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Abstract

With the global population on the rise, increasing energy demands, and resulting
climate change, the future of our energy infrastructure has become one of society’s
most pressing problems. Decreasing prices of renewable energy offers a promising
path towards a sustainable future. However, the sun does not always shine nor the
wind always blows, and addressing how we store intermittent energy sources will play
a key role in our transition. One approach is to store energy in chemical forms.
Unfortunately, these processes often rely on expensive rare metal catalysts, making
them ill suited for commercial scale. The discovery of catalysts that can efficiently,
selectively, and economically take part in these processes will be critical for society.

This thesis is centered around building generalizable machine learning (ML) mod-
els that span chemical and material space for catalyst discovery. A vital component in
achieving this includes the curation of large-scale catalyst datasets. We first present
how we can leverage active learning methods and physical biases to build ML models
in the low data regime to accelerate density functional theory (DFT). We then present
the largest catalyst dataset of its kind, Open Catalyst 2020 (OC20), accompanied by
baseline models and challenges to stimulate research in the catalysis and ML commu-
nities. With this dataset we explore the extent to which building a general purpose
machine learning model is feasible. We then develop SpinConv, a graph neural net-
work (GNN) that uniquely captures 3D atomic information to improve predictions on
OC20. Next, we expand OC20 to present the Open Catalyst 2022 (OC22) dataset,
consisting of oxide materials and more general purpose tasks. We also explore the ex-
tent existing datasets complement one another through alternative training strategies.
Lastly, we discuss some of the challenges, trends, and general findings the community
and ourselves have faced in building generalizable machine learning models.

Thesis Supervisor: Zachary W. Ulissi
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation: Renewable energy storage

The push towards a sustainable energy future has become a global focus as the eco-

logical and economical consequences of climate change continue to rise [175]. The

transition away from a fossil-fuel reliant society will require alternatives to not just

electricity generation, but production of society’s most common fuels and chemicals

[236]. As the cost of renewable energy sources (solar, wind, hydro, etc.) decreases,

investments in these technologies are becoming more common [186, 98]. By 2050,

the nation’s electricity generation from renewable energy sources is expected to dou-

ble, comprising 42% of the total electricity generation - far greater than today’s 21%

[62]. However, the sun does not always shine nor the wind always blows. Naively

scaling renewable energy sources may result in excess, wasted, generation at times

of low demand (Figure 1-1). While storage solutions like batteries and pumped hy-

dro are available, they are often limited by their costs, scalability, and geographical

constraints [298]. To ensure the successful transition to a sustainable future, the

development of a variety of energy storage methods will be critical.

Electrochemical processes offer a promising route by storing energy chemically

(Figure 1-2) [236, 207, 121, 281, 91, 163, 249]. Energy storage in the form of hydrogen

or small hydrocarbons are advantageous in their ability to scale, be transported,

and make use of existing infrastructure. In coupling such processes with renewable
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Figure 1-1: The challenge with naively scaling renewable energy sources. In times
of peak generation, excess energy is going to waste as high-demand often occurs at
a different time. Solutions are necessary to store energy at times of peak generation
to be used at times of peak demand. Data obtained from California ISO[37] for an
ordinary summer day (August 6, 2020). Adapted from Zitnick, L., Shuaibi, M. et al.
[298].

Figure 1-2: Electrochemical cells offer a potential alternative to energy storage. Dur-
ing times of excess generation, electricity can be used to drive chemical reactions to
produce meaningful fuels and products. For example, electricity can split water into
hydrogen and oxygen, storing hydrogen for fuels at a later time. Stored hydrogen can
also be used to react harmful CO2 into hydrocarbon fuels.

38



energy, essential products are produced from fossil-fuel free sources while also offering

a means to store the intermittency of renewable energy sources. However, renewable

energy technologies, such as electrochemical and fuel cells, are currently limited by

the availability of catalysts that can efficiently, selectively, and economically perform

the necessary reactions [236].

1.2 Computational tools for catalyst screening

The discovery of new catalysts has traditionally been done by experiments. Through

experimentation, important catalyst properties including reactivity, stability, and se-

lectivity can be directly measured. However, given the number of unique material

combinations, the search space for new catalysts can quickly exceed billions or even

trillions of possibilities. Although effective, experimentation is often limited to a

handful of systems per month, making them infeasible for the large scale screening

desired.

Alongside advancements in high performance computing, quantum mechanical

tools such as Density Functional Theory (DFT) have aided in accelerating the cat-

alyst discovery process [192]. With DFT, molecular systems can be simulated and

studied on catalyst surfaces. While experimental properties are not directly available,

intermediate properties like adsorption energy can serve as meaningful descriptors for

chemical reaction rates [40, 298, 183, 185]. Despite the success and progress quantum

mechanics has allowed researches to make [120, 210, 288, 142, 215, 196], tools like

DFT scale very poorly - 𝑂(𝑁3) in the number of electrons, or worse for more accu-

rate theories. With simulations taking anywhere on the order of hours to days, more

efficient methods are still necessary.

“Machine learning potentials” (MLPs) have emerged in the past decade to bridge

the gap between DFT-level accuracy and traditional force-field-level efficiency [11,

222, 174, 198, 27, 125, 21]. Trained on DFT or other quantum mechanical data,

MLPs take in an atomic configuration and return a system total energy and per-

atom forces. MLP outputs allow one to study the energy landscape, or Potential
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Figure 1-3: (a) A typical machine learning potential (MLP) workflow involves a trans-
formation of coordinates to capture symmetry invariances before being used in a ML
model. (b) Features commonly contain two and three-body interactions in their rep-
resentations. Cutoff radii are employed to describe the local environment of any given
atom. (c) An example MLP, Behler-Parinello Neural Network[29], contains element
specific neural networks contributing to the total energy of the system; obtained from
[26].

Energy Surface (PES), of an atomic system orders of magnitude faster than first-

principles methods. A key step in the development and success of MLPs is repre-

senting the atomic system into meaningful features [125, 29]. Representations must

be constructed while maintaining physical symmetries of rotation and translation in-

variance. A common representation may include explicit two-body and three-body

terms (Figure 1-3b) [232, 133]. Hand-crafting representations is often a tricky and

non-trivial task that may not always generalize to new atomic environments; a rep-

resentation for one system may not be sufficient for another. As MLPs are entirely

data-driven, their ability to generalize is limited by the diversity and quality of their

training dataset. Achieving a generalizable machine learning potential, that accu-

rately predicts catalyst properties across chemical and material space, will require

answering two important questions - how do we curate diverse datasets to model any
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arbitrary catalyst chemistry and how do we best represent and model atomic systems?

1.3 Graph Neural Networks

Figure 1-4: (left) A graph neural network first constructs a graph from the raw atomic
structure, embedding atoms as nodes and bonds as edges, each with corresponding
features. The graph goes through several message passing layers to arrive at (right)
a final representation that is then fed through a simple neural network to arrive at
the desired property.

A new class of models, graph neural networks (GNNs), have grown in popular-

ity for molecular applications. Models of this sort have been used to predict crystal

properties [286] and study small organic molecules [232, 133, 130, 25]. Here, MLPs

no longer need to rely on hand-crafted features to accurately represent the atomic

environment. Instead, graphs, almost naturally, are constructed with atoms as nodes

and interactions between atoms as edges. Node representations are updated based

off “messages” exchanged by neighboring nodes, referred to as “message passing” [79]

(Figure 1-4). This process is repeated for several iterations, or interaction layers.

At each interaction layer, messages are sent between nodes, aggregated, and used to

update the node’s representation. Nodes are updated in parallel, with messages cor-

responding to some non-linear function of the nodes’ representations. More formally,

for an atom 𝑣, the inbound message at interaction layer 𝑡 is expressed as:

𝑚𝑡+1
𝑣 =

𝑁𝑣
𝑛𝑔ℎ∑︁
𝑤

𝑀𝑡(ℎ
𝑡
𝑣, ℎ

𝑡
𝑤, 𝑒𝑣𝑤) (1.1)

Where ℎ is the atomic representation, 𝑤 a neighboring atom, 𝑒𝑣𝑤 the edge between

nodes 𝑣 and 𝑤, 𝑁 𝑣
𝑛𝑔ℎ the atoms in the neighborhood of 𝑣, and 𝑀𝑡 the parameterized
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message function to be learned. The atomic representation ℎ𝑣 is then updated based

off a learnable update function, 𝑈 :

ℎ𝑡+1
𝑣 = 𝑈(ℎ𝑡

𝑣,𝑚
𝑡+1
𝑣 ) (1.2)

After 𝑇 interaction layers, 𝑁 atomic representations are fed into a readout, or

output function, 𝑅, for the final property prediction, 𝑃 :

𝑃 =
𝑁∑︁
𝑣

𝑅(ℎ𝑇
𝑣 ) (1.3)

(a)

(b)

(c)

Figure 1-5: GNNs continue to grow in complexity to better model atomic systems.
Models primarily differ in the ways they update and exchange messages between
nodes. Both (a) CGCNN [286] and (b) SchNet [232] present early architectures only
capturing two-body interactions. (c) DimeNet[133] builds on this by also capturing
angular interactions in its messages. Figures obtained directly from Xie et al.[286],
Schütt et al.[232], Gasteiger et al.[133].

When building MLPs, the property desired is the total energy 𝐸. Per-atom forces

can then be obtained through the gradient with respect to atomic positions:

𝐹𝑖 = −𝑑�̂�

𝑑x𝑖

(1.4)
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GNN architectures often distinguish themselves in their node/edge representations

and message, update, and readout functions. Models often involve highly parame-

terized, complex network architectures and require substantial amounts of data to

be successful (Figure 1-5). As a result, GNNs are able to achieve state of the art

performances on small molecule datasets and are well suited for catalyst applications.

The development of GNNs for atomistic applications, however, has been primarily

limited to small organic molecules [48, 212, 231, 130, 132, 25, 206]. There lacks a

thorough exploration of GNNs for catalyst applications. Developed for crystalline

materials, Crystal Graph Convolution Neural Network (CGCNN) [286], continues to

be a popular baseline for material applications despite the development of stronger

baselines for small molecules [148, 190, 217]. While the development of GNNs for small

molecules has led to notable improvements, catalyst systems are often much larger

and more complex in nature. While models like SchNet[232] and DimeNet++[133]

explicitly capture bonded and angular interactions, they rely on message passing

to implicitly capture higher order interactions (e.g. dihedral or long range). This

can pose a challenge for large catalyst systems to sufficiently capture the full 3D

environment. Additionally, the prediction of gradient-derived forces often corresponds

to a 2-4x overhead in compute and may be constraining the model’s predictive ability

rather than assisting it. While the trends and design choices made for small molecules

have been well documented, the catalyst community lacks well established baselines

and benchmarks for building accurate models. Only then are we able to study model

trends and develop more efficient and expressive architectures for catalysis.

1.4 Datasets

At the core of any ML approach is the quality and magnitude of reliable training data.

In the context of atomistic modeling, training data often refers to semi-empirical or

quantum mechanical data (e.g. DFTB[200], DFT[192], CCSD(T)[209], etc.). How-

ever, models developed on finite datasets are limited in their applications to similar

systems. For example, a model trained on only Copper-based materials would not
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Dataset Description Elements Avg. size Train set size
MD17[48] Eight separate molecules H, C, N, O 12.5 (9-21) 8 × 1,000
ISO17[234, 232, 212] C7O2H10 isomers H, C, O 19 404,000
SN2[270] Methyl halides, halide ions H, C, F, Cl, Br, I 5.4 (2-6) 400,000
ANI-1x[245] Selected MD samples H, C, N, O 15.3 (2-63) 4,956,005
QM7-X[107] Small molecules H, C, N, O, S, Cl 16.7 (4-23) 4,175,037
COLL[131] Molecule collisions H, C, O 10.2 (2-26) 120,000

Table 1.1: A comparison of small organic molecular datasets. Sizeable datasets aided
in the development and application of GNNs for molecular simulations. However,
datasets are limited in their chemical diversity and atomic size, prohibiting the appli-
cations to out of domain applications like material and catalyst discovery. Adapted
from Gasteiger, J., Shuaibi, M., et al.[76]

be expected to perform well on small hydrocarbons. Additionally, as GNNs grow

in complexity, datasets need to be sufficiently large enough for highly parameterized

models to learn meaningful atomic representations. The advancements in GNNs for

small organic molecules can be partly attributed to the availability of such datasets

(Table 1.1). Despite the sizes of the mentioned datasets, their chemical diversity is

often limited to only a handful of elements - H, C, N, O; inhibiting their use for

catalyst applications, which require supervision on a much larger set of elements.

Datasets created for catalysis suffer in both their chemical diversity and size. With

datasets spanning as little as ∼100 [38, 2, 160, 179, 5] to at most ∼100,000 [161, 265,

283], GNNs have often been overlooked in lieu of smaller, more simple architectures

[125, 21]. More troubling, datasets being curated for a range of chemistries using

different computational tools (i.e. DFT settings) makes it challenging to centralize

a diverse dataset for model development. As a result, the research community has

relied on self-curated datasets to develop models that are only relevant to their specific

applications. The primary challenge in building a general purpose machine learning

potential is the availability of large, diverse catalyst datasets spanning chemical and

material space.
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1.5 Active Learning

One of the challenges in building reliable MLPs is the availability of sufficient training

data. This issue is particularly emphasized when studying new systems, where no

data may be available. Active learning (AL), a branch of machine learning, can aid

in such regimes as it explores how to systematically select data points to improve

the learning algorithm (Figure 1-6). Rather than arbitrarily curating datasets, AL

can be used to select training data points from a pool of candidates [238]. On-the-fly

learning, or online active learning (OAL), has shown particular potential for molecular

applications [272, 116, 30]. In such a framework, models are updated on-the-fly as

the simulation evolves. MLP predictions are used when the model is confident in its

prediction, otherwise a quantum mechanical call is made. Calls made to the oracle

(e.g. DFT) are then added to the training data, the model is retrained, and the

simulation proceeds - all with no terminations to the simulation. Since the cost of

DFT is so high, AL is well-suited for accelerating catalyst discovery.

machine learning
model

L
U

labeled
training set

unlabeled pool

oracle (e.g., human annotator)

learn a model

select queries

Figure 1-6: Overview of an active learning framework. An initial machine learning
model samples data from an unlabeled pool based off a variety of querying strategies.
Sampled candidates are evaluated by an oracle and added to the training dataset.
The ML model is then retrained and the process repeated until a desired accuracy is
achieved. Figure obtained directly from Settles [238].

The development of generalizable machine learning models, by definition, would

alleviate the challenges of studying unseen systems. However, the curation of datasets

that span all of chemical and material space is impossible. In such instances, AL
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methods can help accelerate the screening process while still minimizing computa-

tional costs. AL frameworks developed for molecular applications have traditionally

relied on Gaussian Processes (GP) [272, 21]. While effective in the small data regime,

GPs can scale rather poorly [22]. On the other hand, neural networks scale more

efficiently and have seen significant architectural developments in the last decade.

Bridging the gap between more complex architectures and AL frameworks has the

potential to improve catalyst discovery workflows by filling in the gaps of generalizable

modeling efforts.

1.6 Research objective

The goal of my thesis research is to accelerate the catalyst discovery process through

generalizable machine learning models and methods. I accomplish this through the

creation of large-scale datasets that span chemical and material space. Accompanying

these datasets, I formulate challenges relevant to every-day catalyst tasks and present

baseline models to bootstrap community engagement. Through the curation of these

datasets, I develop new model architectures, methods, and strategies to improve

property predictions across catalyst chemistry.
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Chapter 2

Enabling robust offline active learning

for machine learning potentials using

simple physics-based priors

This work originally appeared as: Shuaibi, M., Sivakumar, S., Chen, R.Q. and Ulissi,

Z.W., 2020. Enabling robust offline active learning for machine learning potentials

using simple physics-based priors. Machine Learning: Science and Technology, 2(2),

p.025007. It has been edited to include the supplementary information in Appendix A.

2.1 Abstract

Machine learning surrogate models for quantum mechanical simulations has enabled

the field to efficiently and accurately study material and molecular systems. Devel-

oped models typically rely on a substantial amount of data to make reliable predic-

tions of the potential energy landscape or careful active learning and uncertainty esti-

mates. When starting with small datasets, convergence of active learning approaches

is a major outstanding challenge which limited most demonstrations to online active

learning. In this work we demonstrate a ∆-machine learning approach that enables

stable convergence in offline active learning strategies by avoiding unphysical config-

urations with initial datasets as little as a single data point. We demonstrate our
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framework’s capabilities on a structural relaxation, transition state calculation, and

molecular dynamics simulation, with the number of first principle calculations be-

ing cut down anywhere from 70-90%. The approach is incorporated and developed

alongside AMPtorch, an open-source machine learning potential package, along with

interactive Google Colab notebook examples.

2.2 Introduction

The last decade has seen a surge in machine learning applications to material science,

physics, and chemistry [11, 222, 174, 198, 27, 125, 21]. Characterizing a molecular

system’s potential energy surface (PES) has been a crucial step to the development of

new catalysts and materials. Structure relaxation, molecular dynamics, and transition

state calculations rely almost entirely on an accurate PES to serve their functions.

Machine Learning Potential (MLP)s have demonstrated chemical accuracy at orders

of magnitude faster computation times than traditional ab-initio methods including

density functional theory (DFT) and coupled cluster single double triple (CCSDT)

[300]. However, these demonstrations have generally required large datasets and

careful uncertainty estimates. More importantly, the models developed have struggled

to generalize to new systems and faced convergence issues when adding data, making

the practicality of their day-to-day applications challenging [44, 170, 27, 227]. The

potential of active learning in molecular simulations has not been fully realized due

to convergence and implementation challenges.

The careful curation of training datasets for accurate molecular simulations has

recently given way to active learning [272, 116, 73, 72]. Active learning (AL) is the

branch of machine learning concerned with systematically querying data points to

be be part of the training set [238]. The iterative process queries new data, trains a

model, and repeats until a model performance is achieved. AL methods are particu-

larly useful when the cost of querying data is substantial - as in the case of computing

DFT. There are two main classes of strategies with relevance to molecular simula-

tions. In Online-AL, configurations are generated sequentially using a MLP and for
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each a decision is made whether to accept the estimate, perhaps using an uncertainty

estimate. In Offline-AL, a pool of candidates is generated and a decision is made

which of the pool to add to the training set.

(a) (b) (c)

Figure 2-1: A traditional Behler-Parinello neural network (BPNN) trained to replicate
the potential energy surface (PES) of a Cu-Cu bond with (a) a dataset spanning
the PES and (b) a limited dataset trained with and without a Morse prior. (c)
The minimum pair-wise distance of a structure relaxation carried out with a BPNN
model, with and without the Morse prior. Relative to the covalent radius of Cu, our
model consistently predicts more physically-consistent configurations as compared to
the more unstable BPNN. Error bars represent the 95% confidence interval.

Although there are many strategies available for both Online-AL and Offline-

AL, both commonly assume that all generated candidates are feasible to be queried

and that adding data will not reduce accuracy on previous training data. Both of

these assumptions are difficult with MLP: DFT often fails to converge on far-from-

equilibrium structures, and many MLP suffer if even a small number of configurations

with large energies/forces are added to the training dataset [73]. These concerns are

especially problematic when dealing with little to no initial data. The most common

approach to address these challenges is to carefully monitor uncertainty in the active

learning process and prevent extrapolation to unphysical regions. This strategy is

relatively straightforward to implement in Online-AL: if the uncertainty estimate is

below a threshold, accept the prediction, otherwise run the DFT calculations. If

the step size is small enough, the new configuration should be not so different from

configurations in the training set. However, in Offline-AL it is difficult to ensure the

queried configurations will converge with DFT and won’t contaminate the dataset
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once added. Instead of solving this problem, we show that it is possible to mostly fix

the underlying issues leading to unrealistic configurations.

In this work, we demonstrate that stable convergence in Offline-AL with MLP is

possible by adding simple repulsive potentials and robust training procedures. This

approach is implemented for the common combination of Behler-Parinello MLP fin-

gerprints with neural network atomic energy models [29]. We show that a ∆-ML

approach with a base pairwise Morse potential and linear mixing rules is capable of

sufficiently capturing the repulsive interactions between atoms that lead to DFT er-

rors. Since this Morse potential is not responsible for capturing the full potential, the

parameterization only needs to be done once for each element. We demonstrate this

approach for several types of calculations common in catalysis: structure relaxations,

molecular dynamics, and transition state calculations. In each case, convergence with

the addition of training data is essentially impossible with the base potential and well

behaved with the ∆-ML approach. In most cases this process allows for a reduction

of 70-90% in the number of DFT single-point evaluations necessary. This process

is further improved using standard neural network training approaches in the ML

community to reduce the impact of random initial weights on small datasets. All of

these are demonstrated in open-source and accessible AMPtorch GitHub repository

with Google Colab ASE examples [240, 243].

2.3 Methods

The ML community continues to make advancements in the optimization and imple-

mentation of neural network based models [159, 65, 193]. To leverage some of these

approaches, we employ a Behler-Parinello neural network (BPNN). BPNNs construct

element specific neural networks with the energy of the system the sum of atomic en-

ergy contributions. Per-atom forces are directly obtained from the negative gradient

of the energy with respect to the atomic positions. We refer the readers to several re-

views for a more detailed discussion on the BPNN model [29, 27, 125]. Additionally,

neural network based models don’t suffer the same kernel selection and scalability
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challenges that can come with Gaussian processes (GP) and other bayesian models

[22]. Training neural networks, however, can be an extremely challenging task we

hope to address in this work.

In the presence of an abundance of data, BPNN-like models have shown great suc-

cess in replicating the PES of various systems [125, 198, 230]. In the small data limit,

however, neural network based models are unable to successfully characterize the en-

ergy surface, Figure 2-1b. More notably, model predictions are entirely “physics-free”,

such that simple repulsive interactions are only ever learned by the model once enough

data has been provided. As a result, a considerable amount of time may be wasted

learning simple, widely understood, characteristics of the PES. Hybrid physics-based

machine learning models can provide an important path forward to making reliable,

physically-consistent discoveries in the sciences [282, 123]. To address this, we incor-

porate a ∆-ML approach [212, 297] to learn the correction, 𝐸𝑁𝑁 , between a simple

Morse potential, ∆𝐸𝑚𝑜𝑟𝑠𝑒, and ab-initio level theory - namely, DFT, ∆𝐸𝐷𝐹𝑇 (x):

∆𝐸𝐷𝐹𝑇 (x) = 𝐸𝐷𝐹𝑇 (x) − 𝐸𝐷𝐹𝑇 (𝑥𝑟𝑒𝑓 ) (2.1)

∆𝐸𝑚𝑜𝑟𝑠𝑒(x) = 𝐸𝑚𝑜𝑟𝑠𝑒(x) − 𝐸𝑚𝑜𝑟𝑠𝑒(𝑥𝑟𝑒𝑓 ) (2.2)

𝐸𝑁𝑁(x) = ∆𝐸𝐷𝐹𝑇 (x) − ∆𝐸𝑚𝑜𝑟𝑠𝑒(x) (2.3)

𝐸𝑚𝑜𝑟𝑠𝑒+𝑁𝑁(x) = ∆𝐸𝑚𝑜𝑟𝑠𝑒(x) + 𝐸𝐷𝐹𝑇 (𝑥𝑟𝑒𝑓 ) + 𝐸𝑁𝑁(x) (2.4)

Where 𝐸𝐷𝐹𝑇 (𝑥𝑟𝑒𝑓 ) and 𝐸𝑚𝑜𝑟𝑠𝑒(𝑥𝑟𝑒𝑓 ) correspond to reference energies necessary to

correct for differences in their absolute energies. Reference energies are computed

from a same arbitrary structure, 𝑥𝑟𝑒𝑓 ; the dataset’s first structure was used in our

applications. Per-element parameters of the Morse potential, 𝐷𝑒, 𝑟𝑒, and 𝑎, are

fitted to DFT data a priori. A more detailed description of the fitting procedure is

included in Appendix A. By leveraging the Morse potential as the backbone to the

model, the ML component is allowed to learn the remaining functional form while

still capturing physics-based repulsive interactions previously missed. Additionally,

learning a correction can allow the neural network to learn a much smoother function

51



than the underlying PES, improving training stability and convergence.
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Figure 2-2: Online and Offline active learning frameworks to accelerate molecular
simulations. Left: Online-AL. At each time step, our ML model makes a prediction
of the energy and forces and assesses the uncertainty of its estimate. If confident,
the ML results are used to take a step in the molecular simulation. Otherwise, a
DFT call is made, added to a database, and the model retrained. Right: Proposed
Offline-AL. (a) An initial training dataset is used to train the ML model; (b) the
trained ML model runs the atomistic simulation of interest; (c) termination if con-
verged, otherwise, the generated data is stored as a pool of potential candidates; (d)
a query strategy identifies what points to be added to the training set; (e) ab-initio
calculations are performed on selected candidates; (f) queried points are added to
the training set. Repeat until convergence is reached.

We illustrate the benefits of this simple Morse potential by running a structure

relaxation of carbon on copper (C/Cu) with our model trained on a single image (Fig-

ure 2-1c). The minimum pair-wise distance of the resulting trajectory are compared

to that not employing a morse potential. Our model consistently predicts configura-

tions above the covalent radius of copper, a good indication repulsive forces are being

captured. On the other hand, a traditional BPNN shows wide variations while on

average predicting configurations well below the more stable covalent radius.

The fitting of MLPs is an important process in our AL framework, as they are

responsible for generating candidates for training data. A poorly fit MLP may gener-

ate unfeasible candidates that DFT can not converge on. This is especially true when

working without a physics-based potential. Working within the small data regime

allows us to leverage quasi-newton optimizers, namely LBFGS. LBFGS and other

second order optimizers provides us with improved convergence of our model training

over standard first order methods such as SGD and Adam. This advantage, however,

is only really feasible in the small data limit where the computational cost of such
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methods can be afforded. Additionally, we incorporate a cosine annealing learning

rate scheduler with warm restarts [159] to aid in the convergence of the Offline-AL

framework. A more detailed comparison can be found in Appendix A.

Similar to previous works [272, 116, 116], our Online-AL framework begins with lit-

tle to no data and must identify the right points to query and improve the model over

the course of a molecular simulation (Figure 2-2). Rather than relying on kernel-based

models, our Online-AL framework utilizes the proposed physics-coupled BPNN. We

incorporate bootstrap-ensembling, or bagging, in order to quantify our model’s uncer-

tainty. Bagging involves training multiple, randomly initialized, independent models

with training sets randomly sampled, with replacement, from an original dataset

[199]. Predictions and uncertainty estimations are then calculated from the ensemble

statistics.

An offline active learning can offer model and computational advantages over

Online-AL frameworks. Rather than making query decisions in a dynamic process,

we present a method to select from a pool of generated candidates. Prior works have

incorporated offline active learning to various extents. Sivaraman, et al. [244] used

active learning to downselect from an existing hafnium dioxide AIMD simulation to

train a GAP model. Novikov, et al. [184] used active learning and Moment Tensor

Potentials (MTP) to run atomistic simulations. We show, however, that a standard

neural network is unable to follow a similar framework without careful modifications.

Rossi, et al. [220] use an ensemble of neural networks to estimate uncertainty along

an atomistic simulation. Having begun from an extensively sampled training dataset,

their need for retraining was avoided, a problem we address for neural networks in the

small data regime. While the use of active learning has shown incredible success in

training models with fractions of the dataset, it assumes such datasets exist to begin

with. We propose a framework to enable accurate atomistic simulations beginning

with as little as a single data point. We accomplish this by iteratively running an

ML-driven molecular simulation. After each iteration, a querying strategy samples

from the generated trajectory. Queried points are then evaluated with DFT, added

to an original dataset, and the ML model retrained (Figure 2-2). The process is
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repeated until a defined convergence criteria is met. Despite the ML model resulting

in inaccurate simulations early on, diverse, informative configurations are generated

to train the ML model. In dealing with a pool of query candidates, the framework

allows us to explore alternative querying strategies other than uncertainty estimates

of Online-AL [238]. The reliance on uncertainty estimates can pose more fundamental

questions surrounding energy conservation from a retrained potential [184] and how

trustworthy a model’s estimates really are [265].

We demonstrate the proposed framework on several common catalysis applica-

tions: structure relaxations, transition-state calculations, and molecular dynamics

with system sizes between ∼12-30 atoms. A random sample query strategy is intro-

duced in the Offline-AL schemes to demonstrate the effectiveness of even the simplest

of query strategies over Online-AL. More problem-specific query strategies are pro-

posed for structural relaxations and transition-state calculations, further improving

the convergence. To show the generality of this approach in small-data applications,

we also use two common DFT packages - Vienna Ab initio Simulation Package (VASP)

and Quantum Espresso (QE) [137, 138, 78]. The use of QE allows for interactive and

open demonstrations of this approach. Several Google Colab notebooks have been

included in Appendix A allowing users to easily experiment and explore new systems

with AMPtorch and QE without needing to locally install and manage dependencies.

2.4 Results and discussion

A structural relaxation is performed for C/Cu(100) with cell size 2×2×3. An initial

guess of 3Å from the surface is made for the adsorbate. Periodic boundary conditions

are applied in the x and y directions and the last slab layer is fixed from relaxations.

The training dataset begins with a single initial structure.

Performance is measured by the final structure and energy mean-absolute-errors

(MAE). A random sample query strategy selects configurations from the generated

relaxations to be queried. We run the Offline-AL framework under a variety of batch-

ing scenarios, terminating after N iterations, sampling M configurations per iteration,
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Batching Scenario

Iterations
Samples

per
iteration

Energy
MAE
(eV)

Structure
MAE (Å)

20 1 0.0063 0.0037
10 2 0.0069 0.0063
5 4 0.0080 0.0067

Table 2.1: Comparison of different offline active learning batching scenarios on the
structural relaxation of C/Cu(100). At each iteration, a varying number of queries
are randomly made from the generated relaxation. A tradeoff in performance and
the number of samples per iteration is observed for a fixed total number of DFT calls
= 20. All models trained here incorporated the proposed Morse prior.

for an arbitrary total of 𝑁𝑀 = 20 DFT calls. Results are summarized in Table 2.1.

Under the above random query strategy, systematic termination of the Offline-AL

loop is quite heuristic. To address this, we incorporate alternative query and termi-

nation strategies - quasi-random and uncertainty sampling. In quasi-random, at each

iteration, in addition to a random configuration, the predicted relaxed structure is

also queried. Similarly, uncertainty sampling samples the k-most uncertain points in

addition to the relaxed structure. In both strategies, if the predicted relaxed struc-

ture’s max per-atom force, as evaluated by DFT, is below the optimizer’s convergence

criteria, the AL loop is terminated. Otherwise, the configurations are added to the

original dataset, and the framework cycles. In querying the model’s predicted relaxed

structure we are assured in our framework’s ability to accurately reach a local minima.

We compare the performance of this Offline-AL scheme and Online-AL with and

without the ∆-ML in Table 2.2. Offline-AL and Online-AL tolerances correspond

to the max per-atom force termination criteria and max force variance tolerated

by the ensemble, respectively. Force termination criteria of 0.03 and 0.05 eV/Å are

compared to explore the tradeoff between accuracy and number of DFT calls. Online-

AL was empirically set to query a DFT call when the ensemble based force uncertainty

reached above a threshold of 0.05 eV/Å. The energy and structure MAE associated

with the system’s initial structure is 2.82 eV and 0.15 Å, respectively. Our best

performing framework - Offline-AL with ∆-ML (0.03 eV/Å), reported average energy

and structure MAEs of 0.0039 eV and 0.0032 Å with 17 total DFT calls - a 66.7%
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Framework
(tolerance) MLP

Energy
MAE
(eV)

Structure
MAE
(Å)

DFT
calls

DFT - - - 51
Offline-AL

(0.03
eV/Å)

BPNN
∆-ML 0.0039 0.0032 17

Offline-AL
(0.05
eV/Å)

BPNN
∆-ML 0.0049 0.0059 15

Offline-AL
(0.05
eV/Å)

BPNN
only does not converge

Online-AL
(0.05
eV/Å)

BPNN
∆-ML 0.0073 0.0107 30

Online-AL
(0.05
eV/Å)

BPNN
only 0.2884 0.0263 22

Table 2.2: Summary of the various strategies’ performance on the structural relax-
ation of C/Cu(100). The effects of the Morse prior on the convergence of both the
offline and online active learning are also shown. The querying strategy employed by
the Offline-AL framework relies on a quasi-random strategy, additionally sampling
and assessing convergence on the framework’s generated relaxed structure.

