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Abstract

The increase in global energy demand and raised environmental con-

cerns have motivated the design of novel materials for energy-related ap-

plications. However, the design of ever-complicating materials for emerg-

ing energy technologies is currently bottlenecked by limited resources to

understand complex surface and interface structures and property rela-

tionships. In the first part of this thesis, we develop a tandem framework

that combines a molecular thermodynamic theory and molecular dynam-

ics simulations in an attempt to investigate solid interfacial phenomena

and to discuss how deep learning methods can improve the framework as

a next step. In the second part, we develop a set of deep learning meth-

ods that solve various materials and catalyst design problems including

property, structure, and stability analysis. We present a graph neural

networks architecture to learn the optimal representations of heteroge-

neous catalysis systems for the accurate prediction of adsorption/binding

energies. Then we extended the approach to approximate ground-state

structures of the catalysis systems by incorporating differentiable opti-

mization methods into the graph neural networks architecture. We fur-

ther develop a general deep reinforcement learning framework to identify

the metastability of alloy catalyst surfaces by exploring possible surface

reconstructions and their associated kinetic barriers under reaction con-

ditions. With these advanced data-driven methods that understand the

surface and interfacial phenomena, we open up new avenues for acceler-

ated materials and catalyst discovery.

Thesis Supervisor: Zachary W. Ulissi

Title: Associate Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Surface and Interface for energy technologies

Solutions to both raised concerns about climate change and rising global energy

demand are critical to the future prosperity of a modern world. The increased use

of renewable energies from abundant sources of energy such as solar and wind is a

promising solution to address the world’s rising energy needs while reducing climate

change. However, they have an intermittency problem in which no solar power is

available at night while winds can stop suddenly.[149, 169, 240] Efficient energy

storage and converting technologies are thus the key to solving the intermittency

problem by continuously providing renewable power with its full potential even when

the energy sources are not available.

Various emerging devices for energy conversion and storage have shown great

potential to make a significant impact on the advancement of energy technologies.

For example, solid-state batteries can be alternative energy storage devices to cur-

rent lithium-ion batteries in terms of safety and energy density.[1, 52] Fuel cells are

promising energy conversion devices that have high theoretical energy density and

efficiency but low environmental effects.[156] However, these emerging devices are

23



currently to some extent bottlenecked by one or several of the key materials for en-

ergy conversion and storage processes. Performance of the solid-state batteries is

currently hampered due to the bottleneck of the solid electrolyte material and other

materials for mitigating interfacial instabilities while the high cost and limited dura-

bility of electrocatalysts block the use of fuel cells.[95, 109, 221] The Discovery of

novel materials with desired properties thus can bring a breakthrough in emerging

energy technologies.

Surface and interface designs can be an efficient strategy to enhance the perfor-

mance of energy technologies as they are closely related to the properties of novel

energy materials. For example, the surface of graphene can be functionalized or

modified to manipulate its physical and chemical properties and improve its per-

formance in targeted applications. Graphene is a two-dimensional material that

exhibits unique structure and outstanding properties that make it excellent in nan-

otechnologies and applications. In particular, for energy applications, functionalized

graphene can potentially benefit various energy devices including batteries, fuel cells,

and other energy conversion and storage devices. [57, 66, 156] The surface and in-

terface of heterogeneous catalysts are also essential to their performance as they

are often considered to be active sites for energy-related catalytic reactions such

as oxygen reduction reactions occurring at the cathodes in fuel cells and electro-

chemical CO2 reduction reactions that convert CO2 into valuable chemicals or fuels.

[62, 96, 222, 240] Therefore, developing materials science tools for understanding sur-

face and interfacial phenomena can unlock the full potential of those novel materials

that will play a central role in energy technologies.
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1.2 Paradigm of Materials Science

The development of materials science can be represented by four paradigms. The

first paradigm is purely empirical and is relying on the intuitive observation experi-

ence with no scientific justification. A few centuries ago, the foundation of theoret-

ical models characterized by the formulation of various physics laws in the form of

mathematical equations shifted the paradigm. Thermodynamics provides theoretical

intuition about possible existing phases, stabilities, and other thermodynamic prop-

erties of materials.[68, 135] Kinetics tells about the effects of various factors including

concentration, temperature, pressure, catalyst, etc on reaction rates to describe the

whole material process. [135] The recent development of quantum mechanics further

provides tools to understand the relationship between atomic structure and material

properties. Theoretical models enable the design of new materials with a fundamen-

tal understanding of materials science, but these models easily become too complex

for many real-world problems where analytical solutions typically do not exist.

In the field of computational materials science, the invention of computers a few

decades ago along with the theoretical advances of quantum and classical models have

allowed simulations of complex practical problems based on the theoretical models

of the second paradigm, leading to the third paradigm of materials discovery. At this

period, density functional theory (DFT) and molecular dynamics (MD) simulations

emerged as the most popular computational methods. DFT calculates materials

properties by approximating and solving the Schrodinger equation based on the

first principles and enables computational high-throughput screening of materials.

MD simulations allow atoms and molecules to interact for a fixed period of time to

study the dynamic evolution of the system by analyzing the physical movements.

The success of the computational methods has made tremendous contributions to

innovations in materials.[59, 88, 89, 114, 142, 182, 185]

The third scientific paradigm has guided materials discovery for decades. Mean-
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while, materials scientists begin to look for ever-complicating materials for emerg-

ing and more specific applications such as catalyst development for hydrogen and

methane conversions for energy harvesting and storage.[240] Nevertheless, the de-

sign of such complex materials using the computational screening method is greatly

limited due to the computational cost that cannot deal with a massive search space

arising from the complex materials structure and property relations. Consequently,

the need for more efficient design tools has been emphasized in the field of compu-

tational chemistry and materials science.

Recently, the trend of materials research has shifted towards the stage of big data-

driven science also known as the fourth paradigm of materials science.[5, 129, 133]

The mass data generated by experiments and computational simulation methods has

enabled the use of data-driven techniques such as machine learning in materials re-

search, thereby opening up new avenues for accelerated materials discovery. Machine

learning comprises models that learn from existing data. Unlike traditional compu-

tational approaches that employ hard-coded algorithms provided by human experts,

machine learning models are capable of making predictions by learning or acquir-

ing information from the data itself.[152] The training of machine learning models

can largely be divided into supervised learning and unsupervised learning depending

on the type of the available data. In supervised learning, the data consists of sets

of input and associated output known as a label. The goal of this algorithm is to

predict output labels for unforeseen data by learning the relationship between the

input and its label from the training data. When the available data does not contain

labels, unsupervised learning can be used to cluster the unlabeled data by identifying

hidden patterns.

There are mainly three steps in the construction of a machine learning system in

materials science: data preparation, model selection, and model evaluation.[131, 171,

174] Since data is a key ingredient to train machine learning models, it is essential to
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collect, preprocess, and featurize the data as a first step. In materials research, the

original data are generated by experiments and computational simulations. These

data may contain incomplete, flawed, and noisy samples, and thus, they should

be preprocessed to handle those outliers. Furthermore, it is essential to perform

proper feature engineering tasks including feature extraction, feature selection, and

feature construction to prepare datasets that are understandable and informative.[67]

Finally, the processed data should be partitioned into a training dataset and a test

dataset for model training and evaluation.

The second step in the machine learning pipeline is model selection. Based on

a task of an application, it is critical to select an appropriate machine learning al-

gorithm as each algorithm has its own usage and characteristics. Machine learning

algorithms can typically be categorized into four tasks: regression, classification, clus-

tering, and probability estimation. In materials research, regression, classification,

and clustering algorithms are commonly used in material property prediction.[31]

Probability estimation algorithms including generative and probabilistic models are

typically used to generate new materials structures with desired properties. There-

fore, with a clear understanding of a task, one should select the most suitable model

from a set of available machine learning algorithms.

Lastly, it is critical to determine how well the model performs not only on the

training data but also on unseen data. To measure the model performance, one

should compare the model’s predictions to the true labels using a proper evalua-

tion metric. Common evaluation metrics are mean squared error (MSE) and mean

absolute error (MAE) for regression tasks, and cross entropy, precision, and recall

for classification tasks. These measurements guide the model training and help in

designing optimal model architectures for the best outcomes.
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1.3 Overview of Deep Learning in Materials Sci-

ence

For decades, machine learning systems required a carefully designed feature extrac-

tor that uses human domain expertise to transform the raw data into a proper

feature representation. Many traditional machine learning models in computational

chemistry rely on several hand-crafted representations.[14, 17, 18, 180] These human-

engineered representations encode interactions between atoms to provide local struc-

tural environments of individual atoms using an invariant set of atom-centered radial

and angular symmetry functions. However, these features are not transferable from

one system to another, and their applicability is also limited to systems contain-

ing up to three or four elements due to the complexity of configuration space that

is exponentially growing as the number of elements increases. These limitations of

human-designed features have motivated the adoption of deep learning in the com-

putational chemistry field.

Deep learning is a class of machine learning algorithms that allows a model to

be fed with raw data and to automatically learn feature representations needed for

the task of interest.[6, 20, 71] With the ability of learning representations at multiple

levels of abstraction, deep learning methods have outperformed traditional machine

learning methods in image processing, speech recognition, and natural language pro-

cessing tasks.[44, 220, 235]

In computational materials science fields, graphs have become a popular repre-

sentation of the chemical structure. Graphs are a general language for describing

entities with relations or interactions, e.g., molecules, mathematical objects, social

networks, transportation paths, etc.[49, 170, 223, 233] A graph consists of two main

components: a finite set of vertices (or nodes) and a finite set of directed or undi-

rected edges, each connecting a pair of vertices. This special data structure offers
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a unified representation for materials by encoding fundamental properties of atoms

into node features and encoding atom connections into edge features.[223] Using all

the information about the molecular graph consisting of raw features, deep network

models extract optimal representations for a task of interest which are also called

embeddings. These embeddings are optimized via message passing layers where fea-

tures gradually contain more information on the surrounding environment.[174] This

framework is called graph neural network and has been widely used in materials sci-

ence applications including property prediction for solid materials[223] and structure

prediction for catalysts[233].

A more sophisticated deep learning framework that has not been well studied in

the computational chemistry field is deep reinforcement learning. Deep reinforcement

learning is a combination of reinforcement learning and deep learning in which a poli-

cymaker or an agent learns strategies to solve an optimization problem by interacting

with an environment.[8] Unlike supervised or unsupervised learning algorithms that

learn from fixed training datasets, a reinforcement learning algorithm is dynamically

learned by adjusting actions based on continuous feedback from the environment to

maximize a reward. DRL has been successfully used in various applications including

control[127], autonomous driving[107], games[158], etc.

1.4 Thesis Objectives

In this thesis, we explore several interesting problems related to the surface and

interface science. Each chapter of this thesis focuses on one different problem, with

the goal of developing a framework and providing solutions and future guidance

for the specific problem. We divide the thesis into two parts based on the type of

problems and methods discussed in each part.

Before we dive into deep learning methods, Part 1 of this thesis demonstrates an
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example of how the theoretical models and computational simulation methods can

be used for understanding interfacial phenomena, and it will discuss what are the

possible areas that can be improved by the use of deep learning techniques.

• Chapter 2 presents a combined molecular thermodynamic theory (MTT) and

molecular dynamics (MD) simulations to predict non-ideal adsorption at a

solid-solution interface. Simulation techniques for fluid-fluid interfaces are well

developed, but these techniques cannot be directly applied to hard interfaces

such as two-dimensional layered materials or nanoparticle surfaces. The frame-

work proposed in this chapter provides atomistic insights into the non-ideal

behavior of surfactants by capturing structural phases of the surfactants at the

hard interface.

Part 2 of this thesis aims to develop a set of deep learning methods that solve

various solid materials and heterogeneous catalyst design problems. There can be

different machine learning solutions for those problems, but the deep learning meth-

ods presented in this part of the thesis are state-of-the-art and actively used for

advancing the catalyst design process.

• Chapter 3 presents a graph neural network model to predict binding energies

for high-throughput screening of inorganic catalysts. Binding energies can be

used as descriptors to predict catalytic properties, but high-throughput calcu-

lations using density functional theory have been limited to simple catalytic

systems due to its computational cost. The deep learning model discussed

in this chapter could accelerate the screening and broaden the search space

by providing binding energies at ab-initio level accuracy orders of magnitude

faster.

• Chapter 4 presents a deep learning method that combines graph neural network

and differentiable optimization into a single framework to directly predict the

ground state structure of inorganic catalyst surfaces. Ground state structures
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are a prerequisite for most computational materials science analyses since they

reveal chemical and physical properties that are crucial for designing materi-

als. This framework suggests a breakthrough to accelerate the identification of

ground states of inorganic structures that was bottlenecked by the expensive

computing cost of electronic structure methods.

• Chapter 5 presents a deep reinforcement learning framework for predicting ki-

netic pathways to surface reconstruction in a ternary alloy catalyst. Under

realistic reaction conditions, catalyst surfaces are often reconstructed and their

catalytic properties are also changed. The reinforcement agent explores possi-

ble surface reconstructions and transition states to identify the metastability

of the alloy catalyst surface.
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Part I

Modeling and Simulation for

interface structure
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Chapter 2

Capturing Structural Transitions

in Surfactant Adsorption

Isotherms at Solid/Solution

Interfaces

This work originally appeared as: Junwoong Yoon and Zachary W. Ulissi. Capturing

structural transitions in surfactant adsorption isotherms at solid/solution interfaces.

Langmuir 36, 3, 819-826 (2020). It has been edited to include the supporting infor-

mation in-line.

2.1 Abstract

Although adsorption isotherms of surfactants are critical in determining the relation-

ship between interfacial properties and structures of surfactants, providing quantita-

tive predictions of the isotherms remains challenging. This is especially true for ad-

sorption at hard interfaces such as on 2D layered materials or on nanoparticles where
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simulation techniques developed for fluid-fluid interfaces that dynamically change

surface properties by adjusting unit cells do not apply. In this work, we predict non-

ideal adsorption at a solid-solution interface with a molecular thermodynamic theory

(MTT) model that utilizes molecular dynamics (MD) simulations for the determi-

nation of free energy parameters in the MTT. Furthermore, the MD/MTT model

provides atomistic insights into the non-ideal behavior of surfactants by capturing

structural phases of the surfactants at the interface. Our approach captures struc-

tural transitions from the ideal state at low concentrations and then to the critical

surface aggregation concentration (CSAC) and finally through the critical micelle

concentration (CMC). We validate our model against the original MTT model by

comparing predicted adsorption isotherms of a simplified surfactant system from both

approaches. We further substantiate the applicability of our model in complex sys-

tems by providing adsorption isotherms in an aqueous sodium dodecyl sulfate(SDS)-

graphene system, in good agreement with experimental observations of the CSAC

for the same system.

2.2 Introduction

The adsorption of surfactant at interfaces has received considerable attention in both

academic research and industrial production because it can improve applications of

interfacial phenomena in biotechnology, energy science, catalysis, and advanced ma-

terials. [93, 188, 207] Interface modification via surfactant adsorption alters inter-

facial properties such as colloidal stability, interlayer distance, and surface tension

and energy, which affect the performance of the interfacial applications.[83, 93, 140,

181, 186] Surfactants adsorb to the interfacial surfaces and form dense layers or

aggregate structures based on the surface concentration Γ, the adsorbed amount of

surfactants per unit area at the interface.[83, 93, 181] While understanding the struc-
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Surface concentration, Γ

Monolayer Surface 
micelleClustering

Figure 2-1: Atomistic simulation snapshots for the adsorption of aqueous SDS

surfactants on the graphene surface. The SDS surfactants direct the formation of

structured aggregates from monolayer at a low surface concentration to surface mi-

celle at high surface concentration. The hydrophilic surfactant headgroups are com-

posed of sulfur (yellow) and oxygen (red) atoms, and the hydrophobic tailgroups are

composed of carbon (green) and hydrogen (white) atoms. Water molecules are not

shown for clarity.

tural behavior of surfactants at the interface is of great importance in determining

the interfacial properties, the concentration-dependence of these properties is usually

studied through qualitative molecular simulations.

