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Abstract
Batteryless, energy-harvesting devices enable deeply embedded sensing and comput-
ing deployments without the size, weight, or maintenance constraints of batteries.
These devices harvest energy into a small capacitor bank to support short bursts of
execution at a time, with power failures in between. Peripheral sensors and radios
are essential to batteryless device deployments; they allow a device to sense and
report information about its surroundings. However, peripherals trigger concurrent
accesses to memory and account for a large percentage of the total device energy
budget. The challenge for programmers is a tight coupling emerges between device
hardware characteristics and application peformance. A software developer needs
to have an understanding of both to write programs that behave as expected. This
thesis reduces the burden of integrating peripherals into batteryless applications by
managing the shared state between peripherals and the primary microcontroller.

We first address the problem of shared memory between peripheral triggered
interrupts and a program’s main loop by defining a programming model that prevents
concurrency control violations due to power failures. Peripheral operations also affect
the state of the system by changing the total operating power, e.g. by turning a
sensor on or off. We demonstrate that peripheral mismanagement leads to a new class
of energy bugs that cause hard-stop failures and waste energy in batteryless systems.
To correct these bugs, we model changes in peripheral power over a program’s
execution. However, peripheral power does not fully capture the hardware state of
the device. A device’s power system characteristics also determine when it is safe
to access a peripheral. Using a lightweight model of the power system, we correct
existing scheduling algorithms for batteryless devices to accommodate high-current
peripherals on volume-constrained systems. Finally, we apply the lessons learned
throughout this thesis to develop the failure-aware hardware and software support for
a miniature batteryless satellite. The ease with which we integrate failure-agnostic
peripheral subsystems demonstrates the value of power and peripheral management
in batteryless devices.
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Chapter 1

Introduction

As the Internet of Things (IoT) expands, it is pushing more and more deeply
embedded sensors out into the world. These sensors gather critical data from their
environment and perform some actuation in response or transmit the data to a more
powerful base station to relay across a network. It is these tiny nodes well beyond
“the edge” [214] of a distributed network that provide the essential information to
make a smart and connected world a reality. However, as sensor data volumes grow,
these devices do more than basic sense-and-send tasks. To improve reliability [132],
reaction time [99], and energy efficiency [98] deeply embedded sensors can use onboard
compute resources to process the sensed information before acting on it.

In typical sensor network applications for IoT, battery-powered motes schedule
sensing, processing, and compute tasks with sleep operations that drop the device
into a low-power wait state [84, 141, 209]. Programming models for battery-powered
motes are designed to help the programmer maximize battery life given a set of
applications. The goal is to do as little as possible and still meet application demands.
Eventually, though, the battery is fully discharged and the device is dead until the
battery is replaced. In contrast, energy-harvesting sensor nodes greatly extend device
lifetime by using rechargeable batteries or capacitors to store energy captured from
the environment [7, 59, 88, 124, 128, 180, 216]. Energy-harvesting systems capture
sources like solar, RF, vibration, or temperature gradients [180, 229, 260, 279].

However, rechargeable batteries do not solve all challenges associated with ubiq-
uitous computing initiatives. Reducing system weight, volume, or cost can preclude
the use of batteries entirely in applications like miniature satellites [285], inside

1



the body [62, 119, 156, 211] or object tagging [208]. Uncontrolled environments
also can be out of scope for batteries due to temperature constraints [171, 194] or
humidity [8]. Further, size and weight constraints limit the harvestable power in
addition to the available energy by capping the size of harvesters. For instance,
solar harvester power is determined by the area of the panel– the power drops off
as the size is reduced to fit in a tiny envelope. If the power to run the sensor,
including the central microcontroller (MCU), and the peripheral sensors, radios, and
actuators, exceeds the harvested power, the device must draw the energy from its
energy buffer, a capacitor. In highly constrained systems, the capacitor discharges
rapidly and the device is forced to power off. Once the device is off and no longer
using power, the harvester can refill the energy buffer and the device can once again
turn on. As strange as a device that intentionally turns on and off may seem, prior
work has succeeded in building complex applications including maintenance-free
sensing [8, 44, 110, 122, 217, 229], gaming [64], image processing [191, 193], minia-
ture robotics [233] and machine learning [99, 121, 193]. This thesis focuses on these
batteryless devices that use a capacitor for an energy buffer and harvest too little
power to operate continuously.

The key innovation from prior work that enabled long running applications
(i.e. those that take more energy than is ever available in the energy buffer) is an
execution model called intermittent computing. Intermittent computing extends the
lifetime of a software task across hardware power failures. This work started in the
domain of Computational RFID tags (CRFIDs), and allowed CRFIDs to compute
very slowly [44, 217, 229, 290, 292] with minimal harvested power. Novel circuit-
level hardware support for intermittent computing pursues low-power persistent
memory technologies tightly integrated with the processor [170] or in the memory
[127, 261, 262], integrated checkpointing [269] and cheap voltage monitoring [280].
However, this thesis focuses on software and printed-circuit board (PCB) level
support for intermittent systems, working only with commodity MCUs, sensors,
actuators and power system components, composed in novel ways. Focusing on
commodity hardware enables batteryless device usage in the short term and defines
strategies that can reduce cost in the future. For instance, supporting the mixture of
volatile and non-volatile memory in commodity MCUs [268] allows batteryless devices
to use cheap, well established, low-power MCUs instead of an exotic fabrication
technology [170].
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The original runtime support for intermittent execution was designed for applica-
tions with tens of milliseconds of active time on each reboot. Subsequent software
work followed suit and developed task-based programming models [55, 168, 174] that
minimize the overhead of computing across power failures. These models divide
the program into atomic regions of code and guarantee that the regions will even-
tually complete from start to finish, without an intervening power failure, and do
so idempotently. The problem though, is this work only focused on how to extend
compute across power failures. It relied on extremely basic peripheral sensors and
actuators, including nearly passive radio communication [164], on-chip ADCs [168]
and LEDs [168]. Such restrictions are necessary for CRFIDs– doing any more than
quickly reading from a peripheral is prohibitively expensive for truly tiny devices.
However, peripherals are absolutely critical to the mission of batteryless systems.
Putting a computer in a hard-to-reach physical location is only useful because it is
co-located with peripherals to sense data that cannot be acquired by other means.
Radios or actuators (which are peripherals) then allow the device act on the data.

1.1 Peripherals in Batteryless Devices

To understand the challenge of adding peripherals to an intermittent execution, we
must consider the typical hardware architecture of a batteryless device. To the best
of our knowledge, all batteryless systems give a single MCU the responsibility to
restore state after power failures, coordinate peripheral power access [57, 61, 284]
and manipulate peripheral configuration [33, 41, 220]. Peripherals may be complete
Systems on Chip (SoCs) in their own right, but we consider any chip that is not
failure-aware (i.e. the central MCU) a peripheral. It is thus the MCU’s job to
manage all of the constraints a peripheral places on a program and all of its state.
State in this thesis comprises the memory, and configuration of a peripheral. The
MCU must persist concurrent changes to peripheral state and satisfy peripheral
constraints, including timeliness and energy requirements, while the whole device is
executing intermittently.

Managing peripherals on batteryless devices is more difficult than on a continu-
ously powered device for two major reasons: first, peripheral state is cleared on a
power failure, second, peripherals consume a large percentage of the total energy
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budget of a batteryless device. When power fails, each peripheral’s configuration, i.e.
the operating mode that results from commands sent by the MCU, is assumed to be
lost because the voltage supplied to the peripheral (likely) falls below its minimum
operating voltage. Upon reboot, the MCU must carefully reinitialize peripherals
before using them to prevent the program from hanging due to a misconfigured
peripheral. Further, the dynamic software state shared with the peripheral, e.g.
memory accesses and code in a peripheral triggered interrupt service routine (ISR),
is also lost in the event of a power failure. If a power failure interrupts an ISR,
the ISR is not restarted on reboot– the source of the interrupt is gone. The loss of
state forces the programmer to judiciously use peripherals with predictable access
patterns, e.g. polling, and their relatively high power raises the cost of mismanaging
a peripheral.

Figure 1.1 shows the percentage of the total power each peripheral individually
consumes on the Capybara [57] batteryless sensing and computing platform. On a
single platform, the cost ranges from 10% to 40% to run one peripheral at a time.
That said, the actual impact of a peripheral (i.e. the same sensor) will vary between
devices and deployment scenarios. For instance, if a peripheral deployed on a solar
powered sensor that generates 90 mW [166] is moved to an RF harvesting node
(10 mW [183] ), its effect on the system behavior will be more pronounced. Beyond
the total system power, the incoming power determines which sensors will have a
noticeable impact on end-to-end efficiency. Similarly, decreasing the frequency of the
central MCU can change the system’s baseline power by more than 8x [268], which
increases the percentage of system power attributed to a peripheral. As a result,
it is difficult for a software developer to know when to prioritize peripheral state
management, i.e. strategically putting the peripheral to sleep to save power, and the
effort to manage peripherals is non-trivial.

Previous work in intermittent computing guaranteed correctness strictly in terms
of the memory state of the MCU [55, 174, 254], and subsequent models addressed
other aspects of running peripherals including timeliness [63, 111, 148, 253], atomic
operation [57, 176, 253], and peripheral configuration [33, 41, 220]. The problem is
that these models are not designed to work together. In fact, we show that combining
seemingly independent pieces of system support for using peripherals on batteryless
systems causes buggy execution.
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Figure 1.1: Peripheral Power Percentage. The peripherals on a Capybara device
consume a large percentage of the total power, but there is a wide range based on the exact
peripheral configuration.

1.2 Thesis Statement & Contributions

The goal of this thesis is to manage the shared state that exists between peripherals
and the central MCU. On a batteryless device, the failure-aware MCU explicitly
coordinates a large set of failure-agnostic peripherals from the main loop of a
program. However, additional state is shared between the MCU and peripherals, e.g
ISR accesses to global memory, that implicitly allow peripherals to affect the program
running on the MCU. This thesis identifies unintended interactions that emerge
between peripherals and the MCU in batteryless devices and builds programming
models, compiler tooling, and light-weight hardware models to correct them. In the
course of demonstrating the interactions, removing the problem, and evaluating the
results on batteryless hardware, we demonstrate the validity of the following thesis:

System support for managing the data, power, and energy state that
are shared by peripherals and the central microcontroller improves the
reliability, performance, and programmability of batteryless, energy-
harvesting devices.

The key contributions of this thesis are as follows:
1. We identify concurrency control bugs in task-based languages for intermittent

execution that prevent programmers from correctly synchronizing accesses to shared
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memory from peripheral-triggered interrupt service routines. We then propose a
programming model that provides correct, low-overhead access to shared data.

2. We describe a new category of energy bugs due to changes in peripheral
operating power that cause hard-stop failures in batteryless systems and demonstrate
the effects in hardware. We propose a programming interface and compiler tool that
reports potential hard-stop energy bugs.

3. We demonstrate that peripheral mismanagement in the context of batteryless
energy harvesting systems manifests as application-wide slowdowns. We develop a
failure-aware runtime module that automatically configures peripherals to minimize
their total energy consumption.

4. We show that energy-based assumptions for peripheral event scheduling fail
when using dense supercapacitors as an energy buffer. We develop a lightweight
model to accurately predict the effect of a software task (e.g. peripheral access) on
the state of the energy buffer at runtime.

5. We apply the peripheral-induced bug awareness accrued in this thesis to build
an energy-harvesting power system and failure-aware control system for a batteryless
nanosatellite. The failure-aware subsystems support a wide range of failure-agnostic
peripherals that allow for greater flexibility and reduced development effort when
building complex batteryless systems.

Detailing the range of problems that occur as system developers integrate more
capabilities into batteryless systems clarifies the gap between where system support
for intermittent execution is, and where it needs to be. The tooling presented in this
thesis takes one step towards closing that gap, and empowers developers to build
impactful batteryless applications.

1.3 Outline

The remainder of this thesis is organized into six chapters. This introduction
explained the basics of intermittent execution as a model of computation to motivate
the importance of this work’s contributions. Chapter 2 will delve into the specifics
of the hardware and software that underpin batteryless applications before exploring
trends in intermittent computing literature that motivate this thesis’ focus on
peripherals. With the background in place, we move on to Chapters 3-5 which each
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describe a different type of state shared between peripherals and the central MCU.
Chapter 3 poses the question, how should intermittent execution models support

arbitrary accesses to shared memory? After exploring the software bugs that can
emerge while trying to control concurrent accesses to shared memory, this chapter
ultimately answers “it shouldn’t”. We demonstrate in this chapter that supporting
arbitrary access to shared memory while allowing flexible semantics has a prohibitively
high overhead in many cases. Instead, we propose Coati [224], a programming model
and runtime implemented in C that restricts the quantity of data that is actually
shared between asynchronous and scheduled code. The restriction allows Coati to
minimize the overhead of shared state and achieve concurrency control with little
programmer effort.

Chapter 4 continues the theme of bugs due to concurrent peripheral accesses, but
we study the system-wide effects of an individual peripheral’s power consumption
instead of its accesses to shared memory. In this study, we find that a programmer’s
decision of whether or not to turn off a peripheral after using it has a substantial effect
on the performance and correctness of an application. In particular, we examine the
consequences of system support for intermittent execution that does not consider
peripheral power. We show that the resulting systems are not composable without
introducing the potential for fail-stop bugs. We then develop a methodology called
Pudu to remove the bugs that result from peripheral power. Pudu comprises a set of
annotations, implemented in C, that indicate changes in peripheral power as well as
compile-time and runtime components implemented, respectively with LLVM [153]
and C. Using the Pudu methodology we identify bugs that cause hard-stop failures
and remove the inefficiency of poor power management code.

Chapter 5 addresses the problem that modeling peripheral power is not sufficient
to model the hardware behavior of recent batteryless devices. Recent systems moved
to dense supercapacitors to increase the energy availability, but existing models do
not account for the chemistry of supercapacitors. We show that simplistic capacitor
models do not correctly predict when an operation will complete without a power
failure, but we also show that detailed static profiling of supercapacitors is impractical
and inaccurate. In the end, we build Culpeo, an interface for expressing basic power
system characteristics to software and a runtime library written in C that predicts a
safe energy buffer voltage for starting an operation. We show that Culpeo is essential
for event-triggered peripheral operations because it prevents power failures due to
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sudden spikes in peripheral-power.
Using the lessons learned throughout this thesis, Chapter 6 discusses a case study

to build the “ideal” batteryless system support for a PocketQube nano-satellite [6].
The trouble with building the failure-aware support for a device as complicated as a
nano-satellite, is it needs to enable other subsystems with as little integration effort as
possible. The simpler the integration, the more flexible the resulting system and the
more parallel the development of the subsystems can be. This requirement precludes
failure-aware modifications to the code running on the other subsystems. We use
the knowledge of the hardware-software bugs explored in this thesis to correctly
support a range of capable subsystems. For instance, the failure-aware handling of
interrupts from other subsystems was informed by Coati’s conclusion that a narrow
interface minimizes programming effort and overhead. The peripheral voltage rail
design is motivated by the challenge of managing peripheral power explored in Pudu,
and bounding the behavior of applications running on the satellite is not accurate
without Culpeo.

Finally, Chapter 7 summarizes the results of the work explored in this thesis and
defines several directions for new research beyond what is discussed in the preceding
chapters.
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Chapter 2

Background

Batteryless systems differ from battery-powered systems in ways that affect both
the software execution and hardware design-space trade-offs. This chapter will first
describe the software execution model batteryless devices experience and describe
how prior work solved the challenges it presents. We then present the energy
harvesting power system architecture that is typical of batteryless devices, which
we will reference throughout this thesis. After establishing the underlying hardware
and software requirements for batteryless systems, this chapter explores existing
techniques for enabling peripherals in batteryless devices.

2.1 Intermittent Execution

The defining characteristic of software on a batteryless device is the intermittent
execution model [168] that it experiences. Batteryless devices harvest all of the
energy they will use from their environment, but operating power is typically higher
than harvestable power. As a result, batteryless devices need to store energy in an
energy buffer that they can draw from to power the application hardware (load-side
components) including the MCU, sensors, and radios. As software runs, the energy
buffer rapidly depletes, forcing the load-side components to either power down or
enter a deep sleep state to allow the energy buffer to recharge.

The challenge for software running on a batteryless, energy-harvesting device is
that code executes only intermittently, making progress during operating bursts. Fur-
ther, this thesis considers commercially available MCU’s that mix byte-addressable,
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non-volatile main memory (NVM) [263, 265, 268], with a volatile processor archi-
tecture. For MCUs with hybrid non-volatile and volatile memories, each power
failure causes the execution to lose volatile program state (e.g., stack, registers) and
retains non-volatile program state (e.g., some globals). Power failures compromise
forward progress by clearing the program counter (PC) and restarting the program.
Power failures can also leave program state inconsistent by forcing the state of the
volatile memory out of sync with the data stored in NVM [168, 217, 252]. However,
increasingly well established programming models for intermittent systems allow
application developers to overcome the challenges of losing volatile state to complete
long running programs piece-by-piece [254].

Figure 2.1, left, shows an excerpt of a plain C program that performs activity
recognition, using sensor data. The code loops over a rolling window of data,
computing statistics about the data, assembling a feature vector, and classifying the
data. Figure 2.2, left, shows the program intermittently executing. As power fails,
the intermittent execution does not make forward progress, and repeatedly restarts
from main().

1:winNum = countValid(Win[]) 
2:if(num<Min)TransTo(t_Init) 
3:(Mx,My,Mz) = Mean3D(Win[]) 
4:(SDx,SDy,SDz)=StDv3D(Win[]) 
5:TransTo(t_FeaturizeWin) 

Task: ClassifyFeatVec

Task: WindowStats

Task: FeaturizeWin
6:winMag = Mag3D﴾Win[]﴿ 
7:featVec = [winMag, 
8:           SDx,SDy,SDz, 
9:           Mx,My,Mz] 
10:TransTo(t_ClassifyFeatVec) 

1:windowStats﴾﴿{ 
2: winNum = countValid(Win[]) 
3: if(num<Min)call(t_init) 
4: (Mx,My,Mz) = Mean3D(Win[]) 
5: (SDx,SDy,SDz)=StDv3D(Win[]) 
6:} 
7:featurizeWin(){ 
8: winMag = Mag3D(Win[]) 
9: featVec = [winMag, 
10:           SDx,SDy,SDz, 
11:           Mx,My,Mz] 
12:} 
13:main(){ 
14: while(true){ 
15:  windowStats() 
16:  featurizeWin() 
17:  classifyFeatVec() 
18:}} 
19:__interrupt Sensor(...){ 
20: (x,y,z) = datarecv() 
21: n = numrecv() 
22: Add(Win[],n,x,y,z) 
23: totCnt += n  } 

Plain C Code

1:__interrupt Sensor(...){ 
2: (x,y,z) = datarecv() 
3: n = numrecv() 
4: Add(Win[],n,x,y,z) 
5: totCnt += n  } 

Intermittent Task-based Code

          ... 
11:TransTo(t_WindowStats) 

Figure 2.1: Activity Recognition code. The code at right translates the C code at
left into task-based code for intermittent execution.

However, numerous systems have been developed to help make progress through
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Plain C Code 
winNum=countValid(Win[]) 
if(num<Min)TransTo(t_Init) 
(Mx,My,Mz) = Mean3D(Win[]) 
(SDx,SDy,SDz)=StDv(Win[]) 

Task: WindowStats

Task: FeaturizeWin

Task-Based Code

Task: FeaturizeWin
winMag = Mag3D﴾Win[]﴿ 
featVec = [winMag, 
           SDx,SDy,SDz, 
           Mx,My,Mz] 

  Start Operating

 Start Operating
Program restarts; 

no progress

Time
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windowStats() 
num=countValid(Win[]) 
if(num<Min)return; 
(Mx,My,Mz) = Mean3D(Win[]) 
(SDx,SDy,SDz)=StDv(Win[]) 
featurizeWin() 

Task restarts;  
preserves progress

winMag = Mag3D﴾Win[]﴿ 
featVec = [winMag, 

windowStats() 
num=countValid(Win[]) 
if(num<Min)return; 
(Mx,My,Mz) = Mean3D(Win[]) 
(SDx,SDy,SDz)=StDv3D(Win[]) 
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Figure 2.2: Plain C code vs intermittent task-based code. Task-based code makes
progress despite power failures.

a program that requires more energy than will ever be available at once on the
batteryless device. For instance, Figure 2.1 shows the example program re-written to
use tasks from the Alpaca language [174], short functions with statically annotated
control flow that execute atomically. The code’s main functions map to tasks and
arrows indicate control-flow. The interrupt is its own task and has no control-
flow arcs because it is asynchronous. Figure 2.2 shows the task-based program
executing intermittently. A task runtime buffers updated values until it completes,
commits its updates, and transitions to another task; making progress one task at
a time. After a power failure, execution restarts at the most recent task, instead
of main(); in the figure, FeaturizeWin resumes after the failure. While all system
support for intermittent execution is designed to support forward progress, the
exact implementation of the runtime system affects program properties ranging from
correctness to power efficiency.
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2.2 Software Support for Intermittent Execution

Prior work has developed many different software approaches for preserving progress
that can be grouped into task-based, software checkpointing or hardware checkpoint-
ing systems. Figure 2.3 summarizes the different systems. This section will explore
the advantages and disadvantages that stem from the type and implementation of
the intermittent runtime a program uses.

Figure 2.3: Software Support for Intermittent Execution. Strategies for intermit-
tent computing all divide a long running program into shorter segments, but they vary in
their hardware and programmer requirements.

A task-based intermittent programming system requires the programmer to
break a program into regions of code that the programming model guarantees will
execute atomically and idempotently. The programmer ensures that a task will
finish within the device’s energy budget by conservatively testing the code before
deployment [57, 111, 174, 175, 284] or using energy debugging tools [54, 56]. The
state-of-the-art method to ensure each task completes is to fully charge a device’s
energy buffer, disconnect harvested power, and then initialize the code and run a
task in isolation. A task-based model’s runtime system implementation ensures task
atomicity by ensuring that repeated re-executions of a task are idempotent. An
idempotent task always produces the same result when re-executed, never overwriting
and losing the input values to the task. On reboot, the runtime system replays a log
of checkpointed values (if required by the task programming model) and jumps to
the beginning of the failed task.
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A key challenge for systems developers expanding on task-based programming
models is each system ensures idempotent operation differently, which results in
slightly different guarantees. For instance, DINO used programmer inserted task
boundaries to form tasks and preserves idempotence by logging global variables
involved in write-after-read (WAR) conflicts. However, a programmer must consider
control flow between boundaries when placing them to avoid tasks that are too
long, e.g. because a programmer left a loop exit unmarked. In contrast, several
task based runtimes, including Alpaca mentioned above, define tasks as separate,
top level functions that communicate via some WAR-aware interface to global
memory [55, 57, 111, 174, 175, 284]. Even among statically defined tasks, the exact
procedure for avoiding write-after-read conflicts affects the runtime’s susceptibility
to subtle bugs. Alpaca reduced runtime overhead further than Chain by privatizing
only variables involved in a WAR dependence, but this policy leaves it open to RIO
bugs [252] that occur when a variable is not written on all paths from an input
dependent branch. Systems that place checkpoints in software automatically at
compile time suffer from the similar problems– balancing overheads with guarantees
is difficult.

A primary question software checkpoints must answer is how far apart checkpoints
should be placed to keep the checkpointing overhead at a minimum, while avoiding
non-termination [56]. Checkpoints may be placed by the programmer [217] or the
compiler [25, 34, 56, 64, 113, 186, 269]. Like tasks, checkpoints preserve state so that
on reboot, the state can be replayed and the execution can resume from the most
recent checkpoint [217]. Unlike statically defined tasks, the overhead of checkpointing
includes saving the registers as well as the stack in addition to any variables that
may become inconsistent as a result of a power failure. The memory overhead
of checkpointing varies with the placement of the stack in hardware. If the stack
is placed in non-volatile memory, only the registers need to be persisted, so the
overhead is low [176], otherwise the entire stack must be persisted to NVM. Other
checkpointing strategies reduce overhead by using differential checkpointing to only
save the difference from the last checkpoint [64].

Both software checkpoints and tasks suffer from the same problem of increasing
runtime overheads as the task size or distance between checkpoints shrinks. Ideally
both would be matched to the hardware platform a program is running on, but in
reality the effort to rewrite the program for each new platform is prohibitive. Instead,
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just-in-time (JIT) checkpoints use a hardware triggered interrupt to indicate an
imminent power failure. The JIT runtime records a checkpoints before powering
down and resuming from the exact point of the power failure [30, 31, 126, 176]. The
interrupt is often triggered by an internal comparator on the MCU that is monitoring
the energy buffer voltage. If the energy buffer voltage falls too low the interrupt fires.
The advantage of JIT checkpointing is that it does not require re-execution. After a
power failure the application resumes from the exact point where the interrupt fired.
Beyond reducing wasted work, JIT also removes the need to log values involved
in WAR conflicts because code always resumes where it left off– it is not possible
to read a different value than what was written. The primary drawback to JIT
checkpoints is they assume that the energy cost to persist all volatile state (i.e. stack,
registers) is insignificant compared to the energy buffer size, which does not hold
true for very small systems. Several proposals have argued for a non-volatile stack to
reduce the overhead and complexity of checkpointing [176], but other work showed
the inefficiency of mapping the entire memory to NVM [127]. Additionally, JIT
checkpointing requires integration with the power system of the device so it can
measure the energy buffer voltage.

2.3 Energy Harvesting Power Systems

A batteryless device relies on a power system that harvests energy from its sur-
roundings, accumulates it in an energy buffer, and releases it to perform a short
burst of computation. The hardware components of an EHD can be split in two
parts: supply-side power-system components (regulators, capacitors) that collect
and store energy and load-side components (microcontrollers, sensors, radios) that
execute software. A range of intermittent computing platforms have been developed
that span a variety of size and power delivery capabilities [57, 63, 64, 108, 110, 146,
167, 193, 229, 233, 243, 290]. In this thesis, we focus on the power systems that
are typical for energy harvesting devices that rely on supercapacitors to support
(relatively) high energy, high load current operations.

Figure 2.4 shows a typical energy-harvesting power system for this domain [57,
64, 193, 281], with an input and output booster as well as a supercapacitor for
energy storage. Power is harvested from a weak supply that cannot power the device
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continuously. This thesis primarily evaluates applications using stable voltage sources
like solar power from small panels [57, 72, 166] that provide inputs of just µW s,
but this work is agnostic to the exact power source. The input booster regulates
voltage from the energy harvester to steadily charge the energy-buffer (capacitor),
up to a maximum voltage level (V high). The input booster is required because the
energy-buffer will only charge as high as the incoming voltage from the energy
harvester. To maximize the energy stored in the capacitor, the input booster boosts
the incoming voltage to V high. To execute software, the output booster must be
enabled. The output booster provides a stable voltage to the load-side components,
discharging the capacitor and decreasing the capacitor’s voltage level, V cap. This
output booster can only be enabled when V cap is above a device-specific minimum
value (V off). In other words, software executes only when V cap is between V high and
V off (e.g. between 2.4V to 1.6V). When software deactivates (i.e. when V cap falls
below V off), the system uses hardware to fully recharge to V high before the output
booster is re-enabled [57, 63, 110, 166, 193, 229].
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Figure 2.4: Annotated power system schematic. The supply side harvests energy
into the energy buffer that the output booster accesses to provide a stable voltage to the
load.

Power systems for recent batteryless energy-harvesting devices use supercapacitor
arrays as their energy buffers instead of other capacitors or batteries [166, 193, 233].
Supercapacitors provide an attractive balance between energy capacity and lifetime;
they provide much higher capacities than (e.g. ceramic) capacitors while lasting
for decades [140, 198, 296]. In contrast, a rechargeable battery lasts only a few
months under the high duty cycles typically observed in energy-harvesting systems.
A challenge, however, is that the effective series resistance (ESR) of the dense
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supercapacitors considered in this thesis causes a substantial voltage drop on V cap

with even milliamps of current drawn by the load [23, 137, 235]. As we explore in
Chapter 5, the output booster masks the ESR drops by continuing to provide a stable
output voltage as V cap drops, but unexpected power failures can still occur if V cap

dips below V off . We demonstrate in the next section that batteryless devices can
support a wide range of peripherals that enable useful applications, but peripherals
come at a power cost.

2.4 Enabling Peripherals

Batteryless, energy-harvesting, intermittent systems, like other deeply embedded
devices, rely on peripheral sensors and actuators to sense, process, and transmit data.
The central MCU coordinates a potentially large set of off-chip peripherals using a
combination of bus protocols (e.g. I2C, UART) and voltage triggers over GPIO pins.
Peripheral management is challenging because the program running on the MCU
is responsible for ensuring that all peripherals are in the correct operating mode at
all times. Figure 2.5a, shows an example device and a simple program that reads
and processes a buffer of samples from a temperature sensor before transmitting the
result. Peripheral accesses are instrumented with atomic_start and atomic_stop

decorators that prevent JIT checkpoints from occurring in the middle of manipulating
a peripheral (lines 1-4 and 6-8).

Frequent power failures complicate peripheral management and make program-
ming batteryless devices challenging because hardware state is lost when the device
powers down. Without carefully re-initializing peripherals on reboot, the program
may attempt to access a peripheral that is not active or pick up in the middle of a
sequence of commands that should have been re-executed from the beginning. At
best, the peripheral returns an incorrect result, at worst, the program hangs. Prior
work in intermittent systems solves the problem of restoring peripheral state after
a power failure [33, 41, 220] and ensuring peripheral activation sequences execute
atomically [176, 253]. Figure 2.5b shows a trace of the temperature sensing program
executing intermittently. The program relies on JIT checkpoints to preserve progress
and is instrumented with peripheral restoration and atomic blocks. If power fails
during an atomic block, 2 , the device reboots from the start of the block, 3 , and
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Batteryless,
Energy-Harvesting Device

main(){ ...
1: ATOMIC_START;
2:  temp_init();
3:  get_temps(buff);
4: ATOMIC_END;
5: avg=calc_avg(buff);
6: ATOMIC_START;
7:  radio_send(avg);
8: ATOMIC_END;
        ...

on_reboot()
1: {restore_log();
2: restore_periph();
3: restore_chkpt();}

Energy
Harvester

Energy
Buffer

MCU

Peripherals

 radio

temp.
sensor

(a) Device and app. (b) Intermittent Execution.

Figure 2.5: Batteryless Device Example Execution. A batteryless device supports
peripherals, even though it experiences frequent power failures, using software support.
The example code, shown left, executes intermittently on the right with JIT checkpoints to
preserve progress. After each power failure (red, dashed lines), and corresponding restarts
(green dashed lines), the sensor’s operating mode is restored and the program resumes from
the most recent checkpoint.

restores peripherals to their states when the block first began. At a Just-In-Time
hardware checkpoint, 4 , the program and peripheral state are persisted just before
a power failure, and on reboot, 5 , both are restored precisely.

KARMA [41], RESTOP [220], and Sytare [33] are peripheral restoration systems
that dynamically track updates to peripherals so that the peripheral states can be
restored on reboot. The major difference between the systems is the peripheral
initialization policy after a reboot. RESTOP and Sytare both restore the peripheral
state exactly as it was recorded at power failure. KARMA uses lazy initialization
to postpone a peripheral’s initialization until it is accessed, unless the peripheral
is involved in an asynchronous event, e.g. a peripheral is set up to trigger an
interrupt when new data are available. KARMA requires peripheral drivers to
annotate peripheral operating mode changes (e.g. a peripheral transitions from "off"
to "active" during initialization) so that KARMA may replay the changes on reboot.
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Tools like peripheral restoration and atomic blocks pave the way for application
developers to build complex applications on batteryless devices that process data
captured from their surroundings.