Query
Strategy

Energy
MAE (eV)

Structure
MAE (Å)

DFT
calls

Random 0.0063 0.0037 20
Quasi-

Random 0.0049 0.0059 15

Uncertainty
Sampling 0.0061 0.0050 19

Table 2.3: Comparison of different offline active learning query strategies on the
structural relaxation of C/Cu(100). All models trained here incorporated the pro-
posed Morse prior.
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reduction. Without the inclusion of the Morse prior, a standard BPNN was unable

to converge, generating configurations that DFT was unable to evaluate in almost all

our experiments. We compare several query strategies in Table 2.3, demonstrating

similar success in all scenarios.

Next, we demonstrate an application to transition state calculations, specifically,

nudge-elastic-band (NEB) methods [103, 102]. NEB calculations require defining the

initial and final structures for the transition state to be calculated. Machine-learning

accelerated NEB calculations have typically relied on ab-initio relaxed initial and

final structures, a costly step of a NEB calculation [8]. In fixing the initial and final

structures, the machine learning objective is simplified to an interpolation problem.

We demonstrate our framework’s ability to accelerate the complete NEB calculation,

including initial and final structure relaxations, to find the surface diffusion energy

barrier of oxygen on Cu(100). To illustrate our framework, we use five images to build

the NEB including the initial and final states which have not been relaxed previously.

The initial training dataset includes only the unrelaxed initial and final structures.

The convergence evolution of our Offline-AL framework is illustrated in Figure

2-3d, approaching the true energy barrier after a few iterations. Similarly, conver-

gence was not achieved, with often failing DFT evaluations, without the inclusion

of the Morse prior. A simple random strategy is first employed. Here the images

are randomly sampled from generated NEBs and evaluated using DFT before being

added to the training data. Termination is achieved after a fixed number of iterations.

Additionally, we compare the efficiency of two more systematic querying and early

stopping methodologies. An uncertainty sampling strategy queries images with the

highest uncertainty, which are then evaluated with DFT, and added to the training

data. Termination is reached when the difference between the predicted energies from

ML and DFT at the saddle point are less than a tolerance. An additional strategy is

also tailor-made for the NEBs, where the highest energy point, along with the initial

and final points are sampled at each iteration. The loop is terminated once the dif-

ference between the ML predicted energies and DFT evaluated energies of the three

points is less than a specified threshold. All three cases demonstrate a significant
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reduction in the number of DFT calls required to construct the NEB as shown in

(Figure 2-3f).

Machine learning surrogates to DFT are considerably favorable in the context

of long time-scale simulations, namely, molecular dynamics (MD). Unlike structural

relaxations, MD simulations are typically carried out on orders of magnitudes more

steps. Several works have addressed these challenges through GP-based Online-AL

frameworks [272, 116]. We demonstrate that our proposed Offline-AL framework is

capable of converging to an accurate MD simulation. A 2ps MD simulation of CO on

Cu(100) in a 300K NVT ensemble is used for our demonstration.

Beginning with a dataset containing only the initial structure, our framework cy-

cles for several iterations, randomly querying 50 configurations for a total of 500 DFT

calls by the end of our experiment. Unlike structural relaxations with a well defined

target, MD simulations are more stochastic in nature and are unlikely to follow an

identical trajectory over multiple iterations. To demonstrate the effectiveness of our

framework, we verify the performance, at each iteration, by randomly sampling 400

configurations from our ML predicted trajectory and validate their corresponding en-

ergy and force predictions with DFT. We illustrate the iterative convergence of our

framework in Figure 2-4. Despite the upper limit of 10 iterations, we observe good

agreement with DFT by iteration 6 - a reduction of 85% in DFT calls. Additionally,

we demonstrate consistency in the radial distribution function of our framework’s

generated simulation to that of the original DFT simulation (Figure 2-5). Although

our demonstration takes place at a moderate 300K, the extremely limited data of

our ML model results in highly perturbed configurations within the first few iter-

ations of the simulation. Without the presence of our proposed Morse prior these

configurations are far off equilibrium and often fail to converge by DFT. A similar

demonstration under a more perturbed, higher temperature system is included in the

SI with comparable success as early as the 3rd iteration - a 92% reduction in DFT

calls.

58



2 4 6 8 10 12 14
Training images

10 2

10 1

100

M
A
E,

 e
V

BPNN -ML

n = 10

2 4 6 8 10 12 14
Training images

10 2

10 1

100

M
A
E,

 e
V

BPNN -ML

n = 10

0 5 10 15 20
Training images

10 2

10 1

100

101

M
A
E,

 e
V

BPNN -ML

n = 5

0 10 20 30 40 50
Relaxation step

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E,
 e

V

DFT
AL iter 1
AL iter 2
AL iter 5

initial final

(a)

(d)

(b)

(e)

(c)

(f)

0 1 2 3 4 5
Rxn coordinate, Å

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E,
 e

V

DFT
AL iter. 1
AL iter. 2
AL iter. 4

1 5 9 13 17 21 25 29
Training images

100

D
is

ta
nc

e 
M

A
E 

(Å
)

BPNN

n = 10

101

102

103

104

105

106

107

En
er

gy
 M

A
E 

(e
V
)

0 5 10 15 20 25
Training images

10 4

10 3

10 2

10 1

100

101

102

M
A
E

BPNN -ML

n = 10

Energy (eV)

Distance (Å)

Figure 2-3: Offline-AL applications to structural relaxations and transition state
calculations. (a) Evolution of the structural relaxation of C on Cu(100) over a few
cycles of the Offline-AL (b) Relaxed structure and energy learning curves of the
Offline-AL framework, using the BPNN ∆-ML model. (c) Convergence instability
associated with not incorporating the Morse potential prior in an Offline-AL context.
(d) Evolution of the transition state calculation for the surface diffusion of O on
Cu(100). Despite the poor performance of the first iteration, the framework is able
to recover and converge to an accurate prediction. (e) Learning curve associated
with the energy barrier of the oxygen diffusion example of (d). (f) Total number of
DFT calls queried by the Offline-AL under different querying strategies for the energy
barrier associated with the diffusion of oxygen on copper. Error bars represent the
95% confidence interval.
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(a) (b)

Figure 2-4: Offline-AL demonstration to a 2ps MD simulation of CO on Cu(100)
(a) Evolution of the MD trajectory over several iterations of the active learning
framework. We verify the effectiveness of our framework by randomly sampling con-
figurations and comparing DFT evaluated energy and forces with that of our model’s
predictions. (b) Parity plots associated with the DFT evaluated configurations and
our model’s predictions of the 6th iteration, demonstrating good agreement. Shading
was scaled logarithmically with darker shading corresponding to a higher density of
points.
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Figure 2-5: Radial distribution function (RDF) of the ground truth DFT and our
framework’s 6th iteration for the MD simulation of CO/Cu(100). Demonstrating
good consistency even before the allotted number of iterations.
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2.5 Conclusion

The development of accurate and reliable MLP has been a challenging task for the

community. The careful curation of datasets is especially difficult in trying to gener-

alize to new systems. Active learning has provided promising results in accelerating

molecular simulations while minimizing risks of extrapolation. Neural-network based

models, however, have struggled with such demonstrations for their reliance on large

amounts of data. As deep learning research continues to make significant strides, un-

derstanding how to better incorporate neural network based MLPs into active learning

pipelines can help provide more accurate and robust models.

This manuscript presented a neural-network based offline active-learning frame-

work to accelerate a variety of molecular simulations beginning with extremely lim-

ited data. We introduced a physics-based prior, Morse potential, into our model in

a ∆-ML manner, to capture basic repulsive interactions crucial in the convergence

of our framework. We demonstrate the framework’s ability to accurately converge

simulations including structural relaxations, molecular dynamics simulations, and

transition-state calculations. In each of these, the proportion of DFT calls reduced

were 71%, 75%, and 91%, respectively. The framework presented is extremely flexi-

ble, allowing users to define their own querying strategies, termination criteria, and

incorporate their own, more complex molecular simulations they wish to accelerate

with AMPtorch. Similar to other works, the nature of our active learning framework

introduces assumptions and limitations surrounding the feasibility of DFT queries.

While our framework helps in accelerating atomistic simulations, it’s applicability is

limited by the time it takes to query DFT points. Systems in which DFT calls may

be infeasible (10,000+ atoms or far-from-equilibrium) will fail under this and other

active learning strategies, leaving opportunities for the development of robust models

trained on large datasets [40]. At this time we make no guarantees that the perfor-

mance of the ML model will always improve when a queried data point is added to

the dataset. Our experiments recognize this as a particular issue in the small data

regime but was often mitigated in our work by the presence of the Morse potential
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and more sophisticated learning rate schedulers, where otherwise would have failed.

Future directions will explore more systematic querying strategies and termination

criteria to further accelerate the framework while being robust to larger, more com-

plex systems still compute feasible under DFT. Additionally, exploring alternative

model priors and adversarial training techniques can help improve the performance,

consistency, and generalizability of active learning frameworks [64, 251].

2.6 Calculation Settings

Single-point DFT calculations were performed Quantum Espresso (QE) [78] imple-

mented in ASE [143]; using the PBE exchange-correlation functional [197]; a plane

wave basis set with an energy-cutoff of 500 eV; k-points of 4 × 4 × 1; and the pseu-

dopotentials provided by Garrity, et al. [74]. The same settings were also used for

DFT calculations in fitting the Morse potential parameters. The following tools and

settings were used for our DFT calculations: VASP 5.4.4.18 [137, 138]; using the

PBE exchange-correlation functional; a plane wave basis set with an energy-cutoff of

400eV; and k-points of 4× 4× 1. VASP was used for all structure relaxation and MD

examples and QE for the NEB examples. AMPtorch [240] was used for all machine

learning and active learning components of the framework.
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Chapter 3

The Open Catalyst 2020 (OC20)

Dataset and Community Challenges

This work originally appeared as: Chanussot, L.*, Das, A.*, Goyal, S.*, Lavril,

T.*, Shuaibi, M.*, Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Pal-

izhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C.L., and Ulissi, Z.,

2021. Open catalyst 2020 (OC20) dataset and community challenges. ACS Catalysis,

11(10), pp.6059-6072. It has been edited to include the supplementary information in

Appendix B. *These authors contributed equally.

My contribution in this work included baseline model and repository implementation,

data preprocessing, task and metric development, model training and evaluation, and

writing corresponding sections in the manuscript. I was also the primary editor of the

entire manuscript, handling all reviewer correspondence and revisions.

3.1 Abstract

Catalyst discovery and optimization is key to solving many societal and energy chal-

lenges including solar fuels synthesis, long-term energy storage, and renewable fer-

tilizer production. Despite considerable effort by the catalysis community to apply

machine learning models to the computational catalyst discovery process, it remains

an open challenge to build models that can generalize across both elemental compo-
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sitions of surfaces and adsorbate identity/configurations, perhaps because datasets

have been smaller in catalysis than related fields. To address this we developed the

OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations

(∼264,890,000 single point evaluations) across a wide swath of materials, surfaces,

and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this

dataset with randomly perturbed structures, short timescale molecular dynamics, and

electronic structure analyses. The dataset comprises three central tasks indicative of

day-to-day catalyst modeling and comes with pre-defined train/validation/test splits

to facilitate direct comparisons with future model development efforts. We applied

three state-of-the-art graph neural network models (CGCNN, SchNet, DimeNet++)

to each of these tasks as baseline demonstrations for the community to build on. In

almost every task, no upper limit on model size was identified, suggesting that even

larger models are likely to improve on initial results. The dataset and baseline models

are both provided as open resources, as well as a public leader board to encourage

community contributions to solve these important tasks.

3.2 Introduction

Advancements to renewable energy processes are needed urgently to address climate

change and energy scarcity around the world [177, 61]. These include the generation

of electricity through fuel cells, fuel generation from renewable resources, and the

production of ammonia for fertilization. Catalysis plays a key role in each of these

by enabling new reactions and improving process efficiencies.[183, 236, 181] Unfor-

tunately, discovering or optimizing catalysts remains a time-intensive process. The

space of possible catalyst materials that can be synthesized or engineered is vast and

modeling their full complexity under reaction conditions remains elusive. Simulation

tools such as DFT [239] have greatly expanded our field’s ability to develop reac-

tion mechanisms for specific materials, rationalize experimental measurements, and

suggest more active or selective structures for experimental testing. Despite steady

growth in computing resources from Moore’s law, the computational complexity of
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DFT remains a limiting factor in the large-scale exploration of new catalysts.[165, 166]

Given its societal importance, finding computationally efficient methods for molecu-

lar simulations is of utmost necessity. One potentially promising approach is the use

of efficient ML models trained with data produced from computationally expensive

models, such as DFT.

Indeed, the application of Artificial Intelligence and Machine Learning (AI/ML)

to molecular simulations has increased in popularity recently, due to its ability to

efficiently model complex functions in data-rich domains. There have been a number

of demonstrations from domain scientists for specific challenges such as reaction net-

work elucidation[269, 146, 90], thermochemistry prediction [156, 117, 124, 265, 266,

89, 15, 126, 63], structure optimization [252, 145, 99, 229, 4], accelerating individual

calculations[33, 125, 198, 253], and integration with characterization[261] (see recent

reviews for a more thorough discussion [129, 151, 166, 81, 228, 147, 254, 44, 10, 88,

264, 87, 255]). Most of these tasks are variations on the same fundamental problem:

modeling heterogeneous catalysis. The dataset developed seeks to target a specific

subclass of this problem, periodic slab models. Such modeling involves predicting

the energy and forces of various configurations of adsorbate molecules at inorganic

interfaces.

Unfortunately, modeling of heterogeneous catalysts entails all the known difficul-

ties of modeling both organic and inorganic chemistry. In organic chemistry modeling

involves an overwhelming space of molecules and reactions and many similar, low-

energy conformers. Inorganic chemistry involves a large diversity in elements, coor-

dination environments, lattice structures, and long-range interactions. The result is

a complex space of compositions and chemistries for which computationally efficient

modeling methods are needed for thorough exploration.

A critical factor in building ML models is the data used for training. Despite the

importance of heterogeneous catalysis, datasets for it remain smaller than those in

other related fields[51, 128] due to additional complexity and higher computational

cost. Much of the progress in applying AI/ML in heterogeneous catalysis has been

driven by increasingly large and diverse datasets of electronic structure calculations.
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Figure 3-1: Adsorbates, materials, calculations, and impact areas of the OC20 dataset.
Images are a random sample of the dataset.

In the past few years there has been a push towards larger datasets in catalysis, going

from O(100) [38, 2, 160, 179, 5] to O(1,000) [58, 150, 23] then O(100,000) [161, 265,

283] relaxations. Most focus on relaxed adsorption energies of simple adsorbates with

smaller datasets of transition state calculations. State-of-the-art ML methods are

still improving as data is added to these datasets, so there is no indication that we

have saturated the performance of these models. Further, models trained on these

datasets have shown limited ability to generalize, which suggests that the models are

not yet learning fundamental physical representations. As has been shown in other

ML tasks [55, 191, 9], we expect that significantly larger datasets will lead to improved

accuracy and better generalization.

In this paper, we present the OC20 dataset, (Figure 3-1) which comprises over

1.2 million DFT relaxations of molecular adsorptions onto surfaces (ca. 250 million

single-point calculations) across a substantially larger structure and chemistry space
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than previously realized. We envision OC20 to serve as a crucial stepping stone in

the development of ML models for practical catalysis applications.

While a dataset of this magnitude will lead to significant improvements in ML

models, this is still an extremely sparse sampling of all possibilities. We consider 82

different adsorbates (small adsorbates, C1/C2 compounds, and N/O-containing in-

termediates) that are relevant for renewable energy and environmental applications.

Relaxations are performed on randomly sampled low-Miller-index facets of stable ma-

terials from the Materials Project [114], resulting in surfaces from 55 different elements

and mixtures thereof. For each of the calculations, we include relaxation trajecto-

ries, Bader charges, and LOBSTER [101, 16]-calculated orbital information. To aid

in training more robust models, we additionally compute short, high-temperature

ab initio Molecular Dynamics (MD) trajectories on a randomly sampled subset of

the relaxed states. We also randomly perturb the atomic positions in a subset of

the structures along the relaxation pathways and perform single point DFT calcu-

lations for these perturbed/rattled structures. We recognize that OC20 addresses a

simplified version of heterogeneous catalysis - single adsorbates on idealized struc-

tures. Although useful as a first step to informing reaction pathways, the reality

involves a number of additional complexities that impact catalyst performance, in-

cluding reaction conditions, solvation effects, kinetics, etc. While we believe OC20’s

approximations to be a reliable step forward, it is important to understand the limits

of models developed from this dataset. Future work that incorporates more of the

complexities mentioned will undoubtedly benefit from the developments related to

OC20. The dataset is publicly available at http://opencatalystproject.org. We

also plan to upload the dataset to other open systems (e.g. NOMAD or Zenodo) for

long-term availability.

In addition to generating and sharing the dataset, we propose three related do-

main challenges as an open competition: (1) predict the energy and force for a

given state, (2) predict a nearby relaxed state given an initial starting state, and

(3) predict the relaxed adsorption energy given an initial state. The dataset is

split into train/validation/test splits indicative of common situations in catalysis:

69

http://opencatalystproject.org


predicting these properties for a previously unseen adsorbate, for a previously un-

seen crystal structure or composition, or both. To boot-strap research and the

competition, we also provide an open software repository (https://github.com/

Open-Catalyst-Project/ocp) containing a set of baseline models, data loaders, and

training scripts for each of these tasks. While we focus on a subset of tasks, we believe

that models capable of solving these tasks on the OC20 dataset will also be able to

address a large number of related catalysis problems.

Figure 3-2: The adsorbates used to generate the Open Catalyst Dataset contain
oxygen, hydrogen, C1, C2, and nitrogen molecules useful for renewable energy appli-
cations. Adsorbates that contain both carbon and nitrogen were counted both as CX

adsorbates and as nitrogen-containing adsorbates. For each adsorbate, up to 553 dif-
ferent catalyst compositions were considered, with up to dozens of adsorption energy
calculations per adsorbate-composition pairing.

3.3 Tasks

Our goal is to improve the efficiency with which inorganic and organic interfaces can

be simulated for use in catalysis. Since the primary computational bottlenecks are

the DFT calculations used to compute a structure’s forces and energy, we focus on the

general challenge of efficient DFT approximation. We focus on structure relaxation –

a fundamental calculation in catalysis used in determining a structure’s activity and

selectivity. We define three related tasks, in that success in one task may aid other

tasks. These are not the only possibilities for this dataset, and future tasks may be

added with additional data generation and input from the community.
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In all our tasks, the structure contains a surface and adsorbate. The surface is

defined by a unit cell that is periodic in all directions with a vacuum layer of at least

20Å applied in the z direction. Initial structures are heuristically determined. Ground

truth data is computed for all tasks using DFT. Dataset details and evaluation metrics

are provided in following sections.

S2EF is to take the positions of the atoms as input and predict the energy and

per-atom forces as calculated by DFT. For the purposes of this manuscript, energy

refers to adsorption energy unless otherwise noted. The adsorption energy is defined

as the energy of the combined surface and adsorbate system (relaxed or not) minus

the energy of the relaxed slab and the relaxed gas phase adsorbate molecule. The

force is defined as the negative gradient of the energy with respect to the atomic

positions.

This is our most general task and has the broadest applicability across catalysis

and related fields. It is essentially identical to existing challenges in developing ma-

chine learning potentials [276]. However, the inclusion of both inorganic and organic

materials and the dataset size make this challenge unique.

IS2RS takes as input an initial structure and predicts the atomic positions in their

final, relaxed state. Traditional relaxations are performed through an iterative process

that estimates the atomic forces using DFT, which are in turn used to update atom

positions until convergence. This very computationally expensive process typically

requires hundreds of DFT calculations to converge.

If the IS2RS task is approached using ML approximations of DFT to estimate

atomic forces (S2EF task), evaluation on the IS2RS task may help determine whether

models built for S2EF are sufficiently accurate for practical applications. Alterna-

tively, it may be possible to predict the relaxed structure directly, without estimating

a structure’s energy or forces (Figure 3-3(B)), as many of the changes during re-

laxation (say due to particular initial guess strategies) are systematic. These direct

IS2RS approaches may lead to even further improvements in computational efficiency.

IS2RE task is to take the initial structure as input and predict the structure’s

energy in the relaxed state. This is the most common task in catalysis, as the relaxed
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energies are often correlated with catalyst activity and selectivity, and the energies

are important parameters for detailed microkinetic models. Similar to IS2RS , this

task may be approached by estimating the relaxed structure and energy by iteratively

applying S2EF , or by directly regressing the energy from the initial structure without

estimating the intermediate or relaxed structures.

3.4 The OC20 Dataset

The OC20 dataset is constructed to provide both training and evaluation data for

our three previously defined tasks involving DFT approximation and structure relax-

ation. Modern machine learning models, especially those employing deep learning,

require sufficiently large datasets to learn accurate models. For training, we provide

640,081 relaxations across a wide variety of surfaces and adsorbates. The intermediate

structures and their corresponding energy and forces are provided for each relaxation

resulting in over 133 million training structures. To potentially aid in training and

to provide additional information for the catalysis community, we performed DFT

calculations on rattled and ab initio Molecular Dynamics (MD) data. We also com-

puted Bader charges and LOBSTER analyses (over 1.8 million examples each) as

these computed properties may be useful for models by explaining why the energies

are what they are.

3.4.1 Dataset Generation

The dataset is constructed in four stages: 1) adsorbate selection, 2) surface selection,

3) initial structure generation, and 4) structure relaxation. We describe each of these

four stages in turn, followed by a description of the additional data provided with

the main dataset. All source code to generate the configurations are provided in the

Open Catalyst Dataset repository (https://github.com/Open-Catalyst-Project/

Open-Catalyst-Dataset).
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Adsorbate Selection

Adsorbates are sampled randomly from a set of 82 molecules that are chosen for

their utility to renewable energy applications. As shown in Figure 3-2, this includes

adsorbates that contain only oxygen or hydrogen, C1 molecules, C2 molecules, and

nitrogen-containing molecules. We enumerated the oxygen and hydrogen molecules

for their ubiquitous presence in water-solvated electrochemical reactions. C1 and C2

molecules are important for solar fuel synthesis, while nitrogen-containing molecules

have applicability in solar fuel and solar chemical synthesis. Note that some of the

C2 molecules have two binding sites; we refer to these as bidentate adsorbates. The

list of all 82 adsorbates is provided in the Supplementary Information.

Surface Selection

Surfaces are sampled in three stages. First, the number of elements is selected with

a 5% chance of choosing a unary material, 65% chance for a binary material, and a

30% chance for a ternary material. Greater emphasis is given to binary and ternary

materials because these sets contain a wider variety of understudied materials. Next,

a stable bulk material is randomly selected from the 11,451 materials in the Materials

Project[114] with the number of elements chosen in the first step. Finally, all sym-

metrically distinct surfaces from the material with Miller indices less than or equal

to 2 are enumerated, including possibilities for different absolute positions of surface

plane. From this list of surfaces one is randomly selected. The surface atoms were

replicated to a depth of at least 7 Å and a width of at least 8 Å.

Pymatgen[187] was used to search over all bulk materials in the Materials Project

with non-positive formation energies and energies-above-lower-hulls of at most 0.1

eV/atom. The enumeration of symmetrically distinct surfaces was also performed

using pymatgen[187]. Elements for the bulk materials were chosen from a set of 55

elements comprising reactive nonmetals, alkali metals, alkaline earth metals, metal-

loids, transition metals, and post-transition metals.

Note that DFT was used to re-optimize the bulk structures prior to surface enu-
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meration to ensure differences between the DFT settings used in the Materials Project

and OC20 did not induce unintended stress or strain effects. Any bulks that we could

not successfully relax were omitted from this dataset.

Task Train In Domain OOD Adsorbate OOD Catalyst OOD Both

S2EF 133,934,018 987,036 999,838 987,343 997,922
IS2RS 460,328 24,733 24,961 24,738 24,971
IS2RE 460,328 24,733 24,961 24,738 24,971

Table 3.1: Size of train/validation splits (number of structures for S2EF and ini-
tial structures for IS2RS and IS2RE ). The structures for S2EF are sampled from
640,081 relaxations for train, and from 30k-70k relaxations for each validation and
test split. Subsplits of validation and test are roughly the same size, but are exclu-
sive of each other. Subsplits include sampling from the same distribution as training
(In Domain), unseen adsorbates (OOD Adsorbate), unseen element compositions for
catalysts (OOD Catalyst), and unseen adsorbates and catalysts (OOD Both). Test
sizes are similar.

Initial Structure Generation

The initial structures are generated by placing the selected adsorbates on the selected

surfaces using CatKit [34] and the atomic simulation environment (ASE) [143]. Sur-

face atoms are identified by their positions above the center-of-mass, their z-distance

within 2 Å of the upper-most atom, and by their under-coordination relative to the

bulk atoms. Atomic coordination environments were calculated using pymatgen’s

Voronoi tesselation algorithm [187]. Next, we manually tagged the adsorbates’ bind-

ing atoms for both mono- and bi-dentate adsorbates. Finally, we gave the surface

structure, adsorbate, the identified surface atoms, and identified adsorbate binding

sites to CatKit.[34] CatKit used this information to enumerate a list of symmetrically

distinct adsorption sites along with suggested per-site orientations for the adsorbates.

From this list, an adsorption configuration is randomly selected. The sites selected are

not necessarily the most stable adsorption site on each surface. Since one of our goals

is to calculate adsorption energies, we generate two sets of inputs for each system: (1)

the adsorbate placed over the catalyst atoms, and (2) just the catalyst atoms without

the adsorbate. This resulted in a total of 1,919,165 and 616,124 unique inputs for
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(1) and (2), respectively, which were later filtered and segregated into suitable train,

validation, and test validation splits as described later in this section.

Structure Relaxation

All structure relaxations were performed using the Vienna Ab Initio simulation Pack-

age (VASP) [140, 138, 139, 273, 141] until all per-atom forces are less than 0.03 eV/Å.

Calculations were allowed up to 144 hours (12 cores) for the relaxation. Systems that

timed out before reaching the specified force threshold were set aside for the S2EF

task. All intermediate structures, energies, and forces are stored for future training

and evaluation. During the relaxations only adsorbate and surface atoms (as defined

during the generation above) were allowed to move; subsurface atoms were main-

tained at fixed positions. This was done to avoid unrealistic structure deformations

and to simulate a semi-infinite condition with bulk material far below the catalyst

surface. Given the intended scale of OC20, the careful consideration of DFT settings

was a non-trivial challenge. Relaxations generally followed previous high-throughput

catalysis efforts with reasonable trade-offs between accuracy for surface chemistry

and computational cost[266] (VASP [140, 138, 139, 273, 141], RPBE[197], no spin

polarization, etc). The choices made for DFT were a result of several important

considerations: ensuring calculations were representative, concerns associated with

inconsistent cutoffs/settings, and representative of typical numerical/convergence is-

sues the computational chemistry field faces. The assumptions made were necessary

to achieve the dataset’s scale. Detecting small numerical or convergence errors is a

non-trivial problem that could be improved with this dataset. Most importantly, we

anticipate models and methods that solve the S2EF, IS2RE, or IS2RS tasks for this

dataset are very likely to solve future challenges for future surface science datasets

with different DFT modeling choices.

System DFT energies were referenced to represent adsorption energies. Adsorp-

tion energies were calculated according to the Equation below, where 𝐸𝑠𝑦𝑠 is the DFT

energy of the combined surface (i.e. slab) and adsorbate — this energy can be from

both relaxed and intermediate structures. The reference energies for each system,
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𝐸𝑠𝑙𝑎𝑏 and 𝐸𝑔𝑎𝑠 are the DFT energy of the relaxed surface and adsorbate molecule re-

spectively. The value of 𝐸𝑔𝑎𝑠 for each adsorbate was computed as a linear combination

of N2, H2O, CO, and H2 resulting in the atomic energies found in the supplementary.

𝐸𝑎𝑑 = 𝐸𝑠𝑦𝑠 − 𝐸𝑠𝑙𝑎𝑏 − 𝐸𝑔𝑎𝑠

Resulting trajectories were further analyzed for per-atom force criterion, numerical

issues, or catastrophic reconstructions as described below in the Train, Validation,

and Test Splits section.

MD and Rattled Calculations

The intermediate structures from the relaxations may result in a dataset biased to-

wards structures with lower energies. To learn robust models, training samples with

higher forces and greater configurational diversity may be needed. We adopted two

strategies for generating additional training data: (1) partial MD in VASP [140, 138,

139, 273, 141] and (2) normally-distributed random position perturbation methods

colloquially known in molecular simulations as “rattling.”

MD calculations simulate the atomic interactions when heat is added to the sys-

tem. Partial MD calculations were carried out on previously relaxed structures with

random initial velocities generated from a Maxwell-Boltzmann distribution at a tem-

perature of 900 K. We integrated the MD trajectories over 80 fs or 320 fs with inte-

gration steps of 2 fs in the NVE ensemble. Time-scales were selected to allow systems

to explore local configurations while minding computational costs.

To diversify the distribution of single-point structures in the dataset, we “rattled”

some of the structures by adding random displacements to the atomic positions with

ASE [143]. For each relaxation, 20% of the images in the trajectories were selected

for rattling. The atomic displacements were sampled from a heuristically-generated

normal distribution with a 𝜇 = 0 and 𝜎 = 0.05. Single point DFT calculations were

then performed on the rattled structures.

Similar to the relaxations, only the top surface atom layers were allowed to move
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in both the MD and rattled calculations with the rest of the atom positions held

fixed. All calculations were performed at the same theoretical level and energy/forces

convergence criteria as in the relaxation calculations. Approximately 950 thousand

MD (ca. 64 million single-point energies/forces) and 30 million rattled calculations

were carried out.

Bader Charges and LOBSTER Analyses

We performed electronic structure calculations for general use by the catalysis research

field. These calculations (i.e., Bader charges [256, 224, 101] and LOBSTER [176, 56]

analyses) were carried out on relaxed structures and also on randomly selected snap-

shots from both MD and rattled trajectories. Bader charge analyses provides charge

density maxima at each atomic center and the Bader volume for each atom through

the zero-flux partitioning method [16]. LOBSTER enables chemical-bonding analysis

based on periodic DFT outputs [176]. LOBSTER calculates atom-projected densities

of states (pDOS) or projected crystal orbital Hamilton population (pCOHP) curves,

among others. Literature has demonstrated that such electronic structure information

can provide valuable insights to the theoretical and the ML communities [82, 173, 39].

Dataset profile

Approximately 872,000 adsorption energies were calculated successfully. Of these,

3.7% were calculations on unary catalysts; 61.4% were on binaries; and 34.9% were on

ternaries. Among these calculations, 28.9% of them had reactive nonmetal elements

in the catalyst; 8.1% of them had alkali metals; 10.2% had alkaline earth metals;

26.4% had metalloids; 81.3% had transition metals; and 37.2% had post-transition

metals. Considering adsorbates: 6.6% of the calculations had adsorbates containing

only oxygen or hydrogen; 25.2% of the calculations had C1 adsorbates; 44.4% had C2

adsorbates; and 29.0% had nitrogen-containing adsorbates.