The structures of surfactant aggregates on interfaces are closely related to the

adsorption isotherm Γ(c), Γ at a given the bulk concentration c.[181] Figure 2-1

shows the current experimental understanding of the adsorption of aqueous sodium

dodecyl sulfate (SDS) surfactants at graphene surface.[93, 208] This includes struc-

tural transitions due to different levels of the surface concentration. Although the

adsorption isotherm is critical in determining the relationship between the interfacial

properties and structural behavior of surfactant, providing quantitative predictions

of the adsorption isotherm remains challenging. Therefore, developing appropriate

techniques for the atomic-scale studies of surfactant adsorption at interfaces is a pre-

requisite for the design of surfactant molecules for which the adsorption isotherms

and structural behavior are unknown.
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Advanced experimental techniques such as neutron reflectivity[122, 162] and

transmission electron microscopy[117] can probe the micellar structures of adsorbed

surfactant molecules along adsorption isotherms. However, these techniques have

several limitations including difficult sample preparation, high cost, and insufficient

resolution to deliver atomistic-level details of surfactant structure.[237] The reported

adsorption isotherms from experimental measurements are often inconsistent with

one another or produce large variations due to the complex nature of experimental

settings and measurements.[28, 181]

Molecular Dynamics (MD) simulations have been used for the quantitative predic-

tion of properties of molecular systems while delivering atomistic-level insights into

the molecular structure and dynamics. When using MD simulations to investigate

the effect of surfactant adsorption on interfacial properties, proper modeling of sur-

factant surface concentration is required.[37, 115, 206] Unfortunately, conventional

MD simulations are currently limited by simulation time scales that are much shorter

than the time required for the surfactant-bulk interface to reach equilibrium.[188] As

such, there is a practical motivation for developing techniques to predict both the

surfactant adsorption isotherm and the structure of surfactant molecules using MD

simulations.

Alternative approaches such as Monte Carlo simulations can also be considered.

In Monte Carlo simulations, molecules are inserted and deleted to calculate equilib-

rium chemical potential using two simulation configurations representing the surface

and the bulk phases separately.[147, 231] Yoo et al. [231] have developed a discrete

fractional component Monte Carlo method in the Gibbs ensemble framework, which

provides adsorption isotherms for surfactants in an air/water interface. This ap-

proach works well in the dilute concentration but an extension of this work to high

concentration regimes requires better modeling techniques that can capture accurate

surfactant-surfactant interactions in the bulk. This method is also computationally
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unfeasible to study solid/liquid systems where the unit cell is not adjustable and the

molecules are modeled on atomistic length scales.

Molecular Thermodynamic Theory (MTT) can be a useful tool for calculating

adsorption isotherms because it is capable of capturing both the ideal and non-ideal

free energy contributions of surfactants. Sresht et al. [186] have developed MTT

models combined with MD simulations to provide a link between the surface con-

centration and bulk concentration of surfactant to make quantitative predictions of

the interfacial tension of an air-water system without conducting any experimental

measurements. This model uses MD simulations to determine the MTT parameters

for the calculation of the adsorption isotherms based on several underlying assump-

tions that simplify the surfactant system: surfactant molecules in this system only

form a single monolayer at the interface, and individual surfactant molecules in the

monolayer are modeled as hard disks with short-ranged attractive interactions. This

approach can reproduce experimental adsorption isotherms for polyethylene glycol

in an air/water system, but the required assumptions may not be applicable to more

complex surfactant systems especially when non-ideal surfactant interactions and ag-

gregates are present. Another MD/MTT framework developed by Jaishankar et al.

[104] could predict adsorption isotherms for surfactant on solid surfaces that also

agree well with experimental data. However, this model is also only able to consider

the formation of a monolayer of surfactants on solid surfaces while ignoring micelle

formation or self-aggregation on surfaces.

In this work, we predict the surface-bulk equilibrium concentrations by devel-

oping a new MD/MTT model. We choose MD/MTT model originally developed

by Sresht et al. [186] as a benchmark. Similar to the benchmark, our model deter-

mines all required MTT parameters directly from MD simulations. We relax the

simplifying assumptions in the benchmark that model adsorbed surfactants as hard

disks and limit surfactant aggregates to a monolayer by developing an all-atomistic
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MD simulation technique that allows complex non-ideal surfactant interactions and

aggregates. Our MD/MTT model predicts the adsorption isotherms for a range of

bulk concentrations below the critical micelle concentration (CMC) while capturing

structural transitions. We demonstrate that our MD/MTT model can reproduce

the adsorption isotherms produced by the benchmark MD/MTT model and fur-

ther provide adsorption isotherms in aqueous SDS-graphene systems while capturing

structural transitions. Finally, we verify that our model is able to predict the con-

sistent adsorption isotherms for the SDS-graphene systems with a different number

of SDS molecules.

2.3 Methods

2.3.1 Molecular Thermodynamic Theory (MTT)

In the benchmark model developed by Sresht et al. [186], an expression for the

chemical potential µσ of a surfactant molecule at the interface in the air/water system

is constructed as follows,

µσ

kBT
=
µσ,id

kBT
+ − ln(1 − η) +

3η − 2η2

(1 − η)2
+ 2BΓ (2.1)

based on the following assumptions: (i) there is a single monolayer of surfactant

molecules at the interface, (ii) individual surfactant molecules in the monolayer is

modeled as hard disks, (iii) and the surfactant tails stick out into the air phase even

at low concentrations. Here, µσ,id is the ideal chemical potential of a surfactant

molecule at the surface; B is a pairwise coefficient for van der Waals attraction be-

tween adsorbed surfactants; Γ is the surface concentration of the adsorbed surfactant

molecules; and η = ΓAc is a packing fraction (ratio of the cross-sectional area Ac

of an adsorbed surfactant to the available surface area per surfactant) of the surfac-

tant molecules adsorbed on the interface. Contrary to this original expression for
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μσ,Γ0 = μσ,id = μσ,0 + kBT ln(η0) μσ,Γ = μσ,id + f(Γ) = μσ,0 + kBT ln(η) + f(Γ)

G(Γ) = μσ,Γ − μσ,Γ0

Γ0 Γ

Initial (Ideal) State 
(Low surface concentration)

Final State 
(High surface concentration)

Figure 2-2: Schematic diagram of the MD simulation model for the determination

of G(Γ), the difference between chemical potential of an SDS at initial state µσ,Γ0

and the chemical potential at final state µσ,Γ. The initial state is considered as being

at an ideal condition where the non-ideal interactions among the SDS surfactants

are absent (f(Γ0) = 0). The final state is where the surface concentration is high in

order to result in the aggregate formation of SDS surfactants. Water molecules are

not shown for clarity.
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the chemical potential of a surfactant molecule at the surface, we define the µσ as

follows without those assumptions listed above,

µσ = µσ,id + f(Γ) (2.2)

where f(Γ) represents the non-ideal free energy contribution of the adsorbed sur-

factant as a function of the surface concentration. f(Γ) provides a more general

expression of the non-ideal free energy contribution because it does not involve any

assumptions used to develop the analytic expression for µσ in the benchmark model,

eq 1.

As in the benchmark model, we define the reference state as the surfactant sys-

tem at infinite dilution where the surface pressure is negligible (∼ 0 mN/m). We

can calculate the ideal chemical potential of an adsorbed surfactant µσ,id using the

reference-state chemical potential of the surfactant µσ,0 and an entropic term as

follows,

µσ,id = µσ,0 + kBT ln(η). (2.3)

Assuming that there is no significant interactions among surfactant molecules in

dilute bulk solution (below the CMC), the chemical potential of the surfactant in

the bulk phase can be expressed as

µb = µb,0 + kBT ln(x), (2.4)

where µb,0 is the surfactant bulk chemical potential at the reference state at infinite

dilution and x represents the bulk mole fraction of the surfactants. At thermody-

namic equilibrium where µσ = µb, the bulk mole fraction can be determined as a

function of the surfactant surface concentration as follows,

ln(x) =
∆µ0

kBT
+
G′(Γ)

kBT
+ ln(η0). (2.5)

To solve this equilibrium equation, two parameters need to be determined using

MD simulations: (1) ∆µ0 = µσ,0 − µb,0, the difference between the reference state
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chemical potential of a surfactant molecule at the interface (µσ,0) and the reference

state chemical potential of the surfactant molecule in the bulk solution phase (µb,0);

and (2) G(Γ), the change in the chemical potential of a surfactant at initial (ideal)

state and the potential at final state as described in Figure 2-2. G(Γ) represents the

free energy required to concentrate surfactant molecules at the initial state where

the non-ideal free energy contribution is negligible into the final state where the

surface concentration is high enough to induce non-ideal surfactant interactions and

aggregates. To verify whether the initial state is truly ideal, we estimate the non-

ideal free energy contribution of the surfactant at the interface at the initial state

f(Γ0). Then we define a corrected free energy parameter G′(Γ) = G(Γ)− f(Γ0) that

relaxes the non-ideal contribution that can possibly be present in the initial state. By

simultaneously solving G(Γ) and eq 5 using determined ∆µ0, f(Γ0), and η0 (packing

fraction at the initial state as shown in Figure 2), we can predict the equilibrium

surfactant surface concentrations for a range of bulk mole fraction.

2.3.2 Determining parameters for validation of the MTT

model: Lennard-Jones sphere surfactant model on a

graphene sheet

The NAMD simulation package was employed for the determination of parameters

in the MTT model. [165] All simulation systems for the validation of the MTT

model were constructed with simulation boxes of dimensions 5.1 × 5.1 × 5.0 nm and

each contains a 5.0 × 5.0 nm graphene sheet and Lennard-Jones sphere surfactants

that represent hard disk surfactants in the benchmark model. Carbon atoms in the

rigid graphene were represented using the all-atomistic CHARMM36 force field [24]

and the Lennard-Jones sphere surfactants were modeled using CHARMM22 force

field[138, 139]. Simulations were performed under the canonical NVT ensemble while
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maintaining a constant temperature at 300K using Langevin dynamics[55].

Determining ∆µ0

To construct a reference state at infinite dilution, a single Lennard-Jones sphere

surfactant was placed 0.3 nm above the graphene sheet. The Adaptive Biasing Force

(ABF)[43, 84] method was then applied to a collective variable, the distance between

the surfactant and the graphene, to calculate the potentials of mean force (PMF)

acting between the surfactant and the graphene as a function of their separation. The

ABF method allows the free energy surface along the reaction coordinate of interest to

be estimated by continuously updating a running average of the force acting along the

coordinate. The resulting PMF from this ABF simulation represents the free energy

changes of the surfactant as a function of the height of the Lennard-Jones sphere

surfactant from the graphene surface. A time step of 1.0 fs was used throughout the

simulation for 10.0 ns. Figure 2-3(a) shows that the surfactant has the lowest free

energy at 0.33 nm above the graphene and the gradient of the free energy becomes

close to zero at a height greater than about 1.0 nm from the graphene surface. The

free energy of adsorption of an SDS at the reference state ∆µ0 was estimated at

-4.8 kcal/mol based on the difference between the free energy of the surfactant at

the graphene interface where the surfactant has the lowest free energy and the free

energy of the surfactant in the bulk phase.

Determining G(Γ)

25 Lennard-Jones sphere surfactants were placed uniformly on the graphene sheet

at a height of 0.3 nm to create an initial state with low surface concentration, ap-

proximately 1.4 nm2. For simplification purpose, we assumed non-ideal free energy

contribution of the adsorbed Lennard-Jones sphere surfactant at the initial state

are negligible (f(Γ0) ≈ 0). An external harmonic position restraint k(x − x0)
p was
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(a) (b)

Δμ0

Figure 2-3: (a) Free energy change for a Lennard-Jones sphere surfactant as a

function of the height above the graphene surface obtained using ABF simulation.

∆µ0 is determined as the difference in the free energy of the surfactant when it is

in the bulk solution (∼1.2 nm) and when it is at the interface (∼0.33 nm). (b)

Free energy required to concentrate surfactants in the initial state as a function

of the surface concentration obtained using our simulation model (scatter) and the

benchmark (line).
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applied to the surfactants to keep them on the graphene surface. This constraint re-

produces thermodynamic equilibrium by preventing the surfactants from leaving the

graphene surface due to high surface concentration. Force constant k was set to 100

kcal/mol/nm2 and the exponent p was set to 2. These position restraint parameters

were set to form a single monolayer even at the high surface concentration in order

to mimic the assumptions in the benchmark model. By applying the ABF to the

radius of gyration of the surfactants which is a collective variable in this simulation,

the PMF as a function of the collective variable could be estimated. The resulting

PMF represents the free energy associated with concentrating the fixed number of

Lennard-Jones sphere surfactants at the initial low surface concentration state into

the final state with higher surface concentration. The simulation was run for 10 ns

with a time step of 1.0 fs. The radius of gyration and the fixed number of the sur-

factants were used to directly compute the surface concentration. The obtained free

energy change G(Γ) as a function of the surface concentration was then compared

with analytically calculated free energy profile using the benchmark model as shown

in Figure 2-3(b).

2.3.3 Determining parameters for aqueous SDS/graphene

interface

All simulations used for aqueous SDS/graphene system were constructed with simu-

lation boxes of dimensions 11.5 nm × 11.5 nm × 7.4 nm that contain a 10.0 nm ×
10.0 nm graphene sheet and SDS molecules. SDS molecules were represented using

all-atomistic CHARMM22 and CHARM27 force field [54, 56] and graphene was con-

structed using CHARMM22 force field [138, 139]. The simulation box was then filled

with water molecules using the three-site (TIP3P) water model which is the current

default water model in the NAMD simulation package. Bonds involving hydrogen in

water molecules are set to be rigid. Langevin dynamics and Nose-Hoover Langevin
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piston [55, 142] were used to maintain a constant temperature at 300 K and constant

pressure at 1 atm throughout the simulations.

Determining ∆µ0

To construct the configuration for the reference state at infinite dilution, a single SDS

molecule was placed in bulk solution at 1.1 nm above the center of the graphene sheet

(distance between the center of mass of SDS and the graphene). The system was

then filled with ∼17,000 water molecules to create aqueous SDS/graphene system.

An external harmonic potential with a force constant of 2,000 kcal/mol/nm2 was

applied to a collective variable, distance between the SDS and graphene, to initially

move the SDS to a height of 2.0 nm and then pull it down toward the graphene surface

for 1 ns with a time step of 2 fs. Simulation snapshots that contain positions of atoms

in the system corresponding to 16 evenly spaced heights of the SDS between 0.4 and

2.0 nm above the graphene were extracted and used as the initial configurations

for 16 biased-sampling simulations. During each sampling simulation, the SDS was

restrained at a height corresponding to its initial configuration using a harmonic

potential with a force constant of 1,000 kcal/mol/nm2 for 5 ns with a time step of 1

fs. The time-series trajectory data from all the 16 biased-simulations were then used

to calculate the free energy change of the SDS as a function of the distance between

the SDS and graphene using the weighted histogram analysis method (WHAM)

[76, 118, 119]. Figure 2-4(a) shows the free energy of adsorption of an SDS at the

reference state ∆µ0 is estimated at -10.8 kcal/mol and the SDS has the lowest free

energy at 0.39 nm above the graphene sheet.

Determining G(Γ)

To construct the initial state, 30 SDS molecules were placed uniformly on the graphene

sheet at a height of 1.1 nm, followed by solvation of the simulation box with ∼50,000
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(a) (b)

Δμ0

Figure 2-4: (a) Free energy change for SDS surfactant as a function of the height

above the graphene surface obtained by analyzing the histograms of the 16 sampling

simulations using WHAM. ∆µ0 is calculated as the difference in the free energy of

the surfactant when it is in the bulk solution and when it is at the interface. (b) Free

energy required to concentrate the SDS surfactants in the initial state as a function

of the surface concentration obtained by analyzing the histograms of 28 sampling

simulations using WHAM.
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water molecules. To study the correct structure of SDS hemi-micelle on the graphene

surface, we assumed that around 30 SDS molecules need to be placed on the surface

because the hemi-micelle would require about a half of the average SDS micelle aggre-

gation number at the CMC in water, which is 60.[195] An external harmonic position

restraint was applied to the sulfur in the SDS headgroups to avoid the desorption of

the SDS molecules due to high surface concentrations. The force constant k for the

position restraint was set to 1.0 kcal/mol/nm2 and the exponent p was set to 2. The

simulation system was then equilibrated to ensure all atoms were in an energetically

stable configuration where the hydrocarbon chains of the SDS molecules were lying

down on the graphene surface at a fixed low surface concentration (approximately

0.4 nm2) under the NPT ensemble for 10 ns with a time step of 2 fs. This relaxed

configuration was used as the initial state where non-ideal surfactant interactions are

insignificant as shown in Figure 2-2 for the following sampling simulations for the

determination of G(Γ). The average distance between SDS molecules in this initial

state was estimated at 6.4 nm. We also estimated non-ideal free energy contribu-

tion of the adsorbed SDS at the initial state f(Γ0) as the difference between total

interactions at the ideal state and the interactions at the initial state An external

harmonic potential with a force constant of 2,000 kcal/mol/nm2 was then applied to

a collective variable, a radius of gyration of SDS molecules, to pack the relaxed SDS

molecules into smaller surface area and to induce the formation of SDS aggregates

by decreasing the radius of gyration for 10.5 ns with a time step of 2 fs. During this

packing simulation, the radius of gyration of the SDS molecules was used to directly

measure the surface area and surface concentration with the fixed number of SDS

molecules. Simulation configurations corresponding to 28 evenly spaced radius of

gyration of the SDS molecules between and including 1.3 nm and 4.0 nm were se-

lected and used as initial configurations for 28 biased-sampling simulations. In each

sampling simulation, the SDS molecules were restrained at each radius of gyration

49



Figure 2-5: The surface concentration of surfactants as a function of the bulk mole

fraction in the simplified surfactant system obtained using our MD/MTT model

(scatter) and the benchmark.

using a harmonic potential with a force constant of 500 kcal/mol/nm2 for 7 ns with

a time step of 1 fs. The free energy change G(Γ) associated with varying the sur-

face concentration of the SDS molecules was then calculated by applying WHAM to

the time series trajectory data from the 28 sampling simulations as shown in Figure

2-4(b).

