
An Investigation on Improving

Distributed Fuzzing

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Security

Sears K. Schulz

B.S., Cyber Science, United States Air Force Academy

Carnegie Mellon University
Pittsburgh, PA

April, 2022

© Sears K. Schulz, 2022
All Rights Reserved

Acknowledgements

First and foremost, I would like to thank my thesis advisor, Dr. Maverick Woo,

for his invaluable dedication to my education over the course of the past year. He

has always had my best interest in mind and inspired me to go above and beyond in

and outside the classroom.

I would like to thank the readers, Mihai Dutescu and Dr. Rohan Padhye, for their

time and for providing crucial feedback to support my development.

I would like to thank the Siemens FLUFFI team of Roman Bendt, Abian Blome,

Mihai Dutescu, and Thomas Riedmaier for providing the essential knowledge and

resources needed to complete my thesis.

I would like the thank the U.S. Air Force and the Air Force Institute of Technology

for supporting my extended time at Carnegie Mellon University so that I could

complete this thesis.

Finally, I would like to thank the Information Networking Institute for funding

my education while serving in the U.S. Air Force, allowing me to continue pursuing

my passion for the past two years.

This work was supported by the Information Networking Institute at Carnegie

Mellon University, the Siemens Corporation, and the U.S. Air Force. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of

the author and do not necessarily reflect the views of the sponsors.

ii

Abstract

As software becomes more extensive and complex, identifying and remitting po-

tential vulnerabilities is increasingly challenging. Fuzzing is an automated technique

to discover bugs by repeatedly supplying the program-under-test (PUT) with gen-

erated inputs intended to trigger unknown bugs in the PUT. In 2016, Böhme et al.

introduced the concept of power schedules and an improved search strategy to the

then state-of-the-art fuzzer AFL. Using their implementation, which they dubbed

AFLFast, they found that these changes resulted in significantly faster discovery

of more crashes than AFL. In independent work, researchers at Siemens have been

investigating how to take advantage of data center scale infrastructure best when

fuzzing. To encourage adoption and facilitate academic research, they have open-

sourced their own distributed fuzzing system, FLUFFI, in September 2019.

This thesis investigates the application of the power schedule and search strategy

in AFLFast to FLUFFI. Specifically, we have implemented AFLFast’s power

schedule and search strategy as well as a round-robin search strategy on top of the

upstream version of FLUFFI. To evaluate the effectiveness of these changes, we

have chosen 10 binaries with known bugs from Google’s FuzzBench and measured

the differences in code and bug coverage between different combinations of power

schedules and search strategies. Our findings include: (i) the ideas of Böhme et al.

can be applied to FLUFFI to improve the fuzzing outcomes in a manner similar to

how AFLFast improved upon AFL; and (ii) despite its simplicity, round-robin can

be a desirable search strategy earlier in a fuzzing campaign.

iii

Table of Contents

Acknowledgements ii

Abstract iii

List of Tables vii

List of Figures x

1 Introduction 1

2 Background 4

2.1 Fuzzing . 4

2.2 AFL . 5

2.3 AFLFast . 7

2.3.1 Markov Chain Model . 7

2.3.2 Power Schedule . 9

2.3.3 Search Strategy . 10

2.4 FLUFFI . 10

2.4.1 Design . 11

2.4.2 Mutators . 12

2.4.3 Dynamic Binary Instrumentation 12

2.4.4 Characteristics . 15

2.5 Fuzzing Experimentation . 15

2.5.1 Klees et al. 2018 . 15

2.5.2 FuzzBench . 16

3 Design 17

iv

3.1 FLUFFI . 17

3.1.1 Code Coverage and Instrumentation 18

3.1.2 Tracking Additional Data . 21

3.1.3 Message Changes . 21

3.1.4 Other Considerations . 22

3.2 Experiment . 23

4 Implementation 25

4.1 FLUFFI . 25

4.2 Experiment . 26

4.2.1 Hardware and Software . 26

4.2.2 Tracking CPU Time . 27

4.2.3 RAM Disk . 28

4.2.4 Building FuzzBench . 29

4.2.5 Experimentation Framework 29

5 Evaluation 31

5.1 Average Normalized Score . 31

5.2 Throughput . 32

5.3 Bug Coverage . 33

5.4 Code Coverage . 35

5.4.1 Basic Block Coverage . 35

5.4.2 Path Coverage . 35

5.5 Code Coverage Relative to Throughput 37

5.5.1 Basic Block Coverage . 37

5.5.2 Path Coverage . 38

5.6 Code Coverage Over Time . 39

5.6.1 Basic Block Coverage . 39

5.6.2 Path Coverage . 40

6 Discussion 44

6.1 Related Work . 44

v

6.2 Limitations . 46

6.3 Future Investigations . 47

7 Concluding Remarks 50

7.1 Open-Source Contributions . 51

Bibliography 52

Appendix A Benchmark Basic Block Coverage Graphs 55

Appendix B Benchmark Path Coverage Graphs 60

vi

List of Tables

Table 3.1 FLUFFI implementations for experiment. 18

Table 3.2 Selected FuzzBench benchmarks. 23

Table 5.1 Maximum unique bug coverage for each benchmark. 34

vii

List of Figures

Figure 2.1 General strategy for greybox fuzzing. 5

Figure 2.2 AFL instrumentation [4]. 5

Figure 2.3 Markov chain for example program [4]. 8

Figure 2.4 Comparing AFLFast power schedules by crash coverage [4]. 9

Figure 2.5 FLUFFI global architecture [14]. 12

Figure 2.6 FLUFFI local architecture (note: the terms seed and testcase

are used interchangeably) [14]. 13

Figure 2.7 FLUFFI mutation tree example [3]. 14

Figure 2.8 DynamoRIO dynamic binary instrumentation. 14

Figure 3.1 Example C program to demonstrate different paths with same

basic block coverage. 19

Figure 3.2 drcov instrumentation. 20

Figure 3.3 FLUFFI message changes. 22

Figure 4.1 Hardware and software configuration for the experiment. . . . 27

Figure 5.1 Number of seeds executed, compared by average normalized

score. 33

Figure 5.2 Number of unique bugs covered, compared by average normal-

ized score. 34

Figure 5.3 Number of basic blocks covered, compared by average normal-

ized score. 36

Figure 5.4 Number of paths covered, compared by average normalized

score. 36

viii

Figure 5.5 Number of basic blocks covered divided by seeds executed,

compared by average normalized score. 38

Figure 5.6 Number of paths covered divided by seeds executed, compared

by average normalized score. 39

Figure 5.7 Median number of basic blocks covered over time for the njs

njs process script fuzzer benchmark with 95% confidence in-

terval. 40

Figure 5.8 Number of basic blocks covered, compared by average normal-

ized score over time with samples at 10 CPU minute intervals. 41

Figure 5.9 Median number of paths covered over time for the njs njs

process script fuzzer benchmark with 95% confidence interval. 41

Figure 5.10 Number of paths covered, compared by average normalized

score over time with samples at 10 CPU minute intervals. . . 42

Figure A.1 Median number of basic blocks covered over time for the ar-

row parquet-arrow-fuzz benchmark with 95% confidence inter-

val. 55

Figure A.2 Median number of basic blocks covered over time for the as-

pell aspell fuzzer benchmark with 95% confidence interval. . . 56

Figure A.3 Median number of basic blocks covered over time for the ffm-

peg ffmpeg demuxer fuzzer benchmark with 95% confidence

interval. 56

Figure A.4 Median number of basic blocks covered over time for the ma-

tio matio fuzzer benchmark with 95% confidence interval. . . 57

Figure A.5 Median number of basic blocks covered over time for the

openh264 decoder fuzzer benchmark with 95% confidence

interval. 57

Figure A.6 Median number of basic blocks covered over time for the pop-

pler pdf fuzzer benchmark with 95% confidence interval. . . . 58

Figure A.7 Median number of basic blocks covered over time for the proj4

standard fuzzer benchmark with 95% confidence interval. . . . 58

ix

Figure A.8 Median number of basic blocks covered over time for the stb

stbi read fuzzer benchmark with 95% confidence interval. . . . 59

Figure A.9 Median number of basic blocks covered over time for the wire-

shark fuzzshark ip benchmark with 95% confidence interval. . 59

Figure B.1 Median number of paths covered over time for the arrow

parquet-arrow-fuzz benchmark with 95% confidence interval. . 60

Figure B.2 Median number of paths covered over time for the aspell

aspell fuzzer benchmark with 95% confidence interval. 61

Figure B.3 Median number of paths covered over time for the ffmpeg

ffmpeg demuxer fuzzer benchmark with 95% confidence interval. 61

Figure B.4 Median number of paths covered over time for the matio

matio fuzzer benchmark with 95% confidence interval. 62

Figure B.5 Median number of paths covered over time for the openh264

decoder fuzzer benchmark with 95% confidence interval. . . . 62

Figure B.6 Median number of paths covered over time for the poppler

pdf fuzzer benchmark with 95% confidence interval. 63

Figure B.7 Median number of paths covered over time for the proj4

standard fuzzer benchmark with 95% confidence interval. . . . 63

Figure B.8 Median number of paths covered over time for the stb stbi

read fuzzer benchmark with 95% confidence interval. 64

Figure B.9 Median number of paths covered over time for the wireshark

fuzzshark ip benchmark with 95% confidence interval. 64

x

Symbols

αpiq The number of energy the original AFL implementation assigns
for seed i.