Despite this dataset’s large size compared to previous catalytic datasets, it still

very small in comparison to the number of potential calculations. Of the
(︀
55
3

)︀
+
(︀
55
2

)︀
+(︀

55
1

)︀
= 27, 775 possible compositions, only 5,243 (18.9%) of them were successfully

77



sampled here. Of the compositions sampled, there were an average of 249 successful

adsorption calculations for each. Additionally: if we compare the number of sites we

sampled here to rough estimates of the number of sites we could have sampled given

our constraints on adsorbates, surfaces, and bulks, then we find that we performed

ca. 0.07% of the possible calculations. This severe sparsity in the data compared to

its large scale emphasizes the need for surrogate models.

3.4.2 Train, Validation and Test Splits

We split our dataset into training, validation, and testing sets. The training set is used

to learn model parameters; the validation set is used to tune model hyperparameters

and to perform ablation studies; and the test set is used to report model performance.

A careful choice of validation and test splits can help evaluate a model’s perfor-

mance on both interpolative and extrapolative tasks. Interpolative evaluation tests

the ability to model variations of the training data, and is performed by sampling ex-

amples from the same distribution as the training dataset. Extrapolative evaluation

tests a model’s performance on unseen tasks, e.g., new materials or adsorbates. In

the context of catalytic development, we strive to extrapolate beyond data we have

already seen so that we can discover new materials and search spaces [127, 167].

We explore extrapolation along two dimensions; new adsorbates and new catalyst

compositions. Adsorbate extrapolation is performed by holding out 14 adsorbates

from the training dataset sampled from all types (O, H, C1, C2, and N) of adsorbates.

Similarly for catalyst compositions, a subset of element combinations for catalysts is

held out from the training dataset. These were sampled from the 1,485 binary and

26,235 ternary material combinations of the 55 elements used in the dataset. No

surfaces with unary materials are in the extrapolative subsplits for validation and

testing. A full list of the adsorbates materials in train and validation splits are in the

SI.

We used four subsplits for each of the validation and test sets by considering all

combinations of potential extrapolations (Table 3.1). These include In-Domain (sam-

pled from the training distribution), Out-of-Domain Adsorbate (OOD Adsorbate),
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OOD Catalyst, and OOD Both (both unseen adsorbate and unseen catalyst compo-

sitions). As shown in Table 5.2, each subsplits in validation and testing contains ca.

25,000 relaxations. For the S2EF task we randomly select a one million structure

subset from the relaxations in each subsplit. Note that the extrapolative subsplits

of our validation set are completely exclusive to the extrapolative subsplits in the

test set, e.g., the adsorbates in the validation adsorbate subsplit are unique from the

adsorbates in the test adsorbate subsplit. This helps ensure overfitting to the test set

does not occur during hyperparameter tuning on the validation set.

Figure 3-3: Demonstration of baselines SchNet and DimeNet++ models for solving
the IS2RE , S2EF , and IS2RS tasks and the inter-relationships. (A) Snapshots of
five representative initial adsorbate configurations before DFT relaxations, the same
adsorbates after DFT relaxation, and the relaxed structures as relaxed by SchNet
and DimeNet++ after fitting the S2EF task. ADwT metrics are overlaid on the
model snapshots. (B) Three ways to predict the relaxed energy: directly through
IS2RE , indirectly through IS2RS , and confirmation of the relaxed structure with a
single DFT single-point. (C) SchNet force-only performance as characterized by the
percentage of structures within the desired max force threshold of 0.05 eV/Å(FbT)
and average percentage of force below threshold (AFbT) of 0.4 eV/Å(shaded area).

3.5 Baseline GNN Models

We evaluate our tasks using a set of baseline models that are representative of the

current state-of-the-art. The set of models we evaluate is by no means comprehensive,

but they demonstrate what is feasible with current models. Code and pretrained

models for our baseline ML approaches implemented in PyTorch Geometric [65, 194]

are publicly available at the Open Catalyst Project (http://opencatalystproject.

org).
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Our baseline ML approaches are all based on Graph Neural Networks (GNNs) [95]

that operate over a graph structure containing nodes and edges. In our domain,

the nodes represent atoms and edges represent the relationship between neighboring

atoms. At each node, an atom embedding is iteratively updated based on messages

passed along the edges. During this message-passing phase, GNNs employ neural net-

works to learn the atomic representations [27, 21], and unlike traditional descriptor-

based models do not require hand-crafting. Node embeddings are initialized based on

the atom’s properties, such as their atomic number, group number, electronegativity,

atomic volume, etc. [286] Outputs for the GNN may be computed from individual

node (atom) embeddings for node-specific information (per-atom forces), or over the

pooled node embeddings for system outputs (structure energy).

We benchmark three recent GNN methods: Crystal Graph Convolutional Neural

Network (CGCNN) [286], SchNet [232] and DimeNet++ [131, 133]. CGCNN is one

of the first approaches to use GNNs on periodic crystal systems and uses a diverse

set of features as input to the node embeddings. The original model encoded edge

information using the discretized distances between atoms. SchNet proposed using

continuous edge filters, which allows for the computation of per-atom forces through

partial derivatives of the structure’s energy with respect to the atom positions. To

allow CGCNN to compute per-atom forces in the same manner, we updated the dis-

tance encoding to use gaussian basis functions but without the envelope distance

function used in SchNet in our experiments. Finally, to not only encode distance

information but also angular information between triplets of atoms, DimeNet intro-

duced the use of directional message passing. DimeNet++, an extension to DimeNet,

replaces the Bilinear layer with a Hadamard product and additional multilayer per-

ceptrons; providing reported speed improvements of 8x and a 10% accuracy boost on

QM9 [212].

For all approaches, graph edges were determined by a nearest neighbor search

limited by a cutoff radius of 6Å, retaining up to the 50 nearest neighbors. When

computing distances, periodic boundary conditions were taken into consideration.

Atoms were tagged as three types, slab (fixed), surface (free), and adsorbate (free),
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to allow loss functions to emphasize free atoms over fixed atoms. The number of

hidden channels is 128, 1024, 192 for CGCNN, SchNet and DimeNet++ respectively

unless stated otherwise; resulting in 3.6 million (CGCNN), 7.4 million (SchNet) and

1.8 million (DimeNet++) parameters. Model sizes were chosen so that runtimes

were roughly equivalent. Note the size of the models was increased from their origi-

nal implementations to account for OC20’s larger size. Model hyperparameters and

additional modifications can be found in the supplementary.

Since both the computed energies and forces are evaluated, the baseline loss func-

tion [133, 125] uses the following form:

ℒ = 𝜆𝐸

∑︁
𝑖

|𝐸𝑖 − 𝐸𝐷𝐹𝑇
𝑖 |

+𝜆𝐹

∑︁
𝑖,𝑗

1

𝑁𝑖

|𝐹𝑖,𝑗 − 𝐹𝐷𝐹𝑇
𝑖,𝑗 |,

where 𝜆𝐸 and 𝜆𝐹 are empirical parameters, 𝐸𝑖 is the energy of image 𝑖, and 𝐹𝑖,𝑗 is

the force of the 𝑗th free atom in image 𝑖, and 𝑁𝑖 is the number of free atoms in image

𝑖. For the IS2RE task, in which only the energy is evaluated, only the first term of

the loss function is used (𝜆𝐹 = 0).

All of the models are ML-based as there are currently no physical models that

operate over such a large composition space with reasonable accuracy and elemental

parameterizations. In particular, the recently developed GFN0-xTB method [201]

is parameterized for all of the elements in this dataset and is fast enough (approx

1,000X faster than DFT) to compete on these benchmarks and preliminary results

are reported in the SI. However, since the method was not fit for inorganic surfaces and

the xTB code [17] is still under active development for periodic boundary conditions,

the results were excluded from the summaries here. We hope that the release of our

dataset will inspire future efforts on parameterizating tight-binding DFT codes or

reactive force field methods for these materials.

81



3.6 Experiments

We begin by describing the metrics used to evaluate our three tasks, followed by the

results of our baseline models.

3.6.1 Evaluation Metrics

For each task, we define evaluation metrics to track the progress in the field, as well

as to measure the practical utility of the approaches. All ground truth values are

computed using DFT. Our evaluation metrics are as follows:

S2EF : The S2EF task has three metrics: the Mean Absolute Error (MAE) for

energy, MAE for forces on free atoms and a combined metric. Our combined metric,

Energy and Forces within Threshold (EFwT), is designed to measure the practical

usefulness of a model for replacing DFT by evaluating whether both the computed

energy and forces are close to the ground truth.

Energy MAE: Mean Absolute Error between the computed energy and the ground

truth energy.

Force MAE: Mean Absolute Error between the computed per-atom forces and

the ground truth forces. Errors are only computed for free catalyst and adsorbate

atoms.

Force cosine: Mean cosine of the angle between the computed per-atom forces

and the ground-truth forces. Similar to MAE, these are only computed for free

atoms.

EFwT: The percentage of structures in which the computed energy is within 𝜖 =

0.02 eV of the ground truth energy, and the maximum error in per-atom forces

is below 𝛼 = 0.03 eV/Å. Both these criteria must be met for the structure to be

labeled as “correct”.

IS2RS : Several methods exist for determining the accuracy of relaxed structures

predicted by ML models. The simplest is to measure the distance between the pre-

dicted 3D positions of the atoms and those of the ground truth. However, small
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changes in position can lead to significant changes in the per-atom forces and a struc-

ture’s energy. For this reason, a better measure of a proposed relaxed structure is

the magnitude of its per-atom forces as measured by a single point DFT calculation.

If the proposed relaxed structure represents a true local energy minimum, the forces

should be close to zero.

ADwT: The Average DwT (Distance within Threshold) across thresholds ranging

from 𝛽 = 0.01Å to 𝛽 = 0.5Å in increments of 0.001Å. DwT is computed as the

percentage of structures with an atom position MAE below the threshold. MAE

is only computed for free catalyst and adsorbate atom positions while taking into

account periodic boundary conditions. We use ADwT as opposed to the MAE

on 3D atom positions, since ADwT is robust to outliers and better indicates the

percentage of relaxations that are likely to be successful.

FbT: The percentage of relaxed structures with maximum DFT calculated per-

atom force magnitudes below a threshold of 𝛼 = 0.05 eV/Å. Force magnitudes

of only free catalyst and adsorbate atoms are used. A value of 𝛼 = 0.05 eV/Å

represents a practical threshold by which DFT relaxations are commonly assumed

to have converged. To ensure that the ML relaxations find a relaxed structure

that isn’t significantly different from the ground truth relaxed structures, e.g., the

adsorbate moves to a different binding site, an additional filtering step is applied.

We filter on the atom position MAE (free catalyst and adsorbate atoms) with a

threshold of 𝛽 = 0.5Å. Thus, to be considered correct, a relaxed structure must

meet both the FbT and the DwT criterion.

AFbT: The Average FbT (Forces below Threshold) over a range of thresholds

ranging from 𝛼 = 0.01 eV/Å to 𝛼 = 0.4 eV/Å in increments of 0.001 eV/Å, Figure

3-3(C). This metric measures progress over a wider range of thresholds, which

may be important for early algorithm development that may need thresholds more

lenient than 𝛼 = 0.05 eV/Å to see improvement. Similar to FbT, the relaxed

structures must also meet the same DwT criterion with 𝛽 = 0.5Å.
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Note that FbT and AFbT require the computation of single point DFT calcula-

tions, which are computationally expensive. For this reason, a random subset of 500

relaxed structures are chosen from the validation and test set splits (2000 total for

each) for evaluating these metrics. If a DFT calculation fails to converge within 60

electronic steps or a wall time of 2 hrs, the system is assumed to be incorrect with

forces beyond the thresholds for both FbT and AFbT.

Figure 3-4: Predicting Structure to Energy and Forces (S2EF ) as evaluated by Mean
Absolute Error (MAE) of the energies and forces. The small, medium and large
SchNet models have the following sizes: Small: 256 hidden, 4 message-passing layers,
1,316,097 params, Medium: 1024 hidden, 3 message-passing layers, 5,704,193 params,
Large: 1024 hidden, 4 message-passing layers, 7,396,353 params. Results reported for
models trained on the entire training dataset.

IS2RE : Similar to the S2EF task we propose two metrics for IS2RE . The first

measures the MAE on the computed and ground truth energy. The second measures
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S2EF Test

Model ID OOD Ads OOD Cat OOD Both

Energy MAE [eV] ↓
Median baseline 2.0596 2.4188 2.0110 2.5460
CGCNN [286] 0.5105 0.6321 0.5202 0.7681
SchNet [232] 0.4421 0.4858 0.5279 0.7057
SchNet [232] – force-only 34.0689 33.7670 35.2701 38.4607
SchNet [232] – energy-only 0.3975 0.4533 0.5626 0.7241
DimeNet++ [133, 131] 0.4579 0.4701 0.5056 0.6489
DimeNet++ [133, 131] – force-only 28.2214 28.9404 28.8636 34.9118
DimeNet++ [133, 131] – energy-only 0.3585 0.4022 0.5041 0.6549
DimeNet++ [133, 131]-Large – force-only 29.3504 30.0338 30.0074 36.7665

Force MAE [eV/Å] ↓
Median baseline 0.0808 0.0801 0.0787 0.0978
CGCNN [286] 0.0683 0.0728 0.0670 0.0851
SchNet [232] 0.0493 0.0529 0.0509 0.0655
SchNet [232] – force-only 0.0442 0.0469 0.0459 0.0591
SchNet [232] – energy-only 0.5794 0.5974 0.5852 0.6463
DimeNet++ [133, 131] 0.0442 0.0458 0.0444 0.0559
DimeNet++ [133, 131] – force-only 0.0331 0.0341 0.0340 0.0417
DimeNet++ [133, 131] – energy-only 0.3399 0.3395 0.3395 0.3643
DimeNet++ [133, 131]-Large – force-only 0.0280 0.0289 0.0312 0.0371

Force cosine ↑
Median baseline 0.0000 0.0000 0.0000 0.0000
CGCNN [286] 0.1541 0.1369 0.1492 0.1444
SchNet [232] 0.3184 0.2954 0.2956 0.2987
SchNet [232] – force-only 0.3595 0.3391 0.3279 0.3403
SchNet [232] – energy-only 0.0845 0.0798 0.0804 0.0830
DimeNet++ [133, 131] 0.3628 0.3476 0.3465 0.3684
DimeNet++ [133, 131] – force-only 0.4870 0.4717 0.4607 0.4954
DimeNet++ [133, 131] – energy-only 0.1066 0.0959 0.1048 0.1015
DimeNet++ [133, 131]-Large – force-only 0.5638 0.5502 0.5115 0.5516

EFwT ↑
Median baseline 0.00% 0.00% 0.00% 0.00%
CGCNN [286] 0.01% 0.00% 0.01% 0.00%
SchNet [232] 0.11% 0.04% 0.06% 0.01%
SchNet [232] – force-only 0.00% 0.00% 0.00% 0.00%
SchNet [232] – energy-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131] 0.10% 0.03% 0.05% 0.01%
DimeNet++ [133, 131] – force-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131] – energy-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131]-Large – force-only 0.00% 0.00% 0.00% 0.00%

Table 3.2: Predicting energy and forces from a structure (S2EF ) as evaluated by
Mean Absolute Error (MAE) of the energies, forces MAE, and the percentage of
Energies and Forces within Threshold (EFwT). Results reported for models training
on the entire training dataset.

the energies within a threshold (EwT) of the ground truth, which once again measures

the percentage of estimated energies that are likely to be practically useful.
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IS2RS Test

Model ID OOD Ads OOD Cat OOD Both

ADwT ↑
IS baseline 21.37% 19.09% 21.42% 26.28%
SchNet [232] 15.92% 12.83% 14.63% 14.78%
SchNet [232] – force-only 32.47% 28.59% 30.94% 35.09%
DimeNet++ [133, 131] 30.62% 26.66% 30.01% 32.29%
DimeNet++ [133, 131] – force-only 48.73% 45.19% 48.54% 53.17%
DimeNet++ [133, 131]-Large – force-only 52.43% 48.47% 50.91% 54.85%

FbT ↑
IS baseline 0.00% 0.00% 0.00% 0.00%
SchNet [232] - - - -
SchNet [232] – force-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131] 0.00% 0.20% 0.00% 0.00%
DimeNet++ [133, 131] – force-only 0.61% 0.20% 0.00% 0.20%
DimeNet++ [133, 131]-Large – force-only 1.02% 0.40% 0.00% 0.20%

AFbT ↑
IS baseline 0.06% 0.34% 0.21% 0.00%
SchNet [232] - - - -
SchNet [232] – force-only 5.31% 2.82% 2.66% 2.73%
DimeNet++ [133, 131] 3.60% 3.01% 2.61% 2.33%
DimeNet++ [133, 131] – force-only 17.42% 14.67% 14.12% 14.46%
DimeNet++ [133, 131]-Large – force-only 25.58% 20.73% 20.05% 20.62%

Table 3.3: Predicting relaxed structure from initial structure (IS2RS ) as evaluated
by Average Distance within Threshold (ADwT), Forces below Threshold (FbT), and
Average Forces below Threshold (AFbT). All values in percentages, higher is better.
Results reported for structure to force models trained on the All training dataset. The
initial structure was used as a naive baseline (IS baseline). FbT and AFbT metrics
are only computed when ADwT metrics are greater than 20.26%.

Energy MAE: Mean Absolute Error between the computed relaxed energy and

the ground truth relaxed energy.

EwT: The percentage of computed relaxed energies within 𝜖 = 0.02 eV of the

ground truth relaxed energy.

While our evaluation metrics focus on accuracy, it is important to note that meth-

ods should also be significantly faster than conventional DFT. As a rough benchmark,

we desire energy and force estimates at approximately 10 ms which would significantly

improve the applicability of DFT. Significantly faster than this (closer in speed to
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IS2RE Test

Energy MAE [eV] ↓ EwT ↑
Model Approach ID OOD Ads OOD Cat OOD Both ID OOD Ads OOD Cat OOD Both

Median baseline - 1.7489 1.8911 1.7107 1.6807 0.75% 0.69% 0.83% 0.78%

CGCNN [286] Direct 0.6135 0.9155 0.6211 0.8506 3.41% 1.93% 3.11% 1.99%
SchNet [232] Direct 0.6372 0.7342 0.6611 0.7035 2.96% 2.33% 2.95% 2.22%
DimeNet++ [133, 131] Direct 0.5605 0.7252 0.5750 0.6613 4.26% 2.06% 4.10% 2.42%

SchNet [232] Relaxation 0.7088 0.7741 0.7665 0.8055 4.23% 2.63% 3.52% 2.52%
SchNet [232] – force-only + energy-only Relaxation 0.7066 0.7420 0.7966 0.7493 4.18% 2.98% 3.39% 2.70%
DimeNet++ [133, 131] Relaxation 0.6687 0.6864 0.6858 0.6835 4.29% 3.36% 3.79% 3.51%
DimeNet++ [133, 131] – force-only + energy-only Relaxation 0.5112 0.5744 0.5922 0.6130 6.14% 4.29% 5.10% 3.84%
DimeNet++ [133, 131] – large force-only + energy-only Relaxation 0.5022 0.5430 0.5780 0.6117 6.58% 4.34% 5.09% 3.93%

Table 3.4: Predicting relaxed state energy from initial structure (IS2RE ) as evaluated
by Mean Absolute Error (MAE) of the energies and the percentage of Energies within
a Threshold (EwT) of the ground truth energy. Results reported for models trained
on the All training dataset.

(a) (b) (c)

Figure 3-5: Results of force-only SchNet (denoted by ‘Sch’) and DimeNet++ (‘D++’)
S2EF models trained on S2EF-20𝑀 , S2EF-100𝑀 , S2EF-20𝑀 + Rattled (‘Rattled-
37𝑀 ’) and S2EF-20𝑀 + MD (‘MD-58𝑀 ’) dataset splits used to drive relaxations
from given initial structures (IS2RS ). We plot IS2RS AFbT performance against
S2EF force cosine, S2EF force MAE and number of training samples for the different
variants. 3-5a,3-5b: IS2RS AFbT seems to correlate better with S2EF force cosine
than S2EF force MAE, especially when analyzing models trained on Rattled-37𝑀 or
MD-58𝑀 data. 3-5c: Further, both DimeNet++ and SchNet achieve higher AFbT
when trained on MD-58𝑀 than S2EF-134𝑀 . Additional MD data seems to offer a
stronger learning signal than additional S2EF data.

classical force fields) would open up even more interesting applications. We ask that

users self-report timing results, but we are not going to make that a core part of the

challenge as computation time can likely be further optimized for the best models

and with hardware acceleration.
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3.6.2 Leaderboard

To ensure consistent and fair evaluation, a public leaderboard is available on the Open

Catalyst Project webpage (http://opencatalystproject.org). Results on any of

the tasks’ test datasets may be uploaded for evaluation. Ground truth test data is

not publicly released to reduce potential overfitting. Evaluation on the test set may

only be done through the leaderboard. Ablation studies and hyper-parameter tuning

may be done and reported on using the validation datasets.

3.6.3 Results

To provide baselines for the OC20 dataset, we report results using three state-of-the-

art approaches: CGCNN [286], SchNet [232], and DimeNet++ [131, 133]. Details of

the models’ implementations can be found in the Baselines Section.

S2EF : Results on CGCNN [286], SchNet [232], and DimeNet++ [133, 131] are

evaluated. All approaches predict structure energies in their forward pass and per-

atom forces by the negative gradient of the predicted energy with respect to atomic

positions [203]. Across most metrics DimeNet++ performs the best, with SchNet

marginally outperforming DimeNet++ and CGCNN on EFwT. SchNet outperforms

CGCNN across all metrics. Since tradeoffs exist in the prediction of energy and forces,

we trained three variants of SchNet and DimeNet++ with {𝜆𝐸, 𝜆𝐹} = {1, 30}, {0, 100}, {100, 1}

for SchNet/DimeNet++, SchNet/DimeNet++ force-only and SchNet/DimeNet++

energy-only respectively. As expected, the energy-only model performs best on en-

ergy MAE, while the force-only performs best on force MAE. DimeNet++ and SchNet

both provide a balance between the two and the best results on EFwT. All approaches

perform badly on the EFwT metric; indicating that the results are still far from be-

ing practically useful. Table 3.2 and Figure 3-4 show results across subsplits. As

expected, the In Domain (ID) achieves the best results and the OOD Both performs

the worst. However, results are not dramatically different between In Domain, OOD

Adsorbate and OOD Catalyst, which shows some generalization to new adsorbates

and catalysts. Increases in training data sizes results in significant improvements,
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Figure 3-6(A). The rate and amount of improvement varies based on the model. Fi-

nally, wider and deeper models are shown to improve accuracies in Figure 3-4. Both

increased depth (Medium to Large) and width (Small to Medium) show improve-

ments.

Figure 3-6: (A) Predicting energy and forces from a structure (S2EF ) as evaluated
by Mean Absolute Error (MAE) of the energies and forces. (B) Predicting relaxed
structure from initial structure (IS2RS ) as evaluated by Average Distance within
Threshold (ADwT) using force-only models. (C) Predicting relaxed state energy
from initial structure (IS2RE ) as evaluated by Mean Absolute Error (MAE) of the
energies and the percentage of Energies within a Threshold (EwT, 𝜖 = 0.02 eV) of
the ground truth energy. Results reported for S2EF and IS2RS trained on 200k, 2M,
20M and All dataset sizes. Results reported for IS2RE trained on 10k, 100k, and All
dataset sizes. S2EF and IS2RE values averaged across validation subsplits. IS2RS
values evaluated on the test in-domain (ID) subsplit.

IS2RS : For IS2RS , we use our S2EF baselines to drive ML relaxations from

the given initial structures to estimate the relaxed structures using L-BGFS [154],

examples are shown in Figure 3-3(A). Table 3.3 shows that DimeNet++ outperforms

SchNet in the ADwT and AFbT metrics. However, the FbT metrics indicate both

methods do not produce relaxed structures with forces below thresholds used in prac-

tice. Since only the computed forces are used for the IS2RS task and not the energies,

it is not surprising that the DimeNet++ force-only model performs the best. It was

trained using only force losses and performs significantly better on AFbT and ADwT,

but still is near zero when measured by FbT. A plot of FbT across thresholds from

0.01 to 0.6 for SchNet is shown in Figure 3-3(C). Both methods show better gener-

alization to new adsorbates vs new catalyst material compositions. Similar to S2EF
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improved results are found with more training data, especially for DimeNet++ and

SchNet, Figure 3-6(B). Experiments using the additional rattled and MD data are

shown in Figure 3-5. Interestingly, the force cosine metric appears to better correlate

with AFbT scores than force MAE. A discussion on these results may be found in

the supplementary.

IS2RE : For IS2RE we explore two pathways for computing the relaxed energy

from the initial state, Figure 3-3(B). The first directly computes the relaxed energy

given the initial state. The same model architectures are used as the S2EF task, but

with new weights learned. The second approach uses models trained on the S2EF

task to perform ML relaxations from which the resulting energy is returned. Note

that the ML relaxation approach is about 200 times more expensive to compute, since

energies needs to be computed at each relaxation step.

As shown in Table 3.4, the hybrid relaxation approaches outperformed the di-

rect across all metrics. The percentage of predicted energies within a tight threshold

(EwT) ranged from 2% to 6%; indicating that accuracies are still below practical

usefulness. Generalization to new catalyst compositions performed better than new

adsorbates. As shown in Figure 3-6(C), larger dataset sizes could significantly im-

prove performance. The best direct-based approach, DimeNet++, was evaluated

via the relaxation-based approach. The use of DimeNet++ force-only to perform

the relaxation, followed by DimeNet++ energy-only to compute the relaxed energy

significantly outperformed the use of a single model (optimized for EFwT) to com-

pute both. Best metrics were achieved using the large DimeNet++ force-only model,

followed by DimeNet++ energy-only.

3.7 Outlook and Future Directions

The baseline models in this work give significant insights into the complexity of day-

to-day challenges in catalysis and what it will take to achieve generalizable models.

Motivated by previous efforts[109], we analyzed model performance for increasing

dataset sizes to illustrate the differences between catalysis and related efforts—e.g.,
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Figure 3-7: Model performance versus dataset size across three related atomistic
domains. Insets are pairwise similarity for selected structures from the respec-
tive dataset using GraphDot (see the SI for details) (0/dark-blue/not-similar to
1/yellow/identical)[257, 258]. (left) Results [276] for FCHL/SchNet models trained
on the QM9 small molecule dataset (slope -0.57). (middle) Models[286, 232] trained
on Materials Project formation energies (slope -0.33, more difficult). (right) Results
for catalysis including a literature dataset for CO adsorbates [266] and this work
(slope -0.11 to -0.14, most difficult). Note that reaching the desired accuracy will
require several orders of magnitude more data with current models.

materials sciences or small molecule property prediction. Figure 3-7(left) and Figure

3-7(middle) show the performance of GNN models similar to the baseline models in

this work on datasets for small molecules (QM9) and materials (formation energies

from the materials project). The scaling of model accuracy with respect to dataset size

is related to the effective dimensionality of the task and the effective representation in

the model. Comparing DimeNet++ performance across all three tasks shows that the

aggressive scaling for small molecules is reduced for inorganic materials, and further

reduced for surfaces. Focusing on results from this study in Figure 3-7(right) shows

that the scaling is similar for the same baseline models trained on the OC20 dataset

and a related literature dataset of CO adsorption energies (see the SI). Importantly,

this suggests that achieving the desired accuracy using the current baseline models

would require a dataset nearly 10 orders of magnitude larger than the current dataset.

This implies that this problem will not be solved through brute-force methods alone,

and that significantly improved ML representations are also necessary. This is an
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exciting opportunity for the broader community.

For the computer science and ML communities, we expect that this dataset will

provide unique challenges and spur innovation in atomistic simulations. Many state-

of-the-art methods for organic and inorganic materials are based on graph convolu-

tional networks [286], which have seen rapid progress. With the above perspective, we

expect that additional creative solutions will be necessary to fully solve these tasks.

While they have not been demonstrated for inorganic materials, physics-informed

tensor representations for small molecules may be helpful [168, 35, 7, 178]. Element

embeddings and representations will be important to scale across materials. Incor-

poration of lower-level physics-based potentials is welcomed and encouraged. This

includes the use of related datasets (organic molecules or inorganic materials) for

pre-training or learning priors. Incorporating other electronic features in the training

set, such as charge distribution to correctly localize effects is also an opportunity to

effectively reduce the dimensionality of the problem.

Note that the size of this dataset is larger by 2 orders of magnitude than previous

catalyst DFT dataset efforts [266, 112]. Along with the potential for more accurate

ML models, it provides practical challenges to training atomistic machine learning

models at scale, similar to software engineering challenges in image recognition and

NLP [100, 208]. The largest baseline models with ca. 10 million parameters were

trained on upwards of 32 GPUs at a time, so we encourage the catalysis community

to take advantage of these GPU-enabled resources. This is well-timed with the wave

of large GPU-enabled supercomputers that are well-suited to these challenges, such

as Perlmutter (DOE NERSC) or Summit (DOE OLCF), among many others.

The baseline models in this work represent the state-of-the-art for deep learning

methods to predict thermochemistry for small molecules on inorganic surfaces. Solv-

ing this challenge with future model development efforts would enable a new genera-

tion of computational chemistry methods. In particular, on-the-fly thermochemistry

for reaction intermediates would enable reaction mechanism prediction across mate-

rials or composition space. Accelerated methods would also enable the more routine

use of more accurate computational methods (e.g. hybrid, exact-exchange, or RPA
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calculations) by focusing these efforts on the most promising and pre-relaxed struc-

tures. A solution to the S2EF task would enable transition state calculations, kinetic

approximations, vibrational frequency calculations, and the more routine use of long

timescale molecular dynamics for studying these systems. Sensitivity analyses will

be necessary to understand the level of accuracy needed for models to be practically

relevant for varying applications. Given the sparsity and breadth of OC20, the avail-

ability of relevant experimental data will also be a crucial challenge in the next stage

of validating model results with experiments. The potential applicability of the OC20

dataset is not just catalysis, but also has implications for areas where organic and in-

organic materials interact, such as water quality remediation, geochemistry, advanced

manufacturing, and durable energy materials.

3.8 Supporting Information Available

The supporting information contains details on the precise DFT calculation meth-

ods, the adsorption energy reference energies, the adsorbates and their assuming

binding configurations, details on graph construction, description of the graph simi-

larity metrics, a few sample GFN0-XTB relaxations, the precise train/test/validation

splits, details on the modified CGCNN/SchNet/DimeNet++ implementations, re-

sults on the Rattled/MD experiments, hyperparameters for baseline models, a list

of adsorbates in OC20, and full results on the validation splits. The full open

dataset is provided at http://opencatalystproject.org in accessible extxyz for-

mat, and the baseline models are provided as an open source repository at https:

//github.com/Open-Catalyst-Project/ocp.
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Chapter 4

Rotation Invariant Graph Neural

Networks using Spin Convolutions

This work originally appeared as: Shuaibi, M., Kolluru, A., Das, A., Grover, A., Sri-

ram, A., Ulissi, Z. and Zitnick, C.L., 2021. Rotation invariant graph neural networks

using spin convolutions. arXiv preprint arXiv:2106.09575.

4.1 Abstract

Progress towards the energy breakthroughs needed to combat climate change can be

significantly accelerated through the efficient simulation of atomic systems. Simula-

tion techniques based on first principles, such as Density Functional Theory (DFT),

are limited in their practical use due to their high computational expense. Machine

learning approaches have the potential to approximate DFT in a computationally

efficient manner, which could dramatically increase the impact of computational sim-

ulations on real-world problems.