2.4 Results and discussion

2.4.1 Validation of the model

We first check the validity of our model by comparing the two adsorption isotherms

calculated using the benchmark model and our model for the simplified surfactant
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system. As we described before, only a single monolayer of Lennard-Jones sphere

surfactants is assumed to be present on a graphene surface in the simplified system.

∆µ0 is estimated at -4.8 kcal/mol based on the free energy profile shown in Figure

2-3(a) and the resulting G(Γ) from the simulation model described in Figure 2-2

is shown in Figure 2-3(b). By simultaneously solving eq 5 with the determined

parameters, ∆µ0 and G(Γ), we generate adsorption isotherm in the system. Figure

2-5 compares between the adsorption Γ as a function of the bulk mole fraction x

for the simplified surfactant determined by our model and the benchmark model.

Our MD/MTT model is able to reproduce the result from the analytic equilibrium

equation developed by Sresht et al. [186] in the simplified system. The ability to

reproduce the analytic equation eq 1 also demonstrates the applicability of our

model to more complex systems because our model can directly provide G(Γ) using

MD simulations without considering any assumptions used in the benchmark model

that prohibit non-ideal complex surfactant interactions.

2.4.2 Real surfactant system - aqueous SDS/graphene inter-

face

Adsorption isotherm

∆µ0 for an SDS molecule in an aqueous SDS/graphene system is estimated at -10.8

kcal/mol from Figure 2-4(a), and f(Γ0) is estimated at -0.10 kcal/mol. G(Γ) is

determined using 28 sampling simulations and plotted in Figure 2-4(b). By simulta-

neously solving eq 5, we generate the adsorption isotherm of SDS molecules on the

graphene sheet. Blue scatters in a joint plot in Figure 2-7 shows the SDS surface

concentration Γ as a function of the bulk mole fraction x for the system with 30 SDS

molecules. Two red vertical dashed lines indicate the corresponding bulk mole frac-

tion of the critical surface aggregation concentration (CSAC)[214] (left) and CMC
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θ

Peak log(θ) θ (o) 

1 0.27 1.86

2 1.00 10.02

3 1.61 40.57

Figure 2-6: Violin plots showing the distribution of θ on a log scale as a function

of the surface concentration. θ is introduced to measure how much the headgroup

is lifted from the graphene surface. Each violin is fitted to a mixture of Gaussian

density functions. A peak of each Gaussian density function in each violin is labeled

as peak 1, 2, and 3 based on the corresponding log(θ). Example SDS surfactant

structure at each peak is shown at the right end of the violin plots. The table shows

the average log(θ) and θ at each peak.

(right). CSAC is defined as the concentration of the surfactant required for the for-

mation and adsorption of the hemi-micelles on the surface. Using our MD/MTT

model, the surface concentration at the CSAS is estimated at 2.7 nm−2 which is

equivalent to 0.37 nm2 surface area per molecule. The predicted surface area per

molecule at CSAC agrees well with both the experimental data [214](0.42 nm2) and

MD simulations[206] (0.40 nm2). The surface concentration and the surface area per

molecule at CMC were also estimated at 3.8 nm2 and 0.26 nm2, respectively.

Structural behavior

To study structural behavior of SDS molecules at the water/graphene interface, we

measure angle θ between the SDS molecule and the graphene to see how much

the headgroup is lifted as described in a cartoon in Figure 2-6 at each time step
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(a) (b) (c) (d)

CSAC CMC

Figure 2-7: A joint plot that shows the SDS surface concentrations corresponding

to each aqueous SDS-graphene system with 30 SDS (blue) and 36 SDS (orange), and

the average number of SDS molecules (black) found in each peak (defined in Figure

6) as a function of the bulk mole fraction. The two red vertical dashed lines represent

the corresponding bulk mole fractions of the CSAC (left) and the CMC (right). Four

structural phase regions are highlighted with different colors and labeled as phases

a, b, c, and d. The simulation snapshots for the structure of the SDS molecules in

each phase for the system with 30 SDS molecules are shown above the joint plot.

Water molecules are not shown for clarity.
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throughout all sampling simulations used for the determination of G(Γ). θ provides

information about the structural properties of SDS molecules. A small θ that is close

to zero indicates that the SDS is horizontally lying down, and a large θ indicates

that the SDS is tilted by the headgroup due to a higher concentration. In Figure

2-6, we also generate a violin plot that shows the distribution of θ on a log scale

at different surface concentrations. Each violin represents a rotated kernel density

estimation of the distribution of θ on a log scale. Here, we plot and analyze the

distributions of θ on a log scale because the actual θ is too broadly distributed to

be fitted to Gaussian distributions. For example, it is hard to distinguish 1.86◦ from

10.02◦ on a normal scale where the range of θ is from 0◦ to 90◦. However, we could

differentiate between those two angles by plotting them on a log scale where they

are represented as 0.27 and 1.00 respectively when the range of the log(θ) is from -1

to 2. We then fit each violin to a mixture of Gaussian density functions to extract

statistical information about the structure of SDS molecules. The motivation for

using a mixture of Gaussian density functions comes from the idea that it can be

used to approximate any continuous distributions with multiple local peaks.

We find three peaks at 0.27 (θ ≈ 1.86◦), 1.00 (θ ≈ 10.02◦), and 1.61 (θ ≈ 40.57◦)

as shown in the table in Figure 2-6(b). Peak 1 and 2 are observed at fairly constant

angles throughout the entire range of the surface concentration while peak 3 is only

observed at relatively high surface concentrations (above ∼3 nm2). We then estimate

the average number of SDS molecules at each peak where they have the corresponding

θ using the total number of SDS molecules in the simulations and the estimated

relative area under each peak. Figure 2-7 shows the average number of SDS molecules

at each peak using black lines and the surface concentrations simultaneously as a

function of the bulk mole fraction.

Based on the change in the average number of SDS molecules at each peak, we

could predict that there are four structural phases during the adsorption of SDS on
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the graphene surface. Those four phases (phase (a), (b), (c) and (d)) are shown as

filled regions in Figure 2-7, and the corresponding structures of SDS molecules (struc-

ture (a), (b), (c) and (d)) are visualized using visual molecular dynamics (VMD)[97]

and shown above the plot in Figure 7. These structural transitions agree well with

the experimentally developed SDS adsorption model at the graphene sheet [93, 208].

At low bulk mole fraction (less than x ≈ 7.3 × 10−7), most SDS molecules are

found in peak 1 where they have θ values very close to zero. Initially, SDS molecules

form a monolayer while they are lying down on the graphene surface in order to

minimize contact between hydrophobic molecules (hydrocarbon chain of SDS and

graphene) and water molecules. We observe that the monolayer becomes denser as

the bulk mole fraction increases and then becomes fully packed at x ≈ 7.3 × 10−7,

as illustrated in structure (a). In the fully packed monolayer, headgroups of most

SDS molecules are pointing outward because of their hydrophilic nature.

At higher bulk mole fraction as in phase (b), SDS molecules in the fully packed

monolayer with headgroups that are pointing inward start to thrust their headgroups

toward the aqueous solutions while keeping the tailgroups on the graphene surface in

attempt to maintain the exposure of the headgroups to water at higher concentration

as shown in structure (b). This behavior causes an increase in the average number

of SDS molecules at a peak 2 in phase (b).

In the range of bulk mole fraction in phase (c), more SDS molecules are found in

peak 2 compared to peak 1. As the SDS molecules thrust their headgroups harder

due to higher concentration, we observe that some of them in peak 2 is now found

in peak 3 where they have larger θ. We consider the structure of SDS when the

peak 3 first appears is a hemi-micelle on the surface as illustrated in structure (d).

There may be a degree of uncertainty in this observation, but we could validate the

formation of surface hemi-micelle at the surface concentration (2.7 nm2) where peak

3 first appears. The corresponding bulk mole fraction (x ≈ 5.7 × 10−5) is close to the
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experimentally determined CSACs (x ≈ 3.7 × 10−5 and 5.1 × 10−5) in the aqueous

SDS/graphene system [208, 214].

In phase (d) where the bulk mole fraction is close to CMC, we observe the similar

hemi-micelle structure as we found at CSAC, but it is denser due to the higher con-

centration. We note that the adsorption of SDS near the CMC—where the packing

and adsorption of surfactants are limited in reality—may not be as accurate as we

expected, because there may be significant interactions among SDS molecules in the

bulk solution at the CMC as opposed to our assumptions in eq 4.

Generalization

To show how dependent the adsorption isotherm and the structural behavior are

on the number of SDS molecules in the system, we perform the same calcula-

tions for determination of MTT parameters, G(Γ), f(Γ0), and ln(η0) in an aqueous

SDS/graphene system that contains 36 SDS molecules. This is an important veri-

fication test for our MD/MTT framework to show it can extrapolate an adsorption

isotherm spanning a wide range of concentrations in the bulk and on the surface.

As shown in the plot in Figure 7, our MD/MTT model is able to generate con-

sistent adsorption isotherms for both aqueous SDS-graphene system with 30 SDS

molecules (blue) and the same system with 36 SDS molecules (orange). Further-

more, we are also able to observe that the adsorption isotherm for the system with

36 SDS molecules follows the structural phases and transitions previously found in

the system with 30 SDS molecules. Details of structural phases and calculation of

the adsorption isotherm for the system with 36 SDS molecules can be found in Figure

2-8.
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(a) (b) (c) (d)

CSAC CMC

36 SDS

30 SDS

(1)

(2)

Figure 2-8: (1) G(Γ) for both systems with 30 SDS and 36 SDS. The free energy

profile for the system with 36 SDS is slightly off at low surface concentrations, but it

can be corrected using f(Γ0) and it shows the same trend as the one for the system

with 30 SDS. (2) (top) Simulation snapshots for the surfactant structures at each

structural phase (phases a, b, c, and d) in each system. This shows both systems

have the same structural phases in the same range of bulk mole fractions and follow

the same structural transitions. (bottom) adsorption isotherms obtained from MTT

parameters calculated for each system with 30 SDS and 36 SDS. Red vertical dashed

lines represent CSAC (left) and CMC (right).
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2.5 Conclusions

In this work, we presented a new framework that combines MTT and MD simulations

to predict the surface-bulk equilibrium concentrations of surfactant, thereby overcom-

ing the computational limitations of atomistic MD simulations for the determination

of adsorption isotherms. The MD/MTT framework connects the bulk concentrations

of surfactant with the surface concentrations at equilibrium while the MD simulations

determine the thermodynamic parameters (∆µo and G(Γ)) presented in the MTT.

The simulation modeling we developed for the direct calculation of the free energy

contributions of the surfactant molecules allows complex surfactant systems to be

studied without simplifying the structure and properties of the systems. This simula-

tion technique also enables our framework to understand the relationship between the

adsorption isotherms and structural behavior of surfactants at interfaces. We showed

that our framework could capture structural transitions during SDS adsorption at a

graphene surface. The transitions agree well with the experimental observations for

the same system while providing the adsorption isotherms. We demonstrate that our

MD/MTT framework is robust to a number of surfactants by predicting consistent

adsorption isotherms and surfactant structural phases for different numbers of SDS

surfactants in the aqueous SDS-graphene system. This MD/MTT framework is not

limited to one system, and can also be applied to new surfactant systems and de-

termine the thermodynamic parameters to provide adsorption isotherms. Thus the

MD/MTT framework can serve as a better tool for the design of surfactant molecules

that require an understanding of the effect of the adsorption isotherms and structural

behavior of the molecules on interfacial properties.
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Part II

Deep Learning for Catalyst Design
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Chapter 3

Convolutional Neural Network of

Atomic Surface Structures To

Predict Binding Energies for

High-Throughput Screening of

Catalysts

This work originally appeared as: Seoin Back*, Junwoong Yoon*, Nianhan Tian,

Wen Zhong, Kevin Tran, and Zachary W. Ulissi. Convolutional neural network of

atomic surface structures to predict binding energies for high-throughput screening of

catalysts. J. Phys. Chem. Lett. 10, 4401 (2019). It has been edited to include the

supporting information in-line.
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3.1 Abstract

High-throughput screening of catalysts can be performed using density functional

theory calculations to predict catalytic properties, often correlated with adsorbate

binding energies. However, more complete investigations would require an order of 2

more calculations compared to the current approach, making the computational cost

a bottleneck. Recently developed machine-learning methods have been demonstrated

to predict these properties from hand-crafted features but have struggled to scale to

large composition spaces or complex active sites. Here, we present an application of

deep-learning convolutional neural network of atomic surface structures using atomic

and Voronoi polyhedra-based neighbor information. The model effectively learns the

most important surface features to predict binding energies. Our method predicts

CO and H binding energies after training with 12,000 data for each adsorbate with

a mean absolute error of 0.15 eV for diverse chemical space. Our method is also

capable of creating saliency maps that determine atomic contributions to binding

energies.

3.2 Introduction

Understanding atomic and molecular interactions with solid surfaces is a basis for

predicting catalytic properties in heterogeneous catalysis. Density functional theory

(DFT) calculations have played an important role in understanding these interac-

tions and estimating binding strengths accurately with respect to the correspond-

ing experimental measurements (MAE = ∼0.2 eV).[81, 89] Binding energies can

be used as descriptors to predict catalytic properties such as electrochemical onset

potentials[141, 163], turn over frequencies[185], product selectivity[232] based on scal-

ing relations between binding energies of reaction intermediates,[105, 141, 210] and

Brønsted-Evans-Polanyi relation between reaction energies and kinetic barriers.[26,
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210]

In the past decades, high-throughput screenings of catalysts have been performed

mainly using simple metal/alloy systems, and the most stable and second most sta-

ble facets such as FCC (111) and (100) have been used due to their low surface

energies.[72, 148] In addition, one descriptor has been usually used to predict cat-

alytic activities—e.g., H, OH and CO binding energies to predict theoretical overpo-

tentials of H2 evolution/oxidation reactions, O2 reduction reaction and CO2 reduction

reaction, respectively.[72, 73, 74, 82] To more completely study catalytic properties

of materials, however, we need to reconsider those two assumptions. First, the most

stable facet is not always most active. For example, concave Au nanoparticles con-

sisting of a large portion of high index facets showed much higher catalytic activity

and selectivity compared to thin film consisting of stable facets.[120] Therefore, it

is essential to consider several possible facets and a number of unique active sites

on those facets,[205] increasing the computational cost by a factor of 20, assuming

we consider 5 facets and 4 possible active sites. Second, one may want to extend

a chemical space to explore, but it has been frequently observed that the scaling

relations do not hold anymore for systems other than metal/alloy systems. Exam-

ples include single metal atom embedded in two-dimensional materials, p-block atom

embedded in metals, and metal dichalcogenides. [9, 34, 61, 128] Therefore, we need

to consider all reaction intermediates, increasing the computational cost by a factor

of 5∼10.[10, 163] Altogether, the required computational cost becomes an order of 2

more expensive than the current high-throughput screenings, making the computa-

tional cost of DFT a main bottleneck. Thus, it is essential to develop strategies to

alleviate the computational cost issue.

Recent developments of machine-learning (ML) techniques and their applica-

tions to catalysis have suggested that the ML could substantially facilitate the high-

throughput screenings. Based on ML predicted binding energies, one could reduce
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the number of DFT calculations by excluding unpromising candidates[123, 125, 205].

For example, using fingerprints based on selected chemical and physical features of

active sites and their neighbor information, many artificial neural network (ANN)

models have been successful in achieving an acceptable accuracy (MAE = ∼0.2 eV)

with respect to the DFT calculated binding energies. Unfortunately, many models

are based on electronic features of active surface atoms, such as d-band charac-

teristics, requiring ab-initio level computational cost to prepare them. Therefore,

ML models that use readily available data and that achieve high accuracy with the

minimal number of training DFT data are strongly desirable to pursue an efficient

catalyst search over the broad chemical space.