2.5 Hardware/Software Co-Design for Peripherals

To concretely demonstrate the lengths to which systems have gone to satisfy applica-
tion constraints set by peripherals, we present a deep dive into prior work building
Capybara [57]. Capybara is a batteryless sensing and computing platform that uses
hardware-software co-design to map peripheral requirements to a reconfigurable,
hardware, energy buffer, shown in Figure 2.6.

Figure 2.6: Capybara hardware prototype. The MCU, and peripherals are on the
front side (left), and the power system with reconfigurable capacitor banks is on the back
(right).

2.5.1 Peripheral Constraints

The need for Capybara comes about because peripherals in an application place a wide
range of constraints on the energy-harvesting power system of the device. Energy
capacity constrained tasks, such as sending a radio transmission, must complete
atomically and require a minimum energy storage capacity in the power system.
Temporally-constrained tasks require energy to be available on-demand to react to
an external event. However, a fixed power system cannot serve all types of tasks at
once. Energy storage capacity determines both energy availability and recharge time
for a device. Energy availability determines whether a capacity-constrained task
will complete atomically or fail given insufficient energy. Recharge time determines
whether a temporally-constrained task will execute reactively because the system
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is powered off and unresponsive during recharge. Low capacity supports reactive
tasks with a short recharge interval, but is insufficient for large atomic tasks. High
capacity supports large atomic tasks, but causes long, inactive recharge intervals
which compromise reactivity.

Figure 2.7 illustrates how fixed energy buffering fails to meet peripherals’ demands.
The application attempts to reactively collect a time series of 15 sensor samples and
transmit the data by radio. The figure shows how stored energy buffer voltage varies
with time when the application executes with two different capacities. With a small
energy buffer (left), the application collects sensor samples reactively, with short
recharge periods between sampling bursts. However, this system buffers insufficient
energy to transmit by radio, and fails. With a large energy buffer (right), the
application buffers can transmit, but it fails to sample the sensor reactively because
it has long recharge times. What’s worse is that tasks may have both temporal and
capacity constraints– consider a radio transmission that happens in response to an
interrupt. The task requires a large quantity of energy available immediately, which
is simply not possible with a fixed energy buffer.
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Figure 2.7: Execution with a low or high fixed capacity buffer. Small energy
buffers support frequent sensing, but not high energy operations. Large energy buffers
support high energy operations, but are powered off for long periods of time while recharging.

2.5.2 Capybara Design

To overcome the shortcomings of a fixed energy buffer, Capybara develops a recon-
figurable energy buffer using persistent switches that allow the MCU to change the
size of the energy buffer dynamically. The software interface to Capybara allows
programmers to specify an energy mode for an application task and the underlying
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runtime reconfigures the buffers to provide the corresponding bank size. Capybara
also supports applications with both temporal and capacity constraints by allowing
programmers to pre-allocate a burst of energy that the MCU can spend in response to
an unpredictable event. Figure 2.8 shows a high-level system overview of Capybara
running an application (top) and the corresponding task-based program with energy
mode annotations(bottom).

main.c

App Code - Sensor - Radio -

configure mode2 
task sense(){ 
 d = read_sensor()
 nexttask proc }

burst mode3 
task radio_tx(){
 radio_tx(“alert!”)
 nexttask sense }

preburst burst=mode3
         exec =mode1 
task proc(){ 
 if(motion_chk(d))
   nexttask radio_tx  
 else
   nexttask sense 
}

M
od

e 
1

M
od

e 
2

M
od

e 
3

631

Figure 2.8: Overview of Capybara. The platform has resources for computation,
sensing, and communication. An example program has tasks annotated with energy mode
requirements.

The programmer annotates a task with parameterized keywords to associate
the task with an energy mode that describes the capacity and temporal constraints
of the task. The config (mode) annotation indicates that the task should execute
with the configuration of the hardware energy storage reservoir that corresponds to
the identifier mode. The Capybara API includes burst and preburst annotations
to support asynchronous tasks. A task annotated with burst (mode) requires the
specific (possibly very large) amount of energy of the energy mode mode at a time
in the future that is unpredictable. Just before a burst task executes, the runtime
system re-activates the energy banks that implement the mode configuration and that
had been charged ahead of time (by the mechanism explained next), and immediately
begins executing the burst in its declared mode mode. To charge a burst task’s
mode ahead of time, the programmer annotates a task preceding the burst task
with the preburst annotation. The pause to charge for the burst occurs before the
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preburst task, well in advance of the time critical burst task.
Giving the programmer tools to reconfigure the energy buffer in response to

temporal and capacity constraints is critical to support peripheral-centric applications.
Capybara enabled accuracy improvements in event detection applications of 2x-4x
over fixed systems. Further, the preburst/burst annotations support reactive
applications that fail without the ability to store energy for future use. Using
Capybara, the response latency was kept within 1.5x of a continuously power baseline.
Overall, Capybara demonstrates the importance of hardware/software co-design and
the need to design runtime systems around peripherals. Both of these themes appear
throughout this thesis.
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Chapter 3

Concurrency Control for
Task-Based Intermittent Execution

The initial work defining intermittent execution allowed for batteryless systems to run
more complicated programs than the simple, one-at-a-time sensing operations [44]
where CRFIDs began. With support for complex applications comes the need for
language support for reactive processing, but early work in intermittent computing did
not define support for concurrent accesses to shared memory. Prior work addressed
input/output (I/O), ensuring that computations were timely in their consumption of
data collected from sensors [57, 111, 284]. However, no prior work on intermittent
computing provides clear semantics for programs that use event-driven concurrency,
handling asynchronous I/O events in interrupts that share state with transactional
computations that execute in a main control loop. The idiomatic use of interrupts to
collect, process, and store sensor results is very common in embedded systems. The
absence of this event-driven I/O support in intermittent systems is an impediment
to developing batteryless, energy-harvesting applications.

Combining interrupts and transactional computations in an intermittent system
creates a number of unique problems that we address using new system support. First,
an interrupt may experience a power failure while updating persistent, shared state,
leaving the state inconsistent on reboot. As Section 3.2.1 shows, the inconsistent
shared state is likely to remain inconsistent because it is unintuitive to checkpoint
and restart an event-driven interrupt’s execution after a power failure. Second,
task-based intermittent execution models assume that tasks will repeatedly attempt
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to execute idempotently, allowing them to selectively buffer data and commit it
when a task ends[55, 113, 168, 174, 269]. An unmoderated interrupt may cause a
task’s re-execution to be non-idempotent, violating the underlying assumption of
task-based intermittent execution systems that allows only selectively buffering state.
Consequently, these prior approaches may lose updates or produce inconsistent state
in an intermittent execution. An appealing alternative is to disable all interrupts
during task execution, with behavior like TinyOS atomics [92, 159]. However, unlike
the small amount of code typically protected by TinyOS atomics (e.g., synchroniza-
tion), intermittent execution requires all code to be in a task; disabling interrupts
during any task blocks interrupts for most of a program’s execution.

This chapter presents Coati1, which adds concurrency control for event-driven
I/O to an existing task-based intermittent programming and execution model that
does not support interrupts. The key contribution of Coati is to define an execution
model that safely serializes atomic, transactional computations with concurrent,
event-driven interrupts during an intermittent execution. Borrowing from prior
work on event-handling in embedded operating systems (OS) [92, 159], Coati defines
events as shown on the right of Figure 3.1, which are regions of code that atomically
process I/O and occur asynchronously. Borrowing from prior work on intermittent
systems [55, 111, 174], as well as embedded OS [92, 159], Coati defines tasks, which
are regions of code that are atomic with respect to power failures and atomic with
respect to events. Coati borrows from prior work on transactional memory [37, 102,
106, 107, 187, 237] defining transactions, which allow sequences of multiple tasks to
execute atomically with respect to events. Coati’s support for events and transactions
is the main contribution of this work. Coati provides the critical ability to ensure
correct synchronization across regions of code that are too large to complete in a
single power cycle. Figure 3.1 shows a Coati program with three tasks contained
in a transaction manipulating related variables x, y, and z, while an asynchronous
event updates x and y. Coati ensures atomicity of all tasks in the figure, even if any
task individually is forced to restart by a power failure.

This work explores the design space of transaction, task, and event implementa-
tions by examining two models that make different trade-offs between complexity
and latency. Coati employs a split-phase model that handles time-critical I/O imme-

1Concurrent Operation of Asynchronous Tasks with Intermittence
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Figure 3.1: Coati program. The program contains three tasks encapsulated in a
transaction and an asynchronous event. The event cannot violate the atomicity of the
transaction.

diately in a brief interrupt handler, but defers processing the interrupt’s result until
after the interrupted task or transaction completes, ensuring the task or transaction
remains atomic. We also examine an alternative buffered model that fully buffers all
memory updates made in a transaction and immediately processes events, but on a
memory conflict between an event and transaction the event’s memory effects are
discarded. In contrast, Coati’s split-phase model is efficient, requiring neither full
memory buffering nor conflict detection for transactions and events.

We prototyped Coati as a set of extensions to the C language and a runtime
library that ensures safe, intermittent operation while supporting tasks, events and
transactions. We evaluated Coati on a set of benchmarks taken from prior work [174],
running on a real intermittent energy-harvesting system [57]. The data reveal that
Coati prevents incorrect behavior of event-driven concurrent code in an intermittent
execution. In contrast, we demonstrate that an existing, state-of-the-art task-based
intermittent system produces an incorrect, inconsistent result in nearly all cases.

3.1 Motivation

This work is the first to simultaneously address the challenges of concurrency control
for event-driven I/O and atomicity for computations in an intermittent system.
Event-driven I/O faces the challenge of managing asynchronous interactions between
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a program’s main computational work loop and operations in interrupts. Intermittent
execution faces the challenge of spanning a program’s execution across unpredictable
power failures, while ensuring that memory and execution context remain consistent.
Coati is motivated by the combination of these two challenges: handling asynchronous
I/O in interrupts during a consistent, progressive intermittent execution. Together,
these challenges lead to fundamental correctness problems that are not well-addressed
by existing hardware or software systems for intermittent computing [30, 31, 55, 113,
170, 174, 269, 284].

3.1.1 Concurrency in Embedded Devices

Embedded systems in cyber-physical applications must asynchronously interact with
unpredictable stimuli from their environment often using peripherals to perform I/O.
Embedded systems typically handle such asynchronous operations using interrupts.
An interrupt is a signal triggered by an asynchronous event that is moderated by
hardware and eventually delivered to a software interrupt service routine (ISR). An
ISR can perform application-specific event-handling operations, including interacting
with peripherals (i.e., the one that triggered the interrupt), performing arbitrary
computation and manipulating variables. An asynchronous ISR preempts the pro-
gram’s main thread of control, and may concurrently (although not in parallel) access
program state. After an ISR completes, control returns to the point in the program
at which the preemption occurred.

Event-driven concurrency of interrupt handlers and program code requires em-
bedded software to synchronize accesses to shared data. Code may synchronize data
using mutex locks, reader-writer locks, or semaphores to establish critical regions
that atomically read or update data. TinyOS [92, 159] allows specifying atomic

operations that, in effect, disable interrupts for their duration. One use of atomic is
to synchronize direct access to shared data by an interrupt and a program. While
atomic program operations execute, interrupts are disabled, instead of immediately
being handled. TinyOS-style atomics also allow building synchronization primitives,
which may be useful when an application cannot disable interrupts for a long time
(i.e., to remain responsive). A key problem addressed by Coati is that task-based in-
termittent programming systems do not support interrupts and existing concurrency
control mechanisms do not gracefully handle intermittent operation.
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3.1.2 Benefits of Interrupts in Intermittent Systems

Event-driven interrupts are crucially important for intermittent systems applications.
Recent work has demonstrated the value of local DNN inference on intermittent
devices to enable complex, event-driven applications [98]. Without interrupts, event-
driven applications must alternate between processing event data and polling for
new events. Computationally intensive event processing causes long unresponsive
periods because computation monopolizes the processor. The device will not observe
a new event until it processes an older one. Intermittent execution increases the
length of the unresponsive periods because the application must frequently wait to
recharge after depleting its buffered energy.

Figure 3.2 shows data from a high level software simulation of an event-driven
image processing application that captures bursts of events (e.g. a pack of coatis
passing by a wildlife camera). The simulation compares the fraction of events
captured over an hour using interrupts (the int-* lines) versus polling (the poll-*
lines) for a continuously-powered (*-CP) and energy-harvesting (*-EH) system. A
burst of 5 events (e.g. coatis in close proximity) occurs with an expected interarrival
time of 3 seconds. An event lasts 1.2 seconds, twice the device’s recharge time
(i.e., recharging does not cause missed events). Our simulation models powered-on,
recharge, and data collection times using measurements of the Capybara platform
with its onboard MCU at 8MHz [57]. The simulated workload models the intermittent
MNIST implementation from prior work [98, 155].

Each event requires 6 seconds of computation while the device is powered on,
and the device may enqueue up to 16 events (a 16KB event queue). We assume a
low power camera with a separate energy buffer and harvesting source [109]. The
simulation shows that even with continuous power, polling captures less than 60%
of the events because the system misses events that occur while processing prior
events. The effect is exacerbated under harvested energy because the time to recharge
extends the time to process the first event in the burst, and prevents the system from
capturing any additional events. Introducing interrupts allows the system to capture
all events with continuous power. Interrupts on harvested energy (int-EH) converges
to capturing 100% of events once the burst interarrival time is long enough to prevent
the event queue from saturating. The data emphasize the need for interrupts in
intermittent systems.
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Figure 3.2: Interrupts support bursts of events. Using
interrupts, the simulated energy harvesting device (int-EH) outperforms the continuously
powered, polling baseline (poll-CP) if there is time to recharge between bursts

3.2 The Challenge of Intermittent

Event-Driven Concurrency

Naively combined, existing solutions for intermittence and event-driven concurrency
can cause incorrect and unintuitive behavior. Event-driven, concurrent execution
is incorrect in the presence of intermittence: simply using TinyOS-style atomic

concurrency control in an intermittent system behaves incorrectly when power fails.
Additionally, both static checkpointing and task-based intermittent execution can be
incorrect or inefficient in the presence of interrupts.

3.2.1 Interrupts + Intermittent Operation

Event-driven code behaves incorrectly if power fails during an interrupt. The key
problem is that even using atomic operations, if power fails during an ISR, the
ISR may have only partially updated a multi-byte data structure. On reboot,
intermittent execution resumes in the most recently executing task or from the
most recent checkpoint. If the program accesses the data partially updated by the
ISR, the program behaves incorrectly. An (unintuitive) alternative approach is to
restart execution after a power failure in the context of the ISR. The problem with
restarting in an ISR after a power failure is that important device state may be
unavailable on reboot (because a peripheral reset). Moreover, the device may have
been inoperational for an arbitrary duration, violating timeliness constraints on the
ISR [111].
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1:n = len﴾Win[]﴿ 
2:count = totCnt 
3:assert﴾n==count﴿ 
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Figure 3.3: The “Interrupt Interrupted” problem. The interrupt updates Win[]’s
length without updating totCnt, leaving the two inconsistent.

Figure 3.3 illustrates this “Interrupt Interrupted” problem with example task-
based code. The figure adds a task to the program that checks the consistency of the
size of Win[] and totCnt, which should always be equal. The interrupt adds new
entries to Win[], but power fails before it updates totCnt. When control returns to
the task, the assertion fails because the data are inconsistent.

The ISR can produce partial updates even with the privatization analysis of
a task-based intermittent execution framework [174, 269], treating the ISR as a
task. Privatization analysis identifies data to privatize to a task. A task buffers
updates to privatized data and commits updates only when the task completes.
Privatization analyses in intermittent execution frameworks assume that a task
repeatedly executes until successfully completing. To reduce buffering and commit
cost, the analysis only privatizes data that are read, then written by the task (i.e.,
finding WAR dependences). Such “WAR”-based privatization prevents data written
by a failed attempt to execute the task from being visible to a read in a re-execution
of that task. Accesses to data not involved in a WAR dependence directly update
memory. Privatization analysis works correctly for sequential intermittent programs
because they always re-attempt a failed task until it completes. Existing privatization
analyses [113, 174, 269] are incorrect with interrupts: if power fails during an ISR
that only writes to a multi-byte data structure, a partial update is unbuffered and
made visible to the continuation of the interrupted task after power resumes.
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3.2.2 Synchronization + Privatization

Synchronization is also complicated by intermittent execution. TinyOS-style atomics
are useful for building synchronization primitives, such as flags and locks, enabling
synchronization operations to perform read-modify-update operations that an ISR
will not interrupt. Often a program cannot disable interrupts during a long region of
code, barring use of atomic and requiring use of such a synchronization primitive.
An intermittent task may leave a critical region by updating a synchronization
variable (unsetting a flag or releasing a lock). If the intermittent task system does
not privatize the synchronization variable (i.e., because it is not read then written by
the task), the update directly modifies main memory. If power fails after a task leaves
a critical region, execution resumes from the start of the task which may be inside
the critical region. The problem is that the update made to the synchronization
variable to leave the critical region remains in memory. After the task restarts in
the critical region, an ISR may successfully enter its critical region, leaving both
the task and the ISR in the critical region, which is incorrect. This problem also
occurs in a checkpointing system if a programmer uses a lock to span multiple static
checkpoints. If power fails after the code has released the lock and before it has
reached the next checkpoint, on reboot the scheduled code and the ISR will both be
able to enter the critical region.

Figure 3.4 shows the “False Flag” problem, which illustrates how flag synchroniza-
tion is complicated by intermittent operation. The WindowStats and FeaturizeWin

tasks compute related properties of Win[]. Both should see the same values in
Win[], requiring them to be in a critical region protecting Win[]. The flag flag

controls access to the critical region, preventing the interrupt from entering while
WindowStats and FeaturizeWin are executing. It is reasonable to use a flag across
multiple tasks, because one very long task would exhaust the device’s energy supply,
impeding progress.

The execution sets flag and proceeds through WindowStats. The first attempt to
run FeaturizeWin fails just after clearing flag. The task restarts without restoring
flag=1 because flag is write-only; privatization does not restore write-only data on
reboot [168, 174, 269]. After restart, the task is in the critical region. The interrupt
immediately fires, checks flag, sees it clear, and also enters the critical region. The
interrupt’s updates to Win[] violate the critical region’s atomicity, leading to an
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inconsistency between values computed by WindowStats and FeaturizeWin.

Restart task

Sensor Interrupt
I0:if﴾flag﴿return 
I1:﴾x,y,z﴿= 
     datarecv() 
I2:n=numrecv﴾﴿ 
I3:Add(Win[],n, 
   x,y,z) 
I4:totCnt += n 

1

2
3

4

Task: WindowStats
0:flag = 1 //bar Win[] upd. 
1:num = countValid(Win[]) 
2:if(num<MIN)TransTo(t_Init) 
3:(Mx,My,Mz) = Mean3D(Win[]) 
4:(SDx,SDy,SDz)=StDv3D(Win[]) 
5:TransTo(t_FeaturizeWin)  

Power Failure

flag is write-only, not privatized,
& not restored by task @ restart. 

flag clears on power failure,  
interrupt enters flag crit. reg. 

6:winMag = Mag3D﴾Win[]﴿ 
7:flag = 0 //allow Win[] upd. 
8:featVec = [winMag, 

Task: FeaturizeWin

6:winMag = Mag3D﴾Win[]﴿ 
7:flag = 0 //flag already 0! 
8:featVec = [winMag, 
9:           SDx,SDy,SDz,
10:           Mx,My,Mz] 
11:TransTo(t_ClassifyFeatVec) 

Interru
pt!

Resume

Task restarts in flag crit. reg. 
Interrupt & task both in crit. reg. 
leads to Atomicity Violation! 
  

5

Figure 3.4: The “False Flag” problem. When power fails after FeaturizeWin clears
flag, the task and the interrupt are both in the critical region, violating atomicity.

Privatization causes a symmetric "False Flag" problem when the interrupt needs
to send a signal to the task. A common programming pattern in embedded systems
is to wait in the main thread until ISR code updates a shared variable that signals
the main thread to continue. For instance, the main thread might wait until a signal
variable is set that indicates new data has arrived, then the main thread will process
the data and clear the signal. However, in an intermittent execution, if the read and
the clear of the signal variable happen in the same task, privatization redirects all
accesses of the variable to a private copy. Since the task only accesses its private
copy, writes to the variable in the ISR are not visible until the task completes or the
device powers down and restarts the task.

3.3 Intermittent Interrupts with Coati

Coati is a programming API and runtime that allows a programmer to control
event-driven concurrency in a task-based intermittent execution system. Figure 3.5
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shows an overview of Coati’s use. Like prior intermittent execution systems (Coati
builds on Alpaca [174]), Coati asks the programmer to write their program as a
collection of tasks. A task is a function with no callers that can include arbitrary code
and explicitly transfers control to another task. Tasks communicate by accessing
global variables stored in persistent memory. Coati tasks are atomic with respect to
power failures because Coati buffers a task’s updates to memory and commits them
on task completion, discarding them on a failure. A task interrupted by a power
failure idempotently re-executes until progressing to the next task.

Programmer

Coati  
Application

Write Coati
program w/

tasks, events & 
transactions

Defines
tasks,

events &
transactions

Coati Runtime Library 
Implements
buffering for

tasks & events

!
Serializes  

events & tasks

Link

Energy-harvesting
Device

Deploy Coati-
enabled application

Correctly handle
event-driven I/O

Coati-enabled Program

! Specifies
shared

variables

Figure 3.5: Overview of Coati. The programmer codes using Coati primitives and
links the Coati-enabled program to the Coati runtime, handling both intermittence and
interrupts so the app executes correctly when deployed.

Coati allows the programmer to specify events. An event is a special task that
a programmer can use to process an asynchronous interrupt. An event in Coati is
similar to an event in TinyOS [92, 159] in that an event may be concurrent with a task
and an event may share state with a task. The primary difference between tasks and
events is that a task does not explicitly transfer control to an event. Instead, an event
is associated with an asynchronous interrupt and invoked automatically by Coati on
that interrupt’s asynchronous occurrence. Coati also allows the programmer to define
a transaction, which is a sequence of tasks that execute together atomically with
respect to events, while remaining individually atomic (and idempotently restartable)
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with respect to intermittent power failures. Like TinyOS [159], Coati assumes that
events are short and relatively infrequent so that the application can make forward
progress. Further, Coati assumes that the programmer correctly balances transaction
length with responsiveness requirements for processing events.

To correctly include events in an intermittent execution, Coati must meet several
requirements. First, Coati must preserve task atomicity and idempotence despite
asynchronous events by serializing tasks’ and events’ updates to task-shared variables.
Second, Coati must support atomic regions that extend beyond one reboot. Finally,
Coati should not impose a prohibitive overhead in terms of runtime or memory.

3.3.1 Interaction Between Tasks and Events

The main contribution of this work is defining how Coati’s tasks, events, and
transactions interact. We first describe task-event interactions using the split-phase
serialization model used by Coati’s final design. Split-phase serialization forces events
to serialize after an interrupted task completes. Returning to Figure 2.1’s example
code, Figure 3.6 shows how events and tasks serialize.

Task: WindowStats
1:num = countValid(Win[]) 
2:if(num<MIN)TransTo(t_init) 
3:(Mx,My,Mz) = Mean3D(Win[]) 
4:(SDx,SDy,SDz)=StDv3D(Win[]) 
5:TransTo(t_FeaturizeWin) 

6:winMag = Mag3D﴾Win[]﴿ 
7:featVec = [winMag, 
8:           SDx,SDy,SDz, 
9:           Mx,My,Mz] 
10:TransTo(t_ClassifyFeatVec) 

Task: FeaturizeWin

Inte
rru
pt!

SensorEvent, Top
T1:﴾x',y',z'﴿= 
     datarecv() 
T2:n'=numrecv﴾﴿ 

Enqueue event bottom

B1:Add﴾Win[], 
   n',x',y',z') 
B2:totCnt += n' 
SensorEvent, Bottom

Event top & bottom share
private data marked '

Run queued event bottom

Resume

Figure 3.6: Task and split-phase event interaction. Split-phase events are separated
into a top half which executes immediately, and a bottom half which runs after the
interrupted task commits.

Split-phase Serialization. Split-phase interactions decouple the asynchronous
part of an event (i.e., the ISR and peripheral manipulations) and the shared data
manipulation associated with the event. A split-phase event has a top, which runs
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asynchronously at the interrupt, and a bottom which is scheduled to run after the
completion of the task that was interrupted by the top of the event. Similar to
tasklets in Linux [162], event bottoms allow an interrupt to defer latency tolerant
work and quickly return to the interrupted task. In Figure 3.6, the top of the event
interrupts WindowStats and executes immediately, while the bottom executes after
WindowStats completes. After the top of the event completes, execution resumes
from the point of the interrupt in the interrupted task, as shown in the figure. The
top of a split-phase event is not allowed to access any global, shared state, avoiding
the risk of violating a task’s idempotence. Instead, the top of the event can privately
buffer data to be processed (e.g., sensor data, received radio packets), preparing them
for use by the event’s bottom. In the figure, private data have a ’: x’, y’, z’, and n’

are only accessible by the interrupt’s top and bottom. The event’s bottom, serialized
after the interrupted task, is allowed to access arbitrary state. The event bottom
buffers all memory updates, like a task, and atomically commits those updates on
completion. The figure shows how the event’s bottom adds to Win[] the data sensed
by the event’s top and increments totCnt.

Split-phase serialization gives Coati flexibility on power failure. Coati has a
configuration option that aborts event bottoms for programs in which an event’s
bottom must execute in the same operating period as its top. However, Coati can
avoid unnecessarily discarding events by repeatedly executing an event bottom if
power fails during the event bottom. Because the part of the interrupt that must be
timely is likely to occur in the top of the event handler, the bottom should be able
to execute safely even with the delay of a power failure.

If multiple split-phase events occur during a single task’s execution, Coati allows
their event bottoms to queue and wait for the task to complete. When a task
completes, it commits as usual and processes the event queue, executing queued
event bottoms in order.

3.3.2 Multi-Task Transactional Execution

Coati allows the programmer to sequence multiple tasks together into a transaction.
A transaction is atomic with respect to interrupting events in the same way that an
individual task is atomic with respect to an interrupting event. A transaction is not
atomic with respect to power interruptions, but its constituent tasks individually are.
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Applications need multi-task transactions because some operations that should be
atomic with respect to interrupting events may individually consume more energy
than the intermittently operating device can buffer. If tasks were the only unit of
atomicity with respect to events, then a program using such energy-hungry tasks
would have to decide: to split the operations across tasks, allowing an interrupting
event to violate atomicity, or to include both operations in the same task, preventing
the task from completing because it consumes more energy than the device can supply.
Multi-task transactions allow tasks to execute sequentially without interruption by
an event, eventually committing updates from all tasks.
Coati Transactions. Coati supports split-phase serialization for transactions as
shown in Figure 3.7. The figure shows the case where multiple events interrupt during
the transaction’s execution, each executing its top half and enqueueing its bottom
half to execute after the transaction completes. Each pair of event top and bottom
shares its own private buffer (distinguished in the figure using ’ vs. "). The operation
of split-phase serialization with transactions is identical to the task case, except
Coati does not execute event bottoms until after the entire transaction completes,
as opposed to awaiting only the interrupted task. The simple implementation of
transactions in the split-phase model avoid several key drawbacks of the buffered
implementation that is discussed in Section 3.5.2.

3.4 Implementation Details

Coati’s implementation is a runtime with an API ( Table 4.1) for control flow,
persistent state access, and synchronization of events and tasks. We assume hardware
with byte-addressable non-volatile memory and atomic word writes.

3.4.1 Control Flow

Coati maintains a program context that defines the current control state of the
program, allowing the system to progress through tasks, enter and exit transactions,
and execute and return from events. Tasks are C functions with no return value
and no arguments. Programmers use the next_task or tx_next_task statements
to transition between tasks, respectively, both outside and inside of a transaction.
To ensure task transitions are robust to power failures, the runtime system explicitly
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   n',x',y',z') 
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6:winMag = Mag3D﴾Win[]﴿ 
7:featVec = [winMag, 
8:           SDx,SDy,SDz, 
9:           Mx,My,Mz] 
10:TransTo(t_ClassifyFeatVec) 
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T1:﴾x',y',z'﴿= 
     datarecv() 
T2:n'=numrecv﴾﴿ 

T1:﴾x",y",z"﴿= 
     datarecv() 
T2:n"=numrecv﴾﴿ 

Event tops use private buffers
(denoted with ' and " )

Later event bottoms see earlier event
bottoms' effects (e.g.,totCnt)

Resume

Resume

Figure 3.7: A transaction using split-phase serialization. Each time a sensor
event occurs, the top half captures data and enqueues a bottom half to execute after the
transaction.

maintains a task context object, stored in persistent memory. The task context
object holds the address of the start of the current task and the current task’s
commit state bit, which indicates whether the task is currently committing. The task
context object also holds the context of an ongoing transaction containing the current
task and the state of any queued event bottoms that are waiting to execute. Task
transition statements update the task context atomically by double buffering the
context and swapping the value of the runtime’s global current_context pointer,
which points to the active context. To start a transaction, the programmer inserts
the tx_begin keyword at the start of the first task in a transaction. tx_begin
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sets the current context’s transaction state to active. To commit a transaction, the
programmer uses a tx_next statement, which atomically commits the updates from
the last task in the transaction and redirects control to a specified task.
Coati Event Implementation. Coati’s implementation relies on the existing ISR
control mechanism and does not require explicitly tracking control transfer between
the interrupted task and an event’s top half. Instead, the programmer writes the
event’s top half directly in the ISR. At the start of the event’s top half code, the
programmer must include Coati’s th_start primitive. th_start ensures that there
are resources available to buffer the event’s bottom half, aborting the interrupt
if there are not. The programmer uses Coati’s th_return to register an event’s
bottom half. In contrast to the top half, an event bottom half is a C function with
no return value and no arguments and is associated with an event context object.
th_return takes a pointer to an event context object as an argument and adds that
pointer to Coati’s event queue, which tracks queued bottom halves in order. After
an interrupted task or transaction completes, it checks the event queue. If the queue
contains any event bottom halves, control transfers to each of them in FIFO order
before moving on to the next task.

3.4.2 Memory Access

Coati provides atomic updates by buffering all updates to persistent memory in
nonvolatile buffers. Each buffer is a statically pre-allocated list of writes to memory
(without duplicates). Each entry contains the address, size, and new value for each
update. Coati maintains one buffer that is reused for tasks, tasks in transactions,
and events because split-phase serialization does not allow an event bottom to run
until after the ongoing task or transaction has committed. As we describe below,
an update by an event or task of a non-volatile memory location (to a “task-shared”
variable [174]) is stored in its respective buffer until commit. Buffers are statically
allocated (which is common in embedded systems) and it is an error to access more
data in a task, event, or transaction than any buffer can hold.
Writes. To write memory, the programmer uses the write primitive. A task or event
write performs a linear search in the private buffer for an entry for the variable being
written. If the variable’s address is not in the buffer, Coati attempts to allocate space
in the buffer. Exceeding buffer capacity is a programming error and the programmer
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Table 3.1: A summary of the Coati API. t is a task, ev is an event bottom, x a
variable, val a value, and type a C type.

Control Flow Data Access Synchronization
next_task(t) read(x,type) tx_begin()
th_start() write(x,val,type) tx_next(t)

th_return(ev) th_write(x,val)
bh_read(x)

should specify that Coati should use larger buffers and re-compile. After allocating
space in the buffer, Coati writes the update’s address, size, and value to the buffer.
Reads. To read memory, the programmer uses the read primitive. The runtime
first linearly searches the private buffer for an updated version of the variable. If the
search succeeds, the read returns a reference to the buffered value. If the search fails,
then the read returns a reference to the value stored in main memory.
Split-Phase Accesses. In Coati’s split-phase serialization model, events are split
into top halves and bottom halves (Section 3.3.1). The top half of an event can share
data with the bottom half of an event through fields in a Coati event context object
that the programmer specifies using evt_var. Each field is automatically, statically
replicated by Coati a number of times equal to the maximum number of enqueued
event bottoms. The top half can store to one of these shared fields using th_write.
The bottom half can load from one of these shared fields using bh_read. When an
event bottom accesses a field shared with its event top, Coati automatically maps
the field to the correct replica based on the event bottom’s position in the event
queue. All field data are statically allocated and the memory overhead of queue and
fields is programmer-configurable; we used a queue of 16.