Approximating DFT poses several challenges. These include accurately modeling

the subtle changes in the relative positions and angles between atoms, and enforcing

constraints such as rotation invariance or energy conservation. We introduce a novel

approach to modeling angular information between sets of neighboring atoms in a

graph neural network. Rotation invariance is achieved for the network’s edge messages
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through the use of a per-edge local coordinate frame and a novel spin convolution

over the remaining degree of freedom. Two model variants are proposed for the

applications of structure relaxation and molecular dynamics. State-of-the-art results

are demonstrated on the large-scale Open Catalyst 2020 dataset. Comparisons are

also performed on the MD17 and QM9 datasets.

4.2 Introduction

Many of the world’s challenges such as finding energy solutions to address climate

change [298, 40] and drug discovery [212, 237] are fundamentally problems of atomic-

scale design. A notable example is the discovery of new catalyst materials to drive

chemical reactions that are essential for addressing energy scarcity, renewable energy

storage, and more broadly climate change [298, 216]. Potential catalyst materials are

typically modeled using Density Functional Theory (DFT) that estimates the forces

that are exerted on each atom and the energy of a system or structure of atoms.

Unfortunately, the computational complexity of DFT limits the scale at which it

can be applied. Efficient machine learning approximations to DFT calculations hold

the potential to significantly increase the discovery rate of new materials for these

important global problems.

Graph Neural Networks (GNNs) [84, 296] are a common approach to modeling

atomic structures, where each node represents an atom and the edges represent the

atom’s neighbors [234, 79, 119, 232, 235, 286, 206, 133]. A significant challenge in

designing models is utilizing relative angular information between atoms, while main-

taining a model’s invariance to system rotations. Numerous approaches have been

proposed, such as only using the distance between atoms [232, 235, 286], or limiting

equivariant angular representations to linear transformations to maintain equivariance

[280, 25, 7, 260]. One promising approach is the use of triplets of neighboring atoms to

define local coordinate frames that are invariant to system rotations [133, 132]. The

relative angles between the three atoms may be used to update the GNN’s messages

while maintaining the network’s invariance to rotations. It has been shown that this
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additional angular information results in significantly improved accuracies on several

tasks [133, 132, 40].

We propose encoding angular information using a local reference frame defined by

only two atoms; the source and target atoms for each edge in a GNN. Using this ref-

erence frame, a spherical representation of the incoming messages to the source atom

is created, Figure 4-1. The representation has the benefit of encoding all neighboring

atom information, and not just information between atom triplets, which may result

in higher-order information being captured. The complication is a reference frame

defined by two atoms (or two 3D points) still has one remaining degree of freedom

- the roll rotation about the axis defined by the two 3D points. If this final degree

of freedom is not accounted for, the model will not be invariant to system rotations.

Our solution is to perform a convolution on the spherical representation across this

final rotation, called a “spin convolution”. By globally pooling the convolution’s fea-

tures, the resulting SpinConv model maintains rotation invariance while enabling the

capture of rich angular information.

We describe two model variations that are used depending on the importance of

energy conservation in the final application. We propose an energy-centric model

that enforces energy conservation by calculating the forces using the negative partial

derivative of the energy with respect to the atoms’ positions [48]. Our second approach

is a force-centric model that directly estimates the atom forces that is not energy

conserving. While the force-centric model’s energy estimation is rotation invariant,

the model’s final force estimation layer is not strictly rotation equivariant, but through

its architectural design it is encouraged to learn rotation equivariance during training.

Results are demonstrated on the Open Catalyst 2020 (OC20) dataset [40] aimed

at simulating catalyst materials that are useful for climate change related applica-

tions. The OC20 dataset contains over 130M training examples for approximating

the DFT-estimated forces and energies. Our SpinConv model achieves state-of-the-art

performance for both energy and force estimation. Notably, the force-centric variant,

which is not energy conserving, outperforms the energy-centric models. Significant

gains in accuracy are achieved for predicting relaxed energies from initial structures,
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Figure 4-1: Illustration of projecting an atom 𝑠 in the neighborhood of 𝑠 onto a
sphere in a local coordinate frame defined by atom 𝑠 and 𝑡 (left). For each projected
atom, a corresponding latitude 𝜑 (inclination) and longitude 𝜃 (azimuth) is computed
for its projection onto a 2D reference frame (middle). The spin convolution is done
in the longitudinal direction, corresponding to a roll is 3D space. (right) Example
channel filters that are learned using the grid-based approach for the first through
third message blocks and the force block.

by using the force-centric approach to predict the relaxed structure followed by its

energy. Ablation studies are performed on numerous architectural choices, such as

the choice of spherical representation and the size of the model. For completeness, we

also evaluate our model on the MD17 [48, 47] and QM9 [212] datasets that measure

accuracy for molecular dynamics and property prediction tasks respectively for small

molecules. Results compare favorably with respect to state-of-the-art methods.

4.3 Approach

We model a system or structure of atoms using a Graph Neural Network (GNN)

[84, 149, 296], where the nodes represent atoms and the edges represent the atoms’

neighbors. In this section, we describe both an energy-centric and force-centric model

to estimating atomic forces, which vary in how they estimate forces and whether

they are energy conserving. We begin by describing the components shared by each

approach, followed by how these components are used. Code will be released upon

acceptance under a permissive open-source license.
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4.3.1 Inputs and Outputs

The inputs to the network are the 3D positions 𝑥𝑖 and the atomic numbers 𝑎𝑖 for all

𝑖 ∈ 𝑛 atoms. The outputs are the per atom forces 𝑓𝑖 ∈ R3 and the overall structure’s

energy 𝐸. The 3D distance offset between a pair of source and target atoms 𝑠 and 𝑡

respectively is 𝑥𝑠𝑡 = 𝑥𝑠 −𝑥𝑡 with a distance of 𝑑𝑠𝑡 = ‖𝑥𝑠𝑡‖2. Directional information

is encoded using the normalized unit vector �̂�𝑠𝑡 = 𝑥𝑠𝑡/𝑑𝑠𝑡.

The graph neural network is constructed with each atom 𝑡 as a node and the edges

representing the atom’s neighbors 𝑠 ∈ 𝑁𝑡, where 𝑁𝑡 contains all atoms 𝑠 with 𝑑𝑠𝑡 < 𝛿.

Each edge has a corresponding message 𝑚𝑠𝑡 that passes information from atom 𝑠 to

𝑡. The output forces and energy are computed as a function of edge messages 𝑚𝑠𝑡

that we describe next.

4.3.2 Energy and force estimation

The energy-centric and force-centric models compute the structure’s energy 𝐸 as an

output. Our GNN model updates for each edge an 𝑀 -dimensional hidden message

ℎ
(𝑘)
𝑠𝑡 ∈ R𝑀 for 𝐾 iterations. The structure’s energy 𝐸 ∈ R is computed as a function

of the final layer of the edge messages in the GNN:

𝐸(𝑥, 𝑎) =
∑︁
𝑡

𝐹𝑒(𝑎𝑡,
∑︁
𝑠

ℎ
(𝐾)
𝑠𝑡 ), (4.1)

where 𝐹𝑒 is a single embedding block described later. As we also discuss later, the

edge messages ℎ𝑠𝑡 are invariant to system rotations, so the estimated energy 𝐸 is also

invariant.

The estimation of the forces varies for the energy-centric and force-centric models.

The energy-centric model estimates the forces using the negative partial derivative

of the energy with respect to the atom positions. This approach to force estimation

has the benefit of enforcing energy conservation [48], i.e., the forces along any closed

path sum to zero. The calculation of the partial derivative [48, 232, 235] requires an

additional step similar to performing backpropagation when updating the network’s
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Figure 4-2: (left) Overall model diagram for energy-centric model taking atom posi-
tions 𝑥 and atomic numbers 𝑎 as input and estimating the energy 𝐸. (right) Diagram
of the embedding and force blocks. The force block is only used in the force-centric
model to estimate the per-atom forces after the message blocks.

weights:

𝑓 = − 𝜕

𝜕𝑥
𝐸(𝑥, 𝑎) (4.2)

The force-centric model estimates forces directly for an atom 𝑡 using:

𝑓𝑡 = 𝐹𝑓 (𝑎𝑡, �̂�𝑡,ℎ
(𝐾)
𝑡 ), (4.3)

where 𝐹𝑓 is the force block we describe later, �̂�𝑡 are all the normalized unit vectors for

the neighbors of 𝑡 and ℎ
(𝐾)
𝑡 are all incoming messages to atom 𝑡. This has the benefit

of improved efficiency since it does not require an extra backward pass to estimate

the forces. The tradeoff is that it does not enforce energy conservation, i.e., the sum

of the forces along a closed path may not equal zero. Depending on the application,

an energy-centric or force-centric approach may be most suitable. In either model,

losses may be applied to both the energy and force estimates with weights determined

by the needs of the application.

4.3.3 Messages

The edge messages are iteratively updated to allow information from increasingly

distant atoms to be captured. Each message is represented by a tuple, 𝑚𝑠𝑡 =

{�̂�𝑠𝑡, 𝑑𝑠𝑡,ℎ
𝑘
𝑠𝑡}, where ℎ𝑘

𝑠𝑡 is the message’s hidden state at iteration 𝑘. Both �̂�𝑠𝑡 and 𝑑𝑠𝑡

are used to update the message’s hidden state ℎ𝑠𝑡, which is itself rotation invariant

due to the spin convolution that we describe later. The hidden state ℎ𝑠𝑡 ∈ R𝑀 is
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updated using:

ℎ
(𝑘+1)
𝑠𝑡 = ℎ

(𝑘)
𝑠𝑡 + 𝐹ℎ

(︁
𝑎𝑠, 𝑎𝑡,𝑚

(𝑘)
𝑠𝑡 ,𝑚

(𝑘)
𝑠

)︁
, (4.4)

where 𝑚
(𝑘)
𝑠 is the set of messages coming into node 𝑠, i.e., all 𝑚𝑠𝑠 with 𝑠 ∈ 𝑁𝑠. The

form of 𝐹ℎ is illustrated in Figure 4-2. It contains three parts; the spin convolution

that transforms a spherical projection of the messages into a rotation invariant rep-

resentation, the distance block that encodes the distance 𝑑𝑠𝑡 between atoms, and the

embedding block that incorporates information about the atoms’ atomic numbers.

The output of the spin convolution is passed through an embedding block, added to

the output of the distance block and finally passed through another embedding block.

We describe each of these parts in turn. The hidden messages are initialized using

just a distance block followed by and embedding block, Figure 4-2.

Spin Convolution

The spin convolution captures information about the neighbors 𝑠 ∈ 𝑁𝑠 of atom 𝑠 when

updating the message hidden state ℎ𝑠𝑡. The spin convolution has three stages that we

describe in turn; projection, convolution and pooling. The convolution captures the

relative angular information between the neighboring atoms, and the pooling ensures

the output 𝐷-dimensional feature representation is invariant to system rotations.

An important feature is the angular information of the neighboring atoms in 𝑁𝑠

relative to 𝑠 and 𝑡. This information is encoded by creating a local reference frame

in which atom 𝑠 is the center (0, 0, 0) and the z-axis points from atom 𝑠 to atom 𝑡.

As shown in Figure 4-1(left), this fixes all degrees of freedom except the roll rotation

about the vector from 𝑠 to 𝑡. The spin convolution is performed across a discretized set

of rotations about the roll rotation axis. At each rotation, the atoms 𝑠 are projected

onto a sphere centered on 𝑠 and used to create a spherical representation of the hidden

states ℎ𝑠𝑠. Each atom 𝑠 ∈ 𝑁𝑠 is projected using a polar coordinate frame (𝜑, 𝜃) where

𝜑 may be viewed as the latitude (inclination) and 𝜃 as the longitude (azimuth). The

polar coordinates are computed in the local edge coordinate frame using �̄�𝑠𝑠 = R𝑠𝑡�̂�𝑠𝑠

where R𝑠𝑡 is a 3D rotation matrix that satisfies R𝑠𝑡�̂�𝑠𝑡 = (0, 0, 1). To capture the
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rich information encoded in the relative angular information between atoms, a set of

filters is applied to the spherical representation (Figure 4-1(right)), similar to how a

filter is applied to an image patch with traditional CNNs.

We explore two potential spherical representations: spherical harmonics and a

grid-based approach. Spherical harmonics represent a spherical function using a set

of basis functions that are equivariant to rotations. The degree ℓ indicates the number

of basis functions 𝐿 = (ℓ + 1)2 used. The spherical representation of the incoming

messages for each atom is R𝐿×R𝑀 , where 𝑀 is the size of the message hidden states

in ℎ. The second approach uses the computed polar coordinates (𝜑, 𝜃) for all 𝑠 ∈ 𝑁𝑠

to create a grid-based representation, Figure 4-1(middle). The polar coordinates are

discretized creating a R𝜑 × R𝜃 × R𝑀 feature representation. Each message hidden

state ℎ
(𝑘)
𝑠𝑠 ∈ R𝑀 is added to the 3D feature representation using bilinear interpolation

with its corresponding (𝜑, 𝜃).

A 1D convolution is performed with either spherical representation in the longi-

tudinal direction. Filters have the same size as the feature representation, R𝐿 × R𝑀

or R𝜑 × R𝜃 × R𝑀 for spherical harmonics and the grid-based approach respectively.

Full coverage filters are used since the angular relationship between atoms at dis-

tant angles is important, e.g., the forces of atoms at exactly 180∘ from each other

may cancel out. Large filters also enable the network to learn the complex relation-

ships between numerous neighboring atoms. Rotations are performed using Wigner

D-matrices for the spherical harmonic representation, while a simple translation is

used for the grid-based representation. The result of the convolution is a R𝜃 × R𝐷

feature vector corresponding to 𝐷 filters applied to each longitudinal orientation. To

make the representation invariant to rotations, average pooling is performed in the

longitudinal direction resulting in a final R𝐷 feature vector.

Distance Block

The distance block encodes the distance between two atoms. The distance is encoded

using a set of evenly distributed Gaussian basis functions 𝒢 with means 𝜇𝑖 and stan-

dard deviation 𝜎. The means of the basis functions are evenly distributed from 0 to 𝛿
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Figure 4-3: Illustration of learned embeddings (weights on the one-hot embeddings)
for the source 𝑎𝑠 and target 𝑎𝑡 atomic numbers plotted on a periodic table. A random
sample of 12 values from each embedding are shown. Embeddings are from the first
embedding block in the first message update. Note that neighboring atoms in the
periodic table with similar properties have similar weights. Elements not in the OC20
dataset are marked with a light grey checkerboard pattern.

angstroms. Since the atomic radii of each element varies, the relative position of two

atoms 𝑠 and 𝑡 is highly dependent on their atomic numbers 𝑎𝑠 and 𝑎𝑡. To account

for this, gain 𝑣𝑎𝑠𝑎𝑡 and offset 𝑢𝑎𝑠𝑎𝑡 scalars for the distance 𝑑𝑠𝑡 are learned for each

potential pair of atomic numbers:

𝑏𝑖 = 𝒢𝑖(𝑣𝑎𝑠𝑎𝑡𝑑𝑠𝑡 + 𝑢𝑎𝑠𝑎𝑡 − 𝜇𝑖, 𝜎) (4.5)

The resulting feature 𝑏 is passed through a linear transformation to create a 𝐷-

dimensional feature vector that is passed to the next block.

Embedding Block

The embedding block incorporates the atomic number information 𝑎𝑠 and 𝑎𝑡 into the

update of the message’s hidden state. The embedding operation may be interpreted as

a mixture of experts [164] approach that computes 𝐵 different variations of the input,

which are weighted by an embedding computed from the atoms’ atomic numbers. The

block’s inputs are used to compute 𝐵 sets of hidden values 𝑉𝑠𝑡 ∈ R𝐷×R𝐵. A one-hot

embedding for the atomic numbers 𝑎𝑠 and 𝑎𝑡 are concatenated and used to compute

an 𝐵 dimensional vector, 𝑣𝑠𝑡 ∈ R𝐵, for weighting the 𝐵 different sets of hidden values.

An illustration of the learned embeddings are shown in Figure 4-3. 𝑣𝑠𝑡 is computed

using a two layer network and softmax. The matrix 𝑉𝑠𝑡 is multiplied by vector 𝑣𝑠𝑡

resulting in a vector of length 𝐷. As shown in Figure 4-2, the result is passed through
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an additional fully connected layer before being passed to the next block. The output

of the block is either 𝐷 if it is used in the message update. If the embedding block is

used to compute the final energy, only the atomic number 𝑎𝑡 embedding is used, the

input dimension is 𝑀 instead of 𝐷, and the output is size 1.

4.3.4 Force Block

The force block computes the per-atom 3D forces 𝑓 from 𝑎𝑡, �̂�𝑡, and ℎ
(𝐾)
𝑡 using

Equation (4.3). The force block uses a similar spin convolution as the message block,

except the sphere is centered on the target atom 𝑡 and is orientated along the 𝑥, 𝑦 and

𝑧 axes to compute 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧 respectively. That is, the force block is used three

times to compute the force magnitude in each orthogonal direction for each atom.

The force block uses the same embedding blocks as message passing, Figure 4-2.

The same weights are used to compute forces in each of the three directions, only

the orientation of the sphere used to create the convolutional features changes. To

add more robustness to the force estimation and encourage rotational equivariance,

the overall structure may be randomly rotated several times and the forces estimated.

The multiple estimates may then be rotated back to the original reference frame and

averaged. For both training and testing, five random rotations are used. Empirically,

this approach encourages the networks to learn an approximate rotation equivariant

representation even though rotation equivariance is not strictly enforced.

4.4 Experiments

In this section, we begin by presenting our primary results on the Open Catalyst 2020

(OC20) dataset [40] and compare against state-of-the-art models. This is followed by

results on the smaller datasets of MD17 [48, 47] and QM9 [212] for additional model

comparison.

Implementation details. For all models, the edge messages have size 𝑀 = 32

with 𝐾 = 3 layers, the hidden dimension 𝐷 = 256 and embedding dimension 𝐵 = 8.
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Model Hidden #Msg #Params Train Inference OC20 Test
dim layers time time Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cos ↑ EFwT [%] ↑

Median – – – 2.258 0.08438 0.0156 0.005

SchNet[235, 40] 1024 5 9.1M 194d 0.8h – 0.04903 0.3413 0
DimeNet++[132, 40] 192 3 1.8M 587d 8.5h 0.5343 0.04758 0.3560 0.05
DimeNet++ energy-only[132, 40] 192 3 1.8M 587d 8.5h 0.4802 0.3459 0.1021 0.0
DimeNet++ force-only[132, 40] 192 3 1.8M 587d 8.5h – 0.03573 0.4785 –
DimeNet++-large[132, 40] 512 3 10.7M 1600d 27.0h – 0.03275 0.5408 –
ForceNet[108] 512 5 11.3M 31d 1.3h – 0.03432 0.4770 –
ForceNet-large[108] 768 7 34.8M 194d 3.5h - 0.03113 0.5195 -

SpinConv (energy-centric) 256 3 6.1M 275d 22.7h 0.4114 0.03888 0.4299 0.16
SpinConv (energy-centric) force-only 256 3 6.1M 380d 22.7h – 0.03258 0.4976 –
SpinConv (force-centric) 256 3 8.5M 275d 9.1h 0.3363 0.02966 0.5391 0.45

Table 4.1: Comparison of SpinConv to existing GNN models on the S2EF task.
Average results across all four test splits are reported. We mark as bold the best
performance and close ones, i.e., within 0.0005 MAE, which according to our prelimi-
nary experiments, is a good threshold to meaningfully distinguish model performance.
Training time is in GPU days, and inference time is in GPU hours. Median repre-
sents the trivial baseline of always predicting the median training force across all the
validation atoms.

Unless otherwise stated, the convolutional filters are of size 16x12 and 12x8 for the

force-centric and energy-centric models respectively. A smaller filter size was used

for the energy-centric model due to memory constraints. GroupNorm [285] is applied

after the spin convolution with group size 4. An L1 loss is used for all experiments.

The force loss was weighed by 100 with respect to the energy loss, except for the

force-only model where the energy loss is set to 0. All models were trained with

Adam (amsgrad) to convergence with the learning rate multiplied by 0.8 when the

validation error plateaus. Training was performed using batch sizes ranging from 64

to 96 samples across 32 Volta 32GB GPUs. The Swish [211] function is used for

all non-linear activation functions. The neighbors 𝑠 ∈ 𝑁𝑡 of each atom 𝑡 are found

using a distance threshold of 𝛿 = 6Å. If more than 30 atoms are within the distance

threshold, only the closest 30 are used. The distance block uses 256 to 512 Gaussian

basis functions with 𝜎’s equal to three times the distance between Gaussian means.

4.4.1 OC20

The OC20 dataset [40] contains over 130 million structures used to train models for

predicting forces and energies during structure relaxations that is released under a

CC Attribution 4.0 License. Since the goal of a structure relaxation is to find a local

energy minimum, energy conservation in optional for this task. We report results for
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Model Energy MAE (eV) ↓ Force MAE (eV/Å) ↓
ID OOD Ads. OOD Cat. OOD Both ID OOD Ads. OOD Cat. OOD Both

Median 2.043 2.420 1.992 2.577 0.0809 0.0801 0.0787 0.0978

Energy Loss Only
SchNet 0.395 0.446 0.551 0.703 - - - -
DimeNet++ 0.359 0.402 0.506 0.654 - - - -

Force Loss Only
SchNet - - - - 0.0443 0.0469 0.0459 0.0590
DimeNet++ - - - - 0.0331 0.0341 0.0340 0.0417
DimeNet++-large - - - - 0.0281 0.0289 0.0312 0.0371
ForceNet - - - - 0.0313 0.0320 0.0331 0.0409
ForceNet-large - - - - 0.0278 0.0283 0.0309 0.0375
SpinConv (energy-centric) - - - - 0.0309 0.0321 0.0315 0.0393

Energy and Force Loss
SchNet 0.443 0.491 0.529 0.716 0.0493 0.0527 0.0508 0.0652
DimeNet++ 0.486 0.470 0.533 0.648 0.0443 0.0458 0.0444 0.0558
SpinConv (energy-centric) 0.351 0.367 0.411 0.517 0.0358 0.0374 0.0364 0.0460
SpinConv (force-centric) 0.261 0.275 0.350 0.459 0.0269 0.0277 0.0285 0.0356

Table 4.2: Comparison of SpinConv to existing GNN models on different test splits.
We mark as bold the best performance and close ones, i.e., within 0.0005 MAE,
which according to our preliminary experiments, is a good threshold to meaningfully
distinguish model performance. Training time is in GPU days, and inference time is
in GPU hours. Median represents the trivial baseline of always predicting the median
training force across all the validation atoms.

the Structure to Energy and Forces (S2EF), the Initial Structure to Relaxed Energy

(IS2RE) and the Initial Structure to Relaxed Structure (IS2RS) tasks.

Structure to Energy and Forces (S2EF)

There are four metrics for the S2EF task, the energy and force Mean Absolute Error

(MAE), the Force Cosine similarity, and the Energy and Forces within a Threshold

(EFwT). The EFwT metric is meant to indicate the percentage of energy and force

predictions that would be useful in practice. Results for three model variants are

shown in Table 4.1 on the test set. The SpinConv force-centric approach has the

lowest energy MAE and force MAE of all models. While still low in absolute terms, the

SpinConv models are improving over other models on the EFwT metric. DimeNet++-

large slightly out performs SpinConv on the force cosine metric. The training time

for the SpinConv is significantly faster than DimeNet++, while being a little slower

than ForceNet [108] or SchNet [235].

In Table 4.2 we examine the performance of SpinConv across different test splits.

Note that the energy prediction of SpinConv is signficantly better than SchNet or
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Model Hidden #Msg #Params Train OC20 Val ID 30k
dim layers time Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cos ↑ EFwT [%] ↑

Median

Energy-Centric
SpinConv (grid 12x8) 128 2 1.3M 54d – 0.0417 0.401 –
SpinConv (spherical harmonics, ℓ = 5) 256 3 6.4M 119d – 0.0405 0.411 –
SpinConv (grid 12x8) 256 3 6.1M 87d – 0.0406 0.426 –

Force-Centric
SpinConv (grid 12x8) 128 2 1.8M 54d 0.376 0.0370 0.436 0.15%
SpinConv (grid no conv 16x12) 256 3 8.5M 56d 0.341 0.0348 0.462 0.20%
SpinConv (spherical harmonics, ℓ = 5) 256 3 8.1M 113d 0.321 0.0328 0.484 0.22%
SpinConv (grid 16x12) 256 3 8.5M 76d 0.317 0.0326 0.484 0.20%

Table 4.3: Ablation studies for SpinConv model variations trained for 560k steps (32-
48 batch size, 0.2 epochs) with 16 Volta 32 GB GPUs. Training time is in GPU days
and the validation set is a 30k random sample of the OC20 ID Validation set.

Figure 4-4: Performance of SpinConv ablations on OC20 Val ID 30𝑘 (Table 4.3). All
models trained for 560𝑘 steps and plotted against wall-clock training time. Note force-
centric models and grid-based approaches converge more quickly than energy-centric
models and those using spherical harmonics.

DimeNet++. Across all models the accuracy for the in domain split are highest

and decline for the three Out of Domain (OOD Adsorbate, OOD Catalyst, OOD

Both) splits. SpinConv outperforms all models on each of the different domain splits.

When comparing energy-centric approaches trained with both force and energy losses

(bottom rows), the SpinConv model does significantly better at predicting both.

In fact, the energy-centric approach trained on forces and energy outperforms the

DimeNet++ [132] model when trained on only energy, or energy and forces.

We examine variations of the SpinConv model in Table 4.3 and Figure 4-4 through

ablation studies. We trained three variants of the energy-centric model and four vari-

ants of the force-centric model. The grid-based and spherical harmonic approaches

produced similar accuracies. However, the grid-based approach was significantly

faster to train, so it was used in the remaining experiments. Smaller models lead

to reduced performance on the OC20 dataset, but we found for smaller datasets such

as MD17 or QM9 smaller model sizes can be beneficial to avoid overfitting. Finally,

we test the impact of not performing the convolution (no conv) and only applying
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Energy MAE [eV] ↓ EwT ↑
Model Approach ID OOD Ads OOD Cat OOD Both ID OOD Ads OOD Cat OOD Both

Median baseline - 1.7499 1.8793 1.7090 1.6636 0.71% 0.72% 0.89% 0.74%

CGCNN [286] Direct 0.6149 0.9155 0.6219 0.8511 3.40% 1.93% 3.10% 2.00%
SchNet [232] Direct 0.6387 0.7342 0.6616 0.7037 2.96% 2.33% 2.94% 2.21%
DimeNet++ [133] Direct 0.5620 0.7252 0.5756 0.6613 4.25% 2.07% 4.10% 2.41%
SpinConv Direct 0.5583 0.7230 0.5687 0.6738 4.08% 2.26% 3.82% 2.33%

DimeNet++ Relaxation 0.6908 0.6842 0.7027 0.6834 4.25% 3.36% 3.76% 3.52%
DimeNet++ – force-only + energy-only Relaxation 0.5124 0.5744 0.5935 0.6126 6.12% 4.29% 5.07% 3.85%
DimeNet++ – large force-only + energy-only Relaxation 0.5034 0.5430 0.5789 0.6113 6.57% 4.34% 5.09% 3.93%
SpinConv (force-centric) Relaxation 0.4235 0.4415 0.4572 0.4245 9.37% 6.75% 8.49% 6.76%

Table 4.4: Initial Structure to Relaxed Energy (IS2RE) results on the OC20 test split
as evaluated by the Energy MAE (eV) and Energy within Threshold (EwT) [40] (see
OC20 discussion board). Comparisons made for the direct and relaxation approaches
using various models.

Model Inference AFbT (%) ↑ ADwT (%) ↑
time ↓ ID OOD Ads. OOD Cat. OOD Both Average ID OOD Ads. OOD Cat. OOD Both Average

SchNet [232] 54.1h 5.28 2.82 2.62 2.73 3.36 32.49 28.59 30.99 35.08 31.79
DimeNet++ [132] 407.6h 17.52 14.67 14.32 14.43 15.23 48.76 45.19 48.59 53.14 48.92
DimeNet++-large [132] 814.6h 25.65 20.73 20.24 20.67 21.82 52.45 48.47 50.99 54.82 51.68
ForceNet [108] 75.1h 10.75 7.74 7.54 7.78 8.45 46.83 41.26 46.45 49.60 46.04
ForceNet-large [108] 186.9h 14.77 12.23 12.16 11.46 12.66 50.59 45.16 49.80 52.94 49.62

SpinConv (force-centric) 263.2h 21.10 15.70 15.86 14.01 16.67 53.68 48.87 53.92 58.03 53.62

Table 4.5: Relaxed structure from initial structure (IS2RS) results on the OC20
test split, as evaluated by Average Distance within Threshold (ADwT) and Average
Forces below Threshold (AFbT). All values in percentages, higher is better. Results
computed via the OCP evaluation server. Inference times are total across the 4 splits.

the filter at a single rotation. Rotation invariance was maintained by orienting the

filter based on the mean angle of the neighboring atoms weighted by distance. The

result of not performing the convolution is significantly reduced accuracy. However,

its faster training time may make it suitable for some applications.

Finally, for the force-centric SpinConv model we explore results when varying the

number of random rotations used in the force block. The force MAE when using a

single random rotation is 0.0276 and improves slightly to 0.0270 when using 5 random

rotations. Increasing the number of rotations beyond 5 leads to negligible gains. The

standard deviation of the force estimates at different random rotations is 0.004 eV/Å.

This is equal to 15% of the force MAE, which indicates the amount of error due to

the model not being strictly rotation equivariant is small relative to the overall error

of the model.
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Initial Structure to Relaxed Energy (IS2RE)

The Initial Structure to Relaxed Energy (IS2RE) task takes an initial atomic struc-

ture and attempts to predict the energy of the structure after it has been relaxed.

Two approaches may be taken to address this problem, the direct and relaxation

approaches [40]. The direct treats the task as a standard regression problem and

directly estimates the relaxed energy from the initial structure. The relaxation ap-

proach computes the relaxed structure using the ML predicted forces to update the

atom positions. Next, given the ML relaxed structure the energy is estimated. We

show results for both approaches in the OC20 dataset using SpinConv in Table 4.4.

The results of the SpinConv model significantly outperform all previous approaches

using the relaxation approach for both energy MAE and Energy within Threshold

(EwT) metrics. DimeNet++ also shows improved results for the relaxation approach

with the best approach using two models; DimeNet++-large for force estimation and

DimeNet++ (energy-only) for the energy estimation. Note in contrast to other ap-

proaches, SpinConv shows good results across all test splits, including those with

out of domain adsorbates and catalysts. Using the direct approach, SpinConv is

comparable to DimeNet++’s direct approach.

Initial Structure to Relaxed Structure (IS2RS)

Our final results on the OC20 dataset are on the IS2RS task where predicted forces

are used to relax an atom structure to a local energy minimum. The is performed by

iteratively estimating the forces that are in turn used to update the atoms positions.

This process is repeated until convergence or 200 iterations. Results are shown in

Table 4.5. The suggested metrics are Average Distance within Threshold (ADwT)

metric, which measures whether the atom positions are close to those found using

DFT and Average Forces below Threshold (AFbT), which measures whether a true

energy minimum was found (i.e., forces are close to zero). On the ADwT metric,

SpinConv outperforms other approaches (53.62% averaged across splits). On the

AFbT metric, DimeNet++-large outperforms SpinConv (21.82% vs . 16.67%), but is
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Molecule GDML PhysNet PhysNet-ens5 SchNet DimeNet* SpinConv

Aspirin 0.02 0.06 0.04 0.33 0.09 0.07
Benzene 0.24 0.15 0.14 0.17 0.15 0.17
Ethanol 0.09 0.03 0.02 0.05 0.03 0.02
Malonaldehyde 0.09 0.04 0.03 0.08 0.04 0.04
Naphthalene 0.03 0.04 0.03 0.11 0.06 0.04
Salicylic 0.03 0.04 0.03 0.19 0.09 0.05
Toluene 0.05 0.03 0.03 0.09 0.05 0.03
Uracil 0.03 0.03 0.03 0.11 0.04 0.03

Mean 0.073 0.053 0.044 0.141 0.069 0.058

Table 4.6: Forces MAE (kcal/molÅ) on MD17 for models trained using 50k samples.
Best results for models not using domain specific information are in bold. *The DimeNet
results were trained in-house as the original authors did not use the 50k dataset. DimeNet was found
to outperform DimeNet++ on this task.