Recently, Xie and Grossman applied a deep-learning convolutional neural net-

work (CNN) on top of a graph representation of bulk crystals to predict various

properties[36, 226] and reached the MAEs of DFT calculations and experiments

(0.10 ∼ 0.15 eV) after training with ∼30,000 DFT calculated data. The graph rep-

resentation of the crystals includes information of atomic features and interatomic

distances, and iterative convolutions extract neighbor information to update atomic

feature vector. Note that none of expensive electronic structure information was

used during the process; only the crystal structures and basic atomic features were

used.

In this work, we use a modified form of this CNN method to predict CO and H

binding energies on diverse surfaces of pure metals, metal alloys, and intermetallic

surfaces. In our method, we collect the graph connections based on Voronoi poly-

hedra to take into account additional adsorbate atoms. We report state-of-the-art

MAEs of 0.15 eV for both CO and H binding energy predictions using 12,000 train-

ing data for each adsorbate across a far larger collection of surface composition and

structure than previously possible. We further show that our method can be used

to create saliency maps to determine atomic contributions to binding energies and
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to automatically detect failed DFT calculations.

3.3 Representation of Surface Structures

We modified the bulk crystal prediction code to better represent surface features. In

the previous effort of the CNN applications to bulk property predictions, the authors

encoded atomic information and interatomic bonding interactions into node and edge

vectors, respectively[226], where the node vectors include the basic atomic informa-

tion and the edge vectors contain atomic indices of nearest neighbor atoms and their

bonding distances from the center atom. The main difference between bulk struc-

tures and our atomic surface structures is that the latter contain adsorbate atoms,

where their initial positions are arbitrarily set by users. Since a goal of our method is

to predict binding energies using initial structures as inputs, the arbitrariness of the

initial adsorbate position should be addressed. We note that there is no such arbi-

trariness in the graph representation of bulk crystals, since atomic positions change

marginally during a cell relaxation of already known structures and the final relaxed

structures were used for training.[226] To resolve this arbitrariness, we modified the

code so that we can incorporate neighbor information based on Voronoi polyhedra

as implemented in Pymatgen[157] as ”VoronoiConnectivity” (Figure 3.3b). Voronoi

polyhedra, also known as Wigner-Seitz cell[216], of atoms in surface structures could

provide local environment information as a solid angle. Each atomic polyhedron

encompasses space in which distance to the center atom is less than or equal to the

distance to other atoms. Solid angles between the plane shared by polyhedra of

two adjacent atoms and center atoms are calculated, and values normalized to the

maximum solid angle that belongs to the center atom were used to represent local

environments of the center atom. We note that larger solid angles correspond to

stronger interaction between the center and the neighbor atoms. To prepare atomic
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feature vectors, we used the identical tabulated atomic information as in the original

code.[226]

In some cases, the binding site changes from the initially set site to a more

stable site during structure relaxation—e.g., from a top site to a bridge site. Since

binding site changes could affect a prediction performance, we tested this effect by

including a connectivity distance information from adsorbate atoms to all atoms

in the surface structure taken from the final relaxed structures (Figure 3.3). We

compared the prediction performance of training with initial structures only, final

structures only, and initial structures with the connectivity distance information of

adsorbates obtained from the final structures. Obviously, the prediction performance

of training with final structures was best (MAE = 0.13 eV) and that with initial

structures was worst (MAE = 0.19 eV), while that with initial structures and the

adsorbate connectivity distance information lies in between (MAE = 0.15 eV). For

the rest of this work, we present the results trained with initial structures and the

adsorbate distance information.

Using adsorbate connectivity distance changes between initial and final geome-

tries, we could tackle a few drawbacks of using initial or final geometries for training

(Figure 3.3d). For example, if CO binding at bridge site is more stable than bind-

ing at top site, CO adsorbate could move from top to bridge site during the DFT

relaxation. When using the initial structure for training, the model would predict

the bridge site CO binding energy from the top site CO binding structure. Training

with final structures results in higher accuracy, but using the final structures is not

practical. With the connectivity distance change, the model predicts the bridge site

CO binding energy from both top and bridge sites CO binding initial geometries. We

note that we do not use atomic positions from final geometries. Practically, we would

use initial structure-based model at first, which already demonstrated a reasonable

prediction accuracy, and we improve the accuracy of the model by including the con-
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nectivity distance information of adsorbates from the completed DFT calculations

in machine-learning augmented high-throughput DFT scheme (Figure 3-2).
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Figure 3-1: A graphical representation of converting an atomic structure contain-

ing n atoms into numerical inputs for the convolutional neural network. (a) 9 basic

atomic properties are presented by one-hot encoding[226] to prepare the atomic fea-

ture vectors. (b) Neighbor information was encoded using the solid angle (Ω) based

on the Voronoi polyhedron. The grey skeleton indicates the Voronoi polyhedron of

Cu atom, and the solid angle between Fe atom and the shared plane of Cu and Fe

polyhedrons is marked. Other nearest neighbor atoms were omitted for simplicity.

Color code for atoms: Cu (blue), Fe (brown), C (grey), O (red). (c) The connec-

tivity distances from adsorbate to all atoms in surface structures are counted. A

side view of the surface structure with adsorbate CO molecule, surface atoms up to

the second layer and their corresponding connectivity distances are presented as an

example. (d). A schematic representation of three atomic structural data that could

be used in the CNN. ”Initial geometry”, ”Final geometry”, and ”Final adsorbate

coordination geometry” are based on initial structures, final structures, and initial

structures with adsorbate connectivity distances, respectively. The numbers in the

DFT part (solid box) represent the initially set or relaxed atomic distances, and the

integer numbers in the CNN part (dotted box) are the connectivity distances. More

details can be found in the main text.

3.4 Graph Convolutional Neural Networks

Once we converted atomic structures into graph representations, we concatenated

atomic feature vectors of atom i and j (vi and vj) and neighbor feature vectors

between atom i and j (u(i,j)), i.e., z(i,j) = vi ⊕ vj ⊕ u(i,j). We then utilized the same

69



Figure 3-2: A process of high-throughput workflow for the catalyst screening.
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Figure 3-3: Schematic illustration of the convolutional neural network on top of

the graph representation of atomic surface structures. Dark red and red blocks

correspond to atomic and neighbor feature vectors as in Figure 3.3. Pink blocks

correspond to the connectivity distance vectors used as a filter to exclude atoms that

are too far from adsorbates (higher than the connectivity distance of 2). More details

are elaborated in the main text.

convolutional layer (eqn (1)) as described in Ref. [226].

vt
i = vt−1

i +
∑
j

σ
(
zt−1
(i,j)W

t−1
f + bt−1

f

)
⊙ g

(
zt−1
(i,j)W

t−1
s + bt−1

s

)
(1)

where ⊙ denotes an element-wise multiplication, σ denotes a sigmoid function, g

denotes non-linear activation functions (”Leaky ReLu” in this study), W and b

denote weights and biases of the neural networks, respectively. After R convolutional

layers, resulting vectors are then fully connected via K hidden layers, followed by

a linear transformation to scalar values. Distance filters were applied to exclude

contributions of atoms that are too far from the adsorbates. At this stage, (1)

atomic contributions of each atom to binding energies could be predicted and (2)

mean pooling layer is applied to predict DFT calculated binding energies (Figure

3-3).

The neural network is trained to minimize the loss function (MAE) between the

DFT calculated and predicted binding energies using Adam optimizer with decou-

pled weight decay (L2 Regularization coefficient: 10−5) and warm restart [132]. We
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Table 3-1: Hyperparameters of convolutional neural network optimized by Sigopt.

Parameters CO binding energies H binding energies

Batch size 214 140

Learning rate 5.6 × 10−3 9.9 × 10−4

Epochs 150 150

atom fea len 46 107

h fea len 83 50

n conv 8 6

n h 4 1

tested two pooling functions (sum and mean) and four activation functions (Sigmoid,

Softplus, leaky ReLu, ReLu). We divided DFT results into 20 % and 80 % of test

and training sets, respectively. To prevent the overfitting, the validation set (25 %

of training sets) was used to optimize hyperparameters (Table 3-1). Based on the

number of hyperparameters for CO binding prediction, we presented the convolu-

tional neural network architecture in Figure 3-4. The prediction accuracy of the

CNN models was evaluated from mean absolute error (MAE) of CNN-predicted and

DFT-calculated binding energies.

We first compare how our DFT datasets and method are different from the pre-

vious approaches[3, 7, 16, 32, 48, 153] (Table 3-2). First, the DFT data used in most

previous studies covered only the limited chemical space—e.g., materials consisting

of up to two elements based mainly on transition metals, fixed elemental composi-

tions for alloys (1:1, 1:3) and low-index facets of the most common crystal structures

(FCC (111), FCC (100), HCP (0001)). On the other hand, our DFT datasets include

materials consisting of up to four elements using 37 elements, 96 stoichiometries, 110

space groups and 41 facets. Second, the number of parameters in our CNN method is

substantially more compared to the previous approaches. For binding energy predic-
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Figure 3-4: Convolutional neural network architecture used in this work. The

values in parenthesis correspond to the number of parameters for CO binding energy

prediction (Table S2).
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Table 3-2: A comparison of our DFT data and the number of parameters of our

model to literature values, where the goal was to predict binding energies. We

counted all unique components (element, stoichiometry, space group, facet) in liter-

ature and our DFT data. For the previous studies that did not explicitly mention

the number of total DFT data or parameters, we estimated based on the presented

results. The number of parameters indicate how complicated the model is. Specific

parameter components of our model are summarized in Table S2.

Element Stoichiometry Space group Facet Total DFT data Parameters Methods

Calle-Vallejo et al.[32] 1 1 1 22 132 2 GCNa

Abild-Pederson et al.[3] 13 1 3 6 165 2 SRb

Dickens et al.[48] 45 3 3 3 901 2 EDc

Ma and Xin.[136] 3 1 1 8 37 ∼101 GCNa+EDc

Noh et al.[153] 28 3 1 1 263 101 ∼ 102 MLd

Andersen et al.[7] 9 3 1 4 884 ∼ 101 MLd

Li et al.[125] 24 4 1 1 1,032 ∼ 102 MLd

Batchelor et al.[16] 5 1 1 1 1,869 15 (O), 55 (OH) MLd

This work 37 96 110 41 43,247 4,938 (CO), 6,738 (H) MLd

ageneralized coordination number, bscaling relations, celectronic descriptors,

dmachine-learning.

tions through scaling relations[3], generalized coordination numbers[32] or electronic

descriptors[48], only two parameters (slope and bias) are optimized through a linear

regression. ANNs consisting of an input layer, several hidden layers and an output

layer are reported to have ∼102 parameters.[7, 16, 125] In our deep-learning CNN,

there are thousands of parameters to be optimized during the training so that it can

predict binding energies on a variety of surfaces of catalysts. However, we note that

simpler methods are useful in specific cases, which will be discussed in the last part.
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Figure 3-5: Mean absolute error (MAE) of test set with respect to the number

of training atomic structures for binding energy predictions of (a) CO and (b) H.

The horizontal dashed lines correspond to the standard deviation of DFT binding

energies. As a comparison, we added the prediction error from our previous study

(green and red star).[205] Two-dimensional histograms of DFT-calculated and CNN-

predicted binding energies of (c) CO and (d) H.
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3.5 Results

3.5.1 Binding Energy Prediction

Figure 3-5 shows the performance of our method on predicting CO and H binding

energies. We note that a difference in the prediction accuracy between CO and H

using the small number of data could be originated from their data distribution; the

standard deviations of CO and H DFT binding energies are 0.65 and 0.42 eV, respec-

tively. In both cases, we observed a systematic decrease in the error metric (MAE)

as the number of training atomic structures increased. Interestingly, we observed a

near convergence of the prediction accuracy at 5,000 and 8,000 training data for CO

and H, respectively, similar to our previous work.[205] For comparison, we also plot-

ted MAE obtained using 12,000 training data from our previous work[205], where

fingerprint-based surrogate models were trained. We note that exact comparison is

not available since training/validation/test data splitting was not used previously,

but training/test splitting was used instead. The previously reported values are,

thus, the lower-limit accuracy of the model. The best MAEs we achieved for the CO

and H binding energy prediction are 0.15 eV in both cases, and 86 % of test data

are within the accuracy of 0.25 eV. We highlight that MAEs for CO and H binding

energy prediction in this study are lower by 0.05 eV compared to our previous model.

Given a reasonable accuracy of our model and facile preparation of input data, we

expect this method could be applied for the high-throughput catalyst screening to

remove unpromising candidates, thus, reducing the number of DFT jobs.

3.5.2 Atomic Contributions to Binding Energies

After the convolutional layers and the fully connected layers, the resulting output

vectors are linearly transformed to scalar values for each atom, which are then fil-

tered by the connectivity distance criterion. We only considered atoms with the
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connectivity distance up to 2 as they are expected to strongly interact with adsor-

bates. These values are then averaged in the pooling layer and the resulting value

corresponds to the predicted binding energies. Thus, the linearly transformed scalar

values represent the contribution of corresponding atoms to the predicted binding

energies, and one possible interpretation of the model is a saliency map of atomic

contributions to binding energies on this basis (Figure 3-6). We note that neigh-

boring atoms of the active sites could significantly affect the electronic structures of

the active sites, which our model cannot capture, and this effect can only be under-

stood by density-of-state analysis. The prediction accuracy change was negligible

(< 0.01 eV) even we included all the atoms, indicating that the first and the second

nearest-neighbor of adsorbates mainly contribute to binding energies. In Figure 3-6,

we present a graphic representation of each atomic contribution to binding energies

using CO adsorption at top and bridge sites of Cu (211) surface as an example. We

normalized the atomic contribution into [0,1] range by mapping the minimum and

the maximum values of the contributions to 0 and 1, respectively. Clearly, we observe

that surface atoms directly interacting with adsorbates have the highest contribution

to the binding energies. We also visualized atomic contributions using the connectiv-

ity distance up to 4, and, as expected, their contributions are found to be negligible.

This result rationalizes the use of the first and second nearest neighbor to extract

neighbor information of active sites for the preparation of fingerprints in our previous

model.[205] An example of bimetallic surface is shown in Figure 3-7. We note that

the conventional DFT calculations are not capable of isolating the calculated binding

energies into each atomic contribution.

3.5.3 Automated Failed DFT Calculation Detection

Another feature of our method is to automatically detect wrong DFT calculations

in datasets, which may take lots of time by human analysis. Since our workflow
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a. b. 

Figure 3-6: Graphic representations of atomic contributions to CO binding energies

at (a) top and (b) bridge site of Cu (211) surface. Darker spheres indicate higher

contributions. Only atoms within the connectivity distance of 2 are considered and

transparent spheres indicate atoms with connectivity distances higher than 2.
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Figure 3-7: Top view of CO adsorption on Cu3Al (211) surface. Darker spheres

indicate higher contributions. Dark brown spheres are Cu atoms directly interacting

with CO adsorbate (distance = 1), light grey spheres are Cu atoms not interacting

with the CO (distance = 2). Lilac spheres are Al (distance = 2). Transparent spheres

indicate atoms with connectivity distances higher than 2.
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in GASpy automatically performs DFT calculations (see the Computational Meth-

ods for details of calculations), there could be a few incorrect atomic structures and

binding energies, where the final relaxed structures significantly differ from the initial

structures due to surface reconstructions or unphysical initial atomic structures (Fig-

ure 3-8). Since our model uses neighbor information based on the Voronoi polyhedra,

it cannot accurately predict binding energies of structures where atomic structural

change is significant. After training, we considered data outside of ±3σ as outliers

and this process was repeated two times (Figure 3-9 and 3-10). Out of 20,771 and

22,361 data for CO and H binding, 622 and 628 outliers were detected.

3.6 Conclusion

The deep-learning CNN results presented in this work suggest that, given sufficient

training data, it could be effective in reducing computational cost issue in the high-

throughput screenings. However, we highlight that simpler methods may be more

effective for specific cases or smaller datasets. Details are discussed in the following:

• For systems consisting of single metal element, generalized coordination num-

ber (GCN) is the best choice. The GCN analysis on low and high index Pt

facets in various sizes of Pt nanoparticles predicted OH* binding energies very

accurately (MAE ∼0.056 eV) using only 20 DFT data.[32] In addition, one can

easily count the GCN of active sites. However, an extension of this method to

alloy or other materials has not been reported.