3.4.3 Commit

Coati uses two-phase commit to atomically commit buffered updates. Commit
begins when execution traverses a programmer inserted next_task or event_return
statement, which ends a task or event respectively. Ending a task or event sets its
commit state bit and prepares the task context object for the next task that will
execute. The runtime points the current_context pointer at this new context and
begins writing the buffered updates from the just-completed task or event-bottom
to memory. During commit, the runtime uses a non-volatile counter to track the
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number of buffer entries remaining to commit, decrementing the counter only after
the write is complete to ensure that all entries correctly commit, despite power
failures.

3.5 Buffi: A Buffering-Based Alternative

To explore the design space of systems supporting intermittent execution and trans-
actional concurrency, we developed an alternative implementation called Buffi. Coati
uses split-phase serialization to order events with tasks and transactions, Buffi, in
contrast, uses buffered serialization. Buffi buffers all event, task, and transaction state
to serialize concurrent updates to shared memory. Buffered serialization necessitates
several design and implementation changes.

3.5.1 Buffering and Serialization

Buffi tasks and events buffer all shared memory updates. As a result, each event may
be written as a single block of code that executes immediately after its associated
interrupt fires. Events may perform timely operations and manipulate task-shared
variables. In Figure 3.8, the event reads new data from the sensor and updates Win[]
and totCnt immediately after it is triggered by the interrupt. The event commits
the updates when it completes. After an event commits its updates to memory,
control resumes from the beginning of the interrupted task and execution continues;
in the figure, the event completes and WindowStats restarts from the beginning. If
power fails during a Buffi event, Buffi discards its updates and does not attempt to
re-execute it.

3.5.2 Buffi Transactions

To support buffered-serialization for transactions, Buffi introduces a transaction buffer.
Buffi tasks in a transaction consecutively commit their updates to a transaction-
private commit buffer that is distinct from main memory. On completion, the
transaction commits this transaction commit buffer to main memory, making the
transaction’s tasks’ updates visible to subsequent tasks and events. Buffi events may
preempt transactions, but only the interrupted task must be restarted. Completed
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Task: WindowStats
1:num = countValid(Win[]) 
2:if(num<MIN)TransTo(t_init) 
3:(Mx,My,Mz) = Mean3D(Win[]) 
4:(SDx,SDy,SDz)=StDv3D(Win[]) 
5:TransTo(t_FeaturizeWin) 

Restart interrupted task

Interru
pt! SensorEvent
I1:﴾x,y,z﴿= 
     datarecv() 
I2:n=numrecv﴾﴿ 
I3:Add(Win[],n, 
   x,y,z) 
I4:totCnt += n 

Commit updates to 
Win[] and totCnt

6:winMag = Mag3D﴾Win[]﴿ 
7:featVec = [winMag, 
8:           SDx,SDy,SDz, 
9:           Mx,My,Mz] 
10:TransTo(t_ClassifyFeatVec) 

Task: FeaturizeWin

Figure 3.8: Task & buffered event interaction. Buffered serialization forces tasks to
restart after an event. If the event interrupts a transaction, only the interrupted task must
restart.

tasks in the transaction do not need to be rerun. However, events’ updates must
serialize after the entire preempted transaction. To preserve the atomicity of the
transaction, an event that preempts a transaction commits its updates to a private
commit buffer on completion, rather than committing directly to memory.

Before committing buffered event updates, Buffi performs conflict checking, which
ensures that the event did not read data that the transaction wrote. If an event
that executed during the transaction read from a memory location that a task in
the committing transaction wrote, the event would not see the value updated by
the transaction because the update would be buffered. Reading this stale value is
inconsistent with the event’s serialization after the task, so Buffi discards the events’
buffered updates.

3.5.3 Buffi Implementation

Buffi’s implementation is similar to Coati’s, but is generally more complex. The
major differences arise from maintaining additional state to allow for concurrent
access to task-shared variables by events and transactions.
Buffi Events. Buffi statically allocates an event context object for each programmer-
defined event function. The event context object holds a pointer to the start of
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the event and its commit state. To trigger an event in response to an interrupt,
the programmer inserts an event_handler call in the ISR after any device-specific
code required to clear the interrupt that was triggered. event_handler sets Buffi’s
return_context pointer to point to the interrupted task’s context, and transitions
to the event by setting the current_context pointer to point to the triggered event’s
context. The programmer places an event_return statement at the end of the event,
which returns control to the stored return_context.
Buffi Memory Accesses. Buffi maintains three statically allocated buffers: the
task buffer, the event buffer and the transaction buffer to ensure isolation between
concurrent updates to task-shared variables. In Buffi, a task in a transaction writes
its buffered updates into the transaction’s buffer when the task commits. While
a transaction executes, a single event buffer persists across events, allowing events
to see updates written by previous events. In tasks and events outside an active
transaction, Buffi accesses task-shared variables the same way as Coati (as described
in Section 3.4.2). If a read occurs in a task within a transaction, the runtime first
searches through the task’s buffer, then the transaction’s buffer, before reading
the value from main memory. In Coati, there is no transaction buffer; the read
immediately returns the value from memory. Buffi also tracks the set of writes
performed by a transaction and the set of reads performed by events for use in
conflict detection. A write in a Buffi transaction updates its write set, adding the
address of the written location. A read in a Buffi event first checks if there is an
active transaction, and then updates the event’s read set. Recall that Coati need
not track write or read sets.
Buffi Commit. For tasks and events that occur when no transaction is active,
commit follows the procedure described in Section 3.4.3. To commit a transaction,
the transaction must first commit updates made by the last task in the transaction
to its transaction buffer. Next, Buffi compares the set of addresses that are updated
in the transaction buffer to the set of addresses that were read by any event. If the
two sets of addresses overlap, Buffi detects a conflict and discards the event buffer.
Next, Buffi writes the updated values in the transaction buffer back to memory.
Last, if there was no conflict between an event and the transaction, Buffi commits
the event buffer, and continues to the next task after the transaction. Recall that
Coati simply commits the updates from the last task in the transaction, and then
unconditionally processes the event queue.
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3.5.4 Buffer Design

To study the effect of buffer design on Buffi’s memory access latency, we implemented
the transaction buffer both as a linear buffer and alternatively as a fixed size, chaining
hash tables. The hash table design results in speedup when the transaction commit
list is long because linear search in a long list is slower than hash lookup. Table 3.2
shows the average and maximum number of entries committed at the end of each
task and transaction in several benchmark applications (described in Section 3.6).
The data show that a simple, linear buffer often works well because the average
number of entries committed at the end of a task tends to be small. The data also
show that a hash table is the best option for RSA and CF (full evaluation details
are in Section 3.6).

Table 3.2: Commit Statistics. The average and maximum number of entries committed
at the end of each task and transaction in benchmark applications.

App BC AR RSA CEM CF BF
Task Avg 3 2.4 4.8 9.4 1.6 –
Task Max 3 6 18 194 135 –
Tx Avg 4.3 6.2 97.7 29.4 147 –
Tx Max 5 10 98 32 149 –

3.6 Evaluation

We evaluated Coati using applications from prior work on a real energy-harvesting
device and directly compared to a state-of-the-art intermittent computing system.
Since no prior systems correctly support concurrent interrupts in an intermittent
execution, we compare Coati’s split-phase transactions to three additional concurrency
control strategies. Our evaluation shows that Coati avoids failures permitted by
existing systems and does so with low runtime overhead and reduced programming
effort, permitting responsive event-driven applications.

3.6.1 Benchmarks and Methodology

We evaluated Coati using the Capybara hardware platform [57]. We used a collection
of full applications from prior work [174], modified to use event-driven I/O. The ap-
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plications collect input, process data and communicate results. To make experiments
repeatable, we emulate peripherals with logged data. Like TinyOS [159], we assume
that events are short and that they are triggered relatively infrequently. To emulate
event arrival, we trigger events via a GPIO pin driven by a continuously powered
Arduino [18] for 20ms pulses with an interarrival time drawn from a Poisson distri-
bution with λ = 100ms [259]. We use the same event arrival emulation parameters
for all benchmarks. We measured runtime using a logic analyzer to capture GPIO
pulses at the start and end of each run. We use an attenuated bench supply as a
harvested-energy source providing under 10mA, like prior work [57].

We evaluate six configurations: Ideal (which does not complete on harvested
energy), Alpaca (which breaks with interrupts on harvested energy), Coati, Buffi,
and two additional comparisons Atomic, and Hand-Op. We compare against Alpaca
because, at the time of writing, it is the fastest task-based intermittent computing
model that supports arbitrary computation. Alpaca avoids the channel management
overhead of Chain [55], and allows loops in the task graph unlike Mayfly [111]. To
provide idempotent task re-execution in the case of power failures, Alpaca buffers
only the task-shared variables involved in write-after-read dependences. At the end
of each task, Alpaca commits the buffered variables to memory. Ideal runs the
same application code as Alpaca, but the runtime has been modified to remove all
buffering and commit code. Ideal fails on harvested energy, but on continuous power
it represents a task-based system with the minimum possible overhead. Atomic and
Hand-Op use fully buffered tasks, like Buffi, but neither uses transactions. Atomic
masks interrupts during critical regions, representing a naive solution to multi-task
atomicity. Hand-Op uses hand-optimized code to synchronize tasks and events,
demonstrating the programming effort required without Coati.

We modified the applications to use the Coati API to handle events, preserving
their task decomposition [174]. BC: Bitcount (BC) counts bits set in an array using
various algorithms. Its event changes an array index and a transaction ensures each
algorithm sees a consistent array. Execution is correct if each algorithm reports the
same count. AR: Activity Recognition (AR) is a simple machine learning model that
classifies data from a three axis accelerometer as moving or stationary. We emulate
an accelerometer with our interrupt providing random data. A transaction ensures
that the sample window and count remain consistent. RSA: RSA Encryption (RSA)
uses a fixed, 64-bit key to encrypt a string updated by an event. A transaction
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prevents string updates during encryption. BF: Blowfish (BF) uses a block cipher to
encrypt a string updated by an event, using transactions to prevent updates during
encryption. We omit BF for Buffi because the device runs out of memory. CEM:
Cold-chain Equipment Monitoring (CEM) LZW compresses a stream of temperature
data generated by an event. The code synchronizes a double buffered sample buffer
and ready flag indicating data are available. CF: Cuckoo Filtering (CF) stores and
queries for values in cuckoo filter. Events insert data, while tasks insert and query
the filter. A transaction prevents concurrent, conflicting updates from being lost.

3.6.2 Correctness

We demonstrate that prior task-based intermittent systems do not correctly support
interrupts. For each benchmark, we attempted to add synchronization manually
to the Alpaca implementation to support interrupts that concurrently modify task-
shared state. We used a combination of careful flag synchronization and short atomic
(i.e., interrupts disabled) blocks. Alpaca tasks behaved as normal but we prevented
Alpaca from privatizing data in ISR code because allowing it causes Alpaca’s atomic
commit to fail. The ISR directly updates memory.

Table 3.3 shows that Alpaca fails for all benchmarks except BC. Columns 6–8 show
min/mean/max time to failure. The time to failure varies because failure is dependent
on specific experimental event timings and harvested-energy recharge time. We

Table 3.3: Correctness. Coati prevents incorrect behavior during intermittent execution.
Using Alpaca alone, most applications crash or hang. 3 indicates correct execution, 7 is
incorrect. Mean time to failure (MTTF) varies with event timing, and application behavior,
not measurement error.

Intermittent Exec. Correct? Alpaca MTTF (s)
App. Atm. H-Op Bff. Coati Alpaca Min Mean Max
BC 3 3 3 3 3 n/a n/a n/a
AR 3 3 3 3 7 0.02 1.5 3.5
RSA 3 3 3 3 7 4.6 26.9 45.4
CEM 3 3 3 3 7 0.6 0.7 1.4
CF 3 3 3 3 7 1.8 18.1 68.8
BF 3 3 – 3 7 2.8 3.8 5.0

investigated each failure and verified its root cause was the interaction of intermittent
operation and interrupts. The “False Flag” problem was most common: privatization
hides updates to synchronization bits set in the ISR or a task. Consequently, AR,
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RSA, CEM and BF all overwrite updates made by the event. The error causes
CEM to stall indefinitely and the lost update causes visible corruption of AR’s
output. In CF, privatization breaks synchronization, leaving event counting statistics
inconsistent. BC does not fail even using Alpaca because the program is simple, the
event is very short, and the event timing does not lead to a failure.

3.6.3 Programming Effort

We compared the programming effort required to correctly synchronize the bench-
marks with Coati and by hand (Hand-Op). We found that transactions in Coati
simplify reasoning about correct synchronization in an intermittent execution. Ta-
ble 3.4 quantifies the additional code required to manage synchronization for each
benchmark with Coati (C) and by hand (H). We counted the number of variables,
tasks and task transitions that had to be added or modified. In Coati, the lines of
code were primarily used to start and end transactions. No more than 4 new lines of
code had to be added to correctly split the event into a top and bottom. Hand-Op
requires additional tasks and carefully written transitions to avoid the “False Flag“
problem described in Section 3.2. CEM and BF nominally required only a few more
lines of code to manage double buffers of data by hand, but the accesses to the new
variables had to be carefully placed.

Table 3.4: Programming Effort. Coati (C) reduces the effort to write correctly syn-
chronized code. Synchronizing the code by hand(H) required up to 10x more lines of code
to manage extra variables, tasks and transitions.

App: BC AR RSA CEM CF BF
Config: C H C H C H C H C H C H
lines 15 65 7 70 8 40 21 24 4 32 5 12
variables 0 3 0 3 1 3 2 3 0 1 1 1
transitions 7 14 3 9 2 0 1 1 1 3 0 0
tasks 0 2 0 4 0 0 0 0 0 2 0 0

3.6.4 Events Captured

We evaluated Coati’s ability to effectively capture events in an intermittent execution.
Coati avoids losing events due to a power failure while synchronization or a disabled
interrupt blocks an event.
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Figure 3.9: Events Captured. Under harvested energy, Coati consistently processed
100% of the events that occurred while the device was powered on.

Figure 5.12 shows the fraction of events that are processed (executed and com-
mitted to memory) compared to the total number observed while the device is
intermittently powered-on. The key observation is Coati does not disable interrupts
and allows the application to process all events that arrive. Buffi discards updates
from events that conflict with transactions, so benchmarks with long transactions
such as CF and RSA process fewer events. Disabling interrupts (Atomic), causes the
application to lose events without running the ISR code. The effect is exacerbated
under intermittent execution because pending interrupt signals stored in volatile
memory are cleared on reboot. Hand-Op processes a high fraction of events in all
benchmarks except BC. Hand-Op uses a try-lock mechanism in BC to prevent the
event from writing to the shared index during a critical region, and the event is
rarely able to acquire the lock.

3.6.5 Performance

We evaluated Coati’s performance on harvested energy and continuous power showing
that it has practical overheads compared to an ideal system. On continuous power,
Coati is competitive with an “Ideal” Alpaca system that avoids all buffering and
commit overheads, but does not run correctly on harvested energy. On harvested
energy, our experiments show that all Coati configurations have similar performance.

Figure 3.10 shows the runtime on continuous power for each application and
configuration and Figure 3.11 shows the percentage of the runtime spent in different
parts of the computation. The data show that progress in AR and CEM are bound
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Figure 3.10: Runtime on continuous power. For applications that are bound by
event arrival frequency, Coati performs as well as the ideal baseline.

by the frequency of events arriving, not by the performance of computing. As a
result, Coati performs as well as the ideal case. BF and RSA perform more memory
accesses per event, and Coati’s overheads slow it relative to the idealized baseline.

BC computes continuously, regardless of the arrival rate of interrupts and Coati’s
overhead on accesses to shared memory degrades its performance relative to the
idealized baseline. Buffi’s complicated commit protocol for tasks in transactions
contributes to a 2.5x slowdown of Buffi over Coati for RSA.

Figure 3.12 shows the end to end runtime for each of the applications while the
device is powered by harvested energy. The runtimes include the time to recharge
and to reinitialize the device on each reboot, which account for approximately 85%
of the total runtime (the device is operational for about 85ms before spending
about 900ms recharging). The Ideal and Alpaca runtimes are omitted because all
of the applications failed to complete correctly. The fastest configuration varies
because the overhead incurred by each of the configurations is determined by specific
application characteristics. Overall Coati provides performance that is better or
within a standard deviation of Hand-Op on all benchmarks without incurring the
additional programming overhead of Hand-Op or losing events like Atomic.
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Figure 3.11: Breakdown of runtime usage. The runtime usage varies across the
benchmark applications. The intermittent failure-safe systems all incur additional buffering
and commit overhead compared to the ideal baseline.

3.7 Related Work

There are several areas of work related to Coati beyond intermittent computing, as
discussed in Chapter 2. In particular, Coati touches on work defining synchronization
in embedded systems, research on non-volatile memory systems, and transactional
memory. Coati applies concepts from prior work to demonstrate that interrupts
violate the underlying assumptions of privatization for intermittent tasks.

Concurrency in Embedded Systems

There is a long history of concurrency control research [76, 151, 152]. Prior work [251]
provides a survey. The most related efforts on synchronization for embedded systems
are TinyOS [158, 159] and nesC [92]. These are frequently-used and provide atomic
statements to serialize synchronous tasks and asynchronous events. Other work
follows suit [79, 157, 160].
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Figure 3.12: Runtime on harvested energy. Coati’s performance is comparable to
Hand-Op’s without the additional programming overhead.

Non-Volatile Memory

The emergence of byte-addressable, non-volatile memory has led to the development of
strategies for improving the performance of fault-tolerant, persistent data structures.
Persistency models define allowable reorderings of persists to non-volatile mem-
ory [100, 145, 206, 207]. Hardware [131, 145, 197, 294] and software [13, 51, 144, 271]
support for multi-threaded application programming with persistent memory have
been explored. Like these prior works, Coati provides crash consistency for concur-
rent updates to persistent memory. However, prior work targets large scale systems
while Coati ensures data consistency and forward progress under extreme resource
constraints.

Transactional Memory

Coati’s synchronization model — especially its multi-task transactions — takes a
direct cue from a long history of work in transactional memory systems. Transactional
memory systems started as mechanisms for manipulating small multi-byte data
structures atomically [105, 106, 237], but have grown into a broad research area with
support in hardware [107, 187, 227], support for unbounded transactions [15, 37], and
support for exotic serialization models [38, 219, 244]. While similar in principle to
Coati, the purpose of most prior work on transactions was to synchronize systems that
use multiple concurrent threads to perform parallel computations. Between Coati
and these prior efforts there are many common ideas: update buffering and commit,
conflict detection, atomicity, serialization, and speculation and rollback. Coati draws

49



inspiration from work on transactions, recruiting mechanisms to the specific purpose
of synchronizing event-driven interrupts with task-based intermittently executing
programs on tiny, energy-harvesting devices.

3.8 Conclusion

This work is the first to study interrupt-driven concurrency in intermittent systems,
showing that a naive attempt to combine the two will cause programs to misbehave.
Concurrency control is critical to supporting peripherals in batteryless systems
because concurrent, peripheral triggered interrupts allow a program to quickly gather
data from peripherals without wasting energy polling. This chapter details two
types of bugs that occur because the interface to shared data between interrupts and
the MCU was not defined in prior work. The “Interrupt Interrupted” bug results
in WAR violations and the “False Flag” problem stymies programmers’ attempts
to synchronize writes made by ISRs and tasks in an intermittent execution. To
overcome these problems, this chapter presents Coati, the first programming model
that correctly provides concurrency control in intermittent systems.

Coati uses a simple programmer interface and runtime support to provide a
TinyOS-like programming model for concurrency with minimal overhead. Coati
provides synchronous computational tasks and asynchronous interrupt-driven events,
all robust to intermittent operation. In developing Coati, this work also defines
transactions in an intermittent system that allow sequences of intermittent tasks to
be atomic with respect to events. We explore two different serialization mechanisms
for events, tasks, and transactions. Buffi maximizes flexibility by fully buffering
updates to shared memory in tasks and events, while Coati uses split-phase interrupts
to reduce the memory and runtime overheads associated with concurrency control.

Our evaluation tested interrupt driven workloads on real hardware to compare
Coati and Buffi to Alpaca, a state-of-the-art task-based intermittent system, as
well as several other approaches for providing concurrency. First and foremost, the
evaluation demonstrates that prior work, represented by Alpaca, fails in the presences
of interrupts– Alpaca completed only one benchmark successfully. The results go
on to show that by restricting access to data shared by events and tasks, Coati
achieves concurrency control with low runtime and memory overheads as well as
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little programmer effort and limited event loss. On average, Coati is faster or within
10% of the runtime of hand-optimized code while requiring far fewer arcane code
changes. In summary, this work provides a starting point for future concurrency
models in intermittent systems and defines several of the shared-data bugs that
system developers must consider.

Correctly managing access to shared data allows peripheral triggered interrupts
to coexist with the main thread of execution, the challenge however, is that data is
not the only state shared between peripherals and the MCU. In the next chapter,
we show that the power consumption of a single peripheral can affect the hardware
state of the entire device and the correctness of intermittent programming models.
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Chapter 4

Debugging and Avoiding
Peripheral Energy Bugs

Despite the importance of peripherals, most prior work in state restoration for
intermittent execution focused strictly on software state. However, capturing only
software state (e.g. registers, stack, global variables) before a power failure is
insufficient. To ensure correctness and efficiency – the hardware state (e.g. external
sensor configurations) must be handled carefully as well.

As discussed in Chapter 2, hardware peripherals, such as sensors, radios and
hardware accelerators, are central to applications on batteryless devices, but constant
power failures complicate their usage. Two key pieces of system support allow
peripherals to be readily integrated into an intermittent execution. First, peripheral
restoration systems ease the burden of using peripherals in an intermittent execution
by automatically reconfiguring active peripherals after a power failure [33, 41, 220].
Second, support for atomic blocks prevent power failures from disrupting peripheral
accesses with unintended pauses [148, 176, 253]. However, writing code that correctly
and efficiently manages peripherals in an intermittent execution is still error prone.
Peripherals account for a large portion of a batteryless device’s energy budget and
seemingly slight changes in peripheral operating modes can cause large increases in
total system power. For instance, the power consumed by a low end IMU [248] can
more than double with a change in the sampling frequency, going from 13% of the
total batteryless device power to nearly 30% [57]. The extra power consumption that
results from peripheral mismanagement (i.e. incorrectly configuring a peripheral)
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results in two classes of intermittent peripheral energy bugs. The first occurs when a
programmer wastes energy by incorrectly disabling a peripheral between uses and
causes a slowdown. The second causes the device to live-lock by unintentionally
running an atomic block with peripherals configured such that the code consumes
more energy than the device can provide. Both present substantial challenges to
application developers building pervasive sensing and computing applications.

An energy-harvesting device spends time collecting energy from its environment,
so its end-to-end performance suffers if it uses energy inefficiently [71]. A challenge for
programmers then, is to reduce extraneous power to improve performance, however,
we show that attempts to reduce peripheral power lead to peripheral energy burning
bugs, BurnBugs. A simple strategy for reducing peripheral power is to deactivate
a peripheral if it will not be used for a long time, e.g., before a long numerical
computation, but activating and deactiviting a peripheral costs time and energy.
As a result, this toggling strategy requires the programmer to reason about fine-
grained peripheral management and instrument code to toggle, which is difficult.
Over-instrumenting code leads to unnecessary toggling costs, despite scant benefits;
under-instrumenting code leaves a peripheral in a state that forfeits the opportunity
to save energy. A program has a BurnBug if its code is either over- or under-
instrumented for peripheral toggling. Section 4.6.4 shows that BurnBugs cause
a 30% overhead in a full application case study requiring conditional peripheral
management.

As discussed in Chaper 2, some operations must run in an atomic block that
executes completely without experiencing a power failure [176, 253]. Application
developers must ensure that no atomic block consumes more energy than a device
can buffer. Such an atomic block will repeatedly fail and partially re-execute, but,
exceeding the energy supply, will never complete, effectively “bricking”, i.e. rendering
useless, the device. We refer to the causes of such repeated failures that are not
captured by existing testing procedures as device-bricking energy bugs, BrickBugs.

Prior work [55, 111, 176, 224, 253] recognized that an atomic block may consume
different amounts of energy depending on the path through the block and requires
developers to test each block to confirm that in the worst case each will finish.
However, prior work overlooks the energy cost of peripherals when testing atomic
blocks and fails to specify how a programmer should account for changes in peripheral
operating mode outside of the atomic block. If a peripheral’s operating mode changes
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unexpectedly (e.g. inside a device driver or an interrupt handler), the block can
consume much more energy than during testing and exhaust the device’s energy
budget. Such a bug is a permanent failure because the atomic block will indefinitely
fail, restore its peripherals to the errant operating modes, use too much energy,
and fail again. In this work, we characterize these BrickBugs which stem from the
interaction of atomic blocks and peripheral restoration code. Section 4.6.3 shows that
BrickBugs cause failures on real devices and are easily introduced when combining
atomic blocks and peripheral state restoration.

To enable complex, peripheral-centric applications for batteryless, energy-harvesting
devices, we present Pudu1, a compiler analysis and runtime system to statically
prevent and dynamically avoid peripheral energy bugs. We evaluate Pudu’s com-
piler analysis, Pudu-Static, on a set of buggy applications and demonstrate on
energy-harvesting hardware that Pudu-Static finds bugs that cause intermittent
applications to fail. We also show that Pudu’s dynamic runtime, Pudu Auto-Toggle,
opportunistically prevents BrickBugs and alleviates BurnBugs to improve application
runtime.

4.1 Reducing Peripheral Costs

In an embedded device, programmers are responsible for writing the code on the
primary MCU that coordinates an array of peripherals, all with different communi-
cation protocols, and power requirements. Further, in an energy constrained device,
programmers must consider efficiency, and strategically enable/disable peripherals
to reduce excess power. However, the benefit of fine-grained peripheral manage-
ment varies substantially with changes in peripheral operating mode and application
characteristics.

4.1.1 Toggling Cost vs. Benefit

A programmer should disable a peripheral only if the energy saved exceeds the
toggling cost, the energy cost to place the peripheral in a low-power sleep state and

1Pudus are the world’s smallest deer. Like batteryless devices, they operate on limited resources
because their small stature impedes gathering food. Pudu stands for Peripheral Update Deemed
Unsafe.
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restore it before the next use. A single platform may have many peripherals each with
a different operating power and toggling energy. Figure 4.1 shows measurements that
characterize the operating power and toggling overhead design space for peripheral
sensor configurations on a single device [57]. The peripherals include proximity and
color sensors as well as an accelerometer and a gyroscope running at several sampling
frequencies. The plot shows the difference in power between active and sleep mode
for each peripheral configuration on the y-axis (i.e., the power benefit of toggling)
versus the energy cost of toggling. Toggling energy encompasses both the energy
spent to [de]activate a peripheral and the power spent as the MCU waits for the
peripheral to finish initialization. The wide variation in operating power and toggling
energy presents an efficiency challenge to programmers. Disabling peripherals can
substantially reduce power consumption [8, 22, 57, 193], but toggling can impose a
high energy overhead.
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Figure 4.1: Peripheral Design Space. This graph compares the toggling cost and
benefit for different peripheral sensors and (where applicable) different sampling rates on a
single device.

4.1.2 Application-Level Effects

The key problem for batteryless system developers is the large performance impact
peripheral toggling (or not) can have on applications. The benefit (cost) varies across
applications, input sizes and peripheral access frequency. System designers need
to be able to eliminate inefficiency due to peripheral management to target actual
application and system bottlenecks.
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Figure 4.2 shows the energy savings from toggling a peripheral across a set of
linear algebra applications that operate on different widths of data collected from a
gyroscope in two operating modes. Bars above zero indicate energy savings from
toggling, bars below indicate an energy cost. More details of the benchmarks will be
discussed in Section 4.6.
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Figure 4.2: Toggled vs No-Toggle. The graphs show the normalized energy reduction
of toggled applications.

The data demonstrate the challenges to a programmer of deciding when to
toggle peripherals. For applications with large compute kernels that run between
peripheral accesses (e.g. dconv, input > 16) toggling is the obvious choice, but in
other applications the choice is not. Further, the end-to-end benefit of toggling a
peripheral varies with the ratio of application energy spent sensing versus computing;
toggling only reduces the energy of computing. Figure 4.3 shows energy savings for
two applications, across sensing energy levels. Sensing energy changes by varying the
number of data values the application replaces after every iteration (e.g. “min” reads
a single value, “full” rereads the entire input block). The energy benefit declines as
sensing energy increases because optimizing compute has less effect on the entire
application.

In summary, managing peripheral power in energy harvesting devices is challenging
because the scale of the problem changes with each application’s exact characteristics,
and there is no universally beneficial solution. Batteryless device system developers
must be aware of the variable impact peripherals can have on application performance
because as the next section demonstrates, subtle changes in code can introduce bugs.
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Figure 4.3: Sensing Energy. As sensing energy decreases there is more energy savings
available to capture.

4.2 Problem: Intermittent Peripheral Energy Bugs

There are two categories of energy bugs that stem from peripheral mismanagement
in an intermittent system. The first class of bugs are peripheral energy burning
bugs, which either toggle or fail to toggle a peripheral for some span of an execution
when doing the opposite would save energy. The second class of bugs are device-
bricking peripheral energy bugs, which execute part of a program with a peripheral
configuration that consumes too much energy and prevents further progress. In this
section, we demonstrate that peripheral energy bugs are simple to introduce and
difficult to diagnose in intermittent systems.
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4.2.1 Peripheral Energy Burning Bugs

For a programmer trying to improve an application’s energy efficiency, toggling
peripherals into low-power sleep states when not in use is an ostensibly simple
strategy. In reality, the toggling decision is not obvious. The benefit depends on the
run time of the code between peripheral uses (which may be input-dependent) and
the peripheral’s power consumption (which varies depending on its mode as shown
in Figure 4.1). If code that runs between peripheral accesses is not long enough to
“break even” and amortize the cost of toggling the peripheral, then the program’s
energy will increase due to toggling. Figure 4.4 illustrates the problem with snippets
from three different programs, a Fast Fourier Transform (FFT), a Dense Matrix
Vector kernel (DMV), and a numeric sort kernel (SORT). Each application collects
and processes a full buffer of sensor data in a function, do_work(int size).

The programmer is forced to decide whether or not to disable the peripheral
device across each of the compute kernel invocations. Figure 4.4 plots the energy
spent to toggle the gyroscope [248] and perform the computation, T, compared to
the energy spent in the No-Toggle case (NT) which leaves the gyroscope enabled
and incurs no toggle energy. The compute energy, the solid blue part of the bars, is
always smaller when the peripheral is toggled off, but the fixed cost to toggle, the
striped part, can cause the total energy in Toggle to exceed that of No-Toggle. For
both FFT sizes, toggling the gyroscope leads to a significant reduction in compute
energy because the toggling cost is negligible relative to the compute cost. The
striped toggling bar is so small relative to the FFT compute energy that it is barely
visible. DMV with an input size of 64 sees a benefit from toggling, but with an
input size of 16, the computation does not run for a long enough time to amortize
the toggling overhead. SORT sees no benefit from toggling the gyro regardless of
the input size in this experiment. Moreover, unlike FFT and DMV, the run time of
SORT is highly input value dependent, not only size dependent, further complicating
the programmer’s decision. Despite the simplicity in these examples, there is no
obviously optimal strategy for managing peripherals to minimize energy consumption,
which allows for slowdowns due to BurnBugs if the programmer chooses incorrectly.
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  dgemv_lapack(N,N,A,1,x);}

void do_work(N=64){
  sample_gyro(N,&x);

  dgemv_lapack(N,N,A,1,x);}

void do_work(N=16){
  sample_gyro(N,&x);
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Figure 4.4: Peripheral Toggling Cost. "T" indicates a program that toggles off the
gyroscope around the computation, "NT" leaves the gyro enabled. The relative cost to
toggle a peripheral varies depending on the library code called and arguments passed.
Minute changes in code can result in large changes in the energy breakdown.

