie is rated on a scale of 1-5 by the users. Moreover, each movie is associated with one (and in

some cases, multiple) genres. For our experiments, of the possibly several genres associated with each

movie, one is picked uniformly at random. To perform our experiments, we split the data into two parts,

with the first half containing ratings of the users who provided the most number of ratings. This half

is used to learn the pseudo-reward entries, the other half is the test set which is used to evaluate the

performance of the proposed algorithms. Doing such a split ensures that the rating distribution is different

in the training and test data.

Best Genre identification. In this experiment, our goal is to identify the most preferred genre among

the 18 different genre in the test population in fewest possible samples. The pseudo-reward entry sℓ,k(r)

is evaluated by taking the empirical average of the ratings of genre ℓ that are rated by the users who

rated genre k as r. As in practice, all such pseudo-reward entries might not be available, we randomly
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replace p-fraction of the pseudo-reward entries by maximum possible reward, i.e., 5. We then run our

best-arm identification algorithms on the test data to identify the best-arm with 99% confidence. Figure 4.4

shows the average samples taken by C-LUCB and C-LUCB++ algorithm relative to the classical best-arm

identification algorithms for different value of p (the fraction of pseudo-reward entries that are removed).

We see that C-LUCB and C-LUCB++ algorithms significantly outperform all Racing, lil’UCB, LUCB and

LUCB++ algorithms for p = 0.1, 0.25, 0.35 as they are able to exploit the correlations present in the problem

to identify the best arm in a faster manner.

In the scenario where all pseudo-reward entries are unknown, i.e., p = 1, we see that the performance of

C-LUCB is only slightly worse than that of LUCB algorithm. This is due to the construction of slightly wide

confidence interval B(nk, δ/2K) for the C-LUCB algorithm relative to LUCB algorithm that uses B(nk, δ/K).

We also see that in this scenario, LUCB++ and C-LUCB++ algorithm (which is an extension of LUCB++)

outperform C-LUCB, which is due to the known superiority of LUCB++ over LUCB [69, 35].

Variation with δ. We then study the performance of the best-arm identification algorithms for different

value of δ. In Figure 4.3, we plot the number of samples required by C-LUCB and C-LUCB++ to identify

the best arm with 90%, 94%, 98% and 99% confidence, with p = 0.2 (i.e., 20% of pseudo-reward entries are

replaced by 5). As C-LUCB and C-LUCB++ are able to make use of the available correlation information,

we see our proposed algorithms require fewer samples than the Racing, lil’UCB, LUCB and LUCB++

algorithms in each of the four settings.

4.7.2 Experiments on the Goodreads dataset

The Goodreads dataset [20] contains the ratings for 1,561,465 books by a total of 808,749 users. Each rating

is on a scale of 1-5. For our experiments, we only consider the poetry section and focus on the goal of

identify the most liked poem for the population. The poetry dataset has 36,182 different poems rated by

267,821 different users. We do the pre-processing of goodreads dataset in the same manner as that of the

MovieLens dataset, by splitting the dataset into two halves, train and test. The train dataset contains the

ratings of the users with most number of recommendations.

Best book identification. We consider the 25 most rated poetry books in the dataset and aim to identify

the best book in fewest possible samples with 99% confidence. After obtaining the pseudo-reward entries

from the training data, we replace p fraction of the entries with the highest possible reward (i.e., 5) as some

pseudo-rewards may be unknown in practice. To account for the fact that these pseudo-reward entries

may be noisy in practice, we add a safety buffer of 0.1 to each of the pseudo-reward entry sℓ,k(r); i.e.,

we set the pseudo-reward to be empirical conditional mean (obtained from training data) plus the safety
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Figure 4.5: Number of samples needed by Racing, lil’UCB, LUCB, LUCB++, C-LUCB and C-LUCB++
to identify the best poem out of the set of 25 poem books in the Goodreads dataset. Here p represents
the fraction of pseudo-rewards that are replaced by maximum possible reward and q = 0.1 is added to
each pseudo-reward entry to account for the fact that pseudo-reward entries may be noisy. Our proposed
C-LUCB and C-LUCB++ utilize correlation information and require significantly less samples than the
classical best-arm identification algorithms.

buffer q = 0.1. We perform experiment on the test data and compare the number of samples obtained for

different algorithms in Figure 4.5 for two different values of p. We see that in both the cases, our C-LUCB

and C-LUCB++ algorithms outperform other algorithms as they are able to exploit the correlations in the

rewards.

4.8 Concluding Remarks

In this work, we studied a new multi-armed bandit problem, where rewards corresponding to different

arms are correlated to each other and this correlation is known and modeled through the knowledge of

pseudo-rewards. These pseudo-rewards are loose upper bounds on conditional expected rewards and can

be evaluated in practical scenarios through controlled surveys or from domain expertise. We then extended

an LUCB based approach to perform best-arm identification in the correlated bandit setting. Our approach

makes use of the pseudo-rewards to reduce the number of samples taken before stopping. In particular, our

approach avoids the sampling of non-competitive arms leading to a stark reduction in sample complexity.

The theoretical superiority of our proposed approach is reflected in practical scenarios. Our experimental

results on Movielens and Goodreads recommendation dataset show that the presence of correlation, when

exploited by our C-LUCB approach, can lead to significant reduction in the number of samples required to
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identify the best-arm with probability 1− δ.

This work opens up several interesting future directions, including but not limited to the following:

PAC-C-LUCB: In this work, we explored the problem of identifying the best-arm with probability 1− δ.

A closely related problem is to find a PAC (probably approximately correct) algorithm, that identifies

an arm which is within ϵ from µk∗ with probability at least 1− δ. We believe such an algorithm can be

constructed by modifying the elimination and stopping criteria of C-LUCB algorithm. More specifically, if

one compares Uk(nk, δ) + ϵ v/s maxk∈At Lk(nk, δ) in the C-LUCB’s elimination criteria, it may be possible

to design and analyse a PAC algorithm in the correlated multi-armed bandit setting.

Using Pseudo-Lower bounds: We assume in our work that only upper bounds on conditional expected

rewards, in the form of pseudo-upper-bounds, are known to the player. In practical settings, it may also be

possible to obtain pseudo-lower-bounds, that may allow us to know information about lower bound on

conditional expected reward. In presence of such knowledge, we believe C-LUCB algorithm will need a

modification in its definition of lower confidence bound Lk(nk, δ). By defining a crossLCB index Lℓ,k(nk, δ),

equivalent to crossUCB index for upper bound, we can re-define Lk = max Lℓ,k. This new definition of

the lower confidence bound index can help us to incorporate cases where pseudo-lower bounds are also

known.

Top m arms identification: Throughout this work, our focus was to identify just the optimal arm from the

set of K arms. Another similar problem is to come up with an approach to find the best m arms from the

set of K arms. It is an interesting direction to explore in the correlated-multi armed bandit setting. We

believe such a problem would be even more interesting if the pseudo-lower bounds are known. An open

problem is to extend a C-LUCB like approach to identify the best m arms from the set of K arms.

Lower bound and optimal solution: While our proposed approach shows promising empirical perfor-

mance and has some theoretical guarantees, it may not be the optimal solution for the correlated bandit

problem studied in this chapter. Studying a lower bound and correspondingly an optimal solution to this

problem remains an open problem.

4.9 Full proofs

4.9.1 Standard Results from Previous Works

Fact 3 (Hoeffding’s inequality). Let Z1, Z2 . . . Zn be i.i.d random variables bounded between [a, b] : a ≤ Zi ≤ b,

then for any δ > 0, we have

Pr
(∣∣∣∣∑n

i=1 Zi

n
−E [Zi]

∣∣∣∣ ≥ δ

)
≤ exp

( −2nδ2

(b− a)2

)
.
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Lemma 18 (Standard result used in bandit literature). If µ̂k,nk(t) denotes the empirical mean of arm k by sampling

arm k nk(t) times through any algorithm and µk denotes the mean reward of arm k, then we have

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
≤

τ2

∑
s=τ1

exp
(
−2sϵ2

)
.

Proof. Let Z1, Z2, ...Zt be the reward samples of arm k drawn separately. If the algorithm chooses to

sample arm k for mth time, then it observes reward Zm. Then the probability of observing the event

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1 can be upper bounded as follows,

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
= Pr

((
∑

nk(t)
i=1 Zi

nk(t)
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)
(4.15)

≤ Pr

((
τ2⋃

m=τ1

∑m
i=1 Zi

m
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)
(4.16)

≤ Pr

(
τ2⋃

m=τ1

∑m
i=1 Zi

m
− µk ≥ ϵ

)
(4.17)

≤
τ2

∑
s=τ1

exp
(
−2sϵ2

)
. (4.18)

Lemma 19 (From Proof of Theorem 1 in [32]). The probability that the mean reward of arm k, i.e., µk, is greater

than the pseudoUCB index of arm k with respect to arm k, i.e., Ik,k = µ̂k +
√

2 log t
nk(t)

is upper bounded by t−3.

Pr(µk > Ik,k(t)) ≤ t−3.

Observe that this bound does not depend on the number nk(t) of times arm k is sampled and only

depends on t.

Proof. This proof follows directly from [32]. We present the proof here for completeness as we use this

frequently in the chapter.

Pr(µk > Ik,k(t)) = Pr

(
µk > µ̂k,nk(t) +

√
2 log t
nk(t)

)
(4.19)

≤
t

∑
m=1

Pr

(
µk > µ̂k,m +

√
2 log t

m

)
(4.20)

=
t

∑
m=1

Pr

(
µ̂k,m − µk < −

√
2 log t

m

)
(4.21)

≤
t

∑
m=1

exp
(
−2m

2 log t
m

)
(4.22)
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=
t

∑
m=1

t−4 (4.23)

= t−3. (4.24)

where (4.20) follows from the union bound and is a standard approach (Lemma 18) to deal with random

variable nk(t). We use this approach repeatedly in the proofs. We have (4.22) from the Hoeffding’s

inequality. Note that if the empirical mean µk is replaced by the empirical pseudo reward of arm k with

respect to arm ℓ, i.e., ϕk,ℓ and Ik,k(t) by the expected pseudo reward of arm k with respect to arm ℓ,

i.e., Ik,ℓ(t) = ϕ̂k,ℓ +
√

2 log t
nℓ(t)

. Then we get that Pr(ϕk,ℓ > Ik,ℓ(t)) ≤ t−3 using the same steps as presented

above.

4.9.2 Intermediate lemmas for proving bounds on samples obtained through non-competitive

arms

Lemma 20. Let Ik(t) denote the pseudoUCB index of arm k at round t, and µk denote the mean reward of that arm.

Then, we have

Pr(µk > Ik(t)) ≤ Kt−3.

Similar to Lemma 19, this bound does not depend on the number of times arm k is sampled till round t

(i.e., nk(t)) and only depends on the round t and the total number of arms K. Recall that Iℓ(t) = mink Iℓ,k(t),

where Iℓ,k(t) is PseudoUCB index of arm ℓ with respect to arm k defined in (4.8).

Proof. This proof follows in the same way as that of Lemma 19.

Pr(µk > Ik(t)) = Pr

(
µk > min

ℓ
ϕ̂k,ℓ +

√
2 log t
nℓ(t)

)
(4.25)

≤ ∑
ℓ∈K

Pr

(
µk > ϕ̂k,ℓ +

√
2 log t
nℓ(t)

)
(4.26)

≤ ∑
ℓ∈K

Pr

(
ϕk,ℓ > ϕ̂k,ℓ +

√
2 log t
nℓ(t)

)
(4.27)

≤ ∑
ℓ∈K

t−3 (4.28)

= Kt−3. (4.29)

We have (4.25) from the definition of Ik(t). Inequality (4.27) follows from the fact that ϕk,ℓ ≥ µk. We get

(4.28) follows from the hoeffding’s inequality combined with the union bound (Lemma 19).
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Lemma 21. If k ̸= k∗ is a non-competitive arm i.e., k /∈ C and has a pseudo-gap ∆̃k,k∗ > 0, then,

Pr((m1(t) = k ∪m2(t) = k), nk∗(t) ≥ t/2K,W , E) ≤ 2(K + 1)t−3. ∀t > t0,

where t0 = inf
{

τ ≥ 2 : ∆min ≥ 4
√

2K log τ
τ

}
andW denotes the event that m1(t), m2(t) ̸= k∗.

Proof. We now bound this probability as,

Pr
(
(m1(t) = k ∪m2(t) = k), nk∗(t) ≥

t
2K

, E ,W
)

≤ Pr
(

m1(t) = k, nk∗(t) ≥
t

2K
,W , E

)
+ Pr

(
m2(t) = k, nk∗(t) ≥

t
2K

,W , E
)

(4.30)

≤ Pr

(
k = arg max

k∈At

Iℓ(t), nk∗ ≥
t

2K
,W , E

)
+ Pr

(
m2(t) = k, nk∗ ≥

t
2K

,W , E
)

(4.31)

≤ Pr

(
ϕ̂k,k∗ +

√
2 log t
nk∗(t)

≥ Ik∗(t), nk∗ ≥
t

2K

)
+ Pr

(
m2(t) = k, nk∗ ≥

t
2K

,W , E
)

(4.32)

≤ Pr

(
ϕ̂k,k∗ +

√
2 log t
nk∗(t)

≥ Ik∗(t), µk∗ < Ik∗nk∗ ≥
t

2K

)
+ Pr (µk∗ > Ik∗(t)) +

Pr
(

m2(t) = k, nk∗ ≥
t

2K
,W , E

)
(4.33)

≤ Pr

(
ϕ̂k,k∗ +

√
2 log t
nk∗(t)

≥ µk∗ , nk∗ ≥
t

2K

)
+ Kt−3 + Pr

(
m2(t) = k, nk∗ ≥

t
2K

,W , E
)

(4.34)

= Pr

(
ϕ̂k,k∗ − ϕk,k∗ ≥ µk∗ −

√
2 log t
nk∗(t)

, nk∗ ≥
t

2K

)
+ Kt−3+

Pr
(

m2(t) = k, nk∗ ≥
t

2K
,W , E

)
(4.35)

≤ t exp

−2
t

2K

(
µk∗ − ϕk,k∗ −

√
4K log t

t

)2
+ Kt−3 + Pr (m2(t) = k, E) (4.36)

≤ t−3 exp

(
∆2

min − 2∆min

√
4K log t

t

)
+ Kt−3 + Pr

(
m2(t) = k, nk∗ ≥

t
2K

,W , E
)

(4.37)

≤ t−3 + Kt−3 + Pr (m2(t) = k,W , E) ∀t > t0 (4.38)

Here (4.34) follows from Lemma 20. Inequality (4.36) follows as a result of hoeffding bound and the union

bound, as nk∗ can take any value between t
2K and t (Lemma 18). We get (4.37) as ϕk,k∗ < µk(2) as the arm k

is non-competitive.

We now bound Pr((m2(t) = k, E) separately. Under E , the crossUCB index Ũk∗ ,k∗
(

nk∗ , δ
2K

)
is larger

than µk∗ . Using similar steps as done for the first term we now evaluate the upper bound on the probability

that arm k to be selected as m2(t) at round t,

Pr
(

m2(t) = k, nk∗ ≥
t

2K
,W , E

)
≤ (4.39)
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≤ Pr

(
ϕ̂k,k∗ +

√
2 log t
nk∗(t)

≥ µk∗ , Ik∗(t) > µk∗ , nk∗ ≥
t

2K

)
+ Pr (µk∗ > Ik∗(t)) (4.40)

≤ t−3 + Kt−3 (4.41)

(4.42)

Combining this with (4.38), we get the result of Lemma 21.

