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Abstract

Mobile robots are increasingly used for autonomous exploration and inspection be-
cause of the advancements in the technology of robot autonomy. In this thesis, we fo-
cus on the state estimation and mapping problem in the context of robot autonomous
inspection. Although there exist well-established foundations, applying the technol-
ogy in the real world remains challenging. Therefore, we are particularly interested
in the robustness of algorithms when being applied in the real world. We believe
addressing the challenges that arise from inspection-specific tasks will have more
general impacts on other applications. Specifically, our work contains the following
4 contributions:

Firstly, we present a LiDAR-based pose tracking algorithm to achieve real-time ro-
bust state estimation. The proposed method is formulated using a probabilistic fil-
tering framework named Error State Kalman Filter (ESKF) and can be used on low-
end computing devices to achieve a robust estimation of agile motions. Despite the
successful deployment in various environments, the method finds difficulties in sce-
narios with limited geometric features, such as long straight tunnels.

Secondly, we think about the failure cases of general LiDAR-based state estimation
algorithms in situations where the geometric features are limited. A localizability
model is presented and can be used to predict the confidence of localization based
on the analysis of sensor readings. We then demonstrate successful localization in a
real tunnel by fusing sensors with complimentary localizability.

Thirdly, we turn our attention to dense reconstruction for inspection. Inspired by the
idea of complementary sensing, we combine LiDAR and camera data in a joint op-
timization framework to build globally consistent and locally dense 3D maps. Addi-
tionally, the proposed joint optimization framework is used to solve large-scale real-
world problems by enhancing Structure from Motion (SfM) algorithms with LiDAR
data providing structural constraints. Using the proposed methods, we demonstrate
successful dense reconstruction of a real bridge tunnel.

Lastly, having noticed the structured nature of reconstructed dense models, we ex-
plore the possibility of using geometric primitives to build high-level compact maps.
More specifically, we present a quadrics-based representation to unify multiple types
of primitives in man-made environments, which leads to a concise and geometrically
meaningful SLAM formulation. We show that using geometric primitives is not only
a compact choice, the encoded high-level information also benefits the motion esti-
mation by providing stronger constraints.
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Chapter 1

Introduction

1.1 Motivation

Autonomous mobile robots are starting to be used in many real-world tasks to replace humans
for enhanced safety and efficiency. Among many applications, this work is motivated by using
robots to inspect civil engineering facilities such as bridges and tunnels. As shown in Fig. 1.1,
the conventional inspection can be a labor-intensive and time-consuming task since it often needs
human workers to reach challenging places and extensively investigate the structure for potential
defects. Therefore, our goal is to develop robot-based inspection technology to reduce the burden
of human inspectors from the tedious process of data collection and analysis.

Similar to many other applications of autonomous robots, autonomous inspection requires the
integration of multiple components (see Fig. 1.1). Firstly, a physical robot system needs to be
developed to gather information from the environment. Considering the mobility and sensing
capacity, we make use of small Unmanned Aerial Vehicles (UAVs) carrying various onboard
sensors (e.g. LiDARs, cameras) as our major data collection system. Secondly, the autonomy
stack that, in its simplest form, includes state estimation, planning and control, needs to be
integrated with the hardware system to collect data autonomously. Finally, the collected data
are processed to extract desired information according to the inspection targets such as building
dense 3D models or detecting defects.

Our work focuses on the state estimation and mapping problem in the context of robot-based
autonomous inspection. This problem, sometimes referred to as Simultaneous Localization and
Mapping (SLAM), has been a popular research area in the past several decades. With the tremen-
dous amount of effort been taken, the theory and framework of modern SLAM systems have
been well established. However, as we apply the technologies to real-world inspection, many
new challenges arise, bringing up several interesting but overlooked research questions that are
potentially generalizable to more scenarios. Therefore, we are particularly motivated to study
those questions and wish to gain insights that apply to general autonomous robots.
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Figure 1.1: Overview of the differences between human-based and robot-based inspection1.

1.2 Challenges

As mentioned above, although the SLAM problem has well-established foundations, it remains
challenging to achieve reliable performance in the real world. In this section, we discuss the
challenges encountered deploying state-of-the-art SLAM methods in inspection tasks.

Challenge 1: Geometric degeneracy in structured environments.
Inspection tasks usually deal with structured environments that are considered simpler than un-
structured natural scenarios. However, geometric degeneracy often exists in structured environ-
ments and could easily cause state-of-the-art localization algorithms to fail. Intuitively, geometric
degeneracy happens when there is not enough information to constrain the estimation of loca-
tion. As shown in Fig. 1.2a, a typical degenerated scenario for LiDARs is a long straight tunnel.
When a robot navigates through, the measurements are identical everywhere along the tunnel,
making the location under-determined. Therefore, our first challenge is to deal with environmen-
tal degeneracy such that the robot state can be estimated robustly.

Challenge 2: Large-scale meets high-density.
Inspection tasks also usually deal with large-scale facilities. For example, in bridge inspection,
even a small-sized bridge could be over 50 meters. Therefore, long-range LiDAR is needed for
large-scale mapping. The real challenge, however, is to build highly detailed dense models for
structures at this scale. Highly detailed models may need a resolution of millimeters such that

1Specialized equipment and manual inspection photo courtesy: senseFly and MnDOT. Manual measurement
photo courtesy: Shimizu Corporation.
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(a) Degenerated tunnel (b) Scale and density (c) Structured environment

Figure 1.2: Overview of SLAM challenges for real world inspection.

tiny defects (e.g., cracks on the concrete wall shown in Fig. 1.2b) can be captured. Unfortunately,
available robot mapping technologies such as Structure from Motion (SfM) or LiDAR SLAM
still have difficulty in building both globally consistent and locally dense 3D maps.

Challenge 3: Redundancy of structured maps
Redundancy happens when the parameterization is overcomplicated for the underlying geometry.
A typical way to simplify the map is to introduce parameterized shape priors (see the geometric
primitives in Fig. 1.2c). However, choosing the suitable shape prior can be difficult: Firstly,
multiple types of primitives are needed to represent different shapes, causing overhead for for-
mulation and implementation. Secondly, primitives can be symmetric and degenerated, causing
ambiguities. For example, the observation of a circular cylinder is degenerated in translation and
rotation around its central axis, which should be characterized by the resulting representations.
For these reasons, we identify shape representation for high-level maps as the third challenge.

1.3 Insights and Thesis Statement

To address the aforementioned challenges, we offer three key insights, the combination of which
eventually leads to the central hypothesis of this thesis.

Insight 1: Ensuring robustness to degeneracy by modeling sensor localizability

Our first insight is that degeneracy is an attribute of the environment and, therefore, can be pre-
dicted by analyzing the geometry. Our thought roots in the intuition that the localization failure in
long-straight tunnels is due to the lack of measurements constraining the robot’s position. Then
the question of predicting degeneracy becomes: how do sensor measurements contribute to the
determination of the unknowns, and which part of unknowns is better constrained than others?
To answer these questions, we consider the observation process as a function that outputs mea-
surements based on robot location. Then the degeneracy of the function can be recognized by
the diminishing gradient, indicating a weak correlation between inputs and outputs.

Insight 2: Leveraging the sensing capacity of LiDAR and cameras for dense mapping

Our second insight is that dense mapping should leverage the sensing capacities of multi-sensors
for global consistency and local density. To guarantee the local density of built maps, we make
use of Structure from Motion followed by densification techniques such that the reconstructed
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3D model is textured and as dense as the image pixels. On the other hand, the LiDAR data are
registered to provide global constraints and ensure overall consistency. Since both subproblems
can be formulated as an optimization problem to solve for the optimal unknowns, the costs can be
combined to consider all types of observations. Finally, by jointly minimizing the cost, we should
expect to obtain improved map consistency and density than SfM or laser mapping algorithms.

Insight 3: Map abstraction using unified geometric primitives

Our third insight partially results from the observation that geometric primitives used for SLAM
share a common algebraic representation called quadrics, which opens the possibility of a unified
parameterization for many types of primitives. However, the algebraic nature makes it vulnerable
to sensor noises and difficult to interpret. A more robust strategy is to formulate the geometric
observation model of such primitives. Therefore, we will investigate the algebraic structure
of quadrics to recover the implicitly encoded geometries, which is expected to render a robust
formulation of the symmetric and degenerated quadrics.

With the discussion of the above insights to address the aforementioned challenges, we can now
summarize the central statement of this thesis as:

Degeneracy-prediction, fusion and abstraction of sensing data are three key ingredients to
enable robust, accurate and informative robot-based inspection.

By predicting the degeneracy of sensing data, one can identify areas in the environment that
are not safe for the robot to navigate through. By fusing measurements from multiple sensors,
one can leverage the capabilities of each individual sensor to obtain more accurate estimations.
Finally, by extracting high-level shape information from raw sensing data, we expect to obtain
more compact and informative maps.

1.4 Contributions

Led by the key insights discussed above, the main contribution of this thesis is a series of works
that use those ideas to solve the state estimation and mapping problem for inspection. In more
detail, we offer the following contributions (structured as in Fig. 1.3):

• In Chapter 2, we revisit the fundamental concepts related to this thesis. We will also give a
brief review of related works and compare the difference of our contribution to the existing
literature.

• In Chapter 3, we first present a real-time pose tracking algorithm that fuses LiDAR and
IMU measurements. The formulation of Error State Kalman Filter (ESKF) is provided in
detail and it is shown to be able to estimate agile robot motion reliably through extensive
tests within various environments. Then the proposed pose tracking algorithm is extended
to a full-SLAM pipeline by introducing a mapping module to update the prior map. We
show that the extended pipeline can build consistent maps using rotating or stationary
2D/3D lasers. The developed localization and SLAM modules serve as our baseline for
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Figure 1.3: Overview of the thesis structure.

state estimation in inspection tasks.
• In Chapter 4, we formally introduce the idea of localizability in a more general estima-

tion problem setting. We start from a basic LiDAR measurement model to formulate the
constraints on robot poses and then apply the idea of perturbation to evaluate the strength
of constraints along each dimension of the robot pose. In addition to the LiDAR model,
the localizability model is easily generalizable to the Ultra-Wideband (UWB) radio, which
can be treated as a complementary sensing module to the LiDAR. In the experiments, we
reuse the developed ESKF framework to fuse LiDAR, UWB and IMU measurements and
show more robust localization performance in a degenerated tunnel.

• In Chapter 5, we shift our focus from state estimation to mapping and meanwhile from
online sequential computation to offline batch processing. Our ultimate goal for mapping
is to build dense, textured, and accurate 3D maps of large-scale structures. To achieve this
goal, diverse sensing modalities are necessary and we propose to fuse LiDAR and camera
data in a joint optimization framework. Additionally, in the dense reconstruction phase,
LiDAR data are used to refine the depth estimation by providing more information around
low-texture areas. In the experiments, we present the reconstruction results of different
structures and showed that our algorithm can achieve a similar level of precision to a high-
end survey scanner.

• In Chapter 6, we consider making the joint optimization pipeline more robust in chal-
lenging conditions such as visual and structural ambiguities, large-scale, etc. We propose
the LiDAR-enhanced SfM pipeline which introduces LiDAR data to provide additional
structural constraints. It is shown that the proposed method can perform robust dense
reconstruction of large-scale environments such as buildings and tunnels. Additionally,
we report the comparison results of our pipeline to existing reconstruction methods in the
literature.

5



• In Chapter 7, we rethink the mapping problem and try to make SLAM maps more light-
weight. The maps built by methods discussed in Chapter 5 and 6 are dense and accurate but
are often subject to redundancy, especially in man-made environments. Using geometric
primitives is an effective way to simplify the map while still accurately capture the overall
layout. In this work, we propose a novel unified representation based on quadrics such
that the formulation of shape priors in SLAM becomes more concise. Particularly, we
discuss the geometric properties such as degeneracy and symmetry of quadrics and the
effects on the formulation of graph factors. In experiments, we show that the proposed
representation allows for a robust and efficient back-end formulation that only uses a few
geometric primitives.

With the contributions presented above, we have covered the major requests for state estimation
and mapping in the context of autonomous inspection. However, it is worth mentioning again that
our hope is to make the approaches and algorithms developed in this thesis not only applicable
to specific tasks of inspection, but also useful for general applications of autonomous robots.

1.5 Publications

The following is a list of publications that this thesis is based on:

• Weikun Zhen, et al. “Robust localization and localizability estimation with a rotat-
ing laser scanner.” International Conference on Robotics and Automation (ICRA). IEEE,
2017.

• Weikun Zhen, et al. “A unified 3D mapping framework using a 3D or 2D lidar.” Inter-
national Symposium on Experimental Robotics. Springer, Cham, 2018.

• Weikun Zhen, et al. “Estimating the localizability in tunnel-like environments using
LiDAR and UWB.” International Conference on Robotics and Automation (ICRA). IEEE,
2019.

• Weikun Zhen, et al. “A joint optimization approach of LiDAR-camera fusion for ac-
curate dense 3D reconstructions.” Robotics and Automation Letters. IEEE, 2019.

• Weikun Zhen, et al. “LiDAR-enhanced structure-from-motion.” International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2020.

• Weikun Zhen, et al. “Unified representation of geometric primitives for graph-sLAM
optimization using decomposed quadrics.” submitted to International Conference on
Robotics and Automation (ICRA). IEEE, 2022.

Videos and open-source code associated with each chapter are listed in Table 1.1.
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Table 1.1: Video and code of each chapter

Chapter 3: www.youtube.com/watch?v=eA6dt_cGI5M
www.youtube.com/watch?v=bs-KXuWLFec
www.github.com/castacks/lidar_eskf

Chapter 4: www.youtube.com/watch?v=ZK8wA3pyPyE

Chapter 5: www.youtube.com/watch?v=dJaaF8POB64

Chapter 6: www.youtube.com/watch?v=GUcKZ2PLPRQ

Chapter 7: www.youtube.com/watch?v=dTuwAkVQGnQ
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Chapter 2

Background

In this chapter, we introduce the background of inspection as well as the preliminary techniques
that will establish the infrastructure for the remaining chapters. Specifically, we will first revisit
the robot-based inspection problem in Section 2.1, depicting the typical scenario of how the robot
would be used for inspection. Then we discuss the mathematical formulations of several SLAM-
related problems in Section 2.2. Finally, in Section 2.3, we briefly review the literature related to
our work.

2.1 Robot-based Inspection

What do the inspectors care about? The goal of inspection in the field of civil engineering is to
access the structural health condition of the facilities based on the presence of defects. Depending
on the materials, several different types of defects are of interest:

• Rusts: Rusts are critical features for metal constructions. For example, rusted bridges can
be fragile under shape changes such as bending and twist.

• Cracks: The length and width of cracks are the metrics used to justify the condition of
concrete since it could cause severe degradation of strength.

• Spalling: Similar to cracks, spalling concrete could also cause the loss of material strength
since it is regarded as a sign of internal corrosion.

Information about those defects, including location, size, etc., needs to be documented in accu-
rate details. And through periodic inspection, data from multiple sessions are accumulated to
analyze the changes of defects, helping with the evaluation of the health condition.

How are robots used for inspection? The deployment of autonomous robots for inspection can
be broken down into three phases as shown in Fig 2.1:

• Data Collection: At the beginning of data collection, the region-of-interest (ROI) is set
by humans as the high-level target. Then the robot navigates autonomously to scan the
given structure using onboard sensors (e.g. cameras) until the ROI is fully covered. The
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Figure 2.1: Overview of robot-based inspection.

autonomy requires real-time self-localization, a safe path that guarantees coverage, and a
controller such that the robot follows the planned trajectory.

• High-fidelity 3D Modeling: Based on the collected data, reconstruction algorithms are used
to build an accurate digital 3D model, which can be directly used for visual inspection and
downstream analysis-related operations.

• Model Analysis: Using the digital 3D model as a reference, operations such as the mea-
surement of defects and the analysis of structural strength can be carried out conveniently.

In this thesis, we mainly focus on the first two phases where phase 1 involves the technology of
autonomous navigation while phase 2 focuses on 3D dense reconstruction.

2.2 State Estimation and Mapping

2.2.1 Notations

Before diving into the technical details, we first clarify the notation conventions. For this thesis,
bold lower-case letters (e.g. x) are used to represent vectors and bold upper-case letters (e.g. R)
are for matrices. Scalars are denoted as light font letters such as x and N . Besides, we use a set
to define a collection of a certain type of elements and use upper-case calligraphic letters as the
notation. For instance, P = {p ∈ R3} defines a set of 3D points.
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2.2.2 Bayesian Filters

Bayesian filters are a collection of algorithms used to estimate unknown variables based on a
series of measurements [141]. A Bayesian filter infers the belief of the current system state xt
defined by the posterior:

bel(xt) = P (xt|u1:t, z1:t) (2.1)

where u1:t and z1:t are a sequence of control inputs and sensor measurements respectively.
bel(xt) can be understood as a function that returns the probability (in continuous state space) or
density (in discrete state space) for all possible xt. The estimation of bel(xt) is recursive and can
be summarized in the following two steps:

bel(xt) =

∫
P (xt|ut,xt−1)bel(xt−1)dxt−1

bel(xt) = η P (zt|xt)bel(xt)
(2.2)

where the first step predicts the robot’s current state based on the system dymamics model
P (xt|ut,xt−1), and the second step corrects the prediction by incorporating the sensor mea-
surement model P (zt|xt). Note that η is a normalization constant such that bel(xt) sums to 1
over all possible xt. The description of Bayesian filters here only touches the surface of this
complete framework. Readers can find more comprehensive explanation from [141].

System Dynamics Model: The system dynamics model defines the principles of how the state
changes over time. In the case of a mobile robot, system dynamics typically models the robot
motion including position, orientation and velocities. In discrete time terms, the system dynamics
is represented by a transition function:

xt = g(xt−1,ut−1) + w (2.3)

where w is the system transition uncertainty that is often assumed to be Gaussian. The transition
function g can be linear or non-linear. For linear systems, the most seminal Bayesian filtering al-
gorithm is the Kalman Filter (KF) [78] invented by Kalman in the 1960s. For non-linear systems,
one popular choice is linearizing the system with its first-order Tylor expansion, also known as
the Extended Kalman Filter (EKF). Other choices for non-linear systems include the Unscented
Kalman Filter (UKF) [74] and the Particle Filter (PF) [122]. In the following discussions, we
elaborate on the EKF since it is closely related to Chapter 3.

State Uncertainty: In (2.3), the Gaussian random variable w is used to model the state transition
uncertainty. The accumulation of uncertainty makes our estimation of x less confident over time.
More formally, the state uncertainty is a covariance matrix Σ measuring the covariances between
each component of the state vector x. For instance, in a 2D world, x = [x, y, θ] is defined by the
2D location coordinate (x, y) and the heading angle θ. Then Σ ∈ R3×3 has the form of

Σ =

σxx σxy σxθ
σyx σyy σyθ
σθx σθy σθθ

 (2.4)
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It is hard to overstate the importance of uncertainties for probabilistic filtering algorithms since
it governs how information is passed through the system. One could understand the state uncer-
tainty as the inversed weighting factor when fusing data from multiple sources. For example, in
the case of a robot carrying multiple ranging sensors with different noise profiles, the uncertainty
matrices determine how their measurements are weighted to give the best estimate.

Propagation: This is the first step of a standard EKF. In the propagation step, a prediction of the
current system state x̄t is computed as x̄t = g(xt−1,ut−1) based on (2.3). More importantly, the
state uncertainty is also predicted as Σ̄t:

Σ̄t = GΣtG
T + Σw (2.5)

where G = ∂g
∂x
|xt−1 is the Jacobian of system dynamics evaluated at xt−1. Σw is the covariance

of random noise w. The idea behind (2.5) is to predict the state uncertainty based on a linearized
approximation of g. Although the model is less accurate after linearization, the propagation
becomes quite simple since only linear operations (e.g. matrix multiplications) are involved.

In (2.5), it can be seen that the predicted uncertainty keeps increasing over time, meaning the esti-
mation becomes less confident. Eventually, the uncertainty increases to a state that the prediction
hardly contains any useful information. Fortunately, new sensor data can be used to correct the
errors by providing extra constraints to the system state.

Sensor Measurement Model: The measurement model describes the relationship between sen-
sor readings z (e.g. laser range measurements and visual features) and the system state x. Again,
the relationship is often non-linear and can be described as:

zt = h(xt) + v (2.6)

where h is the non-linear measurement function and v is the Gaussian random sensing noise. One
could understand function h as a way to predict the sensor measurements based on the prediction
of the system state x̄t. Later on, the difference between predicted and real measurements will
provide clues to correct the state estimate.

Correction: How to use the measurements to correct or update the prediction that is subject
to drifts? The intuition is to compute a weighted average between the prediction x̄t and the
implict state encoded in sensor measurements. The word implict is used since the sensor may
not directly measure the variables in x, but are related to them through the measurement model
h. Mathematically, the correction is done via the following steps:

• Compute the difference between real measurements and predicted measurements:
yt = zt − h(x̄t)

• Prediction or observation? Compute the weighting factor named Kalman gain:
K = Σ̄tH

T (Σw + HΣ̄tH
T )−1

• Compute a new state based on weighted average:
xt = x̄t + Kyt

• Compute the new state uncertainty:
Σt = (I−KH)Σ̄t
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In here, H = ∂h
∂x
|x̄t is the Jacobian of h evaluated at x̄t. The completion of the above steps yields

a new set of estimation (xt,Σt) which will participate in the next propagation step.

2.2.3 Factor Graph

Factor graph in SLAM is a graphical model used to unify measured information from differ-
ent sensing modalities. Thanks to the advancements in graph-based smoothing and mapping
[76][77][35], factor-graph has become the backbone of modern SLAM systems [37][81][77]
[65][159][130]. In this section, we briefly revisit the concepts of factor graph and graph opti-
mization.

Nodes: The nodes n ∈ N in a factor graph represent unknown variables to be estimated. For
example, a robot’s pose or the 3D location of a landmark could be defined as nodes of different
types.

Edges: The edges e ∈ E in a factor graph encode the relationship between two nodes. From the
perspective of constraints, the edge eij can be translated into a constraint between the states xi
and xj . For instance, a measurement of the relative motion between two consecutive poses zij
makes a transform constraint. The constraint error function eij can be defined as the residual of
observed measurement zij and predicted measurement h(xi,xj):

eij = zij − h(xi,xj) (2.7)

The metric of error function follows a simple idea: the predicted measurements should be similar
to the real measurements under true state estimates.

Factors: In the context of graph-SLAM, factors can be treated as constraints imposed on a single
node (unary factor) or between two nodes (binary factor). In this thesis, we treat the word factor
interchangeable with constraints.

Uncertainty: In factor graphs, uncertainties are defined for the factors. Intuitively, it indicates
the strength of a constraint. Similar to the uncertainty representation in EKF, the uncertainty in
factor graphs is also represented as a covariance matrix in the space of observations z.

Graph Optimization: The high-level goal of graph optimization is to estimate the system states
that match the observations. More specifically, the errors associated with each factor should be
minimized to find the optimal state estimate x∗. Therefore, a cost function f is defined as a sum
of constraint residuals:

x∗ = arg min
x
f where f =

∑
ij∈E

eTijΣijeij (2.8)

Here Σij is used to define the Mahalanobis distance which has the effects of weighting each
dimension based on the confidence. (2.8) minimizes the squared error and is non-linear with
respect to x. Therefore, it is often called Non-Linear Least Square (NLLS) problem.