4.2.2 Device-Bricking Energy Bugs

In batteryless systems with small energy buffers, leaving a peripheral in a high-
power state can lead to an unrecoverable system failure. BrickBugs occur when
the peripheral operating modes change, unbeknownst to the programmer. Given
that embedded systems typically abstract peripheral operation behind device driver
APIs, the scenario is not unlikely. Peripheral device drivers are well known sources
of bugs in desktop environments [26, 28], causing device modes the programmer
did not expect. The problem is exacerbated in the low-end sensing domain where
many peripheral drivers come from open-source software repositories (e.g. Arduino,
Adafruit, Sparkfun). Bugs and unexpected operating mode changes are common in
driver code [19].

Consider the following possible user scenario based on a real complaint about an
open-source driver [87]. A programmer wants to build a touch-free remote application
for a batteryless device. She selects a (relatively) low power gesture detector with
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available driver code and links in system support for frequent power failures, including
peripheral restoration and atomic blocks. She uses a support-vector machine (SVM)
to atomically process the raw gesture samples. Per the state of the art atomic block
definition [55, 176] , she tests the SVM atomic block in isolation– by charging the
device’s energy buffer, and starting execution at the beginning of the atomic block.
As the deadline looms, the programmer notices that the driver code gets stuck if
someone leaves their hand over the detector instead of completing a swipe [87]. She
rewrites the detector code, placing the driver API function that collects gesture
data in a loop with a time-out, as shown in Figure 4.5. On continuous power, the
application behaves correctly. Per state-of-the-art requirements, she does not re-test
the application on harvested energy since she did not modify any atomic blocks, so
she ships the code.

Figure 4.5: Gesture Detector Bug. get_gesture quietly disables the sensor if valid
data are captured, but if the loop exits via the time-out, the sensor will be active in the
atomic block and exhaust the energy buffer.

The deployed application appears to work until the time-out path is triggered, at
which point the application bricks– it is stuck in an endless loop trying to complete
the SVM atomic block and never has enough energy. Figure 4.5 shows the reason for
the failure. Internally, the driver API call disabled the gesture detector only when a
valid gesture was detected. The new time-out path skips the disable and leaves the
gesture detector active and drawing power while the SVM atomic block runs. The
energy buffer is too small to support the gesture detector during the SVM’s atomic
block, so the app fails to make progress. Worst of all, the peripheral restoration
system turns the gesture detector back on at every reboot because that is the state
it was in when the SVM atomic block first ran.
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4.2.3 Energy Bug Prevention Techniques

Energy bugs were first characterized in smartphones [129, 130, 201], and the ensuing
works proposed fine-grained energy profiling tools [202], to track and automatically
correct certain energy bugs [172]. Runtime tools designed for smartphones will not
detect peripheral energy bugs in intermittent systems. Such tools continuously power
the device, preventing the failures that trigger BrickBugs, and they are not designed
to detect the sub-milliamp current changes that indicate BurnBugs. The energy-
interference-free debugger [54] is sensitive enough to profile intermittent systems, but
its software interface only provides visibility into a program’s software state, not its
hardware state. Compile-time tools for smartphones use techniques similar to Pudu
to address bugs stemming from "sleep-disorders" [203] and resource leaks [103] that
reduced battery lifetime. These compiler tools use smartphone specific knowledge to
identify bugs (e.g. patterns within Android APIs).

Language level techniques for preventing energy bugs in mobile systems have
also been explored. Most notably, the Energy-Types (ET) and Ent languages use
type checking to prevent energy bugs in which an energy-hungry code fragment is
accessed when the device is in a low-energy state [46, 52]. ET/Ent’s type checking,
however, is designed for battery powered systems where the energy level changes
slowly, but a batteryless system’s energy-availability, i.e. capacitor voltage, changes
rapidly as part of an intermittent execution. Further peripheral energy bugs appear
even when using the lowest power peripherals on a device– type checking based on
the hardware state will not prevent them.

4.3 Pudu Overview

Pudu is a solution to peripheral energy bugs in batteryless systems. Pudu combines
a compiler analysis that helps find and fix BrickBugs with a runtime system that
automatically avoids energy-wasting BurnBugs. The flow to use Pudu is shown
in Figure 4.6. First, Pudu-Static takes in application code and lightly annotated
peripheral driver libraries to track changes in peripheral operating modes, producing
bug reports as needed. The programmer uses the reports to iteratively find and
fix BrickBugs. The BrickBug-free program is passed to Pudu Auto-Toggle with
break-even profiles for each peripheral. Pudu Auto-Toggle links the application and
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driver code with the Pudu runtime to produce an executable free of BurnBugs.

Figure 4.6: Pudu Overview. Pudu uses annotated driver code, peripheral break-even
profiles and source code to produce BrickBug reports and instrumented app code without
BurnBugs.

4.3.1 Pudu-Static

Pudu-Static is a compiler analysis that searches program code for potential BrickBugs
and produces a report for the programmer describing each. For a BrickBug to occur,
two conditions must be met by a region of code. First, the code must include an
atomic block. Second, the code must allow executing the atomic block in multiple
peripheral typestates, one of which was unintended by the programmer. Each
peripheral’s typestate is equivalent to its operating mode. At the device level, we
refer to the set of all peripherals’ operating modes as the device’s peripheral typestate.
BrickBugs occur only in atomic blocks, because JIT checkpointing preserves state
and typestate without re-execution. Multiple peripheral typestates are required
to trigger a BrickBug because if only one peripheral typestate is possible, we may
assume the block was tested with it.

Consider the BrickBug experienced by the touch-free remote in Section 4.2.2. The
bug occurred because the SVM atomic block could not finish with the gesture sensor
enabled, but the block was only tested with the gesture sensor off. Pudu uses a
heuristic to find potential BrickBugs for an atomic region: if the region may execute
in more than one peripheral typestate, the analysis flags that region as a possible
BrickBug. Pudu-Static then reports the atomic block and the possible peripheral
states at its entry point. For each bug report, Pudu-Static reports where in the code
each such peripheral state change may happen. In the touch-free remote, Pudu-Static
would flag the atomic block on line 6 of Figure 4.5 because it may run with the
gesture sensor either enabled or disabled. Pudu-Static would then report the lines
in the driver code (not pictured) where the enable/disable mode changes occurred.
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The programmer can iteratively use the information in the report to change the
application logic and avoid the offending typestate change along paths leading to
the reported atomic region.

4.3.2 Pudu Auto-Toggle

Once the program is free of BrickBugs, Pudu Auto-Toggle is linked in to remove
BurnBugs that occur if peripherals are toggled too frequently or infrequently. We use
a dynamic analysis to remove BurnBugs, because input dependent control flow can
radically change the time between peripheral accesses, which makes static analysis
inaccurate. Instead, Pudu Auto-Toggle determines at runtime if toggling is beneficial
without programmer intervention. Pudu Auto-Toggle uses pervasively available
embedded timing hardware in the MCU to track the time between a peripheral’s uses,
comparing that time to the break-even time of that peripheral. If the time between
peripheral actions tends to exceed the break-even time, then toggling the peripheral
is likely to be beneficial, and Pudu Auto-Toggle opts to toggle off, otherwise, the
peripheral is left active. Pudu Auto-Toggle must run after Pudu-Static in the
Pudu flow because it introduces new peripheral typestates that would be flagged as
BrickBugs. The typestate changes produced by Pudu Auto-Toggle, though, yield
to lower power in any atomic blocks long enough to cause BrickBugs. Further,
Pudu Auto-Toggle’s power-failure awareness corrects the unlikely scenario where it a
BrickBug is temporarily introduced by toggling.

4.4 Pudu Design & Implementation

Pudu’s design and implementation are decomposed into its programmer-visible
features, its compiler analysis, and its runtime library. We also present a profiling
approach for finding peripherals’ break-even times.

4.4.1 Programmer-visible Pudu Features

Pudu requires very little extra programming effort, except for a small burden of
annotation in device drivers. The programmer visible features are separated into those
commonly used by the device driver programmer and those used by the application
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programmer. The separation is necessary because some of Pudu’s annotations require
an understanding of the peripheral operation. We expect the driver writer to have
this understanding, but not necessarily the application programmer. The application
programmer simply accesses all peripherals via the API exposed by peripheral device
drivers. We implemented the annotations as a collection of C preprocessor macros
and internal functions detected by our compiler. The full Pudu API is defined in
Table 4.1.

Table 4.1: A summary of the Pudu API. per is a peripheral. state is a peripheral
typestate value. func is a function. ISR is an interrupt triggered by an asynchronous event.

Typestate Tracking Function Registration Checkers
enroll(per) restore(per,func) check(per,state)
update(per,state) sleep(per,func) permit(per,state,...)
enISR(per,ISR) access(per,func)
disISR(per,ISR)

Figure 4.7 demonstrates the API usage by annotating the gesture sensing appli-
cation described in Figure 4.5 and excerpts from its associated driver. Beyond the
behavior described in Section 4.2.2, the application includes an ISR to respond to
the gesture sensor’s proximity interrupt. The interrupt fires in response to a sensed
object’s movement– switching to high power to capture the movement if the object
is close, and switching to a low power wait state if it has moved away. The driver
writer first registers peripherals and functions that will be tracked by Pudu (code
lines 24-27 in Figure 4.7). The enroll primitive creates and initializes typestate
tracking for the provided peripheral. The sleep and restore annotations designate
driver API functions that put the peripheral into low-power sleep mode, and restore
it to an active mode. The access annotation denotes a function that reads from a
peripheral, but does not change its typestate.

The driver must define the set of a peripheral’s modes, and end code that
transitions from one mode to another with a Pudu update(per,state) operation,
which updates the typestate, for peripheral, per, to a new typestate, state. In
code line 30, the driver writer indicates a change in the gesture sensor’s power
level to Pudu. Finally, if driver code triggers asynchronous events, e.g. enables
an interrupt and associated interrupt service routine (ISR), the code must include
enISR and disISR annotations. The "ISR" annotations associate a peripheral with
an asynchronous event, ISR, and inform the typestate analysis where in the code
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the event may fire. In Figure 4.7, the driver writer indicates in code lines 34 and 37
when the interrupt is enabled/disabled. This level of driver annotations mimics the
state tracking used in peripheral restoration systems [41].

Figure 4.7: Example code annotated for Pudu. An improved gesture detection
application code example uses Pudu’s checking annotations and relies on a Pudu annotated
driver (shown in blue). The effects of the gesture ISR on the output of the Pudu pass are
shown in green.

To use Pudu, the application programmer need only provide application code
using a properly annotated driver. However, during development and debugging, the
programmer can use Pudu as a dynamic or static typestate specification checker. The
dynamic check annotation returns "True" at runtime if the typestate of peripheral
permatches state. The static permit annotation specifies a set of allowed typestates
at a program point. Pudu produces a compile-time warning if unspecified typestates
are possible at a permit. Further, the allowed typestates will not be flagged as bugs
during BrickBug detection. For example, the application programmer in Figure 4.7
added a check annotation to configure the SVM hardware and a permit annotation
to limit the gesture sensor to either the "off" or "low" states.

4.4.2 Pudu-Static: Peripheral Typestate Analysis

The Pudu compiler is a custom LLVM pass [153] that analyzes the annotated
program and driver source code. The analysis translates update annotations into
assignments to a runtime variable that represent the peripheral’s typestate. The
compiler performs a context-sensitive reaching-definition analysis of the typestate
variables to compute the set of possible peripheral typestates at each code point [97].
Pudu’s analysis reports, for each point in the code, what typestate each peripheral
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may be in when the code executes. For instance, the complete typestate at code line
3 of Figure 4.7 is {gesture:low,svm:off}. Pudu assumes an initialization function
restores a peripheral’s operating mode on restart at a checkpoint [31, 126, 176] or
atomic block. Algorithm 1 shows a high level description of the analysis pass as it is
used for BrickBug detection.

Algorithm 1 Pudu-Static Analysis Pass.
1: function ReportBugs(Program P )
2: AllStates T ← Per[∅] . Initialize the set of registered peripherals
3: MarkDrivers(P ) . Denote functions that modify peripheral state as drivers
4: SplitBlocks(P ) . Splits basic blocks at peripheral state changes
5: Analyze(P.ISR,T ,∅,∅) . Analyze state changes in ISRs
6: Analyze(P.main, T ,[Off ],∅) . Analyze state changes in the program; all peripherals start in "Off" state
7: specs←CheckSpecs(P ,T ) . Compare programmer spec. to reaching states.
8: reports←CheckAtomics(P ,T ) . Report if > 1 typestate at atomic block
9: filteredReports←FilterReports(reports) . Filters non-critical bugs
10: end function

The analysis begins by identifying "Driver" functions that contain assignments
to peripheral typestates or call functions that modify peripheral typestates, e.g.
gest_high_pow. Next, all basic blocks are split at function calls and peripheral
typestate assignments to form separate basic blocks. This change allows the analysis
to determine the effect of asynchronous interrupts regardless of where typestate
assignments fall in a block, e.g. relative to calls that disable asynchronous peripheral
operations. For example, breaking code lines 2-4 into separate blocks clarifies that
the ISR cannot affect the peripheral typestate until code line 4. On line 5, the
analysis updates T , the data structure storing the peripheral typestates for each
basic block in the program, to include information about the reaching typestates
on exit from each ISR. For instance, after analyzing gesture_ISR, T would report
that the ISR changes the gesture sensor state to either "low" or "high". Pudu uses
the ISR reaching typestate information when Analyze runs on main, at line 6. The
input typestate of all peripherals is set to "Off" when Analyze is run on the main

function to simulate the initial condition of all peripherals on first boot.
The typestate information for the code reachable from main is passed to CheckSpec

to confirm the programmer’s permit annotations and to CheckAtomics to produce
bug reports. A bug is reported if any peripheral has multiple reaching typestates,
unspecified by permit, at the beginning of an atomic block. However, some atomic
blocks are unlikely to cause BrickBugs because their energy requirements are small
and the runtime is short. We found that short atomic blocks fall into two categories:
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those that form part of the hardware access layer (HAL) for peripheral driver
calls, and those used to protect simple input-output (I/O), like calls to printf.
FilterReports implements the HAL-I/O filter to optionally drop these excess bug
reports. The filter only hides blocks that contain a single function call, e.g. a single,
low level driver call, to reduce to likelihood of false negatives.

Algorithm 2 Analyze function definition. Analyze uses an iterative worklist algo-
rithm to perform a reaching definition analysis on peripheral typestates.
1: function Analyze(Function F , AllStates T , States In, States Out)
2: list← ReturnBasicBlocks(F ) . Place all blocks in worklist to start
3: while list 6= ∅ do
4: BB ← list.pop()
5: MeetUnion(BB, In, T ) . Take the union of the output of predecessor blocks
6: MeetUnionISRs(BB, In, T ) . Take the union of the output of active ISRs
7: for I ∈ BB do . For each instruction in block
8: if IsDriverCall(I) then
9: f ← GetCalledFunction(I)
10: Analyze(f, T, In,Out) . Necessary for context sensitive analysis
11: else
12: TransferFunc(I, In,Out) . I kills prior definitions and generates a new one
13: In← Out . Copy new state for next instruction
14: end if
15: end for
16: if T [BB] 6= Out then . If BB’s state changed, add successors to worklist to continue iterating
17: T [BB]← Out
18: list.push(GetSuccessors(BB))
19: end if
20: end while
21: end function

Algorithm 2 shows the details of the iterative dataflow analysis that we use to find
the typestates of each peripheral that are possible at each code point [10]. The green
text in Figure 4.7 shows part of the progression of the analysis on the code example.
The algorithm works like a reaching definition analysis, except that it analyzes only
peripheral state definitions and uses, not general memory accesses. At a high level,
the algorithm takes the input typestate (in[]) at each basic block (BB), and drops
old definitions of peripheral state if new ones occur within the block to produce the
block’s output typestate out[]. Table 4.2 defines the exact dataflow framework we
use. The dataflow domain is peripheral typestate changes made in a basic block
(Pcfg(B)) that map the state of a peripheral ((p, s)) to a new state ((p, x)). If a
block (BB) changes a peripheral’s state, it generates a new state definition and kills
all preceding peripheral state definitions.
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Table 4.2: Pudu dataflow framework. Pudu’s framework closely resembles that of the
reaching definitions problem. Minor changes include the starting (boundary) conditions
and the addition of active ISRs (isrs(B)) to a block’s predecessors.

Domain Pcfg(B) : (p, s)← (p, x)
Direction Forward
Generate gen[B] = {Pcfg}
Kill kill[B] = (p, ∗)− Pcfg(B)
Transfer Function(fB(x)) genB ∪ (x− killB)
Meet Operation (∧) ∪
Equations OUT [B] = fB(IN [B])

IN [B] = ∧OUT [pred(B) ∪ isrs(B)]

The first major difference between our algorithm and a standard reaching defini-
tion algorithm is the inclusion of a second meet operation (line 6) specifically to fold
in typestate changes made in ISRs. MeetUnion takes the union of possible typestates
produced by BB’s predecessors to update the input to BB. The MeetUnionISR takes
the union of reaching typestate for any ISRs that may be active at BB. MeetUnionISR
checks if an interrupt may fire by checking for calls to enISR along any path between
the current basic block and the start of the function. Then MeetUnionISR confirms
that there is not a call to disISR that dominates the current basic block and nullifies
the enISR. The effect of MeetUnionISR is visible in the input and output typestates
at code line 4. The output of code line 4’s predecessor (code line 3) is merged
with the output of the ISR (gesture:low,high) to form in[4], because the ISR is
enabled at code line 3.

The second difference is the recursive call to Analyze on line 8 if the pass
encounters a Driver call, allowing the pass to find update calls embedded in drivers.
The call to gest_high_pow on code line 18 would activate the recursive call. Since
our reaching definition analysis is conservative and the code bases for the programs
we analyze are small, the pass can perform context-sensitive analysis quickly. The
pass reliably completes in under 1 second for all our test cases.

4.4.3 Pudu Auto-Toggle: Peripheral Toggling

Pudu Auto-Toggle is a runtime system that tracks the time between peripheral uses
to automatically toggle peripherals (or not) to minimize peripheral energy costs. The
major features of the Pudu Auto-Toggle software are the runtime instrumentation,
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the toggling decision policy, and the Tracking Table, a hash table for storing the
relevant metadata.

(a) Before Access. (b) After Access.

Figure 4.8: Pudu Auto-Toggle Instrumentation. Before an access, Pudu updates
the toggling decision for the last access to the peripheral in use. After the access, Pudu
acts on the toggling decision for the current access.

Pudu Auto-Toggle inserts instrumentation before each instance of an access

function, as shown in Figure 4.8a. The instrumentation first stops the timer and
checks the Tracking Table for the last time the peripheral was accessed, i.e. an entry
with a matching peripheral and an "on" active bit. If a matching, active access is
found, Pudu updates the active access’ toggle predictor and clears its active bit in the
Tracking Table. Pudu then toggles the active peripheral back on, if necessary, before
proceeding with the access. After the access, Pudu Auto-Toggle’s instrumentation
searches for an entry in the Tracking Table that matches the current program counter
value (PC), see Figure 4.8b. If no entry is found, Pudu inserts a new entry using the
current PC as an identifier and resolves collisions with linear probing. Once an entry
is found or created, Pudu makes a toggling decision, sets the active bit and restarts
the timer.

Pudu Auto-Toggle also uses instrumentation on reboot and power down to
provide the appearance of a continuously ticking clock and gather power failure
data. Pudu records the timer status with each JIT checkpoint, then on reboot,
restores the timer and increments each active peripheral access’ failure counter (not
pictured in Figure 4.8. Unlike efforts that keep track of wall-clock time through
power failures [63], Pudu only tracks time while a device is on.
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Toggling Decisions

Pudu’s toggling decision mechanism is characterized by three key features: predictor
function, decision granularity, and the effect of power failures on the decision. At
each access, Pudu updates a 2-bit saturating counter to predict whether or not
toggling is beneficial. Pudu compares the time since the last use of the peripheral, in
any mode, to the break-even point for the peripheral in its current operating mode.
If the time is greater, Pudu increments the counter; otherwise Pudu decrements the
counter. In our prototype, a counter value greater than 1 indicates a peripheral
should toggle off after a peripheral operation. The small saturating counter design
prevents a single transient event from changing Pudu’s decision and still allows the
decision to change throughout the program.

Pudu Auto-Toggle makes toggling decisions for each point in the code where a
peripheral is accessed, as determined by the program counter. Our Pudu Auto-Toggle
prototype does not track the full calling context of peripheral accesses. This limitation
was not a problem because in most of the programs we analyzed, the peripheral
accesses are called from main. For each PC entry, Pudu tracks toggling decisions
separately for up to eight operating modes because modes can have drastically
different cost/benefit trade-offs as shown in Section 3.1.

Pudu Auto-Toggle updates toggling decisions on every reboot to consider power
failures. If three or more power failures occur since a peripheral’s last use, Pudu
updates the toggling decision of the last peripheral access to toggle the peripheral
off. The effect of forcing the toggling decision to off, is any problematic, or repeatedly
unused, peripherals will be left inactive on reboot, opportunistically preventing
BrickBugs. While a peripheral is associated with an active asynchronous event (i.e.,
a sensor set to trigger an interrupt), Pudu sets the time and power failures between
peripheral uses to zero, and never toggles the peripheral. Pudu Auto-Toggle’s policy
uses power failures and break-even time comparisons to simultaneously address
BrickBugs and BurnBugs.

Hardware Resource Usage

Pudu Auto-Toggle uses a timer on the MCU to count "ticks" between peripheral
accesses. Our prototype uses a slow clock (32 kHz) for negligible power [264].
Embedded systems are often extremely resource limited, so we designed Pudu Auto-
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Toggle to share a clock with other code in the system. For a small memory overhead,
the system maintains the Tracking Table with one eight-byte entry per peripheral
operation, and 16 entries. The Pudu Auto-Toggle instrumentation library consumes
2 KB of code memory, and the total overhead varies with the number of peripheral
accesses. Compiled for the MSP430, the overhead per peripheral was 160 bytes
because we inline the runtime calls. With low power, timer, and memory overheads,
Pudu is simple to incorporate into a resource-constrained system.

4.4.4 Break-Even Time Profiling

Pudu Auto-Toggle requires a table of break-even times that includes an entry for
each peripheral in all of its operating modes. Datasheets for a given peripheral
rarely provide information about the energy cost to transition from one mode to
another, and typically report current for a small selection of a device’s various modes.
As a result, determining break-even times requires directly measuring the target
device. To determine the break-even time for a peripheral in some arbitrary mode,
our profiler takes a brute-force approach. The profiler runs the MCU in a busy
loop to capture system-wide power and then measures the iteration energy with
the peripheral active for a range of compute times. Next, the profiler measures the
toggled version, measuring the energy to run, first disabling the peripheral, then
computing, then re-enabling the peripheral. We accumulate a set of measurements
for different time values and empirically find the smallest time when the toggled loop
consumes less energy than the loop with the peripheral active, the break-even point.

4.5 Methodology

The goal of our evaluation is to demonstrate the prevalence and significance of the
code patterns that lead to intermittent peripheral energy bugs, and then evaluate
Pudu’s ability to prevent them. Our methodology relies on testing on real energy
harvesting devices to demonstrate that Pudu provides correctness and performance
where state-of-the-art runtime systems fail.
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4.5.1 Hardware Setup

All experiments were performed on the Capybara [57] energy-harvesting platform with
its MSP430FR5994 MCU operating at 8MHz. We chose to use the Capybara platform
because it is already equipped with several peripherals (e.g. IMU, gesture detector,
BLE radio) as shown in its open-source schematic [5]. Capybara’s power system
is similar to other batteryless devices that use an output booster to maximize the
energy extracted from large capacitors [167, 193, 281], but only if the reconfigurable
energy-buffer is disabled. We shorted Capybara’s separate energy buffers together
to represent more common batteryless devices that use a unified energy buffer [63,
166, 193, 210, 229, 284]. To charge the energy buffer, we emulate a stable solar
energy source by feeding the 3.3 V output of the Texas Instruments ez-FET [266]
programmer into a 2.2 V voltage regulator in series with a 1 kΩ resistor. We measured
the voltage drop across the 1 kΩ resistor and confirmed that no more than 60 µA of
current are ever supplied, which forces the Capybara into frequent power failures. To
tolerate power failures, we implemented Samoyed for JIT checkpointing and atomic
blocks [176], and KARMA to restore peripheral state [41].

Sensors & Break-Even Points.

We profiled six peripheral operating modes on the Capybara platform to find their
break-even points, following the procedure outlined in Section 4.4.4. We measured
current using a differential amplifier configured for high-side current sensing [257]
sampling at 625kHz [228]. A digital logic analyzer captured the start/end GPIO
pulses from the MCU to measure time. We characterized the on-board peripherals
in different operating modes. The gyroscope and accelerometer, which are packaged
together in a single chip [248], were tested separately at sampling rates of 1.6KHz
and 104Hz. The proximity and color sensors, which are in the same package as the
gesture sensor [22], were both tested in active mode. The gyroscope, accelerometer
and color sensor are similar in power consumption to other lower power sensors
used in batteryless systems [14, 40, 114, 239]. The proximity sensor is representative
of more expensive peripherals that like radios or cameras [63, 167, 193, 284] and
serves as a stand-in for the gesture sensor referenced in Section 4.2.2. Table 4.3
shows the resulting profile used in our evaluation. Peripheral break-even times vary
inversely with peripheral power from 0.77ms (proximity) to 85.44ms (gyro, 104Hz).
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The maximum benefit of toggling a peripheral ranges from 3% to 40% of total system
power, varying directly with peripheral power. We include the current savings from
toggling and the minimum time to toggle from sleep to active mode according to
the peripheral datasheet to allow for comparisons to the peripherals included in our
energy bug survey.

Table 4.3: Peripheral profiling results. The break-even times on a Capybara sensor
span two orders of magnitude. The Toggle-Time is the minimum time to shift from sleep
to active according to the datasheet.

Op. Mode: Accel,1.6KHz Accel,104Hz Gyro,1.6KHz Gyro,104Hz Color Prox.
Break-Even(ms) 6.7 7.0 9.5 85.4 9.4 0.8
Power Savings 13% 3% 29% 13% 7% 43%
Toggle-Time(ms) 1.2 0.3 2.4 19 2.4 0.3
Current savings (µA) 235 50 790 140 140 1060

4.5.2 Peripheral-Energy Bug Analysis

We begin our evaluation of peripheral energy bugs with a literature survey that
demonstrates the prevalence of patterns that lead to BrickBugs and BurnBugs in
existing batteryless systems. We go on to demonstrate BrickBugs, using three
applications containing BrickBugs that interact with low-power peripherals and
perform complex computations similar to prior work in batteryless systems [41, 55,
57, 98, 176, 193].

Bug Survey

We conducted a survey of open-source code bases that use peripherals from batteryless,
energy-harvesting systems literature. To characterize the applications, we recorded
lines of application code, (omitting peripheral driver code), and the number of
peripherals. In each code base, we examined the peripheral usage in the context of
the target hardware platform to determine if a BurnBug was likely due to under or
over toggling. Using each peripheral’s datasheet, we gathered the minimum time
to toggle the peripheral and the corresponding power savings based on the way
the application configured the peripheral. For peripherals with substantial toggling
power savings and toggling times less than 20 ms, we report likely under-toggling
BurnBugs if an application carries out a complicated operation without disabling
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the peripheral. Detailed examples are provided in Section 4.6.1. Under-toggling
BurnBugs are identified in applications with toggling costs that are high relative to
their benefit.

To find potential BrickBugs, we identified instances where regions of code that
must be atomic could run in multiple typestates. We limit our reported BrickBug
patterns to those where the affected atomic blocks perform a non-trivial operation,
e.g. computing a large matrix-matrix multiplication, not updating a single running
average. In many of the code bases we examine, the underlying runtime will
prevent permanent bricking behavior. However, the existence of patterns that lead
to permanent failures serves as a warning to batteryless system developers and
motivates Pudu as batteryless systems target more complex sensing and computing
applications.

Bug Testing

The core bug kernels we test are derived from applications in the batteryless-
computing literature [57, 176]. We extract code segments that control peripherals
and make them resilient to power failures by following the procedures from prior
work to add atomic blocks and peripheral state restoration. Each buggy program
is run on a Capybara using the smallest capacitor size that supports the largest
atomic block in each program, and each leads to failures on harvested energy using
state-of-the-art runtime support. To correct the bugs, we run Pudu-Static on each
application and iteratively remove bugs; we use the corrected applications to explore
false positives produced by our analysis.

To demonstrate Pudu-Static’s usefulness across peripheral restoration policies, we
implemented each bug using the RESTOP [220], Sytare [33], and KARMA [41] pe-
ripheral restoration policies. We also test the Pudu Auto-Toggle variant, which tracks
and restores peripheral state similarly to KARMA, but uses Pudu’s auto-toggling
strategy (Section 4.4.3) instead of KARMA’s lazy initialization. We implemented
asynchronous versions, when applicable, with interrupt-triggered peripheral oper-
ations to test Pudu’s ability to track changes through ISRs. The asynchronous
variants assume that any function that disables a peripheral disables that periph-
eral’s interrupt.
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4.5.3 Performance Benchmarks

We evaluate Pudu Auto-Toggle using compute kernels developed for the MSP430
by prior work, obtained from the authors [99]. The kernels are representative of
on-device signal processing and machine learning applications found in embedded
sensing devices [98, 121, 168]. smv: multiplies a dense vector of samples with a
sparse matrix. dconv: convolves a matrix with a filter. dmm: multiplies two
matrices. dmv: multiplies a vector and a matrix. dwt: transforms a matrix of
samples using a wavelet. fft: performs 2-D fft. align: Needleman-Wunsch sequence
aligns a vector of samples and a delayed version of the vector. The individual kernels
vary in time complexity and each accepts multiple input sizes. On continuous power
their execution times range from under 10ms to greater than 40 seconds, with many
falling below the break-even point of peripherals, benefiting from Pudu.

Each benchmark repeatedly runs a kernel with a sequence of input dimensions
and re-samples a subset of the input data from a peripheral on each iteration. The
sequence is 20 iterations on small input (16 elements), 5 iterations on medium (64),
and 1 iteration on large (128). Changing the kernel input size changes the time
between peripheral accesses, so to avoid artificially weighting our study towards
short or long kernel executions, the sequence provides roughly equal execution time
in each case. We ran the benchmark applications using Capybara’s largest single
bank, 38 mF of capacitance, which corresponds to a powered-on period of about 2
seconds and a recharge time of 30 seconds. The large capacitor mimics recent work
that pursues compute intensive applications and support (relatively) high energy
peripherals. For instance, a batteryless robot used 22 mF of capacitance [284] and
recent work supports object detection reported via LoRa with a 33 mF bank [72].

Performance Comparison

Energy savings translate directly into performance improvements in energy-harvesting
applications because these devices take time to harvest all of the energy they
use [71]. Our evaluation, therefore, focuses on the performance impact of excess
peripheral energy and reports runtime instead of energy savings (e.g. in joules) to
demonstrate the direct benefit of peripheral energy savings. To capture the many
factors that impact application performance, all runtime data in our experiments
are end-to-end measurements. The measurements include time spent checkpointing,
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recharging, and re-initializing the device. We compare Pudu Auto-Toggle’s runtime
to two static peripheral management approaches: leaving the peripherals active
throughout the application (No-Toggle), and toggling peripherals after every use
(Toggle). No-Toggle is the default for all but expert programmers because as described
in Section 3.1, correctly manipulating a peripheral requires intimate knowledge of
the device hardware. Toggle mimics aggressive driver code– some peripheral drivers
wrap peripheral setup and disable code within a peripheral access call. As we show
in Section 4.6.1, Toggling after each peripheral access is not common practice for low
power peripherals. Further, this technique does not consider whether the program
will amortize the toggling cost.