β A constant used in a power schedule.

fpiq The number of seeds that exercise the same path as seed i.

ppiq The number of energy, or new seeds to be generated, for seed i.

spiq The number of times the seed i has been chosen from the queue.

M A constant that defines the maximum number of energy a power
schedule can assign.

Abbreviations

AFL American Fuzzy Lop; an open-source evolutionary fuzzer.

ASLR address space layout randomization; a technique to randomize
addresses at runtime to prevent memory corruption.

DBI dynamic binary instrumentation; a technique that involves mod-
ifying instructions of a binary during execution.

FAST the exponential power schedule used in AFLFast.

FLUFFI Fully Localized Utility For Fuzzing Instantaneously; a dis-
tributed fuzzer developed by Siemens.

PUT program-under-test; the software being tested by a fuzzer.

TLS thread-local storage; global memory local to a thread.

xi

1

Introduction

As the size of an organization’s software grows, it can become increasingly challeng-

ing to ensure it has minimal bugs or vulnerabilities before deployment. Fuzzing is a

well-known technique that is the real world to discover software vulnerabilities. It

involves repeatedly running the program-under-test (PUT) with concrete inputs gen-

erated algorithmically, such as based on prior outputs or code coverage. Fuzzing has

become popular due to its simplicity - it requires minimal configuration and is fully

automated. Implementations such as the established American Fuzzy Lop (AFL)

have successfully discovered numerous software vulnerabilities.

In general, the more inputs tested against the PUT, the more likely vulnerabilities

will be discovered. Naturally, testing numerous inputs requires time and processing

power. One method to increase processing power is distributed fuzzing, which involves

a fleet of multiple machines running in parallel to fuzz the PUT. The challenges of

distributed fuzzing include determining which inputs each machine will test and how

they will communicate their results within the server fleet.

A successful distributed fuzzer should be able to spread a fuzzing workload across

numerous machines, such as a large data center or cloud resources, with minimal

1

configuration. To ensure work is not duplicated, each node should run different

inputs against the PUT. Since fuzzing is a relatively new field, distributed fuzzers

should ideally implement the most recent advancements in fuzzing.

AFL and its more advanced fork, AFL++, feature main and secondary modes

to support distributed fuzzing. A directory is established to sync the fuzzer state.

Main nodes sync the input queue with all nodes, while the secondary nodes only sync

with the main node. To distribute fuzzing on more than one machine, the developers

recommend periodically transferring the sync directories via SCP [6].

While AFL++ does incorporate recent fuzzing research, its distributed function-

ality is lacking. Users need to write their own scripts to compress and transfer the

sync directories between machines. Furthermore, since the nodes sync periodically,

work between nodes may be duplicated due to delays in receiving new information.

Nodes on the same machine are synced every 30 minutes, and the developers recom-

mend syncing between remote machines every 60 minutes.

Fully Localized Utility For Fuzzing Instantaneously (FLUFFI) is a distributed

fuzzer built by Siemens to take advantage of its large data centers. From the begin-

ning of its development, the fuzzer was designed to be a distributed system. Nodes

in the system receive work by querying a central database such that no work is repli-

cated. FLUFFI was open-sourced in September 2019 to encourage contributions

from the academic community.

While FLUFFI’s method for fuzzing is similar to that of AFL, it does not

embrace more recent fuzzing advancements as AFL++ does. One example is

AFLFast, a fork of AFL that implements a power schedule and new search strategy.

The authors of AFLFast find that the fork outperforms AFL in code and bug cov-

erage [4]. This thesis investigates the application of AFLFast’s power schedule and

search strategy to FLUFFI. We have evaluated various combinations of power sched-

ules and search strategies on 10 PUTs with known bugs from Google’s FuzzBench.

2

We find that: (i) the ideas of Böhme et al. can be applied to FLUFFI to improve

the fuzzing outcomes in a manner similar to how AFLFast improved upon AFL;

and (ii) despite its simplicity, round-robin can be a desirable search strategy earlier

in a fuzzing campaign. This thesis makes the following contributions:

• We introduce and evaluate a power schedule in a distributed fuzzer to control

the number of inputs generated from a seed.

• We introduce and evaluate two new search strategies in a distributed fuzzer to

influence which seeds are prioritized for fuzzing.

• We show that the ideas of Böhme et al. 2016 [4] can be transferred to a dis-

tributed fuzzer.

• We show that a fuzzer’s optimal strategy depends on the relative time position

in the campaign.

3

2

Background

2.1 Fuzzing

Fuzzers can generally fall into one of three categories: blackbox, whitebox, and grey-

box fuzzers. Blackbox fuzzers cannot observe the internals of the PUT, so they must

rely on only the input and output of running the binary. On the contrary, whitebox

fuzzers analyze the internals of the PUT. This extra information allows for dynamic

symbolic execution, or concolic execution, which means that both concrete and sym-

bolic inputs are used during execution. Due to increased information to analyze,

whitebox fuzzers typically introduce more overhead than blackbox fuzzers. A com-

promise between these two options is a greybox fuzzer, which uses a smaller amount

of information from the PUT internals. This analysis tends to be an approximation

as it favors throughput. Greybox fuzzers often instrument the PUT at compile-time

or use dynamic binary instrumentation (DBI) to modify instructions during execu-

tion. This instrumentation of the PUT provides more output metrics, such as code

coverage [12].

Figure 2.1 depicts a simplified process of how a greybox fuzzer operates. First,

4

Figure 2.1: General strategy for greybox fuzzing.

cur_location = <COMPILE_TIME_RANDOM >;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Figure 2.2: AFL instrumentation [4].

the fuzzer sends an input, or a seed, to the PUT. After the PUT executes the seed,

the fuzzer receives feedback about its execution, such as whether it crashes and the

code coverage. Based on this information, the fuzzer generates, or mutates, more

seeds from an existing seed. This process continues in a loop [12].

2.2 AFL

AFL is one of the most well-known fuzzers and is the basis for many of its successors.

AFL is a greybox fuzzer. PUTs can be instrumented using the included compiler,

afl-cc. The compiler instruments the binary by injecting additional instructions at

the end of each basic block. The pseudocode is shown in Figure 2.2.

cur_location is the address of the current basic block (usually an offset from

the start of the current module). shared_mem[] is a 64 kB shared memory region.

This memory region stores a counter of each transition from one basic block to

another. Since prev_location is not simply a copy of cur_location because of the

5

added shift operation, the transition from A to B will be counted differently as the

transition from B to A. The shared memory region is hashed after the PUT finishes

execution. The hash can imperfectly represent a path in the PUT’s execution [4].

Hash collisions could occur, or different basic block transitions may share the same

index in the shared memory region.

Algorithm 1 AFL strategy [4].

Input: Seed Inputs S

1: TX “ H

2: T “ S
3: if T “ H then
4: add empty file to T
5: end if
6: repeat
7: t “ chooseNextpT q

8: p “ assignEnergyptq
9: for i from 1 to p do
10: t1 “ mutateInputptq
11: if t1 crashes then
12: add t1 to TX

13: else if isInterestingpt1q then
14: add t1 to T
15: end if
16: end for
17: until timeout reached or abort-signal

Output: Crashing Inputs TX

The general decision flow for AFL is roughly portrayed in Algorithm 1. A set

of initial seeds are provided, such as a known valid input. If the user provides

no seeds, an empty file is used as the initial seed. These seeds S are added to

the queue T . New seeds t to test are chosen from the queue that are considered

favorites ; those with the fastest and smallest input for the path in the PUT it

exercises. assignEnergy determines the number of new inputs generated from

the chosen seed. AFL considers execution time, path coverage, and creation time

of the seed t. To generate new seeds, mutateInputs will perform operations on

6

the original seed, including bit flips, arithmetic operations, boundary values, and

block deletion/inserts. The isInteresting function will determine if a new seed

t1 should be added to the queue T after executing it. isInteresting will return

true if t1 exercises new basic block transitions. A “bucketing” technique prevents

path explosion due to loops. Seeds that crash the PUT will always be considered

interesting and are added to TX [4].

Functions of Interest. In Algorithm 1, the two functions of interest for this investi-

gation are chooseNext and assignEnergy. chooseNext determines the search

strategy ; which seeds are prioritized when choosing a new one from the queue. as-

signEnergy determines the power schedule; how many new seeds should be gener-

ated from the seed chosen from the queue.

2.3 AFLFast

AFLFast is a fork of AFL that primarily alters the search strategy and power sched-

ule of AFL. The authors, Böhme et al., found thatAFLFast performed significantly

better than AFL in code coverage and finding crashes. For example, AFLFast was

compared to AFL using the 150 binaries from the Cyber Grand Challenge. Not only

did AFLFast find crashes 19 times faster than AFL, but it also found seven crashes

that AFL never discovered [4].

2.3.1 Markov Chain Model

The authors attribute AFLFast’s success to modeling greybox fuzzing as a Markov

chain. A Markov chain is a set of states with transitions between them. Each transi-

tion has a probability of it occurring. Böhme et al. model a potential path in a PUT

as a state. Transitions occur when a seed exercises a different path than the seed it

was generated from. Figure 2.3 shows an example of a Markov chain for a simple

7

Figure 2.3: Markov chain for example program [4].

program. The program checks if the input is equal to bad! character by character.