Lemma 22. If ∆min ≥ 4
√

2K log t0
t0

for some constant t0 > 0, then,

Pr(m1(t) = k, nk(t) ≥ s, E) ≤ 2(K + 1)t−3 for s >
t

2K
, ∀t > t0.

Proof. By noting that m1(t) = k corresponds to arm k having the highest pseudoUCB index among the set

of active arms at round t (denoted by At), we have,

Pr(m1(t) = k, nk(t) ≥ s, E) = Pr(Ik(t) = arg max
k′∈At

Ik′(t), nk(t) ≥ s, E) (4.43)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s) . (4.44)

Here (4.44) follows from the fact that under E , k∗ is always in At (Section 4.9.6).

Pr(Ik(t) > Ik∗(t), nk(t) ≥ s) =

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) +

Pr (Ik(t) > Ik∗(t), nk(t) ≥ s|µk∗ > Ik∗(t))× Pr (µk∗ > Ik∗(t)) (4.45)

≤ Pr (Ik(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + Pr (µk∗ > Ik∗(t)) (4.46)

≤ Pr (Ik,k(t) > Ik∗(t), nk(t) ≥ s, µk∗ ≤ Ik∗(t)) + Kt−3 (4.47)

= Pr (Ik,k(t) > µk∗ , nk(t) ≥ s) + Kt−3 (4.48)

= Pr

(
µ̂k(t) +

√
2 log t
nk(t)

> µk∗ , nk(t) ≥ s

)
+ Kt−3 (4.49)

= Pr

(
µ̂k(t)− µk > µk∗ − µk −

√
2 log t
nk(t)

, nk(t) ≥ s

)
+ Kt−3 (4.50)

= Pr

(
∑t

τ=1 1{kτ=k}rτ

nk(t)
− µk > ∆k −

√
2 log t
nk(t)

, nk(t) ≥ s

)
+ Kt−3 (4.51)

≤ t exp

−2s

(
∆k −

√
2 log t

s

)2
+ Kt−3 (4.52)

≤ t−3 exp

(
−2s

(
∆2

k − 2∆k

√
2 log t

s

))
+ Kt−3 (4.53)
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≤ 2(K + 1)t−3 for all t > t0. (4.54)

We have (4.45) holds because of the fact that P(A) = P(A|B)P(B) + P(A|Bc)P(Bc), Inequality (4.47) follows

from Lemma 20 and from the fact that Ik(t) = minℓ Ik,ℓ(t). From the definition of Ik,k(t) we have (4.49).

Inequality (4.52) follows from Hoeffding’s inequality and the term t before the exponent in (4.52) arises as

the random variable nk(t) can take values from s to t (Lemma 18). Inequality (4.54) follows from the fact

that s > t
2K and ∆k ≥ 4

√
2K log t0

t0
for some constant t0 > 0.

Lemma 23. Let nm1
k (t) denote the number of times arm k has been sampled as m1(t) till round t. If ∆min ≥

4
√

2K log t0
t0

for some constant t0 > 0, then,

Pr
(

nm1
k (t) >

t
K

, E
)
≤ (K + 1)3

t2 ∀t > Kt0.

Proof. We expand Pr
(
nk(t) > t

K
)

as,

Pr
(

nm1
k (t) ≥ t

K
, E
)
= Pr

(
nm1

k (t) ≥ t
K

, E
∣∣∣nm1

k (t− 1) ≥ t
K

, E
)

Pr
(

nm1
k (t− 1) ≥ t

K
, E
)
+

Pr
(

m1(t) = k, nm1
k (t− 1) =

t
K
− 1, E

)
(4.55)

≤ Pr
(

nm1
k (t− 1) ≥ t

K
, E
)
+ Pr

(
m1(t) = k, nm1

k (t− 1) =
t
K
− 1, E

)
(4.56)

≤ Pr
(

nm1
k (t− 1) ≥ t

K
, E
)
+ (2K + 2)(t− 1)−3 ∀(t− 1) > t0. (4.57)

Here, (4.57) follows from Lemma 22. This gives us

Pr
(

nm1
k (t) ≥ t

K
, E
)
− Pr

(
nm1

k (t− 1) ≥ t
K

, E
)
≤ (2K + 2)(t− 1)−3, ∀(t− 1) > t0.

Now consider the summation

t

∑
τ= t

K

Pr
(

nm1
k (τ) ≥ t

K
, E
)
− Pr

(
nm1

k (τ − 1) ≥ t
K

, E
)
≤

t

∑
τ= t

K

(2K + 2)(τ − 1)−3.

This gives us,

Pr
(

nm1
k (t) ≥ t

K
, E
)
− Pr

(
nm1

k

(
t
K
− 1
)
≥ t

K
, E
)
≤

t

∑
τ= t

K

(2K + 2)(τ − 1)−3.
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Since Pr
(
nm1

k
( t

K − 1
)
≥ t

K , E
)
= 0, we have,

Pr
(

nm1
k (t) ≥ t

K
, E
)
≤

t

∑
τ= t

K

(2K + 2)(τ − 1)−3 (4.58)

≤ (K + 1)
(

t
K
− 2
)−2

∀t > Kt0. (4.59)

The last step (4.59) follows from the fact that ∑t
τ=t/K(τ − 1)−3 ≤

∫ ∞
τ=t/K−1(τ − 1)−3.

4.9.3 Probability of sampling a non-competitive arm at round t

For ease of presentation we denoteW to be the event that m1(t), m2(t) ̸= k∗.

Lemma 24. The probability of sampling a non-competitive arm at round t, jointly with the event E , is bounded as

Pr ((m1(t) /∈ C ∪m2(t) /∈ C),W , E) ≤ 2(K + 1)K
t3 +

K(K + 1)3

t2 ∀t > Kt0.

Proof.

Pr((m1(t) /∈ C ∪m2(t) /∈ C), E) =

Pr
(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t
K

)
+

Pr
(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) <

t
K

)
(4.60)

≤ Pr
(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t
K

)
+ Pr

(
nk∗(t) <

t
K

, E
)

(4.61)

≤ Pr
(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t
K

)
+ Pr

(
nm1

k∗ (t) <
t
K

, E
)

(4.62)

≤ Pr
(
(m1(t) /∈ C ∪m2(t) /∈ C),W , E , nk∗(t) ≥

t
K

)
+ ∑

k ̸=k∗
Pr
(

nm1
k (t) ≥ t

K
, E
)

(4.63)

≤ ∑
k/∈C

Pr
(
(m1(t) = k ∪m2(t) = k),W , E , nk∗(t) ≥

t
K

)
+ ∑

k ̸=k∗
Pr
(

nm1
k (t) ≥ t

K
, E
)

(4.64)

≤ 2(K + 1)K
t3 +

K(K + 1)3

t2 ∀t > Kt0 (4.65)

In (4.62), nm1
k∗ (t) denotes the number of times arm k∗ was samples as m1(t) till round t. As nm1

k∗ (t) < nk∗(t),

we have (4.62). The last step follows from Lemma 21 and Lemma 23.

4.9.4 Intermediate steps to analyse samples obtained from competitive arms

For k ̸= k∗, define τk to be the first integer such that B
(

nk, δ
2K

)
< ∆k

4 and define τk∗ = τk(2) . We call an

arm k to be GOOD at round t, if B
(

nk, δ
2K

)
≤ ∆k

4 , i.e., an arm is GOOD if it has been sampled significant
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number of times till round t, i.e., nk(t) ≥ τk. Otherwise, the arm is called BAD. We denote µref as
µk∗+µ

k(2)
2 ,

i.e., the average of the mean reward of best and second best arm. We will first show that an arm k ̸= k∗

being GOOD implies that its psuedoUCB index is below µref, i.e., nk > τk ⇒ Ũk,k

(
nk, δ

2K

)
< µref. Consider

Ũk,k

(
nk, δ

2K

)
for k ̸= k∗, nk > τk. Under E , we have

µ̂k + B
(

nk,
δ

2K

)
≤ µk + 2B

(
nk,

δ

2K

)
(4.66)

= µref + 2B
(

nk,
δ

2K

)
+

(µk − µk∗) + (µk − µk(2))

2
(4.67)

≤ µref + 2B
(

nk,
δ

2K

)
− ∆k

2
(4.68)

≤ µref (4.69)

Here (4.66) follows from the fact that, under E , µ̂k ≤ µk + Bk

(
nk, δ

2K

)
. The last step follows as arm k is

GOOD, i.e., B
(

nk, δ
2K

)
≤ ∆k

4 .

Using a similar argument for k∗, we can prove that Arm k∗ being GOOD, i.e., nk∗ > τk∗ ⇒ Lk∗
(

nk∗ , δ
2K

)
>

µref,. In addition to this, nk∗ > τk∗ (i.e., Arm k∗ being GOOD), also implies that Ũk,k∗ < µref for k /∈ C as we

present below. Under E , we have the bound on Ũk,k∗
(

nk∗ , δ
2K

)
= ϕ̂k,k∗ + B

(
nk∗ , δ

2K

)
, as follows,

ϕ̂k,k∗ + B
(

nk∗ ,
δ

2K

)
≤ ϕk,k∗ + 2B

(
nk∗ ,

δ

2K

)
(4.70)

≤ µk(2) + 2B
(

nk∗ ,
δ

2K

)
(4.71)

≤ µk(2) + 2
∆min

4
(4.72)

≤ µref (4.73)

The inequality (4.71) follows from the fact that arm k /∈ C, i.e., ϕk,k∗ < µk(2) . We now use this observation to

list four possible scenarios under which algorithm does not stop and bound each individual term to prove

the statement of Theorem 9.

Define R(t) to be the event that Ik∗(t) < µk∗ , i.e., R(t) = {Ik∗(t) > µk∗}. By Lemma 20, Pr(R(t)) ≤
Kt−3.

Lemma 25. If the algorithm has not stopped at round t and the event E holds true, at least one of the following occurs

1. Event R(t) does not occur,

2. m1(t) or m2(t) is Non-Competitive and m1(t), m2(t) ̸= k∗

3. (m1(t) = k∗ is BAD and m2(t) /∈ C) or (m2(t) = k∗ is BAD and m1(t) /∈ C)

4. m1(t), m2(t) ∈ C and either m1(t) is BAD or m2(t) is BAD.
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Proof. We prove this by contradiction. We consider the event that all the four cases listed above do not

occur jointly and show that such a situation cannot occur if algorithm has not stopped till round t under E .

The proof technique is inspired from the analysis done in [31] but needed some modification to prove the

result for C-LUCB algorithm in a correlated bandit environment. Let’s break down the scenario where all

of the four events listed in Lemma 25 do not occur and look at each of them individually.

Case 1:

{m1(t) = k∗, m1(t) is GOOD } ∩ {m2(t) ̸= k∗, m2(t) ∈ C, m2(t) is GOOD } ∩R(t) ∩ {t < T }.
We note the following two things in this case,

1. m1(t) = k∗ is GOOD⇒ Lk∗
(

nk∗ , δ
2K

)
> µref.

2. m2(t) = ℓ ̸= k∗ is GOOD⇒ Ũℓ,ℓ

(
nℓ, δ

2K

)
< µref.

As we have, Lk∗
(

nk∗ , δ
2K

)
> Ũℓ

(
nℓ, δ

2K

)
at round t, arm ℓ cannot belong the the set of active arms At and

hence cannot be selected as m2(t).

Case 2:

{m1(t) ̸= k∗, m1(t) ∈ C, m1(t) is GOOD } ∩ {m2(t) = k∗, m2(t) is GOOD } ∩R(t) ∩ {t < T }.
In case 2, we make the following observations

1. m1(t) = ℓ ̸= k∗ is GOOD⇒ Ũℓ,ℓ

(
nℓ, δ

2K

)
< µref.

2. m2(t) = k∗ is GOOD⇒ Lk∗
(

nk∗ , δ
2K

)
> µref.

As we have, Lk∗
(

nk∗ , δ
2K

)
> Ũℓ

(
nℓ, δ

2K

)
at round t, arm ℓ cannot belong the the set of active arms At and

hence cannot be selected as m1(t).

Case 3:

{m1(t) ̸= k∗, m1(t) ∈ C, m1(t) is GOOD} ∩ {m2(t) ̸= k∗, m2(t) ∈ C, m2(t) is GOOD} ∩R(t) ∩ {t < T }.
For case 3, we see that

1. m1(t) = ℓ1 ̸= k∗ is GOOD⇒ Ũℓ1,ℓ1

(
nℓ1 , δ

2K

)
< µref.

2. m2(t) = ℓ2 ̸= k∗ is GOOD⇒ Ũℓ2,ℓ2

(
nℓ2 , δ

2K

)
< µref, it further implies that

min
(

Iℓ2(t), Ũℓ2,ℓ2

(
nℓ2 , δ

2K

))
≤ µref.

As arm k∗ is not selected, it implies that either Ik∗(t) ≤ µref or Ũk∗ ,k∗
(

nk∗ , δ
2K

)
≤ µref. By R(t), Ik∗(t) ≥

µk∗ > µref and with event E , Ũk∗ ,k∗
(

nk∗ , δ
2K

)
> µk∗ > µref. This shows that case 3 cannot occur and leads

to a contradiction.

Case 4:

{(m1(t) = k∗ is GOOD, m2(t) = ℓ /∈ C) ∪ (m2(t) = k∗ is GOOD, m1(t) = ℓ /∈ C)} ∩R(t) ∩ {t < T }.
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For Case 4, we see from (4.69), (4.73) that

1. k∗ is GOOD⇒ Lk∗
(

nk∗ , δ
2K

)
> µref.

2. k∗ is GOOD⇒ Ũℓ,k∗
(

nk∗ , δ
2K

)
< µref.

As Ũℓ

(
δ

2K

)
< Ũℓ,k∗

(
nk∗ , δ

2K

)
< µref < Lk∗

(
nk∗ , δ

2K

)
, arm ℓ cannot be in the set of active arms at round t

and hence cannot be sampled at round t. Therefore, all the four cases listed above cannot occur and we

have a contradiction.

This proves the statement of Lemma 25, as at least one of the events listed in Lemma 25 must occur for

the algorithm to proceed further. This analysis follows similar steps as that in [31, 70] but needed further

modifications to prove statement for our C-LUCB algorithm.

Lemma 26. Let T(B) denote the total number of times that the events (3) or (4) of Lemma 25 occur. We have that

T(B) is upper bounded by ∑k∈C
ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

 under the event E .