Gauss-Newton: To solve the NLLS problem defined in (2.8), iterative descent methods can
be used. Among many descent strategies, the Gauss-Newton (GN) method is a popular choice
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to solve optimization problems in robotics. The key idea of GN is to repeatedly approximate
the cost function f with a quadratic equation F and perform exact minimization on F . The
approximation can be done by linearizing e using its first-order Tylor expansion:

e(x0 + ∆x) ≈ e(x0) + J∆x (2.9)

where J = ∂e
∂x
|x0 is the error Jacobian evaluated at the initial guess x0 and ∆x = x − x0 is a

small perturbation around x0. Then the linearized cost function has a desired quadratic form:

f(x) ≈ F (∆x; x0)

=
∑

eTe + 2eTJ∆x + ∆xTJTJ∆x
(2.10)

In here, we drop the subscripts to simplify the notations. To minimize F , the optimal ∆x can be
found analytically:

∆x = −(JTJ)−1JTe (2.11)

Here we abuse the notion of J and let it denote the assembled Jacobian from all observations.
Then x is updated by x ← x + ∆x. Finally, by repeating the approximation, minimization and
update steps, the final optimal solution x∗ can be found.

One limitation of the GN method is that it will have difficulty when JTJ (the Hessian matrix) is
ill-conditioned, which is an issue frequently encountered in practice. In this case, the GN method
may not decrease at every iteration. Alternatively, the Levenberg-Marquart (LM) method [97]
provides a simple modification of ∆x to stabilize the descent procedure:

∆x = −(λI + JTJ)−1JTe (2.12)

where λ is a scalar factor that governs the tendency to the gradient descent (GD) update −JTe.
Since GD guarantees to give a descending direction, λ is increased such that ∆x approaches
closer to GD when GN becomes not stable.

Linearization on SO(3): The problem arises from computing Jacobian w.r.t the rotation, which
belongs to the non-linear special orthogonal group noted as SO(3). There are multiple ways
to parameterize the rotation, including orthogonal matrix, unit quaternion, angle-axis and Euler
angles. In this work, we tend to use the rotation matrix more often since it directly applies
to coordinate transform. To linearize a rotation matrix, the key ingredient is the small-angle
approximation:

R ≈ I + [θ]× (2.13)

where [θ]× is the skew symmetric matrix of the angle vector θ = [θx, θy, θz], and I is the identity
matrix. The approximation is only valid when the angle vector θ approaches zero. When the
small angle condition is satisfied, (2.13) is now linear in terms of θ.

In practice, any rotation R can be regarded as the composition of an initial rotation R0 and a
small perturbation ∆R: R = R0∆R. Once ∆R is linearized, R is also linear in terms of θ.
Hence the linearization completes.
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2.2.4 Bundle Adjustment

Bundle adjustment [142] is a technique to simultaneously estimate the camera motion and 3D
structures and has been widely used in visual SLAM and SfM algorithms. Given an initial guess
of the camera poses {Ri, ti} and 3D points {Pj}, the goal of bundle adjustment is to minimize
the reprojection error of feature points. Specifically, the optimization problem is defined as:

min
{Ri,ti,Pj}

∑
i,j

||pj − π(RiPj + ti; K)||2 (2.14)

where p ∈ R2 is the pixel coordinate of an observed point. π is the function that projects 3D
points to the image plane. K is the camera intrinsic matrix

K =

fx s cx
0 fy cy
0 0 1

 (2.15)

that models the parameters of a pinhole camera, including the focal length (fx, fy), sensor skew
s and optical center coordinates (cx, cy).

2.2.5 Point Cloud Registration

Point cloud registration is the core problem of motion estimation using depth or range sensors
(e.g. LiDAR). By aligning two given point clouds, the relative motion between two frames can
be recovered. Depending on the strategies of data association, point clouds can be registered
using two approaches:

• Direct registration relies on 3D geometric features [59] to find point-to-point correspon-
dences between point clouds. Once the correspondences are found, the relative transform
can be readily computed using direct estimation techniques such as SVD [8]. Despite the
convenience of computing a solution, direct registration methods may suffer from outliers
hence are usually coupled with robust mechanisms such as RANSAC [44]. Additionally,
the location precision of 3D features is usually lower than the 2D counterpart, which fur-
ther deteriorates the registration accuracy.

• Iterative registration, or the Iterative Closest Point (ICP) algorithm [14], finds correspon-
dences using the nearest neighbor search strategy and updates the matches as the estimation
progressively becomes more accurate. This strategy requires a good initial guess to start
the iteration. Otherwise, the algorithm could converge to a local minimum or even diverge.
However, due to its simplicity, efficiency, and the fact that an initial guess is often easy to
obtain, ICP and ICP-variants [123] are widely used for online registration.

Apart from the difference in correspondence search, direct and iterative registration share a com-
mon basic point set registration formulation:

min
R,t

∑
i

||p′i − (Rpi + t)||2 (2.16)
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Figure 2.2: Overview of the related work and the intersection to which this thesis belongs.

where pi and p′i are matched 3D points in two different frames. In (2.16), point-to-point distances
are minimized to align given point clouds. Although this error metric is straightforward, the
underlying assumption of point-to-point match hardly holds in practice. This is because a point
cloud is only a sparse sample of the underlying surface. Thus there is no guarantee that the
same point is sampled in both point clouds. For this reason, alternative distance metrics, such
as point-to-line and point-to-plane, can be used. Here we provide two examples of point-to-line
and point-to-plane metrics:

point p to line (q,w): (I−wwT ) (q− (Rp + t))

point p to plane (q,n): nT (q− (Rp + t))
(2.17)

where a line in 3D space is defined by a point q and a direction w, while a plane is defined by
a point q and its normal vector n. Note that in (2.17), the definitions are only two examples of
distance metrics. Depending on the parameterization of lines and planes, the distance formulation
could be different.

2.3 Related Work

We find our work roughly belongs to 3 themes of state estimation and mapping as shown in Fig.
2.2. LiDAR-based SLAM is closely related to Chapter 3 and 4 where we use LiDAR as our
primary sensing module to solve the robot localization problem. Then sensor fusion becomes
the major theme of Chapter 5 and 6 where LiDAR is combined with cameras for dense mapping.
Finally, high-level map representations are relevant to Chapter 7 where geometric primitives are
used as abstraction of dense maps. Our goal for this section is to briefly review the related work
of each theme, depicting the big picture of where our work is positioned in the literature.
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2.3.1 LiDAR-based SLAM

LiDAR SLAM relies on LiDAR to solve the online state estimation and mapping problem for
mobile robots. Unlike cameras, LiDAR provides accurate range measurements and is robust to
environmental conditions such as lighting and weather. Therefore, the LiDAR SLAM technology
has gained large popularity in safety-critical areas such as self-driving.

A fundamental technique of LiDAR SLAM is scan matching, which is also known as the point
cloud registration problem (see Section 2.2.5). The goal of scan matching is to find the relative
motion between two consecutive scans using ICP or its variants. The standard ICP aligns full
point clouds, which can be inefficient in practice. Therefore, geometric features such as edges
and planes have been used for fast registration. For example, Zhang et al. [153] use edge and
planar points to perform ICP, which significantly improved the speed and accuracy.

LiDAR is rarely used alone. This is because the sensor’s egomotion could cause distortion in
scanned point clouds. To accommodate this issue, LiDAR is usually combined with an IMU to
compensate for the egomotion in a short time range. Depending on how LiDAR is combined with
IMU, one can roughly categorize the available methods into loosely-coupled and tightly-coupled
approaches.

In loosely-coupled approaches, IMU measurements are not directly involved in the optimization.
For instance, Zhang et al. [153] integrates IMU to predict the sensor motion, which is used as
an initial guess for the ICP. In this process, laser scan still dominates the optimization proce-
dure. Another type of loosely-coupled method is using Bayesian filters for state estimation. As
introduced in Section 2.2, Bayesian filters have two key steps: propagation and correction. IMU
measurements are integrated in the propagation step to give state prediction, while laser scans
are registered to find the relative transform used in the correction step to update the prediction.
For examples, works in [22][91][63] implement EKF to fuse LiDAR and IMU measurements for
robust state estimation.

On the other hand, for tightly-coupled approaches, IMU directly participates in the optimization
process. This is often achieved by using the factor graph framework [35] where sensor measure-
ments are encoded as factors. To be more precise, IMU measurements are pre-integrated [46] as
IMU-factors providing a transform constraint between two frames. Meanwhile, laser scans are
registered yielding another transform constraint. Then the factor graph can be optimized such
that both types of constraints are satisfied. This scheme has become the primary choice in latest
LiDAR SLAM systems [65][129][130][159].

Which choice is better: loosely-coupled or tightly-coupled methods? Loosely-coupled methods
benefit from their simplicity and have dominated early works of LiDAR SLAM. Tightly-coupled
methods typically offer better accuracy hence have become the focus of ongoing research. One
argument of the loosely-coupled strategy is that it has a less computational cost, thus suitable for
online applications. However, thanks to the advancements of incremental mapping techniques
[76][77] and maturing software tools [35][2], the efficiency of tightly-coupled methods is getting
improved constantly.

Our work in this thesis is related to the theme of LiDAR SLAM in two folds:
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• We offer a loosely-coupled online localization algorithm that combines a rotating 2D Li-
DAR with IMU. Why is loosely-coupled strategy the choice when tightly-coupled methods
provide higher accuracy? The key reason is that loosely-coupled methods offer a better
trade-off between accuracy and the computational costs considering the limited computing
resources (e.g., ODROID XU41) on the robot.

• Although the methods discussed above build high quality maps as a result of accurate pose
estimation, the map precision (typically at the level of several centimeters) are limited by
LiDAR hence is not enough to capture small details (at the scale of several millimeters)
for inspection. Our work, on the one hand, relies on similar techniques such as scan regis-
tration to process LiDAR data; on the other hand, it focuses on fusing LiDAR and camera
for locally dense and globally consistent reconstruction to suit the needs of inspection.

2.3.2 LiDAR-camera Fusion

In this section, we discuss the literature of LiDAR-camera fusion for dense mapping. Before
delving into sensor fusion techniques, we first take a look at dense mapping solutions. The goal
of dense mapping is to build high-resolution 3D models to encode the rich details of the environ-
ment. Then how dense should a dense model be? To answer this question, one has to relate to the
specific context. In the field of laser mapping [153], the built maps are often regarded as dense
maps in the sense that raw laser points are denser than sparse geometric features. In the area
of visual mapping, the term dense tends to indicate per-pixel density, which is usually of higher
resolution than LiDAR maps (assuming moderate image resolution and close-range). Therefore,
for the purpose of inspection that concentrates on detailed models, visual mapping seems to be
the preferred solution. Available methods in the literature can build dense maps in an online
manner using normal or RGB-D cameras [105][42], or in an offline manner using batch dense
reconstruction techniques [11] [127]. In the industrial world, many visual dense mapping solu-
tions have emerged. For instance, mapping solutions provided by Pix4D2 and Skydio3 have been
used for construction site monitoring and inspection. However, despite the high resolution, those
methods are typically not as robust as LiDAR against environmental factors such as darkness and
low texture, making it difficult to build maps in such challenging situations.

For the reasons discussed above, combining camera and LiDAR using sensor fusion techniques
has attracted many researchers [34]. From a general point of view, LiDAR-camera fusion aims
to compensate for the disadvantages of each sensor, closing the modality gap between structural
and textural data. Here, we borrow concepts from robot perception to help characterize differ-
ent strategies of fusing LiDAR and camera for SLAM. In the area of perception, sensor fusion
techniques are categorized into early fusion (data-level), middle fusion (feature level), and late
fusion (decision level), depending on the levels of data abstraction [83]. The classification rule
seems to apply to fusion techniques for SLAM as well:

1ODROID: https://wiki.odroid.com/odroid-xu4/odroid-xu4
2Pix4D: https://www.pix4d.com/
3Skydio: https://www.skydio.com/
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• In the early fusion strategy, LiDAR scanned point clouds are projected to align with the
images. For instance, Maddern [92] uses projected LiDAR depth to improve the quality of
stereo disparity maps.

• In the middle fusion strategy, LiDAR and camera interact at the level of features. One
example is the work from Levinson et al. [86] that extracts and matches edge features from
laser scans and images for automatic extrinsic calibration. Another example of middle
fusion is to assign LiDAR depth to visual features as in [156] to improve the performance
of visual odometry.

• For the late fusion strategy, both LiDAR and camera data are first processed separately to
estimate the robot motion; then multiple estimations are fused in a common framework.
For instance, the work from Shao et al. [131] uses a pose graph to join visual and LiDAR
pose estimations.

The discussion of different fusion levels helps clarify multiple ways for fusing camera and Li-
DAR data. For the purpose of online application, most LiDAR and camera fusion techniques
for SLAM choose to abstract the sensing data progressively to reduce the computation burden
for downstream components, which essentially follows the late fusion strategy. Although highly
efficient, this architecture will have difficulty in handling compound errors accumulated through
the pipeline. In the case of a factor graph, errors due to imperfect feature matching are passed to
the back-end as biased constraints, whose effects can be hard to correct. In this work, we trade
off efficiency for improved accuracy by following the early fusion strategy. More specifically:

• We consider combining the bundle adjustment and point cloud registration problems based
on raw sensing data (e.g. visual features and point clouds), which falls into the category of
early and middle fusion. In this way, one can preserve the chance to reject mismatches in
the raw data.

• Despite the early fusion strategy is used for batch optimization, we deploy late fusion
techniques for initialization. For instance, relative motions are used to solve a pose graph
to initialize the poses of the robot, providing a starting point for the final joint optimization.

2.3.3 High-level Maps for SLAM

Map representation determines how the map encodes the information of the environment. The
encoded information could be purely geometric, resulting in a metric map, or semantic, leading
to a semantic map. In this section, we offer a brief discussion of the available choices for map
representation. Specifically, we start with low-level representations that are widespread in the lit-
erature, and then focus on the high-level geometric and semantic representations that are gaining
more attention in the latest works.

Low-level representations have been successfully used in a large number of available SLAM
systems. For example, point-based sparse representation, encoding discriminative features such
as corners [61][12], has been the main stream solution for visual odometry and recognition.
However, feature-based representations are considered too sparse for many purposes, such as
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metric mapping and navigation. Therefore, dense models, such as point clouds [153], occupancy
grids [22][68], and meshes [56], have been used. Those methods use simple non-parametric
entities to approximate the geometry of the environment. A more complex model known as the
Truncated Signed Distance Function (TSDF) [33] represents the surface of an object by storing
the signed distance values in each voxel. Although visually appealing, TSDF is expensive to
store, thus difficult to generalize to large environments.

Recently, object-based SLAM has drawn great attention as it allows for a more intelligent under-
standing of maps. Early works from Castle et al. [25] and Salas-Moreno et al. [124] integrate
object models into an online SLAM framework that optimizes the robot and object poses jointly.
Rosinol et al. [118] construct meshes with sematic labels, which is then extended to build hier-
archical high-level maps with 3D dynamic scene graphs [119]. Ok et al. [108] and Yang et al.
[151] use abstracted shapes to approximate the objects in the scene.

In addition to semantics, higher-level geometric shapes have also been introduced to SLAM.
Compared to low-level maps, high-level shapes can be extremely compact while capturing the
scene layout. For instance, line features have been used for both visual SLAM [115] and LiDAR
odometry [153] to map the edges in an environment. Planes [75][158][69] are one of the most
widely seen primitives in structured environments. More complex geometric primitives such as
cuboids [151], ellipsoids [107], and superquadrics [144] are introduced as approximated shapes
for objects. It should be noted that even though those high-order shapes are typically embedded
with semantic labels, it is the underlying geometry that directly affects the formulation of SLAM.

Driven by the goal of compact representations for structured environments, this thesis will ex-
plore the usage of high-level geometric primitives for the purpose of SLAM. We now highlight
the relationship of this work to available methods in the literature:

• Instead of using a fixed type of shape prior, we look for a general representation based on
quadrics, which allows for parameterizing multiple geometric primitives uniformly. We
believe a unified representation could greatly simplify the usage of primitives in SLAM.

• Instead of modeling objects in the environment, we focus on high-level representation of
large structures such as walls and pillars. We particularly examine how the introduction of
high-level shapes affects the sensing model in a SLAM framework.
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Chapter 3

Robust Localization using LiDAR and IMU

This chapter takes the first step towards autonomous robot inspection: developing a physical
system that can localize itself. We start with the discussion of the localization problem for UAVs
in Section 3.1. In this discussion, we try to highlight the characteristics of localizing UAVs
and explain how the sensing system and algorithms are designed to meet certain requirements.
Then in Section 3.2, we review prior works that are closely related to this chapter. In Section
3.3, we introduce the proposed localization algorithm in detail. Section 3.4 describes how the
proposed localization algorithm fits in an off-the-shelf SLAM pipeline such that the global map
can be updated with newly perceived information. Experimental results and demonstrations are
presented in section 3.5 to show how the proposed algorithm performs in various environments.
Finally, in section 3.6, we discuss the conclusions and lessons learned from this work.

3.1 The Localization Problem

UAVs are selected as our major experimental platforms because of their compact form-factor
and outstanding mobility. Although those advantages make UAVs suitable for exploration and
inspection tasks, they also come with limitations. Firstly, the small form-factor often indicates
limited payload capacity, restraining both computing power and flight time. Secondly, the robot
motion can be more aggressive in the air, requiring special considerations about the design of
sensing systems and algorithms.

Our main sensing module is a LiDAR which gives accurate ranging measurements and is robust
to lighting conditions. Despite the ranging precision, the Field of View (FOV) of LiDAR sensors,
however, is usually limited. 2D LiDARs take measurements within the scanning plane, while 3D
LiDARs only have slightly wider vertical FOV. In this work, we consider LiDARs mounted on
a continuously rotating motor so that the robot has a spherical FOV. Besides the FOV limits, the
scan frequency of LiDAR sensors is usually not high enough to capture the fast motion of the
robot. Therefore, IMU is often used to measure the system acceleration and angular velocity at a
much higher sampling rate (typically 100Hz or even more). Our setup follows the same strategy
to have both LiDAR and IMU installed as shown in Fig. 3.4.
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Based on the sensing setup, now our goal is to estimate robot states upon the arrival of the latest
measurements. More specifically, the problem can be stated as follows:

Given a prior map and an initial guess of the robot pose, the robot localization problem is
to localize the robot by sequentially processing the measurements from the LiDAR and the
IMU.

The term localization is beyond the estimation of location only. It also involves the estimation
of robot orientation and velocities. In fact, in this work, we also consider modeling the sensor
biases to compensate for IMU drifts.

3.2 Related Work

The work in this chapter is closely related to filtering-based state estimation. Popular filtering
methods rely on the framework of Bayesian filters to estimate robot state from given sensor read-
ings. Early works such as Monte Carlo Localization (MCL) [47] successfully applies particle
filter to solve robot localization problem. The sampling nature of this method makes it suitable
for non-Gaussian uncertainties. However, it has difficulties in higher dimension spaces due to
exponentially increasing computational cost. Differently, EKF can efficiently handle non-linear
systems with Gaussian noise assumption and has been used for laser mapping in [91][38][63].
It is also reported that EKF-like models do not have significant differences from sample-based
models in terms of performance. Instead of linearizing system dynamics as in EKF, Error State
Kalman Filter (ESKF) [120] directly models the system state as near-zero errors such that the
transition function becomes linear in the new error space. This technique has been used for pose
estimation and mapping [117]. Our work is closely related to [22] where a Gaussian Particle
Filter (GPF) is used to convert raw LiDAR measurements into robot pose estimates. But differ-
ently, we represent the system dynamics and measurement model in the error state space, and
also include IMU bias terms to the state vector to compensate for inaccurate predictions from
inertial data.

3.3 Localization Formulation

To recap the problem: given a pre-built map and the initial pose of the robot, its current pose,
velocity, and IMU biases are estimated immediately when a new set of range data is available.
The localization is achieved by combining an Error State Kalman Filter (ESKF) with a Gaussian
Particle Filter (GPF) as shown in Figure 3.1. From a high-level perspective, the ESKF is respon-
sible to maintain an estimate of system states while the GPF is used to recover the implicit poses
from laser scans.

The ESKF shares the same propagation and update steps as the KF except that the system state
is represented in the error space. The error state representation, compared to a nominal state
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Figure 3.1: The localization algorithm overview.

representation, has several benefits [93]. First of all, error states are always close to zero. There-
fore the small-angle approximation in (2.13) can be applied to compute the derivatives of the
matrix exponential map. Secondly, in the error state, the rotation error can be represented as a
3D vector, which is intuitive to interpret the physical meaning. Finally, the rotation error is far
from a singular configuration compared to the Euler angle representation.

3.3.1 The Motion Model

Error States: The state vector of the system contains the following components:

velocity in global frame: v ∈ R3

position in global frame: p ∈ R3

rotation matrix: R ∈ SO(3)

accelerometer bias: ab ∈ R3

gyroscope bias ωb ∈ R3

Here the sensor bias is different from sensor noise in that it drifts slowly around zeros instead of
randomly sampled. The sensor readings are corrupted with sensor bias and sensor noise at the
same time.

We then define the true state x as the hidden variables to be estimated, the nominal state x̂ as the
current best estimation:

x =
[
v p R ab ωb

]T
x̂ =

[
v̂ p̂ R̂ âb ω̂b

]T (3.1)

The error state δx:
δx =

[
δv δp δθ δab δωb

]T (3.2)

is defined as the difference between the true value and its estimation:

x = x̂⊕ δx (3.3)

Here ⊕ indicates a generic composition where rotations are composed on the SO(3) manifold.
Although the system dynamics are now represented in the error states, one still needs the nominal
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states to keep track of the actual physical states of the system for the purpose of downstream
applications (e.g. control).

Error Dynamics: To derive the error state dynamics, we start from formulating the norminal
state dynamics which is given by:

˙̂x =


˙̂v
˙̂p
˙̂
R
˙̂ab
˙̂ωb

 =


R̂(am − âb) + g

v̂

R̂[ωm − ω̂b]×
0
0

 (3.4)

where am,ωm are the acceleration and angular velocity measurements. Then the error dynamics
equation can be obtained by replacing x̂ with x̂ ⊕ δx. Particularly, the rotation R is replaced
with R(I + [δθ]×):

δẋ =


δv̇
δṗ

δθ̇
δȧb
δω̇b

 =


−R̂[am − âb]×δθ − R̂δab − R̂an

δv
−[ωm − ω̂b]×δθ − δωb − ωn

aw
ωw

 (3.5)

where an,ωn denote the accelerometer and gyroscope Gaussian noise, and aw,ωw are the Gaus-
sian random walk noise of biases.

Note that (3.4) and (3.5) are dynamics represented in the continuous-time form. In the continuous
form, the first-order derivative of states is predicted from the current state thus governing the
changes of the whole system.