It is assumed that the inputs are always four ASCII characters. The Markov chain

shows the probability of transitioning from one program path to another. For exam-

ple, the current input may be bill, so the current state is b***. To transition to the

ba** state, the correct character position to mutate must be chosen. Choosing the

second position is a 1
4
probability. Next, the correct character must be generated.

Assuming 28 ASCII characters, the probability of choosing an a is 2´8. Multiplying

these two probabilities results in 2´10, which is the probability of discovering the

ba** path from the b*** path.

pij is defined as the probability that mutating a seed that exercises path i will

result in a new seed that exercises path j. Energy is the number of seeds that are

generated by mutating another. By the linearity of expectation, to discover path

j, the minimum energy is p´1
ij . In this example, the minimum energy to discover

the ba** path from the b*** path would be 210. While pij is unknown, it can be

estimated using fpiq, the number of seeds that exercise path i [4].

8

Figure 2.4: Comparing AFLFast power schedules by crash coverage [4].

2.3.2 Power Schedule

AFL’s power schedule can be defined as:

ppiq “ αpiq (2.1)

where αpiq is AFL’s implementation of assignEnergy. AFL’s power schedule

outputs an energy that does not change as the number of times a seed is chosen from

the queue, or spiq. Böhme et al. propose five power schedules:

• EXPLORE: the AFL power schedule divided by a constant

• LINEAR: ppiq is directly proportional to spiq

• QUAD: ppiq increases in a quadratic manner as spiq increases

• COE: ppiq increases exponentially as spiq increases and goes to zero when fpiq

is greater than the mean fpiq

• FAST: ppiq increases exponentially as spiq increases

9

Figure 2.4 compares the five power schedules and AFL in the number of unique

crashes found. Böhme et al. find that the FAST power schedule is the most perfor-

mant in this metric and other experiments. The reasoning for an exponential power

schedule is that the minimum energy required to find a new path will be quickly

reached while not generating too many seeds initially. The FAST power schedule is

defined as:

ppiq “ min

ˆ

αpiq

β
¨
2spiq

fpiq
,M

˙

(2.2)

where β and M are constants [4].

2.3.3 Search Strategy

AFL selects seeds from the queue to mutate in a round-robin fashion. Seeds are

chosen in the order they are added to the queue. Once all seeds have been fuzzed,

AFL resumes with the first seed. New seeds are added to the back of the queue.

AFLFast implements a greedy search strategy to fuzz new seeds and discover new

paths. It always chooses the seed with the lowest spiq. If there is a tie, it prioritizes

the seed with the lowest fpiq. If there are still multiple contenders, the seed with

the smallest and fastest input is selected [4].

2.4 FLUFFI

Fully Localized Utility For Fuzzing Instantaneously (FLUFFI) is a distributed fuzzer

developed by Siemens. A version of the fuzzer is open-source and available at: https:

//github.com/siemens/fluffi. It was developed with several design choices in

mind, such as:

• Only a binary is provided; no source code.

10

https://github.com/siemens/fluffi
https://github.com/siemens/fluffi

• A diverse set of targets, including architecture (x86, ARM), operating system

(Windows, Linux), and interface (file, network, API).

• Limited time for developing a fuzzing harness.

• Throughput (executions per second) is not a priority [14].

2.4.1 Design

The overall architecture for FLUFFI is portrayed in Figure 2.5. The central server

for the distributed system is called the Global Manager. It hosts a MariaDB database

server, FTP server, DNS server, and a web interface. Using the web interface, users

can create a fuzzjob representing a PUT’s fuzzing campaign. Each worker server can

host any number of Local Managers. Every fuzzjob is assigned one Local Manager.

The worker servers can also host an arbitrary number of agents. Agents fall into

three types: Generators, Runners, and Evaluators. The agents talk to their assigned

fuzzjob’s Local Manager to receive tasks. Since the agents are stateless, only the

Local Manager queries the Global Manager’s database server.

The general flow for a fuzzjob is shown in Figure 2.6. When more seeds are needed,

the Generator will request a seed from the Local Manager. The Local Manager

queries the Global Manager for a seed to be selected from the queue and sends it

back to the Generator. The Generator mutates the seed to generate several new

seeds. When Runners are ready, they will ask the Generator for a new seed to

execute. Each Runner executes the seed on the PUT. The covered basic blocks list

and the execution result (whether there was a crash, hang, etc.) are sent to an

available Evaluator. Using a cache, the Evaluator checks whether new basic blocks

were covered. The Evaluator will only tell the Local Manager to keep seeds that do

not have a clean exit or find new basic blocks. If a seed is to be kept, the Evaluator

will update the rating for the seed. The rating increases when the seed finds more

11

Figure 2.5: FLUFFI global architecture [14].

basic blocks and decreases when the process crashes, hangs, etc.

2.4.2 Mutators

One unique feature of FLUFFI is that multiple mutators can be enabled in the same

fuzzing campaign. The five mutator options are AFL, Radamsa, Honggfuzz, and

two internally developed ones. Unlike other fuzzers, one mutator can generate a seed

using a seed generated from a different mutator. The parent of each seed is also

tracked. Thus, the seeds’ evolutionary tree can be viewed in the web interface. See

Figure 2.7.

2.4.3 Dynamic Binary Instrumentation

Since FLUFFI does not instrument the PUT at compile-time, DBI is used to

track execution coverage. Although this introduces a higher execution overhead,

12

Figure 2.6: FLUFFI local architecture (note: the terms seed and testcase are used
interchangeably) [14].

the PUT source code is not required, and fuzzing campaigns can be started effort-

lessly. FLUFFI incorporates DynamoRIO, an open-source DBI library (https:

//github.com/DynamoRIO/dynamorio). DynamoRIO copies the basic block into a

cache when a basic block is first executed. See Figure 2.8. Only when DynamoRIO

has added a basic black to a cache can it analyze the basic block or instrument it.

To determine coverage, FLUFFI uses one of DynamoRIO’s included clients, dr-

cov. The client does not directly instrument the binary. It simply tracks when basic

blocks are moved into the cache. After execution, it reports the addresses of the

executed basic blocks. It does not track whether a basic block was executed more

than once.

13

https://github.com/DynamoRIO/dynamorio
https://github.com/DynamoRIO/dynamorio

Figure 2.7: FLUFFI mutation tree example [3].

Figure 2.8: DynamoRIO dynamic binary instrumentation.

14

2.4.4 Characteristics

Rating. Each seed is assigned a rating. The rating represents how many more times

the seed should be fuzzed. The rating increases when a child of the seed covers

new basic blocks. The rating decreases when a child of the seed crashes or hangs in

execution.

Power Schedule. FLUFFI implements a constant power schedule. When an Evalu-

ator receives a seed to mutate, it will always generate 50 new seeds.

Search Strategy. FLUFFI implements a greedy search strategy. Interesting seeds

are stored in the Global Manager’s database and their assigned rating. When the

Evaluator asks the Local Manager for a seed, the seed with the highest rating is

always selected.

2.5 Fuzzing Experimentation

Evaluating and comparing fuzzers is a challenging task. The mutator introduces

randomness, so one trial of a fuzzer could be significantly different from another

trial. Distributed fuzzing further exacerbates this issue because network latency can

introduce more randomness with numerous agents. Furthermore, the duration of a

fuzzing campaign and the PUT can have a notable impact on its performance.

2.5.1 Klees et al. 2018

In Evaluating Fuzz Testing, Klees et al. recommend how fuzzers can adequately

be evaluated. First, the authors claim that multiple trials should be run to sam-

ple the fuzzer’s performance accurately. Additionally, a statistical test can then

determine whether one fuzzer outperforms another. The authors recommend the

Mann-Whitney U test, which compares two samples using ranked sums [10].

15

Second, Klees et al. argue that each trial should have a sufficiently long duration.

While one fuzzer may outperform another at the beginning of a fuzzing campaign,

the results could change over time. The authors recommend a duration of at least 24

hours because performance for shorter runs can be extracted from longer runs [10].

Third, the authors advocate for using a diverse set of PUTs. Considerations

include varying sizes of the binary, input formats (document, video, text, etc.), and

the type of initial seed(s). The PUTs should contain known bugs, so both bug and

code coverage can measure that performance. Klees et al. recognize that there is

currently no testing suite that meets their criteria [10].

2.5.2 FuzzBench

One attempt to develop a fuzz testing suite is Google’s FuzzBench. The original

paper uses 22 real-world programs with various input formats, size, and the number

of initial seeds. None of the PUTs have known bugs, so performance is only measured

by code coverage achieved by the fuzzer. FuzzBench compiles the PUTs and fuzzers

in Docker containers. The experiment is also run in a Docker container. By default,

FuzzBench runs 20 trials for each PUT with a duration of 23 hours. At the end

of the experiment, a report is generated containing various statistics and graphs to

compare the performance of the fuzzers [13].

One issue with the original FuzzBench suite is that none of the programs con-

tained bugs, and performance is only measured by code coverage. FuzzBench has

evolved since its original publication in an open-source repository (https://github.

com/google/fuzzbench). Notably, new PUTs have been added that contain known

bugs so that bug coverage can also be measured.

16

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

3

Design

3.1 FLUFFI

One conclusion from the AFLFast paper is that the addition of a power schedule

and greedy search strategy to a fuzzer results in better fuzzing outcomes [4]. This

experiment aims to determine if the same finding holds for FLUFFI in addition

to AFL. To achieve the transfer principle, as many variables as possible must stay

constant between AFLFast’s experiment and this experiment.