Proof. We now bound T(B) under the event E ,

T(B) =
∞

∑
t=1

1

(
{m1(t) = k∗ is BAD, m2(t) /∈ C} ∪ {m2(t) = k∗is BAD, m1(t) /∈ C}

⋃
{m1(t) ∈ C is BAD or m2(t) ∈ C is BAD}

)
(4.74)

≤
∞

∑
t=1

1

(
({m1(t) is k∗ or m2(t) is k∗} ∩ {k∗ is BAD})

⋃
({m1(t) ∈ C is BAD or m2(t) ∈ C is BAD})

)
(4.75)

=
∞

∑
t=1

∑
k∈C

1

(
({m1(t) is k∗ or m2(t) is k∗} ∩ {k∗ is BAD})

⋃
= ({m1(t) is k or m2(t) is k} ∩ {k is BAD })

)
(4.76)

=
∞

∑
t=1

∑
k∈C

1 ({m1(t) is k or m2(t) is k} ∩ {k is BAD }) (4.77)

=
∞

∑
t=1

∑
k∈C

1 ({m1(t) is k or m2(t) is k} ∩ {nk(t) ≤ τk}) (4.78)

≤ ∑
k∈C

τk (4.79)

The last (4.79) holds from the fact that if nk(t) ≤ τk and m1(t) is k or m2(t) is k, then arm k gets sampled

and nk(t + 1) = nk(t) + 1, this can only occur τk times before nk(t) > τk. For anytime confidence intervals

B
(

nk, δ
2K

)
, first integer τk such that B

(
nk, δ

2K

)
< ∆k

4 is upper bounded by ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

 where



CHAPTER 4. BEST-ARM IDENTIFICATION IN CORRELATED BANDITS 130

ζ > 0 is a constant depending on the tightness of confidence interval B(nk, δ) [69]. The tighter the

confidence interval, smaller is the constant ζ. Due to this, we get a bound on T(B) under the event E as,

T(B) ≤ ∑
k∈C

ζ

∆2
k

log

2K log
(

1
∆2

k

)
δ

 .

As the probability of event E is at least 1 − δ, we get that T(B) ≤ ∑k∈C
ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

 with

probability 1− δ. In Section 4.5, we denoted T(C) as the total number of rounds in which m1(t), m2(t) ∈ C
and Ik∗(t) > µk∗ and similarly T(∗) as the total number of rounds in which m1(t) = k∗, m2(t) /∈ C or

m2(t) = k∗, m1(t) /∈ C. From Lemma 25, we note that T(∗) + T(C) is equivalent to T(B) on which we derived

a bound above. Due to this, T(C) + T(∗) = T(B) ≤ ∑k∈C
ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

 under the event E .

4.9.5 Proof of Theorem 9

We now bound the total number of rounds played by C-LUCB algorithm under the event E . From

Lemma 25, we note that if the algorithm has not stopped at round t under the event E , it implies that at

least one of the following events must be true at round t,

1. Event R(t) does not occur, i.e., Ik∗(t) < µ∗k

2. m1(t) or m2(t) is Non-Competitive and m1(t), m2(t) ̸= k∗,

3. (m1(t) = k∗ is BAD and m2(t) /∈ C) or (m2(t) = k∗ is BAD and m1(t) /∈ C)

4. m1(t), m2(t) ∈ C and either m1(t) is BAD or m2(t) is BAD.

From Lemma 20 we see that Pr(R(t)) ≤ K
t3 and the result from Lemma 24 gives us a bound on Pr((m1(t) /∈

C ∪m2(t) /∈ C), (m1(t), m2(t) ̸= k∗), E). The result from Lemma 26 shows that the third and fourth event

occur at most ∑k∈C
ζ

∆2
k

log

 2K log
(

1
∆2

k

)
δ

 times. Combining these, we get our desired bound on the sample

complexity result.

Proof.

E [T |E ] =
∞

∑
t=1

E [1(t = T |E)] (4.80)
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≤
∞

∑
t=1

1(R(t)|E) + E
[

T(B)|E)
]
+

∞

∑
t=1

E [1(m1(t) or m2(t) /∈ C, m1(t) and m2(t) ̸= k∗|E)] (4.81)

=
∞

∑
t=1

Pr(R(t), E)× 1
Pr(E) + E

[
T(B)|E)

]
+

∞

∑
t=1

Pr ((m1(t) or m2(t) /∈ C), m1(t) and m2(t) ̸= k∗, E)× 1
Pr(E) (4.82)

≤
∞

∑
t=1

1
1− δ

× K
t3 + ∑

k∈C

ζ

∆2
k

log

2K log
(

1
∆2

k

)
δ

+

Kt0

1− δ
+

1
1− δ

∞

∑
t=Kt0+1

(
2(K + 1)K

t3 +
K(K + 1)3

t2

)
(4.83)

≤ 3K
2(1− δ)

+
Kt0

1− δ
+

1
1− δ

×
(

2
t2
0
+

(K + 1)3

t0

)
+ ∑

k∈C

ζ

∆2
k

log

2K log
(

1
∆2

k

)
δ

 (4.84)

By noting that the C-LUCB samples two arms at each round, we get the sample complexity result stated

in Theorem 9.

4.9.6 Proof for Theorem 8

Proof. To prove Theorem 8, we define three events E1, E2 and E3 below. Let E1 be the event that empirical

mean of all arm lie within their confidence intervals uniformly for all t ≥ 1

E1 =

{
∀t ≥ 1, ∀k ∈ K, µ̂k(t)− B

(
nk(t),

δ

2K

)
≤ µk ≤ µ̂k + B

(
nk(t),

δ

2K

)}
(4.85)

Define E2 to be the event that empirical pseudo-reward of optimal arm with respect to all other arms lie

within their crossUCB indices uniformly for all t ≥ 1, i.e.,

E2 =

{
∀t ≥ 1, ∀ℓ ∈ K, ϕk∗ ,ℓ ≤ ϕ̂k∗ ,ℓ(t) + B

(
nℓ(t),

δ

2K

)}
(4.86)

Similarly define E3 to be the event that the empirical pseudo-reward of the sub-optimal arms with

respect to the optimal arm lies within their crossUCB indices uniformly for all t ≥ 1, i.e.,

E3 =

{
∀t ≥ 1, ∀ℓ ∈ K, ϕℓ,k∗ ≤ ϕ̂ℓ,k∗(t) + B

(
nk∗(t),

δ

2K

)}
(4.87)

Furthermore, we define E to be the intersection of the three events, i.e.,

E = E1 ∩ E2 ∩ E3. (4.88)
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Due to the nature of anytime confidence intervals (See (4.2)) and union bound over the set of arms, we

have Pr(E c
1) ≤ δ

2 , Pr(E c
2) ≤ δ

4 and Pr(E c
3) ≤ δ

4 giving us Pr(E c) ≤ δ. We now show that under the event E ,

the C-LUCB algorithm cannot stop with an arm k ̸= k∗. We do that through a proof by contradiction.

Suppose, the algorithm stops with arm k ̸= k∗, i.e., arm k is the only arm in set At. In such a scenario,

∃τ, k ̸= k∗ : Ũk∗
(

τ, δ
2K

)
< Lk

(
τ, δ

2K

)
. This can only occur if one of the following events occur,

1. Ũk∗ ,k∗
(

τ, δ
2K

)
< Lk

(
τ, δ

2K

)
)

2. Ũk∗ ,ℓ

(
τ, δ

2K

)
< Lk

(
τ, δ

2K

)
ℓ ̸= k∗

See that under the event E , Ũk∗ ,ℓ

(
τ, δ

2K

)
> µk∗ and Lk

(
τ, δ

2K

)
< µk ∀τ, k. This shows that under the

event E , Ũk∗
(

τ, δ
2K

)
> Lk

(
τ, δ

2K

)
∀k, τ as µk∗ > µk ∀k ̸= k∗. This implies that the algorithm returns

the best arm with probability at least 1− δ as Pr(E c) ≤ δ.

4.9.7 1− δ Correctness of C-LUCB++

We now show that the C-LUCB++ algorithm declares the arm k∗ as the best arm with probability at least

1− δ.

Proof. To prove the correctness of C-LUCB++, we use similar arguments as done in the proof of Theorem 8

for the C-LUCB algorithm. In particular, we define an event E+ that holds true with at least 1− δ probability

and show that the C-LUCB++ algorithm always stops with the best arm under the event E+.

We define three events E+1 , E+2 and E+3 below. Let E+1 be the event that empirical mean of all arm k ̸= k∗

lie within their confidence intervals uniformly for all t ≥ 1

E+1 =

{
∀t ≥ 1, ∀k ∈ K, µ̂k(t)− B

(
nk(t),

δ

3K

)
≤ µk ≤ µ̂k + B

(
nk(t),

δ

3K

)}
(4.89)

Define E+2 to be the event that empirical pseudo-reward of optimal arm with respect to all other arms lie

within their confidence intervals uniformly for all t ≥ 1, i.e.,

E+2 =

{
∀t ≥ 1, ∀ℓ ∈ K, ϕk∗ ,ℓ ≤ ϕ̂k∗ ,ℓ(t) + B

(
nℓ(t),

δ

3K

)}
(4.90)

Additionally, define E+3 as the event where empirical mean of arm k∗ lies below the upper confidence

index of arm k∗ (constructed with width δ/4) uniformly for all t ≥ 1, i.e.,

E+3 =

{
∀t ≥ 1, µk∗ ≤ µ̂k∗(t) + B

(
nk∗(t),

δ

4

)}
(4.91)

Furthermore, we define E+ to be the intersection of the three events, i.e.,

E+ = E+1 ∩ E+2 ∩ E+3 (4.92)
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Due to the nature of anytime confidence intervals (See (4.2)) and union bound over the set of arms, we

have Pr(E+1 ) ≥ 1− δ
3 , Pr(E+2 ) ≥ 1− δ

6 and Pr(E+3 ) ≥ 1− δ
2 , giving us Pr(E+) ≥ 1− δ. We now show that

under the event E+, the C-LUCB++ algorithm cannot stop with an arm k ̸= k∗. We do that through a proof

by contradiction.

Suppose, the algorithm stops with arm k ̸= k∗, i.e., arm k is the only arm in setAt or maxℓ ̸=k Ũℓ,ℓ

(
τ, δ

4

)
<

Lk

(
δ

4K

)
. In such a scenario, ∃τ, k ̸= k∗ : Ũk∗

(
τ, δ

3K

)
< Lk

(
τ, δ

3K

)
or Ũk∗ ,k∗

(
τ, δ

4

)
< Lk

(
δ

4K

)
This can only

occur if one of the following events occur,

1. Ũk∗ ,k∗
(

τ, δ
4

)
< Lk

(
τ, δ

4K

)
< Lk

(
τ, δ

4K

)
2. Ũk∗ ,ℓ

(
τ, δ

3K

)
< Lk

(
τ, δ

3K

)
ℓ ̸= k∗

See that under the event E+, Ũk∗ ,ℓ

(
τ, δ

3K

)
> µk∗ , Ũk∗ ,k∗

(
τ, δ

4

)
< µk∗ and Lk

(
τ, δ

3K

)
< µk ∀τ, k. This

shows that under the event E+, Ũk∗ ,k∗
(

τ, δ
4

)
> Lk

(
τ, δ

3

)
∀k, τ and Ũk∗ ,ℓ

(
τ, δ

3K

)
> Lk

(
τ, δ

3K

)
∀ℓ ̸= k∗

as µk∗ > µk ∀k ̸= k∗. This implies that the algorithm returns the best arm with probability at least 1− δ

as Pr(E+) ≥ 1− δ.



Chapter 5

Correlated Combinatorial Bandits for Online

Resource Allocation

In the last couple of chapters, we have established our proposed correlated multi-armed bandit framework

and demonstrated its application in the context of recommendation systems. In this chapter, we further

demonstrate the utility of our propose correlated bandit framework by solving online resource allocation

problems, which frequently arise in tasks such as power allocation in wireless systems, financial optimiza-

tion and multi-server scheduling. This is done by extending our framework and algorithms to the setting

of online resource allocation. We begin our discussion by first understanding the online resource allocation

problem. We then establish connections of this problem with the correlated multi-armed bandit framework

proposed in this thesis.

5.1 Introduction

5.1.1 Background and Motivation

Resource allocation is a fundamental challenge that arises in wide ranging applications, including wireless

networks [80, 81], computer systems [82], multi-server scheduling [83] and financial optimization [84]. In

the case of financial optimization, the company needs to decide the investment of its limited financial

budget across different products with the goal of maximizing its overall revenue. In the context of power

allocation in multi-channel wireless systems, the goal is to maximize the throughput of the system by

allocating the power across different available channels. In such problems, the task is to distribute a limited

budget (i.e., money, power, etc.) among available entities (i.e., product teams, channel etc.) with the objective

of maximizing the reward attained (i.e., revenue, throughput, etc.). These budget allocation problem can be

134
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framed as the following optimization problem,

maximize
S=(a1,a2,...aK)

K

∑
k=1

fk(ak)

subject to
K

∑
k=1

ak ≤ Q, ak ∈ A,

(5.1)

with S being the budget allocation vector (a1, a2, . . . aK) and Q representing the total available budget. The

function fk(ak) represents the reward attained from entity k upon allocating a budget of ak to entity k. This

budget is selected from a set A which may or may not be countable. Depending on the problem setting,

the reward functions fk may or may not be known. For instance, under the financial optimization example,

the company distributes its total budget of Q among K different products with the goal of maximizing the

total revenue, which is the sum of revenue fk(ak) from individual products. In this example, the reward

function fk(ak) may not be known. In the power allocation problem for wireless systems, a total power of

Q needs to be distributed across K different channels, and the throughput at each channel depends on the

power allocated to that channel and is typically known as a function of the power allocated to the channels.

Moreover, in these problems, the reward obtained upon allocating a budget of ak to entity k may be

random and may depend on the underlying randomness associated with entity k. For instance, the revenue

of the product may depend on the underlying unknown demand/market factors. Similarly, in the power

allocation problem, with allocated power ak, the throughput at channel k is log
(

1 + ak
Xk

)
, where Xk is the

background noise associated with channel k and is random. As a result, the problem of budget allocation

would now be

maximize
S=(a1,a2,...aK)

E

[
K

∑
k=1

fk(ak, Xk)

]

subject to
K

∑
k=1

ak ≤ Q, ak ∈ A.

(5.2)

In this scenario, the optimization problem can be solved if

E [ fk(ak, Xk)] is known for all (ak, k) pairs, i.e., the mean reward of each entity k is known at all budget

allocations ak for entity k. In view of this, we refer to (5.2) as the offline budget allocation problem. In practice,

the reward function may be unknown and the Xk’s may be unknown parameters in the reward function.

For instance, in the financial optimization, the reward obtained for a given budget allocation ak for product

k may depend on underlying market conditions Xk and one may not know the corresponding reward

function fk. As a result, E [ fk(ak, Xk)] remains unknown. In the power allocation example, Xk corresponds

to the background noise, which is a latent variable whose distribution is unknown, and correspondingly

one does not know E [ fk(ak, Xk)] a priori.

Motivated by this, we study the online resource allocation problem, where the goal is to sequentially

decide a budget allocation St = (a1,t, a2,t . . . ak,t, . . . ak,t) for each round t, so as to maximize the cumulative
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reward attained over a total of T rounds. To perform this allocation, there is a need to estimate E [ fk(ak, Xk)]

for each (ak, k) pair and subsequently use these estimates to decide a budget allocation St that generates

the maximum possible reward in round t. When deciding a budget allocation St, the decision-maker has

two conflicting goals. Firstly, the allocation St should try to gather as much information as possible about

the unknown reward distributions (exploration), and secondly the allocation should try to maximize the

reward in each round (exploitation).