Propagation: As mentioned in Chapter 2, the propagation step contains the state propagation
and the covariance propagation. The state x is propagated through a direct Euler integration
of (3.4), while the covariance is propagated using the linear error state dynamics (3.5). The
propagation rule in discrete forms is shown as below:


v̂t+1

p̂t+1

R̂t+1

âb(t+1)

ω̂b(t+1)

 =


v̂t + [R̂t(am − âb(t)) + g]∆t

p̂t + v̂t∆t+
1

2
[R̂t(am − âb(t)) + g]∆t2

R̂t exp
(
(ωm − ω̂b(t))∆t

)
âb(t)
ω̂b(t)

 (3.6)

where ∆t is the time length between two adjacent states and the function exp(·) : R3 → SO(3)
maps the rotation vector θ to the rotation matrix using the Rodrigues formula [102]:

exp(θ) = I + Θ sin(‖θ‖) + Θ2(1− cos(‖θ‖)), Θ =

[
θ

‖θ‖

]
×

(3.7)
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Then the covariance is propagated by linearizing the error state dynamics (3.5):

Σ̄t+1 = FxΣtF
T
x + FnQnF

T
n (3.8)

where

Fx =


I3 0 −R̂t[am − âb(t)]×∆t −R̂t∆t 0

I3∆t I3 0 0 0
0 0 RT

{
(ωm − ω̂b(t))∆t

}
0 −I3∆t

0 0 0 I3 0
0 0 0 0 I3

 (3.9)

Fn =

R̂t 0
0 0
0 I9

 (3.10)

are the linearized coefficient matrices and

Qn =


(σan∆t)2I3 0 0 0

0 (σωn∆t)2I3 0 0
0 0 (σaw∆t)2I3 0
0 0 0 (σωw∆t)2I3

 (3.11)

models the system transition noise being added to the integration. Here σan , σωn , σaw , σωw rep-
resent the Gaussian noise of accelerometer, gyroscope, accelerometer bias and gyroscope bias,
respectively. The values of variances are assigned manually in practice.

3.3.2 The Measurement Model

Observation Model: With error state representation, the observation model is simply linear.

δy = Hδx =

[
0 I3 0 0 0
0 0 I3 0 0

]
δx (3.12)

Here δy denotes the pseudo pose measurement encoded in the laser scan. Other components in
the state vector such as velocity and sensor biases are not directly observable from the sensing
data. Therefore the corresponding entries of H are zeros.

Recover Pseudo Measurement: Intuitively, the pseudo measurement can be thought of as a
pose measurement extracted from sensor readings. Fig. 3.2 illustrates the key steps to recover
the pseudo measurements. More specifically, it is computed via the following procedures:

• Firstly, based on pose error priors δx̄mt+1 ∈ R6, Σ̄
m
t+1 ∈ R6×6, a set of particles {δxi} are

sampled.
• Secondly, a weighting factor wi is computed for each particle based on the likelihood field

model [141] which characterizes the alignment quality between the laser scan and the prior
map.
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Figure 3.2: An illustration of the key steps of GPF in 2D. Pose samples and mean are represented
as small circles with a straight bar to indicate the direction. The dashed ellipses illustrate the
Gaussian distributions of prior, posterior and pseudo measurement.

• Thirdly, the pose posterior δxmt+1 ∈ R6,Σm
t+1 ∈ R6×6 are computed as the weighted mean

and covariance of the particles:

δxmt+1 =

∑
wiδx

m
i∑

wi
(3.13)

Σm
t+1 =

∑
wi(δx

m
i − δxmt+1)(δxmi − δxmt+1)T∑

wi
(3.14)

• Finally, a pseudo measurement δymt+1 ∈ R6 and pseudo noise Cm
t+1 ∈ R6×6 is recovered

by inversing the KF measurement update:

δymt+1 = (Km)−1(δxmt+1 − δx̄mt+1) + δx̄mt+1 (3.15)

Cm
t+1 = (Σm

t+1
−1 − (Σ̄

m
t+1)−1)−1 (3.16)

where Km = Σ̄
m
t+1H

mT (HmΣ̄
m
t+1H

mT + Cm
t+1)−1 is the pseudo Kalman gain. Hm = I6

is the pose-relevant block of H.

Correction: Once the pseudo measurements are computed, it is used to update the full error
states by a normal KF update. The Kalman gain is

K = Σ̄t+1H
T (HΣ̄t+1H

T + Cm
t+1)−1 (3.17)

Note K ∈ R15×6 is different to Km ∈ R6×6 in that it now involves all dimensions of the state.
The full error state posterior and the covariance are updated as

δxt+1 = K(δymt+1 −Hδx̄t+1) (3.18)
Σt+1 = (I15 −KH)Σ̄t+1 (3.19)
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Update Nominal States: The updated errors are integrated into the previous nominal state:
v̂t+1

p̂t+1

R̂t+1

âb(t+1)

ω̂b(t+1)

 =


v̂t + δvt+1

p̂t + δpt+1

R̂t · exp(δθt+1)
âb(t) + δab(t+1)

ω̂b(t) + δωb(t+1)

 (3.20)

Reset Error States: It is important to note that before the next iteration, the error states are set
to zero:

δxt+1 = 0 (3.21)

3.4 Localization Extended to Full SLAM

In this section, we discuss how the ESKF localization pipeline can be integrated with an off-
the-shelf SLAM back-end library named Cartographer SLAM. We will briefly introduce the
Cartographer SLAM then describe the combined pipeline in more detail.

Cartographer SLAM: Cartographer is an open-source LiDAR SLAM library developed at
Google [65]. There are four key components in Cartographer:

• Trajectory builder implements an EKF-based state estimator that fuses IMU measurements
with the LiDAR data. The estimator relies on scan to grid matching thus needs a 3D LiDAR
to ensure a successful registration.

• Map builder builds local maps (also named submaps) by accumulating scans from a sliding
window and creates new submaps when necessary.

• Loop-closure detector looks for possible matches between the latest scan and previous
submaps. New constraints are created based on the found closures.

• Pose graph optimizer maintains the sparse pose graph (SPG) of the robot and submap
poses and runs graph optimization to minimize the constraint residuals.

The idea of integration is to replace the trajectory builder with our ESKF-based state estimator
and then make use of the back-end components of Cartographer for loop-closure detection and
graph optimization.

Submaps and Distance Maps: A local occupancy grid map is defined as a submap by Cartog-
rapher. Since a different localization method is used, we need to adjust the submap management
scheme so that the submaps can be accessed by the localization module. As shown in blue dashed
box in Fig. 3.3, there exist two stages of scan accumulation. In the first stage, N 2D scans are
accumulated to form a 3D scan (as the motor rotates) that is matched and inserted into the active
submaps. The active submaps include a matching submap (blue) and a growing submap (yel-
low). The formed 3D scan is matched and inserted into both submaps. In the second stage, if M
3D scans are inserted into the matching submaps, the growing submap is switched to be the new
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Figure 3.3: The modified pipeline based on Cartographer to construct submaps and manage the
sparse pose graph.

matching submap and the old matching submap is erased. Meanwhile, a new submap (orange)
is created and starts growing. During the two stages, whenever a 3D scan is formed or a new
submap is created, new pose nodes are added to the SPG.

The adjustments are done by adding an octomap [68] beside the original grid map. The formed
3D scan is inserted into the octomap and the corresponding distance map is updated immediately.
The octomap library provides an efficient method to detect changes so that the distance map can
be computed efficiently. Additionally, the update of octomap and distance map are implemented
in different threads to reduce time delay.

Sparse Pose Graph: As for the SPG, we use the graph solver of Cartographer to refine the
poses of robot and submaps (see Fig. 3.3). The optimization is performed every few seconds and
the updated submaps are converted into a distance map to be used for localization.

3.5 Experiments

3.5.1 System Overview

A customized quadrotor, as shown in Fig. 3.4, is used to test the localization algorithm. The
quadrotor carries an onboard computer (Quad-core, 2GB RAM), an IMU (100 Hz), and a Hokuyo
2D laser scanner (270◦FOV, 0.25◦ angle resolution, 40Hz) mounted on a continuously rotating
motor (about 30 RPM). A motor encoder is used to project laser range data into the robot body

28



Figure 3.4: The customized robot platform with on board computation and sensing system (ro-
tating laser scanner and IMU). The front camera is for inspection thus is not used for state esti-
mation.

frame (z-axis downward, x-axis forward). The IMU frame is defined to coincide with the body
frame as well.

3.5.2 Indoor and Outdoor Tests

Fig. 3.5a shows an indoor test conducted around an office area. The prior map is converted into
an occupancy map using the Octomap library [67]. The occupancy map has a scale of approxi-
mately 15×20×5m, with 0.05m resolution. The robot is hand-held passing through corridors, a
conference room, coffee lounge and eventually returns to the start point. The maximum velocity
is about 1.2m/s. In Fig. 3.5a, the reconstructed map aligns nicely with the original map, which
implies the estimated poses are accurate.

Outdoor spaces are wider open and pre-built maps have larger grid size (0.1m) than indoor ones,
resulting in fewer details of structure to be captured for localization. This will cause an increase
in the estimation error and uncertainties. Fig. 3.5b visualizes the localization results in an inter-
building area. The map is of size 15×28×9m. The robot moves laterally with a maximum speed
at about 0.8 m/s while yawing between −45◦ and 45◦ before returning to the origin (as indicated
by Fig. 3.9, upper plots). By observation, one can tell that the overall estimation is quite accurate
except some reconstructed building edges are slightly ‘fuzzy’ due to the estimation noise.

3.5.3 Robustness Tests

The robustness of the localization algorithm is measured by its capacity to recover from errors. It
is tested in various settings using simulated or real data and also compared to an implementation
of nominal state EKF. The two algorithms are sharing identical parameters such as sensor noise,
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(a) Localization results in office area. Point clouds on the left and upper right are recon-
structed with estimated pose trajectory (blue lines). Original reference map is shown at
the lower right for comparison with reconstructed map.

(b) Localization results in an outdoor patio area. Point cloud on the left is the prior map
while the point cloud on the right is the reconstructed map using estimated poses.

Figure 3.5: Indoor and outdoor tests.
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map resolution and so on. We show that the ESKF outperforms the EKF in terms of robustness.

Figure 3.6: A simulation of robot localization under a bridge model.

The first robustness experiment is a kidnapped robot test in simulation (see Fig. 3.6). In this
test, the algorithm assumes robot starts at the origin, however the actual initial height is set with
different values (from 0.5m to the maximum error that can be corrected eventually). As shown
in Fig. 3.7, the ESKF implementation has an error tolerance of about 4 meters while the EKF
implementation can only handle error no larger than 0.6 meter. Additionally, ESKF converges
faster than the EKF. For instance, it takes about 2 seconds for the ESKF algorithm to recover
from an error of 0.5 meter, while the EKF algorithm needs more than 8 seconds to converge.

The second experiment is designed to compare the localization algorithms using real world data.
In this experiment, the robot orientation is kept pointing to the wall, while moving laterally
towards right and then left. The effective range of laser is reduced from 30m to 10m, which
eliminates some useful structures for localization and degrades the state estimate. The 30m-
range state estimates are then used as ground truth. Fig. 3.8 shows the localization error of the
two algorithms. We can observe that the ESKF algorithm recovers from some small errors (about
0.7m at maximum), while the EKF algorithm diverges at the end.

One interesting observation from this experiment is that the localization algorithm performance
could be affected by the heading direction of the robot while following the same route. When
moving from left to right, the robot orientation is fixed. Thus at some places most of the captured
data points lie on the wall and ground (as shown by the range plot in Fig. 3.9), which weakens
the constraints along the direction of motion. This results in relatively larger pose errors (blue
lines of lower plots in Fig. 3.9).

When moving back, the robot is pointed at nearby structures. Since the robot has a rotating 2D
laser, its measurements are densest along the axis of rotation (denoted as the thick bar in the
upper plot of Fig. 3.9). The second path is observed to have decreased position errors.
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Figure 3.7: Kidnapped robot test. The initial error tolerance is found by increasing the initial
error until the algorithm diverges. Note that diverging cases are not visualized here.
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Figure 3.8: Localization error in y-axis with reduced range laser measurements.
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Figure 3.9: Up: Illustration of the robot movement and laser ranges. Bottom: The positioning
errors of two moving trajectories. Only error on y-axis are visualized here since errors on the
other two axis are close to zero.

3.5.4 Fast Motion Test

Figure 3.10: A sequence of video frames showing state estimation for aggressive motions.

Now we report the algorithm’s performance under aggressive motions in both translation and
rotation. In Fig. 3.10, we show a sequence of frames from a video1 where the robot is hand-held
and changes its position and rotation aggressively. In this sequence, the maximum rotational
speed is about 150◦/s and the maximum translational speed is about 3m/s. We can see that even
with a 2D LiDAR, the robot can reliably estimate its motion thanks to the fast responses from
IMU. Additionally, fast flight tests2 are conducted on the CMU campus, with a top flight speed of

1Aggressive motion video: https://www.youtube.com/watch?v=TTQVluAu2eU
2Fast flight video: https://youtu.be/r8FA-OtnaMo?t=20
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Figure 3.11: Three tests are conducted in indoor and outdoor environments. Left: Test with a
fixed 3D LiDAR in a hallway loop. Middle: Test with a rotating 3D LiDAR around the CMU
patio. Right: Test with a rotating 2D LiDAR in a corridor loop.

2.5m/s. Robot poses are estimated in real-time using the onboard computer (i.e. Nvidia TK1).

3.5.5 SLAM Tests

Tests of the SLAM pipeline are carried out in the real world on multiple platforms: (1) fixed
VLP-16 (10Hz, range 100m), (2) rotating VLP-16, (3) rotating Hokuyo (40Hz, range 30m).

The first experiment is conducted inside a corridor loop (see Fig. 3.11 left). In this test, the
VLP-16 is fixed horizontally on the robot. We found that although the VLP-16 measures 3D
structures, its 30◦ vertical FOV is still not enough to reliably estimate height. The main reason
is that inside the narrow corridor, most laser points come from side walls instead of the ground
and ceiling. As a result, a larger drift in height is observed when the robot revisits the origin and
loop-closure is harder to detect.

The second test is carried out around the patio on the CMU campus. The VLP-16 is mounted on
a motor with the rotating speed set to 30rpm. Since this is a larger area, the distance map used
for localization has a coarser resolution of 0.3m and is constrained within a 40m× 40m× 40m
bounding box.

In the last test, the robot maps a narrow hallway with 1.1m width at minimum. To ensure enough
laser points are collected, the robot is manually carried and moved slowly (≈ 0.5m/s). This
time only small drifts in height is observed before closing the loop. This is because by rotat-
ing the LiDAR, the robot obtains wider FOV, which could significantly improve the mapping
performance.

3.6 Conclusion and Discussion

In this work, we present a robust localization approach fusing IMU and laser range data into
an ESKF framework. The algorithm is tested in an online setting and it is robust in various

34



environments with different characteristics and scales. Additionally, built on top of Cartograph
SLAM, we extend the localization algorithm to a full SLAM pipeline and have shown the results
of using different setups of LiDAR sensors.

Finally, we offer a discussion of several insights and issues that emerged from this work:

• On the linearization of non-linear systems to propagate uncertainty. In both ESKF and
EKF, the uncertainty estimation is achieved by linearizing the original system around the
current state, which inevitably introduces inaccuracy to the system model. However, in
practice, as long as the robot moves at a moderate speed and the sensing frequency is
adequately high, the linearization point is not far away from the actual state and the ap-
proximation remains valid.

• How would localization fail? Generally speaking, the observed information determines
whether the estimation of unknowns is successful or not. A more technical term observ-
ability [70][84] has been used to evaluate whether the measurement has enough infor-
mation content to uniquely and tightly constrain the unknowns. In the experiment, we
showed the localization accuracy could be improved by simply letting the LiDAR observe
more points. This fact brings up an interesting question: how can we quantitatively predict
whether the localization would fail or not? We will take a closer look at this problem in
Chapter 4.

• On the accumulated drifts upon loop-closure. Loop-closure effectively corrects the accu-
mulated drifts by averaging out the total error across all the frames involved in the loop.
However, averaging does not imply the exclusion of errors. In fact, loop-closure happens
in the back-end, where it is difficult to evaluate every constraint built from the front-end to
eliminate the source of drifts. Alternatively, directly formulating the error function based
on raw sensor observations could bridge the front and the back ends, improving the overall
accuracy at the cost of increased computations. In Chapter 5, we will try to formulate a
batch optimization problem that directly depends on raw sensing data such that outliers
can be evaluated and rejected to guarantee the total consistency.
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Chapter 4

Degeneracy in State Estimation

In the previous chapter, we presented an algorithm that combines LiDAR and IMU for real-
time localization. Although the algorithm is shown robust to the perturbance of sensor readings
and aggressive motions, it could fail easily in environments with geometric degeneracy. One
typical example of a degenerated environment is a long straight tunnel. The primary reason for
localization failure is the ambiguity due to the lack of geometric features. In this chapter, we
look at the robust localization problem in degenerated environments and discuss what we can
learn from such failures.

This chapter is structured as follows: Section 4.1 defines the problem of localizability prediction.
Section 4.2 reviews works that are related to this chapter. Section 4.3 describes the developed
localizability model in detail. In Section 4.4, we present a sensor fusion algorithm that combines
LiDAR, IMU together with an Ultra-WideBand (UWB) radio for robust localization in tunnels.
Experimental results are reported in Section 4.5 and conclusions are drawn in Section 4.6.

4.1 The Localizability Problem

Since a LiDAR sensor captures the geometry information by scanning the environment, it is
likely to be affected in geometrically degenerated cases. For example, a robot navigating through
a long straight tunnel (as seen in Fig. 4.1 top-left) will not be able to determine its location along
the tunnel since the measurements are identical everywhere. We can understand this situation
with an analogy to a sliding block inside a pipe (see Fig. 4.1 bottom-left). The block is obtained
by connecting the endpoints of the laser scan. The contact forces, analogous to the surface
normals, prohibit motions towards the sides of the pipe. However, since there is no friction to
restrain the object, its motion along the pipe becomes under-constrained.

To identify the geometric degeneration in general environments, a mathematical model to predict
the localizability is needed. Therefore, the problem to be addressed in this chapter can be stated
as:
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Figure 4.1: An analogy between robot navigation inside a tunnel and a sliding block inside a
pipe, where the measured surface normals correspond to contact forces.

Given the prior map and the sensor measurements, how can we qualitatively and quantita-
tively determine whether the data have enough information to estimate the robot motion?

The term localizability shares the same meaning of observability [64][84] in general estimation
problems. In this work, we choose to use localizability to specifically describe the quality of
sensor measurements in terms of information content that can be used for localization. The
localizability can be defined for both the prior map and the sensor measurements. If defined for
prior maps, the localizability can be used to predict whether a robot is safe to navigate through
a specific region. For example, one may analyze the map in an offline manner before the real
deployment of robots. The localizability of sensor measurements, on the other hand, describes
whether the current sensor readings can privide enough constraints for motion estimation. In this
case, one may use the localizability to predict failures in an online manner.

4.2 Related Work

Modeling sensing degeneracy is a research topic closely related to uncertainties, which is critical
to the robustness of a system. Therefore, in this section, we review the efforts made to model
and predict uncertainties in estimation problems. More specifically, we discuss prior works on
LiDAR sensing degeneracy in detail, followed by a brief review of works using cameras.

LiDAR sensing degeneracy: For LiDAR-based approaches, perhaps the earliest attempt is the
work from Roy and Thrun [121] known as coastal navigation. Their model is formulated in a
probabilistic framework but needs approximations to compute the uncertainty efficiently. Instead
of modeling the laser uncertainty directly, Diosi and Kleeman [39] compute the uncertainty of
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line segments extracted from laser scans. Since ICP is a critical component of LiDAR-based state
estimation and mapping algorithms, there are works studying the uncertainty of ICP algorithms.
Bonnabel et al. [19] provide an analytical derivation of the covariance matrix for ICP-based
registration problems. Gelfand et al. [51] show that sampling points that better constrain the mo-
tion estimation would effectively make the registration process more stable. Censi [26] derives a
lower bound of the uncertainty matrix that 2D ICP algorithms can achieve using Cremar-Rao’s
bound, which directly inspires the development of our method. His later work extends the idea
to pose tracking [27] and localization [28]. Zhang et al. [157][155] use a degeneracy factor
to characterize geometric degeneration and improve the accuracy of ego-motion estimation in
the context of solving an optimization problem. More recently, LiDAR-inertial observability-
aware systems [138][3] are developed and successfully applied to environments with geometric
degeneracy.

Visual sensing degeneracy: In the case of cameras, available approaches typically try to esti-
mate the uncertainty of extracted features. For example, Eudes and Lhuillier [43] model the error
propagation from image pixels to reconstructed 3D points in the settings of a bundle adjustment
problem. Yang et al. [152] offer an analysis of the degenerate motion for visual odometry using
line features. Similar studies on line degeneration are carried out in [135] [160]. Different from
geometric analysis, Vega et al. [148] propose a learning approach to predict uncertainty matrix
based on the system’s experience. This approach is demonstrated using cameras and LiDARs
in the simulation. More recently, as deep learning techniques are gaining more attention, neu-
ral network empowered methods [88] are developed to predict the covariance matrix for state
estimation.

Our Localizability model presented in this chapter shares a similar idea with [27] and [157] in
that the sensitivity of measurements w.r.t. parameters is used to identify degeneration. But we
formulate the sensitivity from a constraint set and use a physically meaningful metric to evaluate
the localizability.

4.3 The Localizability Model

The goal of modeling the degeneration of geometry is to develop theoretical tools to identify
degeneration in given maps and also gain insights on designing reliable sensing systems. In
other words, given the prior map, we would like to answer whether the current measurement
from a specific sensor contains enough information to estimate the robot state.

4.3.1 Localizability of the LiDAR

The LiDAR sensor measures the ranges along an array of laser beams. Therefore, each beam
returns an endpoint indicating where the laser hit the surface of an object. The collection of all
endpoints will form a laser point cloud that shows a sparse sample of the environment geometry.
Based on the scanned point cloud, LiDAR-based motion estimation is carried out by aligning
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the shapes of two point clouds. In the case of localization, the problem becomes estimating the
sensor position and orientation such that the laser scan aligns with a prior map.

In this section, we represent the LiDAR-based localization problem as solving a set of constraint
equations:

C(x,R, ρi) = nTi (x + Rriρi) + di = 0 (4.1)

where (x,R) ∈ (R3, SO(3)) denotes the robot position and orientation, and i ∈ {1, 2, · · · ,m}
is the point index in the laser scan. (ni, di) ∈ (R3,R) encodes the normal vector and distance
of the local plane in the environment. In practice, this local plane is not readily available from
sensor data but can be estimated from the neighboring points. ri ∈ R3 is the unit range vector
indicating the direction of a laser beam in the robot body frame and ρi ∈ R is the range value.
(4.1) describes a simple fact that the scanned points should align with the map when the robot is
localized (illustrated in Fig. 4.2).

Now we evaluate the strength of the constraint by measuring the sensitivity of measurements
w.r.t. the robot pose (x,R). The key observation is that if the robot pose is perturbed slightly
but the resulting measurements do not change much, then the constraint is weak. Otherwise, the
constraint is strong. Therefore, it is a natural idea to compute the derivative of ρi w.r.t. x and R
as a measure of the sensitivity.

Note that (4.1) is formulated for a single end point. Taking all end points into consideration
results in a set of constraints. Stacking the derivatives computed from all the constraints gives
two matrices:

F =

[
− n1

nT1 r1

· · · − nm
nTmrm

]
(4.2)

T =

[
−ρ1r1 × n1

nT1 r1

· · · −ρmrm × nm
nTmrm

]
(4.3)

Here we directly give the collection of derivatives while details for computing ∂C
∂x

and ∂C
∂R

can be
found in Appendix A.1. We could then perform Eigenvalue Decomposition on the information
matrices:

FFT = UFDFUT
F (4.4)

TTT = UTDTUT
T (4.5)

and any eigenvalues significantly smaller than the others indicate degeneration in the direction
of the corresponding eigenvectors.