Multiple combinations of power schedules and search strategies are deployed for a

more comprehensive experiment, allowing for conclusions beyond simply replicating

AFLFast. The following power schedules are implemented:

• Constant: 50 seeds are always generated (original FLUFFI implementation)

• FAST: the exponential power schedule used in AFLFast (see equation 2.2)

The following search strategies are implemented:

• FLUFFI: the seed with the highest rating is selected (original FLUFFI im-

plementation)

17

ID Power Schedule Search Strategy

1 Constant FLUFFI
2 FAST FLUFFI
3 Constant Round-Robin
4 FAST Round-Robin
5 Constant AFLFast
6 FAST AFLFast

Table 3.1: FLUFFI implementations for experiment.

• Round-Robin: the seed that has not been chosen for the longest time is selected,

and new seeds are added to the back of the queue

• AFLFast: the seed with the lowest spiq, then lowest fpiq, then the highest

rating is selected

The original search strategy for AFLFast used the fastest and smallest seed as

the third parameter. This version of the AFLFast search strategy uses FLUFFI’s

rating as an alternative for the third parameter since FLUFFI does not track seed

execution time.

Table 3.1 shows the implementations of FLUFFI needed for the experiment.

Note that the ID of 1 is the original implementation of FLUFFI. The ID of 6

mimics AFLFast.

3.1.1 Code Coverage and Instrumentation

To implement AFLFast’s power schedule and search strategy, fpiq, the number of

seeds that exercise the same path, needs to be tracked. Therefore, there must be a

method for FLUFFI to differentiate and count unique paths. FLUFFI currently

tracks coverage using DynamoRIO’s drcov client. Since basic blocks are only in-

tercepted the first time they are moved into the cache, drcov returns a deduplicated

list of covered basic blocks. This list is an option to represent paths. However, there

18

void bar(int num) {

...

foo(num * 10);

...

}

bar(input * 100);

for (int i = 0; i < input; i++) {

foo(i);

}

Figure 3.1: Example C program to demonstrate different paths with same basic block
coverage.

are cases where a list of basic blocks would not be granular enough to distinguish

different paths.

Figure 3.1 shows an example of how FLUFFI would be unable to differentiate

between different paths in a C program. First, the input to the program affects the

number of iterations the loop will run. A deduplicated basic list does not distinguish

between various loop iterations. Second, foo() is called from bar() and within the

loop. To drcov, there is no difference between the calls to foo(). These are just

two examples portraying that the current implementation of FLUFFI’s coverage

collection is not as granular as desired.

AFL’s instrumentation, called edge coverage, builds an array where each index

represents a transition between two basic blocks, and the value counts how many

times that transition has occurred. See Figure 2.2. This coverage method can distin-

guish between different loop iterations and track where a function was called from.

Implementing AFL’s edge coverage in FLUFFI would allow for more granular code

coverage to keep track of unique paths.

To maintain the original functionality of FLUFFI, drcov should still be run on

19

MOV reg3 , TLS;

MOV reg1 , [reg3];

MOV reg2 , shared_mem;

XOR reg1 , offset;

INC [reg2 + reg1];

MOV [reg3], offset >> 1;

Figure 3.2: drcov instrumentation.

the PUT to receive basic block coverage. Additionally, basic block and edge coverage

should be collected in a single PUT execution to reduce the overhead of the changes.

To accomplish this, drcov is modified to report edge coverage and the original basic

block coverage. WinAFL, a Windows fuzzer that uses DynamoRIO to collect edge

coverage, was used as inspiration for developing the drcov patch [8].

Except for saving and restoring registers, Figure 3.2 shows the six instructions

that DynamoRIO prepends to each basic block. The instrumentation only occurs

on the PUT and not on any shared libraries. The previous and current locations are

stored as offsets from the start of the PUT’s memory space. This modification pre-

vents address space layout randomization (ASLR) from affecting the edge coverage

result. The previous offset is stored in thread-local storage (TLS), a global memory

local to a thread. Storing the previous location in TLS allows for multithreaded

PUTs to be supported. The previous offset is initialized to 0. The pointer to the

previous offset is first moved into reg3 and then dereferenced into reg1. The pointer

to the shared memory array is loaded into reg2. The previous offset (reg1) and the

current offset are XOR’d. The result of this operation is the index in the shared

memory array that is incremented. Finally, the current offset bit shifted to the right

is stored in TLS. The shared memory array is hashed and returned in drcov’s output.

20

3.1.2 Tracking Additional Data

FLUFFI needs to track various new data to support the new power schedule and

two new search strategies. The Global Manager’s SQL database acts as a central

data repository for each fuzzing campaign. The database schema is modified to store

the new data. A new edge coverage table with two columns is added. The primary

key stores a hash of the edge coverage’s shared memory array to represent a unique

path. Each row also contains a counter, which is incremented each time a PUT

execution exercises the same path.

The SQL database already contains a table for the seed queue, where each row

is a seed. A column is added with a timestamp of when the seed was last chosen

from the queue. This data is necessary for the round-robin search strategy. The

timestamp is set to the current time when a new seed is added or chosen to be

mutated. Another column is added that contains the number of times the seed has

been selected from the queue, or spiq. This counter initializes at 0 and increments

when the seed is chosen to be mutated. Finally, a column is added with the PUT’s

edge coverage hash. Thus, the edge coverage table can be joined to obtain fpiq.

3.1.3 Message Changes

In FLUFFI, the data sent between the Local Manager, Generators, Runners, and

Evaluators are called messages. Additional information is included in these messages

to support tracking edge coverage and the FAST power schedule because only the

Local Manager has access to the data in the SQL database. Figure 3.3 shows the

fields that must be added to the messages.

The Runner executes the PUT with the modified drcov instrumentation that

outputs the new edge coverage hash. The original implementation of FLUFFI sends

the execution result to an available Evaluator, including whether the PUT crashed

and the basic block coverage. The edge coverage hash is added to the content of this

21

Figure 3.3: FLUFFI message changes.

message. After the Evaluator determines if the execution of the PUT discovered new

basic block coverage, it sends the execution result to the Local Manager to update

the database. The edge coverage hash is also added to this message. Finally, the

Local Manager tells the Generator which seed to mutate. This message will now need

to include spiq, fpiq, and the FLUFFI’s rating for the seed so that the Generator

can compute the FAST power schedule.

3.1.4 Other Considerations

Mutator. While FLUFFI offers five different mutators, only the AFL mutator is

used in the experiment. The justification is that AFLFast’s experiment also used

the AFL mutator.

22

Benchmark Format Seeds Size

arrow parquet-arrow-fuzz Compression 1 23.6 MB
aspell aspell fuzzer Text 60 4.9 MB

ffmpeg ffmpeg demuxer fuzzer Video 0 80.0 MB
matio matio fuzzer Custom 6 10.7 MB

njs njs process script fuzzer Custom 0 2.1 MB
openh264 decoder fuzzer Video 165 1.5 MB

poppler pdf fuzzer Document 522 11.7 MB
proj4 standard fuzzer Custom 0 7.7 MB
stb stbi read fuzzer Image 350 143.9 KB

wireshark fuzzshark ip Packet Capture 0 168.3 MB

Table 3.2: Selected FuzzBench benchmarks.

Ensuring Fairness. The edge coverage instrumentation and additional data tracking

are included in all six FLUFFI implementations. First, it increases confidence that

the fuzzers will operate at a similar throughput. Second, it allows for all fuzzers to

be compared by edge coverage.

3.2 Experiment

10 benchmarks with known bugs are selected from FuzzBench [13], shown in Table

3.2. To ensure a diverse set of PUTs, the benchmarks are chosen such that they have

diverse input types, some with and without provided seeds, and varying binary sizes

to represent different levels of complexity. If FuzzBench provides no seeds for the

benchmark, an empty file is used as the initial seed.

The recommendations from Klees et al. 2018 [10] influenced the parameters for

the experiment. They are as follows:

• 6 implementations of FLUFFI

• 10 PUTs

• 20 trials for each implementation and PUT

23

• 30 CPU hour fuzzing campaign for each trial

24

4

Implementation

4.1 FLUFFI

All changes to FLUFFI were made from commit hash fd9406b92f456998499703f

b2d964c6e5151acea, dated October 11th, 2021. The more recent commit did not

successfully compile because of a breaking DynamoRIO update.

The majority of the work for the implementation involved adding the edge cover-

age instrumentation to FLUFFI. The changes include an approximately 500 line

C patch for drcov. The shared memory is hashed using xxHash, a fast, non-

cryptographic hashing algorithm that works at the speed limit of RAM [5]. A 64-bit

hash is generated rather than AFL’s 32-bits to reduce the probability of a collision.

xxHash is chosen because it is the same hashing algorithm used in AFL++ [6].

The remaining modifications to FLUFFI are approximately 300 lines in C++,

SQL schemas, and protocol buffer definitions. The SQL schema and queries are

altered to support the new data being tracked. The protocol buffer definition is

changed to include more information in messages passed between the worker agents.

The different search strategies are implemented by simply changing the ORDER BY

25

clause in the SQL query when the Local Manager selects a seed from the queue to

send to a Generator. The three search strategies can be summarized as follows:

• FLUFFI - ORDER BY Rating DESC

• Round-Robin - ORDER BY TimeLastChosen ASC

• AFLFast - ORDER BY ChosenCounter ASC, PathCounter ASC, Rating DESC

PathCounter is the counter in the edge coverage table after joining the table by

the seed’s hash value.