Task 𝛼 ∆𝜖 𝜖HOMO 𝜖LUMO 𝜇 𝐶𝜈 G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

NMP [79] .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
Schnet [232] .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant [7] .085 61 34 38 .038 .026 20 21 .961 21 22 2.03
L1Net [168] .088 68 46 35 .043 .031 14 14 .354 14 13 1.56
LieConv [67] .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
TFN [260] .223 58 40 38 .064 .101 - - - - - -
SE(3)-Tr. [70] .142 53 35 33 .051 .054 - - - - - -
EGNN [225] .071 48 29 25 .029 .031 12 12 .106 12 11 1.55
DimeNet++ [132] .044 33 25 20 .030 .023 8 7 .331 6 6 1.21
SphereNet [155] .047 32 24 19 .027 .022 8 6 .292 7 6 1.12

SpinConv .058 47 26 22 .027 .028 12 12 .156 12 12 1.50

Table 4.7: Mean absolute error results for QM9 dataset [212] on 12 properties for
small molecules.

more than ∼3x slower (814.6h vs . 263.2h) during inference. SpinConv outperforms

all other models.

4.4.2 MD17

The MD17 dataset [48, 47] contains molecular dynamic simulations for eight small

molecules. Two training datasets are commonly used, one containing 1k examples and

another containing 50k examples. We found the 1k training dataset to be too small for

the SpinConv model, and may be more appropriate for approaches that incorporate
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prior chemistry knowledge, such as hand-coded features or force fields [48, 270]. The

50k dataset provides significantly more training data, but the remaining validation

and test data are highly similar to those found in training, and may not guarantee

independent samples in the test set[49]. Nevertheless, we report results on MD17 for

comparison to prior work on the molecular dynamics task. Research in this domain

would greatly benefit from the generation of a larger dataset.

Results are shown in Table 4.6. SpinConv is on par or better for 7 of the 8

molecules when compared to DimeNet [133]. Both SpinConv and DimeNet perform

well with respect to the GDML [48] and PhysNet [270] models that take advantage

of domain-specific information. Given the smaller dataset size, the SpinConv model

uses a reduced 8x8 grid-based spherical representation. Other model parameters are

the same as previously described.

4.4.3 QM9

Our final set of results are on the popular QM9 dataset [212] that tests the prediction

of numerous properties for small molecules. While the SpinConv model was designed

to estimate energies and per-atom forces, we may use the same model to predict

other proprieties. Results are shown in Table 4.7 on a random test split for an

energy-centric 8x8 grid-based SpinConv model. The results of DimeNet++ and the

recent SphereNet[155] outperform those of others. However, DimeNet++, SphereNet

and SpinConv perform well with respect to other approaches across many properties.

4.5 Related work

A common approach to estimating molecular and atomic properties is the use of

GNNs [234, 79, 119, 232, 235, 286, 206, 133] where nodes represent atoms and edges

connect neighboring atoms. One of the first approaches for force estimation was

SchNet [232], which computed forces using only the distance between atoms with-

out the use of angular information. Unlike previous approaches that used discrete

distance filters [286], SchNet proposed the used of differentiable edge filters. This
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enabled the construction of an energy-conserving model for molecular dynamics that

estimates forces by taking the negative gradient of the energy with respect to the

atom positions [48]. DimeNet extended this approach to also represent the angular

information between triplets of atoms [133, 132]. The more recent SphereNet further

extends this by capturing dihedral angles [155]. SpinConv is able to model relative

angular relationships between all neighboring atoms, and not just triplets of atoms,

due to the use of the spin convolutional filter. In parallel to invariant models, rota-

tional equivariant networks are explored in depth by [280, 25, 7, 260, 225]. This was

accomplished by decoupling the network-fed invariant information (distance), from

the equivariant information (distance vector), followed by the careful combination

via tensor products. The energy-centric SpinConv model is invariant to rotations

due to the use of global pooling after the spin convolution. The final force block of

the force-centric model is not strictly rotation equivariant, but is encouraged to learn

rotation equivariance during training.

Another approach to force estimation is to directly regress the forces as an output

of the network. This doesn’t enforce energy conservation or rotational equivariance,

but as shown by ForceNet [108], such models can still produce accurate force esti-

mates.

Numerous approaches incorporate more domain specific information into machine

learning models. These include GDML [48] and PhysNet [270] that use handcrafted

features and force-fields respectively. OrbNet [206] is a hybrid approach that utilizes

proprietary orbital features that improves accuracy while achieving significant effi-

ciency gains over DFT. While these approaches can lead to improved accuracy, they

typically result in increased computational expense over ML models.

4.6 Discussion

A common approach to estimating molecular and atomic properties is the use of

GNNs [234, 79, 119, 232, 235, 286, 206, 133] where nodes represent atoms and edges

connect neighboring atoms. One of the first approaches for force estimation was
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SchNet [232], which computed forces using only the distance between atoms with-

out the use of angular information. Unlike previous approaches that used discrete

distance filters [286], SchNet proposed the used of differentiable edge filters. This

enabled the construction of an energy-conserving model for molecular dynamics that

estimates forces by taking the negative gradient of the energy with respect to the

atom positions [48]. DimeNet extended this approach to also represent the angular

information between triplets of atoms [133, 132]. The more recent SphereNet further

extends this by capturing dihedral angles [155]. SpinConv is able to model relative

angular relationships between all neighboring atoms, and not just triplets of atoms,

due to the use of the spin convolutional filter. In parallel to invariant models, rota-

tional equivariant networks are explored in depth by [280, 25, 7, 260, 225]. This was

accomplished by decoupling the network-fed invariant information (distance), from

the equivariant information (distance vector), followed by the careful combination

via tensor products. The energy-centric SpinConv model is invariant to rotations

due to the use of global pooling after the spin convolution. The final force block of

the force-centric model is not strictly rotation equivariant, but is encouraged to learn

rotation equivariance during training.

Another approach to force estimation is to directly regress the forces as an output

of the network. This doesn’t enforce energy conservation or rotational equivariance,

but as shown by ForceNet [108], such models can still produce accurate force esti-

mates.

Numerous approaches incorporate more domain specific information into machine

learning models. These include GDML [48] and PhysNet [270] that use handcrafted

features and force-fields respectively. OrbNet [206] is a hybrid approach that utilizes

proprietary orbital features that improves accuracy while achieving significant effi-

ciency gains over DFT. While these approaches can lead to improved accuracy, they

typically result in increased computational expense over ML models.
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4.7 Societal Impact

This work is motivated by the problems we face due to climate change [298], many

of which require innovative solutions to reduce energy usage and replace traditional

chemical feedstocks with renewable alternatives. For example, one of the most energy

intensive chemical processes is the development of new electrochemical catalysts for

ammonia fertilizer production that helped to feed the world’s growing population dur-

ing the 20th century [94]. This is also an illustrative example of possible unintended

consequences as advancements in chemistry and materials may be used for numerous

purposes. As ammonia fertilization increased in use, its overuse in today’s farming

has led to ocean “dead zones” and its production is very carbon intensive. Knowl-

edge and techniques used to create ammonia were also transferred to the creation

of explosives during wartime. We hope to steer the use of ML for atomic simula-

tions to societally-beneficial uses by training and testing our approaches on datasets,

such as OC20, that were specifically designed to address chemical reactions useful for

addressing climate change.
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Chapter 5

The Open Catalyst 2022 (OC22)

Dataset and Challenges for Oxide

Electrocatalysis

This work originally appeared as: Tran, R.*, Lan, J.*, Shuaibi, M.*, Wood, B.M.*,

Goyal, S.*, Das, A., Heras-Domingo, J., Kolluru, A., Rizvi, A., Shoghi, N., Sri-

ram, A., Ulissi, Z., Zitnick, C.L, 2022. The Open Catalyst 2022 (OC22) Dataset

and Challenges for Oxide Electrocatalysis. arXiv preprint arXiv:2206.08917. ACS

Catalysis, under review. It has been edited to include the supplementary information

in Appendix C. *These authors contributed equally.

My contribution in this work included task formulation, planning and coordinating

all modeling and training experiments, data preprocessing and split creation, model

evaluations, and the primary writer and editor of the manuscript.

5.1 Abstract

Computational catalysis and machine learning communities have made considerable

progress in developing machine learning models for catalyst discovery and design.

Yet, a general machine learning potential that spans the chemical space of catalysis

is still out of reach. A significant hurdle is obtaining access to training data across a
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wide range of materials. One important class of materials where data is lacking are

oxides, which inhibits models from studying the OER and oxide electrocatalysis more

generally. To address this we developed the OC22 dataset, consisting of 62,331 DFT

relaxations (∼9,854,504 single point calculations) across a range of oxide materials,

coverages, and adsorbates (*H, *O, *N, *C, *OOH, *OH, *OH2, *O2, *CO). We

define generalized tasks to predict the total system energy that are applicable across

catalysis, develop baseline performance of several graph neural networks (SchNet,

DimeNet++, ForceNet, SpinConv, PaiNN, GemNet-dT, GemNet-OC), and provide

pre-defined dataset splits to establish clear benchmarks for future efforts. For all tasks,

we study whether combining datasets leads to better results, even if they contain

different materials or adsorbates. Specifically, we jointly train models on OC20 and

OC22, or fine-tune pretrained OC20 models on OC22. In the most general task,

GemNet-OC sees a ∼32% improvement in energy predictions through fine-tuning

and a ∼9% improvement in force predictions via joint training. Surprisingly, joint

training on both the OC20 and much smaller OC22 datasets also improves total energy

predictions on OC20 by ∼19%. The dataset and baseline models are open sourced,

and a public leaderboard will follow to encourage continued community developments

on the total energy tasks and data.

5.2 Introduction

One of the most challenging scientific problems facing humanity in the 21st century

is the development of suitable technologies to produce, store, and use clean energy.

Renewable energy is often produced by intermittent sources (e.g. sunlight, wind, or

tides) so efficient grid-scale storage is required to transfer power from times of excess

generation to times of excess demand. There are a number of promising storage tech-

niques including the conversion of renewable energy to a chemical form, e.g. water

splitting to H2, or CO2 conversion to liquid fuels. These applications rely on the avail-

ability of efficient electrocatalysts. In many cases the most stable and active catalysts

for these reactions are inorganic oxides which present a number of challenges to cat-
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alyst design compared to simpler metal surfaces. Developing generalizable machine

learning methods to quickly and accurately predict the activity and stability of oxide

catalysts would have a major impact on renewable energy storage and utilization.

As a motivating example of the need and challenges for oxide electrocatalysts,

consider water splitting for the generation of clean H2; an energy-dense fuel that is

used in fuel cells or ammonia synthesis. Electrochemical water splitting consists of

two coupled half-reactions,

OER: 2H2O −−→ O2 + 4 (H+ + e−)

HER: 4 (H+ + e−) −−→ 2 H2

2 H2O −−→ O2 + H2,

which split two water molecules to evolve H2 and O2 gas. This process is extremely

energy intensive. The OER is largely responsible for the total inefficiency of this

reaction and is quite complicated due to bond rearrangements and the formation of an

O−O bond. Water splitting typically uses very harsh acidic conditions to reduce gas

solubility and improve proton conductivity, and for which high performance proton

exchange membranes are widely available. Unfortunately, for these conditions there

are very few known materials that are stable and active, except extremely expensive

metal oxides, such as those using Ir or Ru [267]. Currently, there are significant

efforts to design complex multi-component oxide OER catalysts to reduce the cost

and improve their activity and stability [115, 293]. Computational chemistry can play

a critical role in helping screen, discover, and understand such materials.

Computational methods can be used to predict the activity and stability of a pro-

posed oxide catalyst, but these techniques are significantly more complicated than

for metal catalysts and present many additional challenges. First, there are many

oxide polymorphs (crystal structures) for any given chemical composition that must

be considered to identify the most stable catalyst structure[68]. Second, the surface of

an oxide catalyst is often prone to reconstruction, leaching, doping, and defects [42].

Third, the environment can lead to a number of possible surface terminations. Fourth,
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Figure 5-1: Overview of the contents and impact areas of the OC22 dataset. The
water nucleophilic attack mechanism is highlighted for the OER reaction, with H2O
and O2 as reactants and products, respectively. Images are a random sample of the
dataset.

it is difficult to determine a catalyst’s active site and there are often multiple compet-

ing mechanisms to consider [83]. To add to these challenges, computational chemistry

methods such as the widely-used Generalized Gradient Approximation (GGA) are less

accurate for oxide materials due to the strong electron correlation and complicated

electronic structure. Large system sizes and the likelihood of long-range electrostatic

or magnetic interactions also result in slower convergence. These additional configu-

rational and computational complexities make the creation of datasets and machine

learning models for oxides significantly more expensive and challenging, leading to

much fewer and smaller datasets than for metal systems (see [6] for a sample of

representative datasets in catalysis).

To address these challenges, we propose training ML models to enable the ef-

ficient search of new materials. The training of accurate ML models requires the

creation of a large training dataset. For example, the OC20 dataset [40] (ca. 250

million single-point calculations) considered different adsorbates (small adsorbates,
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C1/C2 compounds, and N/O-containing intermediates) on top of randomly sampled

low Miller index facets of stable materials from the Materials Project[114], but did

not include metal oxide materials due to the complexities above. The release of

the OC20 dataset helped enable rapid advances in the accuracy and generalizability

of Graph Neural Network (GNN) models [136], with decreases of 55+% in the key

S2EF metrics in the first two years. Initial baseline models like CGCNN[286] and

SchNet[232] focused on local environment representations. Key advances since then

include invariant angular interactions (DimeNet/DimeNet++ [133, 131]), faster and

more accurate but non-energy conserving models (ForceNet[108] and SpinConv[241]),

and triple/quadruplet interactions (GemNet-dT[75], GemNet-XL[250], and GemNet-

OC[76]). Other approaches include the use of transformers (3D-Graphormer[290])

and more effective augmentation and learning strategies (Noisy-Nodes[80]). These

and further advances are necessary to accurately predict properties of complex struc-

tures such as oxide systems.

In this work, we present the Open Catalyst 2022 (OC22) dataset (Figure 5-1)

for the oxygen evolution reaction and oxide electrocatalysis more generally, as well as

accompanying tasks and GNN baseline models. OC22 is meant to complement OC20,

which did not contain any oxide materials. This dataset spans the configurational

complexity for oxide surfaces described above, including varying surface terminations,

adsorbate+slab configurations and coverage, and non-stoichiometric substitutions and

vacancies. To encompass the additional complexities in this dataset, we also expand

on the primary tasks in OC20 to include the DFT total energy as a target. A more

general property, DFT total energy offers the ability to address potential applications

beyond those that just require simple adsorption energies.

With the creation of new datasets, the question arises of whether the data in them

is complementary to other datasets for training ML models. For instance, models can

be trained jointly using multiple datasets, or transfer learning may be used to train

a model on a larger dataset and fine-tuned on a smaller dataset. Recently, the OC20

dataset enabled the catalysis community to use transfer learning to improve model

performance [135] on other smaller datasets. The small molecules and drug discovery
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communities have seen success in using transfer learning to transfer between varying

levels of electronic structure calculations [246] or between related tasks[52, 219, 268].

In this work, we explore the extent OC20 can aid OC22 via transfer learning or by

jointly training on both datasets.

We train a variety of leading GNN models on two related proposed community

challenges for OC22: (1) predict the DFT total energy and force for a given structure

and (2) predict the DFT relaxed total energy given an initial structure. We also

evaluate our models’ performance on the established task of predicting the relaxed

structure given an initial structure. The dataset is split into train/validation/test

splits indicative of the situation commonly found in catalysis where the properties of

unseen crystal compositions need to be predicted. Splits contain a combination of

adsorbate + catalyst and clean catalyst (no adsorbate present) systems. All baseline

models, data loaders and training scripts for each of these tasks are available at

https://github.com/Open-Catalyst-Project/ocp. While we focus on a subset of

tasks, models capable of solving these tasks on the OC22 dataset will likely be able

to address numerous related catalysis problems.

5.3 The OC22 Dataset

OC22 is designed to provide a training dataset for constructing generalized models to

aid in predicting catalytic reactions on oxide surfaces. To achieve this, we built the

dataset in four stages: (1) bulk selection, (2) surface selection, (3) initial structure

generation, and (4) structure relaxation. The dataset contains isolated surfaces (a.k.a

slabs) and surface and adsorbate combinations (a.k.a adsorbate+slabs), 19,142 and

43,189 systems, respectively. This resulted in 9,854,504 single point step calculations,

each of which yielded forces and energies which were later partitioned into suitable

train, validation, and test validation splits. We prioritized diversity in composition,

surface termination, and adsorbate configurations in constructing our dataset to en-

sure that our models can generalize well. As such the structures in our dataset are

not always the most thermodynamically stable. All source code used to generate the
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adsorbate configurations will be provided in the Open Catalyst Dataset repository at

https://github.com/Open-Catalyst-Project/Open-Catalyst-Dataset.

5.3.1 Bulk selection

We begin by confining our set of bulk oxide materials to 4,728 unary (AxOy) and

binary (AxByOz) metal-oxides from the Materials Project[114] where A and B are

metals. These oxides can be composed of any combination of metals or semi-metals

listed in the Supplementary Information (SI). In our list of 51 metals, Ce was the

only lanthanide considered due to the utility of its oxide compounds in catalytic

reactions[248, 57]. For each chemical system, we considered bulk materials with the

top five lowest energies above hull with less than 150 atoms to provide the most

chemically diverse set of oxides. We also considered 173 unary and binary rutile

structures.

Our selection criteria for bulk oxides prioritized chemical diversity over stability.

We acknowledge that many of the materials we selected are not electrochemically

stable which is a prerequisite for viable electrocatalytic materials. Pourbaix analysis

have previously demonstrated that only oxides composed of 26 of the 51 elements we

considered are relatively stable under aqueous conditions[279].

We also ignored the fact that certain chemical systems have a far greater set of

distinct bulk structures than others. For instance, the Materials Project database

has reported over 300 entries for chemical systems such as Ti-O and Mn-Li-O while

no entries were reported for 200 chemical systems (see the SI). Other databases such

as the Automatic-Flow[51] and Open Quantum Materials Database[223] have also

made significant efforts in exploring oxides and contain chemical systems unexplored

in the Materials Project. However, to ensure all oxides were obtained using a consis-

tent methodology and open source licensing, we extracted entries from the Materials

Project only.
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Figure 5-2: Construction of rutile (110) slabs and adsorbate+slabs. (a) Dashed lines
indicate the different possible terminations (𝑇1, 𝑇2 and 𝑇3). The slab is symmetric
about 𝑇3. (b) The 𝑇2 terminated surface with its periodic boundary (blue dashed
lines) contains 8 oxygen sites. Random removal of 3 surface oxygen (dark red) creates
vacancy defects (transparent).

5.3.2 Surface selection

We constructed our dataset by first randomly sampling 4,286 bulk oxides from our

original bulk oxide set of 4,728. We limited our dataset to slabs of less than 250 atoms.

We construct each slab and adsorbate+slab using the process shown in Figure 5-2.

Given a random oxide selected from our bulk dataset, we enumerate through all

possible surface terminations with a maximum Miller index less than or equal to

3. As with Figure 5-2(a) all slabs are capped with the same terminating surface

regardless of stoichiometry. We randomly select one termination which we replicated

to a depth of at least 8 Å and a width in each cross-sectional direction of at least 8

Å.

Next we decorated the surface of the slab with a random number of oxygen va-

cancies which can act as active sites for reactions such as CO2 capture[153] and

OER[12, 157]. To do so, we first identify all existing oxygen lattice sites on the sur-

face as with Figure 5-2(b). We then select a random number of surface oxygen to

remove ranging from 0 (no vacancies) to all surface oxygen. We do the same on the
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other surface to maintain charge balance throughout the slab. This is done to avoid

the manifestation of non-physical dipole moments which can lead to diverging DFT

energies.

The SI provides the chemical space distribution of all slabs and adsorbate+slabs

successfully calculated in the dataset. Table 5.1 summarizes the distribution of el-

emental composition, crystal structures, and number of components of the entire

dataset of slabs and adsorbate+slabs.

Table 5.1: Overview of the chemical, structural and adsorbate composition of the
entire dataset of slabs and adsorbate+slabs.

Chemical formula
Unary (AxOy) 6,190

Binary (AxByOz) 56,141

Elements sampled
Alkali 13,541

Alkaline 13, 974
p-block metals 14,029

Metalloids 8,292
Transition metals 48,561

Crystal structures
Triclinic 6,214

Monoclinic 16,294
Orthorhombic 7,258

Tetragonal (Rutile) 11,550 (4,318)
Trigonal 4,411

Hexagonal 2,680
Cubic 9,606

Adsorbates
O 10,816
H 5,298
N 4,000
C 3,905

OH 4,092
OOH 4,424
H2O 4,846
CO 3,994
O2 1,814

Calc. with PBE+U: 20,812
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Figure 5-3: Overview of the adsorbate specific placement strategies. Adsorbates
include C, O, N, H, OOH, CO, OH, O2, and H2O (left). Adsorbates can either bind
to undercoordinated surface metals (first row of strategies) or to surface oxygen to
form new intermediates (second row).

5.3.3 Initial Structure Generation

To construct our adsorbate+slab, we first randomly sample one adsorbate from the

set shown in Figure 5-3. This adsorbate set includes O, *OH, *OH2, *OOH, and

*O2 which are the intermediates in the proposed reaction mechanisms of OER. To

expand the possible chemistry of adsorbates on oxides beyond OER, we also included

monatomic *O, *H, *C and *N, as well as *CO. Table 5.1 shows the distribution of

the 9 sampled adsorbates across the dataset.

We then determine the coverage of our random adsorbate on our randomly con-

structed slab. In contrast to the OC20 dataset, here we allow for more than one

adsorbate of the same type to bind to the surface. The adsorbate can bind to three

types of sites: the surface oxygen, the under-coordinated surface metal, or an oxygen

vacancy. The maximum number of adsorbates allowed on the surface is limited by

the sum of these three types of sites. However we also ensure that all adsorbates are

always separated by a distance greater than the M-O bond of the host material to

avoid adsorbate overcrowding.

In this effort, we implemented specific strategies for placing adsorbates on the

aforementioned surface sites as shown in Figure 5-3. The first row of placement

strategies demonstrates that all adsorbates are able to bind to any undercoordinated
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surface metal at the lattice position of oxygen. This includes lattice positions of

vacancies introduced during slab generation. An adsorbate containing oxygen will

always bind to the metal via the oxygen atom as shown for *OH, *O2, *CO, *H2O

and *OOH. We also considered intermediates that arise due to formation of oxygen

dimers which play a role in one of the possible mechanisms of OER[83, 53]. In

this configuration, a pair of monatomic oxygen atoms can adsorb on to adjacent

undercoordinated metals to form a dimer of 1.68 Å which is longer than the bond

length of *O2.

The second and third rows demonstrate how specific molecules that are able to

form new molecules with the addition of oxygen can also bind to existing surface

oxygen. For example, binding to a surface oxygen with the monatomic adsorbates

will form a dimer molecule whereas *CO and *OH can bind to form *CO2 and *OOH

respectively. Incorporating these reactions in the dataset will allow for the exploration

of intermediate surface reactions that are only possible on oxides.

Lastly, we also allowed for a four-fold rotational degree of freedom about about

the normal of the surface for all adsorbates. We randomly select the degree of rotation

for each adsorbate on the surface after identifying the adsorbate sites.

5.3.4 Structure Relaxation

The OC22 dataset uses different computational settings than those used for the OC20

dataset. The OC22 dataset models the exchange-correlation effects with the Perdew-

Berke-Ernzerhof (PBE), generalized gradient approximation (GGA) [197] which is

generally accepted for modeling surface reactions on oxides[83, 104, 271]. In contrast,

the OC20 dataset utilizes the RPBE DFT functional. We also accounted for strong

electron correlations in some transition metal oxides by applying the Hubbard U

correction in accordance to the suggestions made by the Materials Project[114]. The

last row of Table 5.1 shows the total number of slabs and adsorbate+slabs calculated

using Hubbard U corrections. Although higher-level theory single-point calculations

(e.g. hybrid functionals[221]) are often used to verify the final electronic structure

and energy of a surface, they still use a scheme similar to the one here to obtain the
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Figure 5-4: A typical OER workflow, motivating the need for total energy models
beyond adsorption energies. Total energy models would allow one to study all parts
of this workflow, and not just the final relaxation like adsorption energy models. (a)
A bulk structure is selected from material datasets like the Materials Project[114] and
a surface is created. (b) Surface terminations are enumerated and studied with DFT
to identify the most stable termination. Surface Pourbaix diagrams are created and
used to make this decision. (c) Only after the most stable termination is identified, an
adsorbate is placed and (d) The adsorbate+slab system is relaxed and the referenced
adsorption energy is computed.

optimized structure. Models developed for this dataset will greatly accelerate more

accurate workflows by focusing expensive calculations on the most stable and relevant

structures.

All calculations were performed with spin-polarization to account for the signif-

icant spin states in metal oxides. Although some oxide materials can have several

magnetic configurations, including antiferromagnetism, we only considered one con-

figuration for each slab with all slabs being initialized with ferromagnetic or nonmag-

netic configurations. These different magnetic states for a single crystal structure can

significantly change thermodynamic properties at the surface. For example, rutile
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VO2 has been demonstrated to have several different spin states with nonmagnetic

surfaces yielding significantly lower surface energies than ferromagnetic surfaces for

the same slab[277]. For further details regarding the computational settings, we refer

the reader to the SI.

We allowed all atoms of the slab and adsorbate+slab to be relaxed. This will not

only yield a lower DFT energy, but also allows for more accurate calculations of the

surface energy by ensuring both surfaces are relaxed. This is in contrast to the OC20

dataset where only the adsorbates and the surface atoms were relaxed.

Systems that did not converge ionically were set aside for use in alternative tasks.

All intermediate structures, energies, and forces are stored for future training and

evaluation. All input structures were constructed with the aid of Python Materials

Genomics (pymatgen)[187] and all calculations are performed using the Vienna ab

initio simulation package (VASP) [140, 138, 139, 273, 141]. In total, we used over 20

million compute hours to create this dataset.

5.4 Tasks

The goal of the OC22 dataset is to efficiently simulate atomic systems with practi-

cal relevance to OER and other oxide applications. Similar to the OC20 dataset,

the primary bottleneck to doing so are computationally expensive DFT calcula-

tions. Calculations are further exacerbated for OC22 as its systems are larger and

more complex than that of OC20. Again, we focus on structure relaxations as

they have been a useful means to informing catalyst activity for a broad range of

applications[110, 180, 31, 97, 236, 182]. Models developed for OC20 have shown

great progress on their proposed tasks[75, 290, 241, 108, 76, 136]. In all of OC20’s

tasks, energies were referenced to represent adsorption energy. While advantageous

for screening purposes, this referencing, however, implicitly limited models to only

studying adsorbate+slab combinations and not any one in isolation. In the context

of OER, this is especially problematic as typical discovery pipelines require exploring

different coverages and configurations of the surface [93, 14, 279, 195, 294, 275, 68].
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Figure 5-4 illustrates a typical workflow for OER where studying different surface ter-

minations are necessary before running an adsorption calculation. Here, we propose

modified variations of OC20’s tasks that would enable models to study surfaces with

and without the presence of an adsorbate.

In all tasks, structures can contain a surface and adsorbate combination or just

an isolated surface (a.k.a slab). The surface is defined by a unit cell periodic in all

directions with a vacuum layer at least 12Å. All ground truth targets are computed

using DFT.

We briefly summarize the OC20 tasks below. For all tasks, energy is referenced to

correspond to adsorption energy. See the original OC20 manuscript for more details

[40]. S2EF takes a given structure and predicts the energy and per-atom forces.

IS2RE takes an initial structure and predicts the relaxed energy. IS2RS takes an

initial structure and predicts the relaxed structure.

In the curation of both OC20 and OC22, slabs and adsorbate+slabs were relaxed

in parallel, with adsorbates being placed on unrelaxed slabs. OC20 makes an as-

sumption in computing an adsorption energy such that the corresponding relaxed

slab reference is comparable to that of the adsorbate+slab combination. This as-

sumption was feasible given that the majority of the surface was constrained.

Unlike OC20 where surface atoms are constrained, all atoms in OC22 are un-

constrained. While this enables the community to study other surface properties like

surface energy, the assumption that the relaxed clean surface and adsorbate+slab sur-

face are comparable no longer holds. Computing an adsorption energy in the same

manner of OC20 would correspond to an incorrect reference, resulting in an ill-posed,

noisy target (see SI for more details). Instead, we modify OC20’s S2EF and IS2RE

tasks to target DFT total energy rather than adsorption energy. We use the IS2RS

task as is with no modifications.

S2EF-Total takes a given structure and predicts the DFT total energy and per-

atoms forces. Compared to S2EF , S2EF-Total differs only in its energy prediction.

S2EF takes the DFT total energy and references it by subtracting off a clean surface

and gas phase adsorbate energy. S2EF-Total is only interested with the DFT total
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energy. The two tasks are related as follows:

�̂�S2EF = �̂�S2EF-Total − 𝐸𝐷𝐹𝑇
𝑠𝑙𝑎𝑏 − 𝐸𝐷𝐹𝑇

𝑔𝑎𝑠 (5.1)

IS2RE-Total takes a given structure and predicts the relaxed DFT total energy.

Similar to S2EF-Total , IS2RE-Total is related to IS2RE as follows:

�̂�IS2RE = �̂�IS2RE-Total − 𝐸𝐷𝐹𝑇
𝑠𝑙𝑎𝑏 − 𝐸𝐷𝐹𝑇

𝑔𝑎𝑠 (5.2)

DFT total energies are not meaningful on their own. Physically relevant properties

like adsorption energy include some reference. A model that can predict a DFT total

energy, however, gives the flexibility to reference to whatever is desired. Adsorption

energy in this context would involve two predictions - one of the adsorbate+slab

and one of the clean surface. For OER this is particularly important to identify the

most stable surface coverage (or termination). While this problem is also important

for OC20, those systems were much less complicated and the proposed adsorption

energy tasks are typically sufficient.

Of the proposed tasks, S2EF-Total is the most general and closest to a DFT sur-

rogate. Models trained for this task would enable researchers to also study isolated

surfaces, a necessary and important step in the catalyst discovery pipeline. Total

energies also allows us to leverage surface trajectories and their energies for train-

ing, data that was previously unusable in OC20 using the specified bare slab energy

reference.

5.5 Dataset Splits

Similar to OC20, we split our dataset into training, validation, and test splits. Train-

ing and validation splits are used to optimize and tune hyperparameters and the test

set to report performance.

To explore the extrapolative ability of our models, we split the validation and test

sets along the catalyst composition dimension. Unlike OC20, we exclude adsorbate
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Table 5.2: Size of train and validation splits. S2EF-Total structures come from a
superset of IS2RE-Total systems, including unrelaxed systems (e.g. 50,810 train
systems). Splits are sampled based on catalyst composition, ID for those from the
same distribution as training, OOD for unseen catalyst compositions. Splits consist
of both adsorbate+slab (adslabs) and slab systems. Validation and test splits are
similar in size with exclusive compositions.