4.6 Evaluation

We evaluate this work in several phases. The first is a survey of potential peripheral
energy bugs that appear in code from the batteryless computing literature, showing
the prevalence of code patterns that lead to energy bugs. The second is bug analysis
and testing which shows, via experiments on real hardware, that prior systems
encounter BrickBugs that Pudu can identify and help the programmer fix. The third
is performance testing to demonstrate the practicality of Pudu Auto-Toggle on real
energy-harvesting hardware running a range of workloads.

4.6.1 Prevalence of Intermittent Peripheral Energy Bugs

We looked at code repositories from 14 different publications [27, 55, 57, 61, 63, 64,
146, 148, 176, 177, 193, 252, 253, 284] , and found code patterns that are indicative
of peripheral energy bugs in 7 of them. The results of the bug survey are shown
in Table 4.4. We sort the bugs based on the software runtime, then the hardware
platform and application before separating each buggy peripheral. Each potential
bug is marked as BurnBug (�) caused by either under (5) or over (4) toggling
or a BrickBug (A ). The results demonstrate that the coding styles which lead to
peripheral energy bugs are prevalent, and applications with characteristics similar to
the bugs presented in this paper, exist in the wild.

In our survey, the BurnBugs primarily occur because complicated applications
often use simple sensor management policies. Batteryless Intermittent Actuation
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(BIA) and Satellite Data Capture (SDC) re-enable all peripherals on every reboot
and they remain active through relatively long operations. InK’s Fast-Fourier
Transform (FFT) and Activity Recognition (AR) applications enable peripherals
at the start of a thread and then leave them active, burning energy unnecessarily
until the device powers down. In contrast, Person Detection (PD) and Light Sense
5 (L5) are both impacted by poor peripheral driver usage. These applications read
from peripherals in tight loops by calling peripheral driver functions that disable
the peripheral immediately after use, even though there is not time between uses
to amortize the cost. The exact impact of the BurnBug will vary depending on the
peripheral power savings and restart time. Higher power and lower restart times
mean a bug is more likely in the event of "under" toggling and the reverse is true for
"over" toggling.

The survey also revealed BrickBug patterns in applications across a wide range of
application code sizes (as measured in lines of application code, LoC). Several of the
potential BrickBugs stem from the behavior of the underlying task-based runtime,
InK and Chain [55, 284]. On reboot, both run an application-specific initialization
function before transferring control to a task, so we assume each task was tested
individually after running the initialization. Any peripheral typestate other than
what is is set by the initialization function is therefore a potential BrickBug. As
a result, Activity Recognition and Fast-Fourier Transform experience potential
BrickBugs because the accelerometer is enabled in a task and left powered on and
may impact tasks on other “task-threads”. In Correlated Sensing & Reporting (CSR),
the magnetometer is left enabled, which cauess BrickBugs on subsequent tasks and
is the source of a lingering BurnBug. Several of the BrickBugs, though, stem directly
from application behavior. For instance, the Gesture-driven Remote Control (GRC)
application leaves its gesture sensor enabled if too few valid samples are collected.
The Greenhouse Monitoring (GRM) application correctly handles a moisture sensor,
but incorrectly toggles an LED which changes the energy of subsequent, atomic,
sensing operations. Finally, error handling code in Facemask Monitoring (FMM)
fails to disable the pressure sensor, and can increase the energy cost of subsequent
radio transmissions. These bugs demonstrate that the code patterns leading to
BrickBugs are difficult to avoid in applications with several peripherals.
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Table 4.4: Peripheral Energy Bug Survey. We characterize potential bugs in terms
of the software runtime (SW), hardware platform (HW), application (App), lines of code
(LoC), number of peripherals (NP), the peripheral involved as well as it’s current savings
from toggling (I) and toggling time (TT). A indicates a potential BrickBug, �indicates a
BurnBug due to either under (5) or over (4) toggling. *Pressure sensor current is likely
higher, datasheet only reports power for 1 Hz data rate, but it is running at 10 Hz.

SW HW App LoC NP Periph. I(µA) TT(ms) Type Description

Ink [284] Launchpad [266] AR [205] 839 2 Accel. 145 11 A �5 Accel. left on in nearest neighbors
calculation, but not on every boot.

FFT [204] 997 2 Accel. 145 11 A �5 Accel. left enabled during 128-point FFT,
but not on every boot.

InkBot [233] BIA [234] 655 Gyro. 350 10 �5 Gyro enabled at boot and left on during PID
directed robot movements.

Chain [55] Capybara [57] GRC [134] 636 3 Gest. 830 0.6 A
Gesture sensor left enabled if too few valid
samples are collected, causes high power draw
in subsequent sensing task.

CSR [135] 524 3 Mag. 100 0.2 A �5 Magnetometer left on in sensing task before
sending radio packet.

EdbSat [166] SDC [53] 779 4 IMU 70 19 �5
IMU is enabled on every reboot, but is
unused in most tasks including data
compression and radio TX.

Mag. 100 0.2 �5
Magnetometer’s costly initialization (includes
50 ms delay) always runs at power-up, but
it’s unused in most tasks.

TICS [148] Launchpad [266] GHM [147] 274 3 LED 2000 .002 A
LED state is toggled, changing energy of
subsequent sensing operation.

C++ Facebit [61] FMM [60] 1226 4 Pres. 12* 0.5 A

Pressure sensor left on during radio TX if
error path is taken at line 60 of
RespiratoryRate.cpp or line 66 of
MaskStateDetection.cpp.

Samoyed [176] Capybara [57] L5 [173] 206 1 Photo. 2 .32 �4

Photoresistor driver always toggles (costs
0.3 ms) despite only a 2 ms delay between
photoresistor accesses and minimal current
savings.

Tasks [168] Camaroptera [193]PD [72] 1435 2 Cam. 105 564 �4

Always toggles camera, which requires a long
recalibration phase, and the shortest path
between camera accesses is short in
comparison.

4.6.2 BrickBugs Case Studies

Lightly condensed versions of the real code we tested are shown in Figures 4.9a
and 4.10a for the Concurrent Changes and Multiple Peripherals applications. The
third buggy application, Expensive Peripheral, is an expanded version of the bug
described in Section 4.2. The buggy applications are similar to those examined in
Section 4.6.1. The applications use no more than four peripherals, contain 250-400
lines of application code, and as detailed in Table 4.3, rely on peripherals with
toggling savings similar to those in the literature.
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Expensive Peripheral The first buggy application leaves an expensive peripheral,
a gesture sensor [22] enabled during a critical atomic block. This application was
derived from the wireless gesture-activated remote control code published in prior
work [57], based on a real complaint about the gesture sensor driver [87]. As shown
in Section 4.2, the application is bricked if the gesture sensor is on at the SVM’s
atomic block because the energy buffer is too small to power the gesture sensor and
complete the SVM calculation.

Bug Fix: Pudu-Static reports that the gesture sensor at the SVM atomic block
could be active due to the state change on line 2 of Figure 4.5, or disabled in
get_gesture if a valid gesture is captured (not pictured). The report allows the
programmer to deduce that there is an exit from the while loop that does not disable
the gesture sensor. Unconditionally disabling the gesture sensor before entering the
SVM’s atomic block corrects the bug, i.e. disabling the gesture sensor between lines
5 and 6 of Figure 4.5.

(a) Original Code. (b) Buggy Execution Trace.

Figure 4.9: Concurrent Changes. Peripheral state changes, shown in orange, in
asynchronous events can cause BrickBugs.

Concurrent Changes The distance sensing application in Figure 4.9 bricks due to
peripheral operations in an asynchronous event. The application blinks a high power
IR LED in a timer triggered ISR (line 19), then uses a low power photoresistor to
measure the distance to a nearby object (line 8), and transmits a radio packet if it is
too close (lines 12-17). A BrickBug occurs if the LED is on at the start of the radio’s
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atomic block. The disISR(Timer_ISR) (line 14) call traps the LED on during the
radio transmission, which increases the device’s power draw and exhausts the energy
buffer before the transmission is complete.
Bug Fix: Pudu-Static reports that the LED may be on or off at the start of the
radio atomic block, with both typestate updates occurring in the Timer_ISR. The
report indicates to the programmer that both the LED and the Timer ISR must be
disabled before the atomic block, and only re-enabled after.
Multiple Peripherals We use an "upgraded" paper-airplane control system, Fig-
ure 4.10, to demonstrate how multiple peripherals complicate atomic block sizing.
The original application used the proximity sensor to detect obstacles (line 3) and
trigger emergency maneuvers (line 19) if necessary. The emergency maneuvers atomic
block was sized assuming the proximity sensor is active. The system was upgraded
with an inertial-measurement unit (IMU) to fold in trajectory data (line 9), and
a sensors_off command that rapidly disables all sensors before exiting the loop
(lines 10 and 16). A BrickBug occurs if the application uses the IMU, and on the
next loop iteration, exits due to a proximity warning (line 5). Both the IMU and the
proximity sensor will be active during the emergency maneuvers, which will exceed
the energy budget.

(a) Original Code. (b) Buggy Execution Trace.

Figure 4.10: Multiple Peripherals. BrickBugs are likely if multiple peripherals are
active simultaneously.

Bug Fix: Pudu-Static will report three possible typestates for the IMU at the
emergency maneuvers atomic block, all stemming from inside the while loop (lines 8,
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10, 14, 16). The programmer can conclude that there is an exit from the while loop
that does not disable the IMU. Unconditionally running the sensors_off command
before the emergency maneuvers fixes the bug.

4.6.3 Pudu is Effective Against BrickBugs

Table 4.5 summarizes our results, showing whether each of runtime system under
test fails for each bug. Per the final column, Pudu-Static identified all of the bugs
that cause existing runtime systems to fail.

Table 4.5: BrickBug Results. Pudu-Static correctly identifies all BrickBugs for both
synchronous (S) and asynchronous (A) cases. 7 indicates a failure. ∼ represents a success
as a side-effect of the restoration policy. 3 indicates successful completion or bug detection.
∗ [220], † [33], ‡ [41]

Description: Restop∗ Sytare†KARMA‡ Pudu Bug ID’d?
Expensive peripheral (S) 7 7 ∼ 3 3
Multiple peripherals (S) 7 7 ∼ 3 3

Expensive peripheral (A) 7 7 7 7 3
Multiple peripherals (A) 7 7 7 7 3
Concurrent changes (A) 7 7 7 7 3

Peripheral restoration systems incur BrickBugs. RESTOP and Sytare fail in
all cases because, on reboot, they restore peripheral state to the failing state at the
last checkpoint. While KARMA’s lazy re-initialization policy was intended to improve
performance by avoiding premature reconfiguration, the policy incidentally avoids
synchronous BrickBug failures. Lazy re-initialization delays restoring peripheral
state after a reboot, which, for synchronous BrickBugs (i.e. without interrupts),
reduces energy consumption through the atomic region, preventing failure. This
incidental benefit only holds for synchronous cases since KARMA cannot lazily
initialize peripherals that may trigger asynchronously.
Pudu-Static Identifies BrickBugs. Beyond identifying BrickBugs, we show that
Pudu’s bug detection reports do so with few false positive reports. False positives
occur if multiple typestates are possible at an atomic block, but none causes the
device to consume more energy under normal operation than it can buffer . This
definition is pessimistic– there is no guarantee that an arbitrary atomic block of
application logic will always finish within the energy budget unless all possible
peripheral typestates are tested. For instance, the only false positives retained
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Table 4.6: Pudu-Static Bug Reports. Atomic blocks with multiple reaching peripheral
typestates trigger Pudu-Static reports. False positives (F.P.) occur if the reported block
never caused a BrickBug in testing. F.P’s include HAL accesses to driver code, I/O calls,
and application logic (App).

F.P. Code Type Filtered
Application: Total F.P HAL I/O App Total F.P.

B
u
gg

y

Expensive periph. (S) 2 1 1 0 0 1 0
Multiple periph. (S) 5 4 2 0 2 3 2
Expensive periph. (A) 2 1 1 0 0 1 0
Multiple periph. (A) 5 4 2 0 2 3 2
Concurrent changes (A) 3 2 1 1 0 1 0

F
ix
ed

Expensive periph. (S) 0 0 0 0 0 0 0
Multiple periph. (S) 3 3 1 0 2 2 2
Expensive periph. (A) 0 0 0 0 0 0 0
Multiple periph. (A) 3 3 1 0 2 2 2
Concurrent changes (A) 1 1 0 1 0 0 0

through the filter occurred in the Multiple Peripherals apps at the atomic blocks on
lines 7-11 and 13-17. Both permit the IMU to run in three different modes. Table 4.6
elaborates on the number of reports produced for each buggy application and the
corrected versions. After using the HAL-I/O filter to remove atomic blocks that are
likely to be short, Pudu-Static produces few false positives for application (App)
logic.

4.6.4 Pudu eliminates energy-waste due to BurnBugs

We evaluate Pudu Auto-Toggle using a suite of benchmark applications with variable
time between peripheral uses and a micro-robot localization case study. The results
show that Pudu Auto-Toggle adapts to changes in peripheral operating modes, and
program phases better than static policies, saving energy and increasing the amount
of useful work completed by the device.

Benchmark Study

We tested with two peripheral operating modes, the Gyro running at 1.6KHz and
104Hz, that represent distinct points in the trade-off between toggling cost and
energy savings. Gyro 1.6KHz has a larger energy savings from toggling than Gyro
104Hz and a break-even time nearly an order of magnitude shorter. Figure 4.11
shows end-to-end execution time for each benchmark normalized to "No-Toggle",
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averaged over 10 trials.
For both operating modes, Pudu is faster on average (per the geometric mean)

than either No-Toggle or Toggle (in the bar plots, lower is better). Operating
at 1.6KHz, toggling the Gyro very often leads to an energy savings, and Pudu
avoids BurnBugs due to under-toggling. When the Gyro is operating at 104Hz
with a larger break-even time than at 1.6Khz ( 80ms vs 9ms), Pudu prevents more
BurnBugs due to over-toggling. Specifically, align, dmv, dwt and smv all benefit
from Pudu’s measured toggling choices. Yet Pudu also tracks with Toggle on the
largest benchmarks, dmm and fft, to capture the benefit of toggling during long
spans of computing. For a typical application programmer, the difference between
two operating modes of the same peripheral is not obvious, but the optimal toggling
policy can be quite different. Pudu Auto-Toggle overcomes this problem and avoids
the worst effects of BurnBugs.

Figure 4.11: Benchmark Study. The graph compares execution time across different
toggling strategies normalized to No-Toggle. Pudu Auto-Toggle adapts to changes in
peripheral modes and kernel runtimes, avoiding slowdowns when static decisions are wrong.
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4.6.5 Pudu Supports Complex Applications

We used the full Pudu methodology to remove peripheral energy bugs in an emulated
micro-robot localization application running on an energy-harvesting Capybara sensor.
The case-study shows the value of reducing energy consumption in energy-harvesting
devices: reduced energy cost translates into faster run time [71].

Application Design

The application uses a particle filter [297] for robot location estimation in a stored map
of illumination and floor angle data, using photoresistor and accelerometer readings
as inputs. To reduce the cost of localization, the robot measures the floor slope using
an accelerometer and only activates the particle filter if the slope is sufficiently steep.
The application shifts from a compute intensive phase, calculating the particle filter,
to a sense intensive phase, reading from the accelerometer, based on its external
environment. The robot moves by activating a motion control circuit, updating its
estimated location and repeating the process indefinitely. The conditional reliance on
two sources of sensor data as inputs to a long-running computation makes peripheral
management non-obvious, putting this application in scope for Pudu.

In lieu of a motor, our motion control circuit uses a MOSFET switch that sinks
power through a resistor to capture the cost of actuation, without moving parts.
The motion circuit consumes 50 µJ when activated, the same as a recent insect-scale
robotics camera positioning application [123]. We configured Capybara to use its
smallest capacitor bank (660 µF tantalum and 400 µF ceramic capacitors) [225]
which corresponds to a powered-on period of about 150 ms and a recharge time of 2
seconds. The small bank allows the robot application to be more reactive than the
large bank used in the benchmark test– with powered off periods less than 7% of the
large bank.

Application Phases

The robot experiences three operating phases based on the floor slope that determine
the code that follows running the motor in each iteration. Very steep: the robot’s
changes in position are likely to be large. To improve its accuracy, the application
updates the particle filter and re-samples the particles after every movement. Flat:
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the particle filter is never triggered since the flat slope simplifies the robot’s move-
ments. Instead, one iteration in flat reads from the accelerometer and compares the
floor slope to a threshold 100 times. Bumpy: to simulate an environment where
the robot is forced to switch between compute and sense intensive phases, bumpy
switches between iterations of accelerometer tracking and particle filter updates on
every other iteration.

Pudu Simplifies Peripheral Management

Since we used Pudu Auto-Toggle to prevent BurnBugs, we simply enable the periph-
erals once at the beginning of the application and run Pudu-Static to find BrickBugs.
Pudu-Static confirmed that the peripheral typestates are not changed anywhere in
the application, e.g. in driver code not readily visible to the programmer. The pass
did not report any potential bugs among 11 atomic blocks (3 were peripheral ac-
cesses, 6 were I/O, 2 were application logic) for either of the peripherals. Pudu-Static
reported the peripheral typestate at the atomic block for the motion activation (both
peripherals active). We confirmed before deploying that the atomic block would
finish in that typestate.

Pudu Adapts to Changing Environments.

Figure 4.12a shows the average end-to-end time to complete a single iterations of
each phase tested in isolation, again, lower is better. We focus on iteration runtime
because each iteration represents one movement of the robot; the faster the iterations
are completed, the faster the robot’s speed. Pudu achieves a lower geometric mean
runtime across all three phases than No-Toggle or Toggle (11.2 seconds compared
to Toggle’s 12.0 seconds and No-Toggle’s 14.3 seconds). Overall we find that Pudu
adapts to different phases without programmer effort and avoids BurnBugs from
either non-adaptive toggling solution. For instance, if the particle filter is updated (as
in bumpy and very steep), Toggle outperforms No-Toggle because it is expensive
to leave the accelerometer enabled. However, in the flat phase, heavy accelerometer
use makes over-toggling expensive. In the fixed very steep and flat environments,
the Toggle and No-Toggle policies, respectively, are optimal, so they each outperform
Pudu Auto-Toggle because they do not have any runtime overhead. However the
difference in very steep between Toggle and Pudu Auto-Toggle is small compared
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to the improvement over No-Toggle and comes at no cost to the programmer. Under
bumpy conditions, Pudu Auto-Toggle outperforms both Toggle and No-Toggle
because it learns to leave the accelerometer enabled while repeatedly reading it and
to disable while running the particle filter. Still, our Pudu Auto-Toggle prototype
underperforms on bumpy because it is slow to react to erratic mode changes. Future
work should explore strategies like indexing loop exits in the Tracking Table to
improve the reactivity.
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Figure 4.12: Robot Motion Case Study. Pudu avoids slowdowns from static toggling
decisions in each app phase,(a), lower is better. Under dynamic conditions,(b), Pudu
increases the work completed in a fixed time, higher is better.

To capture the full benefit of Pudu Auto-Toggle we test how the application
performs when reacting to dynamic changes in the floor slope. The arrival of changes
in the floor slope is simulated by raising a GPIO pin approximately every 150 seconds
(the time between changes is drawn from a Poisson distribution). The pin is held high
until the robot application responds to avoid missed interrupts due to intermittent
execution [224]. On each change, the application steps to the next environment
mode in a static list of randomly selected phases (steep, flat or bumpy). We count
the number of workload iterations completed in 1000 seconds to demonstrate that
improving energy efficiency increases the amount of work possible in a fixed time.
Figure 4.12b shows the number of iterations completed, higher is better. We find that
Pudu moved the robot 15% more times than Toggle and 38% more than No-Toggle
because it can adapt to the changing environment at runtime. Pudu’s improved
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peripheral management leads to better application performance with no programmer
involvement.

4.7 Related Work

Pudu builds on prior work in intermittent systems and general program optimization.
It is similar in spirit to work on energy optimization for embedded systems. Pudu
is distinct from prior work because it identifies and corrects a new type of bug,
intermittent peripheral energy bugs.

Energy Tracking in Mobile Operating Systems

Pudu is similar in spirit to prior work optimizing energy usage in mobile OS’s, but
it is distinct in its application. Quanto [86] observed that the power consumption
of a given peripheral state is stable and can be tracked through driver code in a
mobile phone. Pudu makes similar assumptions, but is designed for bare-metal
systems. The Cinder mobile operating system [221] sought to automatically manage
peripheral energy, but unlike Pudu, it requires invasive changes to the application.
Pudu is related to efforts to improve performance under a limited energy budget by
empowering the OS to divide energy among competing tasks [286, 287].

Energy Prediction and Optimization

Pudu uses state tracking similar to work in worst case time and energy estimation [75,
218, 273] and touches on some of the same challenges faced by low power RTOS
systems [274, 275]. In contrast to Pudu, these works target systems where failure is
not the common case. A closely related work, SysWCEC [273], uses a static analysis
of peripheral activity to improve worst-case energy consumption estimation for real-
time programs. Unlike Pudu’s typestate analysis, SysWCEC’s analysis is limited to
binary peripheral activations. Numerous works have explored energy optimizations
for highly energy constrained embedded systems that are orthogonal to the goals of
Pudu. These include strategic sleep scheduling [177], optimal clocking [50], various
compiler optimizations for the application code [116, 199], and system-wide energy
optimizations for wireless sensor nodes as reviewed in [276].
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Programming Languages & Optimization.

Pudu borrows terminology from work defining [11, 83, 90] and verifying typestates
for objects [35, 66, 85]. Pudu Auto-Toggle’s toggling decisions are inspired by the
cost-benefit decisions in JIT optimizing compilers [20, 250] and feedback-driven
optimizations for hardware [117, 161] and software [77, 272]. However Pudu Auto-
Toggle’s decision mechanism, comparing a timer to a static value, is much less
resource intensive than these works.

4.8 Conclusion

Batteryless, energy-harvesting devices spend a large portion of their operating power
on peripherals, but managing peripheral power in an intermittent execution is difficult
and error-prone. This work is the first to study peripheral energy bugs that arise
from peripheral mismanagement in intermittent systems. Specifically, we define
BrickBugs and BurnBugs. BurnBugs cause slowdowns in batteryless devices and
occur when programmers spend too much energy on peripherals– either due to over
or under toggling. BrickBugs prevent a program from making forward progress by
repeatedly restoring a failing peripheral state. We examine the prevalence of the
code patterns that may cause these bugs and show that published applications for
batteryless systems contain BurnBug and BrickBug susceptible code. Intermittent
peripheral energy bugs are difficult for a programmer to remove on their own because
the power consumption of a peripheral will vary depending on its precise operating
mode.

Pudu is the first system designed to help programmers identify and overcome
intermittent peripheral energy bugs by tracking peripheral typestate changes at com-
pile time and runtime. Pudu is composed of Pudu-Static, which removes BrickBugs,
and Pudu Auto-Toggle which removes BurnBugs. The Pudu flow begins by passing
lightly annotated program and peripheral driver libraries to Pudu-Static which
reports atomic blocks where more than one peripheral typestate is possible. The
programmer iterates with the information provided by Pudu-Static to remove errant
typestates or indicate that the atomic block has been tested with multiple typestates.
Once free of BrickBugs, the code is instrumented with Pudu Auto-Toggle’s runtime.
By measuring the time between peripheral accesses, Pudu Auto-Toggle makes correct
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toggling decisions for each peripheral. Overall, Pudu reduces the burden of managing
peripheral power in a batteryless system.

Our evaluation on real hardware demonstrates Pudu’s value. We implement two
state-of-the-art peripheral restoration systems and shows that Pudu-Static identifies
bugs that cause applications on real hardware to fail, and does so with limited false
positive reports. Likewise, we evaluated Pudu Auto-Toggle on a suite of complex
computing and sensing benchmarks and showed that Pudu Auto-Toggle outperformed
conventional peripheral toggling solutions. Per the geometric mean of the benchmarks,
Pudu Auto-Toggle is faster than strategies that mimic novice and expert programmers
across two different peripheral operating modes. Finally, we demonstrated that full
Pudu flow using a micro-robotics case study. With little programmer effort, Pudu-
Static verified the lack of BrickBugs in the program and Pudu Auto-Toggle improved
the application performance. Pudu Auto-Toggle’s ability to dynamically adapt
to changes in the control flow behavior brought about by changes in the robot’s
environment allow it to move the robot 15% more times than an aggressive toggling
strategy. The evaluation shows that peripheral mismanagement impacts application
correctness and performance, but Pudu correctly manages peripheral state to curb
excess power and energy consumption.

Pudu helps programmers model the behavior of a batteryless, energy-harvesting
device by tracking changes in software that correspond to increases in peripheral
power. This model helps programmers reason about application performance and
forward progress, but it is not sufficient to capture the behavior of all batteryless
systems. When using high power peripherals, more information about the exact
energy/power requirements is needed because of shared state beyond data and power.
As we detail in the next chapter, the state of the energy buffer is shared across
all peripherals on a single device and affects what peripheral operations are safe
at a given program point. To determine whether an atomic block will complete
without a power failure, a system developer must consider both the energy and power
requirements of a task.
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Chapter 5

Charge Management for High
Load Peripherals

As discussed in Chapter 4, intermittent systems use atomic blocks to define regions
that must complete without an intervening power failure. In this chapter, we examine
in detail how the voltage of the energy buffer changes as tasks are run. Figure 5.1
shows the energy buffer of a batteryless energy harvesting device as atomic tasks
are run consecutively, i.e. as in systems like Alpaca which we studied in Chapter 3.
As tasks execute across the top (represented by the colored blocks), they draw
current and consume energy, decreasing the voltage further and further with each
subsequent task. If voltage reaches the minimum threshold, V off , the device powers
off. After recharging, the orange task will fully re-execute. Past task-based systems
mentioned in this thesis [55, 111, 168, 174] and atomic-block based languages [176]
opportunistically execute tasks if the capacitor’s voltage level is above V off . However,
Trying to execute a task with insufficient stored energy dooms the device to fail. The
failed task wastes the energy spent on the operation before the power failure and
imposes the cost of powering off, recharging, restarting, and re-execution. Further,
as shown in Chapter 4, improperly sized atomic operations may lead to prolonged
non-termination [56, 176].

Thus, systems have started to manage charge to avoid unexpected power failures
using compilers [56, 175], hardware-aware runtimes [34, 281], or schedulers [120,
177, 188, 226, 284]. These works reason about energy to size tasks appropriately
and execute them only when sufficient energy is available. To estimate task energy,
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Figure 5.1: Capacitor voltage over time in an intermittent execution. Consuming
energy lowers the voltage level; if it drops below V off , the device powers off.

these systems use direct energy measurements, energy modeling, or programmer
intervention [34, 231, 281]. Several use changes in capacitor voltage as a reasonable
approximation of energy (Ecap = 1

2
CV 2). Whatever the estimation method, these

systems implicitly depend on energy being the sole resource of interest for safe task
execution. We find that reasoning about energy is insufficient; intermittent software
systems must also consider voltage.

The voltage level of a device can change independently of energy consumption since
a capacitor’s voltage varies with current draw (or applied load). Even with oracular
knowledge of task energy and stored energy, software may experience unexpected
failures because of this load-dependent capacitor behavior. The key oversight is that
a capacitor has an equivalent series resistance (ESR). In a load circuit, a capacitor
behaves both capacitively and resistively, with ESR as its resistance. Because of the
resistance, the capacitor experiences a drop in its voltage which“rebounds” to the
original level once the load is removed, minus the energy used by the load.

While ESR is a well-known electrical engineering concept, no intermittent system
has considered how these voltage changes impact software execution. Prior systems
had low loads and low-ESR capacitors, resulting in negligible ESR-drops. However,
batteryless, energy harvesting sensors must often be geometrically small, so they
are increasingly adopting low-profile but energy-dense supercapacitors that have
(relatively) high ESR [57, 64, 88, 193, 226, 281]. Furthermore, as we have discussed in
this thesis, as batteryless applications become more sophisticated, they mix computing
with use of sensors [22, 193], radios [112, 236] and compute hardware [166, 196], that
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have (relatively) high load. If either the load or ESR is high, the voltage drop due
to ESR is substantial and cannot be safely discounted. Figure 5.2 illustrates this
drop using a real trace of voltage over time for a load pulse applied to the Capybara
power system. The energy consumed accounts for only the end-to-end drop, about
0.25 volts. The ESR-induced voltage drop (or ESR drop) spans a further 0.35 volts,
a drop that is completely missed if a system only considers energy consumption.
If this ESR drop causes the capacitor voltage to go below the system’s minimum
operating voltage, the system powers off even when ample stored energy remains.

Thus, ESR drop breaks the key assumption of charge management systems that
if the device has enough energy to run a task, the task will not fail. Rather, a task
safely executes only if there is sufficient energy and a high enough voltage level
to sustain any ESR drops. These task failures can break correctness, cause poor
performance, and lead to delayed response time.

Figure 5.2: Voltage vs. time in high ESR supercapacitors. In batteryless devices
with high ESR supercapacitors, considering only energy misses a key voltage drop that can
lead to unexpected power failures.

For future batteryless systems to be correct, performant, and reliable, their
designers must reason about the effects of voltage on software execution. However,
considering low-level physical circuit properties such as capacitor ESR is burdensome
for software developers. To enable developers to integrate voltage reasoning into
charge management systems for energy harvesting devices, we present Culpeo. Culpeo
is a hardware/software mechanism and architectural interface that provides the
minimum safe voltage at which a task can execute without dropping below the
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operating minimum. We develop two Culpeo interface designs; the first is a compile-
time profile guided analysis to reason about safe starting values, and the second
is a runtime library to dynamically capture accurate starting voltage estimates.
Crucially, the profile guided interface is designed to avoid profiling the load on the
target device’s power system, separating the concerns of the power system designer
from the software developer. Instead, the power system’s ESR characteristics are
profiled independently of the load, and the load is characterized (e.g., on continuous
power) independently of the power system. Similarly, the runtime library defines an
interface that forms a clean boundary separating the exact power system dynamics
from software schedulers and applications.

Our evaluation for Culpeo begins by prototying both Culpeo designs and ap-
plying them to real energy harvesting systems and application workloads. We first
show quantitatively that Culpeo produces safe starting voltages and demonstrate
that disregarding voltage leads to wildly inaccurate estimates from state-of-the-art
schedulers. We confirm the theoretical utility of including voltage in a scheduler
by analytically correcting the feasbility analysis from a state-of-the-art scheduler.
Finally, we integrate Culpeo’s runtime interface into a charge management system,
restoring its ESR-violated correctness guarantees in three event-driven applications.
The end-to-end application experiments demonstrate that state-of-the-art charge
management techniques violate application requirements without Culpeo’s voltage
reasoning.