4.2 Experiment

4.2.1 Hardware and Software

The hardware and software configuration for the experiment is summarized in Figure

4.1. Four identical machines are used, each with an Intel i9-9900k CPU, 128 GB

of RAM, and a 4 TB HDD. The host operating system is Ubuntu 20.04. Each

host is running two LCX containers. The operating system for both containers is

Ubuntu 18.04 because this version is recommended for use with FLUFFI [14]. The

first container runs the Global Manager, which includes the SQL database and web

interface. The second interface is running the FLUFFI worker agents. There is one

Local Manager to support running one fuzzing campaign at a time. Although one

Generator is often sufficient to generate enough seeds for the Runners, two Generators

are running to prevent failure in the event that one dies. An equal number of Runners

and Evaluators are chosen so that The Evaluators do not bottleneck runners. The

hosts’ CPU supports up to 16 threads, and thus the desired load average is between 15

and 16. This target load average is achieved through trial and error by provisioning

15 each of the Runners and Evaluators.

26

Figure 4.1: Hardware and software configuration for the experiment.

During the experiment, each of the four hosts runs a different implementation

of FLUFFI. First, the four hosts run all 20 trials of the experiment for the first

four implementations in Table 3.1. After this experiment completes, the final two

implementations with the AFLFast search strategy are divided evenly among the

four hosts such that each host completes 10 of the 20 trials for each benchmark. On

all hosts, ASLR is disabled, and the performance governor is enabled.

4.2.2 Tracking CPU Time

Each trial in the experiment runs for a duration of 30 CPU hours. A CPU hour

equals a process of interest scheduled to run on one CPU thread for one hour. The

actual time a process runs may be longer since other processes could preempt it.

While the process is waiting to be scheduled, its CPU time is not increasing. CPU

time is recorded rather than real time for two reasons: (i) the experiment is run on

multicore processors, which means the CPU time will increase proportionally to the

27

number of cores being utilized; and (ii) other processes, such as another user logging

in to the machine or a cronjob running, are less likely to affect the outcome of the

experiment since they will not influence the CPU time of the processes of interest.

On each worker container, CPU time is tracked for the Local Manager, Gener-

ators, Runners, and Evaluators. CPU time for the children of the processes will

also need to be tracked because the Runners start a new process when the PUT is

executed. /proc/[pid]/stat provides a few relevant fields. utime and stime report

the number of clock ticks scheduled for the process. cutime and cstime report the

number of clock ticks the process’s children have been scheduled. These values will

only increase once the child process has died [2]. The ps command provides the

--cumulative option that totals these four values and converts the ticks to minutes

and seconds [1]. Every 10 seconds in real time, the cumulative CPU time from ps is

summed up for each of the four different worker agents to determine the current CPU

time of the experiment. PIDs and their corresponding CPU time are also tracked.

If an agent restarts and its old PID no longer appears in the output of ps, the CPU

time for the dead process is still included in the total.

4.2.3 RAM Disk

When running fuzzing campaigns with 15 Runners and Evaluators, agents would

often timeout and not restart. The log files showed that SQL queries were taking up

to 30 seconds. Since the Global Manager’s database was running on an HDD, its I/O

had become a bottleneck for the entire system. With 128 GB of RAM available, the

solution was to mount /var/lib/mysql, which contains the files for the database,

to a RAM disk. After this change, agents would no longer timeout, and the log files

did not warn about slow SQL queries. The SQL database is dumped and reset after

each fuzzing campaign. Thus, if the machine powered off and RAM were lost, only

data for one fuzzing campaign would be lost.

28

To further improve fuzzing throughput, a 32 GB RAM disk is created in the

worker container. The FLUFFI agent binaries and PUT binaries are copied to and

executed from the RAM disk. FLUFFI’s directory for seed files is also set to use

the RAM disk.

4.2.4 Building FuzzBench

FuzzBench experiments are intended to be run within Docker containers. Due

to the distributed nature of FLUFFI, it is not realistic to containerize the fuzzer.

Therefore, the benchmarks must be built and transferred out of the Docker con-

tainers. The same linker and shared libraries for the benchmark are used to ensure

the environment is as similar as possible to a traditional FuzzBench experiment.

FuzzBench is forked from commit hash 2f853ecf2ae92c1284e929be31144eef924

5482e, dated February 27th, 2022. First, all benchmark Docker containers are built.

Next, a Python script is used to iterate over the containers and copy the PUT to

the host. In addition to the PUT binary, ldd is run to determine the location of

the linker and required shared libraries within the container. These binaries are also

copied to the host. Finally, the initial seed files, if any, are copied to the host. When

starting a fuzzing campaign in FLUFFI, the target command line is set to execute

the linker with the PUT as an argument. The linker’s --library-path option is

used to set the location of the shared libraries for the PUT.

4.2.5 Experimentation Framework

Manually Managing four instances of FLUFFI is tedious. Approximately 1,200

lines of Python scripts were developed to automate various tasks. One of the scripts

compiles and deploys new FLUFFI binaries to support testing of the changes to

FLUFFI. Typically, a user would manually stop and start a fuzzing campaign using

the Global Manager’s web interface. The user would then have to wait for a periodic

29

Ansible playbook that occurs every five minutes to alter the agents on the worker.

This process is automated by sending HTTP requests and starting the Ansible play-

book manually. One of the scripts also collects data during a fuzzing campaign.

Every 10 seconds in real time, the CPU time is determined. Every 10 minutes in

CPU time, various statistics are collected, including the number of seeds executed,

basic blocks covered, paths covered, and unique bugs found. At the end of every

campaign, this data is written to an Apache Parquet file as a Pandas DataFrame.

Additionally, the FLUFFI database for the fuzzing campaign is dumped and saved.

Finally, one of the scripts starts the experiment on all four machines. It auto-

matically starts and stops fuzzing campaigns such that 20 trials are completed for

each of the PUTs. Once this script was started, no user intervention was required.

In 36,000 CPU hours of experimentation, only one operational failure appeared in

the scripts logs. Fixing the issue required simply restarting a Docker container on

the Global Manager, and the experiment picked up where it left off.

30

5

Evaluation

FLUFFI implementations are represented in the form of Power Schedule / Search

Strategy. The primary goal of this thesis is to evaluate the difference in fuzzing out-

comes between the AFLFast replica, FAST / AFLFast, and the original FLUFFI

implementation, Constant / FLUFFI.

5.1 Average Normalized Score

Klees et al. 2018 recommend that the Mann-Whitney U test is used to compare

fuzzer performance [10]. However, the statistical significance test only allows for

two fuzzers to be compared at a time, and this experiment involves six different

fuzzers. Furthermore, the statistical test only applies to a single PUT. A method

for comparing the six implementations of FLUFFI across all 10 PUTs is desired to

evaluate the experiment data effectively.

The report generated by a FuzzBench experiment includes a metric to rank all

fuzzers across multiple benchmarks; average normalized score. An output variable,

such as basic blocks covered, is chosen. For each benchmark and fuzzer, the median

value of the output variable out of the 20 trials is determined. This median value is

31

divided by the maximum output variable value for that benchmark out of all fuzzers.

The resulting value is the normalized score for a benchmark and fuzzer. Finally, for

each fuzzer, the normalized scores are averaged across all benchmarks to determine

the average normalized score [13].

The average normalized score is a helpful metric for comparing all fuzzers across

all benchmarks. Nevertheless, it is not a reliable figure to infer conclusions about the

data. The average normalized score is used to make initial observations which can

be confirmed with the Mann-Whitney U test. All instances of the Mann-Whitney U

test are performed with a 95% confidence interval.

5.2 Throughput

Although the edge coverage instrumentation was added and the extra variables were

tracked in the SQL database for all FLUFFI implementations, it is still possible

that the throughput varies between implementations. It is essential to check if this

is the case because it could explain why a fuzzer has higher performance. Fuzzer

throughput is measured by the number of seeds executed during the fuzzing cam-

paign. The number of executions is compared using the average normalized score in

Figure 5.1.

The variation in throughput is reasonably low. There is only a 1.81% difference

in scores between the fuzzers with the lowest and highest throughput. However, in

6 out of 10 benchmarks, Constant / FLUFFI has a statistically higher throughput

than FAST / AFLFast.

Figure 5.1 shows that the AFLFast search strategy consistently has a lower

throughput than the other two. The only difference in implementation between

search strategies is the SQL query when selecting a seed from the queue. The query

for AFLFast orders by three different columns, while the other two only reference

one column. Furthermore, one of the ordered columns for AFLFast, fpiq, references

32

Figure 5.1: Number of seeds executed, compared by average normalized score.

a table other than the seed queue table. Thus, this query also must join the edge

coverage table. The more complex SQL query is a potential explanation for the

decreased throughput in the AFLFast search strategy implementations.

Another observation from Figure 5.1 is that the FAST power schedule has a lower

throughput for the FLUFFI and round-robin search strategies. In implementations

with the FAST power schedule, fpiq must be passed from the Local Manager to the

Generator. Thus, when the Local Manager queries for the next seed to be chosen

from the queue, it must also select the fpiq column. Doing so requires a join on the

edge coverage table, potentially introducing more overhead. A possible explanation

for why this is not the case for the AFLFast search strategy is that the table must

still be joined for the constant power schedule.