A straightforward choice of the metric to evaluate the degeneration is the eigenvalues or condition
number. However, we found this metric difficult to interpret because its physical meaning is not
clear. To accommodate this issue, we choose to project each row in F and T into the eigenspace

F′ = UFF (4.6)

T′ = UTT (4.7)
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Figure 4.2: An illustration of the visual wrench restraining the robot position and orientation.
Up: The constraint model of LiDAR end point. Bottom: The constraint model of UWB ranging
measurement.

where F′ and T′ are projected derivatives over position and orientation respectively. Then we
define the localizability vector lF ∈ R3 and lT ∈ R3 as

lF =
m∑
i=1

abs(F′i), lT =
m∑
i=1

abs(T′i) (4.8)

where i = 1, · · · ,m is the index of points. (4.8) indicates that each element in the localizability
vector is the sum of absolute values of each row in F′ and T′, respectively.

A closer look at (4.2), (4.3) and (4.8) gives a more natural and intuitive interpretation. As il-
lustrated in Fig. 4.2, we can interpret the position constraints as forces in the direction of ni
(ignoring the signs) and the orientation constraints as torques in the direction of ri×ni. Now the
F and T are collections of wrenches (forces and torques) restraining the translation and rotation
of the robot. Aligning with this picture, well-conditioned F and T indicate a frictionless force-
closure, which is a term used in the field of manipulation mechanics to describe a solid grasp of
an object. The characterization of a frictionless force-closure is to check whether the row vectors
in F and T span the space of R3 [102]. Interestingly, this shares a similar idea of identifying
degeneration using small eigenvalues. Furthermore, we can interpret the physical meaning of
the localizability as the magnitude of accumulated virtual forces and torques gained from the
measurements to restrain the robot pose.

4.3.2 Localizability of UWB Ranging

The Ultra-Wideband (UWB) sensor measures the distance from the anchor (attached to the envi-
ronment) to the target (attached to the robot). Assuming the target is located at the origin of the
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Figure 4.3: Sensor fusion system overview. The green blocks indicate pipeline to process the
UWB measurements and is described in detail in this chapter. The red and orange blocks are
pipelines of the ESKF and LiDAR fusion respectively.

robot body frame, we get the constraint equation

C(x,R, γ) = ||x− xa||2 − ||γ||2 = 0 (4.9)

where xa ∈ R3 is the anchor position in the environment and γ ∈ R is the measured range.
Following similar procedures, we obtain the force matrix F for the UWB

F =
x− xa
γ

(4.10)

(see Appendix A.2 for more details). Again, F can be treated as a collection of unit forces. In
fact, there is only one column in F and thus represents a single force in the direction from the
anchor to the target. The force is later projected into the previously derived eigenspace to be
compared with the LiDAR localizability. On the other hand, since the sensor does not provide
any information about the orientation, the torque matrix T is trivially zero:

T = 0 (4.11)

4.4 Probabilistic Fusion of LiDAR and UWB

The fusion of IMU, LiDAR and the UWB is based on the Error State Kalman Filter (ESKF)
framework presented in Chapter 3. An ESKF is very similar to the well-known Extended Kalman
Filter (EKF), except it models the system dynamics in error states, which is beneficial when
linearizing the system [134].

Here we briefly revisit the process of the ESKF filtering algorithm. In the ESKF, the IMU
measurements are integrated over time to predict the robot states. And the laser scans are matched
to the prior map to recover a 6D pose measurement which is further used to update the prediction.
Different from the LiDAR, the UWB ranges are converted to a 3D position measurement since
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Figure 4.4: An illustration of the GPF in 2D. Grey ellipse: uncertainty of prior belief. Dark
red ellipse: the uncertainty of posterior. Light red ellipse: uncertainty of the recovered position
measurement. The color of a particle encodes its weight with darker color corresponds to a
higher weight.

the UWB doesn’t contain any orientation information. After that, the recovered position is used
to update the prediction similarly. Note that the update rate from LiDAR and UWB is different
and depends on the data frequency. Fig. 4.3 depicts the pipeline adapted to handle both LiDAR
and UWB measurements. In this section, we elaborate on the pipeline to process UWB data.
More details of handling LiDAR measurements can be found in the previous chapter.

Specifically, a Gaussian Particle Filter (GPF) is used to convert the UWB ranges to a pose mea-
surement as in [22]. Fig. 4.4 illustrates the process of GPF using a 2D example. First, a set of par-
ticles {xi ∈ R3|i = 1, 2, · · · , N} are drawn based on the position partition (x̄, Σ̄) ∈ (R3,R3×3)
of the full prior belief which consists of position, orientation, velocity and so on. Additionally,
each particle is assigned with a weighting factor

wi = exp

[
−
(
||xi − xa|| − γ

σ

)2
]

(4.12)

where σ is the ranging noise of the UWB and is tuned by hand in the experiments. This weighting
factor measures how likely is each particle to be the true state. After that, the position posterior
(x,Σ) is found by computing the weighted mean and covariance of the set

x =

∑
iwixi∑
iwi

(4.13)

Σ =

∑
iwi(xi − x)(xi − x)T∑

iwi
(4.14)

With the prior and the posterior belief in hand, we differentiate them to recover a position mea-
surement (x̃, Σ̃) ∈ (R3,R3×3)

(x̃, Σ̃) = (x,Σ)	 (x̄, Σ̄) (4.15)
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by inversing the Kalman update step

x̃ = K−1(x− x̄) + x̄ (4.16)

Σ̃ = (Σ−1 − Σ̄
−1

)−1 (4.17)

where K is the Kalman gain computed as

K = Σ̄(Σ̄ + Σ̃)−1 (4.18)

Here the observation matrix is an identity and hence omitted. Finally, (x̃, Σ̃) is used to update
the full state in the ESKF.

4.5 Experiments

4.5.1 Experiment Overview

Figure 4.5: Left: The Smith Hall tunnel at CMU with the UWB anchor board placed on the
ground. Right: The customized DJI M100 quadrotor.

Experiments are carried out inside the Smith Hall tunnel at CMU (shown in Fig. 4.5). The tunnel
is of size 35m× 2.4m× 2.5m (l × w × h) with pipes on both sides. The prior map is obtained
by aligning multiple local scans along the tunnel. The robot (see Fig. 4.5) is a customized DJI
Matrice 100 quadrotor. It has a rotating Hokuyo UTM-30LX-EW LiDAR (40Hz, 30m range), a
Microstrain IMU (100Hz), a Pozyx UWB target board (100Hz, 100m range with clear line-of-
sight), and a DJI Manifold computer (2.32GHz). Note that the Hokuyo LiDAR is mounted on a
continuously rotating motor (180◦/sec) and the laser scan is projected into the robot body frame
using the encoder angles. There are other sensors such as GPS, compass and a gimbal camera
that are not used in this work.

4.5.2 Localizability in Tunnels

The LiDAR localizability is evaluated at 20 evenly sampled places along the tunnel (as shown
in Fig. 4.6). Firstly, we define the map frame with x pointing along the tunnel and z pointing
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Figure 4.6: Top: The LiDAR localizability along the tunnel. The upper plot is a top-down view
of the pre-built map where the ground and ceiling points are cropped and the color encodes
the height of remaining points. The red-green (x-y) frames indicate the 20 sampled positions.
Bottom: A comparison of position localizability of the LiDAR and the UWB. The red dot marks
the position of the UWB anchor in the tunnel.

downward. Secondly, to simulate the measurements at each place, 4000 points are sampled
uniformly within the range of 15 meters. We choose 4000 because that is about the amount of
downsampled laser points used for localization per 180◦ rotation of the motor. And the effective
range of LiDAR is decreased since distant points have nearly 90◦ reflection angle resulting in
unreliable measurements. Then, at each point, a local surface is estimated by fitting a plane to
its 20 nearest neighbors. Finally, using Eqn. 4.2-4.8, the localizability vector can be computed.
The computation is repeated 10 times with a different set of points and results are averaged. Fig.
4.6 shows a top-down view of the sampled poses and their localizability. In order to show the
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strength of the localizability clearly in the comparison, the values are scaled as

li =
li∑
i li

(i = 1, 2, 3) (4.19)

It can be observed that the position and orientation localizability along the x-axis is significantly
smaller than the other two dimensions. This is because the position x is ambiguous along the
tunnel except at the right end where a vertical wall restrains the position. Additionally, since
the tunnel has an arc ceiling and almost identical width and height, the roll angle cannot be
effectively constrained by LiDAR measurements. Fortunately, the orientation can be directly
measured by the IMU thus roll angle is well-constrained after sensor fusion.

It’s also worth mentioning that the x-axis of the eigenspace is parallel to that of the body frame
(see Fig. 4.7). That is because the x-axis in the body frame is actually the degenerated direction.
However, that is not necessarily the case for y and z if there is no significant difference in their
constraint strength.

Figure 4.7: An example of the eigenspace obtained from the 1st sampled place (near the left end
of the tunnel). x-,y- and z-axis define the robot body frame. Left: The eigenspace of FFT . Right:
The eigenspace of TTT .

Considering the UWB, we project the force matrix into the fore-mentioned eigenspace, evaluate
the localizability, and compare that with the LiDAR (see the bottom plot of Fig. 4.6). It is easy
to see that the UWB compensates for the LiDAR localizability along the x-axis, which means
fusing the two sensors will make the estimation problem well-constrained. However, we observe
a decrease in localizability in x near the anchor. This is a singular point where only position y
and z are measured. Theoretically, additional anchors are needed to solve this issue. In practice,
the singular point does not cause failure since the time of being under-constrained is short. Once
the robot passes this position, the localizability in x increases and the robot can be localized
again.

4.5.3 Tunnel Localization Test

The localization test is conducted by manually flying the robot from the map origin to the other
end of the tunnel with an average speed of 0.7m/s. The UWB anchor board is placed a priori
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Figure 4.8: Up: A comparison of estimated trajectories with/without fusion of the UWB ranging
data. Middle: The ground truth map is built by matching multiple local scans using the ICP
algorithm. Bottom: The reconstructed map is assembled by laser scans with estimated poses.

and its location is measured in the pre-built map. In this experiment, we control the usage of the
UWB ranging data and compare the localization performance. When the UWB is disabled, the
localization starts to drift shortly after the robot takes off. When the UWB ranging data is fused
with LiDAR, the robot is able to successfully localize itself throughout the whole flight.

Fig. 4.8 shows the estimated trajectories, the prior map and the reconstructed map. Since the
localization accuracy is difficult to measure without a motion capture system, we use the re-
constructed map to qualitatively evaluate estimation accuracy. Although the reconstructed map
shows larger noise than the prior map, structures on the sidewall are recovered, which indicates
the localization is correct.

4.6 Conclusion and Discussion

In this chapter, we present a novel geometric degeneration modeling method that encodes the
sensitivity of measurements w.r.t. robot poses. We find a geometric analogy between the fric-
tionless force-closure characterization and our localizability model, which helps to explain its
physical meanings. Additionally, it is shown that the LiDAR and the UWB ranging sensor are
complementary in terms of localizability and the presented fusion method is demonstrated to
allow for robust localization inside real geometrically degenerated tunnels.

Additionally, there are several issues related to this work worth further discussion and potentially
open directions for future research:

• Local and global ambiguity. The concept of localizability discussed in this work can be
understood as the ambiguity that happens locally around the robot. Therefore, we can
apply the idea of perturbation to access the strength of constraints. On the other hand, we
realize a different type of ambiguity exists on a global scale. For instance, two identical
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rooms may confuse the robot which tries to localize itself in the map. Our concept of
localizability does not apply to this type of situation.

• The connection between localizability and uncertainty. It is shown in the experiment that
the localizability matches the localization error, thus could be treated as a measure of pose
uncertainties. Although the computed localizability may not be suitable for being used as
uncertainty directly since it is up to a scale, the analysis still generates rich information for
accessing the quality of maps and measurements for localization.

• The analogy of frictionless force-closure is an interesting finding of this work. It implies
that the estimation problem in SLAM could have rich physical meanings, which can lead
to the development of new understandings and methods.

• The roles played by the data points in estimation problems seem to be separable. Through
the localizability analysis in the tunnel experiments, we learned that data points at dif-
ferent places contribute separately to the estimation problem. For example, points on the
ground provide strong constraints to the height estimation but weak constraints to other
dimensions. This observation brings up an interesting question: if one dimension of an
estimation problem is relatively over-constrained, can we reduce the number of measure-
ments for sparsity? Or the reversed question: if one dimension is under-constraint, can
we increase the importance of data points relevant to that dimension? In the case of a
tunnel, this suggests a similar idea as in [51], isolating a small number of critical points to
constraint the position along the tunnel.

• Finally, the localizability analysis offers an insight into complementary sensing, suggesting
that designing a multi-sensor system could be more efficient if the sensing capacities are
well-coordinated. For example, instead of deploying many UWB beacons in the tunnel,
we can use only one pair of UWB to specifically constrain the degenerated dimension.
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Chapter 5

Joint Optimization for Dense
Reconstruction

In previous chapters, we have discussed how to achieve real-time pose estimation using LiDAR
and IMU, and proposed the localizability model to predict potential failures in degenerated en-
vironments. From this chapter, we switch our focus from online real-time estimation to offline
mapping. From a practical perspective, our goal is to build a textured and accurate 3D model
that can assist humans for inspection.

The rest of this chapter is organized as follows: Section 5.1 defines the dense reconstruction
problem. Section 5.2 reviews prior works related to LiDAR-camera fusion and calibration. Sec-
tion 5.3 describes the proposed method in detail. Experimental results are shown in Section 5.4.
Conclusions and future work are discussed in Section 5.5.

5.1 The Dense Mapping Problem

Our goal is to build accurate dense 3D models by fusing multiple frames of LiDAR and camera
data as shown in Fig. 6.9. The LiDAR scans 3D points on the surface of an object and the
acquired data are accurate in range and robust to low-texture conditions. However, the LiDAR
data contain limited information of texture (only intensities) and are sparse due to the physical
spacing between internal lasers. Differently, a camera provides denser texture data but does not
measure distances directly. Although a stereo system measures the depth through triangulation,
it may fail in regions of low texture or repeated patterns. Those complementary properties make
it attractive to fuse LiDAR and cameras for building dense textured 3D models.

The majority of proposed sensor fusion algorithms typically augment the image with LiDAR
depth. Then the sparse depth image may be upsampled to get a dense estimation, or used to fa-
cilitate the stereo triangulation process. However, we observe two drawbacks of these strategies.
The first one is that depth augmentation requires extrinsic sensor calibration, which, compared
to the calibration of stereo cameras, is less accurate since matching structural and textural fea-
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Figure 5.1: A customized LiDAR-stereo system is used to collect stereo images (only left images
are visualized) and LiDAR point clouds. Our algorithm estimates the camera poses, generates a
textured dense 3D model of the scanned specimen and a point cloud map of the environment.

tures can be unreliable. The second drawback is that the upsampling or LiDAR-guided stereo
triangulation techniques assume the geometry is smooth locally, which becomes invalid if the
actual depth is too sparse. The accuracy of fused depth map is hence decreased, which may still
be useful for obstacle avoidance, but not ideal for the purpose of mapping.

Additionally, although LiDAR-camera fusion techniques have also been used for state estima-
tion, the resulting pipelines are usually designed to separately process the raw sensing data such
that the information is abstracted to reduce the computational cost. However, one drawback of
this strategy is the compounding errors accumulated and propagated through different compo-
nents of the pipeline. For instance, biased motion constraints due to false feature matches are
passed to the back-end of SLAM and could be difficult to remove. Therefore, instead of separate
components, a joint or batch strategy might make more sense in cases where efficiency can be
traded off for improved accuracy.

Based on the above discussion, our problem in this chapter can be stated as follows:

Given LiDAR and camera measurements, design algorithms that consistently combine dif-
ferent sensing capacities to produce dense accurate 3D maps.

In this work, we choose to use a rotating LiDAR with a wide-baseline, high-resolution stereo
system to increase the density of raw data. Moreover, we aim to recover the extrinsic calibration
simultaneously.
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5.2 Related Work

LiDAR-camera fusion: For the purpose of motion estimation and mapping, available fusion
algorithms are mostly designed for LiDAR-monocular or LiDAR-stereo systems and assume the
extrinsic transform is known. For a LiDAR-monocular system, images are often augmented with
the projected LiDAR depth. The fused data can then be used for multiple tasks. For example,
Dolson et al. [40] upsample the range data for the purpose of safe navigation in dynamic environ-
ments. Bok et al. [18] and Vechersky et al. [147] colorize the range data using camera textures.
Zhang and Singh [154] show significant improvement in the robustness and accuracy of the vi-
sual odometry if enhanced with depth. For LiDAR-stereo systems [71][95][92][32], LiDAR is
typically used to guide the stereo matching algorithms since a depth prior could significantly
reduce the disparity searching range and help to reject outliers. For instance, Miksik et al. [95]
interpolate between LiDAR points to get a depth prior before stereo matching. Maddern and
Newman [92] propose a probabilistic framework that encodes the LiDAR depth as prior knowl-
edge and achieves real-time performance. Additionally, in the area of surveying [101][104][1],
point clouds are registered based on the motion estimated using cameras. Our work in this chap-
ter differs from these works in that the LiDAR data and camera data are not fused directly to
create the 3D map. Instead, we use LiDAR data to refine the stereo reconstruction after the
calibration is recovered.

LiDAR-camera calibration: For extrinsic calibration, available methods can be roughly catego-
rized according to the usage of a target. For example, a single [161] or multiple [50] chessboards
can be used as planar features to be matched between the images and point clouds. Besides,
people also use specialized targets, such as a box [116], a board with shaped holes [149] or a
trihedron [54], where the extracted features also include corners and edges. The usage of a target
simplifies the problem but is inconvenient when a target is not available. Therefore target-free
methods are developed using natural features (e.g. edges) which are usually rich in the envi-
ronment. For example, Levinson and Thrun [86] make use of the discontinuities of LiDAR and
camera data, and refine the initial guess through a sampling-based method. This method is suc-
cessfully applied to a self-driving car to track the calibration drift. Pandey et al. [109] develop
a Mutual Information (MI) based framework that considers the discontinuities of LiDAR inten-
sities. However, the performance of this method is dependent on the quality of intensity data,
which might be unreliable without calibration. Differently, [72][126][21] recover the extrinsic
transform based on the ego-motion of individual sensors. These methods are closely related to the
well-known hand-eye calibration problem [143] and do not rely on feature matching. However,
the motion estimation and extrinsic calibration are solved separately and the sensor uncertainties
are not considered. Instead, we try to construct a cost function that joins the two problems in a
probabilistically consistent way and optimizes all parameters together.

5.3 Joint Estimation and Mapping

In this section, we elaborate on the technical details of the proposed joint optimization framework
for fusing raw measurements from LiDAR and camera.
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Figure 5.2: A diagram of the proposed pipeline. In the observation extraction phase (front-end),
SURF features are extracted and matched across all datasets to build the landmark set L and
the camera observations Oc. On the other hand, point clouds are abstracted with BSC features,
and roughly registered to find cloud transforms Tl. Then point-plane pairs are found to build the
LiDAR observation set Ol. In the pose estimation and mapping phase (back-end), we solve the
BA problem and the cloud registration problem simultaneously. Here the Ol is recomputed after
each convergence based on the latest estimation Tc,Te and the optimization is repeated for a few
iterations. Finally, local stereo reconstructions are refined using LiDAR data and assembled to
build the 3D model.

5.3.1 Approach Overview

Before introducing the proposed pipeline, we clarify the definitions used in this chapter. An
image landmark l ∈ R3 is defined as a 3D point that is observed in at least two images. Then a
camera observation is represented by a 5-tuple oc = {i, k,u, d, w}, where the elements are the
camera id, the landmark id, image coordinates, the depth and a weight factor of the landmark,
respectively. In addition, a LiDAR observation is defined as a 6-tuple ol = {i, j,p,q,n, w} that
contains the target cloud id i, the source cloud id j, a key point in the source cloud, its nearest
neighbor in the target cloud, the neighbor’s normal vector and a weight factor. In other words,
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one LiDAR observation associates a 3D point to a local plane and the point-to-plane distance
will be minimized in the later joint optimization step.

The complete pipeline of proposed method is shown in Fig. 5.2. Given the stereo images and
LiDAR point clouds, we first extract and match features to prepare three sets of observations,
namely the landmark set L, the camera observation set Oc and the LiDAR observation set Ol.
The observations are then fed to the joint optimization block to estimate optimal camera poses
T ∗c and sensor extrinsic transform T∗e. Based on the latest estimation, the LiDAR observations
are recomputed and the optimization is repeated. After a number of iterations, the parameters
converge to local optima. Finally, the refinement and mapping block joins the depth information
from stereo images and LiDAR clouds to produce the 3D model. In the rest of this section, each
component is described in detail individually.

5.3.2 Camera Observation Extraction

Given a stereo image pair, we firstly perform stereo triangulation to obtain a disparity image
using Semi-Global Matching (SGM) proposed in [66]. The disparity image is represented in the
left camera frame. Then SURF [12] features are extracted from the left image. Note that our
algorithm itself does not require a particular type of feature to work. After that, a feature point is
associated with depth value if a valid disparity value is found within a small radius (2 pixels in
our implementation). Only the key points with depth are retained for further computation. The
steps above are repeated for all stations to acquire multiple sets of features with depth. Once the
depth association is done, a global feature association block is used to find correlations between
all possible combinations of images. We adopt a simple matching method that incrementally
adds new observations and landmarks to Oc and L. Algorithm 1 shows the detailed procedures.
Basically, we iterate through all possible combinations to match image features based on the
Euclidean distance of corresponding descriptors. L andOc will be updated accordingly if a valid
match is found.

Additionally, an adjacency matrix Ac encoding the correlation of the images can be obtained.
Since the camera FOV is narrow, it is likely that the camera pose graph is not fully connected.
Therefore, additional connections have to be added to the graph, which is one of the benefits of
fusing point clouds.

5.3.3 LiDAR Observation Extraction

Although many 3D local surface descriptors have been proposed (a review is given in [60]),
they are less stable and not accurate compared to image feature descriptors. In fact, it is prefer-
able to use 3D descriptors for rough registration and refine the results using slower but more
accurate methods such as Iterative Closest Point (ICP) [14]. Our work follows a similar idea.
Specifically, the Binary Shape Context (BSC) descriptor [41] is used to match and roughly reg-
ister point clouds to compute the cloud transforms Tl. As a 3D surface descriptor, BSC encodes
the point density and distance statistics on three orthogonal projection plane around a feature
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Algorithm 1: SURF Feature Association
1 Given feature sets F1:N from N stations;
2 for i = 1 : N do
3 for j = i+ 1 : N do
4 for f in Fi do
5 find the best match g in Fj;
6 if f and g NOT similar then
7 continue;
8 end
9 if f ,g both unlabeled then

10 create new landmark id k ← |L|;
11 label f ,g with id k;
12 add new landmark l with id k to L;
13 add new observations of ,og

1 to Oc;
14 else if f labeled, g unlabeled then
15 copy label from f to g;
16 add new observation og to Oc;
17 else if f unlabeled, g labeled then
18 copy label from g to f ;
19 add new observation of to Oc;
20 else
21 continue;
22 end
23 end
24 end
25 end
26 return Oc,L.

point. Furthermore, it represents the local geometry as a binary string which enables fast differ-
ence comparison on modern CPUs. Fig. 5.3-left shows an example of extracted BSC features.
However, feature-based registration is of low accuracy. As shown in the right plots of Fig. 5.3,
misalignment can be observed in the rough registered map. As a comparison, the refined map of
higher accuracy obtained by our method is also visualized.