5.1 Motivation

This work is motivated by the need for a hardware/software interface that exposes
important power system characteristics of energy-harvesting hardware to the soft-
ware layer. We first explain additional details of supercapacitor operation that
were not covered in the energy harvesting power system description in Chapter 2,
then elaborate on why energy-only charge management systems fail when using
supercapacitors.
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5.1.1 ESR Induced Voltage Drops

ESR makes a capacitor behave like a resistor (reducing current flow) as well as a
capacitor (storing energy). When current is drawn from a capacitor, ESR induces a
voltage drop, as in a resistor. This voltage drop does not actually consume (much)
energy as the voltage rebounds to its original level as load decreases. If the drop
causes the capacitor’s voltage to sink beneath V off , however, the system will power
down regardless of the remaining stored energy. Ohm’s Law illustrates the problem
in mathematical terms: V = IR. We illustrate this problem in Figure 5.3. With a
10Ω ESR capacitor (in-scope of the domain) and a 50mA current draw similar to
a LoRa radio, the voltage drop is 500mV. With a capacitor voltage range of 2.4V
to 1.6V, this 500mV ESR drop is 62.5% of the device’s operating range. This radio
transmission may consume 50mA for a short duration, requiring far less energy than
is stored in the capacitor (e.g., 5% of the stored energy). However, if the operation
begins with a voltage lower than 64.5% of its operating voltage range (i.e., 2.12V),
the ESR drop causes the system to shut down.

The key differences between ESR drop in batteryless devices and voltage fluctua-
tion due to noise in a processor is the scale of the drop versus the core power and
the symptoms that follow. Multi-core systems consuming tens of Watts of power
may experience voltage fluctuations greater than 100mV [293], and if voltage drops
too low, bit errors ensue. In contrast, batteryless systems consume milliwatts of
power and yet may experience voltage drops greater than half a Volt. Further, if
voltage drops too low the system is forced to shut down to recharge, which can
violate application deadlines [177].
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Figure 5.3: Voltage vs. Energy. Voltage drop due to ESR can cause the device to
power down even when there is plenty of stored energy
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Power-system designers commonly account for ESR drops due to quick, transient
spikes in load-side current by adding small decoupling capacitors (around 10-100µF)
close to the load-side components [21, 104, 181, 270, 282]. While adding a large
amount of decoupling capacitance is the “go-to” circuit fix for load-dependent volt-
age drop, decoupling capacitance does not address the problem that Culpeo solves.
Transient spikes draw their current from the decoupling capacitors instead of the
high-ESR supercapacitors. However, our work targets sustained high current loads.
Decoupling capacitors are typically too small to supply these sustained loads, which
draw mainly from the supercapacitor. We quantitatively evaluated this effect by test-
ing a wide range of decoupling capacitance (400uF to 6.4mF) with the Capybara [57]
power system, running a 50mA-100ms load (similar to a LoRa packet) from a 33mF
supercapacitor. Even with an abnormally high 6.4mF of decoupling capacitance, we
still observed an ESR drop of 200mV, 20% of the device’s operating range.

Simply adding a safety margin (e.g., provisioning extra energy) is also an in-
adequate solution. Provisioning unnecessary energy will make the entire system
inefficient while still not guaranteeing correctness; a larger ESR drop that spills over
the safety margin could still happen. Further, the programmer has little guidance
on how much extra energy to provision for safety. The limited data in capacitor
datasheets make handling ESR a guessing game for application developers, even
if they are aware of the voltage drop effect [23, 81, 137, 189, 235]. While industry
hardware designers perform expensive characterizations of ESR across frequency,
temperature, humidity and lifetime, this information is not accessible to software
designers [270]. We argue that a more practical approach is to provide software
developers with an interface to reason about load-dependent ESR drops and we
demonstrate that lacking such an interface, prior systems fail.

5.1.2 Disregarding Voltage Breaks Past Systems

Prior energy-harvesting systems only modeled incoming (recharging) and outgoing
(computation) energy, without considering circuit-level characteristics like ESR.
Considering only energy and disregarding ESR drop causes charge management
systems like schedulers to fail frequently.

ESR drops violate the core assumption of schedulers for intermittent systems that
if the buffer holds more energy than what upcoming task will consume, the task will
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successfully execute [48, 49, 96, 163, 177, 188]. As a concrete example, we consider
the scheduler CatNap [177], which adapts RTOS’s feasibility scheduling [289] for
intermittently powered systems. CatNap looks at the energy consumed by high
priority tasks and their deadlines, determining if it is possible to schedule tasks and
recharges so that there is always energy to run the tasks at the appropriate time.
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Figure 5.4: Catnap Protocol. CatNap’s feasibility test will lead to failed executions

Figure 5.4 shows how CatNap’s careful scheduling still results in a task failure,
using an application that we evaluate in Section 5.5. CatNap must determine if it
is possible to schedule two tasks: radio which is triggered by an interrupt with an
interarrival time of 30 seconds, and sense repeats every 6 seconds. CatNap estimates
the energy costs of the tasks by measuring voltage at the start and end of each task’s
execution, in Figure 5.4 (a). The graphs are of voltage over time, with the energy
estimate for radio indicated by a green solid arrow and sense with a purple dashed
arrow. Figure 5.4 (b) shows CatNap’s feasible schedule of the tasks interspersed with
sleeping to recharge—based on energy estimates alone, sense followed by radio

should complete without failing a t = 30 Figure 5.4 (c) shows how this schedule will
fail due to ESR. While there is sufficient energy for radio, the scheduler executes at
a voltage too low to sustain the ESR drop, causing a failure. To be correct, CatNap
and other schedulers must ensure that the starting voltage level is high enough to
satisfy ESR drops as well as the consumed energy.
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Running a task at a voltage too low to sustain ESR drops is not an edge case.
Figure 5.5 shows the error between actual safe voltages to start running a task
and those predicted by energy-based estimates, for a series of load profiles run on
the Capybara power system. If the error is positive, the task fails to complete.
We provide details on the task profiles in Section 5.5; at a high level, the profiles
comprise different combinations of pulse width, intensity, and load shape. Direct
energy estimates fail across the board, and voltage-based energy approximations
like CatNap are highly dependent on how quickly they measure capacitor voltage
after the task completes. A quick measurement can capture the voltage level before
rebound, resulting in a highly conservative energy estimate that accounts for the
voltage drop as a side-effect. CatNap-Measured reports the voltage estimates by
the published CatNap implementation [177], and CatNap-Slow reports estimates if
there is a 2 ms delay between a task’s completion and the measurement. Whether a
task’s energy cost is obtained through direct measurement or through using voltage
as a proxy, determining the safe starting voltage by energy cost alone results in task
failure most of the time.
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Figure 5.5: Safe voltage estimates from prior work. Estimating the safe voltage at
which to run a task by energy costs alone results in wildly incorrect predictions. Depending
on the implementation, voltage-based energy approximations like CatNap can fare better,
but are highly dependent on the implementation.

Incorrect task starting voltage estimates have profound impacts on real application
performance, as illustrated by a simple experiment. We tested three schedulers

98



Table 5.1: Impact of safe starting voltages. Accurate task starting voltages allow the
application to capture interrupts and prevents unexpected failures.

System
% Events

Captured (out
of 400)

Up-time
(out of 40s)

Unexpected
Failures

Safe 100% 100% (40s) 0
CatNap 5.73% 5.98% (2.39s) 8

ChargeToFull 4.1% 6.4% (2.56s) 0

running an application on a Capybara that repeatedly performs a compute task on
an accelerator, while the primary MCU handles sensor interrupts that arrive every
10ms. This experiment uses the hardware setup detailed in Section 5.4. The first
(Safe) runs the accelerator if capacitor voltage exceeds the known safe voltage, CatNap
runs if voltage exceeds an estimate based on voltage-as-energy, and ChargeToFull
turns off to fully recharge before each task. Table 5.1 summarizes the results of
the experiment running for 40 seconds. The accurate estimate captures 100% of
interrupts, because it can remain on and available while charging, as shown by its
40 seconds of up-time. In contrast, CatNap fails unexpectedly every time it powers
on because its estimates do not consider ESR drop and captures less than 6% of
interrupts. ChargeToFull avoids unexpected failures by performing a controlled
shutdown after each task to recharge. However, the total time spent powered off
accumulates: ChargeToFull is powered off charging for 94% of the time and misses
96% of interrupts. In summary, preliminary results indicate that existing schedulers
perform poorly in the presence of ESR and simple scheduling alternatives sacrifice
up-time for predictability.

5.2 Culpeo Overview

Culpeo provides hardware-software interfaces that capture the voltage and energy
requirements of a software task. Culpeo’s interfaces record a per-task ESR drop,V δ,
and produce a safe starting voltage, V safe, that accounts for ESR drop. We define
V safe and V δ, describe our compile-time and runtime calculation approaches, and
demonstrate applying V safe and V δ to fix existing intermittent system schedulers.
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5.2.1 Defining V safe and V δ

V safe is the minimum voltage level that the system must supply for a task to complete
its execution, accounting for both consumed energy and ESR drop. V δ is the difference
between the minimum voltage during a task (V min) and the final voltage once the
task completes and the voltage rebounds (V final), shown in Figure 5.6. V safe may
be defined in terms of a single task or a series of tasks (V safe

multi). For a single task,
starting at V safe guarantees that the task will complete without voltage dropping
below V off . Calculating V safe

multi, the voltage level at which a sequence of tasks is safe
to execute, is more complex, requiring per-task V δ information.
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Figure 5.6: Culpeo Definitions. V safe guarantees that a task will complete, but the V δ

parameter is required to calculate V safe
multi, a safe voltage for a sequence of tasks.

Formulating V safe
multi requires determining a voltage level for each task sufficient to

satisfy its voltage requirements and meet the voltage requirements of any subsequent
tasks. In other words, for the initial task in the sequence:

V safe
0 = V (E0) + penalty0 + V safe

1

Here, V (E0) is the voltage required to satisfy the energy consumed by the task.
Adding voltage to account for ESR drops depends on the V safe of the subsequent
task, V safe

1 . If V safe
1 is already high enough to sustain the current task’s V δ, then

simply adding V safe
1 is sufficient. Otherwise, an additional penalty needs to be added

to raise the voltage level so that the drop will not cross V off .
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penalty0 =

{
V off + V δ

0 − V safe
1 , if V off + V δ

0 > V safe
1 .

0, otherwise.
At the end of the task sequence, voltage must be high enough that meeting

the last task’s voltage requirements results in a voltage at or above the minimum
operating threshold. V safe

final = V (Efinal) + penaltyfinal +V off . V safe
multi is the summation of

the voltage needed to satisfy the energy and ESR drops for each task in a sequence:

V safe
multi =

n∑
i=0

V (Ei) +
n∑
i=0

penalty i + V off

If the voltage at the start of a sequence of tasks ε is ≥ V safe
ε , then the voltage

will not dip below V off while executing the tasks. As a proof sketch that V safe
multi

is correct, assume that for some task i in the sequence, the voltage after running
i is less than the threshold, i.e., V safe

i − V (Ei) − penalty i < V off . By definition,
V safe
i = V (Ei) + penaltyi + V safe

i+1 . Simplifying the equations results in V safe
i+1 < V off .

As no part of V safe
i+1 is negative, and the base case is at least V off , this equation results

in a contradiction.

5.2.2 Capturing V safe and V δ.

Culpeo provides two approaches to find accurate V safe and V δ values. The first is a
profile guided method that determines V safe at compile-time, which we call Culpeo-
Profile Guided (Culpeo-PG). The second, Culpeo-Runtime (Culpeo-R), measures
V min and V final at runtime and calculates V safe onboard the MCU. Section 5.5 confirms
that both approaches produce accurate V safe levels.

Culpeo-PG relies on static profiling to provide V safe and V δ at compile time. The
inputs to Culpeo-PG are generated separately by the power system designer and by
the application developer. The power system designer produces a measurement-based
characterization of the energy buffer and output booster behaviour. The application
developer measures a current profile (using any power system) of each program
task. A key advantage of Culpeo-PG’s approach is that it separates the concerns
of the power system and the application. Culpeo-PG then uses the task current
traces and the power system model to calculate energy estimates and ESR drops,
which yield each task’s V safe. Effectively, Culpeo-PG performs a V safe

multi calculation
at the granularity of the trace (e.g. 125kHz), working backwards in time. At each
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step, Culpeo-PG computes the ESR drop. If the ESR drop is greater than the last
computed V safe the algorithm adds the difference as the penalty. The advantage of
Culpeo-PG is that it allows application developers to calculate V safe values prior to
deployment using a continuous power system, but the estimates are limited by the
accuracy of the statically profiled inputs. For estimates that better capture effects of
the deployment environment, we present Culpeo-R.

Culpeo-R profiles the capacitor voltage online to capture the starting (V start),
minimum, and final voltages during the event execution. To capture V min, Culpeo-
R repeatedly samples from an ADC connected to V cap and records the minimum
observed voltage. Culpeo-R then uses the output booster model to map the energy
and ESR drop requirements from V start down to the bottom of the capacitor voltage
range (i.e. V min = V off), resulting in V safe. Capturing V safe at runtime reduces error
from physical effects such as supercapacitor aging that are not easily captured by
static profiling.

5.2.3 Applying V safe and V δ.

To enable system designers to integrate voltage information into software systems,
Culpeo provides two interfaces, shown in Figure 5.7. The first is a library used by
scheduler code, and the second is a measurement interface (e.g. as described in
Section 5.2.2) between the scheduler and the power system. The Culpeo library
code consists of simple functions that allow Culpeo-R to track V safe and relay
conclusions about the safety of calling a given task. The scheduler uses the Culpeo
library to make ESR-aware scheduling decisions, e.g., to check whether V cap exceeds
V safe for the next task to schedule, pausing to recharge if not. The measurement
interface includes low level software and hardware to query the power system and
calculate V safe and V δ. The measurement interface provides the same functionality
regardless of its implementation as Culpeo-PG or Culpeo-R, but the exact division
of hardware/software responsibilities varies as we explain in Section 5.3.

5.3 Culpeo Design

Culpeo interfaces model a device’s power system and profile a program’s tasks to
ensure that the device’s voltage level is sufficient for each task to complete. This
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section describes several possible implementations of Culpeo interfaces.

5.3.1 Modeling the Power System

To calculate V safe, all Culpeo implementations model the device’s energy buffer and
output booster (Figure 2.4). For the input booster, Culpeo-PG assumes a worst case
of no incoming power, and Culpeo-R assumes the input is stable.

The energy buffer (i.e., capacitor) is modeled differently in each Culpeo variant due
to differences in the V safe calculation algorithms. Culpeo-R models the energy buffer
with no knowledge of the exact capacitance or resistance. It simply assumes that the
buffer is an ideal capacitor in series with a variable resistor which takes unknown,
time varying values. Culpeo-R ignores some non-idealities of supercapacitors, e.g.,
leakage [133] and charge speed effects [9], relying on the ideal I = C dV

dt
equation for

capacitor analysis. Culpeo-PG models the energy buffer based on its capacitance, C,
and its ESR as an ideal capacitor in series with a resistor. The value of C comes from
the capacitor’s datasheet and is generally conservative [23, 137, 235]. Using datasheet
ESR values is too inaccurate; the ESR experienced by a load changes with the load’s
frequency, but many datasheets do not supply the full spectrum [23, 137, 235].
Further, small decoupling capacitors throughout the power system also affect ESR.
We instead derive a curve of ESR versus frequency via direct measurement of the
power system [81, 241] and fit the results to a logarithmic curve. Essentially, we
apply load pulses of different widths (1ms to 1s) and amplitudes (5mA to 50mA) to
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the bank and measure the resulting voltage drop [36] to calculate ESR using Ohm’s
law. Figure 5.8 shows the resulting curve for the Capybara power system attached
to a fixed size 45 mF, high ESR capacitor bank [235]. To choose a representative
ESR value from the curve, Culpeo-PG uses the width of the largest current pulse,
excluding high frequency noise.
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Figure 5.8: ESR versus pulse width. This graph shows the change in ESR with pulse
width, and its logarithmic fit, for Capybara’s capacitor 45mF bank.

To model the output booster, the power system designer sets V high, the capacitor’s
highest voltage, and V off , the voltage at which the output booster turns off. The
designer also sets V out, the output voltage of the output booster, which is used in
conjunction with the current profile to determine P out, the power delivered to the
load. Culpeo uses datasheet booster efficiency curves to relate P in—the power drawn
from the energy buffer to the output booster—to P out as the energy buffer voltage
V cap declines over the course of an operation. We assume the output booster has
little change in efficiency w.r.t. current [2, 3], so efficiency can be modeled as a
line relating input voltage to efficiency (i.e. η = mV + b) at a single current value.
Combining this output booster model with the energy buffer model, Culpeo can
predict the behavior of the power system in response to an arbitrary task load.

5.3.2 Culpeo-PG V safe Calculation

The programmer uses Culpeo to profile software tasks and compute V safe at compile-
time. A scheduler can then use V safe to decide when to execute a task.
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Culpeo-PG interfaces with current measurement instruments [246] to capture
a task’s worst-case current trace. Capturing a current trace is simple because the
energy consumption of a task in an intermittent execution is bounded by the device’s
energy capacity. Moreover, prior work showed that tasks are easily characterized
using “knob” values [176, 177], in which a single variable largely dictates the energy
consumption (e.g., the input dimension of a matrix-matrix multiplication kernel).
Our Culpeo prototype collects a task current trace at 125kHz and then selects an
ESR value from the power system’s ESR curve.

Culpeo determines V safe by iteratively calculating the voltage drop due to energy
consumption and due to ESR drop at each step of the current trace. Algorithm 3
describes how the energy and voltage penalty are calculated. The algorithm starts
using the power system model provided by the power system designer (P ) and the
current trace collected by the application developer (I). At each time step, dt, Culpeo
calculates E using the output booster efficiency, η, given that P in = P out/η. Next,
Culpeo estimates V cap to calculate the current drawn from the capacitor, because
P in = Iin × V cap. Culpeo must consider V cap when assessing the current from the
capacitor to the output booster, because as V cap decreases, the booster draws more
current from the capacitor; as current increases, so too does ESR drop. Finally,
Culpeo calculates the voltage penalty, which guarantees that the new V safe satisfies
the energy requirements of the next step, V [i+ 1] and can sustain the ESR drop in
the present step.

As shown in Section 5.5, Culpeo-PG produces accurate V safe calculations for a
recently profiled capacitor. However, Culpeo-PG assumes a static ESR model, but
supercapacitor ESR and nominal capacitance change over the device lifetime (years).
Capacitance can reduce to <80% of nominal and ESR can increase to double its
nominal, beyond which the capacitor is considered dead [81, 189, 241]. Designers
may obtain a more conservative model than Culpeo by derating the capacitor bank
and ESR for aging effects. However, a runtime V safe calculation captures aging effects
without derating by rerunning periodically.

5.3.3 Culpeo-R Calculation

The goal of the Culpeo-R V safe calculation is to allow the system to profile tasks
starting at an arbitrary capacitor voltage and map the measured start, end and
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Algorithm 3 Culpeo V safe algorithm
1: function CulpeoVsafe(CurrentTrace I, PowSys P )
2: V ← ∅ . Initialize safe starting voltages
3: C ← GetCap(P ) . Get capacitance value
4: R← GetESR(P ,I) . Get freq. dependent ESR
5: for i← len(I)..0 do . Reverse through trace
6: E ← I[i] ∗ V out ∗ dt/n . Energy consumed by step i
7: V cap ← EstVcap(P ,I[i],V [i+ 1]) . Estimate V cap

8: Iin ← I[i] ∗ V out/η(V off) ∗ V cap . Current out of cap.
9: V δ ← Iin ∗R . Voltage drop from ESR
10: Vpenalty ← maxV off + V δ, V [i+ 1] . Voltage penalty
11: V [i]←

√
2 ∗ E/C + V 2

penalty

12: end for
13: return V [0]
14: end function

minimum voltages to V off . Changes in efficiency as the input voltage declines make
the mapping non-trivial. Culpeo-R makes several assumptions to keep the code
running on the MCU practical. The first is that efficiency decreases monotonically
with voltage; since Culpeo-R approximates efficiency as a line, this assumption holds
as long as the slope of the line is positive. The second is that harvested power
is roughly constant during the event execution. This assumption is reasonable as
the supercapacitor-enabled devices Culpeo targets generally rely on more powerful,
slowly changing energy sources (e.g. solar power) than low-end batteryless motes.
Culpeo-R produces different V safe values for different levels of incoming power, so
it is best to use Culpeo-R in conjunction with scheduler policies that re-profile as
harvestable power changes [177].

Culpeo-R separates the worst case ESR drop, V δ, from the energy induced voltage
drop, V safe

E and calculates them independently before adding the effects back together.
First, we calculate the new V δ in terms of the current, iload,the ESR R, and the
efficiency at the event’s V min, η(V min), as shown in Equation 5.1a. Intuitively, as
efficiency decreases with V min, V δ gets larger. This expression for V δ is rooted
in Ohm’s law and converter efficiency, namely V outIout = V capIinη(V cap), but it
abstracts away the exact current profile and ESR value. We use this definition to
allow us to define V δsafe in terms of the original V δ without directly measuring the
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current trace, as shown in Equation 5.1b.

V δ =
iload ∗R ∗ V out

V min ∗ η(V min)
V δ
safe =

iload ∗R ∗ V out

V off ∗ η(V off)
(5.1a)

V δ
safe = V δ(

V minη(V min)

V offη(V off)
) (5.1b)

In addition to the voltage drop caused by ESR, Culpeo-R must consider the voltage
drop caused by actual energy expenditure. However, instead of predicting a drop
due to energy, Culpeo-R solves for V safe

E based on the assumption that the energy
delivered to the load, Eout, is constant across all input voltages. Equation 5.2a
defines Eout using the load current; we change variables from time to voltage and
redefine Eout in Equation 5.2b. Finally, we set as equal the integrals that represent
the profiling execution (V start to V final) and what would be the execution starting at
V safe (V safe to V off)(Eq. 5.2c). The goal now is to solve for V safe by resolving both
definite integrals, since V off is given and V start and V final are quantities the Culpeo
interface can measure.

Use Pout = V capIinη(V
cap) Eout =

∫ tend

tstart

η(V (t))V (t)iin(t)dt (5.2a)

Apply I = C
dV

dt
, change of var. Eout = C

∫ V final

V start

η(V )V dV (5.2b)

Set Equal C

∫ V safe

V off

η(V )V dV = C

∫ V start

V final

η(V )V dV (5.2c)

However, even with a linear η(V ) function, solving Equation 5.2c requires multiple
cubic root operations that are expensive for the low power microcontrollers that
Culpeo targets. Instead, we approximate the solution as:

(V safe
E )2 =

η(V start)

η(V off)
((V start)2 − (V final))2 + (V off)2 (5.3)

Effectively, we solve Equation 5.2c after collapsing η(V ) into a constant. We use
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η(V start) on the left and η(V off) on the right because they can be known quantities
that can be calculated at compile time. V off is set by the power system designer, and
Culpeo-R may choose a known V start to run the event. We finally define V safe as:

V safe = V safe
E + V δ

safe (5.4)

5.3.4 Culpeo-R Implementation

We propose two implementations for Culpeo-R; the first uses interrupt triggered
measurements and the second uses a custom microarchitecture to reduce power and
software overheads. Both systems rely on the same set of runtime library calls listed
in Table 5.2, but with different underlying implementations. The scheduler writer
uses these calls to access V safe and V δ data. profile_start() begins profiling a
segment of code and profile_stop(id) ends the profiling and records the results
in the task measurement fields of the Culpeo table, indexed by task identifier id.
do_calc(id) performs V safe and V δ calculations if the task’s measurement fields are
populated, storing the results into the table. Finally, the get functions retrieve V safe

and V δ values from the table if valid values exist, otherwise returning V high and −1.
Similar to Culpeo-PG, Culpeo-R assumes that a task profile captures the worst case
voltage drop. Based on this assumption, schedulers need only profile tasks when
tasks are first issued from the outer control loop and again if substantial changes in
harvested power occur. Further, Culpeo-R assumes that each task will terminate
within the available energy buffer voltage, e.g. V safe < V high. Developers can use
tools like Culpeo-PG to predict task completion at compile time or use Culpeo-R
before deployment to scale tasks.

Table 5.2: Culpeo-R Runtime calls. id is a task identifier.

Purpose Functions
Profile: prof_start() prof_end(id) rebound_end(id)
Calculate: do_calc(id)
Use: get_vsafe(id) get_vdrop(id)
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Interrupt Driven

The interrupt-driven implementation (Culpeo-R-ISR) relies on an interrupt service
routine (ISR) associated with a hardware timer that reads from the ADC and updates
the minimum observed voltage. profile_start() sets the minimum observed voltage
to infinity, enables the 1 ms timer to trigger the profiling ISR, configures an ADC
(on- or off-chip) to be read from quickly in the ISR, and reads from the ADC to
record V start. profile_end(id) disables the timer interrupt and ADC and sleeps
to allow the capacitor voltage to recover from any ESR drop. As the MCU sleeps,
it awakens once every 50 ms to read once from the ADC and update a maximum
observed voltage. Sleeping between ADC samples minimizes the energy consumed
by the MCU to ensure an accurate V final. The scheduler runs rebound_end(id) to
exit sleep when the capacitor voltage stops increasing, and V final [id] is then set to
the maximum value.

We implemented a Culpeo-R-ISR interface on an MSP430 microcontroller and
show in Section 5.5 that it substantially improves the performance of event driven
applications on an energy harvesting device. However, Culpeo-R-ISR has several
drawbacks. The first is that the on-chip ADC in most microcontrollers is relatively
high power [280] which limits the profiling frequency and accuracy for tasks with
small ESR-drops (e.g. compute tasks). Second, the MCUs we target are in-order,
single-threaded cores, so time spent sampling the ADC in software is time taken
from the application. Further, not all applications written for a low power MCU
tolerate external interrupts, leading to bugs [1]. Third, monopolizing the only ADC
is not an option if a task needs it. Many MCUs can multiplex ADC access [264], but
this can increase the sampling delay for an application and force a programmer to
rewrite their ADC driver.

Custom Microarchitecture

To overcome the challenges presented by Culpeo-R-ISR, we propose a custom, on-
chip peripheral to measure the energy buffer voltage without interfering with the
application code running on the MCU. Figure 5.9 shows a detailed view of the
proposed circuit. The Culpeo µArch is a memory mapped peripheral block that
measures V cap with an 8-bit ADC and uses a digital comparator to automatically
capture a minimum (or maximum) value. The Culpeo peripheral block includes a
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high impedance input buffer to minimize leakage from the capacitor, and an 8-bit
min/max capture register. The core interacts with the block by writing to a memory
mapped control register and provides a 100kHz clock to trigger the ADC sampling.

Min/Max Capture
Register

A > B?A

B

8-bit  
ADC

Input Signal 
Buffer 

VCAP 
8-bit Digital  
Comparator 

XOR 

Write 
Enable 

ADC 
Value 

Reg. 
Value 

VCAP 

Culpeo μArch 

Min 
or 

Max? 

Figure 5.9: Culpeo µ Arch The Culpeo µ Arch is a low overhead design that uses an
8-bit ADC, a comparator and a single register to track capacitor voltage for Culpeo-R. Red
arrows indicate inputs, solid arrows are analog signals, dashed arrows are boolean and wide
arrows are 8-bit buses.

Table 5.3 shows the low-level driver commands that interface with the block’s
control signals and are used to implement the Culpeo-R runtime library. Configure
and Start Task are used to implement profile_start() and will configure the
block into minimum tracking mode and read the current ADC value into a data
register. Software should immediately read the value and store it elsewhere to prevent
it from being overwritten. Software will issue an End Task command from within
the profile_end(id) function to write the minimum value out and switch the block
to maximum tracking. Unlike Culpeo-R-ISR, the peripheral block continues running
and will not end the rebound tracking until it receives an End Rebound command as
part of the rebound_done(id) call. Waiting until a rebound done call gives the
scheduler more flexibility in capturing V final. The block, as we show shortly, is low
power and may be kept enabled indefinitely, so the scheduler may choose to run
another task immediately instead of waiting to capture a more accurate (higher)
V final.

This new peripheral block eliminates pain points from the interrupt-based ap-
proach. The comparator eliminates software interaction during the task; the scheduler
only interacts with the peripheral before tasks begin and after they complete. Mov-
ing to a dedicated, modern, 8-bit ADC reduces power substantially and eliminates
resource contention while adding minimal area. Recent work demonstrated an 8-bit
ADC in a 130 nm process that consumes only 140 nW at an area of 0.01mm2 [82, 190].
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Table 5.3: Culpeo on-chip command interface Culpeo on-chip is a memory-mapped
peripheral with two control and data registers.

Command Description
Configure Select clock for ADC and enable ADC sampling

Start Task Write ADC value to data register, switch to minimum
sampling, reset min/max register

End Task Write min/max to data register, switch to maximum sam-
pling, reset min/max

End Rebound Write min/max to data register, disable ADC

For reference, TI’s MSP430 "Wolverine" series is also built in a 130 nm technology [39],
but its ADC consumes 180 µW at minimum.

5.4 Methodology

We first evaluate Culpeo’s ability to generate V safe values for synthetic and real-
peripheral load profiles, showing benefits by direct comparison to a voltage-as-energy
baseline system. We then implement a state-of-the-art scheduler and integrate
Culpeo voltage reasoning to test the end-to-end value of Culpeo in full, event-based
applications. Our methodology relies on testing on real energy harvesting devices to
demonstrate that Culpeo is practically useful and that accurate V safe values improve
application performance.

5.4.1 V safe Evaluation

Our experiments use the Capybara energy-harvesting platform [57] because its
power system architecture supports high-ESR supercapacitors and it is preconfigured
with several sensors, an ultra-low-power MCU, and a BLE radio. We disabled
Capybara’s reconfigurable energy storage so that its power system closely resembles
the architecture in Section 2.3, with a V off of 1.6 V, a V high of 2.56 V and V out of 2.55 V.
Unless otherwise noted, the energy buffer was a 45mF capacitor bank composed of
dense supercapacitors [235]. To facilitate automated testing while validating V safe,
we modified Capybara to isolate the power system from the load side components by
default. A test harness controls incoming power and explicitly triggers the power
system to begin delivering power. In full application tests, Capybara is unmodified
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Table 5.4: Loads tested. Description of different loads used in our evaluation.

Load Type Parameters Current Profile

Uniform
Iload =

{5mA, 10mA, 25mA, 50mA}
tpulse = {1ms, 10ms, 100ms} Iload

tpulse

Pulse

Iload =
{5mA, 10mA, 25mA, 50mA}
tpulse = {1ms, 10ms, 100ms}

Icompute = 1.5mA
Iload

tpulse

Icompute

100ms

Gesture
Recognition

Iload(max) = 25mA
tpulse = 3.5ms Iload

(max)

tpulse

BLE Radio Iload(max) = 13mA
tpulse = 17ms

Iload
(max) tpulse

Compute
Acceleration

Iload = 5mA
tpulse = 1.1s Iload

(max)

tpulse

except for attaching an external capacitor bank. For all tests we simulate harvested
solar energy using a 2.2V output in series with a potentiometer. A measurement
harness collects time-series traces of voltage and load current [228, 257].

We used load current profiles from synthetic applications and real peripherals,
shown in Table 5.4, to validate V safe. Synthetic profiles are generated by toggling
resistor-transistor circuits tuned to sink specific loads from V out under two load
shapes to explore their affect on V safe: Uniform and Pulsed. The Uniform load
applies a fixed current (I load) for a fixed duration (tpulse), representing a high-
powered peripheral. The Pulsed load applies a high current pulse (I load for tpulse)
followed by 100ms at Icompute = 1.5mA, representing peripheral activation followed
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by low-power computing. The peripheral traces were captured from the gesture-
recognition sensor [22] and BLE radio [256] on Capybara as well as an external ARM
Cortex-M4 [245] running a digit recognition workload [42, 154, 249].

We tested the utility of Culpeo’s V safe estimation by monitoring whether a
software task completes without power failure when started at V safe. Our test
harness charges the supercapacitor bank to V high, disables the charging circuit,
discharges the capacitor to the V safe value, and then applies a load profile. Disabling
incoming power represents a worst-case scenario where the V safe value must ensure
that the task completes using only the stored energy. We ran the real profiles using
this approach and compared the accuracy of the values produced by Culpeo-PG and
Culpeo-R to two baselines, a direct energy estimate and CatNap.