5.3 Bug Coverage

FLUFFI reports the unique number of crashes and the unique number of access

violations in a fuzzing campaign. The sum of these two values is defined as the

number of bugs covered. However, FLUFFI did not discover as many bugs as

33

Benchmark Maximum Bugs Found

arrow parquet-arrow-fuzz 2
aspell aspell fuzzer 0

ffmpeg ffmpeg demuxer fuzzer 1
matio matio fuzzer 33

njs njs process script fuzzer 0
openh264 decoder fuzzer 0

poppler pdf fuzzer 1
proj4 standard fuzzer 0
stb stbi read fuzzer 2

wireshark fuzzshark ip 0

Table 5.1: Maximum unique bug coverage for each benchmark.

expected. Table 5.1 shows that no bugs were ever found for 5 of the 10 benchmarks.

Only one or two were covered in most benchmarks where bugs were found. The

number of unique bugs covered is compared using the average normalized score in

Figure 5.2. The 5 benchmarks with no bugs covered are not included in the score.

Due to the lack of data, the variation in scores is very low. Even when comparing

the highest score, FAST / Round-Robin, and the lowest score, Constant / AFLFast,

Figure 5.2: Number of unique bugs covered, compared by average normalized score.

34

4 out of 5 U tests are inconclusive. Thus, in this experiment, bug coverage is not a

reliable indicator in comparing fuzzers.

5.4 Code Coverage

Since the edge coverage instrumentation is enabled on all FLUFFI implementations,

both basic block coverage and path coverage can be used to compare fuzzers. Basic

block coverage is the number of unique basic blocks covered in the PUT. Path cover-

age is the number of unique hashes, or paths, that the edge coverage instrumentation

returned. Both values only include coverage in the PUT and not shared libraries.

5.4.1 Basic Block Coverage

The number of unique basic blocks covered is compared using the average normalized

score in Figure 5.3. The top two fuzzers, both implementing the AFLFast search

strategy, have very similar scores, while the rest are further behind. It seems that

the AFLFast replica outperforms the original FLUFFI implementation, but this

observation can be confirmed with a U test. The statistical test finds that FAST /

AFLFast covers more basic blocks in 5 benchmarks, 3 benchmarks for Constant /

FLUFFI, and 2 benchmarks are inconclusive.

5.4.2 Path Coverage

The number of unique paths covered is compared using the average normalized score

in Figure 5.4. Like basic block coverage, the top two fuzzers are close in score, with

the rest having lower scores. The AFLFast replica again has the top score, but its

improvement over the original FLUFFI implementation is confirmed with a U test.

The statistical test finds that FAST / AFLFast covers more paths in 7 benchmarks,

2 benchmarks for Constant / FLUFFI, and 1 benchmark is inconclusive.

The AFLFast replica outperforms the original implementation of FLUFFI in

35

Figure 5.3: Number of basic blocks covered, compared by average normalized score.

code coverage for both metrics. However, FAST / AFLFast has better code coverage

in fewer benchmarks if the metric is basic blocks covered. One possible explanation

is that the fuzzers are “trained” to seek specific code coverage. Constant / FLUFFI

prioritizes seeds with a higher rating, and the rating will increase when new basic

block coverage is found. Thus, this fuzzer is “trained” to increase basic block cov-

Figure 5.4: Number of paths covered, compared by average normalized score.

36

erage. On the other hand, FAST / AFLFast selects seeds with rarer path coverage.

Additionally, more seeds are generated when the original seed’s path coverage is

rarer. Less frequented paths are more likely to find new paths. Thus, this fuzzer is

“trained” to increase path coverage.

5.5 Code Coverage Relative to Throughput

The number of basic blocks and paths covered is divided by the number of seeds

executed to determine the code coverage relative to the fuzzer’s throughput. This

approach better evaluates the algorithm’s performance rather than the implementa-

tion since throughput varies slightly between fuzzers.

5.5.1 Basic Block Coverage

Figure 5.5 compares the fuzzers’ basic block coverage relative to their throughput.

The ranking of fuzzers is slightly different from Figure 5.3. Without comparing

relative to throughput, the constant power schedule outperforms the FAST power

schedule for each search strategy except for the AFLFast search strategy. When

dividing by seeds executed, this relationship reverses. The FAST power schedule

now has a higher score for each strategy except for the AFLFast search strategy.

A potential reason is that the FAST power schedule introduces overhead by joining

another table in the SQL query for choosing a seed, which may reduce throughput.

This explanation would not be valid for the AFLFast search strategy because the

table must be joined even with a constant power schedule.

Using a U test, the AFLFast replica can again be compared to the original

FLUFFI implementation. The statistical test finds that FAST / AFLFast has

higher basic block coverage relative to throughput in 8 benchmarks, 1 benchmark

for Constant / FLUFFI, and 1 benchmark is inconclusive. Using the metric relative

to throughput is much more conclusive in showing that AFLFast’s power schedule

37

Figure 5.5: Number of basic blocks covered divided by seeds executed, compared by
average normalized score.

and search strategy are the optimal algorithms for basic block coverage in FLUFFI.

5.5.2 Path Coverage

Figure 5.6 compares the fuzzers’ path coverage relative to their throughput. The

ranking of fuzzers is very similar to Figure 5.4, with only Constant / AFLFast mov-

ing ahead of Constant / FLUFFI. This difference may be explained because the

AFLFast search strategy has more overhead in the seed selection SQL query than

the FLUFFI search strategy.

Using a U test, the AFLFast replica can again be compared to the original

FLUFFI implementation. The statistical test finds that FAST / AFLFast has

higher path coverage relative to throughput in 6 benchmarks, 3 benchmarks for

Constant / FLUFFI, and 1 benchmark is inconclusive. Using the metric relative to

throughput is slightly less conclusive in showing that AFLFast’s power schedule

and search strategy are the optimal algorithms for path coverage in FLUFFI.

38

Figure 5.6: Number of paths covered divided by seeds executed, compared by average
normalized score.

5.6 Code Coverage Over Time

Since measurements are collected every 10 CPU minutes, code coverage can also be

compared at different times within the 30 CPU hour fuzzing campaign. The average

normalized score is computed at 10 CPU minute intervals. Note that the average

normalized score may decrease as CPU time increases because the maximum value

is also recomputed at each time.

5.6.1 Basic Block Coverage

Figure 5.7 shows the median basic block coverage throughout the fuzzing campaign

for the njs njs process script fuzzer benchmark. Coverage increases exponentially at

the beginning of the campaign because a single execution can discover multiple basic

blocks. As the campaign continues, the increase in coverage levels off as it becomes

more challenging to cover new basic blocks in the PUT.

Figure 5.8 compares the implementations’ basic block coverage throughout the

fuzzing campaign. There is a more apparent separation between the FLUFFI search

39

Figure 5.7: Median number of basic blocks covered over time for the njs njs process
script fuzzer benchmark with 95% confidence interval.

strategy and the other two search strategies. Nevertheless, the FLUFFI search

strategy implementations nearly close the gap as CPU time increases, especially

with the round-robin search strategy implementations. If the fuzzing campaign had

a longer duration, it is possible that the FLUFFI search strategy would match or

even overtake the other search strategies in basic block coverage.

5.6.2 Path Coverage

Figure 5.9 shows the median path coverage throughout the fuzzing campaign for

the njs njs process script fuzzer benchmark. Coverage does not increase as quickly

at the beginning of the campaign as in Figure 5.7 because each execution can only

discover one new path. New paths continue to be found at the same rate at the end

of the fuzzing campaign.

Figure 5.10 compares the implementations’ path coverage throughout the fuzzing

campaign. One observation is that the round-robin search strategy’s coverage is

40

Figure 5.8: Number of basic blocks covered, compared by average normalized score
over time with samples at 10 CPU minute intervals.

Figure 5.9: Median number of paths covered over time for the njs njs process script
fuzzer benchmark with 95% confidence interval.

41

Figure 5.10: Number of paths covered, compared by average normalized score over
time with samples at 10 CPU minute intervals.

much lower in the first couple of CPU hours than the other two search strategies.

At the beginning of a campaign, numerous new seeds are added to the queue and

are considered new. The FLUFFI and AFLFast search strategies are greedy, so

they will prioritize seeds that are likely to find new coverage. On the other hand,

the round-robin search strategy must fuzz all the older seeds in the queue before

encountering a seed mutated from a promising previous seed, which is likely to in-

troduce new coverage. This inefficiency potentially explains why round-robin must

spend the beginning of a campaign catching up with the greedy search strategies.

Another observation is that FAST / AFLFast may not have the highest path

coverage for the entirety of the 30 CPU hour fuzzing campaign. For example, at

hour 6, it seems that FAST / FLUFFI has higher coverage. While a U test does not

confirm this observation, statistical tests comparing FAST / Round-Robin to FAST

/ AFLFast at different times have interesting results. At the end of the fuzzing

42

campaign, the U test finds that FAST / Round-Robin has higher path coverage in 3

benchmarks, 4 benchmarks for FAST / AFLFast, and 3 benchmarks are inconclusive.

Thus, FAST / AFLFast is slightly more likely to discover more paths than its round-

robin counterpart in a 30 CPU hour campaign. However, if the fuzzing campaign

were 15 CPU hours, the result would be different. At this time, the U test finds that

FAST / Round-Robin has higher path coverage in 7 benchmarks and 3 benchmarks

for FAST / AFLFast. Therefore, FAST / Round-Robin would be the optimal choice

for path coverage in a shorter fuzzing campaign.