• Recently developed orbitalwise coordination number[136, 211] uses the geomet-

ric strain and the tabulated interatomic coupling matrix elements. It is as easy

as to compute GCN, but it still requires DFT calculated geometries for a high

accuracy. It has shown a reasonable prediction accuracy for CO, O and OH

adsorption (root mean square error (RMSE): 0.10 ∼ 0.19 eV) for various sizes
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Figure 3-8: Three types of outliers detected during the analysis. Surface ID consists

of MPID, miller index, shift value and orientation (True and False correspond to top

and bottom of surface structures, respectively).
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Figure 3-9: Two iterations of the outlier detection for CO binding energy prediction.
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Figure 3-10: Two iterations of the outlier detection for H binding energy prediction.
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and shapes of pure Au and Pt nanoparticles, and transition metal core-Pt shell

nanoparticles, but an extension to other systems consisting of more elements,

facets and various crystal structures has not been reported.

• Scaling relations and electronic descriptors, such as d-band center, are suitable

for a dozens of metal/alloy DFT data. The drawback of the scaling relation

is that it is adsorbate-specific and a model should be optimized for each ad-

sorbate of interest [3]. For d-band center analysis, one should perform DFT

optimization and post density-of-states analysis to calculate d-band center val-

ues. Further, a preparation of inputs requires DFT calculations for new sys-

tems to obtain binding energies of atomic species, d-band center values or the

orbitalwise coordination number.

• Artificial neural networks (ANN) have also shown a similar accuracy to the

scaling relations or electronic descriptors[7, 16, 125, 153], and they are suitable

for hundreds/thousands of DFT data of similar metal/alloy systems. They

require a careful preprocessing of fingerprints which could considerably affect

the prediction accuracy. A preparation of inputs for a binding energy predic-

tion of new systems is usually fast as most of the fingerprints are determined

beforehand.

• The deep-learning methods, CNN as in this study, could predict binding ener-

gies for a variety of surfaces without a preparation of fingerprints as they collect

all the information automatically. However, the main drawback of the deep-

learning is that it requires lots of data (> 10,000 DFT data). As we want to

include diverse materials for the high-throughput screenings, the deep-learning

methods would be ideally suited to this purpose.

In summary, we modified the original crystal graph CNN code by Xie and Grossman[226]

to collect neighbor information using Voronoi polyhedra for the application in pre-

dicting binding energies on heterogeneous catalyst surfaces. Our method predicted
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CO and H binding energies with 0.15 eV MAE for a variety of materials which have

never been considered previously. Given the reasonable accuracy of our model, we

expect that binding energy prediction from our method could help to rule out un-

promising candidates and reduce the number of DFT jobs in the high-throughput

catalyst screening to effectively facilitate a catalyst discovery. Furthermore, our

method successfully partitioned the calculated binding energies into each atomic

contribution, rationalizing the use of the first and second nearest neighbor atoms

for the preparation of fingerprints. It also automatically detected wrong DFT cal-

culations generated during the high-throughput calculations, which will be useful to

remove those outliers from the datasets.

3.7 Dataset Preparation and Methods

We collected DFT calculated results of CO and H binding on surfaces of pure metals,

metal alloys and intermetallic alloys from our open-source GASpy database (∼20,000

data for each adsorbate). In the following, the calculation procedure is elaborated

and more details can be found in our previous publication.[205]

Our DFT calculated data were automatically generated as follows; 1) 1,499 bulk

structures from the Materials Project[100] are relaxed. 2) Using the optimized bulk

structures, unique surfaces with Miller indices between −2 and 2 are enumerated,

resulting in 17,507 surfaces. 3) All unique active sites are identified, 1,684,908 sites

in total, and they are uploaded to the database. 4) Using ”Materials Id” in the

Materials Project as an user input, all the required jobs (structure relaxation with

and without adsorbates) are automatically submitted to supercomputers. 4) The

calculated binding energies and initial/final structures of successfully completed jobs

with a residual force less than 0.05 eV/Å are uploaded to our GASpy database.

We used Pymatgen[157] to enumerate various surfaces and to find unique ac-
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tive sites. We used Luigi[22] and Fireworks[102] to manage high-throughput DFT

calculations across many clusters. DFT calculations were performed using VASP

code[111, 112] with the revised Perdew-Burke-Ernzerhof (RPBE) functional[81] and

projector augmented wave (PAW) pseudopotential[113].
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Chapter 4

Differentiable Optimization for the

Prediction of Ground State

Structures (DOGSS)

This work originally appeared as: Junwoong Yoon and Zachary W. Ulissi. Differen-

tiable Optimization for the Prediction of Ground State Structures (DOGSS). Phys.

Rev. Lett 125, 173001 (2020). It has been edited to include the supporting informa-

tion in-line.

4.1 Abstract

Ground-state or relaxed inorganic structures are the starting point for most com-

putational materials science or surface science analyses. Many of these structure

relaxations represent systematic changes to the structure but there are currently no

general methods to improve the initial structure guess based on past calculations.

Here we present a method to directly predict the ground-state configuration using

differentiable optimization and graph neural networks to learn the properties of a
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simple harmonic force field that approximates the ground-state structure and prop-

erties. We demonstrate this flexible open source tool for improving the initial con-

figurations for large datasets of inorganic multicomponent surface relaxations across

32 elements, and the relaxation of adsorbates (H and CO) on these surfaces. Using

these improved initial configurations reduces the expensive adsorbate-covered sur-

face relaxations by approximately 50%, and is complementary to other approaches

to accelerate the relaxation process.

4.2 Introduction

Fast and accurate optimization methods that provide ground-state inorganic struc-

ture and properties are crucial for materials science, surface science, and cataly-

sis, among many other fields. Electronic structure methods have made remarkable

progress in predicting inorganic structure-property relationships based on relaxed or

ground-state structures [80, 87, 103, 154, 155, 179, 218? ]. In most cases, these

ground-state structures are identified by relaxing initial structures guessed by either

experts or automated software packages. The structural relaxations of these initial

configurations often require high computational cost that has impeded large scale ex-

plorations of new inorganic materials. Unfortunately, there are currently no general

methods to predict better initial configurations for the relaxation process, leading to

massive redundancy in calculations.

One approach to accelerating the relaxation is the development of machine learn-

ing potentials (MLPs) that mimic commonly-used electronic structure methods such

as density functional theory (DFT) [19, 45, 46, 166, 177, 178]. MLPs approximate

the true potential energy surface (PES) by fitting numerous DFT single-point ener-

gies and forces. A perfect approximation to the ground-truth DFT PES is obviously

desirable, but residual force errors in the fitted force field often yield different ground-
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Figure 4-1: Workflow to accelerate electronic structure methods using DOGSS as

a pre-processing model. (1) DOGSS predicts the ground-state structure by relaxing

the initial structure using the learned harmonic force field parameters. (2) and (3)

electronic structure methods employ the predicted structure as a starting configura-

tion, thereby converge to the ground-state in fewer optimization steps.

state structures, or worse, lead to unphysical configurations. We note that there has

been only very limited success in developing MLPs that work across the elemental

composition. Despite the considerable excitement about these methods for practical

simulations, no MLP has been demonstrated for the specific challenge of predicting

ground-state inorganic structures.

In this Letter, we present a deep learning framework, Differentiable Optimization

for the prediction of Ground State Structures (DOGSS), that incorporates differen-

tiable optimization around an end-to-end trainable Graph Neural Network (GNN) to

approximate ground-state structures of inorganic materials. Over the last few years,

there has been a surge of interest in GNN for investigating properties of materials due

to their unique ability to model irregular structures [11, 35, 51, 78, 108, 224, 225, 227].

We propose that our GNN-based method can be used as a pre-processing tool

that provides any electronic structure method with a starting configuration near the

89



ground-state, and thereby accelerates the relaxation as illustrated in Figure 5.3.1.

DOGSS first learns the optimal properties of the harmonic force fields between atoms

to predict PES of the structure. The predicted harmonic PES is then minimized and

the relaxed structure is generated. The harmonic force field is not evaluated on

how well it fits energies and forces; instead, it is evaluated by how well the structure

predicted using the force field matches the ground-state structure. Finally, the relax-

ation of the predicted structure using electronic structure methods can be performed

in fewer optimization steps compared to the relaxation of the initial structure.

4.3 Graph Neural Network

4.3.1 Representation of Surface Structures

Similar to the GNN method developed by Xie and Grossman [224], DOGSS rep-

resents an atomic structure by an undirected graph consisting of nodes and edges.

Each node i is described by a node feature vi, a stack of one-hot encoded atomic

and periodic properties of atom i (properties used to define node features can be

found in Table 4-1). In addition to those property encoding, we have incorporated

orbital-field matrix (OFM) representations for all element types used in this work.

Example OFM representations using Pt and Au atoms are shown in Table 4-2

We define the local environment for each atom i by sampling M nearest neighbor

atoms connected by distinct edges. Each edge (i,j ) is represented by an edge feature

ui,j that encodes the interatomic distance between atom i and atom j and the sum

of their covalent radii. Unlike case-by-case human-engineered atomic representations

[13, 15, 17, 38, 63, 203], the molecular graphs are defined by raw node (v ∈ RN×Fv)

and edge (u ∈ RN×M×Fu) features that will be further engineered during convolu-

tions. We note that N is the number of nodes, and Fv and Fu are lengths of node

features and edge features respectively.
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Figure 4-2: Structure of the graph neural network with embedded differentiable

optimization. Initial node v0 and edge u0 features are fed to T convolutional lay-

ers. Two separate hidden networks take the updated features to learn properties of

distinct springs connecting every atom and neighbor atom pairs: spring constants

k and equilibrium spring distances re. With these learned harmonic force field pa-

rameters, harmonic PES is computed and minimized using the gradient descent to

approximate the ground-state structures.

4.3.2 Convolutional Layers - Message Passing Scheme

Convolutional layers for the molecular graphs can be expressed as a message-passing

scheme [58, 69, 174]. For each convolution during T iterations, messages exchanged

between node i and node j along the edges (i, j) are generated. These messages

capture the pair-wise interactions between atoms within the local chemical environ-

ment. The node feature vi and edge feature ui,j are then separately updated using

the node messages ϕv and edge messages ϕu respectively. We update the node feature

vi according to

ϕt+1
v = s(zt

i,jW
t
s,v) ⊙ σ(zt

i,jW
t
f,v) (4.1)

vt+1
i = s(vt

i +
∑
j

ϕt+1
v ), (4.2)
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Table 4-1: Properties used in node feature vector vi.

Property Unit Range Number of categories

Group numbera - 1,2, ..., 18 18

Period numbera - 1,2, ..., 9 9

Electronegativitya - 0.5-4.0 10

Covalent radiusa pm 25-250 10

Valence electronsa - 1,2, ..., 12 12

First ionization energya eV 1.3-3.3 10

Electron affinitya eV -3-3.7 10

Blocka - s, p, d, f 4

Atomic volumea cm3/mol 1.5-4.3 10

Orbitalb - s1, s2, ..., f13, f14 36

aProperties from CGCNN representation [224].

bProperties from orbital-field matrix (OFM) representation [33].

Table 4-2: Example OFM representations for Pt and Au atoms.

Element s1 s2 p1 p2 p3 p4 p5 p6 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

Pt 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Au 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

where σ and s denote a sigmoid function and a softplus activation function respec-

tively, and ⊙ denotes element-wise multiplication. zt
i,j ∈ RN×M×Fz represents a local

feature (zt
i,j = vt

i ⊕vt
j ⊕ut

i,j) that is used with weights W t
s,v: RFz → RFv and W t

f,v:

RFz → RFv to learn a self-feature s(·) and a filter σ(·) respectively. Once messages

ϕt+1
v for each pair of node i and node j for (t+ 1)th convolution are generated, they

are aggregated (summed) to compute an overall message for node i from its local

environment. The node feature vt
i is then updated using the aggregated message and

a softplus activation. Similarly, the edge feature ui,j can be updated as,

ϕt+1
u = s(zt

i,jW
t
s,u) ⊙ σ(zt

i,jW
t
f,u)) (4.3)

ut+1
i,j = s(ut

i,j + ϕt+1
u ), (4.4)
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where W t
s,u: RFz → RFu and W t

f,u: RFz → RFu are self-feature generating weights

and filter generating weights respectively for edge update. Unlike node update, each

edge feature is directly updated based on the pre-aggregated pair-wise messages ϕt+1
u

during each (t+ 1)th convolution.

4.3.3 Differentiable Optimization

After T convolutions, both updated node and edge features are fed to two distinct

hidden networks to learn the harmonic force field parameters: (i) pair-wise equilib-

rium spring distances for atom-neighbor pairs re ∈ RN×M×1 and (ii) spring constants

k ∈ RN×M×1 for springs connecting each atom-neighbor pair. Once the force field

parameters are learned by the hidden networks, the harmonic PES is constructed as

Ê(ro(xo), re,k) =
∑
i

∑
j

ki,j(ro,(i,j)(xo) − re,(i,j))
2, (4.5)

followed by an energy minimization based on the following optimization problem:

xpred = arg min
xo /∈xcon

Ê(ro(xo), re,k), (4.6)

where xpred is a set of atomic positions at local minima in the harmonic PES, xcon

is a set of positions of constrained atoms that are not allowed to move, and ro(xo) ∈
RN×M×1 represents pair-wise distances between atoms and their neighbor atoms in

the initial structures.

The argmin operation over the unconstrained surface atoms is optimized using

the gradient descent algorithm,

xp+1
o = xp

o + η∇xp
o
Ê(ro(xp

o), re,k). (4.7)

After the gradient descent has converged to local minima in P steps, the model

outputs the updated atomic structures xpred which we consider as the approximated
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ground-state structures. To measure the closeness between xpred and the ground-

state structures x∗
min, we define a loss function for the GNN model as follows:

L =
1

N

∑
i

∥xi,pred − x∗
i,min∥2. (4.8)

This loss represents the average per-atom distance that the unconstrained atoms in

the predicted structures need to move to arrive at the ground-states. Initial loss

between xo and x∗
min was also computed to be compared with the prediction loss.

In case an atom crosses the boundary of its unit cell to reach the ground-state,

the loss invokes the minimum-image distance convention that considers the nearest

periodic image of the ground-state atom. The entire network was trained using end-

to-end backpropagation with AdamW optimizer [132] to minimize the prediction

loss. Hyperparameters were optimized using SigOpt [40], a model tuning software

package, and the optimized hyperparameters are summarized in Table 4-3.

Table 4-3: Hyperparameters optimized using SigOpt [40].

Hyperparameters Bare-Surfaces H adsorption CO adsorption

Batch size 17 18 37

Embedding layer 236 103 125

Number of convolutional layers 12 12 13

Length of spring constant vector k 4 18 117

Length of spring equilibrium constant vector re 4 18 117

Depth of hidden network for k 1 16 1

Depth of hidden network for re 1 1 1

Learning rate 0.0393415 0.003770 0.0145320
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4.4 Dataset Preparation

To demonstrate the effectiveness of our proposed framework, we predict the ground-

state structures of diverse surfaces of pure metals, metal alloys, and intermetallic

alloys covering 32 different elements, with and without the presence of adsorbates (H

and CO) collected from our open-source database, Generalized Adsorption Simula-

tion for Python (GASpy) [204]. We first relaxed bulk structures from the Materials

Project [101] using DFT. Unique surfaces with Miller indices between -2 and 2 were

enumerated from the relaxed bulk structures, then were relaxed. For each relaxed

surface, the adsorbate was placed at a certain height above the site of interest, and

then the structure was relaxed using DFT. More details about the data preparation

can be found in our previous publication.[204] From the GASpy database, we only

sampled structures that guaranteed each atom at least 12 nearest neighbors within

7 Å radius. Further, structures that were already at the ground-state or caused ma-

jor reconstructions were also filtered out. Finally, we collected 6,821 DFT-relaxed

diverse bare metal surfaces, 11,411 surfaces with H, and 8,250 surfaces with CO.

Each of the three datasets was randomly split into train/validation/test (80/10/10)

sets for training and testing DOGSS on structures covering 32 surface elements. We

also sampled about 4-6 intermediate structures from the DFT relaxation of each of

the training structures to train force fields using SchNet [178].

4.5 Practical Motivation

After training DOGSS, we computed prediction loss on the test sets to evaluate how

close the predictions are to the ground-state structures. The same test structures

were also relaxed using the trained SchNet force fields to generate ground-state struc-

tures and the same loss was used to compute the prediction loss on those relaxed

structures for comparison. We summarize the performance of DOGSS and SchNet
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Table 4-4: Summary of the ground-state structure prediction performance of

DOGSS and SchNet on test sets in the three different datasets.

Dataset
Sample Size Lsurf (Å) Lads (Å) Ltotal (Å)

Training Test Initial Pred. Initial Pred. Initial Pred.