Resource allocation as a combinatorial bandit problem. In order to balance this exploration-exploitation

trade-off, we can view the online resource allocation problem as a combinatorial bandit problem, which is a

variant of the classical multi-armed bandit (MAB) problem [1, 30]. Under the classical multi-armed bandit

framework, the decision-maker is faced with M different base arms whose distributions are unknown and

the goal is to maximize the long-term cumulative reward over a total of T rounds by selecting one amongst

the available M base arms in each round t and observing its reward. Under the combinatorial bandit

framework [85], the decision-maker can select multiple base arms in a given round from a given pre-defined

set and observe the reward for each of the selected base arms. By viewing the allocation of budget ak to

entity k as a base arm (ak, k), we can view the online resource allocation problem as a combinatorial bandit

problem [85]. The underlying distribution of the reward of each base arm (ak, k), i.e., fk(ak, k), is unknown

and the goal is to maximize the cumulative reward over a total of T rounds by selecting K different base

arms in each round t, i.e., one corresponding to each entity k. Upon the budget allocation, we receive

rewards for all the base arms selected in round t, which is then used to decide the budget allocation in

round t + 1. By modeling the resource allocation problem as a combinatorial multi-armed bandit problem,

we can use the existing combinatorial bandit algorithms to solve the resource allocation. However, these

algorithms do not exploit the structural correlations in reward functions fk(ak, Xk). Taking advantage of

these correlations is the main challenge of our work.

5.1.2 Main contributions

Novel correlated combinatorial bandit framework for online resource allocation. The combinatorial

bandit framework described above considers the reward obtained for different base arms to be independent

of each other. However, in the context of resource allocation, the rewards may be correlated in two ways.

i) the rewards received for one entity k at budget i and for the same entity k at budget j are likely to be

correlated. For instance, in the power allocation example, the throughput observed at channel k under

power i gives some information on what the throughput would have been if power j were allocated to

channel k. ii) the rewards received across two different entities may also be correlated. In the financial

optimization example, the revenue obtained from product k under budget i may give some information
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on what the revenue would have been at product ℓ under budget j. This may occur if the sales of two

products are related to one another. In this work, we model such correlations through pseudo-rewards,

which are upper bounds on conditional expected reward of each base-arm (j, ℓ) given reward sample of

base-arm (i, k). In the financial optimization example, this amounts to the knowledge of the form "what is

the maximum revenue the company can expect from product ℓ at budget j given the observed revenue of

product k under budget i?". The details of this framework are presented in Section 5.2.

Correlated and Combinatorial UCB. For this novel framework, we propose the correlated upper confidence

bound algorithm for online resource allocation. It makes use of the correlations across base-arms to select

an allocation St that balances the task of gaining information about the reward distributions of fk(ak, Xk)

for each (ak, k) pair and maximizing the expected reward in round t based on the available information.

More specifically, it computes an upper confidence bound on E [ fk(ak, Xk)] for each (ak, k) pair through

the reward samples observed of fk(ak, Xk) observed till round t. These reward samples may be obtained

directly from the past reward samples of base arm (ak, k) or indirectly through the pseudo-rewards of base

arm (ak, k) from the past reward samples of other base arms (j, ℓ). These upper confidence bounds on

E [ fk(ak, Xk)] are then used to select an allocation St to be played in round t + 1. The proposed algorithm

is detailed in Section 5.3. As our proposed approach makes use of the correlation information in selection

of St, as opposed to prior work which were correlation-agnostic, we observe significant performance gains.

Reduction in cumulative regret through correlations. We evaluate our proposed algorithm in terms of

the cumulative regret, which is defined as the difference between the total reward obtained by our online

algorithm and the total reward obtained by the optimal offline solution, where the offline problem has

complete knowledge about the joint distribution of X. We introduce novel proof techniques to analyze

the regret, and show that the regret of our proposed algorithm is C ·O(log T) where 0 ≤ C ≤ KA, with

A denoting the size of the set A from which budget ak is allocated to each entity. This is a significant

improvement over approaches that are agnostic to correlation [21], which have a regret of the form of

KA ·O(log T). In a lot of practical settings, C = 0, which implies that our proposed algorithm achieves

a bounded regret. This is an order-wise improvement over correlation-agnostic approaches as shown in

Section 5.4.

Synthetic experiments on real-world problems. We validate the performance of our algorithm by

evaluating it on three practical problems in Section 5.6. We conduct experiments for i) the power allocation

problem in wireless systems, ii) channel assignment in slotted ALOHA protocol and iii) scheduling of jobs

in a multi-server system. For all the three problems, we see that using our correlated and combinatorial UCB

algorithm achieves significant improvement in performance relative to correlation agnostic approaches.
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5.1.3 Related works

The classical offline resource allocation problem, i.e., the setting where the distributions of fk(ak, Xk) are

known, has been extensively studied for decades [80, 86, 87] and has been applied in several application

settings such as financial optimization [84], wireless systems [81, 80], scheduling in multi-server systems

[88] etc. Recently, the online resource allocation problem has attracted much attention as the distribution of

rewards fk(ak, Xk) is typically unknown in practice [89, 90, 91, 21]. First, the online resource allocation

problem was studied in a setting where the reward functions fk(ak, Xk) were assumed to be linear [89, 92].

This was extended by [91], as they assume the reward functions to be concave. More recently, [21] studied

this problem in the most general setting by placing no restriction on the type of reward functions fk(ak, Xk).

In [21], the online resource allocation is modeled as a combinatorial multi-armed bandit problem by

viewing the allocation of budget ak to entity k as a base arm. Subsequently, they extend the UCB algorithm

for combinatorial bandits [93] to the online resource allocation problem. The action space A in [21] is

allowed to be countable, unlike [93] which restricted the action space to be binary. A drawback of the

approach in [21] is that it considers the rewards corresponding to different base arms to be independent of

each other, and does not make use of the fact that the reward obtained from one base arm may give some

information on what the reward would have been for a different base arm.

In this work, we fill this gap by proposing our correlated combinatorial bandit framework to study

the online resource allocation in the most general setting. To the best of our knowledge, this is the first

work that models the correlation in a combinatorial bandit framework. The idea of capturing correlations

in reward across different arms was previously studied in the context of classical multi-armed bandits,

i.e., the setting where only one base-arm is played in each round t, in [54, 94]. We extend this idea to the

combinatorial bandit framework, where multiple base-arms may be played in each round t, and propose

the correlated UCB algorithm for online resource allocation. The extension is non-trivial as the classical

multi-armed bandit and combinatorial bandit often require different design of algorithms and regret

analysis due to selection of multiple base arms within provided constraints as opposed to the selection of

single base arm in each round t. Upon doing so, we are able to exploit the correlations to obtain significant

performance improvements as demonstrated in Section 5.4, 5.6. To the best of our knowledge, this is the

first work to show that O(1) regret can be achieved in certain online resource allocation problems.
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5.2 Problem Setup

5.2.1 Offline Resource Allocation

Consider the offline resource allocation problem where a decision-maker splits the available budget among

K different entities. For each entity k ∈ [K], the decision-maker needs to decide a budget ak ∈ A, where A
is the feasible budget space. Notice that the budget space A could be either discrete (e.g., N) or continuous

(e.g., R≥0). We focus on the discrete action space first and then consider the case of continuous action space

separately in Section 5. We denote the overall budget allocation vector as S = (a1, · · · , aK). We consider a

general reward function fk(ak, Xk) for each entity k, where Xk (which can be discrete or continuous) is a

hidden random variable which reflects the random fluctuation of the obtained reward within entity k. We

also consider m general constraints, denoted as hi(S) ≤ 0, i = 1, 2, · · · , m.

For the offline setting where the joint distribution D = (D1, . . . , DK) of X = (X1, X2 . . . XK) is known,

our goal is to maximize the expected total reward collected from all entities, which we denote by r(S, D) =

E
[
∑K

k=1 fk(ak, Xk)
]
. This can be formulated as the following optimization problem.

maximize
S=(a1,··· ,aK)

E

[
K

∑
k=1

fk(ak, Xk)

]

subject to hi(S) ≤ 0, i = 1, 2, · · · , m

ak ∈ A, ∀k ∈ [K]

(5.3)

The above formulation is a general version of (1) and (2) which contain just one constraint h1(S) =

∑k ak − Q. We could have more complex constraints on S through hi(S), e.g., maxkak −W ≤ 0. These

constraints on budgets are known to the decision-maker. For instance, if fk(ak, Xk) is convex over ak, hi(S)

is convex over S, and A is a convex set, it becomes a convex optimization problem that might be solved

exactly; if A is a discrete set, it can be a NP-hard combinatorial optimization problem.

As the reward functions fk()̇ may not be known in practice (e.g., the financial optimization example

in Section 5.1), we do not specify the exact form of the reward functions fk(ak, Xk) and consider them to

be unknown. We assume that there exists an offline approximation oracle A, which outputs an allocation

SO such that r(SO , D) ≥ α · opt(D), where α is the approximation ratio and opt(D) = supS r(S, D) is the

optimal solution to the budget allocation problem. The oracle can output such an allocation if E [ fk(ak, Xk)]

is known for all (ak, k) ∈ A×K.
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5.2.2 Online Resource Allocation as a Combinatorial Bandit Problem

Now we introduce the online version of the resource allocation, which is a sequential decision making

problem. In each round t, we allocate ak,t budget to each entity k, subject to the budget constraints,

hi(S) ≤ 0, i = 1, 2, · · · , m. We then obtain fk(ak,t, Xk,t) reward from each entity k, where Xk,t is sampled

from an unknown distribution Dk. The total reward obtained in round t is ∑K
k=1 fk(ak,t, Xk,t). Our goal is to

accumulate as much total reward as possible through this sequential budget allocation.

We denote the overall budget allocation in round t as St = (a1,t, · · · , aK,t) and the joint distribution

of all Xk,t’s as D = (D1, . . . , DK). We define the expected total reward obtained in round t as r(St, D) =

E
[
∑K

k=1 fk(ak,t, Xk,t)
]
. We consider a learning algorithm π that makes the budget allocation Sπ

t in round

t. We can measure the performance of π by its (expected) regret, which is the difference in expected

cumulative reward between always taking the best offline allocation and taking the budget allocation

selected by algorithm π. The best offline allocation can be obtained through the offline oracle O, which

knows the underlying joint distribution D, and attains r(SOt , D) ≥ α · opt(D). In view of that, we use the

following approximation regret for T rounds:

Regπ
α (T; D) = T · α · opt(D)−∑T

t=1 r(Sπ
t , D). (5.4)

Since the obtained reward fk(ak, Xk) of entity k is determined by the allocated budget ak, following

the combinatorial multi-armed bandit framework [85], we can view allocating budget i to entity k as a

base arm and denote it as (i, k). The overall budget allocation St can be considered as a super arm that

consists of multiple base arms. For each base arm (i, k), we denote the expected reward of playing it as

µi,k = EXk,t∼Dk [ fk(i, Xk,t)]. We can rewrite the expected total reward obtained in round t:

r(St, D) = E

[
K

∑
k=1

fk(ak,t, Xk,t)

]
=

K

∑
k=1

∑
i∈A

µi,k · 1{ak,t = i}, (5.5)

Note that the expected total reward depends only on the mean rewards of base arms (i, k), therefore we

can re-write the expected total reward as

r(St, µ) =
K

∑
k=1

∑
i∈A

µi,k · 1{ak,t = i}. (5.6)

If the mean rewards µi,k of individual base arms (i, k) were known, then one can use the offline oracle

to obtain the optimal budget allocation in each round. As the mean rewards of individual base arms are

unknown, they need to be estimated from the historical observations until round t. The mean reward of

the base arm (i, k) can be estimated either through the past samples in which budget i was allocated to

entity k, or through the side information collected from other observations. We discuss the latter next.
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Figure 5.1: The rewards corresponding to a base arm (i, k), i.e., budget i to entity k, is a function of the
allocated budget i and underlying randomness Xk associated with entity k. The rewards for base arms
(i, k) and (j, k), i.e., different budget allocations within entity k, are correlated through Xk. There may be
also correlation in the rewards across different entities if X1, X2, . . . XK are correlated.

5.2.3 Proposed Correlated Combinatorial Bandit Framework

In several application settings, there may be some information on the knowledge of reward functions

fk(ak, Xk). As a result, the knowledge of the reward from one base arm (i, k) may provide some information

on the reward that would have been obtained from entity k if budget j was allocated to entity k. This is

illustrated in Figure 5.1. For instance, in the power allocation example, where the objective is to allocate the

total power Q among K different channels to maximize the total throughput, the throughput at channel

k is given by log
(

1 + ak,t
Xk,t

)
. Here, ak,t represents the power allocated in channel k and Xk denotes the

hidden noise in channel k at round t. As the expression of throughput, i.e., the reward function f (ak, Xk),

is known, the throughput in channel k at power i provides some information on what the reward would

have been if power j was allocated to channel k. More generally, rewards obtained from one base arm

(i, k) may provide some information on the reward of another base arm (j, ℓ). As a result, the rewards

corresponding to different base arms are correlated. We capture the presence of such correlations in the

form of pseudo-rewards, as defined below:

Definition 16 (Pseudo-Reward). Suppose that we sample the base arm (i, k) and observe reward r. We call a

quantity s(j,ℓ),(i,k)(r) as the pseudo-reward of base arm (j, ℓ) with respect to base arm (i, k) if it is an upper bound on

the conditional expected reward of base arm (j, ℓ), i.e.,

E[ fℓ(j, Xℓ) | fk(i, Xk) = r ] ≤ s(j,ℓ),(i,k)(r). (5.7)

For convenience, we set s(j,ℓ),(j,ℓ)(r) = r ∀j, ℓ.

When no information is known, pseudo-rewards between two base arms are not known, then they

can be set equal to the maximum possible reward. This makes our formulation quite general and in fact



CHAPTER 5. CORRELATED COMBINATORIAL BANDITS FOR ONLINE RESOURCE ALLOCATION 142

subsumes the correlation agnostic combinatorial framework studied in [21], the connection will be made

explicit through Remark 12 in Section 5.3. Next, we show how the pseudo-rewards can be evaluated in

practice.

Obtaining pseudo-rewards from reward correlations within the same entity. These pseudo-rewards can

be evaluated easily in several different practical settings. For instance, if the form of the functions fk(ak, Xk)

is known, then the pseudo-reward of base arm (j, k) with respect to base arm (i, k) can be obtained as

s(j,k),(i,k)(r) = max
Xk

fk(j, Xk) s.t. fk(i, Xk) = r. (5.8)

Note that pseudo-rewards can be obtained even in the scenario where only probabilistic upper and lower

bounds on fk(ak, Xk) are known, i.e., f
k
(ak, Xk) ≤ fk(ak, Xk) ≤ f̄k(ak, Xk) w.p. 1− κ. In this scenario, we

can construct pseudo-rewards as follows:

s(j,k),(i,k)(r) = (1− κ)2×
(

max
{Xk : f

k
(i,Xk)≤r≤ f̄k(i,Xk)}

f̄k(j, Xk)

)
+ (1− (1− κ)2)×M, (5.9)

where M is the maximum possible reward that a base arm can provide. We evaluate this pseudo-reward by

first identifying the range of values within which Xk lies based on the reward with probability 1− κ. The

maximum possible reward of the base arm (j, k) within the identified range of Xk is then computed with

probability 1− κ. Due to this, with probability (1− κ)2, conditional reward of base arm (j, k) is at most

maxXk : f
k
(i,Xk)≤r≤ f̄k(i,Xk)

f̄k(j, Xk). As the maximum possible reward is M otherwise, we get (5.9).