Task Train ID OOD

Adslabs Slabs Total Adslabs Slabs Total Adslabs Slabs Total

S2EF-Total 6,642,168 1,583,125 8,225,293 313,238 81,489 394,727 356,633 94,036 450,669
IS2RE-Total 31,244 14,646 45,890 1,701 923 2,624 1,862 918 2,780
IS2RS 31,244 14,646 45,890 1,701 923 2,624 1,862 918 2,780

extrapolation given the low number of adsorbates present in OC22. Splits were created

by first enumerating all possible catalyst compositions in the dataset. From the list

of available compositions, a fraction is held out from the training set. Samples were

selected from a total of 1,138 unique compositions.

We split our validation and test set into two subsets: ID (sampled from the

same catalyst composition training distribution) and OOD. Subsplit sizes for all tasks

are given in Table 5.2, with adsorbate+slab (adslabs) and slab counts also shown.

Extrapolative subsplits of the validation and test sets are exclusive from one another,

e.g. the catalyst compositions held out for OOD are different for the validation and

test sets.

5.6 Baseline GNN Models

A wide range of models for catalyst and molecular applications have been proposed

[75, 76, 241, 108, 290, 80, 155, 250]. We evaluate our tasks using the latest state of

the art models. Additionally, we baseline alternative model architectures including

equivariant and (non)energy-conserving models. Code for all baseline models are

implemented in PyTorch[194] and PyTorch Geometric[65], and are publicly available

in our open source repository at https://github.com/Open-Catalyst-Project/

ocp.

GNNs have continued to grow in popularity as an efficient and accurate architec-
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ture for modeling atomic interactions. Unlike descriptor based models [27, 29, 48, 20],

where hand crafted representations are used to describe atomic environments, GNNs

learn atomic representations through several message passing steps [79]. Consistent

with related work[40, 232, 133], graphs are constructed with atoms treated as nodes

and interactions between atoms as edges. Periodic boundary conditions are accounted

for in graph construction consistent with OC20. A cutoff radius is introduced for com-

putational tractability.

We benchmark GNNs that have either performed well on OC20 or other molec-

ular datasets. For S2EF-Total , we benchmark a larger sample of models including

SchNet[232], DimeNet++[131], ForceNet[108], SpinConv[241], PaiNN[233], GemNet-

dT[75], and GemNet-OC[76]. IS2RS baselines are limited to the top performing

models - SpinConv, GemNet-dT, and GemNet-OC. IS2RE-Total baselines include

SchNet, PaiNN, DimeNet++, and GemNet-dT. Top performing S2EF-Total models

were also evaluated for IS2RE-Total via an iterative relaxations approach[40].

SchNet and DimeNet++ proposed continuous edge filters and directional message

passing, respectively. ForceNet and SpinConv proposed architectures with direct

force predictions in place of using energy derivatives with respect to atomic positions.

PaiNN is an equivariant model with spherical harmonics up to order 𝑙 = 1. We

modify PaiNN’s original architecture to make direct force predictions as our experi-

ments showed a boost in performance. GemNet-dT incorporates symmetric message

passing, scaling factors, equivariant predictions, and several efficient architecture im-

provements over the similar DimeNet++. GemNet-OC expands on GemNet-dT to

efficiently capture quadruplet interactions, the current state of the art model across

all tasks for OC20.

Unless otherwise noted, graph edges were computed on-the-fly via a nearest neigh-

bor search for a cutoff radius of 6Å and a maximum of 50 neighbors per atom.

GemNet-OC uses different cutoffs for the type of interaction, e.g. triplets and quadru-

plets. Initial model sizes were taken directly from corresponding OC20 configurations.

To accommodate for the fact OC22 has 16x less data, a light hyperparameter sweep

was done for all models, with particular emphasis on learning rates, schedulers, and
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batch sizes. Effective batch sizes were set to ∼192-256 for S2EF and ∼4-64 for

IS2RE . S2EF models used identical learning rate schedulers to more fairly compare

baselines, decaying the learning rate at epochs 2, 3, 4, 5, and 6. IS2RE used a re-

duce on plateau learning rate scheduler. Full details on model hyperparameters and

training configurations can be found in the SI.

All experiments used the following loss function[40] to balance energy and force

predictions:

ℒ = 𝜆𝐸

∑︁
𝑖

|𝐸𝑖 − 𝐸𝐷𝐹𝑇
𝑖 | (5.3)

+𝜆𝐹

∑︁
𝑖,𝑗

1

3𝑁𝑖

|𝐹𝑖𝑗 − 𝐹𝐷𝐹𝑇
𝑖𝑗 |𝑝

where 𝜆𝐸 and 𝜆𝐹 are emperical parameters, 𝐸𝑖 is the energy of system 𝑖, 𝐹𝑖𝑗 is

the force on the 𝑗th atom in system 𝑖, 𝑁𝑖 is the number of atoms in system 𝑖, and 𝑝

is the norm order. With the exception of GemNet-dT and GemNet-OC which used

𝑝 = 2, all S2EF-Total models used 𝑝 = 1. For IS2RE-Total only the energy term is

evaluated, i.e 𝜆𝐹 = 0. Baseline S2EF-Total models were trained with 𝜆𝐸 = 1 and

𝜆𝐹 = 𝑁2
𝑎𝑡𝑜𝑚𝑠 to insure size invaraince, as detailed by Batzner, et al. [24, 171]

5.7 Experiments

Here we describe the evaluation metrics, training experiments, and share results for

our baseline models.

5.7.1 Evaluation Metrics

All our tasks use the same evaluation metrics proposed by OC20. The only difference

is rather than ground truth values being DFT adsorption energies, we use DFT total

energies for OC22. We briefly mention the metrics below but refer readers to the

OC20 manuscript[40] for a more detailed description.
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S2EF-Total : The S2EF-Total task uses the same metrics as OC20’s S2EF task.

Metrics include Energy Mean Absolute Error (MAE), Force MAE, Force cosine, and

Energy Forces within Threshold (EFwT). Ground truth targets correspond to DFT

total energy and per-atom forces.

IS2RE-Total : Similarly, IS2RE-Total uses the same metrics as OC20’s IS2RE

task. Metrics include Energy MAE and Energy within Threshold (EwT). Ground

truth targets correspond to the DFT total energy of the relaxed structure.

IS2RS : IS2RS metrics here are identical to that of OC20. Metrics include Aver-

age Distance within Threshold (ADwT), Forces below Threshold (FbT), and Average

Force below Threshold (AFbT). Ground truth targets are the relaxed structure. DFT

is also used to evaluate predicted relaxed structures.

Consistent with OC20, our evaluation metrics still focus on accuracy. Given the

complexity of OC22, we are interested in how previously successful models will per-

form on larger more intricate systems. In addition, we focus on models that are

significantly faster than traditional DFT-based techniques. Models that can calcu-

late energy and force estimates in under 10ms would significantly aid oxide-related

research.

5.7.2 Training Experiments

The availability of large, diverse datasets like OC20 allows us to explore more inter-

esting experiments alongside the OC22 dataset. In addition to training our baseline

models on just OC22 we examine the extent the OC20 dataset and its pretrained

models can benefit OC22 performance, and vice-versa.

The varied training strategies are summarized in Figure 5-5. For each task we

first study the performance using baseline models just trained on OC22 (OC22-

only). This is the standard strategy when introducing a new dataset. Next, we

leverage both OC20 and OC22 via joint training (OC20+OC22). In joint train-

ing we train a combined dataset of OC20 and OC22 systems. For S2EF-Total ,

we explore combined datasets with different sizes of OC20 - 2M, 20M, and All.

While OC20’s energies were originally expressed as adsorption energy, for these ex-
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Figure 5-5: The various training strategies explored in OC22. A. The OC22-only
strategy involves just using OC22 for the proposed tasks. B. Joint training refers to
models trained on both OC20 and OC22 simultaneously. C. In fine-tuning, pretrained
models for OC20 are used as starting points to train on just OC22.
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Table 5.3: Predicting total energy and force from a structure (S2EF-Total). Results
are shared for the OC22-only, joint, and fine-tuning training strategies. Experiments
are evaluated on the test set.

S2EF-Total Test

Training Model Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑ EFwT [%] ↑
ID OOD ID OOD ID OOD ID OOD

OC22-only

Median Baseline 163.424 160.455 0.075 0.073 0.002 0.002 0.00 0.00
SchNet [232] 7.926 7.924 0.060 0.082 0.363 0.220 0.00 0.00
DimeNet++ [133, 131] 2.098 2.476 0.043 0.059 0.606 0.436 0.00 0.00
ForceNet [108] - - 0.057 0.062 0.349 0.277 0.00 0.00
SpinConv [241] 1.101 1.981 0.048 0.070 0.514 0.386 0.00 0.00
PaiNN [233] 0.956 2.632 0.045 0.058 0.504 0.367 0.00 0.00
GemNet-dT [75] 0.938 1.272 0.032 0.041 0.665 0.530 0.01 0.00
GemNet-OC [76] 0.383 0.833 0.029 0.040 0.690 0.554 0.03 0.00

OC20-2M + OC22
PaiNN[233] 0.412 1.532 0.048 0.064 0.484 0.357 0.00 0.00
SpinConv[241] 0.875 1.722 0.035 0.054 0.720 0.550 0.00 0.00
GemNet-OC [76] 0.426 0.918 0.029 0.037 0.698 0.553 0.01 0.01

OC20-20M + OC22
PaiNN[233] 0.375 1.456 0.046 0.061 0.496 0.358 0.00 0.00
SpinConv[241] 0.929 1.512 0.035 0.052 0.629 0.470 0.00 0.00
GemNet-OC [76] 0.320 0.832 0.027 0.037 0.722 0.593 0.06 0.01

OC20-All + OC22 SpinConv[241] 1.217 1.625 0.039 0.046 0.564 0.452 0.00 0.00
GemNet-OC [76] 0.323 0.695 0.027 0.034 0.698 0.589 0.06 0.00

OC20→OC22

SpinConv[241] 0.978 1.877 0.035 0.049 0.620 0.463 0.01 0.00
GemNet-dT [75] 0.729 1.327 0.031 0.041 0.667 0.534 0.01 0.00
GemNet-OC [76] 0.260 0.943 0.030 0.041 0.679 0.546 0.08 0.01
GemNet-OC-Large [76] 0.458 1.238 0.028 0.040 0.724 0.573 0.04 0.00

periments we use the DFT total energy which is also publicly accessible. One of

the limitations to joint training is the need to train on a larger combined dataset,

which can significantly increase training time. To address this, we additionally ex-

plore fine-tuning (OC20 → OC22) experiments. In fine-tuning, models are ini-

tialized with pretrained weights learned from training on OC20. The pretrained

models are then fine-tuned by training on just OC22. While approaches to fine-

tuning vary in which portion of the network’s weights are updated, we limit our

experiments to updating all the weights and leave more rigorous strategies as fu-

ture work for the community [135]. For S2EF-Total , we experiment with fine-

tuning using different fractions of the OC22 dataset. All fine-tuning experiments

are performed using public OC20 adsorption-energy model checkpoints found at

https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md.

Through these experiments we hope to share results that provide insights beyond

just performance on OC22. Building a dataset that spans all possible applications,

chemical diversity, and level of DFT theory is not computationally feasible. However,
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Table 5.4: S2EF-Total fine-tuning results trained on various fractions of the OC22
dataset. GemNet-OC[76] was used for all experiments. Note, a fraction of 0% for
OC22 corresponds to the baseline of directly evaluating a pretrained checkpoint from
OC20 on OC22, with no additional training. All experiments are evaluated on the
test set.

S2EF-Total Test

Training Fraction of OC22 Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑ EFwT [%] ↑
ID OOD ID OOD ID OOD ID OOD

OC22-only

5% 0.593 1.800 0.043 0.048 0.497 0.410 0.00 0.00
15% 0.385 1.468 0.036 0.046 0.612 0.481 0.02 0.00
30% 0.368 1.326 0.033 0.045 0.661 0.511 0.03 0.00
50% 0.381 1.209 0.032 0.044 0.659 0.517 0.05 0.00
100% 0.383 0.833 0.029 0.040 0.690 0.554 0.03 0.00

OC20→OC22

0% 487.121 434.690 0.365 0.362 0.194 0.195 0.00 0.00
5% 0.559 1.397 0.037 0.039 0.549 0.475 0.00 0.00
15% 0.326 1.038 0.033 0.038 0.622 0.516 0.03 0.00
30% 0.270 0.984 0.031 0.038 0.654 0.538 0.06 0.01
50% 0.254 0.921 0.029 0.039 0.679 0.550 0.08 0.00
100% 0.260 0.943 0.030 0.041 0.679 0.546 0.08 0.01

as we demonstrate with OC22, by leveraging large datasets, such as OC20, we may be

able to train effective models with much smaller datasets for specific domains; even

if they contain critical differences like DFT theory and material compositions.

5.7.3 Results

We report results for all baseline models and tasks below. All validation results can

be found in the SI.

S2EF-Total : Results on SchNet[232], DimeNet++[131], ForceNet[108], SpinConv[241],

PaiNN[233], GemNet-dT[75], and GemNet-OC[76] are shown in Table 5.3(top). All

models make energy and per-atom force predictions. SchNet and DimeNet++ make

force predictions via a gradient of energy with respect to atomic positions, while all

other models make direct force predictions. Across all metrics, GemNet-OC performs

the best. While GemNet-dT also demonstrates competitive force metrics, GemNet-

OC significantly outperforms all models on energy based metrics. This may be due

to GemNet-OC’s large receptive field (cutoff=12Å) better capturing long-range inter-

actions and its unique ability to explicitly capture quadruplet interactions.
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Figure 5-6: Summary of S2EF-Total test results as a function of training size (A,C)
and training time (B,D). Models are color coded and the respective training strategy
is indicated by different shapes. For fixed dataset sizes, fine-tuning experiments see
improvements in both energy and force predictions. Increasing data consistently helps
performance when moving from OC22 to OC20+OC22. Pareto fronts are provided
for current optimums across training sizes and times. Fine-tuning experiments do
not consider the dataset sizes and training times used during pretraining. Results are
averaged across both ID and OOD splits.

Results across the two test subsplits, In Domain (ID) and Out of Domain (OOD),

are shown in Table 5.3. As expected, ID metrics are better than OOD. Unlike OC20
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Figure 5-7: Demonstration of GemNet-OC[76] solving the IS2RS and IS2RE-Total
tasks via the relaxation approach. Initial, DFT Relaxed, and the ML predicted
relaxed structures are shown for each system. The first three columns were randomly
sampled from “successful" cases in which IS2RE-Total energy MAE was less than 0.1
eV, while the latter columns are “failure" cases, with energy MAEs greater than 0.5
eV. Oxygen found in the adsorbate is illustrated with a high contrast red and made
smaller to distinguish it from oxygen in the catalyst material.

where ID and OOD-based splits had fairly close metrics, OC22 OOD metrics are

substantially higher than ID. By definition, OOD contains combinations of material

species not seen in the training set, i.e., if Ag-Cu is OOD, then a Ag-Cu only interac-

tion has never been seen during training. This suggests generalization in the context

of total energy predictions is more challenging than a referenced adsorption energy.

Although physically motivated, OC20’s adsorption energy target can also be thought

of as a form of ∆-learning [242, 213, 297], simplifying the complexity of the problem

to learning a correction to some base property. To explore this in the context of

OC22, we report results on a per-element linearly fit reference in the SI that helps

improve performance. We refrained from making this the base task for OC22 in order

to encourage alternative schemes or approaches to target normalization. OC20 re-

sults on the proposed tasks are also available in the SI, with similar poor performance

suggesting S2EF-Total to be a generally more challenging task.

Joint training experiments on OC20 and OC22 are conducted for the top per-

forming models, GemNet-OC, PaiNN, and SpinConv. Table 5.3 additionally con-

tains results of different sizes of OC20 combined with OC22. To stay consistent
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Table 5.5: Predicting total relaxed energy from an initial structure (IS2RE-Total).
Results are shared for the OC22-only, joint, and fine-tuning training strategies. Ex-
periments are evaluated on the test set.

IS2RE-Total Test

Approach Training Model Energy MAE [eV] ↓ EwT [%] ↑
ID OOD ID OOD

Direct

OC22-only

Median Baseline 176.256 171.854 0.00 0.00
SchNet 2.001 4.847 1.03 0.45
DimeNet++ 1.960 3.519 0.65 0.38
PaiNN 1.716 3.684 0.88 0.38
GemNet-dT 1.677 3.084 1.49 0.45

OC20+OC22

SchNet 3.038 4.300 0.38 0.53
DimeNet++ 1.961 3.461 1.18 0.42
PaiNN 1.733 3.752 0.76 0.49
GemNet-dT 2.523 4.229 0.80 0.60

OC20→OC22 GemNet-OC* 1.153 1.748 3.66 0.98

Relaxation

OC22-only
SpinConv 1.948 2.696 1.11 0.64
GemNet-dT 1.813 2.044 1.64 0.83
GemNet-OC 1.329 1.584 2.02 1.40

OC20+OC22 SpinConv 2.296 2.590 1.26 0.68
GemNet-OC 1.201 1.534 2.63 2.15

OC20→OC22
SpinConv 1.800 2.888 1.41 0.57
GemNet-OC 1.120 1.849 3.89 1.77
GemNet-OC-Large 1.253 2.115 1.60 0.98

*GemNet-OC pretrained on OC20+OC22 S2EF-Total

with OC22, DFT total energy targets were used for OC20. With the addition of

OC20 training data, GemNet-OC and SpinConv saw improvements in both energy

and force predictions while PaiNN only saw improvements to energy. This suggests

that despite the differences in DFT theory, the additional data is still meaningful in

improving model predictions. However, increasing the amount of OC20 data had

mixed results. GemNet-OC generally saw improvements across all metrics while

SpinConv and PaiNN saw either minor improvements or worse performance. We

note that training samples were randomly drawn, i.e., experiments with a larger
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proportion of OC20 would have seen fewer samples of OC22 during training. The

differences in trends could be a result of model data efficiency and capacity. Ex-

ploring alternative sampling strategies to joint training could aid models and im-

prove trends further. For our fine-tuning experiments, we evalute GemNet-OC,

SpinConv, and GemNet-dT models. Fine-tuning is performed by first training a

model on OC20. This pre- trained model is then fine-tuned by training on only

OC22. Trained OC20 models are publicly available and were directly obtained from

https://github.com/Open-Catalyst-Project/ocp. SpinConv saw improvements

across all metrics. GemNet-dT generally saw minor improvements or in the case of

some OOD performance, worse results. Similarly, GemNet-OC saw significant im-

provements to energy MAE for ID data, but saw minor changes and worse OOD

results, respectively. To drive performance further, we trained GemNet-OC-Large, a

larger, more parameterized version of GemNet-OC. The large variant resulted in im-

proved force metrics, but at the cost of worse energy metrics. Fine-tuning experiments

were extremely delicate and required careful tuning, details are highlighted in the SI.

While our initial fine-tuning results were limited to energy improvements, we hope

the future development of more rigorous methods could lead to better performance

across all metrics.

A potential benefit accompanying pretraining and fine-tuning is the need for less

training data. A model initialized with meaningful weights could simplify the need to

learn interactions and representations from scratch by utilizing an alternative dataset.

To explore this, we evaluated the performance of a pretrained GemNet-OC model fine-

tuned on various fractions of OC22. As shown in Figure 5-8, a fine-tuned GemNet-

OC consistently outperforms its OC22-only variant across all data sizes for the ID

split, with diminishing returns for both strategies around ∼50%. On OOD, energy

performance continues to improve with data size. In Table 5.4, we additionally show

the performance of a pretrained OC20 GemNet-OC used to directly evaluate OC22

(Fraction = 0%). As expected, energy metrics are extremely poor given OC20’s

original target is adsorption energy. Force metrics are also extremely poor, suggesting

the fine-tuning performance is not merely a result of a good pretrained model, but an
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actual transfer of knowledge from the two datasets. Figure 5-6 illustrates the various

models and approaches as a function of training size and time. Notably, we see a

strong linear trend in performance with data size. With saturation yet in sight, we

expect more joint dataset efforts to continue to aid in performance. While for a fixed

dataset size, fine-tuning efforts improved performance, they were often more costly

in training time (Figure 5-6 B/D). We anticipate future fine-tuning developments to

be not only more accurate, but efficient as well. Similar fine-tuning experiments with

OC20 models trained on DFT total energy targets were also performed. Results were

consistent with those shared above, suggesting that despite a difference in targets,

models are learning a similar underlying representation that is being transferred to

OC22.

IS2RE-Total : We explore two approaches for predicting relaxed energies from

initial structures - “Direct" and “Relaxation" [40]. The first directly predicts the

relaxed energy with a single call to the model. The relaxation approach uses a S2EF-

Total model to run a structural relaxation - iteratively predicting forces and updating

atomic positions until a relaxed structure and its corresponding energy is reached.

While OC20 has shown relaxation based approaches to be superior to direct, they are

200-300x slower, motivating the potential benefits of direct models.

Table 5.5 presents IS2RE-Total results on both direct and relaxation approaches

under the different training scenarios. Whereas OC20 saw relaxation based ap-

proaches to consistently perform better, we see mixed results here. The best relaxation-

based approach, GemNet-OC, achieves an EwT of 3.89% indicating models have sig-

nificant room for improvement. For the relaxation approach, fine-tuning consistently

outperforms OC22-only. The best direct approach, GemNet-OC, also only achieves an

EwT of 3.66%. Here, joint training consistently hurts performance. Following litera-

ture efforts[250], fine-tuning was done from the top performing S2EF-Total checkpoint

- GemNet-OC OC20-All+OC22. While the best performing ID results come from a

direct approach, OOD metrics are considerably better via the relaxation method,

indicating their ability to better generalize. We evaluate OC20 IS2RE-Total perfor-

mance in the SI and observe similar poor results, suggesting IS2RE-Total to be a
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Table 5.6: Predicting relaxed structures from initial structures (IS2RS ). All models
predicted relaxed structures through an iterative relaxation approach. The initial
structure was used as a naive baseline (IS baseline). Experiments are evaluated on
the test set.

IS2RS Test

Training Model ADwT [%] ↑ FbT [%] ↑ AFbT [%] ↑
ID OOD ID OOD ID OOD

OC22-only

IS baseline 43.39 45.26 0.00 0.00 0.03 0.10
SpinConv 56.47 50.60 0.00 0.00 2.77 1.18
GemNet-dT 57.84 54.17 0.00 0.00 4.16 3.54
GemNet-OC 59.47 55.72 0.00 0.00 5.49 4.45

OC20+OC22 SpinConv 53.99 52.39 0.00 0.00 2.64 2.38
GemNet-OC 58.55 58.44 0.00 0.00 8.01 6.58

OC20→OC22
SpinConv 54.21 51.42 0.08 0.00 6.31 3.24
GemNet-OC 55.55 50.50 0.08 0.00 9.02 6.59
GemNet-OC-Large 57.23 54.63 0.00 0.00 10.41 8.09

considerably more challenging variation.

IS2RS : To evaluate the prediction of relaxed structures from initial structures, we

select the top performing S2EF-Total models GemNet-dT, SpinConv, and GemNet-

OC. Similar to OC20, we use these models to run ML driven structure relaxations

(Figure 5-7). Relaxed structures were then evaluated with DFT to determine whether

the predicted relaxed structures are valid. Table 5.6 shows GemNet-OC outperform-

ing all other models across all metrics. Joint training and fine-tuning approaches

both improve DFT force based metrics over OC22-only. GemNet-OC-Large fine-

tuned achieves the best force metrics. Pursuant to OC20, non-DFT distance based

metrics like ADwT struggle to correlate well with the practical DFT metrics [136].

Both FbT and AFbT results indicate the models need significant improvement to

achieve the level of accuracy needed for practical applications.

Does OC22 benefit OC20? Alongside developing more accurate models, ex-

ploring augmentation strategies is another opportunity to improve performance on

existing datasets like OC20[136]. An interesting question is whether OC22 data may
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Figure 5-8: Results of GemNet-OC on S2EF-Total across different training data sizes.
Two strategies are compared here - OC22-only and fine-tuning. Results are reported
for both ID (solid) and OOD (dashed) on the test set.

Table 5.7: GemNet-OC results trained on either OC20 or both OC20+OC22 and
evaluated on OC20 and OC22. Results are averaged across all ID/OOD validation
splits. Total energies are used for all dataset targets.

Training Energy Force Force
Data MAE [eV] ↓ MAE [eV/] ↓ Cosine ↑

OC22 evaluation
OC20 55.900 0.384 0.167
OC20+OC22 0.661 0.031 0.657

OC20 evaluation
OC20 0.394 0.022 0.651
OC20+OC22 0.317 0.023 0.649

improve model performance on OC20. It has already been shown that the use of

auxiliary data such as off-equilibrium MD or rattled data can lead to state-of-the-art

results on OC20[76].

To that end, we explore the impact that jointly training with OC22 and OC20

has on OC20 performance. Note OC22 is a significantly smaller and more limited

dataset. OC20 contains ∼134M training data points and spans a large swath of

materials. OC22 on the other hand is only ∼6% of the size of OC20, limited to

only oxide materials, and places no constraints on atoms in the systems. Table 5.7

compares the performance of GemNet-OC trained on OC20 and OC20+OC22 as
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evaluated on both OC20 and OC22 seperately. As expected, when trained on only

OC20, OC22 metrics are poor - attributed to the the lack of oxides in OC20 and

the difference in DFT theories. When trained on OC20+OC22, however, we see a

significant improvement in energy MAE (∼20%). Force based metrics are either no

different or slightly worse. Despite the joint dataset containing only a small fraction

of OC22, it aided by a margin larger than any of the previous MD or rattled data

efforts. Exploring in more detail as to how and why such improvements were observed

could aid in systematically curating datasets to further improve OC20 performance.

5.8 Outlook and Future Directions

There are many challenges to building large datasets and fitting generalizable models

in computational catalysis, some of which were recently summarized [136]. All of

the challenges described also apply to the OC22 dataset - model performance varies

across adsorbates and materials, direct force predictions tend to perform the best

despite breaking energy conservation, developing helpful metrics for common tasks

like local relaxations is difficult, and choosing the right calculations to improve the

performance and generalizability of models is challenging. This work adds to these

difficulties by highlighting additional challenges in capturing long-range interactions,

developing models that go beyond adsorption energy, and fitting models with multiple

datasets and levels of theory.

The performance of baseline models in this work is impressive given the difficulty

of predicting the total system energy of complex oxide surfaces, but challenges still re-

main. The best results on the most general S2EF-Total task using a transfer learning

approach from OC20 has an energy MAE of 0.26 eV for ID performance and 0.94 eV

for OOD performance. Using that same model to predict relaxed total energies yields

energy MAEs of 1.12 eV for ID and 1.85 eV for OOD predictions. These results are

somewhat more impressive on a per-atom basis as is common for formation energy

estimates of materials. However, for predicting experimentally-relevant properties

like the overpotential for the OER, these results are far from sufficient. We note that
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the initial baseline models for OC20 were similarly unhelpful for catalyst activity pre-

dictions, but rapid contributions from the broader community greatly improved their

accuracy and predictive power. We hope that similar progress is seen for the tasks

here. We also expect that the current models may already be helpful for certain more

limited tasks, such as accelerating future oxide calculations with the use of online

fine-tuning [172].

The OC22 dataset contains long-range interactions that are likely difficult to cap-

ture in exiting GNN models. Unlike metal surfaces which have a sea of electrons that

can screen interactions, many of the oxides in OC22 are semiconductors with consid-

erable partial charges (especially on the oxygen atoms). Electrostatics have very long

range effects (energy decaying as 1/𝑟), and the partial charges can vary from system

to system. The interaction of magnetic spins in systems with spin polarization is also

long-ranged. This poses a challenge for the GNNs used in this work, which are often

developed under the assumption that local interactions dominate. The use of several

message passing steps or long-range local cutoffs may allow for these long-range inter-

actions to be captured. There has been considerable effort in developing ML models

that include long range interactions[134, 299, 28], and we expect those approaches to

be very useful in improving predictions for OC22.

The tasks proposed in this work aim to push the community more in the direction

of a general purpose potential, rather than separate models for each specific property.

As an example, the tasks in OC20 were limited to the prediction of a specific property

- the adsorption energy. This was a reasonable choice as the adsorption energy was

the primary consideration for their application, and the adsorption energy itself was

thought to be easier to fit than the DFT total energies. However, defining the tasks

in this way meant that resulting models could only predict the adsorption energy and

were unhelpful for predicting other surface properties like the surface energy. These

limitations are highlighted in oxide catalysis where the stability of various surface

terminations is needed. The total energy tasks in this work should encourage models

that serve as general DFT surrogates - making predictions on a much wider range of

properties.
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The OC22 dataset also highlights the challenges of requiring multiple levels of the-

ory for varying properties and materials. The OC20 dataset was constructed with the

RPBE functional and neglected spin polarization, which represented a good trade-off

between accuracy and computational cost for adsorption energies. However, most ox-

ide surface calculations use or start with the PBE+U functional, and spin polarization

tends to be more important. Combining datasets with multiple levels of theory, or up-

grading datasets from less accurate to more accurate methods are popular questions in

the small molecule community [86, 60], but applying these ideas to OC20/OC22 will

require extending these approaches to large datasets and inorganic materials, and we

hope the community rises to this challenge. An obvious future direction is to improve

the data quality with far more expensive hybrid functionals on the relaxed structures

here. Another future direction is the incorporation of magnetic configurations as vari-

ables in our models. Many oxides exhibit different magnetic configurations for the

same structure. These magnetic polymorphs have significant consequences in elec-

tronic and thermodynamic properties. Including magnetic polymorphs in the future

will allow for more general models.

Joint training on both the OC20 and OC22 datasets leads to several unexpected

results. Surprisingly, naively fitting on both OC20 and OC22 (much smaller dataset)

leads to large accuracy improvements for predicting OC20 energies, as shown in Table

5.7. In addition, models trained on either OC22 or OC20+OC22 both appear to

follow the same log-log scaling for energy MAE (Figure 5-6). These observations

open the door to using a wide array of existing large datasets (NOMAD[59], Materials

Project[114], OQMD[223]) that although different, could aid in model development.

These ideas can be rationalized if all of these datasets together can help learn more

flexible and useful representations, regardless of their specific tasks or details.

Fine-tuning and transfer learning baselines were investigated as potential routes

to improve accuracy across both OC20 and OC22 and reduce the computational

intensity of training GNNs for these tasks. The most accurate models for both OC20

and OC22 were models trained on both datasets simultaneously, which indicates that

a common representation can be learned and shared by both datasets. Surprisingly,
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the limited fine-tuning experiments in this work did not improve substantially on

the accuracy/cost Pareto front (Table 5-6). However, there are many possible fine-

tuning strategies and a large number of variations (e.g. which sections of the GNN

to freeze or fit, or leaving this decision to an attention block [135]), and we expect

more progress from the community in this area. These approaches are necessary

to encourage the re-use of large models, and to reduce the computational cost of

obtaining state-of-the-art models for future small datasets.

Models trained on OC22 could predict the total energies for any clean or ad-

sorbate+slab which ultimately allows us to determine any thermodynamic quantity

including adsorption energy, surface energy, and reaction energy. Adsorption and

reaction energies are useful for identifying viable catalysts. We can also predict the

surface energy in order to construct elaborate phase diagrams which can be used to

assess the thermodynamic stability of a surface at varying adsorbate coverages. Pour-

baix diagrams (applied potential vs pH) are especially important for determining the

thermodynamic viability of electrocatalysts. The surface energy can also be used

to model the equilibrium crystal structure or Wulff shape. With a predictive model

that circumvents DFT calculations, all these applications, which ordinarily require

hundreds of DFT calculations, are possible with little to no computational cost.

This dataset will have broad impact in discovering oxide catalysts for a variety

of reaction families and unraveling complex reaction mechanisms in these systems.

Oxide materials are likely present in any reaction under strong oxidative conditions,

such as the accelerated degradation of long-lived contaminants like PFOA[152] or sys-

tematically upgrading chemical building blocks [274]. Photocatalysis, which directly

uses available sunlight to drive chemical reactions also relies heavily on oxides such as

TiO2 due to their desirable optical properties [50] and could benefit from this dataset.