Bare Suface

DOGSS 5,524 683 0.1337 0.0635 N/A N/A 0.1337 0.0635

SchNet 21,034 683 0.1337 1.1449 N/A N/A 0.1337 1.1449

H adsorption

DOGSS 9,242 1,142 0.0855 0.0508 0.7841 0.3301 0.1358 0.0709

SchNet 37,346 1,142 0.0855 0.6104 0.7841 1.0594 0.1358 0.6428

CO adsorption

DOGSS 6,682 825 0.0844 0.0548 0.7286 0.3237 0.1706 0.0908

SchNet 43,787 825 0.0844 0.4239 0.7286 0.9116 0.1706 0.4891

for approximating the ground-state structures for the three different datasets in Ta-

ble 4-4. We include initial losses to quantitatively compare the relative closeness

between the predicted structures and the ground-state structures. We further sep-

arate the total loss (Ltotal) into the loss for the surface atoms (Lsurf) and the loss

for the adsorbate atoms (Lads) if applicable. For all three datasets, the force field

method using SchNet could not achieve enough prediction accuracy and resulted

in different ground-state structures. We note that we provided only limited exam-

ples (4-6 examples of DFT relaxation of each structure) for training SchNet on our

datasets. SchNet previously demonstrated accurate force field predictions for small

organic molecules using 1,000 to 50,000 training examples and a separate model for

each molecule. However, training a separate force field model using the same amount

of training examples for each of the unique inorganic multicomponent structures in

our datasets is computationally infeasible. By comparison, DOGSS only requires
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Figure 4-3: Histograms showing distributions of the individual per-atom distances

||x − x∗min||2 for surface atoms in each of the three datasets: (left) bare surfaces,

(center) H adsorption, and (right) CO adsorption. For all three datasets, the distri-

butions for atoms in the initial structures are shown in orange and the distributions

for atoms in the predicted ground-state structures by DOGSS are shown in blue. The

insets of the center and the right figures show the per-atom distance distributions

for adsorbate atoms in H and CO adsorption datasets respectively with visualized

example configurations.

the initial and the final relaxed structures for directly predicting ground-state struc-

tures instead of using thousands of example structures to fit every part in the PES.

Besides, one DOGSS model can be used to approximate ground-state structures of

diverse materials instead of training a separate force field model for each material.

4.6 Results

4.6.1 Loss (per-atom distances)

Distributions of individual per-atom distances in the predicted structures (blue) by

DOGSS and the initial structures (orange) for the three different datasets are pre-

sented in Figure 4-3. We could clearly observe that the surface atoms in the predicted
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structures for the bare surface dataset are more closely located to the ground-state

positions compared to the atoms in the initial structures. Quantitatively, DOGSS

could reduce the initial loss for the surface atoms in this dataset by 54%. We acknowl-

edge that the amount of reduction in the loss does not guarantee the same amount

of reduction in the DFT relaxation steps. However, we will shortly demonstrate that

the ability of our method to reduce the loss can effectively attain a reduction in the

computational cost required for the actual DFT relaxations.

For H and CO adsorption datasets, DOGSS could reduce the total losses for both

datasets by approximately 47%. We note that selecting initial positions of adsorbates

currently relies on experts’ guesses, and the insets in the center and the right figures

in Figure 4-3 show this randomness in adsorbates’ positions in the initial structures

(orange). Also, most of the metal surfaces in both datasets were initially relaxed

before the adsorbates were added, but the presence of adsorbates near the surfaces

changes the local environment of the surface atoms and their positions. About 35-

40% reduction in the losses for surface atoms in both datasets shows that DOGSS was

able to capture the surface rearrangements induced by the presence of adsorbates.

More importantly, DOGSS could approximate ground-state positions of adsorbates

for given initial structures and reduce the initial losses for H and CO adsorbate atoms

by approximately 58% and 55% respectively.

We studied the impact of different potentials such as the Morse potential and

the Lennard-Jones (LJ) potential on the performance of DOGSS, and Table 4-5

summarizes the results. In general, the harmonic potential with the gradient descent

we proposed provides a better approximation of the ground-state structures. The

Morse potential and the LJ potential encounter the vanishing gradient problem that

causes a bottleneck in the energy minimization using the simple gradient descent

algorithm when atoms are too far apart from their neighbor atoms.

Additional experiments were also conducted to investigate DOGSS’s ability to
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Table 4-5: Performance of DOGSS using the original 80/10/10 split with three

different types of potential: Harmonic, Morse, and Lennard-Jones (LJ) potentials

with the gradient descent.

Dataset
Lsurf Lads Ltotal

Initial Pred. Initial Pred. Initial Pred.

Bare Suface

- Harmonic 0.1379 0.0631 N/A N/A 0.1379 0.0631

- Morse 0.1379 0.0647 N/A N/A 0.1379 0.0647

- LJ 0.1379 0.0636 N/A N/A 0.1379 0.0636

H-adsorption

- Harmonic 0.0867 0.0527 0.8121 0.3324 0.1380 0.0725

- Morse 0.0867 0.0556 0.8121 0.3525 0.1380 0.0766

- LJ 0.0867 0.0607 0.8121 0.4220 0.1380 0.0863

CO-adsorption

- Harmonic 0.0844 0.0548 0.786 0.3237 0.1706 0.0908

- Morse 0.0844 0.0720 0.786 0.4630 0.1706 0.1243

- LJ 0.0844 0.0611 0.786 0.3547 0.1706 0.1004
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(a)

(b)

Figure 4-4: Comparison of properties of the initial structures (orange) and the

predicted ground-state structures (blue) by DOGSS for the three datasets: (left) bare

surfaces, (center) H adsorption, and (right) CO adsorption. (a) Average absolute

differences between total energies of the initial structures or the predicted structures

and the ground-state energies. (b) Average maximum inter-atomic forces in each of

the initial structures and the predicted ground-state structures. Error bars represent

the 95% confidence interval.
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generalize to new, unseen, inorganic structures that contain new elements using

leave-one-out and leave-two-out data splitting methods. Table 4-6 summarizes the

performance of DOGSS on new structures. The prediction loss slightly increases as

DOGSS gets tested on structures containing more number of new elements, but in

general, DOGSS could generate reasonably approximated ground-state structures of

those unseen structures. DOGSS could reduce the initial loss of H and CO adsorbate

atoms by approximately 40-45% and the initial loss of surface atoms in the bare

surface dataset by approximately 30-40% depending on the number of new elements

in the test structures.

4.6.2 Properties of Predicted Structures

Further, in Figure 4-4 we compare the relative properties of the initial structures in

the test sets and the corresponding predicted structures by DOGSS to the ground-

state structures. Figure 4-4 (a) shows that DOGSS reduces the difference in the total

energies between the initial structures and the ground-state structures |∆Einitial| for

the three datasets by a factor of 5.63 (bare surfaces), 9.41 (H adsorption), and 7.07

(CO adsorption). We find that the total energy differences between the predicted

structures and the ground-state structures |∆Epred| in all three datasets are close to

0.1 eV. Similarly, Figure 4-4 (b) shows that the maximum inter-atomic forces |Fmax|
in the initial structures are reduced by a factor of 2.80 (bare surfaces), 8.72 (H ad-

sorption), and 2.28 (CO adsorption) after pre-processing the initial structures using

DOGSS. Given these comparisons with the initial structures, DOGSS’s predicted

structures and their properties are fairly close to the ground-states.

4.6.3 Reduction in Actual DFT Optimization Steps

To show the feasibility of our proposed workflow as illustrated in Figure 5.3.1, we

performed DFT relaxations using randomly sampled predicted structures from test
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Table 4-6: Generalization performance of DOGSS using different data splitting

methods: Original split (80/10/10), Leave-”Ni”-out (leaving all structures containing

Ni out of training sets and testing DOGSS only on the remainder), and Leave-”Zn”

and “Co”-out (leaving all structures containing Zn and Co out of training sets and

testing DOGSS only on the remainder). We selected Ni, Zn, and Co elements in

order to maintain similar train/val/test sizes over different data split.

Dataset
Lsurf Lads Ltotal

Initial Pred. Initial Pred. Initial Pred.

Bare Suface

- Original split 0.1377 0.0635 N/A N/A 0.1377 0.0635

- Leave-”Ni”-out 0.1200 0.0740 N/A N/A 0.1200 0.0740

- Leave-”Zn” and “Co”-out 0.1363 0.0937 N/A N/A 0.1363 0.0937

H-adsorption

- Original split 0.0855 0.0508 0.7841 0.3301 0.1358 0.0709

- Leave-”Ni”-out 0.0710 0.0638 0.7800 0.4321 0.1174 0.0879

- Leave-”Zn” and “Co”-out 0.0810 0.0824 0.8040 0.4726 0.1335 0.1108

CO-adsorption

- Original split 0.0844 0.0548 0.7286 0.3237 0.1706 0.0908

- Leave-”Ni”-out 0.0919 0.0740 0.7303 0.3946 0.1719 0.1142

- Leave-”Zn” and “Co”-out 0.0902 0.0836 0.6911 0.4408 0.1756 0.1343

sets of the three different datasets. We used the same DFT settings as the initial

structures were relaxed for a direct comparison of the number of steps in DFT re-

laxations until the maximum inter-atomic force reaches below 0.05 eV/Å. Table 4-7

summarizes the results from the test DFT simulations, and example structures are

visualized in Figure 4-5. For bare surfaces, it takes about 10.1 ionic relaxation steps
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to relax the predicted structures, which are about 30% fewer steps compared to

the relaxation of the initial surfaces. For relaxations of H and CO adsorbates on the

metal surfaces, DOGSS could reduce about 45% and 52% of the total DFT relaxation

steps respectively. We observe that bringing randomly placed adsorbate in the initial

structure to the adsorption site during DFT relaxations is a time-consuming process

as the relaxations of adsorbate-covered surfaces are significantly more expensive than

the relaxations of bare surfaces. Therefore, approximating ground-state positions of

adsorbates prior to the relaxations could effectively reduce the expensive computa-

tional cost of DFT for investigating surface science that involves adsorptions.

Table 4-7: The average number of steps in DFT relaxations of randomly sampled

initial and DOGSS-predicted structures from test sets in the three different datasets.

Dataset Sample Size
Avg. DFT Steps

Initial Pred.

Bare Surfaces 601 14.3 10.1

H adsorption 480 27.3 15.0

CO adsorption 540 104.8 50.8

4.7 Conclusion

In this Letter, we present a deep learning framework that incorporates differentiable

optimization within graph neural networks to approximate ground-state structures.

We demonstrate that the framework provides reliable ground-state structure predic-

tions of diverse inorganic multicomponent surfaces with and without the presence

of adsorbates (H and CO) and reduces the computational cost of DFT by allowing

relaxations of the predicted structures that require fewer optimization steps. Fur-
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Initial Prediction Ground-State

Ni
Si

As

Fe

Figure 4-5: Example structures in CO adsorption dataset. (Top) CO adsorption

on Fe and As alloy surface and (bottom) CO adsorption on Ni and Si alloy surface.
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ther, the framework is flexible so that one can easily modify the molecular graph

representations, neural network architecture, embedded optimization method, and

type of potential energy to investigate different systems and to result in different

prediction performance. This method is complementary to other published methods

to accelerate DFT relaxations using on-the-fly neural network potentials as it learns

a better initial guess for the process.
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Chapter 5

Deep reinforcement learning for

predicting kinetic pathways to

surface reconstruction in a ternary

alloy

This work originally appeared as: Junwoong Yoon*, Zhonglin Cao*, Rajesh K Raju*,

Yuyang Wang, Robert Burnley, Andrew J. Gellman, Amir Barati Farimani, and

Zachary W. Ulissi. Differentiable Optimization for the Prediction of Ground State

Structures (DOGSS). Mach. Learn.: Sci. Technol. 2. 045018 (2021). It has been

edited to include the supporting information in-line.

5.1 Abstract

The majority of computational catalyst design focuses on the screening of mate-

rial components and alloy composition to optimize selectivity and activity for a

given reaction. However, predicting the metastability of the alloy catalyst surface
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at realistic operating conditions requires an extensive sampling of possible surface

reconstructions and their associated kinetic pathways. We present CatGym, a deep

reinforcement learning (DRL) environment for predicting the thermal surface recon-

struction pathways and their associated kinetic barriers in crystalline solids under

reaction conditions. The DRL agent iteratively changes the positions of atoms in

the near-surface region to generate kinetic pathways to accessible local minima in-

volving changes in the surface compositions. We showcase our agent by predicting

the surface reconstruction pathways of a ternary Ni3Pd3Au2(111) alloy catalyst. Our

results show that the DRL agent can not only explore more diverse surface compo-

sitions than the conventional minima hopping method, but also generate the kinetic

surface reconstruction pathways. We further demonstrate that the kinetic pathway

to a global minimum energy surface composition and its associated transition state

predicted by our agent is in good agreement with the minimum energy path predicted

by nudged elastic band calculations.

5.2 Introduction

The performance of a heterogeneous catalyst depends on the catalyst’s surface com-

position and structure. The discovery of novel robust catalysts for a given reaction is

often achieved via surface engineering of existing catalysts. Significant attention has

been drawn towards the design and development of alloy catalysts, as the synergistic

effects of alloying two or more metals can provide catalytic activity, selectivity, and

stability superior to their pure component counterparts.[23, 60, 167] Furthermore,

alloying noble metal catalysts (Pt, Pd, Ag, Au, etc.) with low cost, highly abundant

metals (Ni, Cu, Sn, Co, etc.) can function to reduce the catalyst cost in scaling up

industrial level operations. The design of these catalysts is complicated by dynamic

transformations of the multi-metallic atomic environment. Often, the reconstruction
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of a catalyst’s surface causes the real surface structure to differ from that predicted

simply by cleaving the bulk crystals along a given plane. In alloy catalysts, segre-

gation can result in the surface enrichment or depletion of one or more components

in an effort to minimize the surface free energy and reduce lattice strain. Lateral

rearrangements can cause a change in the surface layer periodicity. The simultaneous

compositional evolution and lateral rearrangement of an alloy catalyst’s surface play

a critical role in determining the performance of a catalyst.

Predictions of the surface composition of alloy catalysts commonly employ ther-

modynamic arguments, however, kinetic information is a prerequisite for predicting

metastable states that have no kinetically-feasible nearby local minima due to the

high kinetic barriers or high transition state energies. Under reaction conditions,

changes in temperature or pressure can cause a change in the stability of the initial

thermodynamic equilibrium. The ability of a catalyst to realize the new equilibrium

or new local minimum surface composition under these conditions is dictated by the

barriers along the kinetic reconstruction pathways. A study of the pathway that de-

scribes the evolution of the multi-metallic catalyst surface at reaction conditions is

thus necessary to understand the catalytic mechanism at the atomic scale as well as

to tune the catalyst’s activity and selectivity by controlling the surface reconstruction

processes.

The structural transformation of catalyst surfaces has been widely studied from

in-situ spectroscopic techniques such as in-situ X-ray diffraction (XRD), in-situ X-

ray absorption spectroscopy (XAS), in-situ x-ray photoelectron spectroscopy (XPS)

and in-situ infrared spectroscopy.[21, 75, 91, 173, 196, 199, 219, 234] Other experi-

mental techniques include in-situ scanning probe microscopy (SPM), in-situ scanning

tunneling microscopy (STM), in-situ atomic force microscopy (AFM), and transmis-

sion electron microscopy (TEM).[150, 159, 164, 189, 190, 194, 197, 198, 215] Due to

the prohibitive size of the design space, physical limitations, and experimental costs
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many studies have focused on few discrete temperatures and alloy compositions,

limiting the size of the design space explorable by these techniques.

Rapid growth in the design of high performance supercomputing resources cou-

pled with the development of modern computational methodologies primarily based

on density functional theory (DFT) now complement the traditional trial and error

experimental approaches to the discovery of novel materials for various catalytic ap-

plications. Computational approaches can accelerate the catalyst discovery efforts by

screening component and composition spaces to eliminate material candidates with

low activity and selectivity before performing experimental measurements. However,

the search for both stable and high-efficient multi-metallic catalysts for a specific re-

action through computational catalytic design is still a Herculean task dramatically

increasing in complexity and computational cost with the number of alloy compo-

nents. Moreover, material screening calculations relying on equilibrium properties

ignore the possibility of surface reconstruction. The prediction of a specific surface

reconstruction is a complicated process involving many structural evaluations along

a hypothesized reconstruction pathway. Such an exercise may require hundreds to

thousands of cpu-hours to evaluate only a single pathway of all possible surface recon-

structions. Therefore, a robust exploration of the reconstruction pathways requires a

technique capable of creatively generating reconstruction pathways because most of

the current computational efforts in heterogeneous catalysis avoid the comprehensive

exploration of reconstruction pathways required to identify metastable states.