Obtaining pseudo-rewards from reward correlation across entities. In the most general scenario, there

may be knowledge of reward correlations across entities as shown in Figure 5.2. This can occur if the

random variables Xk and Xℓ, i.e., the hidden random variables corresponding to two different entities k

and ℓ, are correlated. These correlations can be incorporated in our framework through pseudo-rewards

s(j,ℓ),(j,k), which are an upper bound on the conditional expected reward. For instance, in the application

of financial optimization, the company may invest its total budget among different products. As the

performance of different products are likely to be correlated, the reward feedback under budget i for

product k may inform something about the reward feedback for product ℓ under budget j. Such correlations

can be modeled through pseudo-rewards, which may either be known from domain knowledge or from

previously performed controlled experiments. For example, based on previously performed experiments, it

may be known that the expected reward obtained from product ℓ under budget j is at most y whenever

the reward obtained for product k under budget i is x. Note that in this modeling, one does not need to

explicitly capture what the inherent randomness Xk represents and its corresponding values. This is a key

strength of our proposed framework, as in a several applications Xk could be hard to interpret and model.

For instance, in the financial optimization example, Xk may represent underlying market conditions which
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Figure 5.2: Upon observing a reward r from a base arm, pseudo-rewards s(j,ℓ),(i,k)(r), give us an upper
bound on the conditional expectation of the reward from base arm (j, ℓ) given that we observed reward r
from arm (i, k). Reward received for entity k at a given budget i may provide some information on what
the reward would have been if budget j were allocated to entity k, leading to correlations within entity. The
rewards of different entities may also be correlated.

are complex and subsequently the reward functions fk(ak, k) are also unknown. Even in such settings, the

pseudo-reward based framework allows one to capture the correlation across different base arms.

5.3 Proposed Algorithm

We now propose the correlated-Upper Confidence Bound algorithm for resource allocation (corr-UCB-RA)

that uses existing correlation in rewards across base arms to maximize the long-term cumulative reward.

Before describing our algorithm, we first review the UCB algorithm for resource allocation (UCB-RA)

proposed in [21].

5.3.1 The UCB algorithm for resource allocation

In order to solve the online resource allocation problem, the UCB-RA algorithm maintains a set of base

arms {(k, a) | k ∈ [K], a ∈ A}, where the total number of base arms is equal to KA, with A denoting the

size of the discrete set A. If the mean reward of each base arm were known, then the resource allocation

problem can be easily solved by the use of the available offline oracle O, which produces an allocation

SOt such that r(SOt , µ) ≥ α · opt(µ). As the underlying mean rewards of the base arms are unknown, the

UCB-RA algorithm maintains the empirical mean µ̂i,k(t) for each base arm (i, k) at round t. Using these

empirical means, it then computes an upper confidence bound (UCB) index for each base arm (i, k) as

Ui,k(t) = µ̂(i,k)(t) +

√
2 log t

n(i,k)(t)
,
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where n(i,k)(t) denotes the number of times budget i was allocated to entity k. UCB-RA algorithm then

feeds these upper confidence indices of the base arms to the available offline oracle and obtains an allocation

St = (a1,t, a2,t, . . . aK,t). It then uses this allocation for round t and observes the feedback of fk(ak,t, Xk,t)∀k.

Note that the upper confidence indices are large if base arm (i, k) has a large empirical mean reward or

if it has been sampled fewer times relative to other base arms. The algorithm description is presented in

Algorithm 6.

5.3.2 The proposed correlated-UCB algorithm for resource allocation

Under the correlated combinatorial bandit framework, the pseudo-reward for base arm (j, ℓ) with respect

to the base arm (i, k) provides an estimate on the reward of base arm (j, ℓ) based on the reward obtained

from base arm (i, k). We now define the notion of empirical pseudo-reward, which can be used to obtain

an optimistic estimate of µ(j,ℓ) through just reward samples of base arm (i, k).

Definition 17 (Empirical and Expected Pseudo-Reward). After t rounds, a base arm (i, k) is sampled n(i,k)(t)

times. Using these n(i,k)(t) reward realizations, we can construct the empirical pseudo-reward ϕ̂(j,ℓ),(i,k)(t) for each

base arm (j, ℓ) with respect to base arm (i, k) as follows.

ϕ̂(j,ℓ),(i,k)(t) ≜
∑t

τ=1 1(i,k)∈St
s(j,ℓ),(i,k)( fk(i, Xk,t))

n(i,k)(t)
, (5.10)

(j, ℓ) ∈ K ×A \ {(i, k)}. (5.11)

The expected pseudo-reward of base arm (j, ℓ) with respect to base arm (i, k) is defined as

ϕ(j,ℓ),(i,k) ≜ E
[
s(j,ℓ),(i,k)( fk(i, Xk))

]
. (5.12)

For convenience, we set ϕ̂(i,k),(i,k)(t) = µ̂(i,k)(t) and ϕ(i,k),(i,k) = µ(i,k). Note that the empirical pseudo-reward

ϕ̂(j,ℓ),(i,k)(t) is defined with respect to base arm (i, k) and it is only a function of the rewards observed by sampling

base arm (i, k).

Definition 18 (PseudoUCB Index U(j,ℓ),(i,k)(t)). We define the PseudoUCB Index of base arm (j, ℓ) with respect

to base arm (i, k) as follows.

U(j,ℓ),(i,k)(t) ≜ ϕ̂(j,ℓ),(i,k)(t) +

√
2 log t

n(i,k)(t)
(5.13)

Furthermore, we define U(j,ℓ)(t) = min(i,k) U(j,ℓ),(i,k)(t), the tightest of the KA upper bounds for base arm (j, ℓ).

At each round, the algorithm computes these pseudo-UCB indices U(j,ℓ) for each base arm (j, ℓ). These

indices are then fed to the oracle to obtain the budget allocation vector St at round t. At the end of each
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round we update the empirical pseudo-rewards ϕ̂(j,ℓ),(i,k)(t) for all (j, ℓ), the empirical reward for arm

(i, k) ∈ St, where St denotes the set of base arms played in round t. The description of this algorithm is

given in Algorithm 7.

Remark 12 (Reduction to Combinatorial Multi-Armed Bandits). When all pseudo-reward entries are unknown,

then all pseudo-reward entries can be filled with the maximum possible reward for each base arm, that is, s(i,k),(j,ℓ)(r) =

M ∀r, ℓ, k, i, j. In that case, the proposed Corr-UCB-RA algorithm reduces to the UCB-RA algorithm.

Algorithm 6 UCB for resource allocation with offline oracle O
1: Input: Constraints gi(S), Oracle O.
2: For each base arm (i, k) ∈ A×K, ni,k(t) ← 0. {maintain the total number of times base arm (i, k) is

played so far.}
3: for t = 1, 2, 3, . . . do
4: For each base arm (i, k) ∈ A×K, compute the UCB index

U(i,k)(t) = µ̂i,k(t) +

√
2 log t

n(i,k)(t)

5: St ← O((Ui,k(t))(i,k)∈A×K)
6: Take allocation St, observe feedback fk(ak,t, Xk,t)’s
7: For each k ∈ [K], update nak,t ,k, empirical mean rewards µ̂ak,t ,k
8: end for

Algorithm 7 Correlated UCB for resource allocation with offline oracle O
1: Input: Constraints gi(S), Oracle O.
2: For each base arm (i, k) ∈ A×K, ni,k(t) ← 0. {maintain the total number of times base arm (i, k) is

played so far.}
3: for t = 1, 2, 3, . . . do
4: For each base arm (j, ℓ) ∈ K ×A, evaluate its KA pseudoUCB indices U(j,ℓ),(i,k)(t) ≜ ϕ̂(j,ℓ),(i,k)(t) +

B
√

2 log t
n(i,k)(t)

5: For each (j, ℓ) ∈ A×K, U(j,ℓ)(t) = min(i,k) U(j,ℓ),(i,k)(t)
6: St ← O((Ui,k(t))(i,k)∈A×K)
7: Take allocation St, observe feedback fk(ak,t, Xk,t)’s
8: Update n(ak,t ,k), the empirical pseudo-rewards ϕ̂(j,ℓ),(i,k)(t) for all (j, ℓ), the empirical reward for base

arm (i, k) ∈ St
9: end for

5.4 Regret bounds and analysis

5.4.1 Main results

We now characterize the performance of our proposed algorithm in terms of regret (See eq (5.4)).

Regπ
α (T; D) = T · α · opt(D)−∑T

t=1 r(Sπ
t , D). (5.14)
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Here, r(Sπ
t , D) represents the expected total reward obtained in round t, which can be written as,

r(St, µ) = E

[
K

∑
k=1

fk(ak,t, Xk,t)

]
=

K

∑
k=1

∑
a∈A

µi,k · 1{i = ak,t}. (5.15)

For the regret analysis, we assume without loss of generality that the rewards are between 0 and 1 for

all base arms (i, k). Furthermore, we denote the oracle’s optimal budget allocation vector as S∗, i.e., the

allocation vector that provides an α-optimal solution to the offline resource allocation problem, where

E [ fk(ak, Xk)] is known for all base arms. For simplicity, we assume that there is a unique solution S∗ to the

offline resource allocation problem. Correspondingly, we denote the set of base arms selected in S∗ as the

set of optimal base arms S∗. To bound the regret, we rely on two properties of r(S, µ).

Property 1. (Monotonicity). The expected reward of playing any super arm St is monotonically increasing

with respect to the expectation vector of base arms, i.e., if for all (i, k) ∈ A × K, if µi,k ≤ µ′i,k, then we have

r(St, µ) ≤ r(St, µ′) ∀St.

Property 2. (Bounded Smoothness). ∃ an increasing function g(.) such that, if St is the super-arm selected in round

t and ||µSt − µ′
St
||∞ < λ, then

|r(St, µ)− r(St, µ′)| < g(λ).

Here, the infinity norm between µSt and µ′
St

is defined as

max(i,k)∈St
|µ(i,k) − µ′(i,k)| with St denoting the set of base arms played in round t.

It is easy to see that both properties hold from the definition of r(St, µ) in Eq. (5.5). Before stating

our main result for the correlated UCB algorithm, we first review the regret bound under the UCB-RA

algorithm [21].

Lemma 27. The regret for UCB-RA algorithm is upper bounded as

Regα(T, D) ≤ ∑
(i,k)∈K×A

∆(i,k)
min

 8 log T(
g−1

(
∆(i,k)

min

))2

+ 4KA∆max

= KA ·O(log T) + O(1), (5.16)

with ∆(i,k)
min = r(S∗, µ)−max(r(S, µ)|S ∈ SB, (i, k) ∈ A×K),

∆(i,k)
max = r(S∗, µ)−min(r(S, µ)|S ∈ SB, (i, k) ∈ A×K),

∆max = max
(i,k)∈A×K

∆(i,k)
max ,

where SB is the set of all sub-optimal super arms and S∗ is the oracle’s optimal allocation.



CHAPTER 5. CORRELATED COMBINATORIAL BANDITS FOR ONLINE RESOURCE ALLOCATION 147

The result follows from the intuition that after the UCB indices of all the base arms are relatively close

to their true mean rewards, the algorithm selects the budget allocation S∗ with high probability. Under the

UCB-RA algorithm, each base arm needs to be sampled O(log T) times to ensure that the UCB indices are

close to their true means. Due to which, the regret of UCB-RA algorithm is of the form of KA ·O(log T).

We formalize this intuition for both the UCB-RA and our proposed Corr-UCB-RA algorithms through the

following claim. This claim is a novel contribution of our work and it provides an alternative methodology

to analyse the generic combinatorial bandit formulation [85] as well.

Claim 1.

If U(i,k) ≥ µ(i,k) ∀(i, k) ∈ K ×A

and the UCB-RA and Corr-UCB-RA algorithms select a budget allocation St at round t where,

µ(i,k) ≤ U(i,k) < µ̄(i,k) ∀(i, k) ∈ St,

then St is equal to the oracle’s optimal allocation S∗.

Here, the thresholds µ̄(i,k) are defined as

µ̄(i,k) = µ(i,k) + g−1(∆(i,k)
min ).

Using this claim, we will show regret bounds for our proposed Corr-UCB-RA algorithm. To state our

results, we first define the notion of competitive and non-competitive base arms.

Definition 19 (Competitive and Non-Competitive base arms). If ϕ(j,ℓ),(i,k) ≤ µ̄(j,ℓ) for some (i, k) ∈ S∗ then

base arm (j, ℓ) is called Non-competitive, otherwise it is called Competitive. Here, S∗ denotes the set of base arms

played in the oracle’s optimal budget allocation vector S∗. Furthermore, we define pseudo-gap of a base arm (j, ℓ) as

∆̄(j,ℓ) = µ̄(j,ℓ) −max(i,k)∈S∗ ϕ(j,ℓ),(i,k).

Note that the pseudo-gap is greater than zero for non-competitive base arms and is less than or equal

to zero for competitive base arms. The definition of pseudo-gap is useful to state our regret bounds.

Intuitively, a base arm (j, ℓ) is non-competitive if it can be inferred that the mean reward of (j, ℓ) is smaller

than the threshold µ̄(j,ℓ) through just the samples of a base arm belonging to the oracle’s optimal budget

allocation S∗. In what follows, we refer to the total number of competitive base arms as C and the set of

competitive base arms as C. As mentioned earlier, the Corr-UCB-RA algorithm selects the budget allocation

S∗ with high probability if the indices of base arms U(i,k) are close to their true means. In the presence of

correlations, we show that this can be achieved by sampling competitive base arms O(log T) times and
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non-competitive base arms only O(1) times. This occurs as the non-competitive base arms can be identified

as sub-optimal based on samples of optimal base arms. We formalize this intuition to get the following

regret bound for our Corr-UCB-RA algorithm.

Theorem 10 (Upper Bound on Cumulative Regret). The expected cumulative regret of the Correlated-UCB

algorithm for resource allocation is upper bounded as

Regα(T, D) ≤ ∑
(i,k)∈C

∆(i,k)
max

 8 log T(
g−1

(
∆(i,k)

min

))2 + 2

 + ∑
(i′ ,k′)∈K×A\{C}

∆(i′ ,k′)
max (4KAt0 + 6(KA)3) +

2(KA)2∆max, (5.17)

= C ·O(log T) + O(1), (5.18)

where C ⊆ K ×A is set of competitive base arms with cardinality C, where t0 = inf
{

τ ≥ 2 : g−1
(

∆(i,k)
min

)
≥

4
√

2K log τ
τ ∀(i, k), ∆̄(i,k) ≥ 4

√
2K log τ

τ ∀(i, k) ∈ A×K \ C
}

.

We now present a proof of our Claim 1, which is then used to obtain the provide a proof sketch of

Theorem 10. The proof of Claim 1 is of independent interest as well as these techniques can be used to

analyse the regret of the UCB algorithm in generic combinatorial bandits as well (e.g., the combinatorial

UCB algorithm in [85]).

5.4.2 Proof Sketch

Proof of Claim 1. In total there are |K| × |A| base arms. Index these base arms with indices z in the set

{1, 2, . . . |K| × |A|} such that ∆(1)
min ≥ ∆(2)

min ≥ . . . ∆(z)
min ≥ . . . ≥ ∆(|K|×|A|)

min .