43

6

Discussion

6.1 Related Work

Heuristics Based Mutation. Bendt shows that the FLUFFI design does not maintain

some functionality for mutators since mutators are only given access to one seed to

mutate rather than the entire corpus. For example, the splice operators in the AFL

and Honggfuzz mutators combine sections of data from multiple seeds. The author

proposes theOedipusmutator, which merges entire seed files instead of just the head

and tail. When enabling the new mutator alongside the existing FLUFFI mutators,

FLUFFI can find a crash in a web server more quickly than without Oedipus.

Bendt also proposes the Carrot mutator, which attempts to identify the length

and offset fields in the input and correlate them to a string in the seed. Carrot

can crash an example program with length and offset fields within seconds, whereas

none of the existing FLUFFI mutators were able to find the crash within 24 hours

[3].

Mutation Scheduling. Lyu et al. claim that the efficiency of mutation operators

varies with the PUT and the relative time position in the fuzzing campaign. The

44

authors introduce MOpt, an optimized mutation scheduler for fuzzers. MOpt uses

a Particle Swarm Optimization algorithm to determine the optimal distribution of

mutation operators dynamically. The authors’ evaluation concludes that MOpt-

AFL outperforms AFL, AFLFast, and VUzzer in code and bug coverage [11].

Reducing Path Collisions. Gan et al. argue that AFL’s method of edge coverage

results in path collisions, which prevents a fuzzer from achieving the optimal strat-

egy. They find that, in some PUTs, 75% of edges collide with others using AFL’s

edge coverage. The authors propose CollAFL, which employs program analysis

at instrumentation compile-time such that the probability of a collision between in-

dexes in the shared memory array is significantly reduced. Their solution reduces

the collision rate to nearly zero and can obtain higher code and bug coverage than

AFL [7].

Collaborative Fuzzing. The approach of combining multiple fuzzers to improve out-

comes is called collaborative fuzzing. Previous work, such as EnFuzz, selected com-

binations of fuzzers manually. Güler et al. propose Cupid, which automatically

identifies sets of fuzzers that complement each other, independent of the PUT. Data

for each fuzzer is collected against a suite of PUTs. Fuzzers are combined such that

total coverage is maximized by combining fuzzers that solve different branches. The

authors find that Cupid outperforms EnFuzz in total coverage and coverage latency

[9].

Input Reduction. Another application of fuzzing is testing compilers. Inputs are

generated to cover edge cases in an attempt to disclose faults in the compiler. Tra-

ditionally, inputs are generated during fuzzing and are later reduced such that they

still exercise the same coverage. Vikram et al. propose bonsai fuzzing, which instead

45

starts with smaller inputs and gradually increases their size until desired coverage is

reached. The authors find that this technique generates 16-45% smaller inputs that

still exercise the same code coverage [16].

6.2 Limitations

Mutator. FLUFFI allows for multiple different mutators to be used in a fuzzing

campaign. The options are AFL, Radamsa, Honggfuzz, and two internally de-

veloped mutators. This experiment only uses the AFL mutator for fuzzing cam-

paigns. Selecting one or more other mutators may result in different outcomes for

this experiment.

Random Initial Seed. Klees et al. 2018 recommend running experiments with three

different types of initial seeds; valid input, an empty file, and a random file [10]. For

some benchmarks, FuzzBench provides initial seeds that are valid files. For the

others, an empty file is used as the initial seed. This experiment does not include

fuzzing campaigns with a random file as the initial seed.

Bug Coverage. Due to the limited number of bugs found, bug coverage is not a

reliable metric to compare fuzzers for this experiment. This issue may be resolved

by selecting different benchmarks or increasing the length of the fuzzing campaign.

Central Bottleneck. Despite FLUFFI being considered distributed, the Global Man-

ager acts as a central knowledge base for the system. For example, when the SQL

database’s I/O was limited, it caused the database to become overloaded, and the

entire system could not operate effectively.

Path Collisions. The implementation of edge coverage in FLUFFI allows for colli-

sions between multiple absolute paths. Although xxHash is designed to be reasonably

46

resistant to hash collisions, collisions are more likely to occur than for a cryptographic

hashing algorithm. Path collisions could also occur because it is possible that two

different edges could compute to the same index in the shared memory array. While

fuzzers typically accept this trade-off for performance, the experiment could store

the edge counters reported by the instrumentation rather than a hash.

Path Explosion. The implementation of edge coverage in FLUFFI is vulnerable to

path explosion due to loops. Seed input may influence the number of iterations for

a loop. The difference between 200 and 201 loop iterations is likely not interesting

for finding vulnerabilities. The mutator could keep increasing the number of loop

iterations, which will be considered a new path and be added to the queue. To solve

this issue, AFL implements loop “bucketing.” When AFL detects a loop, it will

only keep seeds where the loop iteration count is a power of two (i.e., 1, 2, 4, 8, . . .)

[15].

Consistent Coverage Metric. The original FLUFFI implementation uses basic block

coverage as a metric for the search strategy, and seeds are added to the queue if they

cover new basic blocks. On the other hand, the AFLFast search strategy uses the

number of paths as its coverage metric, but the logic for choosing seeds to add to the

queue is not changed. Therefore, if a PUT exercises a new path but does not cover

any new basic blocks, the seed will not be added to the queue. This inconsistency in

coverage metrics is likely detrimental to fuzzing outcomes for the AFLFast power

schedule and search strategy in FLUFFI.

6.3 Future Investigations

Edge Coverage Improvements. The implementation of AFLFast’s power schedule

and search strategy can further be improved. First, AFL’s loop “bucketing” can be

47

added to FLUFFI to prevent path explosion due to loops. Second, the Evaluator

can be changed such that seeds which cover new basic blocks or edges are added to

the queue.

Multiple Power Schedules and Search Strategies. In the experiment, different bench-

marks favor different combinations of power schedules and search strategies.

FLUFFI fuzzing campaigns can be configured to set a percentage for each power

schedule. When multiple Generators are deployed, they will each use one power

schedule to match the distribution of power schedules. The same can be done for

search strategies. When the Local Manager selects a seed from the queue, it can

randomly select a search strategy from the distribution set by the user. It is possible

that combining multiple power schedules and search strategies will yield better

fuzzing outcomes than simply choosing one of each.

Selecting a Power Schedule or Search Strategy Based on the Campaign Length. We

find that the round-robin search strategy produced higher code coverage than the

AFLFast search strategy halfway through the fuzzing campaign, while the opposite

was accurate at the end of the campaign. Further experimentation can be done to

determine, for example, if using the round-robin search strategy for the first half

and the AFLFast search strategy for the second half of the experiment results in

higher coverage than only using the AFLFast search strategy for the entirety of the

campaign. If a similar outcome is actual, the power schedule or search strategy can

be dynamically changed in FLUFFI depending on the estimated time remaining in

the fuzzing campaign.

Dynamically Changing the Mutator Distribution. The optimal mutator will depend on

the PUT. For example, some mutators perform better for binary input, while others

48

generate better text input. When users start a fuzzing campaign in FLUFFI, they

can select a static distribution of five different mutators to deploy to the Genera-

tors. The FLUFFI database stores which mutator produced each seed. Therefore,

FLUFFI can track which mutators are generating the seeds that find new code cov-

erage or bugs. The distribution of mutators can be changed during the campaign to

favor mutators that produce the best fuzzing outcomes.

49

7

Concluding Remarks

As organizations continue to adopt fuzzing as a technique to discover software vulner-

abilities, they will look to distributed fuzzing to effectively utilize all of their available

hardware. Current state-of-the-art fuzzers, such as AFL++, include a mode for dis-

tributed fuzzing, but it is not easy to configure, and it inefficiently syncs fuzzer states.

FLUFFI is a distributed fuzzer developed by Siemens that solves these issues, but

it is lacking in recent fuzzing advancements. One such improvement is AFLFast,

which employs a power schedule and a different search strategy in AFL. We im-

plement AFLFast’s power schedule and search strategy, as well as a round-robin

search strategy, in FLUFFI. Next, we evaluate these changes in a comprehensive

experiment with 10 PUTs containing known bugs from Google’s FuzzBench. Since

the version of FLUFFI with AFLFast’s power schedule and search strategy out-

performs its original implementation in most PUTs in code coverage, we find that

AFLFast’s improvements over AFL can be transferred to FLUFFI. A secondary

finding is that combining the FAST power schedule and round-robin in FLUFFI

provides the highest path coverage for shorter fuzzing campaigns.

First, we recommend that Siemens use the AFLFast power schedule and search

50

strategies as defaults for future fuzzing campaigns in FLUFFI. Second, we advise

that more testing should be done to determine the optimal power schedule and search

strategy depending on the relative time position in a FLUFFI fuzzing campaign.

Finally, we recommend that AFL’s loop “bucketing” and an Evaluator based on

edge coverage be implemented in FLUFFI to potentially further improve the new

power schedule and search strategy.

7.1 Open-Source Contributions

The relevant work for this thesis is open-sourced. It can be found in the following

repositories:

• https://github.com/sears-s/fluffi: fork of FLUFFI with branches for

the FAST power schedule and two new search strategies

• https://github.com/sears-s/fuzzbench: fork of FuzzBench for building

all benchmarks and extracting the relevant files from the containers

• https://github.com/sears-s/fluffi-tools: contains scripts to manage

FLUFFI, run the experiment, and analyze data, as well as the data collected

during the experiment

Three pull requests are planned for https://github.com/siemens/fluffi.