With recent advances in machine learning (ML), researchers have successfully ap-

plied ML techniques in the prediction of materials properties [12, 124, 137, 204, 223],

relaxed structures [233], and alloy properties[25, 94, 228], but have yet to predict

phenomena on the timescales of surface reconstruction pathways needed to identify

metastable states. This is still an extremely challenging problem for the super-

vised ML models that are commonly used for the direct prediction of the struc-
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ture/property relationships as the identification of the metastable structures require

not only the property labels, but also the information about various kinetic path-

ways that lead to the changes in the alloy catalyst structure and properties. ML has

also established atomistic force field methods using a potential energy surface (PES)

fitted to a set of DFT samples in the materials search space.[19, 45, 46, 166, 177, 178]

However, the residual force errors in the fitted force field often result in structures

differing from the true equilibrium states, or worse, lead to non-physical configu-

rations. Furthermore, generating a huge amount of DFT samples throughout the

energy pathways for accurate force field predictions while considering all possible

catalyst surface reconstructions at a specific reaction condition is infeasible. De-

spite the considerable excitement about these ML methods, identifying metastable

catalyst surfaces still remains untapped due to its highly complex design space.

To deal with the complexity issue, an alternative approach called deep reinforce-

ment learning (DRL) that is capable of traversing the compositional space more

efficiently has been employed. Reinforcement learning (RL) is a subfield of machine

learning where a decision maker or an agent learns strategies to solve an optimiza-

tion problem by iteratively interacting with an environment. DRL involves applying

deep neural network in RL frameworks to generalize complex problems. Recent ap-

plications of RL in optimizing molecular structures[39, 106, 143, 184] and chemical

reaction pathways [238] have demonstrated its ability to tackle complex molecular

design problems.

In this work, we introduce a new framework for predicting the kinetic energy

pathways to the catalyst surface segregation under reaction conditions by combining

DRL with the domain knowledge of catalysis. For a given catalyst surface, a DRL

agent repeatedly attempts to explore nearby local minima with changed surface

compositions, and the exploration process is evaluated based on the properties of

the local minima and the transition states the agent discovered. In this way, the
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agent iteratively builds up the knowledge that can generate the kinetic pathways to

the accessible surface transformations at a given reaction temperature, and thus it

can be further used to identify metastable catalyst surfaces. The new framework is

called CatGym, the first open RL environment developed for reconstruction kinetics.

We showcase our framework with a demonstration of surface segregation kinetics

for a ternary Ni3Pd3Au2(111) alloy catalyst. Pd and Pd-based catalysts are of great

industrial importance, being used as hydrogen purification membranes and as a cat-

alyst for the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR),

and ethanol oxidation reaction (EOR). In particular, NiPdAu catalysts are useful in

hydrogen generation for fuel cells via the catalytic dehydrogenation of formic acid,

as well as in the EOR in direct ethanol fuel cells.[50, 213] Researchers have found

that the addition of one or more components can increase the activity of Pd-based

catalysts, improve resistance to poisoning, and prevent the hydrogen embrittlement

brought on by the metal/hydride phase transition.[92, 130, 134, 160, 200, 201, 236]

Ternary Pd-based alloys have attracted significant attention as the addition of two

components allows greater tuning of electrical and structural properties as compared

to their binary counterparts. By predicting surface reconstructions and their asso-

ciated activation barriers, CatGym can aid in the discovery of complex and novel

multicomponent catalysts.

5.3 Methods

5.3.1 Reinforcement Learning Background

RL is a class of artificial intelligence which aims at training an artificial agent by

actively interacting with the environment[191]. Following the Markov Decision Pro-

cess (MDP), at each timestep t, the RL agent chooses an action at from the action

space A, given the current state st from state space S. The environment returns
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a reward, rt, as the feedback for the state action pair (st, at). The policy πt is a

mapping from the state space S to the action space A, namely how the agent de-

cides the action at each timestep. An episode will be terminated once the agent

achieves the goal state sg or the number of steps reaches the set maximal. The

goal of the RL agent is to learn the policy which maximizes the cumulative return

Rt =
∑T

t γ
t−1rt, where γ is the discount factor which adjust the importance of future

reward and T is the length of the episode. During training, the RL agent optimizes

the policy πt sequentially as it actively interacts with the environment. Recently,

combination of RL and Deep Learning has made it possible to tackle the problems in

very high dimensional space. One of the main drawbacks of RL is its inability to re-

solve the curse of dimensionality. Deep neural networks, can be used to approximate

the value function in reinforcement learning. Benefiting from both reinforcement

learning and deep learning, DRL has seen astonishing advancement in various fields,

including superhuman-level video game control[144, 145], GO playing[183], robotics

control[126, 175, 176], and chemical compound design[168, 212, 239].

113



114



Figure 5-1: (a) Overview of CatGym framework. At each timestep t, the state

space st consists of features of surface structure ct, including its current energy,

fingerprint, and atom coordinates. The state space along with reward rt, which is

calculated by critic network based on current energy, are fed into the actor network,

and the actor network decides which action to take. The action will modify ct to

new surface structure ct+1. This process repeats until the episode is over. (b) Four

types of action the actor can choose and their corresponding effects on the energy.

If the agent choose to move an atom, it has to further pick which atom to move and

the distance (within the range of -0.1Å to 0.1Å) in the x, y and z direction. (c)

Evolution of the reconstruction pathways to a minimum configuration generated by

DRL agent trained with CatGym. ∆E represents the relative energy of the catalyst

structure at each timestep with respect to the initial state energy.

5.3.2 Actor-Critic TRPO

To efficiently optimize the policy in DRL, an actor-critic algorithm [79, 146, 192] is

proposed which contains two networks: an actor network which determines actions

based on a given state embedding, and a critic network which evaluates how good

the chosen action is (by estimating the cumulative return). In our work, we train an

actor-critic network within the customized framework (Figure 5.3.1(a)). We imple-

ment trust region policy optimization (TRPO)[175], an actor-critic network which

has been prevalent in various RL applications. TRPO is effective for optimizing

neural network based policies and guarantees monotonic improvement on each up-

date. To this end, we utilize parameterized action space[53, 151], which consists of

hierarchical sub-actor networks to decompose the action space.
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5.3.3 State Representation

The state space S is a set of state observations that describes quantified abstrac-

tion of the perceived environment. Training an agent that discovers possible surface

segregation requires representations for each of the atoms in the near-surface region

that can capture dynamically changing local chemical environment. To meet such a

requirement, we employ atomic symmetry functions[17] and atomic positions of the

free atoms near the surface to efficiently encode the elemental and spatial atomic in-

formation. In addition, we provide properties of the surface structure such as energies

and forces, so that the agent can understand how the changes in the configurations

affect their properties. Finally, we also encode a binary vector that tells whether the

agent has found transition states in each episode. These five state observations are

then processed through the distinct multi-layer perceptrons and combined to create

an embedding of states that are fed to the actor network.

5.3.4 Action Space

The action space A is a set of actions that the agent can perform to interact with

the environment. In general, the action space is designed to be either discrete or

continuous based on the reinforcement learning problem and the algorithm used for

solving it. In this work, we formulate a hierarchical hybrid discrete-continuous action

space (Figure 5.3.1(b)), in which each action at = (a
(1)
t , a

(2)
t , a

(3)
t ) comprises

• a(1) ∈ {1, 2, 3, 4} selects an action from the four different possible actions,

1. moving individual atoms by a fixed distance towards a direction,

2. finding a nearby transition state with a saddle point solver,

3. triggering a local energy relaxation to minimize the current structure,

4. performing short molecular dynamics simulations to perturb the free atoms

at a specified reaction temperature.
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• a(2) ∈ {1, ..., N} chooses one of the N free atoms on the top two surface layers

to move if a(1) = 1.

• a(3) ∈ {(x, y, z)| − 0.1Å ≤ x, y, z ≤ 0.1Å} that specifies the distances to move

the free atom chosen by a(2) in x, y, and z directions, respectively.

We use Sella[90] as a saddle point solver for finding nearby first order saddle

points (a(1) = 2). The energy relaxation uses the BFGS optimizer implemented in

Atomic Simulation Environment (ASE) [? ] to find nearby local minima (a(1) = 3),

and the MD simulations (a(1) = 4) use Langevin dynamics at constant temperature

implemented in ASE as well.

At each timestep, the agent decides how to change the structure of the catalyst

surface in order to eventually generate a sequence of actions that leads to the ex-

ploration of new local minima with different surface compositions. Figure 5.3.1(c)

illustrates how the sequence of actions can become the reconstruction pathway to a

specific minimum configuration.

We note that distinct configurations at different timesteps may end up with the

same transition states or the same local minima after performing the saddle point

solver or the relaxation. The relative energies (∆E) between timesteps 0 and 40 in

”Pathway 1” plot in Figure 5.3.1(c) shows that several saddle point search (orange)

and relaxation (green) actions lead to the local minima previously visited. This

greatly slows down the exploration process by repeatedly leading the agent to the

same states. To mitigate the issue, we introduce short MD simulations in our action

space so that the agent can more effectively escape from the current minimum or

transition state and traverse the potential energy surface. Long enough MD simula-

tions alone might be able to explore new minimum states, but the limited time scale

and computing resources make it infeasible. Instead, the agent in our method can

decide when one of the other actions is better to explore nearby local minima by

learning from its interaction with the CatGym environment.
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5.3.5 Reward Function

The reward function is designed on the basis of chemical properties of the surface

structure. If the agent identifies a transition state at any time during each episode,

the agent is rewarded by,

r(st, at) =
1

∆Etrans

, (5.1)

where ∆Etrans is the relative energy of the transition state to the energy of the

initial state. In addition, after the completion of each episode (t = T ), the agent

is rewarded based on whether it discovers a pathway to a state with a changed

surface composition. When the agent successfully observes kinetically feasible surface

segregation from the initial surface, it is rewarded by,

r(sT , aT ) = exp

(
− ∆E

kBTr

)
, (5.2)

where kB denotes the Boltzmann constant, Tr is a reaction temperature, and ∆E

is the potential energy of the final (t = T ) state relative to the initial state (t =

0). These rewards aim at encouraging the agent to explore both the lower tran-

sition states and the nearby local minima resulted from surface segregation. The

traversability of the transition state is also taken into consideration when evaluating

the generated pathway. The higher the transition state energy is, the more diffi-

cult the surface segregation to be realized at a given temperature. Therefore, when

the agent yields a high energy states that exceeds a predefined upper energy bound

(3kBTr in our case), the episode is terminated and it is penalized by,

r(sT , aT ) =
∆E

kBTr

. (5.3)

Intuitively, the agent is instructed to find a reconstruction pathway, ideally one leads

to a new state with thermodynamically more stable surface composition (∆E < 0)

through a low energy barrier (∆Etrans). The potential energies can be calculated

using accurate quantum chemistry simulations such as DFT, however, evaluating a
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large number of trial configurations is computationally expensive. Instead, we avoid

this cost by employing fast Effective Medium Theory (EMT) [98, 99, 193] to estimate

the energies.

5.3.6 Experiments

To demonstrate the capability of our proposed DRL framework, we conduct exper-

iments to generate surface reconstruction pathways for a 2 × 2 × 4 Ni3Pd3Au2(111)

alloy catalyst at a specific reaction temperature (1200 K). The top surface layer in

the initial Ni-Pd-Au catalyst has a Ni:Pd:Au composition of 1:2:1 and the second

layer has a composition of 2:1:1 corresponding to a total of 3 Ni, 3 Pd, and 2 Au in

8 lattice positions in the unit cell as shown in Figure 5-3(a). Atoms in the top two

layers are free to move, while atoms in the bottom two layers are considered as bulk

atoms and are fixed.

We set up the DRL environment under the OpenAI Gym framework [27] and

use Tensorforce [116] DRL package to run the experiments. We utilize parallel en-

vironment execution to perform multiple experiments running with the same initial

conditions. These parallel experiments share the agent and all other model parame-

ters. In each episode, the agent is asked to generate a sequence of at most 500 actions

with the aim of exploring the nearby local and global minima with changed surface

compositions while finding the minimum energy pathways to these minima. We

utilize the EMT potentials for energy and force evaluations for all kinds of actions.

5.3.7 Surface Optimization Baseline

We use a brute force method and a minima hopping (MH) simulation method [70] for

locating local and global minimum surface configurations for the Ni-Pd-Au ternary

system. In the brute force method, we considered all the possible arrangements

of lattice atoms in the unit cell by performing a distinct permutational method in
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the top two surface layers. Permutation of 3 Ni, 3 Pd, and 2 Au atoms in the 8

lattice positions in the top layers leads to a total of 560 distinct arrangements. We

assume that this approach would span all possible local minima that arises from the

movement of free atoms in the top two surface layers.

MH is an efficient search method employed for locating the global minimum for

systems with highly complex PES. For instance, MH method has been applied to de-

termine the structure of the reconstructed chalcopyrite surfaces [202] and metastable

decorate borospherene B40 [172]. The MH method avoids revisiting known parts of

the configuration space by utilizing a feedback mechanism based on simulation his-

tory which in turn accelerates and enforces the exploration of the new regions in the

configurational space. The MH algorithm consists of an inner part that performs the

moves on the PES employing molecular dynamics (MD) followed by the relaxation of

the current minimum and an outer part which determines the acceptance or rejection

of a new minimum.

The entire MH simulation is controlled by five parameters, α1, α2, β1, β2, β3. Pa-

rameters αs control how rapidly Ediff is increased or decreased and βs will determine

the extend to which kinetic energy changed via changing the temperature of the

simulation. We used the optimal values from the original paper[70] introducing MH

(β1 = β2 = 1/β3 = 1.05 and α = 1/α2 = 1.02) as it has been proposed that with

these parameters, MH simulations never failed to find the minimum. We used a

initial Ediff value of 0.5 eV and a temperature of 200 K and the simulation ran for a

total of 2500 steps. The changes in the potential energy during MD and EMT steps

as well as the changes in the Ediff and temperatures are shown in Figure 5-2. We

found the global minimum configuration at step number 1655 with an energy value

of 3.855 eV.
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Figure 5-2: The potential energy changes and the changes in the Ediff and temper-

atures during MH simulation
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5.4 Results and Discussion

5.4.1 Baseline Surface Configurations

Figure 5-3: Configurations of the Ni(green)-Pd(blue)-Au(yellow) ternary catalyst.

(a) Initial catalyst structure, (b)-(e) global minimum, second and third lowest energy

configurations, and global maximum configuration obtained via brute-force method,

respectively; and (f) global minimum configuration obtained via minima hopping

(MH) method. Atoms in the bottom two layers with crosses represent fixed atoms

that are constrained from moving.

Using the brute force approach, we have found the global minimum at a relative

energy of -0.23 eV with respect to the initial configuration. The minimum has a 0:2:2

composition of Ni, Pd and Au on the top surface layer in the unit cell as shown in Fig-

ure 5-3(b). Moreover, several configurations with the same compositions; however,

with slightly different arrangement of atoms in the top two layers were identified

within the relative energy range of -0.23 to -0.19 eV and can be considered as a

group of global minima energy configurations. Followed by this, we have identified a

group of the second-lowest energy configurations with Ni:Pd:Au composition of 0:3:1

in the top surface layer (Figure 5-3(c)) with different configurational orientations

in the relative energy range of -0.18 to -0.16 eV. A group of the third-lowest en-
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ergy configurations starts at -0.11 to -0.07 eV energy range and consists of Ni:Pd:Au

composition of 1:1:2 on the surface layer as illustrated in Figure 5-3(d). The minima

configurations with negative relative energies consistently find surface enrichment of

Au and/or Pd with respect to the initial configuration. This observation can be

rationalized by arguments for segregation primarily driven by differences in the pure

component surface energies. Estimates of the surface energies (γi) for each of Au,

Pd, and Ni elements indicate γAu<γPd<γNi [209]. Thus we find a global minimum in

which all free (non-fixed) Au atoms segregate to the surface and a nearby local mini-

mum in which Pd fully replaces Ni in the surface. These findings are qualitatively in

agreement with experimental studies of segregation in binary alloys: Au is favored

over Pd [42, 229, 230], Pd is favored over Ni [2, 47, 187], and Au is favored over Ni

[29, 110, 217] in the surface layer. To reaffirm, we also located the configuration with

the highest energy (i.e global maximum) which has a Ni:Pd:Au composition of 3:1:0

in the surface layer (Figure 5-3(e)) with an relative energy of 0.81 eV. In fact, the

global maximum configuration corresponds to the reversal of the top two layers in

the global minimum configuration.