One example which is currently computationally expensive to study is the Mars-van

Krevelen (MvK) mechanism, which is one of the most common catalytic mechanisms

in ionic crystals[162, 106]. In the MvK, an adsorbate binds to a surface oxygen to

form a new intermediate which desorbs to leave behind an oxygen vacancy, which

can later be replenished by oxygen atoms from incoming adsorbates. By explicitly
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including oxygen defects and vacancies in the dataset generation process, we hope

the resulting models will be helpful for accelerating these studies. Similar reactions

that could benefit from these approaches are CO2 capture on carbides [85] or nitrate

reduction on nitrides[1].

5.9 Supporting Information Available

The supporting information contains details on OC20 S2EF-Total and IS2RE-Total

results, results using an alternative reference scheme, a discussion on adsorption

energy for OC22, performance on OC22 adslabs and slabs, independently, train-

ing and hyperparameters for baseline models, full results on the validation splits,

and the Hubbard U corrections used. The full dataset is provided at http://

opencatalystproject.org and available in an ASE[143] trajectory or model-ready

LMDB format. Baseline models, dataloaders, and trainers are provided in the open

source repository https://github.com/Open-Catalyst-Project/ocp.
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Chapter 6

Open Challenges in Developing

Generalizable Large Scale Machine

Learning Models for Catalyst

Discovery

This work originally appeared as: Kolluru, A.*, Shuaibi, M.*, Palizhati, A., Shoghi,

N., Das, A., Wood, B., Zitnick, C.L., Kitchin, J., Ulissi, Z., 2022. Open Challenges

in Developing Generalizable Large Scale Machine Learning Models for Catalyst Dis-

covery. ACS Catalysis, 12(14), pp.8572-8581.*These authors contributed equally.

My contribution in this work included model training and evaluation, identifying and

gathering community challenges, providing my perspective and outlook on the topic,

and manuscript writing.

6.1 Abstract

The development of machine learned potentials for catalyst discovery has predomi-

nantly been focused on very specific chemistries and material compositions. While

effective in interpolating between available materials, these approaches struggle to

generalize across chemical space. The recent curation of large-scale catalyst datasets
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has offered the opportunity to build a universal machine learning potential, spanning

chemical and composition space. If accomplished, said potential could accelerate

the catalyst discovery process across a variety of applications (CO2 reduction, NH3

production, etc.) without additional specialized training efforts that are currently re-

quired. The release of the OC20[40] has begun just that, pushing the heterogeneous

catalysis and machine learning communities towards building more accurate and ro-

bust models. In this perspective, we discuss some of the challenges and findings

of recent developments on OC20. We examine the performance of current models

across different materials and adsorbates to identify notably underperforming sub-

sets. We then discuss some of the modeling efforts surrounding energy-conservation,

approaches to finding and evaluating the local minima, and augmentation of off-

equilibrium data. To complement the community’s ongoing developments, we end

with an outlook to some of the important challenges that have yet to be thoroughly

explored for large-scale catalyst discovery.

6.2 Introduction

Catalysts have played a key role in the synthesis of everyday chemicals and fuels

necessary for a 21st century society. As renewable energy prices continue to decrease,

traditional chemical synthesis processes are being revisited for more sustainable alter-

natives. At the center of this, catalyst discovery plays a key role in the advancement

of renewable energy processes and sustainable chemical production, i.e. ammonia for

fertilizer and hydrogen production. Unfortunately, the search space for catalyst mate-

rials is enormous for even high-throughput experiments [214]. This presents a need for

computational tools to simulate systems through quantum mechanical (QM) models

like DFT. QM approaches have made notable advancements in bridging computa-

tional results to experimental findings [120, 210, 288, 142, 215, 196]. While effective,

QM tools scale very poorly, 𝑂(𝑁3) or worse in the number of electrons. The com-

putational cost associated with QM tools render them infeasible to the scale of the

systems and search space desired for catalyst discovery. As a result, the catalysis com-
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Figure 6-1: Summary of challenges associated with training on large dataset with
large ML potentials discussed in the paper. Top left Trade offs in direct and gradient
GNN force predictions. Top right An example system for a case where the distance
metrics are relatively good for the direct approach but the force metrics are worse.
Bottom left Demonstration of inconsistent error across a metallic surface and a non-
metal through an example. Bottom right Augmenting existing relaxation datasets
with off-equlibrium data can aid in relaxation performance.

munity has moved towards a more data driven approach [3, 92, 218, 105, 287]. With

the QM data available, researchers are often interested in building machine learning

surrogates for a particular chemical property [266, 13, 291, 77]. Such efforts, however,

were limited to the finite data available, often for a very specific chemistry or sys-

tem, limiting the generalizability ability of such models [92, 262]. Fortunately, as the

community continues to curate larger, and more diverse datasets, machine learning

models will continue to improve as they move towards larger, and more sophisticated

architectures.

In the field of small molecules, a vast collection of datasets have been developed for

varying use cases, including molecular dynamics simulations (MD17[48], ANI-1[245],
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COLL[131]) and quantum mechanical properties (QM9[212] Alchemy[45]). These

datasets are often limited to a few (5-10) unique elements, on average 10-20 atoms

per system, and training set sizes in the range of 10k-1M samples. In the field

of heterogeneous catalysis, datasets are often much more limited with training set

sizes between 100 - 50k [5, 2, 160, 179]. These datasets were often created for very

specific applications involving a handful of small adsorbates (i.e. hydrogen containing

adsorbates on transition metal surfaces, CO2 reduction catalysts, etc.). The release

of OC20 marks a push towards a large, sparse collection of the material space. OC20

spans 55 unique elements, 82 adsorbates and includes a collection of unary, binary

and ternary materials. A total of 1.28 million DFT relaxations were performed,

comprising ∼260M single point evaluations of system energy and per-atom forces.

OC20 presented several practical tasks for the community to work towards. The

most general of the tasks, S2EF evaluates a model’s ability to serve as a surrogate

to DFT - predicting a configuration’s energy and per-atom forces. IS2RE asks to

predict the relaxed state energy, given only the initial structure. IS2RS explores how

well the relaxed structure can be predicted given only the initial configuration. In

the scope of OC20, all energies were referenced to represent adsorption energy. For

more details, we refer readers to the original manuscript [40].

In this perspective we shed light on the challenges of training Graph Neural Net-

works (GNNs) on large-scale datasets spanning material and composition space, il-

lustrated in Figure 6-1. We begin with a quick overview on the current state of the

community’s progress and share some takeaways from what we have observed. We

then discuss some telling trends on the performance of models across different adsor-

bates and material types. We discuss how different approaches and modeling decisions

impact the prediction tasks and highlight the challenges associated with each. Fur-

ther, we explain what the accuracies in various proposed metrics mean and some of

the challenges in analyzing them. Finally, we share our outlook on the direction the

community is headed and what still remains to achieve a large scale, generalizable

potential for catalyst discovery.
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Figure 6-2: Community progress on the OC20 dataset since release. Left: IS2RE
performance for both direct and relaxation based approaches. The current error
target of 0.10eV would make these models more practically useful for researchers’
applications. Right: S2EF performance as evaluated by mean absolute error of the
forces. IS2RE and S2EF MAEs for their median baselines are 1.756 eV and 0.084
eV/Å, respectively.

6.3 Community progress in developing ML models

for catalysis

Molecular modeling has progressed at an incredible rate over the past few decades.

Simple linear models, neural networks, and kernel methods were originally developed

relying on hand-crafted atomic representations, or descriptors [29, 158, 46, 19, 21]

as inputs to the models. Descriptors capture invariant geometric information in the

form of bonds and angles of an atoms local environment. While effective, the pa-

rameterization of such descriptors has been a challenging and non-trivial task. The

past few years has seen a shift towards deep learning approaches. Rather than re-

lying on hand crafted representations, models are being developed to learn similar

or more expressive representations, specifically by exploiting the graphical nature of

molecules using GNNs [232, 133, 130, 25, 233, 155]. Such models only take in 3D

atomic coordinates and atomic numbers. A graph is then generated, where atoms are

treated as nodes, and the distance between them as edges. Once a graph has been

constructed, GNNs will undergo several rounds of message passing in which node rep-

resentations are updated based off messages sent between neighboring nodes. While

models may differ in their exact architecture, the update and message functions of-
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ten include a series of multi-layer perceptrons and nonlinearities. Unlike traditional

descriptor based models, GNNs end up learning node representations as part of the

training process. Learned representations proceed through a final output block where

a final prediction is made. In recent years, GNNs have come to surpass traditional

descriptor based models [232, 133, 130, 25, 233, 155]. While typically data hungry,

recent models like NequIP [25] are demonstrating great performance with as little

as 100 samples. GNNs continue to gain traction as models continue to demonstrate

state of the art performance on molecular datasets.

Since the release of OC20, the community has been rapidly developing new ap-

proaches to improve existing baselines. Models being developed range from traditional

descriptor-style models [144] to complex and large GNN architectures [130, 241, 250,

290, 80]. Godwin, et al. present a simple, but effective GNN regularization technique

to improve graph-level predictions, namely IS2RE . Liu, et al. use a similar tech-

nique in addition to a graph-based transformer to win 1𝑠𝑡 place in the NeurIPS 2021

Open Catalyst Challenge [188] for direct IS2RE predictions. Klicpera, et al.[130, 76]

and Shuaibi, et al.[241] explore various higher order representations (i.e., triplets and

quadruplets) and leverage training on the entire OC20 to achieve impressive perfor-

mance on the S2EF task, with GemNet-OC[76] holding the current state of the art

across all tasks. Sriram, et al.[250] introduces Graph Parallelism, allowing them to

scale GemNet to nearly a billion parameters across multiple GPUs. The scale and

diversity of OC20 has additionally enabled transfer learning approaches to smaller

datasets. Kolluru, et al. [135] propose a transfer learning technique to use OC20

pretrained models to improve performance on smaller, out-of-distribution datasets.

Similar work has also been demonstrated for other big material datasets [43].

As the community continues to improve performance (Figure 6-2), it’s important

to understand some of the challenges, trends, and pitfalls in developing a generalizable

potential.
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(a)

(c) (d)

(b)

Figure 6-3: Analysis of GemNet-dT errors on the OC20 validation sets. (a) The
categorization of OC20 elements into intermetallics, nonmetals, metalloids and halides
for analysis. (b) Model performance across the different distributions and material
types. (c) Errors averaged across all validation splits for specific adsorbate containing
systems. (d) Errors averaged across all validation splits for adsorabtes containing
certain elements.
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6.4 Where are molecular GNNs still erroneous?

Most of the independent work done in developing ML potentials has been confined to

datasets built for certain applications. For example, ML potentials for the applica-

tions of CO2RR are usually just trained with CO and H adsorbates [15, 179, 292, 41].

While this approach might interpolate well across materials, extrapolation to differ-

ent adsorbates or more complicated materials will likely suffer in performance. A

universal ML potential, if possible, would first require a large, diverse dataset that

spans material and chemical space. OC20 dataset was created to build ML potentials

that cover a large and diverse space of heterogeneous catalysts.

Errors across material types: With over 300k unique surfaces, OC20 spans a

vast range of material compositions. When training large GNNs on the entire OC20

dataset, we observe that the accuracies are not uniform across element and adsorbate

types. To analyze this, we divide the validation set into four different material types:

intermetallics, metalloids, non-metals and halides, Figure 6-3(a). The distribution of

data across these classes of materials is not the same, we have significantly more inter-

metallics and relatively fewer halides. We observe that the performance on non-metals

is significantly worse, although both nonmetals and metalloids contribute to similar

percentage of training data (Figure 6-3(b)). On the other hand, models tend to do

much better across the board for intermetallics. Inaccuracies coming from non-metals

disproportionately contribute to the overall errors, leading to worse performance for

both force and energy predictions.

Errors across adsorbates: Large adsorbates are inherently more complicated

as the degrees of freedom increases with the number of atoms. However, we observe

no correlation with our model’s performance and the size of the adsorbate. Model

accuracies are poor for bidentate adsorbates like *CH*COH, *N*NO, *CH2*O, shown

in Figure 6-3(c). Figure 6-3(d) also shows that adsorbates with N and O are generally

more erroneous.
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Model Energy MAE (eV) ↓ Force MAE (eV/Å) ↓
ID OOD Ads. OOD Cat. OOD Both ID OOD Ads. OOD Cat. OOD Both

Median 2.04 2.42 1.99 2.58 0.081 0.080 0.079 0.098

Gradient forces
SpinConv[241] - - - - 0.031 0.035 0.032 0.042
GemNet-dT[130] 0.36 0.39 0.48 0.58 0.030 0.034 0.033 0.042

Direct forces
SpinConv[241] 0.26 0.29 0.38 0.47 0.027 0.030 0.029 0.037
GemNet-dT[130] 0.23 0.25 0.35 0.41 0.021 0.024 0.025 0.032

Table 6.1: Results on the OC20 S2EF task via gradient-derived or direct force predic-
tions. All models were trained on the OC20 S2EF All dataset. Results reported for
the validation set. Energy metrics are unavailable for the gradient based SpinConv
model due to being optimized only on forces.

6.5 Modeling trade-offs

6.5.1 Energy-conserving forces

Force predictions play an important role in the applications of ML models for catalyst

discovery. While some tasks may only be interested in property predictions like

adsorption or formation energy [15, 150, 161], forces are necessary to study dynamics

such as structural relaxations, molecular dynamics, and transition state calculations

[40, 25, 232, 198].

Physically, energy-conserving forces are derived as the gradient of energy with

respect to atomic positions:

𝐹𝑖 = −𝑑𝐸

𝑑𝑥𝑖

(6.1)

Energy-conservation is critical in studying molecular dynamics accurately. ML

models estimating energy-conserving forces must ensure the architecture is continu-

ous and differentiable, often satisfied by appropriate non-linear activation functions

[232, 133, 130]. Geometrically, forces derived in an energy-conserving manner en-

sures forces are rotationally equivariant, a necessary physical relation of molecular

systems [49]. Unfortunately, a gradient calculation increases model overhead in both

memory usage and computational time by a factor of 2-4 [241, 108]. For datasets

like MD17, calculating forces as a gradient is known to help in model accuracies as

that is an important physical prior to the model [25, 130, 241]. Models trained on

157



Energy MAE [eV] ↓ EwT ↑
Model Approach Dataset Size ID OOD Ads OOD Cat OOD Both ID OOD Ads OOD Cat OOD Both

Median baseline - - 1.75 1.88 1.71 1.66 0.71% 0.72% 0.89% 0.74%

DimeNet++ [133] Direct 460,328 0.56 0.73 0.58 0.66 4.25% 2.07% 4.10% 2.41%
SpinConv[241] Direct 460,328 0.56 0.72 0.57 0.67 4.08% 2.26% 3.82% 2.33%
NoisyNodes[80] Direct 460,328 0.42 0.57 0.44 0.47 9.12% 3.49% 8.01% 4.64%
Graphormer[290] Direct 460,328 0.40 0.57 0.42 0.50 8.97% 3.45% 8.18% 3.79%

DimeNet++ – LF + LE[133, 40, 189] Relaxation 2,000,000 0.53 0.57 0.56 0.52 6.79% 4.71% 6.49% 4.54%
SpinConv[241, 189] Relaxation 2,000,000 0.46 0.51 0.47 0.44 7.38% 4.82% 7.05% 5.31%
GemNet-dT[130] Relaxation 2,000,000 0.44 0.44 0.45 0.42 9.37% 6.59% 8.42% 6.40%
GemNet-OC[76] Relaxation 2,000,000 0.41 0.42 0.42 0.39 11.02% 8.68% 10.10% 7.82%

DimeNet++ – LF + LE [133, 40] Relaxation 133,934,018 0.50 0.54 0.58 0.61 6.57% 4.34% 5.09% 3.93%
SpinConv[241] Relaxation 133,934,018 0.42 0.44 0.46 0.42 9.37% 7.47% 8.16% 6.56%
GemNet-dT[130] Relaxation 133,934,018 0.39 0.39 0.43 0.38 12.37% 9.11% 10.09% 7.87%
GemNet-OC[76] Relaxation 133,934,018 0.35 0.35 0.38 0.34 16.06% 12.62% 13.17% 11.06%

Table 6.2: Results on the OC20 IS2RE task using one of two approaches. Direct
Directly predicting the relaxed state energy and Relaxation Training a model for
energy and force predictions, followed by an iterative ML-based geometry optimiza-
tion to arrive at a relaxed structure and energy. Relaxation results on the 2M subset
suggest that competitive results are still possible with a limited compute budget.
Results reported for the test set.

MD17 are often used to run molecular dynamics, further necessitating the need for

energy-conservation [25]. However, for the OC20 dataset, particularly in the task of

geometric optimization, we observe that the gradient approach for calculating forces

to perform worse than direct prediction of forces for GemNet-dT [130] and Spinconv

[241]. Dimenet ++ [133] and ForceNet [108] were built for gradient and direct ap-

proach respectively. The gradient approach could also make the training unstable in

certain cases, which has been observed for ForceNet[108] and GemNet-OC[76]. Table

6.1 compares performance on the S2EF task for two recent top performing models,

GemNet-dT [130] and SpinConv [241]. Not only are the force accuracies worse for

the gradient approach, but the corresponding relaxed structure and relaxed energy

metrics calculated via optimization are also significantly worse [241].

While energy-conservation plays a critical role in many molecular applications, we

observe that direct force computations brings efficiency and performance advantages

[108, 241]. Models trained for direct force predictions are limited to applications where

strict enforcement of energy-conservation can reasonably be ignored, i.e. OC20’s

structural relaxations. Here, atomic positions are updated solely from force estimates

[40, 54]. If necessary, DFT, or a subsequent ML model, can then be used to make
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reliable energy predictions on the ML optimized structure. Similarly, transition states

or saddle points can be derived in a similar manner with direct-force models. We want

to emphasize that although unorthodox, direct-force models still prove to be useful

in certain catalyst applications, i.e. OC20-like tasks.

6.5.2 Prediction of relaxed energy and structure

Adsorption energy is one of many properties that helps inform catalyst performance[278].

Computationally, this is computed via a series of QM structural relaxations. The re-

laxed energy is then referenced to represent the adsorption energy, see Chanussot et

al.[40], García-Muelas et al.[71] for more details. From a data-driven approach, we

can predict the relaxed energy or the relaxed structure of an atomic system usually via

two methods. First, we can build a surrogate to DFT, approximating system energy

and per-atom structures, and running ML optimizations to find the minimum energy,

a common approach within the field. Alternatively, given a large enough dataset of

relaxed structures and energies, we can try to predict these properties directly using

a ML model instead of optimizing via an iterative loop. The advantage of the direct

method over the relaxation approach is that it requires only a single call to the ML

model, whereas the relaxation approach could require on average 200-300 calls for

a single relaxation. Direct approaches are particularly advantageous when we talk

about the computational cost of approaching large scale inference on the order of

hundreds of millions to billions of systems.

The community has made tremendous progress in predicting adsorption energy

as evaluated by the OC20 IS2RE task (Figure 6-2). Direct approaches, despite us-

ing 300x less data, are approaching the competitive relaxation based approaches of

GemNet-XL and GemNet-OC. Inference time aside, models trained on the full 133M

dataset for the relaxation based approaches are typically compute intensive, using be-

tween 128-512 GPUs [241, 108, 130, 40]. While this is certainly a small price to pay if

the models developed accelerate the discovery process, it does make it difficult for the

community to engage in and aid in development. This has been particularly observed

in the NeurIPS 2021 Open Catalyst Challenge [188], where of the 30 submissions,

159



0 were made via the relaxation approach. Here, we show that models trained on a

2M subset of the full dataset are still able to provide competitive results and even,

averaged across all splits, out perform direct approaches. Given the trends in the 2M

dataset correlate well with the full 133M dataset [76], this should help incentivize

the community to explore other approaches even with resource limitations. Although

the relaxation approach is computationally expensive for both training and inference,

we have observed that the models trained through this approach tend to generalize

better on out-of-distribution (OOD) data, Table 6.2.

Direct relaxed energy predictions are an easier ML problem than direct structure

predictions. For a system of size N, energy predictions require a single scalar output,

while structure predictions require 3N components. We find that for relaxed energy

prediction tasks, metrics are closer for direct and relaxation approach whereas for

structure prediction task the metrics are worse. The OC20 paper provides a baseline

for relaxed structure prediction only via the relaxation approach [40]. In Table 6.3 we

provide baselines for direct relaxed structure prediction. A considerable gap exists

between the direct and relaxation based approaches (especially in the DFT based

metrics).

6.5.3 Metrics for finding local minima

Relaxed structure prediction is less straightforward than some of the other common

energy and force prediction tasks. Given a dataset like OC20 where relaxed structures

are not necessarily global minima, a model trained on such a dataset could either (1)

predict and arrive at the same local minima, (2) arrive at a different, but still suitable

minima, or (3) fail to arrive at any sort of minima.

To account for this, two main metrics have been presented in the OC20 paper.

ADwT is a distance based metric and measures how close the predicted structure

compares to the actual structure. This is similar to the Global Distance Test (GDT)

metric in the protein folding task [122, 295]. ADwT takes an average across different

thresholds varying from 0.1 to 0.5Åto ensure a signal is captured. For the OC20

dataset, we evaluate this metric for the input initial structures for an accuracy of
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Table 6.3: Baseline metrics for IS2RS direct task in comparison with the relaxation
approach. Metrics are reported on a 2k subset of the validation set, across all splits.
DwT is evaluated at a threshold of 0.04 Å. For compute reasons, DFT-based metrics
were evaluated on a 200 system subset of the 2k, 50 systems from each split.

Model DwT (at 0.04 Å) ↑ ADwT ↑ FbT* ↑ AFbT* ↑

Direct
ForceNet[108] 0.70 45.69% 0.00% 0.00%
SpinConv[241] 1.05 47.76% 0.00% 0.00%
GemNet-dT[130] 1.75 45.87% 0.00% 0.08%

Relaxation
ForceNet[108] 1.45 46.51% 0.00% 7.64%
SpinConv[241] 8.20 55.81% 0.00% 12.55%
GemNet-dT[130] 13.95 60.88% 0.00% 20.35%

21.18% on the in-domain validation set [40]. Models, at the bare minimum, should

perform better than this baseline. To ensure invariance to arbitrary coordinate ref-

erence frames, we predict the difference between initial and final positions instead of

the final position Cartesian coordinates. Predicting the delta difference helps simplify

this task and results in improved ADwT accuracies.

A model that predicts a relaxed structure that is not identical to its DFT ref-

erence may still be considered successful for two reasons. (1) the model could have

predicted a symmetrically identical site on the surface and (2) the model predicted a

different, but still suitable local minima. The former is more a concern surrounding

the distance-based metric, as ADwT, although accounts for periodic-boundary con-

ditions, does not consider symmetrically identical sites. While it is rather unlikely

an adsorbate initialized over a particular site will hop several sites over to a symmet-

rically identical site, it is worth raising awareness to the possibility. On the other

hand, a model that arrives at a different relaxed structure entirely will fail according

to ADwT. However, to verify whether the model has predicted a different suitable

minima, we can evaluate the DFT forces corresponding to the ML predicted struc-

tures. This metric is called AFbT and it measures the percent of structures having

their forces close to zero [40]. Since models are expected to predict relaxed structures,

DFT forces should be close to zero. This is a stricter metric as compared to ADwT.

However, this is far more expensive due to the additional DFT calculations. A more
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practically useful metric would be number of DFT calculations required to find the

relaxed structure starting from the ML relaxed structure. This would give us an idea

of the percent of DFT calculations that the current ML models can reduce. Although

useful, this is a significantly more expensive metric than AFbT calculations. While it

is not something Open Catalyst Project’s (OCP) tracks on their public leaderboard,

we bring awareness to it as there could be instances where models do poorly on ADwT

and AFbT but resulting structures are only a few DFT steps away from the relaxed

structure.

In Table 6.3 we compare relaxed structure prediction via a direct and relaxation

approach. We observe that direct methods, although having competitive ADwT met-

rics, have AFbT metrics that are significantly worse. This suggests that direct models

do a reasonable job at getting close to the relaxed structure but are in high-force

configurations, failing to capture repulsive physical interactions [80]. We speculate

models struggle with this since small perturbations distances can have large conse-

quences on forces, e.g. moving two atoms at an equilibrium bond length fractions

of an angstrom towards each other. Relaxed structure prediction via the relaxation

approach avoids this issue by using ML forces to drive a geometric optimizer.

We observe that distance metrics at tighter thresholds correlate better with force

based metrics, however, going below 0.04 Å does not give sufficient signal and the

accuracies for most systems fall to zero. Moreover, the Distance within Threshold

(DwT) at 0.04 Å isn’t a good enough signal that can replace AFbT. For example,

DwT (at 0.04Å) for ForceNet relaxation approach and GemNet-dT direct approach

are similar, however, the AFbT metrics still differ by 7.56% (as shown in Table 6.3).

We believe that finding non DFT-based metrics that correlate well with DFT-based

metrics is still an open and important question in the community which would make

model evaluation computationally less expensive.

6.5.4 Additional data

The OC20 paper [40] released two additional data subsets generated with ab-initio

molecular dynamics (‘MD’) and structural perturbations (‘Rattled’). These provide
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38𝑀 and 17𝑀 additional S2EF training data points respectively.

Table 6.4 presents results for GemNet-OC[76] models trained on S2EF , Rat-

tled, and MD data compared against similar analysis from the OC20 paper for

DimeNet++ [133, 131]. First, on the force MAE metric, addition of MD data hurts

DimeNet++ while it improves GemNet-OC. We speculate this to be another artifact

of modeling forces as negative gradients of energy (as in DimeNet++) vs. direct

prediction (as in GemNet-OC). Second, consistent with the OC20 paper, adding MD

data to the training set provides a useful signal for IS2RS structure relaxations as

per the AFbT metric. Finally, adding Rattled data helps with IS2RS metrics, but

did not help or marginally hurt the S2EF force MAE. This could be due to a variety

of reasons – random perturbations being too large / small to be useful, intermediate

structures along a trajectory being less useful compared to closer to the local mini-

mum (as in MD initial structures), etc. A promising direction here could be active

learning approaches to optimally query additional training data points.

S2EF Val ID IS2RS Test

Training Data (# samples) Force MAE ↓ ADwT ↑ AFbT ↑

D
N

+
+

{︃ 20𝑀 (20𝑀) 0.0511 34.37% 2.67%
20𝑀 + MD (58𝑀) 0.0594 47.69% 17.09%
20𝑀 + Rattled (37𝑀) 0.0614 43.94% 12.51%

G
N

-O
C {︃ All (133𝑀) 0.0179 60.33% 35.27%

All + MD (172𝑀) 0.0173 60.77% 38.05%
All + MD + Rattled (189𝑀) 0.0174 - -

Table 6.4: Results with DimeNet++ (DN++) and GemNet-OC (GN-OC) trained on
MD and Rattled. S2EF results reported for the validation in-distribution set. IS2RS
results reported on the test set.

6.6 Summary and Outlook

The development of generalizable or universal ML models has only recently been se-

riously considered with the emergence of large-scale datasets like OC20 [40]. Since

its release, the catalysis and ML communities have both made tremendous progres-
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sive in developing models for catalyst applications. As the community continues to

grow and as more datasets emerge that span material and composition space, the

prospect of large-scale generalizable models is within reason. Progress thus far has

demonstrated several challenges in accomplishing this feat: classes of materials and

adsorbates with inconsistent errors, energy-conserving forces, relaxed vs direct ap-

proaches, DFT metrics, and data augmentation strategies. In this perspective, we

discussed these challenges in detail and provided some insights as to how and why

they are important. Although these challenges were discussed in the context of OC20,

we anticipate similar challenges to future datasets of its kind.

Datasets like OC20 has offered new ways to how we think about building large,

generalizable, and reliable models. While model performance has been the focal point

of community progress thus far, we provide an outlook of other important challenges

that we hope the community to engage in.

Training strategies. OC20 was released with predefined training, validation,

and test sets. Its splits were curated in a manner to tackle the problem of building a

single generalizable model for catalysis. However, it could be the case that multiple

models for different subsets of the data, e.g. adsorbates, compositions, materials, do

better. In the case of nonmetals, for instance, we have shown that this actually hurts

performance - a possible consequence of the reduced dataset size.

Uncertainty and active learning. While model performance is a necessary step

for the discovery process, it is not always sufficient. A practical ML-aided catalyst

discovery pipeline will ultimately turn to experiments to validate whether the ML

predicted “great" catalyst is at all effective. Having confidence in these predictions

is particularly important to avoid wasted expensive experiments. Uncertainty quan-

tification has been a particularly popular topic within the catalysis community, often

focused on the small data regime and active learning [265, 36, 242, 272, 116, 263, 226].

The effectiveness of traditional uncertainty estimation techniques on large datasets

like OC20 is a necessary and important step for the future of this work. Similarly,

how to best leverage active learning for either dataset generation and/or augmenta-

tion [247] or online active learning [272, 242] at the scale of OC20 will be an exciting
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future direction.

Model efficiency. In addition to model performance and reliability, model effi-

ciency will continue to be critical for all applications. For training, faster, more data

efficient models can help attract the community to tackle some of the bigger challenges

like a surrogate to DFT, i.e. OC20’s S2EF task. Progress so far has shown that the

best models are also the largest models. From an inference perspective, this poses

obvious challenges of slower speeds and ultimately reduced screening throughput.

While models still remain orders of magnitude faster than DFT, when considering

the possibility of screening billions of systems, computational costs add up. Recent

models encoding equivariant representations [25, 171] have shown incredible scaling

and efficiency gains that could be promising to explore. Moving forward, efficient ar-

chitectures and model distillation[69] will be an important contribution to reduce the

computational cost of large-scale inference, even if it means sacrificing some accuracy.

Data augmentation. The scale of OC20 makes data augmentation a non-trivial

challenge. With 130M+ training data points, randomly adding 10-100k data points

will likely have negligible impact on the models. We observed that models using the

additional MD data are able to perform the best, while the rattled data has little

impact. Identifying strategies to combine and train large molecular and material

datasets like ANI-1[245] and OQMD[128] with OC20 could help improve models even

further. The biggest challenge surrounding this comes from combining datasets of

varying levels of DFT theory.

Energy-conserving forces. In the context of OC20, we have observed that the

best performing models make a direct force-prediction. While this may be suitable

for some applications, the more physically motivated gradient approach to force pre-

diction is desired for other applications like MD. The same direct models applied to

MD17 observe the opposite effect, better performance via the gradient method [76]. It

remains an open question why this is the case, and we encourage others to investigate

this observation.

Physics-based modeling. The majority of models submitted to OC20 have

followed a purely data-driven approach, only taking in atomic numbers and positions
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as inputs. Exploring ways to leverage OC20 charge density or Bader charge data
1 could prove useful, particularly in the low data regime. Additionally, models like

UNiTE [205] or OrbNet[206] that leverage tight binding DFT[18] for featurization

could be interesting to explore for catalyst applications.

1To be made publically available at https://github.com/Open-Catalyst-
Project/ocp/blob/main/DATASET.md
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Chapter 7

Conclusions and Outlook

The ability to screen billions of catalyst materials accurately would accelerate the

discovery of efficient, low-cost catalysts that are necessary for renewable energy tech-

nologies. Through this thesis, we contribute to the development of generalizable

machine learning models and methods to accelerate the catalyst discovery process

across chemical and material space.

7.1 Contributions

In Chapter 2, we focus our attention on the low data regime and how we can build

more accurate methods and frameworks for accelerating atomic simulations. Specifi-

cally, we show how incorporating physical priors can aid neural network based archi-

tectures in online and offline active learning frameworks. We developed amptorch to

efficiently train, optimize, and take advantage of modern machine learning methods

for descriptor based models. We also developed a modular active learning pack-

age, almlp (now, FINETUNA ), to conveniently explore alternative models and query-

ing strategies. Through this work we were able to accelerate simulations of small

molecules on catalyst materials anywhere from 4-10x.