We consider a case where, µz ≤ Uz(t) < µz + g−1(∆(z)
min) ∀z ∈ St and Uz > µz∀z. Define y to be the

smallest index such that base arm y is selected in St. From definition of base arm y and through Property 2

we have,

||USt (t)− µSt ||∞ < g−1(∆(y)
min) (5.19)

⇒ |r(St, U(t))− r(St, µ)| < ∆(y)
min. (5.20)

As Uz(t) > µz ∀z, we have the following from the monotonicity condition (Property 1),

r(St, µ) + ∆(y)
min > r(St, U(t)) (5.21)

≥ r(S∗, U(t)) (5.22)

≥ r(S∗, µ) (5.23)



CHAPTER 5. CORRELATED COMBINATORIAL BANDITS FOR ONLINE RESOURCE ALLOCATION 149

Here, we have (5.22) as the allocation St is obtained from offline oracle and hence it is optimal for the UCB

index vector, and its expected reward is larger than the allocation S∗. (5.23) arises from the monontonicity

condition as Uz > µz∀z. This shows that if µz ≤ Uz(t) < µz + g−1(∆(1)
min) ∀z ∈ St and Uz > µz ∀z, then

the expected reward for the budget allocation St,

r(St, µ) > r(S∗, µ)− ∆(y)
min. (5.24)

As base arm y is selected in St, then by definition of ∆(y)
min,

max(r(St, µ)|St ∈ SB, (i, k) = y ∈ St) ≤ r(S∗, µ)− ∆(y)
min, (5.25)

which shows that the maximum reward that can be attained if the allocation St was sub-optimal and base

arm y was selected is upper bounded by r(S∗, µ)− ∆(y)
min. Upon comparing (5.25) and (5.24), we conclude

that if µz ≤ Uz(t) < µz + g−1(∆(z)
min) ∀z ∈ St and Uz > µz∀z, then the budget allocation vector St is equal

to S∗, which is the oracle’s unique optimal solution to the budget allocation problem.

Proof of Theorem 10. We now discuss the regret analysis of Theorem 10. In order to bound the regret, we

first define the notion of a responsible base arm.

Definition 20 (Responsible). A base arm (i, k) is said to be responsible at round t, if

1. It was selected in round t and

2. U(i,k)(t) ≥ µ̄(i,k)

By Claim 1, if a sub-optimal budget allocation was selected in round t, it implies that either U(i,k)(t) <

µ(i,k) for some (i, k) ∈ K ×A or at least one of the selected base arms in St was responsible. Therefore, the

expected number of rounds in which a sub-optimal allocation was played (referred to as bad rounds) can

be upper bounded by

E[Bad rounds(T)] ≤ ∑
(i,k)∈K×A

E[r(i,k)(T)]

+ ∑
(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T)], (5.26)

with r(i,k)(T) denoting the number of rounds for which base arm (i, k) is responsible up until round T

and nU(i,k)<µ(i,k)
(T) representing the number of rounds in which U(i,k)(t) < µ(i,k) for some (i, k) till round

T. This inequality arises as a result of the union bound and linearity of expectation. Moreover, whenever

arm (i, k) is responsible in round t, the regret incurred in that round can be upper bounded by by ∆(i,k)
max (by

definition of ∆(i,k)
max in Lemma 27). In scenarios where, U(i,k)(t) < µ(i,k) for some (i, k), the regret incurred in
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that round can be upper bounded by ∆max (by definition of ∆max in Lemma 27). Using this observation, we

can now bound the regret as

E[Reg(T)] ≤ ∑
(i,k)∈K×A

E[r(i,k)(T)]× ∆(i,k)
max

+ ∑
(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T)]× ∆max. (5.27)

Using Hoeffding’s inequality, it can be shown that the second term is upper bounded by an O(1)

constant, the details are presented in Lemma 33. To bound the regret in (5.27), we bound E
[
r(i,k)(T)

]
separately for non-competitive and competitive base arms. More specifically, we show that E

[
r(i,k)(T)

]
is

upper bounded by an O(1) constant for non competitive base arms and is O(log T) for competitive base

arms. There are two key components to show upper bounds on E
[
r(i,k)(T)

]
for non-competitive base arm

(i, k). Suppose the base arm is non-competitive with respect to (j, ℓ), i.e., ϕ(i,k),(j,ℓ) < µ̄(i,k) and (j, ℓ) ∈ S∗.

1. The probability of base arm (i, k) being responsible in round t jointly with the event that nj,ℓ(t) > 2t
3

is small.

Pr
(
(resp(i,k)(t), n(j,ℓ)(t) ≥

2t
3

)
≤ t−3 ∀t > 3KAt0.

This occurs as upon obtaining a large number of samples of base arm (j, ℓ), the expected pseudo-

reward of base arm (i, k) is smaller than µ̄(i,k) with high probability. As a result, the probability that

base arm (i, k) is responsible is small. The details of this can be seen in Lemma 31.

2. The probability that a sub-optimal budget allocation is made for more than t
3 times till round t is

upper bounded as,

Pr
(

Tsub-opt(t) ≥ t
3

)
≤ 6(KA)2

(
t

3KA

)−2
∀t > 3KAt0,

We show this in Lemma 35 through Lemma 32, Lemma 34 by showing that r(i,k)(T), which is the

number of rounds for which base arm (i, k) is responsible till round T, is smaller than t
3KA with high

probability. Additionally, nU(i,k)<µ(i,k)
(T), representing the number of rounds in which U(i,k)(t) < µ(i,k)

for some (i, k) till round T, is smaller than t
3 with high probability. Using these two arguments (1)

and (2) above, we bound the expected times a non-competitive base arm (i, k) is responsible until

round t in Lemma 36 as

E
[
r(i,k)(T)

]
≤ 3KAt0 +

T

∑
t=3KAt0

t−3 + 6(KA)2
(

t
3KA

)−2
(5.28)

= O(1). (5.29)
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Next, we bound the term E
[
r(i,k)(T)

]
for competitive sub-optimal arms. We do so in Lemma 37, by

showing that after base arm (i, k) has been sampled O(log T) times, the probability of base arm being

responsible at round t decays as t−2 and as a result E
[
r(i,k)(T)

]
is O(log T). This combined with (5.29),

leads to Theorem 10.

5.4.3 Discussion on the regret bound

Competitive and Non-competitive base arms. Recall that a base arm (i, k) is said to be non-competitive

if the expected pseudo-reward of base arm (i, k) with respect to some base (j, ℓ) ∈ S∗ is smaller than

µ̄(i,k). Note that the optimal set of arms S∗, reward distribution of individual base arms is unknown at the

beginning and as a result the Corr-UCB-RA initially does not know which base arms are competitive and

non-competitive.

Reduction in the effective set of base arms. Upon comparison with the regret of the UCB-RA algorithm,

from Lemma 27, we see that our proposed algorithm reduces the regret from KA×O(log T) to C×O(log T),

since only C out of the total KA need to be sampled O(log T) times before the condition in Claim 1 is met

with high probability. As a result, the Corr-UCB-RA only explores C out of the KA base arms explicitly

and effectively reduces the problem with KA base arms to one with C base arms.

Bounded regret in certain settings. Whenever the set C is empty, the proposed Corr-UCB-RA algorithm

achieves bounded regret, which is an order-wise improvement over the regret of correlation agnostic

UCB-RA algorithm. One scenario in which this can occur is if the functions fk(·) are invertible with respect

to Xk given ak. More generally, whenever the sub-optimal base arms can be identified as sub-optimal

through just the samples of optimal base arms, we get a bounded regret. Note that the algorithm initially

has no knowledge about the optimality/sub-optimality of base arms and in such cases it identifies them by

sampling the sub-optimal base arms only O(1) times.

5.5 Continuous budget setting

So far we have studied the resource allocation problem under the assumption that the set A from which

budget ak for each entity k is allocated is a countable set. In this section, we discuss settings where A is

uncountable. One instance where this could occur is if ak ∈ R. In such scenarios, it is still possible to

design an algorithm while achieving bounded regret in some cases.

Reward functions are invertible. Suppose the reward functions fk(ak, Xk) are invertible in Xk and are

known to the algorithm. In this case, it is possible to estimate Xk directly from the reward samples of entity

k. Therefore, one can maintain an empirical mean X̂k(t) for each entity. This empirical mean can then be
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used to evaluate the upper confidence bound indices for base arm (i, k) as

U(i,k)(t) = fk(i, X̂k(t)) +

√
2 log T
nk(t)

,

where nk(t) = ∑j nj,k(t) and X̂k(t) =
∑t

τ=1 g−1
ak(τ),k

(rk(τ))

nk(t)
. Here gak(τ),k(Xk(t)) = fk(ak(τ), Xk(t)) and rk(τ) is

the reward attained from entity k at round τ.

One can then use these UCB indices to obtain an allocation St from the offline oracle as done in Corr-

UCB-RA algorithm, which will then be used to select the super arm in the next round. Using techniques in

Section 4.2, it can be shown that this algorithm in cases where reward functions are invertible will lead to

an O(1) regret. This occurs as the information about the sub-optimal base arms can be obtained through

the samples of optimal super arm.

Non-invertible reward functions. In scenarios where reward functions are non-invertible, it is still

possible to extend the Corr-UCB-RA algorithm. This can be done by discretizing the budget space and

making assumptions about Lipschitz continuity as done in [21]. Specifically, the regret is affected by the

discretization granularity and [21] provided an optimized value for it. After the discretization, we can use

Corr-UCB-RA on the countable action set.

5.6 Experimental results

To validate the effectiveness of our algorithm, we conduct experiments on three applications with synthetic

and real data. First, we consider a dynamic user allocation problem in wireless networks, where we need

to allocate new incoming users to different wireless access points with unknown number of existing users.

We evaluate our algorithm in the setting with non-invertible reward function. Next, we study an online

server assignment problem, where the servers need to be assigned to different job streams with unknown

job arrival rates. Different from the first application, the reward function of this problem is invertible, so it

is possible to obtain O(1) regret. However, we also study a partial feedback setting for this application,

which leads to sublinear regret. Finally, we apply our algorithm to an online water filling problem [95] that

is essential to the power allocation in OFDM systems [96]. It is a continuous budget allocation problem

with invertible reward functions, and we study its partial feedback setting as well.

5.6.1 Dynamic User Allocation

In this section, we apply our corr-UCB-RA algorithm to a dynamic user allocation problem in wireless

networks. Our goal is maximize the total throughput of wireless access points (APs) by allocating new

incoming users to them. The number of existing users associated to each AP is time-varying, which affects
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Figure 5.3: Comparison between regret of UCB-RA and Corr-UCB-RA as a function Q (new incoming
users) for the application of dynamic user allocation.

the traffic load on the AP. We assume each user has a fixed traffic load of 0.2 and consider the well-known

ALOHA protocol [97] for each AP. We consider K APs and Q new incoming users at each round. Let Xk

denote the number of existing users in each AP k and ak denote the number of new users allocated to it.

Note that we assume all the users of an AP will leave when the round ends, so ak in the current round will

not affect Xk in the future rounds. Our goal is to maximize the total throughput of all APs:

max
ak

K

∑
k=1

0.2(Xk + ak)e−0.2(Xk+ak), s.t.
K

∑
i=k

ak = Q, ak ∈N.

We extract {Xk}, the number of existing users in each AP, from a real-world dataset [98]. We choose 4 APs

(91, 92, 94, 95) on the 3rd floor of Building 3 on campus, and record their associated users from 13:00 to 16:00

on March 2, 2015. The detailed distribution of the number of existing users on different access points can be

found in Figure 5.6. In our experiment, at each round, we first sample {Xk} from the extracted distribution,

then allocate Q = 8 new users to these four APs. Since the throughput function is non-invertible, our

algorithm cannot directly infer Xk from the observed throughput of each AP and needs to maintain the

pseudoUCB indices of base arms as explained in Section 5.3. We compare it with the UCB-RA algorithm.

Figure 5.4a shows the average regrets with 95% confidence interval over 20 experiments. The result is

consistent with our analysis in Section 5.4: corr-UCB-RA achieves 25% less regret than correlation agnostic

UCB-RA algorithm. This occurs as the corr-UCB-RA algorithm is able to make use of the correlations

between the reward of base arms to incur a regret of C ·O(log T) as opposed to KA ·O(log T). We also

show the relationship between Q and the total regrets after 2000 rounds in Figure 5.3: with the increase of

Q, the total regret of corr-UCB-RA increases much more slowly than that of UCB-RA.



CHAPTER 5. CORRELATED COMBINATORIAL BANDITS FOR ONLINE RESOURCE ALLOCATION 154

0 250 500 750 1000 1250 1500 1750 2000
Round

0

5

10

15

20
Cu

m
ul

at
iv

e 
Re

gr
et

UCB-RA
corr-UCB-RA

(a) Dynamic User Allocation
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(b) Online server assignment.
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(c) Online water filling.

Figure 5.4: Performance comparison between the Corr-UCB-RA and the UCB-RA algorithm for different
application problems.

5.6.2 Online Server Assignment

We consider 4 independent job streams (i.e., K = 4) with unknown expected job arrival rates λ =

(0.2, 0.4, 0.6, 0.8). For each job stream k, the realized job arrival rate Xk follows a uniform distribution

U(λk − 0.1, λk + 0.1). We assume each job stream has one initial server to ensure it is a stable system with

bounded expected waiting time. There are 8 additional servers (i.e., Q = 8) to be assigned and we denote

the number of additional servers allocated to stream k as ak. We assume the service rate of all servers as 1,

and our goal is to minimize the average expected waiting time of all job streams:

min
ak

K

∑
k=1

1

1− Xk
ak+1

· Xk

∑K
k=1 Xk

, s.t.
K

∑
i=k

ak ≤ Q, ak ∈N.

We consider both the full feedback and the partial feedback settings. In the full feedback setting, we assume

the waiting times of all job stream are always observable. Since the waiting time function is invertible, our

algorithm can directly infer {Xk} and update the pseudo-rewards of other base arms as per (5.8). Notice

that our goal is to minimize the expected waiting time, so we need to maintain the lower confidence bound

(LCB) indices of all base arms, instead of the UCB indices for reward maximization and correspondingly

pseudo-rewards would be lower bounds on conditional expected reward. In the partial feedback setting,

the waiting time can only be observed when ak ≥ 1, i.e., at least one additional server is assigned to stream

K. When no server is assigned to stream K, the pseudo-reward of other assignments with respect to such

an assignment is set to the minimum possible reward. We repeat the experiment 20 times and Figure 5.4b

shows the average regrets with 95% confidence interval. In the full feedback setting, corr-UCB-RA obtains

O(1) regret as there is no cost for inferring {Xk}. In the partial feedback setting, corr-UCB-RA has to

balance between the actions of ak = 0 and ak ≥ 0, which incurs a sublinear regret. It still outperforms

UCB-RA due to the utilization of correlation information.
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5.6.3 Online Water Filling

We finally consider the water filling problem where a total amount of one unit power has to be assigned to

4 communication channels, i.e., Q = 1, K = 4, with the objective of maximizing the total throughput. The

throughput of the kth channel is given by log(Xk + ak), where ak represents the power allocated to channel

k and Xk represents the floor above the baseline at which power can be added to the channel. It can be

written as a convex optimization problem:

max
ak

K

∑
k=1

log(Xk + ak), s.t.
K

∑
i=k

ak ≤ Q, ak ≥ 0.

For the online water filling problem, the {Xk} are unknown and need to be learned. For each channel k, we

assume the expectation µk = E[Xk] is uniformly sampled from [0.8, 1.2], and the realization of Xk follows

a uniform distribution U(µk − 0.5, µk + 0.5). As it is a online continuous resource allocation problem,

we choose UCB-RA algorithm with discretization granularity 0.2 (i.e., A = {0, 0.2, 0.4, 0.6, 0.8, 1}) as the

baseline. Similar to the online server assignment problem, we consider both the full feedback and the

partial feedback settings. In the full feedback setting, the throughput log(Xk + ak) is always observable.