After the rough registration, another adjacency matrix Al encoding matched cloud pairs is ob-
tained. We use the merged adjacency matrix Ac ∨ Al to define the final pose graph, where ∨
means element-wise or logic operation.

To obtain Ol, a set of points are sampled randomly from each point cloud as the key points.
Note that the key points to refine the registration are denser than the features. For each pair of
connected clouds in Al, the one with a smaller index is defined as the target while the other one
as the source. Then each key point in the source is associated with its nearest neighbor and a
local normal vector in the target within a given distance threshold. Finally, all point matches are
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Figure 5.3: Left: An example of extracted BSC features (red) from a point cloud (grey). Middle:
Registered point cloud map based on matched features. Right: Comparison of rough registration
(top-right) and refined registration (bottom-right) in a zoomed-in window.

formatted as a LiDAR observation and stacked into Ol.

5.3.4 Joint Optimization

Given the observations Oc and Ol, we first formulate the observation likelihood as the product
of two probabilities

P (Oc,Ol|T ,L,Te) = P (Oc|T ,L)P (Ol|T ,Te) (5.1)

where T = {Ti|i = 1, 2, · · · } is the set of camera poses with T1 = I4, and Te is the extrinsic
transform. Assuming the observations are conditionally independent, we have

P (Oc|T ,L) =
∏

oc∈Oc

P (oc|Ti, lk) (5.2)

P (Ol|T ,Te) =
∏

ol∈Ol

P (ol|Ti,Tj,Te) (5.3)

where i, j are camera ids and k is the landmark id, which are specified by observation oc or ol.
The probability of one observation is approximated with a Gaussian distribution as

P (oc|Ti, lk) ∝ exp

(
−1

2
woc(E

2
f + E2

d)

)
(5.4)

P (ol|Ti,Tj,Te) ∝ exp

(
−1

2
wol

E2
l

)
(5.5)

where woc , wol
are the weighting factors of camera and LiDAR observations. And the residual

Ef and Ed encode landmark reprojection and depth error, while El denotes the point-to-plane
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distance error. Those residuals are defined as

feature: Ef =
||φ(lk|K,Ti)− u||

σp
(5.6)

depth: Ed =
‖ψ(lk|Ti)‖ − d

σd
(5.7)

laser: El =
nT (ψ(p|Tl,ij)− q)

σl
(5.8)

Here, u and d are observed image coordinates and depth of landmark k. Tl,ij = (TeTi)
−1TjTe

is the transform from target cloud i to source cloud j. Function φ(·) projects a landmark onto
the image i specified by input intrinsic matrix K and transform Ti. Function ψ(·) transforms a
3D point using the input transformation. σp, σd and σl denote the measurement uncertainties of
extracted features, stereo depths and LiDAR ranges, respectively.

Substituting (5.2)-(5.8) back into (5.1) and taking the negative log-likelihood gives the cost func-
tion

f(T ,L,Te) =
1

2

∑
oc

woc

(
E2
f + E2

d

)
+

1

2

∑
ol

wol
E2
l (5.9)

which is iteratively solved over parameters T ,L,Te using the Levenberg-Marquardt algorithm.

To filter out incorrect observations in both images and point clouds, we check the reprojection
error ||φ(lk|K,Ti) − u|| and depth error ‖ψ(lk|Ti)‖ − d of camera observations and check the
distance error nT (ψ(p|Tl,ij)− q) of LiDAR observations after the optimization converges. The
observations whose errors are larger than prespecified thresholds will be marked as outliers and
assigned with zero weights. The cost function (5.9) is optimized repeatedly until no more outliers
can be detected. The thresholds can be tuned by hand and in the experiments we use 3 pixels,
0.01m and 0.1m respectively.

Similar to the ICP algorithm, theOl is recomputed based on the latest estimation of Tc,Te, while
the Oc remains unchanged. Once Ol is updated, the outlier detection and optimization steps are
repeated as mentioned above. The Ol only needs to be recomputed a few times (4 times in our
experiments) to achieve good accuracy.

Additionally, the strategy of specifying the uncertainty parameters is as follows. Based on the
stereo configuration, the triangulation depth error ed is related to the stereo matching error ep by
a scale factor as in ed = (d2/bf)ep, where b is the baseline, f is the focal length and d is the
depth. Assuming the uncertainties of feature matching and stereo matching are equivalent, we
have σd = (d2/bf)σp. Therefore, we can now set σp to be the identity (i.e. 1) and set σd by
multiplying the scale factor. On the other hand, the value of σl is tuned by hand so that the total
cost of camera and LiDAR observations are roughly at the same magnitude. In the experiments,
setting σp = 1, σd = 5× 103 and σl between [0.02, 0.1] can generate sufficiently good results.

5.3.5 Fused Mapping

With the camera poses estimated, building a final 3D model could be simply registering all stereo
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Figure 5.4: An example of refining the stereo depth. The outliers are first filtered out by limiting
its difference to the LiDAR depth within a maximum range threshold. Then the holes are filled
with the surrounding LiDAR depth only if the local surface has a near-zero curvature.

point clouds together. However, the stereo depth maps typically contain outliers and holes due
to triangulation failure. In order to refine the stereo depth maps, we further perform a simple
but effective two-fold fusion of LiDAR and camera data for each frame or station. In the first
fold, the stereo depth is compared with the projected LiDAR depth and will be removed if there
is a significant difference. In the second fold, LiDAR depth is selectively used to fill holes in
the stereo depth. Particularly, we only use the regions that are locally flat (such that the local
smoothness assumption is valid), and well observed (avoiding degenerated view angle). The
curvature of the local surface is used to measure the flatness. And the normal vector is used to
compute the view angle. Fig. 5.4 shows an example of refining the stereo point cloud. It can
be observed that holes lying on a flat surface can be filled successfully, while the missing points
close to the edges are not treated to avoid introducing new outliers.

5.3.6 Conditions of Uniqueness

The proposed approach relies on the ego-motion of individual sensors to recover the extrinsic
transform Te, making it possible that Te is not fully observable if the motion degenerates. It turns
out to be the same problem encountered in hand-eye calibration, where the extrinsic transform
between a gripper and a camera is estimated from two motion sequences. Here we discuss
conditions for a fully observable Te by borrowing knowledge from the hand-eye calibration,
whose classical formulation is given by

TcTe = TeTh (5.10)

where Th,Tc represent the relative motion of the hand and the camera w.r.t. their own original
frames. Incorporating multiple stations will result in a set of (5.10) and then Te can be solved.
According to [143], the following two conditions must be satisfied to guarantee a unique solution
of Te:

1. At least 2 motion pairs (Tc,Th) are observed. Equivalently, at least 3 stations are needed,
with one of them to be the base station.

2. The rotation axes of Tc are not colinear for different motion pairs.
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Figure 5.5: The sensor pod developed for data collection.

In our case, the robot hand frame is substituted by the LiDAR frame. Therefore, the configura-
tion of each station must also satisfy the above conditions of uniqueness. This provides formal
guidance to collect data effectively. From our experience of deploying the developed system, an
operator without adequate background knowledge in computer vision, particularly in structure
from motion, is likely to miss the second condition and only rotates the sensor about the vertical
axis, which will make the extrinsic calibration unobservable.

5.4 Experiments

5.4.1 The Sensor Pod

To collect data for experiments, we developed a sensor pod (as shown in Fig. 5.5) which has a
pair of stereo cameras (global shutter, resolution 4112× 3008, baseline 38cm), a Velodyne Puck
(VLP-16), an IMU and a thermal camera. This work only uses the stereo image pairs and LiDAR
clouds for reconstruction. Particularly, the VLP-16 is mounted on a continuously rotating (180◦

per second) motor to increase the sensor FOV.

The calibration between the involved sensors are performed separately. We use the OpenCV
library [20] to obtain camera intrinsic and extrinsic parameters. The transform between the motor
and the LiDAR frame is obtained by placing the sensor pod in a conference room, and carefully
tuning the transform until the accumulated points on walls and ceiling form thin surfaces in the
fixed motor base frame. From now on, we use the term LiDAR frame to denote the fixed motor
base frame instead of the actual rotating Velodyne frame, and assume all point clouds have been
transformed into the LiDAR frame.

58



Figure 5.6: Built point cloud model of the T-shaped specimen.

Figure 5.7: Top: Estimated camera poses (numbered in the order of capture) and visual land-
marks (blue points). We follow the convention to define camera frame z (blue) forward, y (green)
downward. Bottom: Pose graph connections from images (blue) and poing clouds (gray)

5.4.2 Reconstruction Tests

The first reconstruction test is carried out at the Shimizu Institute of Technology in Tokyo to
scan a T-shaped concrete specimen that is under structural tests. In total, 25 stations of data are
collected around the specimen at a distance of about 2.5 meters. Each station contains a stereo
image pair, a point cloud that accumulates scans for 20 seconds and contains approximately 1.6
million points. For station 1-17, the sensor pod is placed on a tripod and pointed to the specimen.
Station 18-25 are collected with the sensor pod on the ground, tilted up to capture the bottom of
the specimen. Fig. 5.6 shows the reconstructed model and Fig. 5.7 visualizes the camera poses
and landmarks. In the lower plots of Fig. 5.7, correlations found between images (blue lines) and
point clouds (grey lines) are visualized. Since the cameras have narrow FOV (48◦ horizontal), it
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Figure 5.8: From top to bottom, the results of three tests are visualized: a squared pillar (top), a
cylinder pillar (middle) and a bridge pillar (bottom). From left to right, we visualize the camera
poses and landmarks (blue points), a sample of the image data, complete LiDAR point cloud,
overlaid LiDAR and stereo point cloud, dense stereo point cloud.

Table 5.1: Dataset and Model Statistics

Datasets
Stations
(Frames)

# of LiDAR
points (×106)

# of stereo
points (×106)

Error
(mm)

T-shaped 25 32.4 78.4 N/A
squared 29 39.1 210.3 2.7
cylinder 54 66.5 111.7 N/A
bridge 32 38.6 168.7 3.9

is likely that adjacent images don’t have enough overlap, which makes the pose graph not fully
connected. Fortunately, LiDAR clouds have much wider FOV and therefore guarantees a fully
connected graph.

As to the computation statistics, we provide a rough measure of the processing time of the major
components. On a standard desktop (i7-3770 CPU, 3.40GHz×8), it takes less than 2min to
remove vignetting effects and triangulate a stereo pair (40-50min for the whole dataset). The
feature-based cloud registration takes about 15min in total and the joint pose estimation and map
refinement can be finished in about 15min and 20min respectively.

In addition to the T-shaped specimen, we tested our algorithm in different environments, where
the shapes of reconstructed objects vary from simple squared and cylinder pillars to more com-
plex bridge pillars (see Fig. 5.8). Table 5.1 summarizes the model statistics. The averaged error
is obtained by comparing to a ground truth model and more details are provided in Section 5.4.
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(a) Raw image (b) Edges (c) Edge score (d) Initialization

(e) Edge alignment after calibration using [86]

(f) Edge alignement after joint optimization

Figure 5.9: (a)-(d) The key steps of [86]. (e)-(f) Comparison of extrinsic calibration results from
[86] (e) and ours (f). The color of projected cloud edge points encodes the correlation score:
yellow means high while red means low.

Figure 5.10: Cutaway view of the overlaid LiDAR clouds (white) and stereo clouds (textured).
Left: Jointly optimized. Right: Calibrated using [86].

5.4.3 LiDAR-Camera Calibration

In this section, we evaluate the accuracy of the recovered extrinsic transform. As a comparison,
we implemented a target-free calibration method [86] which uses discontinuities in images and
point clouds to iteratively refine an initial guess. The key steps of this method are shown in
Fig. 5.9a-d. Basically, the initial guess is perturbed in each dimension (x, y, z, roll, pitch, yaw)
separately and then moved towards the direction that increases the correlation between image
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Figure 5.11: Changes of cost values w.r.t. perturbed extrinsic transform. From left to right,
the three columns show the cost changes in three tests: with rotation fixed, with rotation about
one axis, and with rotation about two axes. Within each test, translation (top plots) and rotation
(bottom plots) perturbations are visualized separately.

edges and projected cloud edges. Eventually, a locally optimal solution can be found if any
further changes will decrease the edge correlation.

Since it is difficult to get ground truth calibration, we choose to compare the extrinsic parameters
computed from two methods. The extracted point cloud edges are projected on to the image
plane and the projection is visualized in Fig. 5.9e and 5.9f. However, the edges are both well
aligned and no obvious difference can be identified. We then compare the overlay of LiDAR
clouds and stereo clouds (see Fig. 5.10). It can be observed that with our results, the models
are aligned consistently while there exists an offset if calibrated using [86]. Further investigation
shows that the offset happens along the camera’s optical axis, in which direction the motion will
generate less flow on the image. As a result, the total correlation score becomes less sensitive
to the motion of the LiDAR along the optical axis. This observation suggests that calibration
methods using direct feature alignment, including target-based and target-free, may require wide
angle lenses.

5.4.4 Observability of Extrinsic Transform

The uniqueness conditions stated in Section 5.3 basically requires the sensor pod to change its
position and orientation for different stations. In this section, we aim at providing more intuition
behind the formal statements. Specifically, the conditions are experimentally demonstrated by
perturbing the extrinsic parameters around their optimal values. Three tests are designed to
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Figure 5.12: Comparing the reconstructed models with the ground truth model built by the FARO
scanner. On the left are visualizations of the ground truth model and the distance map of recon-
structed models, where the color encodes the distance error between two point clouds. On the
right are the distance histograms corresponding to each comparison and the averaged errors are
marked by the red vertical bar.

clarify the situations of degeneration.

Rotation is fixed: In this case, the sensor pod is placed at 3 different positions but keeps its
orientation unchanged. Specifically, station 1-3 are used for optimization. The total cost after
the perturbation is visualized in the left 2 plots of Fig. 5.11. It can be seen that perturbing the
translation won’t affect the cost value at all, meaning unobservable. Besides, since the 3 frames
are almost collinear, the pitch angle is also under-constrained (flat orange curve).

Rotation about one axis: In this case, stations 1-17 are used, where the sensor pod is placed
around the T-shaped specimen and all rotations are about the camera’s y-axis. As shown in the
middle plots of Fig. 5.11, position y is under-constrained.

Rotation about two axes: For reference, we show the perturbed cost with all 25 available
datasets in the right plots of Fig. 5.11. In this case, the rotations can be about x- or y-axis.
As expected, the extrinsic transform is well constrained.

5.4.5 Model Accuracy Evaluation

Since the ground truth data are not available during the test in Tokyo, we evaluate the reconstruc-
tion accuracy on the squared concrete pillar instead. A FARO FOCUS3D scanner (see Fig. 5.12)
with ±3mm range precision is used to obtain the ground truth. The comparison is performed by
measuring the point to plane distance between the reconstructed model and the ground truth af-
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ter precise ICP registration. Furthermore, we compare the results of three models reconstructed
using: (1) stereo images only (standard stereo BA), (2) both LiDAR and stereo data but extrin-
sic calibration is pre-calibrated using [86], and (3) both LiDAR and stereo data with extrinsic
calibration being adjusted jointly (proposed in this work). Comparisons (1) and (2) share the
same cost function in (3). However, in comparison (1) LiDAR observations are set to have zero
weights and Te is fixed, and in comparison (2) only Te is fixed during optimization.

The error maps and histograms are visualized in Fig. 5.12. It can be observed that fusing LiDAR
data helps to reduce the model error from 6mm to 2.7mm, which already lies in the precision
range of the ground truth. In fact, due to the limited number of matches between some im-
age frames, the pure image-based model does not align well, resulting in multiple layers of the
surface. Compared with the pre-calibrated case, jointly optimizing the calibration improves the
overall model accuracy and we also benefit from the convenience of self-calibration. Addition-
ally, since our model is reconstructed from multiple sets of data and each station is collected
close to the wall (2-3 meters), it measures about 70 points/cm2, which is much denser than the
ground truth (10-15 points/cm2). The evaluation results are obtained using the CloudCompare2

software.

5.5 Conclusion and Discussion
In this work, we present a joint optimization approach to fuse LiDAR and camera for pose es-
timation and dense reconstruction. It is shown to be able to build dense 3D models and recover
camera-LiDAR extrinsic transform accurately. Besides, the accuracy of the reconstructed model
is evaluated by comparing it to a ground truth model and it shows our method can achieve accu-
racy similar to a survey scanner.

This study shows that the joint motion estimation effectively avoids unreliable direct matching
between different domains. However, it does not suggest that the LiDAR and camera data should
not be correlated in the front end. Therefore, how to further leverage the given LiDAR and
camera data in an early fusion fashion becomes an interesting question to explore, which will be
the focus of Chapter 6.

Another lesson learned from this work is understanding sensing models from the perspective of
observability w.r.t. the unknowns. For example, the discussion of extrinsic calibration unveils
the correlation between the calibration accuracy and the amount of optical flow caused by motion
along the optical axis. This idea is similar to the concept of localizability in Chapter 4 in that
it uses the strength of constraints to evaluate whether an unknown variable is well-observed or
tightly constrained.

Finally, we recognize that the performance of this work in large-scale reconstruction tasks re-
mains unclear. The reported results support our argument for building locally dense and accurate
models, but leave large-scale reconstruction undiscussed. The fact is, to ensure robust perfor-
mance for larger environments (e.g., a real bridge or tunnel), one needs to consider many new
challenges relating to system stability, which will be further discussed in the next chapter.

2CloudCompare: https://www.cloudcompare.org/
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Chapter 6

LiDAR-enhanced Structure from Motion

In Chapter 5, we discussed dense reconstruction through a joint optimization based on raw Li-
DAR and camera measurements. Although the reconstructed models offer high density and
accuracy, the proposed pipeline can be fragile in more complicated real-world scenarios. For
example, false visual feature matches could corrupt the final dense model. Therefore, in this
chapter, we investigate the techniques to robustify the dense mapping pipeline. More specifi-
cally, we switch our thoughts from multi-sensor fusion to Structure from Motion (SfM), and try
to cast the dense mapping problem into the SfM framework. One reason is that the techniques
developed to improve robustness for large-scale SfM problems are readily applicable in our task.
Additionally, the previously presented joint optimization framework could be integrated to SfM
conveniently as the final batch optimization step.

The remaining of this chapter is structure as follows: In Section 6.1, we define the problem to be
addressed. In Section 6.2, we review the literature on SfM and the combination of LiDAR and
cameras for dense reconstruction. Then Section 6.3 describes the proposed pipeline in detail.
Experimental results are shown in Section 6.4. Conclusions are discussed in Section 6.5.

6.1 The Dense Reconstruction Problem

As introduced in the previous chapter, high-resolution, narrow Field-Of-View (FOV) cameras are
used to capture rich texture details. This poses new challenges to standard SfM algorithms. First
of all, most available global or incremental SfM pipelines are based on a single camera, there-
fore, not recovering scale directly. More importantly, due to the limited FOV, the overlapped
area between adjacent images is reduced, which will result in a pose graph that is only locally
connected and jeopardize the accuracy of estimated motions. Finally, although there exist meth-
ods that adopt SfM to depth sensors, such as RGB-D cameras and structured light devices, they
are not quite suitable for large-scale outdoor applications where long-range LiDAR sensors are
used. In the specific settings of inspection, we state the dense reconstruction problem as follows:

65



Given measurements from the LiDAR and stereo cameras, develop robust algorithms to build
locally dense and globally consistent maps in large-scale real-world scenarios.

In this work, we propose a novel pipeline that extends the traditional SfM algorithm to work
with stereo cameras and LiDAR sensors. This work is based on the simple idea that LiDAR’s
long-ranging capacity can be used to restrain the relative motions between images. More specif-
ically, we first implemented a stereo SfM pipeline that computes the motions of the camera and
estimates the 3D positions of visual features (the structures). Then the LiDAR point clouds and
the visual features are joined in a single optimization function, solved iteratively to refine the
camera motions and structures. In our pipeline, the LiDAR data enhance the SfM algorithm in
two folds: 1) LiDAR point clouds are used to detect and reject invalid image matches, making
the stereo SfM pipeline more robust to visual ambiguities; 2) LiDAR point clouds are combined
with visual features in a joint optimization framework to reduce the motion drifts. With the two
folds of enhancement, our pipeline can achieve more consistent and accurate motion estimation
than the state-of-the-art SfM algorithms.

The contribution of this work can be summarized as follows: 1) We adapt the global SfM tech-
niques to a stereo camera system to initialize the camera motions in true scale. 2) LiDAR data
are used to verify image matches, further robustifying the pipeline. 3) We extend our previously
proposed joint optimization pipeline (in Chapter 5) by considering the shared structures of the
stereo camera and LiDAR, which improves the accuracy and consistency of built models.

6.2 Related Work

Structure from Motion: SfM has been an active research area over the past several decades.
Early works on self-calibration and reconstruction [96][13][45][36][114] lay the foundation for
the development of general purpose SfM tools. One of the earliest open-source tools Bundler,
also known as PhotoTourism [133], shows the ability to process a vast amount of online photos to
build large-scale 3D models. Since then, significant advancements have been achieved in works
such as Theia [137], VisualSFM [150], OpenMVG [100][99] and more recent COLMAP [127].
A comprehensive comparison of available SfM approaches is given in [15] which concludes
that COLMAP achieved state-of-the-art accuracy, robustness and completeness. Although many
approaches exist, the majority are targeted on the general-purpose reconstruction, which does not
take the special conditions of inspection into consideration. For instance, an inspection camera
may use long focal length and narrow FOV lens, limiting the overlap between images. This will
cause the camera pose graph only locally connected and thus is more likely subject to drifts.

Stereo State Estimation: Stereo pair is more popular in the robotics community for robot state
estimation, i.e. stereo visual odometry (stereo-VO). As one of the most fundamental components
of robot autonomy, stereo-VO algorithms typically adopt optimization-based approaches such as
[90] [85] [145], or filter-based approaches as in [112] and [136]. In addition to pure vision-
based methods, people have also been fusing the depth information from LiDAR for robust and
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Figure 6.1: The LiDAR-enhanced stereo SfM pipeline.

low-drift state estimation. A monocular camera combined with the LiDAR, as in [154] [55]
[132], is demonstrated to be able to provide real-time state estimation with true scale. In [10]
and [131], a stereo pair is used to robustify the state estimation. These applications typically use
wide-angle cameras and process incoming visual data incrementally for real-time performance.
Differently, our work focuses on achieving higher map accuracy through batch optimization and
higher robustness by LiDAR-aided visual outlier rejection.

6.3 LiDAR-enhanced SfM

The proposed pipeline takes a set of stereo image pairs and associated LiDAR point clouds as
inputs and generates 3D models of the covered environment in the format of triangulated visual
points and a merged LiDAR point cloud. Fig. 6.1 shows the procedures of our LiDAR-enhanced
SfM pipeline, which is described in detail in this section.

6.3.1 Correspondence Search

Given the stereo image pairs, computing the correspondences includes feature extraction, match-
ing and geometric verification. Firstly, we rely on the OpenMVG library to extract SIFT [89]
features from images. Then the features are matched exhaustively using the provided cascade
hashing method [31]. Finally, The found matches between two images are verified by check-
ing the two-view epipolar geometry. Specifically, the fundamental matrix F is estimated using
RANSAC and then used to check the epipolar error of matched features. Only geometrically
consistent features are kept for further computation.