We also use the harness to produce known-good V safe values for the synthetic
load profiles. Via a brute-force binary search, the test harness finds a profile’s V safe

by repeatedly running the profile at different V safe levels until the minimum voltage
is within 5 mV of V off . We validated that values below the V safe produced by brute
force cause failures by running multiple trials of each synthetic load profile with
V start above and below the known V safe. Based on our analysis, estimates more than
20 mV below V safe will reliably cause failures, and estimates from 20 mV below to
V safe will cause failures some of the time. The validated brute-force methodology
allows mathematically comparing the V safe calculations of Culpeo-PG, Culpeo-R-ISR
and Culpeo-R µArch with CatNap. We separate the Culpeo-R implementations to
tease apart the effect of an 8-bit ADC on Culpeo-R µArch versus the 12-bit precision
used by Culpeo-R-ISR.

5.4.2 Application-Level Comparison

The V safe tests evaluate Culpeo’s accuracy, but they do not show accurate V safe’s
direct benefit to applications under realistic configurations. During scheduler tests,
Capybara is not connected to the test harness. It charges and discharges based on
the scheduling policy under test and provides constant, weak harvestable power,
matched to a solar harvester [124, 193].

To understand V safe’s direct benefit to applications, we integrated a Culpeo-R-ISR
interface into the energy-based scheduler CatNap and tested full applications on
harvested energy. We modified the CatNap implementation to support a larger

113



capacitor bank than CatNap originally targeted, which required changing the low
priority scheduling policy to account for longer recharge times. For instance, in
the original CatNap, once the capacitor voltage drops below the "energy bucket"
threshold, CatNap will not run low priority tasks until the buffer is fully recharged.
CatNap originally tested a device with a 1 mF, low ESR capacitor bank, but when fully
recharging a 45 mF capacitor bank, charging to full represents a prohibitively large
quantity of energy and starves tasks. Instead, we set the low priority task threshold
to 100 mV above the event bucket threshold (high priority voltage requirement).
We also disabled additional features, e.g., adaptive voltage measurements, that
would interfere with measuring the effect of voltage-based V safe estimates, including
CatNap’s feasibility test. The feasibility test was replaced with a check that the
current voltage is above V safe before running a high priority task. We then added
the Culpeo-R-ISR task profiling runtime as described in Section 5.3.3 and replaced
CatNap’s V safe and "energy bucket" (V safe

multi) calculation with Culpeo-R’s.
The full applications span a range of load characteristics and requirements for

success. To guarantee that each application is feasible, we degraded the event
frequency until the application successfully meets its requirements with V safe for each
task set to a safe value. We test each application by running three five minute trials.

Periodic Sensing (PS) reads 32 samples from an IMU [248] every 4.5 seconds
and has a background task that reads from a photoresistor and keeps an average
of the value when extra energy is available. PS uses a 15 mF energy buffer to
explore Culpeo’s performance with smaller buffers. An event is considered lost if the
intersample deadline is not met.

Responsive Reporting (RR) triggers three high priority tasks in response to
an interrupt triggered by a GPIO pin that arrives based on a Poisson distribution
with λ=45 s. The first event reads from the IMU, as in PS, the second encrypts
the IMU samples, and the third sends the encrypted samples over a BLE radio
and performs a low-power listen for 2 seconds awaiting a response [91]. Like PS, a
background task captures light levels from a photoresistor. RR must respond to
interrupts within 3 seconds or the event is lost.

Noise Monitoring & Reporting (NMR) reads 256 sample from a low power
microphone [4] at 12kHz every 7 seconds, while a low priority task performs an FFT
on the samples in the background. Interrupts arrive with a Poisson distribution of
λ=30 s, and trigger a BLE response containing the fft data followed by low-power
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Figure 5.10: V safe Error. The V safe estimates produced by CatNap and other energy-
based methods produce radically incorrect estimates. Culpeo (both static and dynamic)
produce safe (> 0) and performant (<10% error) estimates.

listen that must respond within 15 seconds.

5.5 Evaluation

Our evaluation shows that Culpeo generates V safe values enabling correct operation
when prior systems grossly under-estimate a task’s safe starting voltage. We also
show that integrating Culpeo into a scheduler allows capturing events that would
otherwise be missed.

5.5.1 Culpeo’s V safes are Accurate

Figure 5.10 shows the difference between the known-good V safe value and the V safe

predicted by each approach for each synthetic load as a percentage of the total
capacitor voltage range (2.5V-1.6V). For correctness the difference must be above -2%
and greater than 0% is best. Overall, the results show that ESR-aware V safe estimates
are much more accurate than state-of-the-art voltage-as-energy approximations.
Specifically, the results show that CatNap fails when a workload has a low current
"tail" after a high current pulse. Since CatNap’s V safe estimate ignores ESR, as
load current and ESR drop grow (from 5mA to 50mA), CatNap’s estimates degrade.
The 50 mA, 10 ms pulse shows an important side effect of CatNap’s approach– for
very large ESR drops, CatNap will overestimate the energy required as it observes
a voltage drop before rebound and treats it as consumed energy. Culpeo-PG fails
in instances when the total load energy is high, such as for both of the 100ms load
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pulse + 100ms compute workloads , which are high energy due to pulse length,
and the 50mA,10ms pulse. These failures are likely due to compounding errors in
the output booster efficiency model. Compounding errors also cause Culpeo-PG’s
estimates to get more conservative as current increases at a given frequency. Both
Culpeo-R implementations provide safe estimates for all load profiles, demonstrating
the robustness of the online approach. Like Culpeo-PG, Culpeo-R-ISR’s estimates
are less accurate as energy increases, but its estimates are always safe. The Culpeo-
R-µArch is more conservative than Culpeo-R-ISR due to its lower precision. The
difference is not large, except for the 50mA,1ms pulses where, ironically, Culpeo-
R-ISR’s slower clock rate results in an aggressive estimate because it misses the
minimum voltage.
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Figure 5.11: V safe Accuracy on Real Peripherals. Culpeo-R and Culpeo-PG’s V safes

(arrow tops) result in V min (arrow points) above V off for tests on three real peripherals.
The Energy and CatNap V safe estimates are unsafe.

We also show that Culpeo produces safe V safe estimates for three real-world
peripherals (Figure 5.11): a gesture recognition sensor, BLE, and a compute ac-
celerator running an MNIST digit-recognition DNN. In the graph, the top of each
arrow is the V safe at which each systems begins the peripheral operation, and the
bottom of the arrow is the minimum obsverved voltage. The closer the bottom of
the arrow is to V off (1.6V) without going below, the more accurate. The results show
that Energy-V, an end-to-end voltage based approximation that closely tracks with
direct measurements, and CatNap are not safe for realistic peripheral workloads.
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The Energy-V estimates force the capacitor so low the output booster falls into a
non-operational region that drags down the capacitor voltage. CatNap fares better,
but all of its estimates are still below V off , triggering a power-off under normal
operating conditions. In contrast, both Culpeo versions perform well. Culpeo-PG
provides slightly more conservative estimates than Culpeo-R as it selects a single
ESR value to use for the entire operation. Culpeo-R’s estimates are very accurate–
they never result in a V min higher than 1.7V and never fail. Overall, the data show
that Culpeo correctly produces a safe voltage from which to start a task without
experiencing failure, but existing systems do not.

5.5.2 V safe Fixes Schedulers

We first show analytically how to correct CatNap’s feasibility test with V safe to ensure
that tasks will not fail due to ESR drop. CatNap’s feasibility test can be written
as ∀t ≥ 0, ecap(t) > 0. In other words, at any time, there is always energy in the
capacitor after executing the task scheduled at time t. This test is assumed to also
mean that the system will never fail to execute a task if the schedule is determined
feasible, but having sufficient energy is not synonymous with lack of failure. CatNap’s
test only considers energy consumption for a task, implicitly assuming that voltage
to satisfy the energy consumption is a sufficient level, i.e., ∀t, Vt ≥ V (Et) . Looking
at the formulation for V safe– V safe =

∑n
i=0 V (Ei) +

∑n
i=0 penalty i +Vmin – it becomes

clear why this test is incorrect. If for any operation i in the task penalty i > 0,
then

∑n
i=0 penalty i > 0 and V safe

t = (
∑n

i=0 V (Ei) +
∑n

i=0 penalty i) > V catnap
t . So, the

CatNap scheduler does not meet the voltage correctness constraint. Instead the
feasibility test must be expanded as:

Theorem 1 Tasks {ε0, ...εn} are feasible if ∀ t :: 0 ≤ t ≤ n, Vt ≥ V safe
t ∧ ecap(t) > 0,

where Vt is the voltage level before executing task εt and ecap(t) is the energy after
executing.

If a scheduler uses this feasibility test, then the voltage will not dip below the
power-off threshold while running any task, and there will always be sufficient energy.
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5.5.3 Culpeo Corrects Applications

A Culpeo enabled scheduler uses V safe to eliminate the unexpected power failures
that prevent CatNap from meeting application requirements. Figure 5.12 shows the
percentage of captured IMU events in PS, report triggering events in RR, and both
the microphone (-mic) and reporting(-BLE) events in NMR. The data demonstrate
that Culpeo prevents applications from unnecessarily missing events. CatNap misses
PS and NMR-mic events because of unexpected voltage drops that trigger power
failure. Powering down requires the Capybara to spend time recharging that may
cause further events to be missed. The missed NMR-mic events are thus actually
caused by ESR drops and recharges during the BLE reporting task, not by accesses
to the low power microphone. RR fails the vast majority of its responses in CatNap
because the threshold level at which to run low priority work is too low and the
V safe is too low. As a result, CatNap discharges the capacitor too far when running
low priority work. When an interrupt arrives, the process of sensing, encrypting
and transmitting begins, but fails, and the system transmits the sensed data on
the next reboot, after the deadline has passed. CatNap performs slightly better in
NMR-BLE than in RR because the BLE event stands alone– the capacitor voltage is
higher when starting so the misprediction in V safe matters less and thus results in
fewer (but still over 50%) lost events. Culpeo eliminates the vast majority of missed
events sustained by CatNap. Culpeo does experience some lost events for NMR-BLE
because it waits charge to V safe for the radio task and does not always charge fast
enough to meet the deadline.
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Figure 5.12: Events Captured. Culpeo’s accurate V safe estimates enable high event
capture rates where CatNap’s estimates cause it to fail.
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Finally, we examine the effect of event-interarrival time on scheduler performance.
Figure 5.13 shows the missed event rate for PS and RR given three sampling rates–
slow (6 and 60 seconds for PS and RR respectively), achievable (4.5 and 45 seconds),
and too fast (3 and 30 seconds). Running the applications at a range of interarrival
times demonstrates how Culpeo and CatNap react to an energy surplus or deficit.
Overall, Culpeo makes the plot make sense– once the frequency drops to an achievable
level given the incoming power, Culpeo guarantees high event capture rates. CatNap,
however, experiences little or inverted benefits from reducing the event frequency.
This phenomenon occurs because CatNap discharges the capacitor too far performing
background work. The more time between events, the further CatNap will discharge
the capacitor and the more likely it will fail.
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Figure 5.13: Events Captured vs. Event Frequency. Culpeo has nearly ideal event
capture for achievable event rates, but CatNap discharges the capacitor too low while
performing background work and inverts the expected improvements.

5.6 Related Work

Culpeo relates to work spanning a wide range of topics including intermittent
systems, as detailed in Chapter 2, supercapacitor enabled sensors and energy-aware
programming. Culpeo closes a gap in the literature between programming models for
intermittent systems and hardware to enable higher power peripherals and compute
acceleration.
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Supercapacitor Enabled Embedded Systems.

Culpeo is motivated by numerous energy-harvesting platforms that rely solely on
supercapacitors for energy storage. No prior work examines the effect of high
ESR on applications that run on supercapacitor-only systems. Early batteryless
supercapacitor motes, such as Everlast [240] and Ambimax [200] focus on charging
supercapacitors efficiently and use large supercapacitors (>10F) for which ESR is
not a primary concern. Additional work defined principles for building efficient
power systems in energy-harvesting, supercapacitor based devices [43, 142], and are
complimentary to Culpeo’s efforts to improve the capability of supercapacitor based
devices. More recent systems either seek out low ESR capacitors, increasing volume
or cost as in the Camaroptera [193] and TA-1 [166], or engineer their applications to
compensate [88]. Both the sensor node and EdbSat instantiations of the Capybara
power system use compact, high ESR supercapacitors for energy storage [57], making
them primary targets for Culpeo. The Capybara power system [57] uses an output
booster to compensate for voltage drops due to high ESR, but the work does not
describe the limitations that ESR places on how energy can be extracted from the
supercapacitor. Capybara’s task based programming model makes no guarantees
about completion, and requires system developers to test all tasks before deployment.
Several hybrid supercapacitor-battery sensing nodes including Prometheus [128],
Trio [80], HypoEnergy [185] and numerous others as described in [139], use a su-
percapacitor to reduce the primary battery cycling. Culpeo, in contrast, targets
supercapacitor only systems.

Energy-aware Programming.

Culpeo is designed to aid energy-aware programming languages and models in
successful interactions with supercapacitor based systems. Energy Types [52] and
ENT [46] are energy-aware type systems whose guarantees fail in the presence of
ESR as neither considers the rapidly changing energy state of a batteryless system
nor has constructs to easily support ESR drop. Eon associates tasks with energy
levels [242] and could better evaluate available energy in batteryless systems using
Culpeo. Levels permits "optional" code to run based on energy availability, estimated
using a simple battery model, and would require an awares of ESR to run on a
batteryless system [150]. Pixie is a WSN programming model that allocates energy
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to tasks within a dataflow graph via resource tickets [165]. Pixie’s energy allocator
and energy broker abstractions would benefit from this work’s treatment of ESR as a
first class concern. Additional efforts allow programmers to trade accuracy for energy
via approximation [24, 115, 230] and adaptation to QoS requirements [136, 295] that
all rely on a means of measuring energy consumption. While these efforts are not
designed to run on energy-harvesting systems, they demonstrate the importance of
accurate energy models to enable optimization at higher levels of the system stack.

5.7 Conclusion

This work is the first to identify ESR as an important factor in designing intermittent
software systems. ESR-induced voltage drops break correctness assumptions of
prior work, which reason about energy without considering voltage. These voltage
drops are brought about by existing and emerging high power peripheral sensors
and actuators from which batteryless systems derive their value, so these drops
must be managed. As a remedy, we present Culpeo, a hardware/software interface
that enables intermittent system designers to reason about power system effects like
ESR. We present and implement two different approaches to calculate V safe: Culpeo-
PG, which supports compile-time reasoning and Culpeo-R for online re-evaluation.
Culpeo-PG uses offline profiling of the power system and workloads to predict worst
case V safe values and provides insight before deployment on how a programmer can
expect the power system to respond to an application. However, Culpeo-PG cannot
react to changes in ESR over time. Culpeo-R uses a dynamic sampling approach
to overcome this limitation and perform V safe calculations online. We implement
Culpeo-R-ISR on a real device using a timer interrupt and available hardware on
the MCU. We also propose a new microarchitectural interface, Culpeo µArch, in the
form of a memory-mapped peripheral module that eliminates the system integration
challenges incurred by Culpeo-R-ISR. Culpeo µArch demonstrates that new ADC
technology can reduce the power overhead of sampling the capacitor voltage by 1000x
and move towards constant atomic block monitoring.

We found in our evaluation on a real energy harvesting power system that Culpeo
produces safe V safe values across a range of synthetic and real peripheral loads
where prior estimates fail. After establishing the accuracy of Culpeo’s estimates, we
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implemented a state-of-the-art scheduler, CatNap, and modified it to run on Capybara.
We then evaluate Culpeo versus CatNap using full, event-driven applications. Our
results show that that disregarding ESR causes unexpected system failures and
missed events, which the Culpeo-augmented version of CatNap avoids. In this work,
we showed that it is critical to understand the effect of ESR in a supercapacitor
based energy harvesting system and we demonstrate systems that can capture the
effect at multiple stages of the application.

As we have shown in the last three chapters, with clearly defined programming
models, applications can correctly manage shared data, power and energy state across
peripherals and the MCU. However, we have only demonstrated this management
on a platform that contains a single MCU, namely the MSP430 on Capybara [57].
An important question for the future of batteryless devices is what happens when
systems become more complicated? How do programmers manage peripherals if
more than one program is running on a device at a time? In the next chapter, we
study the answers to some of these questions by building a batteryless devices with
three programmable MCUs on board.
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Chapter 6

Case Study: Supporting
Peripherals in a Batteryless
Satellite

In this chapter, we apply lessons from the preceding chapters to demonstrate how
to support arbitrarily complicated peripherals in a batteryless setting. The goal
is to furnish energy-harvesting capabilities and failure-aware runtime support to
embedded applications that are largely agnostic to power failures. Specifically, we
demonstrate battery-free operational support in the context of Tartan-Artibeus-1
(TA-1), a PocketQube satellite [215]. As shown in Figure 6.1a, TA-1 is a miniature
satellite that was deployed into orbit in January 2022. The goal of the mission,
albeit cut short by a launch problem, was to demonstrate the value of orbital edge
computing [68], co-locating compute resources with on-board sensors. To support a
flexible design where sensor subsystems and compute subsystems could be swapped
in and out, TA-1 is composed of a stack of interchangeable subsystems (visible in
Figure 6.1b). The application deployed on TA-1 makes use of all of the subsystems to
capture and process telemetry data, transmit and receive messages from Earth and
compute orbital position. TA-1’s contribution to miniature satellites is demonstrating
the value of a batteryless design for a satellite that consumes up to one Watt of
power. Prior work has demonstrated batteryless nanosatellites that consume up to
100 mW, but no work has explored higher power batteryless satellites.

In building TA-1, this chapter draws on themes from across this thesis. TA-1’s

123



(a) TA1 Assembled. (b) TA1 Board Stack.

Figure 6.1: TA-1 Satellite. TA-1’s modular stacking design (visible at right in a
prototype) easily integrates new payloads.

power system, like Capybara described in Chapter 2, needs to maximize energy
extracted from a supercapacitor, leading to a dual-booster power system for energy
storage and power conditioning. The failure-aware control module adheres to lessons
learned about the interrupts in task-based intermittent execution in Chapter 3 to
efficiently implement ISRs to handle structured communication with peripherals.
Pudu’s lessons about peripheral power consumption from Chapter 4 motivate the
hardware interface that peripherals expose. Finally, an understanding of ESR is
essential to understand the performance of the TA-1 system as a whole. TA-1 is
designed to support both high-ESR supecapacitors and high current peripherals, so
lessons from Chapter 5 help to mitigate voltage drops. Building on these themes, we
define the interface between failure-aware and failure-agnostic components, allowing
TA-1 to support flexible workloads, off-the-shelf peripherals, and some parallelism.

TA-1 was built over the course of three years with a team of more than 10
individuals at Carnegie Mellon that coordinated with more than five external vendors.
In short, TA-1 required a substantial engineering effort that is orthogonal to this
thesis’ research goals. We refer interested readers to the open-source design files [222,
223] and a description of the TA-1 project [67] for complete details on the TA-1
implementation. This chapter instead centers on the benefit of creating a strict
separation between failure-aware and failure agnostic components in a batteryless
system. To accomplish this separation, we expand the definition of a “peripheral” to
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include any subsystem component that will not save its state across power failures,
no matter how complex its functionality. After briefly introducing batteryless
nanosatellites, this chapter will discuss the power system design considerations,
failure-aware application and runtime software as well as the hardware interface to
failure-agnostic peripherals.

6.1 Implementing a Batteryless Nanosatellite

Nanosatellites, e.g. CubeSats [212] are a fraction of the size and cost of a traditional
satellite and support exciting Earth observation applications [192]. Due to their
reduced per-device cost and capabilities compared to a traditional, monolithic satellite,
nanosatellites may be deployed as constellations [73] in low-Earth orbit. Nanosatellite
constellations allow multiple small satellites to work together to perform applications
like full Earth imaging for precision agriculture [17], disaster management [232],
and others detailed in a review of the area [192]. However, the more satellites in a
constellation, the less bandwidth for each satellite to communicate with a ground
station on Earth [74]. It quickly becomes infeasible for constellations of nanosatellites
to downlink all of their captured data back to Earth, which limits the performance
of nanosatellite constellations.

Recent work proposed orbital edge computing, OEC, a strategy that moves
data processing from ground stations to the nanosatellite. The goal is to increase
the value of downlinked data by sending digests of high-volume sensor data, e.g.
downlinking the results of a building counting application, not the images used to
determine the count. Work in OEC demonstrated that equipping nanosatellites with
specialized computing hardware like GPUs substantially increased the land area
that a nanosatellite constellation can monitor [68]. Studies of OEC also found that
increasing the energy capacity of nanosatellites does not improve total throughput
for OEC. Instead, harvestable power limits the work a nanosatellite can complete on
orbit. As a result, batteries do not hold a fundamental performance advantage over
supercapacitors in this domain.

The energy harvesting limited nature of OEC workloads presents a compelling
motivation for batteryless nanosatellites that can provide Watts of power. Since higher
energy capacity does not necessarily improve the performance of OEC applications,
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system designers are free to consider using supercapacitors for their advantages over
batteries. For instance, supercapacitors have higher power-density than batteries
which allows them to deliver more power to the load within a tight volume budget [140].
Additionally, supercapacitors continue to operate at wider temperature ranges than
batteries, and can eliminates the power required to heat batteries in low Earth orbit
(LEO) [143, 182]. Finally, supercapacitors support up to 2000 times more cyclability
over rechargeable batteries [213]. Giving batteryless nanosatellites substantially
longer lifetimes than battery-powered nanosatellites. However, accelerators, sensors
and actuators that consume several hundred milliwatts, typical for nanosatellites [195],
will quickly drain supercapacitors and can force the device into intermittent execution.

Existing hardware and software techniques for intermittent systems minimize
atomic energy requirements to guarantee that miniature batteryless devices will make
forward progress, sacrificing flexibility in the process. Batteryless nanosatellites need
both flexibility and resilience to power failures to meet the application requirements
of inexpensive deployments to LEO. No work addresses how supercapacitor enabled
systems should handle power failures that occur at the scale of minutes– a failure
rate that the satellite community considers untenable, and far too infrequent for
intermittent systems. We address this gap in the literature by developing a batteryless
nanosatellite called TA-1.

6.1.1 TA-1 Overview

TA-1 is a flexible open-source PocketQube design that harvests energy into a su-
percapacitor to perform a range of operations. Figure 6.2 illustrates the different
subsystems in TA-1 and their organization. The TA-1 bus, (TAB), is the blue box
in the middle that separates the failure-aware components (below) from the failure-
agnostic components (above). The core, failure-aware TA-1 design includes power
and control subsystems that perform energy harvesting and power conditioning as
well as basic flight tasks. The failure-aware components use the TAB to hide power
failures from the failure-agnostic peripheral subsystems. The TAB exposes power
rails, control signals and communication lines to allow additional subsystem PCBs to
be stacked directly on top of the power and control systems. This simplified logical
interface allowed the TA-1 team to quickly incorporate a communication module,
experimental computing payload and a GNSS module [118].
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Power Module

Control Module

Supercapacitor

Harvests solar power
Exposes power rails
Manages hysteresis

Task-based intermittent computing
Manages inter-module communication

Tartan Artibeus Bus

Compute Payload

GNSS

Communication Module No support for power failures
Must reset on power-down
No partial persistent state

Figure 6.2: TA-1 Module Stack. TA-1 separates the failure-aware components from
the failure-agnostic components using the Tartan-Artibeus Bus interface.

To explore the software and (electrical) hardware needs of TA-1, we had to
adhere to the mechanical requirements of a nanosatellite specification. We targeted
a PocketQube form factor because its dimensions of 5x5x5cm reduce satellite cost
further than CubeSats [212, 215] while providing more power and volume than
chipsats [285]. The PocketQube standard, however, is less mature than the CubeSat
standard, and as a result fewer parts are commercially available for PocketQubes. To
overcome this problem, we built or commissioned all of the subsystems used in TA-1,
all of which are shown in Figure 6.3. In flight, the experimental compute payload
(EXPT), radio subsystem (COMM) and command & control subsystem (CTRL) are
stacked on top of the power system (POWR) and energy storage capacitor, as shown
in Figure 6.4. The entire stack of boards is then placed inside an aluminium chassis
and affixed to a base-plate according to the PocketQube standard [215].

Supporting batteryless OEC requires several changes to existing system support
for batteryless devices, given that intermittent computing originally targeted µW
scale systems. First, the power system must support load currents more than
10 times previous systems. Even a low power 915 MHz radio may consume over
500 mW for short bursts, and the current requirements to release the “burn” wire
restraining an antenna exceed 500 mA. Second, nanosatellites are subject to more
testing and verifications, in their mechanical, electrical and software design than
terrestrial sensors, but they pale in comparison to traditional satellites. To streamline
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Figure 6.3: TA-1 hardware. TA-1 circuit
boards, aluminium chassis and FR4 base plate.

Figure 6.4: TA-1 hardware
stack. Stack of TA-1 circuit
boards and supercapacitor.

the integration of a batteryless runtime, it needs to be exposed to the application
programmer with a minimal set of rules for writing code that will survive occasional
power failures. Finally, to support the integration of existing sensors, radios, and
accelerators, TA-1 should support peripherals that run programmable functions
independent of the primary MCU with no knowledge of power failures. These
requirements allow us to build failure-aware hardware and software components that
can support failure-agnostic peripheral subsystems.

6.1.2 Peripheral Interface

For the TAB to effectively insulate peripherals from failures, each peripheral subsys-
tem must obey a set of rules to integrate with the failure-aware components. TA-1
treats peripherals to mean any discrete subsystem that performs a specific function
for an application. For instance, a radio subsystem containing a dedicated MCU is a
peripheral, as is an LED. There are hardware and software design considerations
when building a peripheral that integrates with TA-1.

Simple hardware changes to peripherals remove uncertainty about how each
subsystem responds to power failures. First, each peripheral subsystem needs to
include hardware connections that allow it to be enabled and disabled by the failure-
aware MCU on the CTRL board. Inter-subsystem connections need to allow for
each peripheral to be electrically isolated when it is not powered to avoid current
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leaks that can leave the peripheral in an undefined state. To reduce uncertainty
about the state of components on peripheral subsystems, they should also minimize
the size of capacitors that cannot be drained by the failure-aware components. The
goal of these hardware changes is to allow the peripherals to be fully reset by the
failure-aware subsystem so that power failures do not change the operation of the
peripherals.

Similarly, peripheral software must follow several rules to ensure the software
reboots in the correct state for it to be managed by the CTRL MCU. The first
constraint is software running on the peripheral subsystems must also operate without
being affected by power failures. TA-1 assumes peripheral subsystem software is
not only idempotent, but that any temporary program state is cleared on power
failures. For instance, programs running on peripheral subsystems should not retain
partial states or write to persistent memory without indicating it to the failure-aware
components. The software running on the subsystems should also wait for signals
from the CTRL board to enable high power operating modes so that the total system
power can be tracked. Finally, each peripheral needs to use the TAB messaging
protocol to communicate between subsystems– point-to-point communication is not
allowed. The goal is to prevent peripheral subsystems from considering partial state
corrupted by power failures. This thesis does not define the details of the TAB
protocol, but at a high level, the protocol allows the CTRL board marshal messages
between programmable payloads on TA-1, namely the communication and computing
subsystems.

6.2 Artibeus Power System

The TA-1 power system builds on the design of predecessors in energy-harvesting
systems to support failure-agnostic peripheral subsystems. Overall, TA-1 expects a
much higher harvested power than other batteryless systems because of its (relatively)
large form factor. The 37 cm2 of solar panels framing TA-1 are expected to provide
an excess of 500 milliWatts, in contrast to the 90 mW expected from EdbSat’s
miniature solar panels [166] or 5 mW from RF harvesting [210]. The system design
eschews many of the compromises other systems make to support operation under
minimal power in favor of reduced complexity and broader applicability.
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Figure 6.5 shows a high level schematic of the TA-1 power system. Like prior
systems that optimize for extractable energy in a given volume, TA-1 uses a dual
input-output booster design [57, 167, 193]. The input booster charges the capacitor
as high as 5.5 V at which point the output booster is turned on by the voltage
supervisor. The output booster outputs a stable 3.3 V to the VDD rail and discharges
the capacitor as low as 2.0 V before the supervisor disables the output booster to
avoid the input booster’s cold start while the energy buffer recharges. TA-1’s dual-
buffer design also allows it to support supercapacitors with high-ESR. Even as
voltage loss over the ESR degrades the capacitor voltage, the output voltage remains
stable [57]. TA-1 is equipped with a 5.6 F supercapacitor [138] because it maximizes
the energy that can be stored inside the PocketQube form factor (in a capacitor),
but the design is not tied to a specific capacitor.

Input 
Booster

SPV1040 

Output 
Booster
TPS6300 

Voltage 
Supervisor 

 
TPS3806

VDD 
(3.3V)

VCAP 
(0-5.5V)

VSOLAR
(0-5V) COMM

EXPT

GNSS

EN5.6F

IN OUT IN OUT

CTRL

OKIN

Hysteresis  
Loop 

5.4V-2V 

Figure 6.5: TA-1 Power System. The TA-1 power system harvests solar power into
a 5.6 F supercapacitor and uses separate voltage rails to support isolated peripheral
subsystems.

Despite its similarities to other architectures, TA-1 makes several choices that
reduce complexity in the power system. For instance, TA-1 omits the input booster
bypass path used in both EdbSat and Capybara to avoid the booster’s slow cold start
phase [57, 167]. Instead, TA-1 opts for an input booster with a built-in bypass diode
and tolerates the slight efficiency loss because the PocketQube form factor allows for
much larger solar panels than EdbSat’s ChipSat form factor [285]. TA-1 also uses a
unified energy buffer, in contrast to several efforts to efforts to minimize charging time
for a given operation [57, 109]. Given the size of the capacitor that TA-1 supports,
managing energy availability via sleeping [124, 177] instead of multiple energy buffers
reduces parasitic leakage from persistent switching hardware. However, not all of
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TA-1’s choices reduce power system complexity.

TA-1 seeks to balance power system complexity and applications effort, so in
some cases, the POWR board takes on complexity to shield applications and the
failure-aware runtime on the CTRL module. First and foremost, the dual booster
system supports peripherals that cannot tolerate the full voltage range experienced by
the capacitor. This approach simplifies peripheral subsystem hardware development
and decouples peripheral subsystems from the voltage swing experienced by the
supercapacitor. The subsystem developer can simply expect a stable 3.3 V input
to the subsystem until the whole system powers down. Further, the separate power
rails for each peripheral subsystem minimize the effort on the part of the CTRL
MCU to disable peripherals to save power. The CTRL MCU need only flip a single
GPIO pin to disable a peripheral, which allows systems like Pudu to be implemented
with little programming overhead.

Additional hardware associated with the power system further reduces the CTRL
MCU’s responsibilities. Features like the hardware defined hysteresis thresholds also
reduce the flight software complexity by removing the need for a software interrupt
handler that disables the output booster to avoid cold start [57, 176, 177]. The
TA-1 power board includes on-board measurement hardware to capture load current,
harvested power, and capacitor voltage without involving off-board subsystems. A
four port op-amp buffers the voltage measurements and passes the results to a 16-bit
ADC that can be accessed by any subsystem via I2C. The ADC and op-amp are
both powered by VDD, so when VDD is low, both are powered off. However, the
op-amp will sink current from its inputs if they are higher voltage than VDD, which
would reduce the system efficiency during charging. High impedance voltage dividers
between the measured voltages and the op-amp prevent extra current from draining.
By making a series of careful design decisions informed by prior work, the POWR
board balances complexity across TA-1.

6.3 Artibeus Control Module

The goal of TA-1 is to define a minimal set of components (hardware and software)
that are aware of power failures and can maintain the execution context. We
therefore program our flight control and persistency management software on a single
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control subsystem, CTRL, which then controls all peripheral subsystems. Hardware
and software design choices allow CTRL to coordinate peripheral subsystems while
maintaining the isolation requirements outlined in Section 6.1.