Since the reward function is invertible, our algorithm can directly infer {Xk} and update the pseudoUCB

indices as described in Section 5.5. In the partial feedback setting, we assume log(Xk + ak) can be observed

only if ak ≥ 0.2. For channel k with ak < 0.2, we update the pseudo-rewards of other base arms with the

maximum possible rewards. We repeat the experiment 20 times and Figure 5.4c shows the average regrets

with 95% confidence interval. We see that corr-UCB-RA algorithm achieves significantly reduced regret

relative to UCB-RA in both the full feedback and the partial feedback settings. For the full feedback case,

corr-UCB-RA obtains O(1) regret as the water filling reward function is invertible and there is no cost

in inferring {βk}. For the partial feedback case, since the minimal power needs to be 0.2 to observe the

throughput, corr-UCB-RA needs to balance between the actions of ak < 0.2 and ak ≥ 0.2, due to which it

incurs a sublinear regret. The regret is still smaller than UCB-RA as it makes use of the available correlation

information.

Figure 5.6 shows the distribution of the number of associated users on the access points considered in

Section 5.6.1.

5.7 Concluding remarks

In this chapter, we study the problem of sequential resource allocation by modeling it through a combi-

natorial bandit framework, where the allocation of a budget to an entity is considered as a base arm. In

several practical settings, rewards received under different budget allocations are often correlated. We
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Figure 5.5: Relationship between the throughput and the traffic load.
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Figure 5.6: Distribution of the number of existing users on different access points for dynamic user
allocation.

propose a novel correlated combinatorial bandit framework to tackle the online resource allocation problem.

In particular, we model the correlations through pseudo-rewards, which represent an upper bound on

the conditional expected reward of a budget-entity pair. Using the knowledge of these pseudo-rewards,

we propose the correlated UCB algorithm for resource allocation (Corr-UCB-RA) which incurs a regret

of C ·O(log T) as opposed to KA · log T regret attained by prior correlation agnostic approach in [21].

The value of C can be much smaller than KA and can even be 0 in certain settings, under which our

proposed Corr-UCB-RA algorithm attains O(1) regret. These results are validated by our experimental

results on multiple different application settings. While we study this problem in the context of online

resource allocation, the algorithm and analysis could be easily extended to the general combinatorial bandit

framework [85] as well. An interesting future direction is to learn correlations in an online manner. As

multiple base arms are sampled in each round, it is possible to learn correlation information on the go and

subsequently use them for budget allocation in the future rounds. We believe this is a challenging open

problem which will require non-trivial extensions of the ideas proposed in this work.
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5.8 Full proofs

5.8.1 Standard Results from Previous Works

Fact 4 (Hoeffding’s inequality). Let Z1, Z2 . . . Zn be i.i.d random variables bounded between [a, b] : a ≤ Zi ≤ b,

then for any δ > 0, we have

Pr
(∣∣∣∣∑n

i=1 Zi

n
−E [Zi]

∣∣∣∣ ≥ δ

)
≤ exp

( −2nδ2

(b− a)2

)
.

Lemma 28 (Standard result used in bandit literature). If µ̂k,nk(t) denotes the empirical mean of arm k by sampling

arm k nk(t) times through any algorithm and µk denotes the mean reward of arm k, then we have

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
≤

τ2

∑
s=τ1

exp
(
−2sϵ2

)
.

Proof. Let Z1, Z2, ...Zt be the reward samples of arm k drawn separately. If the algorithm chooses to

select arm k for mth time, then it observes reward Zm. Then the probability of observing the event

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1 can be upper bounded as follows,

Pr
(

µ̂k,nk(t) − µk ≥ ϵ, τ2 ≥ nk(t) ≥ τ1

)
= Pr

((
∑

nk(t)
i=1 Zi

nk(t)
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)
(5.30)

≤ Pr

((
τ2⋃

m=τ1

∑m
i=1 Zi

m
− µk ≥ ϵ

)
, τ2 ≥ nk(t) ≥ τ1

)
(5.31)

≤ Pr

(
τ2⋃

m=τ1

∑m
i=1 Zi

m
− µk ≥ ϵ

)
(5.32)

≤
τ2

∑
s=τ1

exp
(
−2sϵ2

)
. (5.33)

Lemma 29 (From Proof of Theorem 1 in [32]). Let Uk(t) denote the UCB index of arm k at round t, and

µk = E [gk(X)] denote the mean reward of that arm. Then, we have

Pr(µk > Ik(t)) ≤ t−3.

Observe that this bound does not depend on the number nk(t) of times arm k is pulled. UCB index is

defined as Uk(t) = µ̂k,nk(t) +
√

2 log t
nk(t)

.
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Proof. This proof follows directly from [32]. We present the proof here for completeness as we use this

frequently in the chapter.

Pr(µk > Ik(t)) = Pr

(
µk > µ̂k,nk(t) +

√
2 log t
nk(t)

)
(5.34)

≤
t

∑
m=1

Pr

(
µk > µ̂k,m +

√
2 log t

m

)
(5.35)

=
t

∑
m=1

Pr

(
µ̂k,m − µk < −

√
2 log t

m

)
(5.36)

≤
t

∑
m=1

exp
(
−2m

2 log t
m

)
(5.37)

=
t

∑
m=1

t−4 (5.38)

= t−3. (5.39)

where (5.35) follows from the union bound and is a standard trick (Lemma 28) to deal with random variable

nk(t). We use this trick repeatedly in the proofs. We have (5.37) from the Hoeffding’s inequality.

5.8.2 Bounding contribution of Non-competitive base arms

Lemma 30. If the base arm (i, k) is non-competitive with respect to (j, ℓ), i.e., ϕ(i,k),(j,ℓ) < µ̄(i,k), where (j, ℓ) =

arg min(j,ℓ)∈S∗ ϕ(i,k),(j,ℓ) then, the probability that base arm (i, k) is responsible at round t jointly with n(j,ℓ) being

larger than t
KA is upper bounded as,

Pr
(

resp(k,a)(t), n(j,ℓ)(t) ≥
t

4KA

)
≤ t exp

(−2t∆̃2
(i,k)

AK

)
.

Moreover, if the pseudo-gap ∆̃i,k = µ̄(i,k) − ϕ(i,k),(j,ℓ) ≥
√

4 2KA log t0
t0

for some constant t0 > 0. Then,

Pr
(

resp(k,a)(t), n(j,ℓ)(t) ≥
t

4KA

)
≤ t−3 ∀t > t0.

Proof. We now bound this probability as,

Pr
(

resp(i,k)(t), n(i,k)(t) ≥ s
)
≤ Pr

(
U(i,k)(t) > µ̄(i,k), n(j,ℓ)(t) ≥ s

)
(5.40)

≤ Pr

(
ϕ̂(i,k),(j,ℓ)(t) +

√
2 log t

n(j,ℓ)(t)
> µ̄(i,k), n(j,ℓ) ≥ s

)
(5.41)
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= Pr

(
ϕ̂(i,k),(j,ℓ)(t)− ϕ(i,k),(j,ℓ) > µ̄(i,k) − ϕ(i,k),(j,ℓ) −

√
2 log t

n(j,ℓ)(t)
, n(j,ℓ)(t) ≥ s

)
(5.42)

= Pr

(
ϕ̂(i,k),(j,ℓ)(t)− ϕ(i,k),(j,ℓ) > ∆̄(i,k) −

√
2 log t

n(j,ℓ)(t)
, n(j,ℓ)(t) ≥ s

)
(5.43)

≤ t exp

−2s

(
∆̄(i,k) −

√
2 log t

s

)2
 (5.44)

≤ t−3 exp

(
−2s

(
∆̄2
(i,k) − 2∆̄(i,k)

√
2 log t

s

))
(5.45)

≤ t−3 for all t > t0. (5.46)

From the definition of a responsible arm, we have (5.40) as this condition needs to be satisfied in order

for base arm (i, k) to be responsible at round t. By definition of index U(i, k)(t) = min(j,ℓ) U(i,k),(j,ℓ), we get

(5.41). Inequality (5.44) follows from Hoeffding’s inequality and the term t before the exponent in (5.44)

arises as the random variable n(j,ℓ)(t) can take values from s to t (Lemma 28). Inequality (5.46) follows

from the fact that s > t
4KA and ∆̄(i,k) ≥ 4

√
2KA log t0

t0
for some constant t0 > 0.

Lemma 31. The probability that any base arm (i, k) is responsible at round t jointly with the event that it has been

sampled for at least s > t
KA rounds till round t is upper bounded as

Pr
(

resp(i,k)(t), n(i,k)(t) ≥ s
)
≤ t−3 for s >

t
4KA

∀t > t0,

where t0 is the least integer larger than 2 that satisfies g−1(∆(i,k)
min ) ≥ 4

√
2KA log t0

t0
.

Proof.

Pr
(

resp(i,k)(t), n(i,k)(t) ≥ s
)
≤ Pr

(
U(i,k)(t) > µ̄(i,k), n(i,k)(t) ≥ s

)
(5.47)

≤ Pr

(
µ̂(i,k)(t) +

√
2 log t

n(i,k)(t)
> µ̄(i,k), n(i,k)(t) ≥ s

)
(5.48)

= Pr

(
µ̂(i,k)(t)− µ(i,k) > µ̄(i,k) − µ(i,k) −

√
2 log t

n(i,k)(t)
, n(i,k)(t) ≥ s

)
(5.49)

= Pr

(
µ̂(i,k)(t)− µ(i,k) > g−1(∆(i,k))−

√
2 log t

n(i,k)(t)
, n(i,k)(t) ≥ s

)
(5.50)

≤ t exp

−2s

(
g−1(∆(i,k)

min )−
√

2 log t
s

)2
 (5.51)

≤ t−3 exp

(
−2s

((
g−1(∆(i,k)

min )
)2
− 2g−1(∆(i,k)

min )

√
2 log t

s

))
(5.52)

≤ t−3 for all t > t0. (5.53)
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From the definition of a responsible arm, we have (5.47) as this condition needs to be satisfied in order

for base arm (i, k) to be responsible at round t. By definition of index U(i,k)(t) = min(j,ℓ) U(i,k),(j,ℓ), we get

(5.48). Inequality (5.51) follows from Hoeffding’s inequality and the term t before the exponent in (5.51)

arises as the random variable n(i,k)(t) can take values from s to t (Lemma 28). Inequality (5.53) follows

from the fact that s > t
4KA and g−1

(
∆(i,k)

min

)
≥ 4

√
2KA log t0

t0
for some constant t0 > 0.

Lemma 32. The probability that any base arm (i, k) ∈ A×K is responsible for more than t
3KA rounds up until

round t is upper bounded as,

Pr
(

r(i,k)(t) >
t

3KA

)
≤ 3KA

(
t

3KA

)−2
∀t > 3KAt0,

where t0 is the least integer larger than 2 that satisfies g−1(∆(i,k)) ≥ 4
√

2KA log t0
t0

.

Proof.

Pr
(

r(i,k)(t) ≥
t

3KA

)
= Pr

(
r(i,k)(t) ≥

t
3KA

, r(i,k)(t− 1) ≥ t
3KA

)
+

Pr
(

r(i,k)(t) ≥
t

3KA
, r(i,k)(t− 1) =

t
3KA

− 1
)

(5.54)

≤ Pr
(

r(i,k)(t− 1) ≥ t
3KA

)
+ Pr

(
resp(i,k)(t), r(i,k)(t− 1) =

t
3KA

− 1
)

(5.55)

≤ Pr
(

r(i,k)(t− 1) ≥ t
3KA

)
+ Pr

(
resp(i,k)(t), r(i,k)(t− 1) ≥ t

3KA
− 1
)

(5.56)

≤ Pr
(

r(i,k)(t− 1) ≥ t
3KA

)
+ (t− 1)−3, (5.57)

with (5.57) coming from Lemma 31. This gives us

Pr
(

r(i,k)(t) ≥
t

3KA

)
− Pr

(
r(i,k)(t− 1) ≥ t

3KA

)
≤ (t− 1)−3, ∀(t− 1) > t0.

Now consider the summation,

t

∑
τ= t

3KA

Pr
(

r(i,k)(τ) ≥
t

3KA

)
− Pr

(
r(i,k)(τ − 1) ≥ t

3KA

)
≤

t

∑
τ= t

3KA

(τ − 1)−3.

This gives us,

Pr
(

r(i,k)(t) ≥
t

3KA

)
− Pr

(
r(i,k)

(
t

3KA
− 1
)
≥ t

3KA

)
≤

t

∑
τ= t

3KA

(τ − 1)−3.

Since Pr
(

r(i,k)
( t

3KA − 1
)
≥ t

3KA

)
= 0, we have,

Pr
(

r(i,k)(t) ≥
t

3KA

)
≤

t

∑
τ= t

3KA

(τ − 1)−3 (5.58)

≤ 3KA
(

t
3KA

)−2
∀t > 3KAt0. (5.59)
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Lemma 33. The probability that the index U(i,k)(t) for a base arm (i, k) is smaller than the mean reward of base arm

(i, k) is upper bounded as

Pr(U(i,k)(t) < µ(i,k)) ≤ KA× t−3.

Moreover, the expected number of times U(i,k)(t) < µ(i,k) till round T is upper bounded as

E
[
nµ(i,k)>U(i,k)(t)

]
≤

T

∑
t=1

KAt−3,

which is O(1).

Proof.

Pr(U(i,k)(t) < µ(i,k)) = Pr

⋃
(j,ℓ)

U(i,k),(j,ℓ) < µ(i,k)

 (5.60)

≤ ∑
(j,ℓ)

Pr

(
ϕ̂(i,k),(j,ℓ)(t) +

√
2 log t

n(j,ℓ)(t− 1)
≤ µ(i,k)

)
(5.61)

≤ ∑
(j,ℓ)

Pr

(
ϕ̂(i,k),(j,ℓ)(t) +

√
2 log t

n(j,ℓ)(t)
≤ ϕ(i,k),(j,ℓ)

)
(5.62)

≤ (KA)t−3. (5.63)

Here, (5.60) comes from the definition of U(i,k) = min(j,ℓ) U(i,k),(j,ℓ)(t). We get (5.61) from union bound and

the definition of U(i,k),(j,ℓ)(t). Inequality (5.62) arises as ϕ(i,k),(j,ℓ) upper bounds on conditional expectation.

The last inequality arises due to Lemma 29.

Subsequently, E
[
nµ(i,k)>U(i,k)(t)

]
= ∑T

t=1 Pr(U(i,k)(t) < µ(i,k)), which provides the desired bound on

E
[
nµ(i,k)>U(i,k)(t)

]
.

Lemma 34. Let nµ>U(t) denote the number of rounds in which µ(i,k) > U(i,k) for some (i, k) ∈ K × A. The

probability of such rounds being more than t
3 till round t is upper bounded as,

Pr
(

nµ>U(t) ≥
t
3

)
≤ 3(KA)2

(
t
3

)−2
∀t.

Proof.