6.3.2 Relative Motion Estimation

Since the stereo pair is pre-calibrated, we treat a pair of left and right images as an independent
unit, called a station. The pose of a station is defined as the pose of the left camera. To estimate
the relative motion, a standard stereo method relies on feature points that are observed by all
the four images in two stations, while we observe that many points are only shared by three
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or even two images. Ignoring those points could lose important information to estimate the
camera motion, especially in the case that images have limited overlap. Therefore, we choose to
explicitly handle different cases of shared views between two stations.

Figure 6.2: An example of regions for 2-view features. Left: The right image of one station;
Middle-Right: The left and right images of the neighbor station. The shared small regions are
close to the boundries and marked by red boxes.

Specifically, we consider feature points that are shared by at least 3 views to ensure metric recon-
struction. Although points with only 2 views could help to estimate the rotation and the direction
of translation, they are ignored here since those points typically come from small overlapped
regions as shown in Fig. 6.2. On the other hand, for 3-view or 4-view features, potential cases
are shown in Fig. 6.3. It is also possible that multiple types of shared features exist between
two stations. To simplify the problem, we choose the type with most correspondences to solve
the relative motion. In the case of 3-view, the points are first triangulated with the stereo pair
and then the RANSAC+P3P algorithm is used to solve the transform. In the case of 4-view, we
follow the standard treatment that first triangulates the points in the two stations and then applies
RANSAC+PCA registration algorithm to find the relative motion. In both cases, a non-linear
optimization procedure is used to refine the computed poses and triangulations by minimizing
the reprojection error of inliers. Finally, all poses are transformed to represent the relative motion
between left cameras.

6.3.3 Relative Motion Validation

Once the relative motions are found, a pose graph can be built with the nodes representing the
station poses and edges representing the relative motions. The global poses can then be solved
by averaging the relative motions on the pose graph. However, it is likely that invalid edges exist
due to visual ambiguities in the environment (see Fig. 6.4a and 6.4b) and directly averaging
relative motions could give incorrect global poses. Therefore, a two-step edge validation scheme
is designed to remove outliers.

In the first step, we check the overlap of LiDAR point clouds for all station pairs and reject
inconsistent ones. Specifically, two occupancy grids, namely the source grid Gs and target grid
Gt, are constructed from the corresponding point clouds. Each cell in the grids takes the value 1
if occupied, 0 if free, and−1 if unknown. Then for each occupied cell in Gs, we transform the its
center c ∈ R3 to the frame of Gt using the estimated relative motion (R, t) ∈ (SO(3),R3), and
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(a) i-j-k (b) i-j-l (c) i-k-l (d) j-k-l (e) i-j-k-l

Figure 6.3: Examples of shared features (grey dot) between two stations (red and blue circle
pairs). The colored bar indicates known stereo calibration. (a)-(d) 3-view; (e) 4-view.

check the cell state at that location. In order to quantify the consistency, we define a consistency
ratio as

rc =

∑
c∈{Gs(c)=1} I (Gt(Rc + t) = 1)∑

c∈{Gs(c)=1} I (Gt(Rc + t) 6= −1)
(6.1)

where I(·) is the indicator function that equals 1 if the argument is true, or 0 otherwise. The con-
sistency ratio measures how much the Gt agrees with Gs. In addition, we perform cross-checking
by switching the target and source grids and recompute the consistency ratio. A relative motion
is treated as valid only if both the ratios are larger than 0.6 (see Fig. 6.4c for an example of
inconsistent grids). Note this is a loose threshold since we encourage more pairs to remain for
completeness and rely on further checks to reject remaining outliers. Fig. 6.5a shows a 2D ex-
ample of checking the consistency of two occupancy grids. In the implementation, the Octomap
library [68] is used to efficiently iterate through occupied cells and look up the occupancy at a
query location.

As the second step of validation, we check the cycle consistency as in [98]. Specifically, we
check small cycles of length 3, namely triplets. Here small cycles are preferable since they are
easy to find and check. And more importantly, small cycles capture local information hence will
not be affected by accumulated drifts. Note that the triplet here is a collection of 3 stations instead
of images. As shown in Fig. 6.5b, we composite the relative motions TkiTjkTij ∈ SE(3) and
check the resulting angle and translation. 2◦ and 0.1m are used as thresholds to label a triplet
check as pass or not. For each relative motion, we keep track of its success rate rs defined as

rs =
# of passed checks

# of involved checks
(6.2)

and those with rs lower than 0.6 are treated as invalid. This threshold will be increased if invalid
motions still exist.

6.3.4 Global Pose Initialization

Given the set of valid relative motions E = {Tij ∈ SE(3)}, initializing the global poses T =
{Ti ∈ SE(3)} can be easily achieved by solving the pose graph (T , E) with relative motions
being the constrains. We first construct a maximum spanning tree (MST) from E where each
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(a) (b)

(c)

Figure 6.4: An example of invalid relative motion due to visual ambiguities. (a) Two pairs of
images are matched incorrectly due to the identical parking sign. (b) The corresponding point
clouds from the two stations with the signs marked by red boxes. (c) The merged occupancy grids
showing incorrect alignment (red ellipses). The consistency ratio, in this case, is 0.56 while it is
typically over 0.7 for valid relative motions.

edge is weighted by the number of feature correspondences. Then T can be constructed using
edges from the MST. Finally, all pairs in E are considered, and the following cost function is
used to optimize the poses in a global frame:

T = arg min
∑

Tij∈E

|| log(T−1
ij T−1

i Tj)||2 (6.3)

where the function log(·) : SE(3)→ R6 computes the twist vector of a rigid body transform.

6.3.5 RANSAC Triangulation

We adopt the robust triangulation approach proposed in [127] which uses RANSAC for each
3D feature point to find the best views for triangulation. For each track, which is a collection
of observations of one feature in different camera views, two views are sampled randomly and

70



(a) (b)

Figure 6.5: (a) A 2D example of checking the consistency of occupancy grids. The occupied
cells (labeled as 0-9, painted in blue) of the source grid are transformed into the target grid using
(R, t). Cells 2-8 are confirmed by the target grid while cell 9 is inconsistent. Therefore the
consistency ratio is computed as 7/8. (b) Transform-based cycle consistency checking.

the DLT method [62] is used to triangulate the point. By projecting the point onto other views
and selecting the ones with a small reprojection error, inlier views can be found. This process is
repeated for a number of times and the largest set of inlier views (minimum 3 views are required)
is retained. Finally, inlier views are used to refine the position of a feature point in the global
frame by minimizing the reprojection error.

6.3.6 Joint Pose Refinement

The pose refinement for vision-based SfM algorithms is typically achieved by Bundle Adjust-
ment (BA). However, due to several system reasons, such as inaccurate feature locations, cali-
bration inaccuracy, correspondence outliers and so on, the pose estimation could have significant
drifts over long distances, especially when loop closures can not be found effectively. To address
this issue, we consider making use of LiDAR’s long-ranging capacity to constrain the camera
motion. In Chapter 5, an optimization pipeline that jointly minimizes over the camera and Li-
DAR observations is proposed. In this work, we further introduce the joint observations that
access the shared structures of the camera and the LiDAR.

Camera observations: Camera observations are defined as the feature coordinates on images
and are directly obtained as inliers from the triangulation step. We define the camera observation
error ec as the feature reprojection error, namely

ec = π(x; Ti,P)− u (6.4)
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where function π projects feature point x ∈ R3 onto the image plane, P ∈ R3×4 is the camera
projection matrix to be chosen depending on x is observed by the left or right camera, u ∈ R2 is
the observed image coordinates. We use the symbol C to denote the camera observation set and
S as the set of reconstructed feature points in 3D.

LiDAR observations: A LiDAR observation is defined as a matched pair of a key point p ∈ R3

in station i and a local patch (y,n) ∈ (R3, S(2)) in station j. Here y is the nearest neighbor of
p in station j and n is the normal vector of the local patch. The LiDAR observation error el is
defined as the point to patch distance:

el = nT
(
τ(p; T−1

e T−1
j TiTe)− y

)
(6.5)

where function τ(·) transforms a point based on the given transformation matrix, Te is the ex-
trinsic transform of LiDAR w.r.t. the left camera. Our algorithm relies on a reasonable initial
guess of Te, but will also adjust it along with the poses and structures in the optimization step.
Finally, we sample 5000 key points from each point cloud and search for the corresponding local
patches from stations that are within a 5-meter range. The constructed LiDAR observation set is
denoted by symbol L.

Joint observations: Similar to a LiDAR observation, a joint observation is also defined as a
point-patch pair, except the point here comes from S instead of a LiDAR point cloud. For each
feature point x ∈ S, we iterate through its views to find the point clouds potentially observing
the same structure. Then for each point cloud, x is matched to the nearest local patch (y,n)
which shares the same definition as in the LiDAR observations. The joint observation error ej is
defined as

ej = nT
(
τ(x; T−1

e T−1
i )− y

)
, (6.6)

and the symbol J is used to denote the set of extracted joint observations.

Joint Optimization: The final joint optimization is done by minimizing the previously defined
observation errors in a single cost function:

arg minλc
∑
C

e2
c + λl

∑
L

e2
l + λj

∑
J

e2
j (6.7)

to adjust camera poses T , structures S and camera-LiDAR extrinsic transform Te simultane-
ously. Here each component is weighted by a hand-tuned factor. In practice, we set λc to be 1
and tune the other two such that the cost of individual components are roughly of the same mag-
nitude. Additionally, the error terms in (6.7) are wrapped with robust the Huber loss function
and Ceres Solver [2] is used to solve the optimization problem.

Once the optimization procedure converges, observations are filtered by the errors and those with
error larger than a threshold are removed from the observation set. 4 pixels, 0.1m and 0.1m are
used as thresholds for the camera, LiDAR and joint observations respectively. The cost function
(6.7) is solved again once outliers are removed.

Noticing that the LiDAR and joint observations are found through nearest neighbor search, which
is highly dependent on the accuracy of the initialization. Therefore, the LiDAR and joint observa-
tions are recomputed once a new estimation of T and Te is obtained. This process is repeated for
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Figure 6.6: Top right is the CMU Smith Hall dataset. In the second row, from left to right are a
concrete square pillar, a cylinder pillar, a T-shaped specimen, and a bridge pillar.

several iterations until the cost function converges. In our experience, 4-6 iterations are typically
enough to generate well-aligned models.

6.4 Experiments

6.4.1 Sensor Pod and Datasets

A sensor pod is developed to have multiple onboard sensors, including two Ximea color camera
(12 megapixel, global shutter), and a Velodyne Puck LiDAR (VLP-16) mounted on a continu-
ously rotating motor. The scanned points from the VLP-16 are transformed into a fixed base
frame using the motor angle measured by an encoder. Additionally, we assume the stereo cam-
era and the LiDAR-motor system are both pre-calibrated. The LiDAR scanned points are trans-
formed from the rotating LiDAR frame to a fixed motor frame, which is then referred to as the
LiDAR frame. The extrinsic transform from the left camera to the fixed LiDAR frame is jointly
optimized as Te in our pipeline.

In this work, we collect our own datasets instead of using public SfM datasets since most of them
are not suitable for our specific case that requires stereo cameras and a LiDAR. As shown in Fig.
6.6, our datasets vary from simple concrete structures to a large scale building. The Smith Hall
dataset contains 276 stations (552 images and 276 LiDAR point clouds) and is most challenging
due to repeated patterns and limited overlap between images. The rest datasets in the second row
are of smaller scale and contain 29, 54, 25, 32 stations respectively.
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Figure 6.7: Top: Visualization of the number of the pairs solved from 4-view and 3-view points.
Bottom: Histograms of the number of edges for different number of triplet checks.

6.4.2 Relative Motion Estimation

In this experiment, we show that relaxing the 4-view requirement of a feature point allows recov-
ering more valid relative motions, which is beneficial for cycle consistency checking and model
completeness. Here the Smith Hall dataset is used. As shown in the upper plot of Fig. 6.7,
500 edges are computed thanks to the 3-view feature points. Compared with the case of only
4-view features, 206 (19.4%) more relative motions are recovered. A number of 4-view cases
are replaced by 3-view due to more features are available. The lower plot of Fig. 6.7 shows a
histogram of the number of edges w.r.t. the number of involved triplets. We observe that the
edges tend to be involved in more triplets, implying that more frequent checks can be conducted.
The total number of triplet checks for this dataset is therefore increased from 4.8K to 6.7K. Fi-
nally, the initialized global poses are visualized in Fig. 6.8. Because more relative motions are
recovered, our algorithm can connect more stations (276 vs. 273), which helps to pick up the
loop closure around the top right corner.

6.4.3 Relative Motion Validation

In this section, we compare the outlier rejection performance of the proposed grid-based check
(GC, with rc threshold being 0.6) and success rate check (SR), to rotation cycle check (RC) used
by OpenMVG [98] and transform (rotation and translation) cycle check (TC). Again, the smith
hall dataset is used.

Firstly, we obtain the ground truth label by checking the difference of each relative motion to the
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Figure 6.8: Left: Initialized pose graph with 4-view features. Right: Initialized pose graph with
multi-type views.

global poses produced by our pipeline, which is of reasonable accuracy as shown in Fig. 6.9.
Then those pairs with an angular error greater than 2◦ or translational error greater than 0.1m
are labeled as outliers. After that, the validation methods discussed above are used to check the
given relative motions. Specifically, a confusion matrix is computed for each case and is shown
in Table 6.1. We use recall to measure the ratio of picked true outliers among all true outliers
and precision to denote the fraction of true outliers among the predicted instances. We observe
that a number of inconsistent relative motions could pass the RC or TC checks, corrupting the
initialization of global poses. On the other hand, GC and SC checks apply more strict passing
rules, hence more outliers can be rejected effectively. However, it is also observed that many
valid motions fail to pass the SR check. The number is regulated by the threshold of rs. In
reconstruction experiments, we tune the rs threshold to ensure effective rejection of outliers and
meanwhile to keep as many relative motions as possible.

6.4.4 Joint Observations

For simplicity, we use a smaller scale dataset, namely the bridge pillar dataset, to show the bene-
fits of modeling joint observations in the joint optimization. As shown in Fig. 6.10, the structures
estimated from images are overlaid with the merged LiDAR point cloud. From the zoom-in view,
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Table 6.1: A comparison of validation strategies.

Confusion Matrix Recall Precision

RC [1151, 0; 91, 24] 20.87% 100.00%

TC [1151, 0; 88, 27] 23.48% 100.00%

GC [1149, 2; 10, 105] 91.30% 98.13%

SR(0.9) [1035, 116; 5, 110] 95.65% 48.67%

SR(0.6) [1139, 12; 40, 75] 65.22% 86.21%

GC+SR(0.9) [1033, 118; 3, 112] 97.39% 48.70%

GC+SR(0.6) [1137, 14; 6, 109] 94.78% 88.62%

it is easy to see that including the joint observations leads to better alignment of the two models,
indicating more accurate Te. This observation can be explained by analyzing the observability
of Te discussed in [143]. Basically, if no joint observations are used, Te is constrained by the
trajectories of two sensors. The solution may not be unique if the two trajectories are degraded.
An extreme case is the straight-line trajectories. In this case, the translation of Te could take ar-
bitrary values, while still satisfies the rigid body transform constraints between two trajectories.
On the other hand, joint observations are directly shared by the camera and the LiDAR, hence
better constrains Te.

6.4.5 Reconstruction Tests

Sparse reconstructions: The proposed pipeline is mainly tested with our own collected datasets.
The first row of Fig. 6.11 shows the reconstruction of small concrete structures. The second row
(Fig. 6.11e) compares the Smith Hall reconstruction results using COLMAP, OpenMVG, and
our pipeline. We also compare the model with and without joint optimization using our method.
From the comparison, we observe that both COLMAP and OpenMVG fail to handle the visual
ambiguities caused by the parking signs (shown in Fig. 6.5) and the limited overlapped images.
Therefore the generated models are either inconsistent or incomplete. Our pipeline rejects the
invalid motions effectively and allows for building a more consistent model. For quantitative
analysis, we first register the models to a ground truth map acquired by a FARO terrestrial scan-
ner, then compute the distances of model points to ground truth. The errors are encoded in the
color of each point and the histograms are computed to show the error distribution. We mea-
sured the best average error of 0.02m from our jointly optimized model. Comparing the joint
and stereo models shows that LiDAR helps to remove drifts within long distances loop-closure.
We encourage readers to watch the supplementary video for more visualizations.

Dense reconstruction of a bridge tunnel: The second reconstruction test is conducted inside
the tunnel of the Pearl Harbor Memorial Bridge, also known as the Q-bridge (see Fig. 6.12). The
dataset contains 2007 stereo image pairs that captures the side walls and the ceiling of the tunnel.
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Figure 6.9: Reconstructed point cloud model (grey) of the CMU Smith Hall overlaid with visual
feature points (red).

Figure 6.10: Overlay of LiDAR point cloud (grey) with reconstructed visual features (red). Left:
Without joint observations. Right: With joint observations.

To process the collected data, we use a workstation with 32 computing cores (Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz) and 128GB RAM.

We first perform sparse reconstruction using all available images. The sparse reconstruction
results are visualized in Fig. 6.12b. In this experiment, we again compared the performance
with and without the LiDAR data. It can be observed that the reconstruction is corrupted with
severe drifts for one side of the wall, which is corrected by jointly optimize over the LiDAR
measurements.

Then the reconstructed sparse model are partitioned into 1m cubic cells (see Fig. 6.12c) and
involved images are collected for densification using OpenMVS [29]. Once all dense local maps
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(a) Square (b) Cylinder (c) T-shaped (d) Bridge Pillar

(e) The Smith Hall model accuracy evaluation.

(f) Error histogram with average bar annotated.

Figure 6.11: Reconstruction results on collected datasets. (a) - (d) are reconstructed sparse mod-
els of small structures, while (e) shows and compares the Smith Hall models using different
methods. The error is encoded in the colors of points. In (f) the histograms of errors are visual-
ized.

are processed, they are then merged for visualization. The Potree visualizer1 is used to render
the final bridge model as shown in Fig. 6.12d. In Table 6.2, we report the dense model statistics.

Projecting cracks on 3D model: In this test, we build dense 3D model for a concrete specimen
with cracks. The cracks are extracted from images using the deep network architecture proposed
in [111] and then projected onto a mesh model to find the 3D coordinates of pixels labeled as

1Potree: https://potree.github.io/
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(a) The Q-bridge tunnel

(b) Comparison of sparse models

(c) Voxelization of the sparse model

(d) Dense model rendered in Potree

Figure 6.12: Reconstruction of the Q-bridge tunnel.

cracks. Then 3D crack points are visualized together with the dense model (see Fig. 6.13)
providing an accurate reference for human inspectors to locate and measure the defects.
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Table 6.2: Model statistics of the Q-bridge tunnel.

Tunnel Size 65m× 7m× 4m (L×W ×H)

NO. of Images 4014

Image Resolution 4112× 3008 pixels

NO. of Sparse Features 1.7× 106

Voxels Size 1m

NO. of Voxels 763

Dense Model Points 2× 109

Model Density ≈ 150/cm2

Figure 6.13: 3D visualization of cracks (black) detected on a concrete beam. LiDAR point clouds
(grey) are visualized to provide context information of the environment.

6.5 Conclusion and Discussion

This work proposes a LiDAR-enhanced stereo SfM pipeline that uses LiDAR information to
enhance the robustness, accuracy, consistency and completeness of the stereo SfM. Experiment
results show that the proposed method is effective in finding more valid motion pairs and elim-
inating visual ambiguities. Additionally, we show that incorporating the joint observations of
the camera and the LiDAR helps to fully constrain the extrinsic transform. Finally, the LiDAR-
enhanced SfM pipeline can produce more consistent reconstruction results than the state-of-the-
art SfM methods.

Learned lessons:

• The consistency validation strategy is effective in rejecting outlier feature matches as well
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as relative motions. Given a set of noisy observations that are corrupted with outliers,
this strategy tries to generate a large number of tests, each of which only involves a small
number of samples so that the test can be carried out efficiently. Then based on the testing
results, a pre-defined metric can be used to make the decision on whether each observation
is an outlier or not. Particularly, this strategy is used in the famous RANSAC method,
where each test is formulated as a model fitting problem to the consensus set.

• In this work, LiDAR and camera measurements are fused to improve the robustness.
Specifically, the fusion first happens in the front-end, where LiDAR range data provides
extra structural information to help reject visual ambiguities. Then LiDAR and camera
measurements are bridged by the shared structure observation in the final optimization
stage. From a sensor fusion perspective, our strategy falls into the intermediate fusion cat-
egory. This is because sensor data are preprocessed to be fused in a shared domain (i.e.,
the Euclidean space), instead of being directly aligned as in early fusion and merged after
separate estimations as in late fusion.

• The strategy of splitting a large problem into smaller ones is shown to be effective in deal-
ing with large-scale datasets since it significantly reduces memory consumption. Besides,
it also points to a potential future work for partitioned sparse reconstruction similar to the
idea of submap-based BA [106] [94].

• Last but not least, it is learned that dense, large models can be extremely difficult to process
and visualize. For instance, even for a structure as simple as the specimen in Fig. 6.13, a
high-end graphics card is necessary to render such an amount of points. Therefore, for vi-
sualization, it might make more sense to use meshes to reduce the complexity of geometry
and only maintain a dense texture map. However, in cases where accurate measurements
have to be performed, a full resolution point cloud will become useful to provide more
accurate and detailed information.
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Chapter 7

Abstracted Mapping using Geometric
Primitives

As discussed at the end of Chapter 6, high-resolution 3D models can cause huge overhead for
downstream operations. Therefore, as the last piece of our technical contribution, we shift our
focus to lightweight abstracted map representations. Here, the term abstracted stands for the
abstraction process of using geometric shape priors to approximate the original map. However,
rather than pursuing a precise approximation as the vast majority of methods in the field of
structural modeling, we decide to cast the problem into a general setting of SLAM, and focus on
the questions: how could geometric primitives be represented to reflect the nature of geometry?
How can they be integrated into SLAM? And how would the sensing of abstracted shapes affect
the estimation problem?

This chapter is organized as follows: Section 7.1 discusses the problem of using geometric prim-
itives for map abstraction. Section 7.2 gives a review of the methods for different levels of
landmark representation. Section 7.3 covers the fundamentals of quadrics and Section 7.4 details
the SLAM formulation with quadrics factors. In Section 7.5, experiments in simulation and real
world are presented. Finally, conclusions are drawn in Section 7.6.

7.1 The Representation of Landmarks

Geometric primitives such as points, lines, and planes have been widely used in SLAM to repre-
sent the 3D environment thanks to their simplicity. Many state-of-the-art SLAM systems utilize
one [48] [75] or a combination [53] [139] [103] of those primitives to formulate the back-end
optimization, estimating the states of the robot and landmarks simultaneously. Despite the sim-
plicity, however, those primitives have limitations in representing more complex shapes in the
environment, e.g. curved surfaces.

Recently, high-level landmarks embedded with semantic labels have been shown to significantly
improve the performance of SLAM [30], localization [128], and place recognition [49]. To

83



include semantic information into the optimization framework of graph-SLAM, abstract shapes,
such as cuboids [151] or ellipsoids [107], have been used to represent the geometry of objects.
However, those works mainly focus on the shape representation of objects, hence not suitable for
large surfaces.

In this work, we propose to use quadrics as a high-level representation of geometric primitives.
Quadrics, as a general algebraic representation of second-order surfaces, are able to represent
17 types of shapes [7]. Because of the flexibility, quadrics have a long history being used for
3D surface representation in the field of computer vision [73] and computer graphics [113]. It is
more recently that quadrics are introduced to SLAM. We can roughly break down the ongoing
research of quadrics in SLAM into two categories: Firstly, ellipsoid, as a special type of quadrics
with a closed shape, is used to approximate the shape and pose of objects [107]. Secondly,
the representation of low-level landmarks, namely points, lines and planes, can be unified using
quadrics, leading to a compact formulation of graph-SLAM with heterogeneous landmarks [103].