The CTRL module uses intentional choices in its MCU selection and peripheral
communication strategy to provide power-failure awareness at little cost to the
peripheral subsystems. First, the CTRL MCU is an MSP430FR5994 with 256 KB
of byte-addressable non-volatile FRAM [265]. As illustrated in Chapter 3.1, byte-
addressable NVM reduces the cost of persisting state compared to technologies like
Flash that can only be read/written at a page-granularity. Second, the CTRL module
uses level shifters [258] to isolate peripheral subsystem electrically from the CTRL
module when implementing the TAB communication over UART. The isolation
allows for peripheral submodules that operate at different voltages than the CTRL
MCU and prevents current from leaking across the peripheral connections when the
peripherals are unpowered. Finally, the CTRL module contains a low-power 9-DoF
IMU [247] that provides baseline telemetry information that can be accessed by other
subsystems. The CTRL module hardware provides a starting point for batteryless
satellite controllers.

While the CTRL module contains application specific code, much of the underlying
power-failure aware runtime and flight control software is portable. Figure 6.6 shows
a diagram of how the task-based code for failure resilience is written. The code uses
a switch statement to atomically walk through different tasks in the application,
updating a persistent task variable after exit from the switch statement. If power
fails in the middle of a task, execution will resume from the start of the task on
the next boot. We omit sleep management, i.e. low-power wait states, because
TA-1 is designed to support applications that improve performance with additional
compute capacity. Since sleeping is not beneficial to the final outcome of the
application, CTRL opportunistically executes tasks until power fails. In contrast to
checkpointing [31, 168, 176], tasks allow the programmer to explicitly define atomic
regions of code which simplifies development for well separated tasks. Developers
can write calls to peripheral subsystems, place the calls inside a case statement,
and assume that they will always execute from beginning to end. Since peripheral
subsystems are designed to operate independently, adhering to rigid control flow at
the top-level of the application is not an undue burden and is a common pattern in
embedded systems [61, 193, 284].
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The primary downside to tasks in an intermittent system, is the problem of write-
after-reads (WAR) when an interrupted task is re-executed [168]. Effectively, the
dynamic execution gets out of sync with the persistent state and leads to corrupted
values. To prevent WAR bugs, the CTRL software provides a logging interface
that the programmer uses to write variables involved in WAR conflicts to an undo-
log [175]. Programmers may use a variety of tools to identify variables involved in
WAR conflicts [168, 174, 252], but we recommend that they avoid using the modified
code these tools produce. The performance gap between code produced by the
production MSP430 GCC implementation [267] and LLVM-based compiler tooling
for intermittent systems is prohibitive for real systems.

Figure 6.6: CTRL failure-aware programming.CTRL programs are written as a
series of tasks (shown in green). The power-failure-aware runtime components (shown in
blue) correctly restart the program after a power-failure. Interrupts from the TAB (in
orange) share data with tasks through a managed buffer (center).

As shown in Figure 6.6, the CTRL software minimizes the interface between
application defined tasks and peripheral-triggered interrupts. This policy is drawn
from the lessons learned in Coati– like the Coati memory interface for split-phase
interrupts, CTRL defines a restricted set of buffers that each interrupt may write
into and tasks may read from. Unlike Coati events do not schedule tasks (i.e. event
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bottom-halves). Interrupts mark the buffers as "ready" when they may be read by
tasks, at which point tasks may extract data from the buffers and mark them as
empty. Consecutive interrupts can therefore add to the same buffer of data, but
interrupts may not read from this buffer nor any other persistent data. Instead,
ISRs, provided by peripheral subsystem drivers, should use only the buffer interface
to share data, and use static variables for state that should be retained across
invocations of the ISR. Following the task/interrupt interfacing rules prevents WAR
violations from corrupting shared data after a power failure.

As an example, we describe the final program that shipped on the CTRL board
aboard TA-1 during it’s launch into LEO in January 2022. TA-1 was equipped
with three peripheral subsystems: a COMM board for communication with ground
stations on Earth and a EXPT payload to perform interesting compute in orbit, and
a GNSS unit (with COCOM limits removed) [118]. On the first boot after launch,
the CTRL code enables the nichrome “burn” wire that releases the COMM antenna
from it’s tied down position and then, as it will on each subsequent boot, powers all
three peripheral subsystems. After booting the subsystems, the CTRL code replays
the undo log from the last power failure to restore the non-volatile memory to a
valid state, and begins running the next task. The first task updates the telemetry
data structure every minute, reading from the 9 DoF IMU on the CTRL board, as
well as the GNSS unit and the POWR ADC measurements. Next, the application
reads from the interrupt buffers populated by the EXPT board to check for incoming
messages and either respond to them, or re-route them to the COMM board. This
task also uses the time information provided by the GNSS unit to start the EXPT
payload’s RTC if it is not initialized. The last task reads any incoming messages
from the COMM board, and only moves on to the telemetry task if no messages are
received. Otherwise the COMM task re-executes to quickly process any data being
shipped to the COMM board from Earth.

6.4 Conclusion

TA-1 and the components it developed serve as a starting point for research in future
batteryless nanosatellites. In particular, the interface defined by the TAB and its
implementation provide a baseline for comparison in future systems. We propose
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TAB as a baseline because it stands in contrast to protocols for intermittent systems
and satellite buses. TAB provides flexibility and support for power failures.

The advantage of clearly delineating the interface between the subsystems can
be illustrated by several examples of changes made to the TA-1 satellite through the
course of its development. For instance, the transmission frequency of the COMM
board was changed after after a year spent developing TA-1, which required changing
the hardware on the COMM board, impacting its power draw. This substantial
change was made with no modification to the POWR board hardware because the
TAB protocol hid the changes. We also demonstrated the ability to reprogram
the EXPT payload using data received over the COMM board, again, without
changes to the CTRL board’s software. By providing the underlying persistence and
initialization guarantees, the CTRL and POWR boards are able to support a wide
range of programs, even those that change during deployment.
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Chapter 7

Conclusion & Future Work

This thesis explored peripheral management strategies for batteryless systems across
the stack. We examined how hardware, runtime systems, and programming models
can be coordinated to correctly share data, power and energy across multiple pe-
ripherals. However, there is still substantially more work to do at all levels of the
stack to make batteryless devices practical for wide-scale usage. In the subsequent
sections, we will examine the future engineering and research required to advance
batteryless systems, and review the conclusions we can draw from this thesis.

7.1 Towards Performant Batteryless Hardware

Application performance must be considered not only as a function of how fast an
application can complete, but whether it meets all of its objectives. For instance,
a batteryless device that computes quickly but is powered down when new data
should be collected is not performant. Hardware research for batteryless systems must
examine both the hardware and its potential software interfaces to improve application
performance. In this section, we describe two directions for future hardware research:
reliability studies and supercapacitor-based power systems research.

7.1.1 Reliability Testing

Batteryless, energy-harvesting devices offer the potential benefit of greatly expanded
lifetimes beyond battery powered devices. In contrast to devices with only primary
(non-rechargeable) batteries, energy-harvesting allows the maintenance-free device
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lifetime to extend beyond the initial battery capacity. Further, compared to devices
with secondary (rechargeable) batteries, high quality ceramic capacitors and super-
capacitors can tolerate orders of magnitude more cycling (charging and discharging).
The result is substantially longer device lifetimes if we assume the energy buffer is
the only source of failure [69, 70, 213]. This design benefit is particularly important
for larger batteryless systems, like Capybara and Tartan-Artibeus referenced in this
thesis [57, 166, 193], where small rechargeable batteries fit within the allowed volume.
The question, however, is whether longer capacitor cycling tolerances actually yield
significantly longer lifetimes for batteryless devices.

For an energy-harvesting device, lifetime is bound by the reliability of the system
components, not by energy availability. For instance, while we know that capacitors
have longer cycling lifetimes than batteries, the MCUmay fail before the capacitor. To
declare that a batteryless device has a longer lifetime than a device with rechargeable
batteries, we need to study the integrity of the key components in each system
and the stresses applied by their execution models. In particular, the intermittent
execution model experienced by batteryless devices represents an extreme point
in the usage of a capacitor and all of the on-board SoCs. If a batteryless device
uses high power peripherals, the high load current may inadvertently shorten the
capacitor lifetime [149]. Further, repeated power-cycling is not the intended use case
of commercially available MCUs, DC-DC converters or peripheral sensors [277].

More research is needed to understand how intermittent execution affects the
lifetime of power-system and application components in batteryless devices. Prior
work in power converter reliability points to large temperature swings associated
with power cycling as the cause of mechanical failures (e.g. wire bonds and solder
joints) [101], not the power cycling itself. Similarly, MCU failures caused by silicon
degradation are predicted using a devices "on-time" rather than power cycle count [12].
It is therefore hopeful that intermittent execution does not substantially reduce IC
reliability if the average power is low (i.e. unlikely to cause temperature increases).
Long term studies, however, are needed to confirm this hypothesis. New techniques
are needed for accelerated lifetime-testing in batteryless system so that developers
can predict if their application lifetime will benefit from batteryless hardware.
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7.1.2 Supercapacitor-based Systems

This thesis worked extensively with supercapacitor-based systems for two reasons.
The first is that they provide a proving ground for peripherals that, at present,
require more energy than a ceramic capacitor bank can reasonably provide. The
second, is intermittent execution using a supercapacitor allows system designers
to support higher power peripherals than would be prudent on a battery powered
system. Failure is an option, so exceeding power neutral operation is not a failing
design point [29]. Instead, intermittent execution paired with high power density
from supercapacitors allow developers to explore power versus energy efficiency
trade-offs in small volume envelopes. Additional research in optimal power system
architectures and hardware/software interfaces is required to make the most out of
supercapacitor based devices.

Efficient Hysteresis Management

Supercapacitors with low ESR and high capacity per volume allow batteryless systems
to extract very large quantities of energy at high current. However, the intrinsic
properties that make such a capacitor useful, are also liabilities. High capacity means
recharge times are long, so the device may miss critical data while it is powered
off and unresponsive. Low ESR is also indicative of high self-discharge which leaks
current from a supercapacitor even when it is not in use. Improvements to power
system architectures for supercapacitor based systems could allow batteryless devices
to overcome such drawbacks.

For instance, TA-1 uses a 5.6 F capacitor to reduce the frequency of power failures
far below that of other batteryless devices, but recharging such a large capacitor
requires TA-1 to be turned off for long periods of time. This refrain is familiar–
as Chapter 2 discussed, Capybara solves the problem of long recharge times by
using multiple capacitor banks. At minimum, adding a second, smaller capacitor
that charges quickly when coming out of eclipse would allow the CTRL MCU to
to determine energy availability and set application priorities before deciding to
charge the large bank. The challenges is that any resistance in the switches used
to connect and disconnect capacitors to the primary bank acts like additional ESR.
To support peripherals with high load currents, substantial improvements to the
Capybara switch designs are needed to reduce ESR drop and allow the system to
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extract a useful fraction of the total energy.
Given efficient switching mechanisms, power system architects would be free to

combine low and high ESR supercapacitors to get the advantages of both. High ESR
supercapacitors are generally less leaky [198] and may have a higher energy density
than low ESR supercapacitors. If a system programmatically switched from low ESR
to high ESR capacitors throughout an application, it could modulate the expected
power system behavior. For instance, switching to the high ESR supercapacitor to
reduce leakage may increase the length of time a device can remain in a sleep state,
as opposed to fully powered down. Strategically charging the low ESR supercapacitor
could allow for extremely high current bursts at opportune points in the application.
However, such a hardware system is only valuable if given tools that better map
software requirements to hardware characteristics.

Expanded Power System Modeling

The problem with existing modeling for supercapacitor based, batteryless systems is
that it does not capture the end-to-end behavior of the device. Culpeo successfully
modeled the discharge portion of the capacitor voltage curve in an intermittent
execution, and Pudu modeled peripheral power, but much more work is needed to
model charging. Numerous models for supercapacitor behavior over time have been
developed, but they are expensive to calculate online [9, 43, 47, 89, 133, 184, 278,
282, 283]. Prior work for intermittent systems measures capacitor voltage changes
over time to estimate incoming power [177], however, ESR breaks this model. If
the voltage is measured while an ESR drop is applied, the scheduler will record an
artificially high incoming power if it measures after the voltage rebounds. Instead,
schedulers need low-overhead models of the entire device from the input-booster
through to the states of load side components (e.g. sensor operating mode) to better
schedule recharges and estimate feasibility.

Language Constructs

Even before low-overhead power system models are established, language constructs
based on well understood supercapacitor characteristics can improve the status quo.
Indeed, disregarding capacitor ESR break existing energy-aware language constructs.
Energy-Types [52] (ET) provides a type system to enable energy-aware programming.
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A well-typed program preserves an invariant that program elements associated with
high energy availability (e.g. battery full) may interact with elements associated
with low availability (e.g. battery nearly empty), but not vice-versa. Intuitively, if
there is little energy, invoking an expensive element could force the device to power
down. ET’s types are a suitable abstraction for energy consumption but do not
accurately reflect the complications introduced by ESR drop. A program element
could take little energy but have a high ESR drop. Calling this element with little
energy respects the invariant but could cause the system to fail. Further, ESR drop is
transient but its effects compound. If ESR drop decreases capacitor voltage, output
booster efficiency will decline, making any subsequent tasks more expensive than
normal. Thus, it may be unsafe for even moderately expensive code elements to run
before the ESR drop rebounds. To enable sophisticated resource-aware programming
on intermittent systems, languages must have abstractions for voltage-awareness.

7.2 Towards an Operating System

As batteryless devices move well past the original CRFID model and become complex
distributed systems, peripheral management needs to be handled by a lightweight
operating system (OS). Without an operating system, developing complex applica-
tions for batteryless devices will remain prohibitively difficult because application
behavior is tightly coupled to device hardware. This thesis develops programming
techniques to correctly share data, power and energy among several peripherals, but
more work at the OS level is required to abstract the hardware further from the
prorammer. Before developing an OS to support batteryless devices, two areas of
future research that will inform the design and performance of an OS should be
explored. In this section, we describe the additional research necessary to expand
concurrency in batteryless devices and improve the schedulers that can be included
in future operating systems.

7.2.1 Expanding Concurrency

The type of concurrent programming that is useful on a batteryless device will
vary depending on resource availability. Truly miniscule systems, like CRFIDs,
require programming models that minimize runtime and memory overheads while
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improving access to concurrent updates from peripherals. In contrast, larger systems
that operate for at least seconds at a time approach traditional hybrid memory
systems [51, 206, 207, 271], albeit with more frequent power failures. For these
larger systems, researchers need to examine the cost of implementing a persistency
model in terms of both performance and programmability. Research on expanding
concurrency in batteryless devices should proceed in two different directions. First,
user-studies are needed to define useful concurrency models for low-resource systems.
Second, the cost of centralized persistency in large systems should be explored in
full system evaluations.

User-Study for Concurrency

For highly-constrained systems, programming models that support concurrency
must sacrifice flexibility for runtime overhead. For instance, Mayfly [111], Ink [284]
and CatNap [177] provide varying levels of support for interrupt-driven execution,
but they all use restrictive memory models to manage data shared with interrupts.
Coati (presented in Chapter 3) provides a more general shared memory model than
other systems but forces programmers to use split-phase interrupts. The buffering
alternative to Coati, Buffi, supported a much more flexible model for serializing
interrupts and transactions, but its memory and runtime overheads were prohibitively
high. Overall, very small batteryless devices need to support a minimal concurrency
model that allows programmers to easily process data from peripherals, and no more.

The question then arises, how do programmers actually write code that interacts
with interrupts in a highly-constrained intermittent device? How would programmers
write their code if system support made arbitrary accesses to shared memory simple?
To answer this question, future work should carry out a literature review of the
applications to stem from schedulers for small (CRFID scale) intermittent systems
and low-power embedded systems. The survey should then assess whether useful
interrupt driven paradigms in (continuously powered) embedded systems are avoided
in intermittent systems because of a lack of system support. A user study could
then examine Coati’s effectiveness in supporting both novice and expert intermit-
tent systems programmers in carrying out the more complicated interrupt-driven
paradigms from the review. The results of the user study would then inform the
design of future runtime and programming language support for concurrency on
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constrained, intermittent systems.

Persistency Models

In addition to supporting concurrent accesses to memory, larger scale batteryless
devices can, in theory, support multiple threads of execution running in parallel.
However, no work has defined a model that allows peripherals to operate in parallel on
batteryless devices. Far more work is needed to develop persistency models to allow
for parallel writes to persistent memory on batteryless devices. Tartan-Artibeus (TA-
1) took steps in this direction. TA-1 centralizes the responsibility for persisting data
from failure-agnostic peripheral subsystems on the control board. Failure-agnostic
peripherals allow TA-1 to support off-the-shelf peripherals and reduces the need for
multiple experts in failure-aware programming to build a working satellite. However,
this approach wastes any partial work performed by the peripheral subsystems and
introduces an artificial bottleneck in the application. Future work should examine the
cost of the centralized persistency approach and explore whether existing solutions
from server-class persistency models [51, 58, 78, 100, 145, 197, 206, 207, 294] could
reduce the cost of logging and re-execution in batteryless systems. The end-to-end
cost of a software persistency model in a batteryless system, however, will vary
depending on the underlying hardware of the device.

The performance of a persistency model on a batteryless device is affected
by non-volatile memory technology, energy buffer size, and communication bus
design. Several works explore the cost of persisting memory for an intermittent
execution running a single thread of execution in different memory layouts and
technologies [55, 127, 261]. Future work needs to explore how such models perform
in the presence of multiple threads persisting data as the device experiences frequent
power failures, a condition that is fundamentally different from traditional persistency
models. Prior work demonstrated that the energy buffer size determines the frequency
of power failures [57] and provided tools to characterize intermittent execution
models at design time [231]. Future work needs to go one step further and study
the interaction of runtime overhead, restore costs and energy buffer size when
multiple threads of execution are running in parallel. Finally, more work is needed
to understand the cost of a given persistency model in the context of deploying an
entire batteryless sensing and computing system. For instance, the point-to-point
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communication used in the TA-1 TAB hardware connections limit the number of
peripherals that the CTRL board can support, but it centralizes communication.
A bus protocol, e.g. CAN or multi-master I2C, would remove the fixed hardware
limit, but require either additional constraints on the peripheral subsystem software
or snooping by the failure-aware MCU. If peripheral subsystems are to remain
failure-agnostic, inter-peripheral commands with persistent side-effects (e.g. data
or operating mode) either need to be eliminated or repeated by the CTRL MCU
on reboot. Future work needs to explore the interaction of such system level design
trade-offs to define low-overhead persistency models specific to batteryless devices.

However, efficient, intuitive concurrency and persistency models are not sufficient
to support multiprogramming on batteryless devices. System designers must also
consider the effect that concurrent execution contexts have on energy costs. For
instance, multiprogramming a batteryless device requires that one application can-
not starve another by always consuming the available energy or voltage. Beyond
expanding concurrency models for batteryless systems, future work needs to improve
schedulers for batteryless systems.

Improving Schedulers

Prior work in intermittent systems begins the task of defining schedulers for battery-
less devices, but none fully controls the shared resources consumed by peripherals.
Systems like InK and Catnap [177, 284] implement simple priority scheduling schemes
for batteryless systems, but they lack the enforcement mechanisms needed to support
multiple applications. Celebi moved towards real time scheduling for preemptive
events with deadlines using a persistent timer [63, 120], but does not manage resources
other than time. Prior work in resource-constrained operating systems demonstrated
language level constraints that allow for low-overhead memory and timing isolation,
but no work has defined techniques for isolating the effects of peripherals [160].
Given the effect of peripheral power (Chapter 4) and current spikes (Chapter 5) on
concurrent code, a tight coupling emerges between the software and hardware that
makes batteryless devices difficult to program. More work in isolating applications
is necessary to allow for programs that are portable across batteryless hardware
platforms without an expert programmer in the loop.

As schedulers for intermittent systems become more advanced [177, 284], they
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would benefit from Pudu’s insights on peripheral power consumption and Culpeo’s
information on energy buffer voltage. For instance, the CatNap scheduler sleeps in
between tasks to recharge the energy buffer, but charging proceeds at a slower rate if
peripherals are accidentally left enabled. Pudu Auto-Toggle would identify peripherals
left on during sleep periods (which are typically long) and automatically disable them.
Some engineering effort would be required to integrate Pudu Auto-Toggle’s clock
with CatNap’s event timer, but this task is manageable, as described in Section 4.4.3.
Similarly, INK would benefit from Pudu-Static’s analysis to confirm that separate
tasks do not affect each other by leaving peripherals enabled unintentionally. Future
work on operating systems needs to begin by implementing the techniques proposed
in this thesis for fully capturing the state of peripheral devices and their effects on
the entire system.

Simply incorporating the power and peripheral management strategies proposed
in this thesis, however, is not sufficient for multiprogrammed workloads that may
be competing for a batteryless device’s limited resources. More work on equitable
scheduling is necessary to map hardware characteristics up to the level of the
programming model. For instance, given TA-1’s deployment in LEO, its large energy
buffer and the fact that it supports some reprogramming, TA-1 is a target for
multiprogramming. Multiprogramming TA-1 could allow scientists from different
institutions to easily deploy and test orbital edge computing workloads at once.
However, equitable scheduling in the presence of high-ESR is undefined; any workloads
that cause a voltage drop over the TA-1 energy buffer could impact others. Using
the Culpeo-R strategy from Chapter 5, a scheduler could establish the individual
voltage/energy requirements of an application online, but Culpeo does not define
how to compose applications running at the same time. Future work needs to build
on the lessons from Chapters 5 and 4 to define fair allocation strategies that allow
multiple applications to tolerate a batteryless device’s energy and power limitations.

7.3 Towards Wide-Scale System Integration

While recent work in batteryless devices is quite promising, batteryless device
usage is far from common. Beyond the hardware and operating system limitations
described above, several barriers exist to widespread batteryless device usage that
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can be overcome with a combination of engineering and research effort. First,
programming a batteryless system, as we describe in this thesis, is prohibitively
difficult. Any number of pitfalls surrounding memory consistency [168, 224, 252],
atomicity violations [176, 253] and peripheral power consumption (Chapters 4 and 5)
can occur even when using a programming model intended for intermittent execution.
Without guarantees that a batteryless device will operate within a well-defined
execution model, it is unrealistic to expect that they will see widespread adoption.
Second, batteryless, energy-harvesting devices are designed to act as the “leaf”
nodes in an edge-computing network. These nodes capture information from the
environments and ultimately relay it to a continuously powered device. However,
the vast majority of the batteryless device research has focused on getting a single
device to behave as expected. To overcome these barriers, future engineering effort
should be devoted to building a unified test bed for batteryless systems and future
research effort should define how batteryless devices operate in sensor networks.

Community-Supported Debugging Platforms

Much of the work defining intermittent execution and batteryless devices deals with
managing the software and hardware bugs that result in unintuitive differences
between batteryless and continuously powered systems. Research papers in this area
often define programming models [111, 148, 168, 176, 224, 252] or compile/runtime
checkers [178, 252] to prevent and remove bugs, but these systems tend to be
designed around single categories of bugs. As a result, the research stays siloed and
subtle interactions between runtime systems, like those exposed in Chapter 4, are
missed. The engineering challenge, then, is to build community support for a unified
debugging platform that researchers can easily extend.

A unified debugging platform needs to incorporate both software and hardware
tools, a feature that distinguishes this future work from existing approaches. For
instance, testbeds like ScEpTIC have started to incorporate multiple software-level
debugging strategies for intermittent execution in one publicly available code base [16].
ScEpTIC tests at compile time for bugs due to re-execution [168] and multiple forms
of input/output (IO) bugs [252]. ScEpTIC has no knowledge of a device’s hardware,
but incorporating work from the broader community could add hardware-awareness
at compile time. For instance, given ScEpTIC’s LLVM implementation, incorporating
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Pudu-Static’s analysis should require limited engineering effort. Beyond compile-
time tools to reveal bugs that can be identified strictly using a program’s code,
a unified debugging tool must include a hardware harness. Several works define
and build hardware harnesses that check for non-termination due to expensive
atomic blocks [56, 175, 176, 288]. Others are more general, supporting hardware
debugging [54] or environmental simulation [93, 291]. Again, the problem is that
these systems do not build on each other in a substantive way and they do not pull
in developments from research on identifying bugs at compile-time. For instance,
incorporating Pudu’s knowledge of peripheral state would make non-termination
checkers faster and more robust by defining the peripheral typestates that need to
be tested for each atomic block. Overall, future work needs to define an extensible
hardware and software platform for testing and debugging to reduce the verification
burden for batteryless systems.

Networking with Batteryless Devices

To integrate batteryless devices into a broader network, system developers must
overcome three challenges that have not been addressed simultaneously in prior work:
sensor coverage, workload partitioning and wireless communication. To incorporate
batteryless devices as part of a larger network of devices, these three challenges
must be considered together, because the final application running on the network
will be affected by them all at once. For instance, an application may run on a
hierarchy of continuously powered, battery-powered and batteryless nodes where
sensing responsibilities are fixed to their physical location, but computational loads
can be moved [214]. Prior work has addressed some of the challenges such a system
experiences when all leaf nodes are battery powered, but intermittent execution
changes the guarantees the network can make to the applications. First, sensor
coverage from batteryless nodes is not guaranteed– if harvestable energy is scarce, the
batteryless sensors will not report consistently [177]. Second, workload partitioning
on energy-harvesting devices differs from continuously powered devices. Changes in
harvestable power dynamically change the benefit of local versus remote compute [72].
Finally, establishing wireless connections between batteryless devices is non-trivial
due to the sporadic nature of intermittent execution [94]. Prior work demonstrated
techniques for handling these three challenges individually, but future research should
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focus on developing each technique within the context of the device’s role in a greater
system.

First, prior work defines the impact of sampling coverage and benefit of on-device
compute primarily for a single batteryless sensor. Systems like Capybara modify the
energy buffer size to improve coverage [57], Catnap [177] and TICS [148] use timing
to meet sampling deadlines, and Ambient Batteries [125] define a slow, predictable
coverage rate. In contrast, CIS demonstrates a technique to improve the sensing
coverage of a network of batteryless devices [179]. However, future work should
explore whether applications running on the network can tolerate gaps in sensor
coverage. If applications can reconstruct missing data, e.g. through interpolation,
the cost (e.g. power, conservative scheduling) of consistent sensing on the batteryless
device may be reduced. Similarly, intensive on-device processing improves the end-to-
end performance of individual batteryless nodes if communication is expensive [72, 98].
However, no work has explored workload partitioning for batteryless devices if
communication is inexpensive [164] or varies over time. Future work should examine
the benefit of on-device processing in batteryless systems given topologies that reflect
use cases like instrumented “smart”-buildings [45]. Wireless communication energy
costs will have a substantial impact on sensing and computing decisions in future
systems.

Prior work demonstrated protocols for efficient wireless communication to a
single device [255] or between two batteryless devices [63] and simulated networks of
batteryless devices [169]. Recent work has made exciting strides in communicating
between devices executing intermittently [94, 95, 238] and re-implementing existing
protocols for intermittent execution [65]. However, no work has defined how battery-
less devices should communicate in a heterogeneous network. Future work needs to
develop strategies that consider a mix of battery powered and batteryless nodes, as
well as a hierarchy of batteryless nodes (e.g. TA-1 versus a CRFID). The resulting
communication protocols should leverage batteryless devices to capture and process
critical data while maintaining high availability and lifetimes for the battery-powered
devices in the network.

The overall question for future work is how to leverage the last 10 years of
development in batteryless devices to build large scale networks that judiciously
include batteryless devices. The value in batteryless devices in such a network will
be their ability to access peripherals to capture, process and transfer information
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from specific locations. The tools in this thesis for managing peripherals and their
resulting power consumption assist in the development of such impactful batteryless
applications.

7.4 Recurring Themes

Moving away from battery powered devices allows embedded systems to reach new
targets for size, weight, cost, temperature range and environmental constraints [32,
143]. A major challenge for the batteryless devices that take on these emerging
applications will be supporting a diverse set of peripheral sensors and actuators so that
these devices can continue to gather critical data. A large set of explicit and implicit
state shared between peripherals and the MCU is cleared on every reboot from the
peripheral’s perspective. As we show in this thesis, managing shared state across
power failures is error prone. Through programming models implemented at compile-
time and run-time, this thesis reduces the programmer burden of incorporating
peripherals into batteryless applications by managing concurrent peripheral state
changes and power.

Shared State Management for Peripherals

To effectively manage the shared data and power state that peripherals change
concurrently with the MCU, the space of what is allowed to change needs to be
limited. Chapter 3 explored how to strategically limit the shared data between
peripheral triggered ISRs and the MCU. By splitting events into top and bottom
halves, Coati removed concurrency control bugs that cause prior approaches to
fail, and did so with minimal overhead in both programmer effort and runtime.
Chapter 4 handled changes to peripheral operating power that ultimately affect
the performance of all code running on the batteryless device. Again, bugs arise
because too many state changes are possible. If a peripheral may be at multiple
operating power levels at the same point in the code, there is no guarantee that the
programmer has tested both. Pudu-Static introduces compile-time analysis feedback
to work with the programmer to limit the space of operating modes at a given point
in the program to those that the programmer actually intended. Programmers use
Pudu-Static’s reports of peripheral state changes (which point to specific lines of code
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in the application) to remove unintended changes or affirm that multiple operating
modes have been confirmed. We demonstrate the importance of limiting the interface
between peripherals and failure-aware control logic in Tartan-Artibeus. The restricted
communication allows the CTRL module to manage failure-agnostic peripherals and
ensure predictable application behavior. Overall, limiting the changes to shared
state before the program runs simplifies peripheral management with little runtime
overhead, which is essential for highly constrained batteryless devices. However,
viewing the shared state with peripherals strictly as data that can reside in the
MCU’s persistent memory is misleading. Peripheral power changes affect the energy
buffer status for the entire device.

Power Management

The challenge with managing peripheral power is that its relationship to energy and
energy buffer voltage are based on time. The time a peripheral is on determines the
energy it consumes, and the time between when a peripheral is powered off and when
a task ends determines the measured state of the energy buffer. Ultimately, due
to input-dependent control flow decisions, statically predicting time, e.g. between
peripheral accesses, in a batteryless device is inaccurate, highly limiting to the
programming model, or both. However, dynamic approaches with well defined
interfaces that push computational complexity to compile time and use the results
at runtime can capture time with minimal overhead.

In Chapter 4, Pudu-Dynamic relies on pre-computed break-even times to de-
termine when toggling a peripheral will be beneficial. At runtime, Pudu-Dynamic
manages the toggling table to capture dynamic operation, but ultimately the func-
tion to determine whether or not to toggle is just a single look up and comparison.
Pudu-Dynamic can take advantage of timing hardware to resolve ambiguities about
the time between peripheral accesses and improve application performance with little
programmer involvement. Similarly, Chapter 5 touches on the tradeoffs of dynami-
cally versus statically estimating safe starting voltages by comparing Culpeo-PG and
Culpeo-R. Culpeo-R compensates for changes in the energy buffer characteristics and
application timing changes by estimating V safe at runtime. By dynamically reading
from the ADC and statically calculating constants for the V safe equations, Culpeo-R
balances the on-device compute with the accuracy of in situ power system measure-
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ments. The need to dynamically react to changes in peripheral power informed the
design of TA-1. Peripheral subsystems’ power is controlled by the failure aware
MCU via single GPIO triggered switches. The central MCU does not need to rely
on pre-profiling to fully characterize the subsystem behavior– the hardware exists to
allow the MCU to monitor the energy buffer level and quickly disable misbehaving
subsystems. The case study in building TA-1 justifies this thesis’ peripheral-first
approach to system support for batteryless devices.
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