Pr
(

nµ>U(t) ≥
t
3

)
= Pr

(
nµ>U(t) ≥

t
3

, nµ>U(t− 1) ≥ t
3

)
+ Pr

(
nµ>U(t) ≥

t
3

, nµ>U(t− 1) =
t
3
− 1
)

(5.64)
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≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ Pr

(
µ(i,k) ≥ U(i,k)(t) for some (i, k), nµ>U(t− 1) =

t
3
− 1
)

(5.65)

≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ ∑

(i,k)
Pr
(

µ(i,k) ≥ U(i,k)(t), nµ>U(t− 1) =
t
3
− 1
)

(5.66)

≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ ∑

(i,k)
Pr
(

µ(i,k) ≥ U(i,k)(t)
)

(5.67)

≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ ∑

(i,k)
∑
(j,ℓ)

Pr
(

µ(i,k) ≥ U(i,k),(j,ℓ)(t)
)

(5.68)

≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ ∑

(i,k)
∑
(j,ℓ)

Pr(

(
ϕ̂(i,k),(j,ℓ)(t) +

√
2 log t

n(j,ℓ)(t− 1)
≤ µ(i,k)

)
(5.69)

≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ ∑

(i,k)
∑
(j,ℓ)

Pr(

(
ϕ̂(i,k),(j,ℓ)(t) +

√
2 log t

n(j,ℓ)(t− 1)
≤ ϕ(i,k),(j,ℓ)

)
(5.70)

≤ Pr
(

nµ>U(t− 1) ≥ t
3

)
+ (KA)2(t− 1)−3. (5.71)

The steps (5.67) to (5.71) follow through the arguments made in Lemma 33.

This gives us

Pr
(

nµ>U(t) ≥
t
3

)
− Pr

(
nµ>U(t− 1) ≥ t

3

)
≤ (KA)2(t− 1)−3, ∀(t− 1).

Now consider the summation,

t

∑
τ= t

3

Pr
(

nµ>U(τ) ≥
t
3

)
− Pr

(
nµ>U(τ − 1) ≥ t

3

)
≤

t

∑
τ= t

3

(KA)2(τ − 1)−3.

This gives us,

Pr
(

nµ>U(t) ≥
t
3

)
− Pr

(
nµ>U

(
t
3
− 1
)
≥ t

3

)
≤

t

∑
τ= t

3

(KA)2(τ − 1)−3.

Since Pr
(
nµ>U

( t
3 − 1

)
≥ t

3
)
= 0, we have,

Pr
(

nµ>U(t) ≥
t
3

)
≤

t

∑
τ= t

3

(KA)2(τ − 1)−3 (5.72)

≤ 3(KA)2
(

t
3

)−2
∀t. (5.73)

Lemma 35. The probability that a sub-optimal budget allocation is pulled for more than t
3 times till round t is upper

bounded as,

Pr
(

Tsub-opt(t) ≥ t
3

)
≤ 6(KA)2

(
t

3KA

)−2
∀t > 3KAt0,

with Tsub-opt(t) denoting the number of sub-optimal budget allocations made till round t.
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Proof. From Claim 1, the number of sub-optimal rounds, denoted by Tsub-opt can be written as the union of

the rounds with at-least one responsible arm and the rounds in which µ(i,k) > U(i,k) for some (i, k). This

can be be upper bounded as follows using the union bound,

Tsub-opt ≤∑
j

r(k,a)(t) + nµ>U (5.74)

Furthermore, the probability that Tsub-opt(t) ≥ t
3 can be upper bounded as

Pr
(

Tsub-opt ≥ t
3

)
≤ ∑

(i,k)
Pr
(

r(i,k)(t) ≥
t

3KA

)
+ Pr

(
nµ>U ≥

t
3

)
(5.75)

This follows through the argument that at least one of these events need to occur for the number of

sub-optimal rounds to be at-least T/3. The two probabilities are upper bounded by 3KA
( t

3KA
)−2 and

3(KA)2 ( t
3
)−2 ∀t ≥ 3KAt0 through Lemma 33, Lemma 34 respectively. As a result,

Pr
(

Tsub-opt ≥ t
3

)
≤ 3(KA)2

(
t

3KA

)−2
+ 3(KA)2

(
t
3

)−2
∀t ≥ 3KAt0. (5.76)

Lemma 36. The expected number of times a non-competitive base arm (i, k) is responsible up until round T is upper

bounded as

E
[
r(k,a)(T)

]
≤ 3KAt0 +

T

∑
t=3KAt0

t−3 + 6(KA)2
(

t
3KA

)−2
(5.77)

= O(1). (5.78)

Proof.

E
[
r(i,k)(t)

]
=

T

∑
t=1

Pr
(

resp(i,k)(t), Tsub-opt(t) ≤ t
3

)
+ Pr

(
resp(i,k)(t), Tsub-opt(t) ≥ t

3

)
(5.79)

≤
T

∑
t=1

Pr
(

resp(i,k)(t), Topt(t) ≥ 2t
3

)
+ Pr

(
Tsub-opt(t) ≥ t

3

)
(5.80)

≤
T

∑
t=1

Pr
(

resp(i,k)(t), n(j,ℓ) ≥
2t
3

)
+ Pr

(
Tsub-opt(t) ≥ t

3

)
, (j, ℓ) ∈ S∗ (5.81)

≤ 3KAt0 +
T

∑
t=3KAt0

t−3 + 6(KA)2
(

t
3KA

)−2
(5.82)

≤ 3KAt0 + 2 + 6(KA)3 (5.83)

= O(1) (5.84)

Here, (5.82) follows from Lemma 35 and Lemma 30.
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5.8.3 Bounding contribution of Competitive base arms

Lemma 37 (Contribution of competitive base arms). The expected number of times a competitive base arm (i, k)

is responsible up until round T is upper bounded as

E
[
r(i,k)(T)

]
≤ 8 log T(

g−1
(

∆(i,k)
min

))2 + 2 (5.85)

= O(log T). (5.86)

Proof.

E
[
r(i,k)(T)

]
= E

[
T

∑
t=1

1base arm (i,k) is responsible at round t

]
(5.87)

≤ 8 log T(
g−1

(
∆(i,k)

min

))2 +
T

∑
t=1

E

1base arm (i,k) is responsible at round t, r(i,k)(t)≥ 8 log T(
g−1

(
∆(i,k)min

))2

 (5.88)

=
8 log T(

g−1
(

∆(i,k)
min

))2 +
T

∑
t=1

Pr

resp(i,k)(t), r(k,a)(t− 1) ≥ 8 log T(
g−1

(
∆(i,k)

min

))2

 (5.89)

≤ 8 log T(
g−1

(
∆(i,k)

min

))2 +
T

∑
t=1

Pr

U(i,k)(t) ≥ µ̄(i,k), r(k,a)(t− 1) ≥ 8 log T(
g−1

(
∆(i,k)

min

))2

 (5.90)

≤ 8 log T(
g−1

(
∆(i,k)

min

))2 +
T

∑
t=1

Pr

µ̂(i,k)(t) ≥ µ̄(i,k) −
√

2 log t
n(i,k)(t)

, r(i,k)(t− 1) ≥ 8 log T(
g−1

(
∆(i,k)

min

))2


(5.91)

≤ 8 log T(
g−1

(
∆(i,k)

min

))2 +
T

∑
t=1

Pr

µ̂(i,k)(t) ≥ µ(i,k) +
g−1(∆(i,k)

min )

2
, r(i,k)(t− 1) ≥ 8 log T(

g−1
(

∆(i,k)
min

))2


(5.92)

≤ 8 log T(
g−1

(
∆(k,a)

min

))2 +
T

∑
t=1

t−2 (5.93)

≤ 8 log T(
g−1

(
∆(k,a)

min

))2 + 2 (5.94)

= O(log T) (5.95)
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This proof closely follows the analysis of O(log T) regret bound under the UCB algorithm for classical

multi-armed bandits [32]. Here, (5.92) follows from the fact that r(i,k)(t− 1) ≥ 8 log T(
g−1

(
∆(i,k)

min

))2 implies that

n(i,k)(t) ≥ 8 log T(
g−1

(
∆(i,k)

min

))2 . The inequality (5.93) then follows them the Hoeffding’s inequality yielding the

desired bound on E
[
r(i,k)(T)

]
for competitive base arms.

5.8.4 Proof of Theorem 10

By Claim 1, if a sub-optimal super arm allocation was played, it implies that either U(i,k)(t) < µ(i,k) for

some (i, k) ∈ K ×A or at least one of the base arms in St was responsible. Therefore the expected number

of rounds in which a sub-optimal allocation was played (referred to as bad rounds) can be upper bounded

by

E[Bad rounds(T)] ≤ ∑
(i,k)∈K×A

E[r(i,k)(T)]

+ ∑
(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T)], (5.96)

with r(i,k)(T) denoting the number of times base arm (i, k) is responsible up until round T and nU(i,k)<µ(i,k)
(T)

representing the number of rounds in which U(i,k)(t) < µ(i,k) till round T. This inequality arises as a result

of union bound and linearity of expectation. Moreover, whenever arm (i, k) is responsible in round t, the

regret incurred in that round can be upper bounded by by ∆(i,k)
max (by definition of ∆(i,k)

max in Lemma 27). In

scenarios where, U(i,k)(t) < µ(i,k), the regret incurred in that round can be upper bounded by ∆max (by

definition of ∆max in Lemma 27). Using this observation, we can now bound regret as

E[Reg(T)] ≤ ∑
(i,k)∈K×A

E[r(i,k)(T)]× ∆(i,k)
max

+ ∑
(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T)]× ∆max. (5.97)

This can further be broken down by separating the E
[
r(i,k)(T)

]
term for competitive and non-

competitive base arms. As a result,

E[Reg(T)] ≤ ∑
(i,k)∈C

E[r(i,k)(T)]× ∆(i,k)
max + ∑

(i,k)∈(K×A)\C
E[r(i,k)(T)]× ∆(i,k)

max +

∑
(i,k)∈K×A

E[nU(i,k)<µ(i,k)
(T)]× ∆max. (5.98)

Using results from Lemma 36, Lemma 37 we have E
[
r(i,k)(T)

]
for competitive and non-competitive

base arms. Moreover from Lemma 34, we have the bound on E[nU(i,k)<µ(i,k)
(T)]. Putting these together

gives us the desired regret upper bounds for our proposed algorithm.



Chapter 6

Future open directions

This thesis focuses on two key variants of the classical multi-armed bandit framework, namely, structured

and correlated multi-armed bandits. We first study the structured bandit framework where the mean

rewards corresponding to different actions are a known function of a hidden parameter θ∗, thereby inducing

a structure in the mean reward of different arms. While in this setup, the mean rewards of different

arms are related to one another, the reward realizations are not necessarily correlated. This motivated

us to design novel correlated multi-armed bandit framework which explicitly captures the correlation in

reward corresponding to different arms. For both these frameworks, we design algorithms that extend

classical bandit algorithms to the structured and correlated bandit settings. Subsequently, we show the

utility of our proposed algorithms in the context of recommendation systems. We further demonstrate

the applicability of our proposed novel correlated bandit framework to solve online resource allocation

problems which frequently arise in tasks such as power allocation in wireless systems, financial optimization

and multi-server scheduling.

In this chapter, we discuss potential extensions based on the work presented in this thesis. We first look

at potential application areas to which our correlated bandit framework and algorithms could be applied.

Next, we discuss challenges to develop a correlated bandit framework in which the correlations are not

known a priori but learned during the sequential decision making process.

6.1 Further applications of correlated multi-armed bandits

Hyperparameter optimization and bandits Recently, there has been focus in trying to automate the process

of hyperparameter tuning for Machine Learning problems. In this setup, the different hyperparameters

(such as learning rate of the algorithm, regularization parameter) can be viewed as the arms in the bandit

problem and the validation loss corresponding to an hyperparameter could be viewed as the reward for an

166
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arm. The work in [99] formulates this as a best-arm identification problem, where each hyperparameter is

trained partially and then the half of the worst-performing hyperparameters are removed and the remaining

half are trained partially again. This approach was inspired from the successive halving [72] algorithm

from bandit literature and led to the design of hyperband [34]. It will be interesting to explore the use of

other bandit algorithms in this setting and investigate if we can model the correlations in performance due

to different hyperparameters. For instance, performance of closer hyperparameters (in their L2 distance) is

likely to be similar. This problem can also be looked in the context of federated learning, where different

local devices need to tune their hyperparameters simultaneously. In this case, similar devices are likely

to have similar hyperparameter settings, which is where structure or correlation in the bandit framework

could prove to be useful.

Best-algorithm detection Aside from hyperparameter optimization, another aspect of automated machine

learning is to find the best-performing algorithm in an application setting from a set of candidate algorithms.

For example, for the product recommendation, a company may have several different recommendation

engines with them. For each incoming user, they may choose to decide which engine to use to recommend

product to the incoming user. This can now be viewed as a Multi-Armed bandit problem where different

ML algorithms correspond to the arms in the bandit problem and user-action may generate reward. A key

aspect of such applications is that the customer behavior, with regards to preference for different products,

keeps changing with time. As a result, the prior data could be useful to learn about the correlations in

performance for different ML algorithms, which could then be useful to decide the best algorithm to be

used in an upcoming time period. While we mention product recommendation, this could be done for a

wide variety of tasks such as workload optimization on a cluster, portfolio optimization etc. By making

use of one of the open source machine learning data-drift datasets, one can obtain necessary data and

subsequently make use of the correlated bandit framework to improve existing performance of these

systems.

6.2 Dealing with non-stationary reward distributions

In several application settings, the reward distribution is non-stationary. For instance, the popularity of a

particular ad may decay over time. While this non-stationarity has been studied in the context of classical

multi-armed bandits [100], it is yet to be looked at for structured and correlated multi-armed bandits. An

initial approach would be to design sliding-window based C-UCB/C-TS algorithms, which evaluate the

upper confidence bound (and equivalently posterior distribution) using just the samples obtained between

t− τ and t, with τ being the hyperparameter denoting the length of the sliding window. One could also
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extend the discounted UCB algorithm in [100] by giving less weight to old samples in the construction of

upper confidence bound index for the C-UCB algorithm. It will be interesting to implement and evaluate

these ideas on real-world datasets that exhibit this non-stationarity in rewards.

6.3 Learning correlations on the go

Throughout our work, we have assumed that the correlation information may be know either from domain

knowledge or through previously performed experiments. An interesting, but challenging, problem would

be to learn the correlations in the sequential decision making process itself. In order to do so, it is necessary

that multiple arms are selected in each round. While this is not possible in the classical MAB framework,

this may be feasible under the combinatorial bandit framework [85], where in each round the user is

allowed to select multiple arms (see Chapter 5 for more details). In this particular setting, it may be

possible to obtain joint samples of two arms ℓ and k. Suppose, there are nℓ,k(t) such samples till round

t. These nℓ,k(t) samples could be used to construct an empirical upper bound on E [Rk|Rℓ = r], which is

the pseudo-reward sk,ℓ(r). This can be done by first constructing a high probability upper bound u on

Rk|Rℓ = r w.p. 1− η, which can then be used to construct pseudo-reward sk,ℓ(r) = (1− η) ∗ u + η ∗M,

with M denoting the maximum possible reward. These empirically constructed pseudo-rewards can then

be used to implement our correlated UCB/TS algorithms. As these algorithms are using more information

than typical combinatorial bandit algorithms [85], one can expect to see some empirical performance

improvements. It will be interesting to conduct this experiment in the context of recommendation systems.

This thesis shows how to model the structure/correlation in the rewards across different arms and

discusses several approaches to use the knowledge of the structure and correlation to design sample

efficient multi-armed bandit algorithms. This is an important step towards modeling the real-world

sequential decision making problems. We believe there is a lot of potential to build upon structured and

correlated bandit frameworks to capture even more intricacies that arise in modern-day applications. As the

use of multi-armed bandits in real-world application continues to grow, we have an exciting opportunity

to implement structured and correlated bandits in a wide variety of application settings, which have the

potential to drastically improve the performance metrics.
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