Our work aligns with the above two directions and extends prior work in two folds: Firstly,
since quadrics have the power to represent various shapes, some of which are quite frequently
seen in man-made environments (e.g. cylinders and cones), we can potentially include more
types of primitives in SLAM and still keep a unified and concise formulation. Secondly, it is
noticed that quadrics can be symmetric and degenerated, which could cause ambiguity in SLAM.
However, those properties are not readily available from quadrics representation. Therefore,
we are particularly interested in finding out how the quadrics representation implicitly encodes
the geometric properties, and hope the insights would lead us to a geometrically meaningful
formulation of quadrics SLAM. Therefore, the central problem of this chapter can be summarized
as:

For SLAM using high-level 3D shapes, how to develop a unified representation that general-
izes to multiple types of shapes and remains geometrically meaningful?

More specifically, the main contribution of this work can be summarized as:

• A unified representation of high-level geometric primitives using quadrics is proposed. A
wider spectrum of shapes is included, while previous works only consider points, lines,
planes, or ellipsoids for SLAM.

• A new decomposed representation of quadrics is proposed. The decomposed representa-
tion is geometrically meaningful in that it explicitly models the degeneration and symmetry
of quadrics.

• A novel decomposed quadrics factor is systematically formulated based on geometric error
metrics.

• Experiments in simulation and the real world are conducted to show the proposed quadrics-
based back-end framework is robust, efficient and lightweight compared to the baselines.
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7.2 Related Work

Low-level landmark representation: Points are the most popular landmark representation in
state-of-the-art SLAM systems [35][81]. They typically provide a sparse representation in the
case of cameras, or dense representation when range sensors are used. Differently, lines (edges)
and planes, that are often referred to as high-level landmarks, have been shown to improve the
robustness and accuracy of SLAM systems [158]. Representation for lines include a point plus
a direction [80], Plücker coordinates [163] and a pair of endpoints [115]. Planes are usually rep-
resented with a normal and a distance [139] as a non-minimal representation. Differently, Kaess
[75] proposes using quaternion as a minimal representation of planes and formulates plane fac-
tors in a graph-SLAM problem. As another minimal representation, Geneva et al. [52] choose
to use the closest point on a plane to the origin as the representation of planes. Although ge-
ometrically meaningful, each type of landmark requires a special factor implementation in a
graph-SLAM problem, which increases the complexity of system development. To accommo-
date this issue, efforts are taken to unify the representation of low-level landmarks. SPmap [24] is
perhaps the earliest attempt to develop a generic framework for geometric entities in SLAM and
shows how 2D line-segments representation can be unified together with the robot poses. Closely
related to our work, Nardi et al. [103] and Aloise et al. [6] introduce the concept of matchables
as a unified representation of points, lines and planes. Differently, our work extends the usage
of quadrics to higher-order surfaces such as cylinders and cones and studies the degeneracy of
those shapes.

High-level landmark representation: As discussed at the end of Chapter 2, high-level repre-
sentations use parameterized shapes that can be embedded with semantics to build compact yet
descriptive maps. In this work, we focus on the geometry underneath the semantic information.
Aligning with this line of research, Salas et al. [124] use pre-defined mesh models to represent
detected objects which is difficult to generalize to unobserved objects. After that, more general
shape representations are used. Yang et al. [151] fit cuboids as bounding boxes to describe ob-
jects. Papadakis et al. [110] extract predefined spheres while Nicholson et al. [107] propose
to use ellipsoids to approximate size, position and orientation of objects. Tschopp et al. [144]
demonstrate that superquadrics have the advantage of flexibility and meaningful parameteriza-
tion. However, those methods are mainly designed for object shape representation, thus are not
quite suitable to represent large surfaces such as a cylindrical pillar. This work, therefore, focuses
on the representation of high-level surfaces in the environment.

7.3 Quadrics Basics

7.3.1 Quadrics Representation

Quadrics are defined implicitly by the zero-contour of a two-degree algebraic function:

Ax2 +By2 + Cz2 + 2Dxy + 2Eyz + 2Fxz + 2Gx+ 2Hy + 2Iz + J = 0 (7.1)
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Figure 7.1: Examples of geometric primitives that can be represented as quadrics.

that contains 10 parameters but only 9 degrees of freedom due to the homogeneous parameteri-
zation. The shape function (7.1) has a compact matrix form:

xTQx = 0 (7.2)

where

x =


x
y
z
1

 Q =


A D F G
D B E H
F E C I
G H I J


Despite the 17 subtypes of quadrics, we consider four shapes, namely coincident planes, ellip-
soids, elliptic cylinders and elliptic cones, that appear most frequently in man-made structured
environments. Additionally, we also consider points and lines as degenerated ellipsoids and
cylinders respectively. The shape priors are shown in Fig. 7.1.

7.3.2 Quadrics extraction

Although quadrics and primitive extraction is not the focus of this work, those techniques are
used in the experiments for a demonstration of quadrics SLAM. Therefore, we offer a brief
discussion of the primitive extraction methods. There exist several options to extract general
quadrics from a given point cloud or mesh model. As one of the most popular segmentation
algorithms, region growing (RG) [82] method can be used to grow a segment by including sur-
rounding regions with similar curvature. Once the segmentation is finished, shape parameters
can be found by fitting quadrics to the points of each region. Differently, hierarchical strategies
can segment the given shape in a top-down manner [79] where the model is split recursively until
a good quadrics fit is found; or the bottom-up manner [9], where small regions are joined if they
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Table 7.1: Quadrics Representation of Primitives

Primitives Canonical C Scale S Is

Point diag([1 1 1 0]) diag([1 1 1 1]) [0 0 0]

Line diag([1 1 0 0]) diag([1 1 1 1]) [0 0 0]

Plane diag([1 0 0 0]) diag([1 1 1 1]) [0 0 0]

Cylinder diag([1 1 0 − 1]) diag
([

1
a

1
b

1 1
])

[1 1 0]

Cone diag([1 1 − 1 0]) diag
([

1
a

1
b

1 1
])

[1 1 0]

Ellipsoid diag([1 1 1 − 1]) diag
([

1
a

1
b

1
c

1
])

[1 1 1]

belong to the same quadrics. Those methods have demonstrated successful application on noise-
free meshes. To handle noisy data, Birdal et al. [16] propose a voting procedure when fitting with
minimal point sets, which demonstrates improved robustness to noises and pushes the usage of
quadrics closer to real-world data. In this work, we found that free-form quadrics fitting can be
quite sensitive to laser scans which are sparse, noisy and incomplete (due to occlusions). There-
fore, a type-aware primitive segmentation strategy is adopted. Specifically, the RANSAC-based
primitive segmentation method proposed in [125] is used to extract specific types of primitives
(e.g., cylinders, spheres and cones). Those primitives are then represented in the general quadrics
form and will be used later to construct a quadrics factor graph.

7.3.3 Quadrics Composition

A quadrics Q contains three pieces of information: type (e.g. plane, cylinder etc.), size (e.g.
radius of sphere and cylinders), and pose in 3D space, which corresponds to three matrices.

Canonical matrix C: The canonical form of quadrics is obtained by aligning quadrics axes to
the coordinate axes. In the canonical form, Q is reduced to the canonical matrix C. For quadrics
discussed in this paper, C is always a diagonal matrix, whose pattern uniquely determines the
type. Table 7.1 summarizes the canonical matrices of the considered quadrics in this paper.

Scale matrix S: The canonical matrix C represents quadrics of unit length. For example, C =
diag(1, 1, 1,−1) defines a unit sphere. Then a diagonal scale matrix S can be used to scale the
unit-length quadrics. However, except ellipsoids, the other quadrics in Table 7.1 are degenerated,
meaning scaling in some directions will not affect the geometric shape. For example, a plane can
not be scaled at all. Therefore, we use Is ∈ {0, 1}3 to indicate the directions that are not scale-
degenerated.

Transformation matrix T: Let T ∈ SE(3) be the transform matrix between two frames. Then
a given Q in one frame can be transformed to the other frame by:

Q′ = T−TQT−1 (7.3)
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Composition: Any quadrics Q can be constructed by the composition of the three matrices:

Q = T−TSTCST−1 (7.4)

In preparation for the later discussions, we explicitly rewrite (7.4) as:

Q =

[
RT −RT t
0 1

]T [
D 0
0 d

] [
RT −RT t
0 1

]
=

[
RDRT −RDRT t
∗ tTRDRT t + d

]
=

[
E l
lT k

] (7.5)

where D and d are the diagonal blocks of STCS, while E, l, k are corresponding blocks of the
resulting Q.

7.3.4 Quadrics Decomposition

Although quadrics is powerful in representing a wide spectrum of geometric shapes, its alge-
braic nature makes the connection between parameters and the geometry unclear. In order to
accommodate this issue, one can decompose a quadrics Q into the three matrices to uncover the
underlying geometry.

Type identification: In practice, one may be interested in identifying ellipsoids, cylinders and
cones from a given Q. Quadrics Shape Map (QSM) [4] can be used to determine the types of
quadrics by analyzing the distribution of the eigenvalues of E. In this work, we assume the types
are known from fitting specific primitives to point clouds.

Scale identification: To recover the scale information, we first normalize the given Q to remove
the scale ambiguity:

Q =

∣∣∣∣∏λE
i∏
λQ
i

∣∣∣∣Q (7.6)

where λE
i and λQ

i are nonzero eigenvalues of E and Q respectively. Specially, for cones, Q is
normalized by the negative eigenvalue of E. Then the scale parameters can be recovered by:ab

c

 =

√√√√√
∣∣∣∣∣∣
1/λE

1

1/λE
2

1/λE
3

∣∣∣∣∣∣ (7.7)

assuming a ≤ b ≤ c. In degenerated cases, certain eigenvalues will be zeros. Then the scale
along those directions becomes undefined as specified in Is.

Pose identification: Isolating pose information from the given Q is to find R and t that represent
the transform between the observation frame and the quadrics canonical frame, or local frame.
According to (7.5), the rotation can be found from eigenvalue decomposition of E = VDVT ,
while recovering t involves solving Et + l = 0. However, recovering R and t needs to consider
several special situations:
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Table 7.2: Degeneration characterized by eigenvalues

eig(E) Rotation Translation Example

λ1 6= λ2 6= λ3
non-degenerate
IR = [1, 1, 1]

non-degenerate
It = [1, 1, 1]

ellipsoid

λ1 6= λ2 = λ3
v1 degenerate
IR = [1, 0, 0]

non-degenerate
It = [1, 1, 1]

ellipsoid (2
equal axes)

λ1 = λ2 = λ3
degenerate

IR = [0, 0, 0]
non-degenerate
It = [1, 1, 1]

sphere,
point

λ1 = 0
λ2 6= λ3 6= 0

non-degenerate
IR = [1, 1, 1]

v1 degenerate
It = [0, 1, 1]

elliptic
cylinder

λ1 = 0
λ2 = λ3 6= 0

v1 degenerate
IR = [1, 0, 0]

v1 degenerate
It = [0, 1, 1]

circular
cylinder,
line

λ1 6= 0
λ2 = λ3 = 0

v1 degenerate
IR = [1, 0, 0]

v2,3 degenerate
It = [0, 1, 1]

plane

• V is not necessarily a valid rotation matrix. The direction of eigenvector v can be identical
or opposite to the column of R, due to the symmetry of quadrics.

• When E has nonzero eigenvalues only, t can be directly recovered as t = −E−1l

• When E has zero eigenvalues, t is only partially constrained.
• When E has two equal eigenvalues, Q becomes revolution quadrics, where the rotation

around one axis becomes degenerated.

The above situations are caused by the degeneration and symmetry of quadrics. To systematically
handle these issues, we model the pose of quadrics from the perspective of constraints, which
will be elaborated on in the next section. In Table 7.2, we summarize all possible situations of
degeneration with examples.

7.4 Quadrics in Factor Graphs

7.4.1 Pose-Quadrics Constraints

To constrain the rotation, we choose to align the columns of R (noted as ri) to corresponding
non-degenerate eigenvectors vi. An rotation activation vector IR ∈ {0, 1}3 is defined to mark
the direction to be enforced (see Table 7.2). Further more, to consistently handle the situations
where vi is opposite to ri, cross product is used to measure the unsigned direction alignment
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error:
C(ri) = vi × ri = 0, (for IR

i = 1) (7.8)

As to translation, the constraint equation is:

C(t) = Et + l = VDVT t + l = 0 (7.9)

Similarly, translation degeneration indicator It ∈ {0, 1}3 can be defined and we can further
decompose the equation and enforce the constraints explicitly:

C(t) = λiv
T
i t + vTi l = 0, (for It

i = 1) (7.10)

Equation (7.10) provides an geometric interpretation of translation constraints. One such equa-
tion defines a constraining plane with normal vector vi and distance vTi l/λi. Therefore, t is
constrained to a point, line or plane due to the intersection of 3, 2 or 1 such constraining planes,
respectively. Finally, the scale constraints can be found by directly comparing to the eigenvalues:

C(s) = s2
i − λi = 0, (for Is

i = 1) (7.11)

Equation (7.8) - (7.11) translate the observation of Q into a set of constraints parameterized by
the tuple (IR, It, Is,V,D, l) where the geometric properties are explicitly represented.

7.4.2 Error Function

Given the robot pose (Rr, tr) and the quadrics in the world frame (Rq, tq, sq), the error function
of observed quadrics in the robot body frame is defined as the residual vector of a constraint set:

e =

eR

et

es

 =

 diag(IR) (V ⊗∆R)T

diag(It)(DVT∆t + VT l)
diag(Is)(s2

q −Λ)

 (7.12)

where ⊗ means column-wise cross product. ∆R = RT
r Rq and ∆t = RT

r (tq − tr) are the
rotation and translation of quadrics pose transformed into the robot frame. Λ = [λ1, λ2, λ3] is
the vector of eigenvalues stored in D. Here, eR is a 3 × 3 matrix and will be vectorized before
being stacked into the error vector.

7.4.3 Observation Uncertainty and Weighting

One direct benefit of using decomposed constraint representation is that it allows easy incorpora-
tion of uncertainties, or weights, to measure the strength of constraints (7.8)-(7.11). We adopt a
simple approach to compute the weight of a shape as tanh(λN), whereN is the number of points
and λ is a scaling coefficient to be tuned by hand. The adopted strategy reduces the weights of
small shapes that tend to have higher uncertainty in fitted parameters.
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Algorithm 2: LM Algorithm for Quadrics Factor Graph
1: Input: Initial states X0 ∈ R(9M+6N)×1 of N poses, M quadrics landmarks, and K

observations {Qk}
2: Output: Optimized states X∗

3: Decomposition: Qk → (IR
k , I

t
k, I

s
k,Vk,Dk, lk)

4: Initialization: X← X0

5: while not converged do
6: for each observation do
7: Pose Jacobian: Jr =

[
∂e
∂Rr

, ∂e
∂tr

]
8: Quadrics Jacobian: Jq =

[
∂e
∂Rq

, ∂e
∂tq
, ∂e
∂sq

]
9: Evaluate observation error: e =

[
eR ; et ; es

]
10: Update b: b← b +

[
· · · JTr Ωe · · · JTq Ωe · · ·

]
11: Update H: H← H +


...

...
··· JT

r ΩJr ··· JT
r ΩJq ···

...
...

··· JT
q ΩJr ··· JT

q ΩJq ···
...

...


12: end for
13: Compute LM update: ∆ = −(H + λI)−1b
14: Apply update: X← X � ∆
15: end while
16: Return X∗ = X

* λ in line 13 is the LM damper updated in each iteration [37].

7.4.4 Solving the Factor Graph

Given a graph with quadrics, the cost function is constructed by accumulating the errors of each
observation:

f =
∑

eTΩe (7.13)

where Ω = diag(Σ−1
θq
,Σ−1

tq ,Σ
−1
sq ) is the information matrix characterizing the weight of each

component. In Algorithm 2, we report the basic steps of Levenberg–Marquardt (LM) method
[97] for graph optimization. Sparsity is preserved by line 10-11, where only relative blocks of b
and H are updated. Sparse Cholesky factorization is applied to solve line 13. We refer the readers
to [35][57] for more information about the sparse structure of factor graphs. The derivation of
Jacobians for quadrics factors can be found in Appendix B.

7.4.5 Baseline Parameterizations

In this section, we discuss two baseline parameterizations as comparisons to the proposed de-
composed representation.
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Full parameterization: A naive method to formulate the quadrics observation error is to use the
full paramterization, namely the 10-D quadrics vector q:

q =
[
A B C D E F G H I J

]T (7.14)

Then the observation error is evaluated by first transforming the q into robot body frame and
then compute the difference with observation q̄:

e = q̄−
(
TT
r (q)∧Tr

)∨ ∈ R10×1 (7.15)

where operator (·)∨ and (·)∧ compute the quadrics vector and matrix respectively. About the full
representation:

• The observation model has a simpler expression and easy to implement;
• The metric is algebraic error instead of geometric error, which could introduce bias to

estimation [5].
• It is difficult to interpret the uncertainties of q.

Regularized full parameterization: Inspired by [107], we implement another baseline where
the structure of quadrics are explicitly modeled:

e = q̄−
(
TT
r QTr

)∨ ∈ R10×1 (7.16)

In here, Q is constructed as in (7.4) from the quadrics states (Rq, tq, sq). Equation (7.16) ex-
plicitly models rotation, translation and scale of quadrics, but still computes the algebraic error.
Compared to (7.15), the type of quadrics is now treated as prior knowledge and therefore the es-
timation is regularized. From now on, we use decomposed (D), full (F) and regularized-full (RF)
parameterization to denote the proposed, baseline 1 and baseline 2 representation respectively.

7.5 Experiments

7.5.1 Geometric Error vs. Algebraic Error

In this section, we compare the geometric and algebraic error formulations in simulation to in-
vestigate their convergence behaviors when solving the quadrics factor graph.

Synthetic environment: The synthetic environment, as shown in Fig. 7.3, is a Manhattan-like
world that contains 15 quadric landmarks of different types. The quadrics are randomly generated
in a bounded space (6m × 6m × 1m). The simulated robot trajectory is shown as the red curve
which contains 50 frames whose x-axis points to the origin. For each frame, the robot will sense
the surrounding environment and the nearest K = 10 quadrics are observed.

Noise simulation: To observe how different formulations react to various levels of noise, 2
types of perturbation are simulated. Firstly, the robot poses {Rr, tr} and quadrics parameters
{Rq, tq, sq} are perturbed by adding a small Gaussian offset with σx0 = (σθr , σtr , σθq , σtq , σsq).
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Table 7.3: Perturbation Configurations

Initialization Noise σx0 Observation Noise σq̄

(σθr , σtr , σθq , σtq , σsq ) (σθ̄q
, σt̄q , σs̄q )

Low (L) (1◦, 0.1, 1◦, 0.1, 0.01) (1◦, 0.1, 0.01)

Medium (M) (5◦, 0.5, 5◦, 0.5, 0.02) (2◦, 0.2, 0.02)

High (H) (50◦, 5.0, 50◦, 5.0, 0.05) (5◦, 0.5, 0.05)
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Figure 7.2: The convergence plot with increasing initialization and observation error. Each con-
figuration is repeated 10 times. Color codes: decomposed (blue), full (red), regularized-full
parameterization (orange)

This generates the initial guess for graph optimization. Secondly, each quadrics observation is
perturbed in terms of rotation, translation and scale according to Gaussian noise σq̄ = (σθ̄q

, σt̄q ,

σs̄q). This gives a set of noisy observations {Q̄}. Table 7.3 defines 3 levels of noise: low (L),
medium (M) and high (H), for each type of perturbation.

Solving the factor graph: To directly observe the behavior of the proposed quadrics factor, we
choose to construct the factor graph only containing pose-quadrics factors and a prior factor of
the first robot pose.

The convergence behavior under various noise levels is reported in Fig. 7.2. The upper plot
shows the error-iteration curves of increasing observation noise. In this test, the initialization
noise is at a low level. In the lower plot, we report the convergence behavior under increasing
initialization noise. In this test, the observation noise is kept at a low level. We observe that
the decomposed representation has a faster convergence rate, especially at a high noise level.
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Besides, the curves of decomposed parameterization also tend to have fewer variations, which
indicates that the cost function using geometric error has better convexity.

Figure 7.3: Optimization results using decomposed (Left), full (Middle), and regularized-full
(Right) parameterizations. Ground truth trajectories and quadrics are visualized as solid curves
and meshes respectively. Optimized poses and quadrics are drawn as frames and transparent
surfaces respectively. Types of simulated shapes include points, lines, planes, ellipsoids, spheres,
cylinders, and cones.

We then qualitatively evaluate the converging basin for different parameterizations. In Fig. 7.3,
we compare the optimized robot poses and quadrics to the ground truth under high initialization
noise. It is observed that the optimized quadrics and robot poses stay closer to the ground truth
when using decomposed parameterization, indicating a wider converging basin. Additionally,
the optimized quadrics with full parameterization will change the type to compensate for noises,
while shapes using the other two parameterizations are well regularized.

For the above 6 noise configurations, we also compare the final optimized states to the ground
truth. For trajectories, we compute the absolute trajectory error (ATE). For quadrics, we directly
compare the quadrics vector. In the case of decomposed representation, the quadrics vector is
reconstructed using (7.4). Table 7.4 shows the trajectory and quadrics errors in 6 noise configu-
rations. Note that the errors are averaged across 10 tests sharing the same noise configurations. It
is observed that decomposed parameterization consistently has smaller translation and quadrics
errors. Although the regularized parameterization performs better in most cases in terms of rota-
tion, the difference is small.

Table 7.4: Trajecotry and Quadrics Errors

σq̄-σx0

Rotation (rad) Translation (m) Quadrics
D F RF D F RF D F RF

L-L 0.055 0.049 0.048 0.152 0.218 0.213 0.102 0.143 0.138
M-L 0.125 0.112 0.110 0.310 0.548 0.515 0.211 0.362 0.312
H-L 0.309 0.306 0.335 0.803 2.070 1.854 0.614 1.050 0.950

L-L 0.059 0.060 0.058 0.163 0.222 0.211 0.106 0.141 0.135
L-M 0.057 0.053 0.051 0.157 0.259 0.252 0.104 0.173 0.169
L-H 0.058 0.062 0.264 0.180 0.265 0.856 0.121 0.198 0.527
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Figure 7.4: Illustration of simulated maps. Left: Low-level map consists of points, lines and
planes. Right: High-level maps contains ellipsoids, spheres, cylinders, and cones. Similar as
before, the red curve indicates the predefined robot path.

Discussion on the translation: Through the experiments, we found that the estimation accuracy
of full and regularized-full parameterization is quite sensitive to the translation and scale per-
turbation of observation Q̄. Even a small perturbation would cause the final result to converge
to a local minimum (see large errors of F and RF in Table 7.4). This can be explained by their
correlation in Q. From (7.3), we can see that t and D are multiplied in the relationship equation
−RDRT t = l. In the case of small quadrics, small size noise will result in dramatic changes in
the values of D due to the inverse relationship. Then during optimization, t tends to compensate
for the amplified effects of scale noise thus leading to inaccurate estimation.