For a direct comparison with the our DRL model, we have used MH as a standard

baseline approach for the local and global minimum search. We found the global

minimum configuration with an relative energy of -0.23 eV (Figure 5-3 (f)) in the

MH simulation. The global minimum configuration obtained via MH simulation

shows similar segregation of Pd and Au onto the top layer with 0:2:2 composition

of Ni, Pd, and Au on the surface layer. However, they differ in their configurational

orientations of the atoms in the top two layers. Like brute-force permutation method,

MH method also found many similar configurations of 0:2:2 composition of Ni, Pd,

and Au in the top layer with different arrangements with similar energies and can

be collectively grouped into a cluster of global minimum configurations.
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5.4.2 DRL Training Summary

Figure 5-4: Average reward vs. episode across 10 different seeds. Red line repre-

sents the average reward, and the blue shadow represents the standard deviation.

The DRL agent was trained with 10 different seeds by interacting with the Cat-

Gym environment. In Figure 5-4, the averaged episodic reward collected during the

training process is represented by the red curve, and the standard deviation of the

rewards in 10 training is represented by blue shadow. The reward at the initial

stage of training (<5000 episodes) is low and the policy is noisy because the agent

is instructed to explore and has not yet learned to discover surface reconstruction

pathway without exceeding the upper energy bound that results in negative rewards.

After approximately 8000 episodes of training, the agent starts to receive stable pos-

itive reward between 0 and 1. The converged positive reward indicate that the agent

has learned a stable policy to discover surface reconstruction pathways that lead to

different surface compositions while ensuring the traversability of transition state by

not exceeding the upper energy bound.
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Figure 5-5: Projection of Ni-Pd-Au configurations identified by (a) MH and (b)

DRL method in the reduced dimensional space using the first two principal compo-

nents that capture the most structural variance in the all possible surface arrange-

ments. Numbers in red indicate unique clusters determined by Kmeans. Boundaries

between the clusters are drawn using sold lines. (c) Example Ni(green)-Pd(blue)-

Au(yellow) configurations for each of the clusters explored by DRL method, clusters

0, 1, 2, 5, 6, 7, 8, 9, and 10. Average relative energies (∆E) of transition states (blue)

and minima (black) for each of the clusters are labeled below the cluster numbers

(red).

5.4.3 Surface Configuration Exploration

First, we performed Principal Component Analysis (PCA) on the minima configu-

rations generated by the brute-force permutation method to determine the reduced
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dimensional space that captures the most structural variance in the all possible min-

ima configurations. Each of the configurations is represented by a combined atomic

fingerprints of the atoms in the top two layers. We then projected the minima

configurations onto the reduced dimensional space using the first two principal com-

ponents as shown in Figure 5-6. On the same plot, we also drew the boundaries of

clusters determined by the K-means algorithm. We used 16 clusters to partition the

configurations plotted in the reduced dimensional space based on their structural

representations and properties.

To compare the diversity of the Ni-Pd-Au catalyst surface configurations of local

minima explored by our DRL method and the baseline MH methods, we projected

these configurations onto the pre-determined reduced dimensional space mentioned

above. Figure 5-5(a) shows that the MH method could explore surface configura-

tions corresponding to only two different minima clusters, cluster 2 and 5, where

Ni:Pd:Au compositions of 0:2:2 and 1:1:2 on the top surface layer were found, re-

spectively. Based on the brute-force permutational analysis, cluster 2 is one of the

global minima clusters (Figure 5-3(a)) and cluster 5 is one of the clusters with con-

figurations in the third-lowest energy group (Figure 5-3(c)). On the other hand,

CatGym could explore more diverse surface configurations found in eight different

minima clusters as shown in Figure 5-5(b). Figure 5-5(c) shows example Ni-Pd-Au

configurations in the eight different clusters visited by the DRL agent with diverse

Ni:Pd:Au compositions: 0:2:2, 1:1:2, 0:3:1, 1:2:1, 2:1:1, 1:3:0, and 2:2:0. We note

that the same Ni:Pd:Au composition can be found in different nearby clusters with

different surface orientations, such as clusters 8 and 9 with 2:2:0 compositions, and

clusters 6 and 10 with 2:1:1 compositions. We also notice that our DRL agent was

unable to explore other local minima that are not nearby. In Figure 5-5(b), clusters

distant from the initial structure in cluster 0 were not identified by the DRL method

in this experiment. Those undiscovered clusters include different surface orientations
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Figure 5-6: Projection of all possible Ni-Pd-Au surface configurations (total 560

configurations) identified by brute-force permutation method onto the reduced di-

mensional space using PCA. Numbers in red represent distinct clusters determined

by K-means clustering algorithm, and their boundaries are drawn using solid lines in

the PCA plot. Example Ni(green)-Pd(blue)-Au(gold) surface configuration for each

of the clusters are also shown.

of global minima (cluster 3), second-lowest minima (cluster 4), global maxima (clus-

ter 15), and several other configurations with surface Ni:Pd:Au compositions of 2:1:1

(cluster 11 and 12), 2:0:2 (cluster 13), 3:0:1 (cluster 14) based on Figure S2.
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5.4.4 Reconstruction Pathway and Transition State

In addition to the diverse local minima configurations, our DRL method can generate

reconstruction pathways to the explored minima with different surface compositions

and can provide the structure and properties of not only the minima configurations,

but also the transition states, thereby enabling the identification of metastable cat-

alyst surfaces. We note that MH cannot determine the metastability of the catalyst

surface because this method does not provide kinetic information about the path-

ways to the minima it explores. A reconstruction pathway from the initial state

to the global minimum state in Figure 5-8(a) demonstrates that the DRL method

can creatively generate a sequence of actions to explore the global minimum. The

transition state energy or the highest energy barrier in this pathway was determined

as 1.56 eV above the energy of the initial state. In Figure 5-5(c), using the same

analysis, we show the average transition state energies for all local minima within

each of the clusters in the PCA plot (Figure 5-5(b)). We noticed that the transition

state energies systematically increase as the relative energies of their final minimum

states increase. For a cluster of global minimum configurations (cluster 2), the av-

erage transition state energy is determined as 1.56 eV while the average transition

state energies for clusters of the highest energy states (cluster 8 and 9) explored by

our DRL method are in a range of 1.95 eV to 1.99 eV. More example pathways to

other local minima can be found in Figure 5-7.

5.4.5 Transition State Verification

We further performed nudged elastic band (NEB) [85, 86] calculations to verify the

structure and energy of the transition state in the path to the global minimum. NEB

is a method for finding saddle points and minimum energy paths between known ini-

tial and final states, which are in this work the same initial structure and the global

minimum state discovered by our DRL method. We extracted the intermediate con-
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Figure 5-7: Example reconstruction pathways to local minima generated by the

DRL agent. Ni(green)-Pd(blue)-Au(gold) configurations of the transition state and

the minimum for each of the pathways are also illustrated next to the pathway plot.

Energy values in this figure (∆E) represent the relative energies of the each of the

configuration with respect to the initial state energy.
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Figure 5-8: (a) An example energy pathway to a global minimum developed by

DRL method. Each data point represents the relative energy ∆E of an Ni-Pd-Au

configuration generated after taking a certain action at each timestep. (b) A mini-

mum energy pathway, created by NEB, to the same global minimum. (c) Ni(green)-

Pd(blue)-Au(yellow) configurations of the initial state, transitions states built by

DRL method and NEB, and the global minimum.

figurations from the reconstruction pathway developed by the DRL method (configu-

rations at timesteps from 1 to 8 in Figure 5-8(a)), and used them as the intermediate

configurations along the minimum energy path in the NEB calculation. In Figure

5-8(a), the agent discovered a transition state to the global minimum at timestep 7,

and then performed a local relaxation to achieve the global minimum at timestep

9. Figure 5-8(b) shows the minimum energy path constructed by NEB between the

same initial state and the same global minimum state. The energy barrier in this

130



minimum path is 1.54 eV, which is very close to the one (1.56 eV) estimated by the

DRL method. Further, Figure 5-8(c) visually verifies that the structures of the tran-

sition states identified by both the DRL method and NEB are close to each other.

Both DRL and NEB find transition states in which one of the Pd (blue) atoms vacate

the surface layer. This vacancy then facilitates the swapping of a surface Ni (green)

and a subsurface Au (yellow) atom, followed by the return of Pd atom down to the

surface to fill the vacancy, thereby resulting in the global minimum configuration

with Ni:Pd:Au composition of 0:2:2 for the top surface layer.

5.5 Conclusion

In this work, we present CatGym DRL environment for studying kinetic arguments

of catalyst surface segregation under reaction conditions. We aim at exploring pos-

sible surface segregation phenomena and the associated transition states to address

the challenge in predicting catalyst metastability. For a given catalyst surface, the

DRL agent iteratively alters the positions of atoms and learns strategies for gener-

ating kinetic pathways to nearby local minima with different surface compositions

resulted from surface segregation. Trained with the TRPO algorithm and a ternary

Ni3Pd3Au2(111) alloy catalyst, the agent in our CatGym environment not only ex-

plores more diverse local and global minima configurations compared to the baseline

MH method, but also generates kinetic pathways to those configurations. We also

verify that the reconstruction pathway to the global minimum surface configuration

generated by the DRL agent is in a good agreement with the minimum energy path

calculated using NEB. CatGym is the first general DRL approach towards the design

of metastable catalysts under reaction conditions. This approach can be extended to

other systems of interest possibly containing different catalyst surfaces with varying

unit cell sizes, metals, oxides, and adsorbates with only a few minor modifications.
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Chapter 6

Conclusion and Future Work

In the first part of this thesis, we provided an example of how the theoretical models

and computer simulations, which are the second and third paradigms of materials sci-

ence respectively, can be combined into a single framework to investigate interfacial

phenomena at solid interfaces. To design and modify interfaces of solid materials, we

needed a new tool to predict and understand interactions between the hard interfaces

and surfactants because simulation techniques developed for fluid-fluid interfaces of-

ten are not applicable to solid interfaces as surfactant adsorptions behave non-ideally

at solid interfaces. This is an important problem to improve applications of inter-

facial phenomena in energy science, catalysis, and advanced materials as the solid

interface modification via surfactant adsorption can alter interfacial properties and

affect the performance of the interfacial applications. In chapter 2, we modified an

existing MTT model developed for fluid interfaces to make it suitable for hard inter-

faces and developed MD simulation techniques to directly determine the necessary

thermodynamic parameters for arbitrary small molecules. The combined MD/MTT

framework was capable of relating bulk and surface concentrations of surfactants at

the solid interfaces, thereby overcoming the computational limitation of atomistic

simulations for the determination of adsorption isotherms. The framework was also
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able to capture the relationship between the adsorption isotherms and the structural

behavior of surfactants at solid interfaces. We further applied this framework to a

well-studied SDS adsorption at a graphene surface system as a verification, and the

structural transitions of SDS developed by the framework showed a good agreement

with experimental observations. We believe this framework can serve as a tool for

the design of both solid interfaces and surfactant molecules for various applications.

In the future, we hope to improve the framework to more accurately model

the surfactant-interface systems with a presence of a larger number of surfactant

molecules as the current MD simulation technique developed for this framework is

limited by the size of the interface and the number of surfactants in the system.

Another approach to improve the framework is the utilization of machine learning

or deep learning models for the determination of MTT parameters. This approach

may require initial efforts to build a surfactant-interface database using computer

simulations for the model training, but the success of this work will enable a high-

throughput screening against a large number of potential solid interfaces and surfac-

tant molecules for targeted applications.

The second part, which is the main contribution of this thesis, focused on the

development of deep learning methods for solid materials and heterogeneous cata-

lyst design problems. High-throughput screening of heterogeneous catalysts requires

a huge number of property calculations using expensive quantum mechanical sim-

ulations such as DFT. Binding energies are typically used as descriptors to predict

important catalytic properties, and in Chapter 3 we presented a graph-based deep

learning method for the prediction of the binding energies. We modified existing

graph representations previously developed for representing solid materials to en-

code neighbor information based on Voronoi polyhedra. The graph neural network

method was applied to the graph representation, then it automatically learned the

optimal representation for predicting the target properties by using multiple convo-
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lution layers. As a result, the network predicted binding energies of H and CO on

diverse heterogeneous catalyst surfaces with higher accuracies compared to a con-

ventional machine learning model that used human-engineered feature representation

of the adsorption systems when there are sufficient numbers of training data. Fur-

ther, the graph neural network framework in our work was able to extract individual

atomic contributions to the predicted binding energies thereby rationalizing that

the contribution decreases as atoms get farther from the binding site. We believe

the framework can effectively rule out unpromising candidate catalyst surfaces by

providing reliable binding energy predictions, and thus can significantly reduce the

search space for high-throughput catalyst screening.

In Chapter 4, we broadened the applicability of the graph neural network pre-

sented in Chapter 3. Although the search space for high-throughput catalyst screen-

ing can be reduced by the use of machine learning methods as demonstrated in

Chapter 3, accurate property calculations for the final design or verification processes

using expensive electronic structure methods are inevitable. We thus incorporated

a differentiable optimization into the graph neural network to build a framework

for accelerating the electronic structure method computations by directly predicting

the ground state or relaxed structure of heterogeneous adsorption systems. The in-

tegrated framework estimated the harmonic force field parameters using the graph

neural network method and minimized the estimated harmonic PES using a gradient

descent algorithm to generate the relaxed structures. The framework was capable of

approximating ground state structures of the diverse inorganic catalyst surfaces with

and without the presence of adsorbates. We further demonstrated that by relaxing

the predicted structures instead of the initial structures, the computational cost of

the DFT relaxation could be reduced by a factor of two. We believe that this deep

learning framework can be used as a preprocessing tool that provides any electronic

structure method with a starting configuration near the ground state, thereby accel-
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erating the relaxation and further facilitating the high-throughput screening process.

In future work, we would like to advance the graph convolutional neural network

framework in order to improve the model performance in both the property predic-

tions covered in Chapter 3 and structure predictions from Chapter 4. For a better

graph representation of the surface structures, we can try to incorporate more of

physical and geometric properties into the features. A few existing approaches in-

clude labeling of surface atoms that are directly interacting with adsorbates[77] and

encoding higher-order, many-body correlations such as 3-body interactions into the

edge features[161]. These works suggest graph representation with more informa-

tive domain knowledge could help in improving model performance. On the model

side, several advanced graph neural network architectures have been presented to

propose advanced convolutional operations to extract better graph embeddings for

improved model prediction accuracy. Modeling the directionality of center atoms to

neighboring atoms[64] and also updating both node and edge features throughout

the convolutional layers[65] could reinforce the ability to better capture the surface

structure, thereby providing better embeddings for model predictions.

In Chapter 4, the simplest form of potential was used for the approximation of the

ground-truth PES for simplicity. We would also like to consider more sophisticated

or higher-order forms of potential to better approximate the ground-truth PES for

better prediction of the ground state structure. One possible issue with the use of

more complex forms of potential that needs to be addressed is a convergence issue

during the energy minimization. Since they will likely construct non-convex PES

which is hard to minimize using the conventional gradient descent method we used

in Chapter 4. In order to enable the use of complex PES as an approximation of

ground-truth PES, it will also be required to come up with advanced differentiable

optimization methods.

Chapter 5 presented a DRL framework, CatGym, for identifying the metastability
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of alloy catalyst surfaces under reaction conditions. Metastability is an important

factor to consider for catalyst design because various reaction conditions such as

temperature or pressure may cause a change in the surface structure and property

via reconstruction. CatGym is the first general DRL approach to explore surface

segregation and associated kinetic barriers to determine metastable catalyst surfaces.

The DRL agent learned strategies for generating kinetic pathways to nearby local

minima having different surface compositions by iteratively changing the positions of

atoms and receiving rewards from the environment. The DRL framework was able to

explore more diverse surface reconstruction pathways to local and global minima of

an example ternary alloy catalyst compared to the baseline minima hopping method.

We further demonstrated that the kinetic barriers of the reconstruction pathways

are in good agreement with the minimum energy path determined by nudged elastic

band method. This framework is also flexible to be extended to other systems of

interest containing different catalyst surfaces with different unit cell sizes, metals,

and adsorbates with only a few minor modifications.

In the future, we would like to extend this study to the identification of metasta-

bility of adsorbate-covered catalyst surfaces instead of bare surfaces as presented

in Chapter 5. Since the stability of the alloy catalyst surface would change when

the adsorbate atoms are present due to the adsorbate-induced surface reconstruc-

tion. Moreover, recently developed and presented reinforcement algorithms such as

Multi-Agent training can also be implemented in an attempt to improve the train-

ing efficiency. In a Multi-Agent environment, multiple agents will cooperate with

each other to reach the goal, or maximize the reward by optimizing their policy.[30]

This training algorithm has been proven to be effective in recent DRL studies in dif-

ferent areas including transportation management[4], finance[121], communication

networks[41].
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