These are as follows:

• Edge coverage instrumentation and tracking

• Implementation of power schedule with option to choose power schedule in UI

• Implementation of two new search strategies with the option to choose search

strategy in UI

51

https://github.com/sears-s/fluffi
https://github.com/sears-s/fuzzbench
https://github.com/sears-s/fluffi-tools
https://github.com/siemens/fluffi

Bibliography

[1] ps(1) — Linux manual page, Jun. 2020. [Online]. Available: https:
//man7.org/linux/man-pages/man1/ps.1.html. [Accessed 2022-02-20].

[2] proc(5) — Linux manual page, Aug. 2021. [Online]. Available: https:
//man7.org/linux/man-pages/man5/proc.5.html. [Accessed 2022-02-20].

[3] R. Bendt, “Evaluation of heuristic based input generation techniques for evo-
lutionary binary fuzzing,” Master’s thesis, Hochschule München University of
Applied Sciences, Munich, Germany, Jan. 2021.

[4] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox
Fuzzing as Markov Chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, Oct. 2016,
pp. 1032–1043. [Online]. Available: https://doi.org/10.1145/2976749.2978428.
[Accessed 2021-10-10].

[5] Y. Collet, “xxHash: Extremely fast non-cryptographic hash algorithm,”
2022. [Online]. Available: https://github.com/Cyan4973/xxHash. [Accessed
2022-02-17].

[6] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: combining
incremental steps of fuzzing research,” in Proceedings of the 14th USENIX
Conference on Offensive Technologies, no. 10. USA: USENIX Association,
Aug. 2020, p. 10. [Online]. Available: https://dl.acm.org/doi/10.5555/3488877.
3488887. [Accessed 2021-10-15].

[7] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“CollAFL: Path Sensitive Fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP), May 2018, pp. 679–696, iSSN: 2375-1207. [Online]. Available:
https://ieeexplore.ieee.org/document/8418631. [Accessed 2022-04-18].

52

https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://doi.org/10.1145/2976749.2978428
https://github.com/Cyan4973/xxHash
https://dl.acm.org/doi/10.5555/3488877.3488887
https://dl.acm.org/doi/10.5555/3488877.3488887
https://ieeexplore.ieee.org/document/8418631

[8] Google Inc., “WinAFL: A fork of AFL for fuzzing Windows binaries,” 2022.
[Online]. Available: https://github.com/googleprojectzero/winafl. [Accessed
2022-01-13].

[9] E. Güler, P. Görz, E. Geretto, A. Jemmett, S. Österlund, H. Bos, C. Giuffrida,
and T. Holz, “Cupid : Automatic Fuzzer Selection for Collaborative Fuzzing,”
in Annual Computer Security Applications Conference, ser. ACSAC ’20.
New York, NY, USA: Association for Computing Machinery, Dec. 2020,
pp. 360–372. [Online]. Available: https://doi.org/10.1145/3427228.3427266.
[Accessed 2021-10-08].

[10] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” arXiv:1808.09700 [cs], Oct. 2018, arXiv: 1808.09700. [Online].
Available: http://arxiv.org/abs/1808.09700. [Accessed 2021-10-17].

[11] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“MOPT: Optimized mutation scheduling for fuzzers,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association,
Aug. 2019, pp. 1949–1966. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/lyu. [Accessed 2021-10-15].

[12] V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The Art, Science, and Engineering of Fuzzing: A Survey,”
arXiv:1812.00140 [cs], Apr. 2019, arXiv: 1812.00140 version: 4. [Online].
Available: http://arxiv.org/abs/1812.00140. [Accessed 2021-09-03].

[13] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya, “FuzzBench:
an open fuzzer benchmarking platform and service,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2021.
New York, NY, USA: Association for Computing Machinery, Aug. 2021,
pp. 1393–1403. [Online]. Available: https://doi.org/10.1145/3468264.3473932.
[Accessed 2021-11-15].

[14] Siemens AG, “FLUFFI (Fully Localized Utility For Fuzzing Instantaneously),”
2021. [Online]. Available: https://github.com/siemens/fluffi. [Accessed 2021-
11-08].

[15] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Krügel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proceedings of the
2016 Symposium on Network and Distributed System Security. San

53

https://github.com/googleprojectzero/winafl
https://doi.org/10.1145/3427228.3427266
http://arxiv.org/abs/1808.09700
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
http://arxiv.org/abs/1812.00140
https://doi.org/10.1145/3468264.3473932
https://github.com/siemens/fluffi

Diego, CA, USA: Internet Society, Feb. 2016. [Online]. Available: https:
//doi.org/10.14722/NDSS.2016.23368. [Accessed 2022-04-16].

[16] V. Vikram, R. Padhye, and K. Sen, “Growing a Test Corpus with Bonsai
Fuzzing,” arXiv:2103.04388 [cs], Mar. 2021, arXiv: 2103.04388. [Online].
Available: http://arxiv.org/abs/2103.04388. [Accessed 2022-04-22].

54

https://doi.org/10.14722/NDSS.2016.23368
https://doi.org/10.14722/NDSS.2016.23368
http://arxiv.org/abs/2103.04388

Appendix A

Benchmark Basic Block Coverage Graphs

Figure A.1: Median number of basic blocks covered over time for the arrow parquet-
arrow-fuzz benchmark with 95% confidence interval.

55

Figure A.2: Median number of basic blocks covered over time for the aspell aspell
fuzzer benchmark with 95% confidence interval.

Figure A.3: Median number of basic blocks covered over time for the ffmpeg ffmpeg
demuxer fuzzer benchmark with 95% confidence interval.

56

Figure A.4: Median number of basic blocks covered over time for the matio matio
fuzzer benchmark with 95% confidence interval.

Figure A.5: Median number of basic blocks covered over time for the openh264
decoder fuzzer benchmark with 95% confidence interval.

57

Figure A.6: Median number of basic blocks covered over time for the poppler pdf
fuzzer benchmark with 95% confidence interval.

Figure A.7: Median number of basic blocks covered over time for the proj4 standard
fuzzer benchmark with 95% confidence interval.

58

Figure A.8: Median number of basic blocks covered over time for the stb stbi read
fuzzer benchmark with 95% confidence interval.

Figure A.9: Median number of basic blocks covered over time for the wireshark
fuzzshark ip benchmark with 95% confidence interval.

59

Appendix B

Benchmark Path Coverage Graphs

Figure B.1: Median number of paths covered over time for the arrow parquet-arrow-
fuzz benchmark with 95% confidence interval.

60

Figure B.2: Median number of paths covered over time for the aspell aspell fuzzer
benchmark with 95% confidence interval.

Figure B.3: Median number of paths covered over time for the ffmpeg ffmpeg
demuxer fuzzer benchmark with 95% confidence interval.

61

Figure B.4: Median number of paths covered over time for the matio matio fuzzer
benchmark with 95% confidence interval.

Figure B.5: Median number of paths covered over time for the openh264 decoder
fuzzer benchmark with 95% confidence interval.

62

Figure B.6: Median number of paths covered over time for the poppler pdf fuzzer
benchmark with 95% confidence interval.

Figure B.7: Median number of paths covered over time for the proj4 standard fuzzer
benchmark with 95% confidence interval.

63

Figure B.8: Median number of paths covered over time for the stb stbi read fuzzer
benchmark with 95% confidence interval.

Figure B.9: Median number of paths covered over time for the wireshark fuzzshark
ip benchmark with 95% confidence interval.

64

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 AFL
	2.3 AFLFast
	2.3.1 Markov Chain Model
	2.3.2 Power Schedule
	2.3.3 Search Strategy

	2.4 FLUFFI
	2.4.1 Design
	2.4.2 Mutators
	2.4.3 Dynamic Binary Instrumentation
	2.4.4 Characteristics

	2.5 Fuzzing Experimentation
	2.5.1 Klees et al. 2018
	2.5.2 FuzzBench

	3 Design
	3.1 FLUFFI
	3.1.1 Code Coverage and Instrumentation
	3.1.2 Tracking Additional Data
	3.1.3 Message Changes
	3.1.4 Other Considerations

	3.2 Experiment

	4 Implementation
	4.1 FLUFFI
	4.2 Experiment
	4.2.1 Hardware and Software
	4.2.2 Tracking CPU Time
	4.2.3 RAM Disk
	4.2.4 Building FuzzBench
	4.2.5 Experimentation Framework

	5 Evaluation
	5.1 Average Normalized Score
	5.2 Throughput
	5.3 Bug Coverage
	5.4 Code Coverage
	5.4.1 Basic Block Coverage
	5.4.2 Path Coverage

	5.5 Code Coverage Relative to Throughput
	5.5.1 Basic Block Coverage
	5.5.2 Path Coverage

	5.6 Code Coverage Over Time
	5.6.1 Basic Block Coverage
	5.6.2 Path Coverage

	6 Discussion
	6.1 Related Work
	6.2 Limitations
	6.3 Future Investigations

	7 Concluding Remarks
	7.1 Open-Source Contributions

	Bibliography
	Appendix A Benchmark Basic Block Coverage Graphs
	Appendix B Benchmark Path Coverage Graphs