7.5.2 High-level Shapes vs. Low-level Shapes

Low-level primitives, such as points, lines, and planes, have been widely used in modern SLAM
systems and have demonstrated great success thanks to their simplicity and richness, which ques-
tions the significance of using high-level shapes (e.g. ellipsoids, cylinders and cones) for SLAM.
Therefore, in this section, we investigate the different aspects of using low-level and high-level
shapes for graph-SLAM optimization.

Simulation tests: Two Manhattan-like worlds are created to contain only low-level or high-level
shapes (see Fig. 7.4). Similar as the previous experiment, we let the robot follow a predefined
circular trajectory that contains 100 frames (shown as the red curve) and perceive the surrounding
shapes. The number of observed shapes per frame is configured to be 5, 10 or 15. Once all the
observations are obtained, the quadrics factor graph is constructed and optimized.

The optimization results are reported in Fig. 7.5 and we can make the following observations:

• In the first row, the adjacency matrix stores the number of co-observed shapes between
two frames and therefore the color shows the “density” of connections. Since the number
of observations is controlled, we can observe that the adjacency matrices of low-level and
high-level tests are similar within each configurations. This is to make sure the following
comparison is fair in terms of number of observations.
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Figure 7.5: Comparison of convergence using low-level (blue) and high-level (red) shapes. The
first row shows the adjacency matrix of the sampled pose graph and the value of each element
indicate the number of shared shape observations. The second row compares the convergence
rate when robot observes different number of low-level or high-level shapes. The third row shows
the absolute trajectory error in rotation and translation under different configurations.

• The second row of Fig. 7.5 visualizes the convergence rate of different configurations.
Note that the errors are normalized by their initial values. It can be seen that when the
observation is limited (in the case of K = 5), using high-level shapes leads to a much
faster convergence rate. However, when the number of observations is increased (in the
cases of K = 10 and K = 15), the convergence rates are similar. This can be explained by
the fact that high-level shapes provide more constraints per observation, which benefits the
optimization when the total observations are limited. And when the number of observa-
tions is increased, both low-level and high-level based optimization have collected enough
constraints, making the convergence rate similar.

• The third row compares the ATE of estimated trajectory. In the case of K = 5, we observe
significant improvements in the accuracy of robot orientation and position. However, the
difference becomes less obvious as K increases. This observation is again related to the
constraints provided by high-level shapes in the case of limited robot observations.

Real-world tests: Experiments in the real-world are conducted following a similar manner as
the simulation. An indoor cafe area where there exist multiple circular and elliptic cylinders
is selected as the testing environment. In this experiment, we first create an accurate global
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Figure 7.6: Illustration of primitive-based registration.

point cloud map as the ground truth model using a fine-tuned LiDAR odometry algorithm [159].
Then a set of submaps are created sequentially by accumulating the laser scans within a 20-
second time window. The upper-left plot of Fig. 7.6 shows the global map and the trajectory
segments for each submap. After that, we extract planes (blue) and cylinders (red) from each
submap. The segmented submaps are shown from a top-down viewpoint and extracted cylinders
are highlighted. Given the submaps represented by the extracted shapes, we setup the experiment
as joint registration of all submaps from a perturbed initial guess. To compare low-level and high-
level shapes, two configurations are used: one that only considers planes in the environment,
while the other combines both planes and cylinders. The two registration problems are solved
using the same quadrics factor graph framework as in the simulation.

Figure 7.7: Comparison of registration error map obtained using plane-only (Left) and plane-
plus-cylinder configurations (Right).

The selected environment can be treated as a Manhattan world because the planes are mostly hor-
izontal and vertical. However, there exist a special situation (as shown in submap 3 and 4) where
only one vertical wall is observed by both frames. This makes the plane-only registration under-
constrained in the direction of the intersecting line of the vertical plane and the ground plane.
When cylinders are also considered, the central elliptic cylinder is observed by both frames, re-
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Figure 7.8: An illustration of the front-end of the primitive-based SLAM.

straining the motion in the horizontal plane. Finally, the registration results are compared to the
ground truth map and the error map is visualized in Fig. 7.7, from which it is easy to see that
combining planes and cylinders can generate more consistent maps.

7.5.3 Primitive-based SLAM

Although the main focus of this work is the discussion of how high-level shapes affect the back-
end of graph-SLAM, we provide a simple implementation of the front-end to demonstrate the
primitive-based SLAM pipeline in the real world.

For data collection, we use an Ouster OS1 LiDAR1 to map a room with cylinders and planes (see
Fig. 7.8). The front-end is implemented on top of a LiDAR odometry pipeline [159]. Firstly,
shapes are extracted from selected laser scans (one scan per second) using the RANSAC method
proposed in [125]. Then quadrics are associated incrementally by computing the Taubin distance
[140] of shape points to existing quadrics in the map. If the averaged distance is smaller than a
threshold, then two quadrics are matched. Otherwise, a new quadric is created and added to the
map. Once all scans are processed, we obtain a list of quadrics, each of which has a list of frame
views. The quadrics set is further pruned to only keep shapes with more than 6 views. Finally, a
graph consist of robot poses and quadrics is obtained.

In the back-end stage, the graph is optimized using the LM algorithm presented in Algorithm 2.
Mapping results are compared qualitatively with the LiDAR odometry and reported in Fig. 7.10.
From the shown point clouds, we can see that the proposed quadrics-based back-end refines the
alignment of point clouds. Additionally, the quadrics estimation is regularized and optimized.
As shown in the zoomed-in views, the central axis (shown as the blue z-axis) of cylinders lies
closer to the shape center in the optimized map, while the initial estimation is slightly off due to
inaccurate shape fitting from partial observations. Finally, although the visualization uses point
clouds, the optimization only involves 9 quadrics (shown in Fig. 7.9 plus a hidden ceiling plane),

1Ouster product website: https://ouster.com/products/scanning-lidar/os1-sensor
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Figure 7.9: Left: Map represented by dense low-level points (179840 points). Right: Map
represented by compact high-level shapes (6 planes, 3 cylinders).

Figure 7.10: Qualitative comparison of point cloud map before (left) and after (right) quadrics
graph optimization.

making the framework lightweight.

7.6 Conclusion and Discussion

In this work, we unify the geometric primitive representation using quadrics, which generalizes
to a wider spectrum of shapes. Additionally, we provide a decomposed representation of quadrics
that explicitly discloses the geometric properties of shapes such as degeneration and symmetry.
Then based on the decomposition, we show that the observation of quadrics can be translated
into constraints to the robot poses, and thus the formulation of quadrics factors in graph-SLAM
is developed. In simulation experiments, we show that the decomposed quadrics factors utilize
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shape priors and optimize a geometric error, making it more stable and efficient than the alge-
braic baselines. And using both simulated and real-world data, we show that high-level shapes
generally provide more constraints than low-level primitives, which can improve the estimation
accuracy. Finally, in a simple real-world environment, we demonstrate that a primitive-based
SLAM pipeline using the proposed quadrics factor graph could produce accurate and lightweight
maps.

Learned lessons:

• Algebraic metric vs. geometric metric. It is learned that the geometric error is more stable
than the algebraic error for estimation problems in SLAM. This is because the variables in
SLAM mostly describe the geometric properties of robot poses or the environment. In this
case, using algebraic error as the cost function could be sensitive to noises.

• High-level shapes, although not as rich as low-level shapes in general environments, can
provide more constraints via each observation. Therefore, in practice, a hybrid or com-
bined approach of both low-level and high-level primitives might make more sense to take
advantage of both sides.

Several unsolved questions that limit the usage of quadrics-based SLAM in the real world could
potentially be the directions of future work. Firstly, to make use of quadrics in a practical SLAM
pipeline, the front-end still remains challenging. Instead of a simplistic front-end for the proof-
of-concept, a practical one would need to solve quadrics extraction fastly and accurately. Sec-
ondly, it is unclear how to estimate the covariance matrix of quadrics fitting from partially ob-
served data in a principled way that models the anisotropic nature of uncertainty. Finally, since
high-level shapes have been shown to significantly reduce the number of landmarks in the map
while still capturing the overall layout, detecting loop-closure in lightweight maps would be
another interesting direction to explore.
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Chapter 8

Conclusions

This thesis argues that degeneracy prediction, sensor fusion and data abstraction are three key
ingredients to allow for robust, accurate and informative robot-based inspection. This statement
may seem to be targeted specifically for inspection. However, through the development of this
thesis, we wish to provide insights that are generally applicable to robotics applications. There-
fore, this chapter aims to summarize the presented works and discuss the learned lessons.

Specifically, this chapter is organized as follows: in Section 8.1, we revisit the core challenges
and summarize how they are addressed through a series of works under the guidance of the
central idea. Then we provide a high-level discussion of the lessons learned from this work.
Possible directions for future research is presented in Section 8.3. Finally, we offer concluding
remarks in Section 8.4.

8.1 Summary and Contributions

At the beginning of this thesis, to achieve the goal of robust state estimation and mapping for
robot-based inspection, we proposed to investigate three core challenges. Now we briefly revisit
those problems and discuss how they are addressed in the presented works:

Challenge 1: Geometric degeneracy in structured environments.
Challenge 1 poses the question: how can the robot robustly localize itself in geometrically de-
generated environments? We address this question in two steps. Firstly, we resolve the general
localization problem in Chapter 3. A LiDAR-inertial localization algorithm is presented and
shown to be reliable to various environments and aggressive motions. Secondly, in Chapter 4,
we resolve the robust localization problem in degenerated environments. An intuitive localiz-
ability model is proposed to characterize the degeneracy of given sensor measurements. After
analyzing localizability for multiple sensors, we proposed a LiDAR-UWB-Inertial localization
algorithm that achieves robust localization in a real degenerated tunnel.

Challenge 2: Large-scale meets high-density.
The hardness of Challenge 2 lies in that robot mapping for inspection needs to simultaneously
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Figure 8.1: The structure of challenges and corresponding chapters.

address the large-scale and the high-resolution problem, which stresses the capacities of state-
of-the-art mapping or reconstruction methods. Again, we approach this problem in two steps.
Firstly, in Chapter 5, we present a joint formulation that relates the raw measurements from
LiDAR and cameras. It is shown that the joint optimization successfully leverages LiDAR’s
long-ranging capacity and the camera’s high resolution, and produces dense accurate 3D mod-
els. In this step, however, we have not demonstrated large-scale mapping capacity in the real
world. Therefore, in Chapter 6, we further explore the fusion techniques of LiDAR and camera
and offer a series of robustification techniques such that the joint optimization framework can
build locally dense and globally consistent models in complex real-world scenarios (e.g., bridge
tunnels).

Challenge 3: Redundancy in structured maps.
Challenge 3 raises the question of representing the environment with geometric primitives.
Rather than pursuing a precise approximation, our focus in Chapter 7 is set to looking for
suitable representations for the purpose of light-weight SLAM and examine how the abstracted
observation model affects the SLAM formulation. Our contribution is a novel decomposed
quadrics representation that not only unifies the parameterization of multiple types of geomet-
ric primitives, but also discloses the underlying geometric properties. Modeling the observation
of abstracted shapes leads to an intuitive interpretation of how abstract 3D shapes constrain the
estimation of robot states and also yields a robust formulation of graph optimization based on
geometric metrics.
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8.2 Lessons Learned

In this section, we offer a high-level discussion of several lessons learned from the subjects of
this thesis.

On the sensing degeneracy
Inspired by the intuition that translates the robot sensing model to the force constraints of a rigid
object, the proposed localizability model characterizes the environment degeneracy with rich
geometric meanings. What we learned from this part of the work is to use the geometric picture
of an estimation problem to uncover the underlying structure. We find this thinking quite helpful
in understanding other issues in this work, such as the inaccuracies of LiDAR-camera calibration
and the degeneration of abstracted shapes.

On the joint optimization.
Joint optimization effectively combines the advantages of LiDAR and camera to build dense
accurate 3D models, which is a claim that has been mentioned frequently in this thesis. However,
batch optimization is never the only block to create the dense mapping system. In fact, to make
the joint optimization work, one has to go through a series of preparation steps such as data
association, outlier rejection, variable initialization, etc. These pre-processing steps are crucial
to ensure the robustness of the whole system and therefore should not be overlooked.

On quadrics and high-level maps
The idea of shape abstraction seems to match how humans interpret the physical world naturally.
Using geometric primitives to parameterize the objects in the environment produces highly com-
pact maps and provides strong constraints to estimating robot poses. However, we also learned
that high-level maps can be limited in several aspects. Firstly, the shape assumption makes this
strategy quite picky about the environment. In less-structured cases, low-level representations or
a hybrid representation might make more sense. Secondly, the accuracy of an abstracted back-
end heavily depends on the performance of shape extraction. The misalignment of high-level
shapes tends to cause more significant errors in the final estimation as the map is now simplified
only to contain a few such primitives. Finally, although the uncertainty of high-level shapes is
straightforward to interpret (as shown by decomposed quadrics in Chapter 7), accurately charac-
terizing uncertainty in the parameter space remains difficult. The isotropic approximation used
by this work is a simple approach but not ideal to precisely capture the effects of observation
acted on the final estimation.

8.3 Future Directions

Localizability-aware SLAM and data fusion

Robust SLAM has become one of the most popular trends in the ongoing SLAM research [23].
Aligning with this pursuit, we believe the concept of localizability could be introduced to more
aspects of SLAM.
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(a) Degeneration in x−y plane. (b) Degeneration in z. (c) Degeneration in roll.

Figure 8.2: Examples of motion degeneration caused by special visual patterns.

One interesting question is how to generalize the localizability to cameras, which, compared to
LiDAR, is more widely accessible. We believe the idea of measuring the constraint strength is
fundamental enough to be applied for visual data. However, since cameras have different sensing
model that captures textural data instead of structural data, the analysis should then be based on
texture information. In Fig. 8.2, we show three extreme examples of visual patterns that could
cause zero optical flow in some directions, which indicates motion degeneration. We recognize
that the examples shown here are almost impossible to happen in the real world, but these basic
cases can offer intuitive insights to understand the degeneration of visual data. In practice, it
might make more sense to study how the distribution of features affects the motion estimation
problem, since many SLAM systems rely on sparse visual features.

Another promising line of research is to use localizability to coordinate estimations based on
different sensors. For instance, works in [138] and [159] switch between the LiDAR and cameras
based on the confidence of estimations. In this case, localizability could be used as a criterion to
determine which source of information to trust.

Primitive-based SLAM and mapping
In Chapter 7, we showed that the concept of unified representation using decomposed quadrics
has the benefits of concise and geometrically meaningful formulations. However, in order to
use geometric primitives for SLAM, one has to consider the front-end problem where quadrics
are first extracted from raw sensing data. Region-growing based [82][146] or RANSAC-based
[125][17] methods could be optimized for online usages. Alternatively, Deep Neural Networks
(DNN) have shown remarkable performance in detection tasks and therefore could be another
direction to explore for online primitive extraction [162] [58].

Another interesting direction of research is to utilize the relative geometric relationships be-
tween quadrics. For example, there are attempts to enforce perpendicular relationships between
detected planes as in [69] or particular spatial arrangements between primitives as in [87]. It is
possible to define similar constraints between decomposed quadrics to improve the map quality.
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8.4 Final Remarks

The development of this thesis is motivated by autonomous bridge and tunnel inspection. Our
goal is to free human inspectors from labor-intensive tasks using autonomous robots. We believe
the technologies developed in this thesis can improve structure monitoring efficiency by facil-
itating the data collection process and automating the 3D modeling procedures. Additionally,
although this work is motivated by inspection, we believe the obtained insights are generalizable
to more robotics applications. Finally, even though the technology of robot state estimation and
mapping has advanced remarkably in the past decades, robustness is still a major challenge in
today’s SLAM research. New theories, frameworks, and tools have to be developed to ensure
reliable, safe performance in the complex physical world.
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Appendix A

Derivation of Localizability

A.1 LiDAR Localizability

Without losing generality, we could always define the map frame to align with the robot body
frame. In this way, (x,R) are small and can be treated as perturbations. Therefore the problem
is reduced to evaluate how sensitive is ρi w.r.t. the perturbations (x,R). This assumption allows
using the small angle approximation R ≈ I + [θ]× to find the linearized constraint:

C̄(x,θ, ρi) =nTi (x + (I + [θ]×)riρi) + di

=nTi x + nTi riρi + nTi [θ]×riρi + di

=nTi x + nTi riρi − nTi [ri]×θρi + di

(A.1)

Then based on the Implicit Function Theorem (IFT), we have

∂C̄
∂x

dx +
∂C̄
∂ρi

dρi = 0,
∂C̄
∂θ

dθ +
∂C̄
∂ρi

dρi = 0 (A.2)

which implies

dρi
dx

= −
(
∂C̄
∂x

)(
∂C̄
∂ρi

)−1

= − nTi
nTi ri

dρi
dθ

= −
(
∂C̄
∂θ

)(
∂C̄
∂ρi

)−1

= −(ρiri × ni)
T

nTi ri

(A.3)

The derivatives are then stacked into matrix F and T.

A.2 UWB Localizability

The derivation for the UWB is more straightforward. Based on the IFT, we have
∂C
∂x

dx +
∂C
∂γ

dγ = 0 (A.4)
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which implies
dγ
dx

= −
(
∂C
∂x

)(
∂C
∂γ

)−1

=
x− xa
γ

(A.5)
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Appendix B

Derivation of Quadrics Jacobians

B.1 Notations

Following the notation convention of the paper, the quadric states in the world frame is repre-
sented by (Rq, tq, sq), and the robot pose is (Rr, tr). Therefore, the state vector involved in a
single observation is x = [Rr, tr,Rq, tq, sq].

To simplify the presentation, we derive the Jacobian matrix based on a single observation, while
the complete Jacobian can be constructed by filling in per observation Jacobians.

B.2 Error Function

As presented in the paper, the observation error is given by

e =

eR

et

es


=

 diag(IR) (V ⊗∆R)T

diag(It)(DVT∆t + VT l)
diag(Is)(s2 −Λ)

 ∈ R15

(B.1)

where ⊗ means column-wise cross product. ∆R = RT
r Rq and ∆t = RT

r (tq − tr) are the
rotation and translation of quadrics pose transformed into the robot frame. Λ = [λ1, λ2, λ3] is
the vector of eigenvalues which are stored as the diagonal elements of D. Here, eR is a 3 × 3
matrix and will be vectorized and then stacked into the error vector.
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Then we have the derivative ∂e
∂x
∈ R15×15 as

∂e

∂x
=


∂eR

∂Rr

∂eR

∂t

∂eR

∂Rq

∂eR

∂tq

∂eR

∂sq
∂et

∂Rr

∂et

∂t

∂et

∂Rq

∂et

∂tq

∂et

∂sq
∂es

∂Rr

∂es

∂t

∂et

∂Rq

∂es

∂tq

∂es

∂sq

 (B.2)

Note that the first dimension size 15 is the number of constraints or the error terms. The above
Jacobian can be simplified by identifying zero blocks:

∂e

∂x
=


∂eR

∂Rr

0
∂eR

∂Rq

0 0

∂et

∂Rr

∂et

∂t

∂et

∂Rq

∂et

∂tq
0

0 0 0 0
∂es

∂sq

 (B.3)

Now we rewrite error terms explicitly to prepare for the derivation of ∂e
∂x

:

eR =

 · · ·
[vi]×RT

r Rqui
· · ·

 ∈ R9×1

et =

 · · ·
λiu

T
i RT

q (tq − t) + uTi RT
q Rrl

· · ·

 ∈ R3×1

es =

 · · ·
s2
i − λi
· · ·

 ∈ R3×1

(B.4)

where ui are unit vectors:

u1 = (1, 0, 0)T , u2 = (0, 1, 0)T , u3 = (0, 0, 1)T (B.5)

B.3 Linearization

Computing Jacobian involving Rr and Rq requires linearization which can be achieved by ap-
plying the small angle approximation:

Rr = RrδR, δRr ≈ I + [wr]× (B.6)

and
Rq = RqδRq, δRq ≈ I + [wq]× (B.7)
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where [·]× is the skew-symmetric operator:

[w]× =

 0 −w3 w2

w3 0 −w1
−w2 w1 0

 (B.8)

and I is the identity matrix. Now we apply the anti-commutative rule of cross product

a× b = [a]×b

=− b× a = −[b]×a
(a,b ∈ R3) (B.9)

to linearize the error terms w.r.t. rotation Rr and Rq:

ēR|Rr =

 · · ·
[vi]×(I + [wr]×)TRT

r Rqui
· · ·


=

 · · ·
[vi]×(I− [wr]×)RT

r Rqui
· · ·


=

 · · ·
[vi]×RT

r Rqui − [vi]×[wr]×RT
r Rqui

· · ·


=

 · · ·
[vi]×RT

r Rqui + [vi]×[RT
r Rqui]×wr

· · ·



(B.10)

ēR|Rq =

 · · ·
[vi]×RT

r Rq(I + [wq]×)ui
· · ·


=

 · · ·
[vi]×RT

r Rqui + [vi]×RT
r Rq[wq]×ui

· · ·


=

 · · ·
[vi]×RT

r Rqui − [vi]×RT
r Rq[ui]×wq

· · ·


(B.11)

ēt|Rr =

 · · ·
λiu

T
i RT

q (tq − t) + uTi RT
q Rr(I + [wr]×)l

· · ·


=

 · · ·
λiu

T
i RT

q (tq − t) + uTi RT
q Rrl + uTi RT

q Rr[wr]×l
· · ·


=

 · · ·
λiu

T
i RT

q (tq − t) + uTi RT
q Rrl− uTi RT

q Rr[l]×wr

· · ·


(B.12)
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ēt|Rq =

 · · ·
λiu

T
i (I + [wr]×)TRT

q (tq − t) + uTi (I + [wr]×)TRT
q Rrl

· · ·


=

 · · ·
λiu

T
i (I− [wr]×)RT

q (tq − t) + uTi (I− [wr]×)RT
q Rrl

· · ·


=

 · · ·
−λiuTi [wr]×RT

q (tq − t)− uTi [wr]×RT
q Rrl + · · ·

· · ·


=

 · · ·
λiu

T
i [RT

q (tq − t)]×wr + uTi [RT
q Rrl]×wr + · · ·

· · ·



(B.13)

In the linearized cost function et|Rq , constant terms not related to x are omitted. The error terms
are linearized in that now they are linear w.r.t. wr and wq.

B.4 Jacobians

Finally, from the above linearized equations, we can have the Jacobian blocks:

∂eR

∂Rr

=

 · · ·
[vi]×[RT

r Rqui]×
· · ·


∂et

∂Rr

=

 · · ·
−uTi RT

q Rr[l]×
· · ·


∂eRr

∂Rq

=

 · · ·
−[vi]×RT

r Rq[ui]×
· · ·


∂et

∂Rq

=

 · · ·
λiu

T
i [RT

q (tq − t)]× + uTi [RT
q Rrl]×

· · ·



(B.14)
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As to Jacobian w.r.t. translation and scale, it is straight forward:

∂et

∂tr
=

 · · ·
−λiuTi RT

q

· · ·


∂et

∂tq
=

 · · ·
λiu

T
i RT

q

· · ·


∂es

∂sq
=

· · ·2si
· · ·


(B.15)

The computed Jacobian blocks can then be filled into (B.3) and finally used to construct the
complete Jacobian matrix used in the LM method (see Algorithm 2).
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[4] Stéphane Allaire, Valérie Burdin, J-J Jacq, Gregory Moineau, Eric Stindel, and Ch Roux.
Robust quadric fitting and mensuration comparison in a mapping space applied to 3d mor-
phological characterization of articular surfaces. In 2007 4th IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro, pages 972–975, 2007. 7.3.4
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