We then tackled the task of developing a general-purpose model that could screen

across chemical space without the reliance on any DFT. In Chapter 3, we constructed

the world’s largest catalyst dataset - OC20 to enable the desired model development.
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OC20 consists of over 1M DFT simulations (200M+ data points) spanning a swath

of different materials, surfaces, and adsorbates relevant for renewable energy tech-

nologies. To garner attention from the ML and catalysis communities, we formulated

well-defined tasks and challenges relevant to every-day catalyst applications. Baseline

GNNs were released and a public leaderboard was established to encourage develop-

ments and track progress. Accompanying this work, we developed the ocp codebase,

which includes all baseline models, data loaders, evaluators, and tools necessary to

bootstrap research. While baseline models were far from practical applications, the

community has made significant developments with new models currently being ap-

plied to catalyst discovery pipelines.

The size and uniqueness of OC20 brought forth a wave of model development for

catalysis from ourselves and the community at large. In Chapter 4, we present one of

these efforts to more accurately model catalysts - SpinConv. SpinConv is a GNN that

explicitly tries to capture the 3D environment of an atom through projections of the

local environment onto a grid. At the time of its release, SpinConv achieved state-of-

the-art performance over existing baselines by ∼15% across key metrics. Since then,

model development has progressed tremendously and, although no longer state-of-

the-art, some of its design decisions have aided or inspired newer developments.

While OC20’s size and diversity spans a large material space, it is still a sparse

sampling of the billions of possible combinations and naturally has its limitations.

In Chapter 5, we constructed the largest oxide catalyst dataset - OC22. OC22 con-

sists of over 60,000 DFT relaxations across a range of oxide surface combinations

and adsorbates important for green hydrogen storage, and other oxide applications.

Here we expand on the OC20 tasks to focus on total energy predictions, a more

general property for catalyst applications. We show how models trained on total

energies enables the exploration of clean surface configurations, an important step in

downstream discovery workflows. We also demonstrate how datasets like OC22 can

complement existing datasets like OC20, and vice-versa, through alternative training

strategies like joint training and transfer learning. This work offers a precedent to

future catalyst datasets that seek to improve model performance by leveraging larger
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datasets like OC20 and OC22.

In Chapter 6, we share our perspective on some of the findings and challenges

in building a generalizable machine learning model for catalyst discovery. We show

that (1) models developed with direct-force predictions are more accurate and faster

than physically motivated gradient-based predictions; (2) when tasked with predict-

ing relaxed energies, approaches that run ML-driven structure optimizations are more

accurate and generalize better than models that directly predict relaxed energies; and

(3) augmenting off-equilibrium data, while may not improve training metrics, helps

improve downstream DFT evaluations. Some of the open challenges that still remain

include (1) poor model performance on material subsets - specifically nonmetals and

halides; and (2) identifying metrics that can efficiently and accurately evaluate model

relaxations without relying on costly DFT. While the points raised in this work pre-

ceded OC22, the same trends and challenges are observed in OC22.

7.2 Outlook

The development of generalizable machine learning models for catalysis has only

recently been more seriously discussed in light of large dataset efforts like OC20 and

OC22, among others. We recognize that as a result of its infancy, a multitude of

future directions may stem from this research. Future modeling efforts may consider

how to more efficiently capture and represent the atomic environment. Additionally,

models here were purely data-driven. Exploring the extent physical biases or features

can be incorporated has yet to be properly explored in depth. As models and datasets

continue to grow, more efficient architectures and model distillation strategies will be

increasingly important contributions to reduce computational costs.

While improving model performance will continue to be a goal, uncertainty estima-

tion will be a critical component in practical discovery applications. GNNs discussed

in this work provide no uncertainty estimates associated with their predictions. A set

of baselines for GNN uncertainty prediction followed by more accurate strategies, if

necessary, will be an important next step for downstream catalyst applications like
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active learning or experimental collaborations. Future work may also consider devel-

oping better training and augmentation strategies. Transfer learning, in particular,

has been shown in this work to be a delicate and challenging task, but can provide

meaningful improvements. Exploring how to more carefully and systematically trans-

fer knowledge between datasets for any new, arbitrary dataset will be important for

community adoption. This work, unsurprisingly, has shown that more data continues

to help model performance. Future work may explore how to generate more meaning-

ful training data, whether it be through off-equilibrium simulations, active learning,

or new datasets entirely.

The tasks, challenges, and datasets presented in this work serve to accelerate

the development of models and methods for catalyst discovery. However, when it

comes time for models to suggest candidate materials, we will need to evaluate their

performance based off experimental feedback. Future work will need to evaluate model

performance beyond just the tasks and metrics proposed here. Getting experimental

feedback early will play a critical role in the direction model development should

take - are pushing these task metrics sufficient or are more complex tasks necessary?

Exploring the full pipeline of ML predictions to experimental results will ultimately

be vital to the success of large scale catalyst screening.
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Appendix A

Supplementary Information for

Chapter 2

This work originally appeared as the Supplementary Information for: Shuaibi, M.,

Sivakumar, S., Chen, R.Q. and Ulissi, Z.W., 2020. Enabling robust offline active

learning for machine learning potentials using simple physics-based priors. Machine

Learning: Science and Technology, 2(2), p.025007.

A.1 High-temperature MD

In a similar manner to Figure 4 of the main text, we demonstrate our framework’s

ability to successfully converge to an accurate high-temp MD despite the highly per-

turbed sampled configurations. This same experiment was unsuccessful without the

inclusion of the more potential prior we have introduced in this work. Beginning with

a dataset containing a single structure, we run the proposed framework over a 2ps

MD simulation of CO on Cu(100) in a 800K NVT ensemble. We illustrate our results

in Figure A-1, with good agreement as early as the 3rd iteration - suggesting that the

sampled highly-perturbed structures aid in reaching a converged simulation in much

fewer iterations.
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(a) (b)

Figure A-1: Offline-AL demonstration to a 2ps MD simulation of CO on Cu(100) at
800K(a) Evolution of the MD trajectory over several iterations of the active learning
framework. We verify the effectiveness of our framework by randomly sampling con-
figurations and comparing DFT evaluated energy and forces with that of our model’s
predictions. (b) Parity plots associated with the DFT evaluated configurations and
our model’s predictions on the 8th iteration, demonstrating good agreement. Shading
was scaled logarithmically with darker shading corresponding to a higher density of
points.

A.2 Interactive examples

Several interactive Google Colab notebooks have been prepared to allow readers to

conveniently explore the proposed methods. Accelerated structural relaxations and

transition state calculations can be found at Ref [243]. Random query strategies are

used to demonstrate the effectiveness of even the simplest of strategies. We encourage

users to explore query and termination strategies that best suites their application

of choice. DFT calculations are performed directly in the notebook examples via a

GPU-enabled Quantum Espresso package.
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A.3 Morse parameters fitting

The Morse potential was selected for our primarily bonded, catalytic systems. Param-

eters of the Morse potential, 𝐷𝑒, 𝑟𝑒, and 𝑎, corresponding to well depth, equilibrium

distance, and well width were computed in the following manner for a given element,

X:

1. Lone atomic energies, 𝐸𝑋 , obtained through singlepoint DFT calculations;

2. Diatomic atoms relaxed to obtain a relaxed state energy, 𝐸𝑋2 , and equilibrium

distance, 𝑟𝑒.

3. Well depth, 𝐷𝑒, is calculated as follows:

𝐷𝑒 = −(𝐸𝑋2 − 2 * 𝐸𝑋) (A.1)

4. Diatomic bond stretched and corresponding DFT points fit to Morse potential

functional form (A.2) to obtain 𝑎 Figure (A-2).

𝐸𝑚𝑜𝑟𝑠𝑒 = 𝐷𝑒(𝑒
−2𝑎(𝑟−𝑟𝑒) − 2𝑒−𝑎(𝑟−𝑟𝑒)) (A.2)

To make use of the Morse potential for multi-element systems, linear mixing rules

are utilized to compute element pair parameters. Adapted from Yang, et al.[289] the

Morse potential is rewritten and parameter combinations applied accordingly (A.3-

A.6)

𝐸𝑚𝑜𝑟𝑠𝑒 = 𝐷𝑒(exp[−2𝐶

𝜎
(𝑟 − 𝑟𝑒)] − 2 exp[−𝐶

𝜎
(𝑟 − 𝑟𝑒))] (A.3)

𝐷𝐴𝐵 =
√︀

𝐷𝐴𝐷𝐵 (A.4)

𝑟𝑒,𝐴𝐵 =
𝑟𝑒,𝐴 + 𝑟𝑒,𝐵

2
(A.5)

𝜎𝐴𝐵 =
𝜎𝐴 + 𝜎𝐵

2
(A.6)

Where 𝐶 = ln 2/(𝑟𝑒−𝜎) and 𝜎 corresponds to 𝐸𝑚𝑜𝑟𝑠𝑒(𝜎) = 0. Although more sophis-
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ticate combination rules exist [289], the accuracy of our Morse potential is not crucial

for the success of our framework as it is meant to provide some guidance to the model.

A.4 Convergence

The convergence of the Offline-AL loop can be accelerated through the use of a

learning rate scheduler. Figure A-3 compares the learning curves of AL frameworks

with and without a learning rate scheduler, ceteris paribus. We demonstrate that a

cosine annealing scheduler with warm restarts [159] was able to assist the convergence

by smoothing out the learning curve and requiring fewer training images to reach a

similar level or error.
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Figure A-2: Morse parameters are obtained by fitting DFT points near the equilibrium
distance to equation A.2. Sample fittings are illustrated for copper, carbon, and
oxygen.
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Figure A-3: Offline-AL convergence of our BPNN ∆-ML is compared with and with-
out a learning rate scheduler. The use of a scheduler, particularly with small data,
enables our framework to converge more reliably to the local minima.
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Appendix B

Supplementary Information for

Chapter 3

This work originally appeared as the Supplementary Information for: Chanussot,

L.*, Das, A.*, Goyal, S.*, Lavril, T.*, Shuaibi, M.*, Riviere, M., Tran, K., Heras-

Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh,

D., Zitnick, C.L., and Ulissi, Z., 2021. Open catalyst 2020 (OC20) dataset and com-

munity challenges. ACS Catalysis, 11(10), pp.6059-6072. *These authors contributed

equally.

B.1 DFT Relaxations

DFT calculations were performed with the Vienna Ab Initio Simulation Package

(VASP)[140, 138, 139, 273, 141] with periodic boundary conditions and the projec-

tor augmented wave (PAW) pseudopotentials [32, 141]. The external electrons were

expanded in plane waves with kinetic energy cut-offs of 350 eV. Exchange and correla-

tion effects were taken into account via the generalized gradient approximation [197]

and the revised Perdew-Burke-Ernzerhof (RPBE) functional, because of its improved

description of the energetics of atomic and molecular bonding to surfaces [96]. Bulk

and surface calculations were performed considering a K-point mesh for the Brillouin

zone derived from the unit cell parameters as an on-the-spot method, employing the
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Figure B-1: The distribution of max-absolute forces, 𝑓𝑚𝑎𝑥, for systems that converged
and completed successfully. Systems in which 𝑓𝑚𝑎𝑥 > 0.05 eV/Å were excluded from
all tasks except S2EF.

Monkhorst-Pack grid [169]. The ionic degrees of freedom were relaxed using a Con-

jugate Gradient minimization [259, 202]. The relaxation was terminated when either

the Hellmann-Feynman forces [66] were less than 0.03 eV/Å or the relaxation required

more than 200 steps in a single uninterrupted VASP call. This limit was reset each

time the calculation was checkpointed allowing some relaxations to exceed this 200

steps. The final distribution of residual forces is shown in Figure B-1 in the SI. Relax-

ations still converging after approximately 5,000 core-hours were terminated and not

included in the dataset. For the electronic degrees of freedom, the energy convergence

criteria was fixed to 10−4 eV, where no spin magnetism or dispersion corrections were

included.
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B.2 Adsorption Energy

𝐸𝑎𝑑 = 𝐸𝑠𝑦𝑠 − 𝐸𝑠𝑙𝑎𝑏 − 𝐸𝑔𝑎𝑠

Gas phase references, 𝐸𝑔𝑎𝑠, for each adsorbate was computed as a linear combina-

tion of N2, H2O, CO, and H2 resulting in the atomic energies from Table B.1.

Adsorbate atom Energy (eV)

H -3.477
O -7.204
C -7.282
N -8.083

Table B.1: The per atom energy of individual adsorbate atoms used to calculate the
gas phase reference energy for an adsorbate molecule

B.3 Computational Workflow

An illustration of the workflow used to sampled from the dataset and perform calcu-

lations is show in Figure B-2.

B.4 Graph Construction

Given a set of atoms in the 3D unit cell that is periodically repeated, we construct a

radius graph where nodes represent the atoms and edges represent nearby interaction

between pairs of atoms. Specifically, we draw a directed edge from atom 𝑗 to atom

𝑖 if atom 𝑗 is within the cutoff distance from atom 𝑖, and vice versa. This means

that the edges are always bidirectional. Furthermore, since the nodes are periodically

repeated, two atoms may have multiple directed edges if they lie within the cutoff

distance in multiple repeated cells. If an atom 𝑖 has more than one edge to an atom

𝑗, each edge represents atom 𝑗 in a different cell, resulting in unique relative distances

and edge features, Figure B-3. From the atom-centric view, the above directed multi-
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Figure B-2: The workflow used to generate the Open Catalyst Dataset. Stable mate-
rials were downloaded from The Materials Project[114] and paired with heuristically
chosen adsorbates to create adsorption structures. These structures were randomly
sampled for DFT relaxation and then subsequent AIMD, electronic structure analysis,
and single-point rattling calculations.
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Figure B-3: A simple example of constructing a radius graph with periodic boundary
conditions. The graph on the right represents all edges assuming each atom as the
center node individually (shown on the left).

graph representation of the atomic system precisely captures the local 3D structure

surrounding each atom, taking periodic boundary condition into account.

B.5 Graph Pairwise Similarity

The mean pairwise similarity (mps) between a collection of graphs gives an indica-

tion of the diversity present in a given dataset and is comparable between different

datasets. Pairwise similarity was computed as the mean of the elements in the upper

triangle of the similarity matrix (K) without the diagonal elements included (Equa-

tion below). The similarity matrix was calculated using graphs and the molecular

kernel from the GraphDot package (https://graphdot.readthedocs.io/en/latest/), de-

tails of these methods are provided by Tang et al. [258]. Mean pairwise similarity

values range from 1, where all graphs are the same and decay to 0. The mean pairwise

similarity can be compared between datasets if the graph and the kernel parameters
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are consistent. For the results in Figure 6 of the main text, we randomly sampled

1000 systems (N) from a 10,000 subsample of each respective dataset and computed

the mean pairwise similarity, this was repeated six times to collect statistics. Random

subsampling was done to keep the similarity matrix the same size across datasets and

to decrease the computational cost. For the similarity matrix calculation the adja-

cency length scale used to convert atomic structures to graphs was set to 6 Å and

the molecular kernel edge length scale was set to 18 Å, nearly identical results were

achieved with 2 Å and 5 Å respectively. All other parameters were set to default

values.

mps =
1

𝑁(𝑁 − 1)/2

𝑁∑︁
𝑖,𝑗

K𝑖𝑗

where 𝑖 < 𝑗

B.6 Baseline Models Implementation

All proposed baseline models were implemented using PyTorch Geometric. Several

implementation changes, however, were necessary to make such models relevant to

our dataset and tasks. We outline the modifications below:

SchNet

• Periodic boundary conditions (PBCs) were incorporated into the PyTorch Ge-

ometric implementation of SchNet.

DimeNet++

• PBCs were incorporated into the PyTorch Geometric implementation of DimeNet++.
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CGCNN

• Similar to SchNet, a Gaussian basis function was incorporated to the edge

features. Although not contained within the original CGCNN implementation,

a significant performance increase was observed.

• In order to make force predictions, a gradient call was included in the forward

pass with respect to positions. The original CGCNN implementation was only

concerned with energy predictions.

B.7 Hyperparameters for Baseline Models

Model hyperparameters for the ‘All’ splits of the IS2RE and S2EF tasks are provided

in Tables B.2, B.3, and B.4. Hyperparameters of the remaining splits can be found in

the corresponding repo: https://github.com/Open-Catalyst-Project/ocp/tree/

master/configs.

Hyperparameters IS2RE S2EF

Size of atom embeddings 384 512
Size of fully connected layers 512 128

Number of fully connected layers 4 3
Number of graph convolutional layers 6 3

Number of Gaussians used for smearing 100 100
Cutoff distance for interatomic interactions 6 6

Batch size (per gpu) 16 24
Initial learning rate 0.001 0.0005

Learning rate gamma 0.1 0.1
Learning rate milestones [5, 9, 13] [3, 5, 7]

Warmup epochs 3 2
Warmup factor 0.2 0.2

Max epochs 20 20
Force coefficient N/A 10

Table B.2: CGCNN [286] hyperparameters on the All split of the IS2RE and S2EF
tasks.
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Hyperparameters IS2RE S2EF

Number of hidden channels 384 1024
Number of filters 128 256

Number of interaction blocks 4 5
Number of Gaussians used for smearing 100 200

Cutoff distance for interatomic interactions 6 6
Global aggregation add add
Batch size (per gpu) 64 20
Initial learning rate 0.001 0.0001

Learning rate gamma 0.1 0.1
Learning rate milestones [10, 15, 20] [3, 5, 7]

Warmup epochs 3 2
Warmup factor 0.2 0.2

Max epochs 30 15
Force coefficient N/A 30

Table B.3: SchNet [232] hyperparameters on the All split of the IS2RE and S2EF
tasks.

Hyperparameters IS2RE S2EF

Number of hidden channels 256 192
Output block embedding size 192 192
Number of interaction blocks 3 3

Number of radial basis functions 6 6
Number of spherical harmonics 7 7

Number of residual layers before skip connection 1 1
Number of residual layers after skip connection 2 2

Number of linear layers in output blocks 3 3
Cutoff distance for interatomic interactions 6 6

Batch size (per GPU) 4 8
Initial learning rate 0.0001 0.0001

Learning rate gamma 0.1 0.1
Learning rate milestones [4, 8, 12] [2, 3, 4]

Warmup epochs 2 2
Warmup factor 0.2 0.2

Max epochs 20 7
Force coefficient N/A 50

Table B.4: DimeNet++ [133, 131] hyperparameters on the All split of the IS2RE and
S2EF tasks.
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B.8 IS2RE Performance of Baseline Models on Pre-

vious Datasets

The MAE metrics of the baseline models for the IS2RE task are significantly higher

than have been reported in recent studies applying ML models to predict adsorp-

tion energies[15, 265, 89]. There are three key differences in this work. First, the

dataset here is larger, more diverse, sparser, and more uniformly sampled than previ-

ous datasets making this task more challenging. Second, we are using a more difficult

definition of the IS2RE task - predict the final energy directly from the initial struc-

ture, rather than a clean representation of the final structure [15]. Finally, the baseline

models themselves are somewhat different (both implementation, and details of the

training and precise form).

To test that the baselines models were consistent with previous efforts, we applied

all three models to the IS2RE task for a literature dataset of CO adsorption energies

[15, 266], show in Table B.5. Our results are consistent, and often better, than previ-

ously reported validation accuracy for a CGCNN-based model at approximately 0.190

eV MAE on the literature dataset. This is far lower than the 0.57 eV MAE for our

baseline models trained only on the CO subset of the OC20 dataset. This suggests

that the dataset diversity is the dominant factor in this variation, and further empha-

sizes that a uniformly sampled dataset can be more difficult to fit than one obtained

through an active learning process that emphasizes high-performing catalysts.

Model Validation

Energy MAE [eV] ↓
Previous Work [15, 266] 0.190

CGCNN [286] 0.174
SchNet [232] 0.170

DimeNet++ [133, 131] 0.149

Table B.5: Benchmark of our baseline models’ implementations on a literature CO
dataset[15, 266] as evaluated by Energy MAE.
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Adsorbate class # of adsorbates Adsorbates

O/H Only 4 *H, *O, *OH, *OH2

C1 13
*C, *CO, *CH, *CHO, *COH, *CH2, *CH *2 O, *CHOH,
*CH3, *OCH3, *CH2OH, *CH4, *OHCH3

C2 41

*C*C, *CCO, *CCH, *CHCO, *CCHO, *COCHO,
*CCHOH, *CCH2, *CH*CH, CH *2 CO, *CHCHO,
*CH*COH, *COCH2O, *CHO*CHO, *COHCHO,
*COHCOH, *CCH3, *CHCH2, *COCH3, *OCHCH2,
*COHCH2, *CHCHOH, *CCH2OH, *CHOCHOH,
*COCH2OH, *COHCHOH, *CH *2 CH2, *OCHCH3,
*COHCH3, *CHOHCH2, *CHCH2OH, *OCH2CHOH,
*CHOCH2OH, *COHCH2OH, *CHOHCHOH, *CH2CH3,
*OCH2CH3, *CHOHCH3, *CH2CH2OH, *CHOHCH2OH,
*OHCH2CH3

Nitrogen-based 24

*NH2N(CH3)2, *ONN(CH3)2, *OHNNCH3, *NNCH3, *ONH,
*NHNH, *NHN2, *N*NH, *ONNO2, *NO2NO2, *N*NO,
*N2, *ONNH2, *NH2, *NH3, *NONH, *NH, *NO2, *NO, *N,
*NO3, *OHNH2, *ONOH, *CN

Table B.6: Adsorbates considered in OC20

B.9 Adsorbates Included

The full list of adsorbates is indicated in Table B.6. This list was constructed by con-

sidering the four monatomic species and adding common intermediates for renewable

energy challenges. The number of possible organic molecules is combinatorially large,

so this is not a comprehensive list. Larger molecules (e.g. C3) are also relevant but

have an even larger number of possible configurations. Most adsorbates were mono-

dentate (binding through a single adsorbate atom), but larger molecules known to

bind in bi-dentate configurations were initialized that way. The atoms considered for

either mono-dentate or bi-dentate adsorption location is indicated by *.
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Figure B-4: Top: A parity plot comparing xTB adsorption energies with DFT ad-
sorption energies and an inset that limits xTB values to a range similar to that of
DFT. Bottom: Initial and final structures corresponding to the pink markers in the
plot above organized from left to right.

B.10 Train/Test/Validation Splits

The following adsorbates were reserved for validation subsplits: *CH, *CHO, *COCH2OH,

*COH, *NH2, *NH2N(CH3)2, and *ONOH. Asterisks represent the binding atoms.

The following adsorbates were reserved for the test subsilpts: *CH2*CH2, *CO,

*COHCH2, *NHN2, *NNCH3, *OCHCH2, and *ONNO2.

B.11 Tight Binding Baseline

Obtaining reasonable energies, forces, and relaxed structures from tight binding codes

is an enticing possibly because of the low computational cost compared to DFT; how-

ever, tight binding calculations on systems for catalysis remain a challenge, as demon-
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strated by SI Figure B-4. We preformed tight binding calculations on 100 random

systems from the validation set with extended tight binding (xTB) and the atomic

simulation environment (ASE) [143] interface using the GFN0 parameters [201]. All

xTB calculations were carried out in accordance to our DFT procedures with a few

notable differences. For the combined systems, i.e. an adsorbate on a surface, all sur-

face atoms were fixed during the relaxation. Relaxations with xTB featured a BFGS

optimizer instead of conjugated gradient, but the convergence criteria remained the

same as other DFT calculations, 𝑓𝑚𝑎𝑥 of 0.03 eV/Å or a maximum of 200 steps except

for adsorbate references where 𝑓𝑚𝑎𝑥 was 0.05 eV/Å. Additionally, the surface energies

used for the computation of adsorption energies were approximated with single point

energies. We did not allow surfaces to relax because of unphysical behavior during

optimization, which we likely attribute to periodic boundary conditions (PBCs). We

are aware that the xTB code was designed for non-periodic systems and that incor-

poration of PBCs is an ongoing effort. Overall, the speed of the xTB was impressive

and we look forward to future developments related to systems with PBCs.

B.12 Additional Data: Rattled & Molecular Dynam-

ics

Off-equilibrium data was additionally generated to diversify the structures in the

dataset. Two approaches were use to generate this additional data: structural per-

turbations ("rattled") and molecular dynamics.

Rattled. Structures along the relaxation path way were sampled, perturbed via

random atomic position displacements, and evaluated with DFT. For each relaxation,

20% of the intermediate structures were sampled for rattling. Atomic displacements

were sampled from a normal distributions with 𝜇 = 0 and 𝜎 = 0.05. Approximately

30 million single-point calculations were carried out. Upon filtering, 17𝑀 S2EF data

points were used for training.

Molecular Dynamics. Short time-scale molecular dynamics simulations were per-
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formed on previously relaxed structures. Simulations took place at 900K for 80 or

320 fs with an integration step size of 2 fs in the NVE ensemble. Approximately 64

million single-point calculations were carried out. Upon filtering, 38𝑀 S2EF data

points were used for training.

Performance of baseline models. We report S2EF and IS2RS results for SchNet [232]

and DimeNet++ [131] models optimized for force-prediction in Table B.7. Consis-

tent with results in the main paper, we find that DimeNet++ outperforms SchNet

(lower Force MAE, higher Force cosine, higher AFbT). Compared to training only

on S2EF data, training on MD data seems to provide a complementary learning sig-

nal and leads to better sample efficiency – both DimeNet++ and SchNet trained on

S2EF -20𝑀 + MD (58𝑀 training samples) outperform corresponding models trained

on S2EF -All (134𝑀 training samples) as per AFbT. Finally, IS2RS AFbT seems

to correlate better with S2EF Force cosine than S2EF Force MAE, especially when

comparing models trained on Rattled or MD data.

S2EF Test IS2RS Test

Model Training Data # Samples Force MAE Force cosine ADwT FbT AFbT

SchNet [232] S2EF-20𝑀 20𝑀 0.0535 0.3006 27.68% 0.00% 1.68%
SchNet [232] S2EF-All 134𝑀 0.0490 0.3417 31.78% 0.00% 3.38%
SchNet [232] S2EF-20𝑀 + Rattled 37𝑀 0.0691 0.3619 36.70% 0.10% 5.14%
SchNet [232] S2EF-20𝑀 + MD 58𝑀 0.0775 0.3885 41.10% 0.15% 8.97%

DimeNet++ [133, 131] S2EF-20𝑀 20𝑀 0.0509 0.3382 34.37% 0.00% 2.67%
DimeNet++ [133, 131] S2EF-All 134𝑀 0.0357 0.4787 48.91% 0.25% 15.17%
DimeNet++ [133, 131] S2EF-20𝑀 + Rattled 37𝑀 0.0658 0.4395 43.94% 0.05% 12.51%
DimeNet++ [133, 131] S2EF-20𝑀 + MD 58𝑀 0.0635 0.4644 47.69% 0.15% 17.09%

DimeNet++ [133, 131]-large S2EF-All 134𝑀 0.0313 0.5443 51.67% 0.40% 21.74%

Table B.7: S2EF and IS2RS results of force-only SchNet and DimeNet++ models on
S2EF , MD, and Rattled data.

B.13 Results on Validation splits

Full results on the validation splits are shown in Tables B.9, B.10, and B.8 for the

S2EF , IS2RS , and IS2RE tasks respectively.
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Energy MAE [eV] ↓ EwT ↑
Validation

Model Approach ID OOD Ads OOD Cat OOD Both ID OOD Ads OOD Cat OOD Both

Median baseline - 1.7466 1.7647 1.7283 1.5640 0.78% 0.80% 0.83% 0.91%

CGCNN [286] Direct 0.6203 0.7426 0.6001 0.6708 3.36% 2.11% 3.53% 2.29%
SchNet [232] Direct 0.6465 0.7074 0.6475 0.6626 2.96% 2.22% 3.03% 2.38%
DimeNet++ [133, 131] Direct 0.5636 0.7127 0.5612 0.6492 4.25% 2.48% 4.40% 2.56%

SchNet [232] Relaxation 0.7150 0.7395 0.8010 0.8197 4.03% 3.09% 3.87% 2.72%
SchNet [232] – force-only + energy-only Relaxation 0.7110 0.7574 0.8316 0.8075 4.33% 2.88% 3.63% 2.57%

Table B.8: Predicting relaxed state energy from initial structure (IS2RE ) as evaluated
by Mean Absolute Error (MAE) of the energies and the percentage of Energies within
a Threshold (EwT) of the ground truth energy. Results reported for trained on the
All training dataset.
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S2EF Validation

Model ID OOD Ads OOD Cat OOD Both

Energy MAE [eV] ↓
Median baseline 2.0715 2.2275 2.0558 2.3313
CGCNN [286] 0.5041 0.5986 0.5252 0.7308
SchNet [232] 0.4468 0.4973 0.5453 0.7047
SchNet [232] – force-only 34.0183 33.4238 34.2519 38.1693
SchNet [232] – energy-only 0.4011 0.4727 0.5607 0.7165
DimeNet++ [133, 131] 0.4545 0.5093 0.5184 0.6753
DimeNet++ [133, 131] – force-only 28.2095 28.4266 28.8740 35.0468
DimeNet++ [133, 131] – energy-only 0.3599 0.4500 0.5412 0.7108
DimeNet++ [133, 131]-Large – force-only 29.3524 29.4825 29.9799 36.6944

Force MAE [eV/Å] ↓
Median baseline 0.0810 0.0799 0.0798 0.0942
CGCNN [286] 0.0684 0.0746 0.0679 0.0852
SchNet [232] 0.0493 0.0574 0.0520 0.0685
SchNet [232] – force-only 0.0442 0.0514 0.0465 0.0618
SchNet [232] – energy-only 0.5810 0.6254 0.5875 0.6562
DimeNet++ [133, 131] 0.0443 0.0508 0.0445 0.0589
DimeNet++ [133, 131] – force-only 0.0331 0.0366 0.0343 0.0436
DimeNet++ [133, 131] – energy-only 0.3410 0.3322 0.3425 0.3502
DimeNet++ [133, 131]-Large – force-only 0.0281 0.0318 0.0315 0.0396

Force Cosine ↑
Median baseline 0.0000 0.000 0.000 0.000
CGCNN [286] 0.1550 0.1320 0.1456 0.1338
SchNet [232] 0.3185 0.2862 0.2973 0.2854
SchNet [232] – force-only 0.3604 0.3296 0.3294 0.3266
SchNet [232] – energy-only 0.0841 0.0695 0.0807 0.0699
DimeNet++ [133, 131] 0.3632 0.3401 0.3512 0.3556
DimeNet++ [133, 131] – force-only 0.4877 0.4747 0.4599 0.4849
DimeNet++ [133, 131] – energy-only 0.1064 0.0855 0.1043 0.0880
DimeNet++ [133, 131]-Large – force-only 0.5640 0.5500 0.5106 0.5390

EFwT ↑
Median baseline 0.00% 0.01% 0.01% 0.01%
CGCNN [286] 0.01% 0.00% 0.00% 0.01%
SchNet [232] 0.13% 0.00% 0.10% 0.00%
SchNet [232] – force-only 0.00% 0.00% 0.00% 0.00%
SchNet [232] – energy-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131] 0.09% 0.00% 0.09% 0.00%
DimeNet++ [133, 131] – force-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131] – energy-only 0.00% 0.00% 0.00% 0.00%
DimeNet++ [133, 131]-Large – force-only 0.00% 0.00% 0.00% 0.00%

Table B.9: Predicting energy and forces from a structure (S2EF ) as evaluated by
Mean Absolute Error (MAE) of the energies, force MAE, force cosine, and the per-
centage of Energies and Forces within Threshold (EFwT). Results reported for models
trained on the entire training dataset (S2EF-All).
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IS2RS Validation

Model ID OOD Ads OOD Cat OOD Both

ADwT ↑
IS baseline 21.18% 23.49% 20.25% 28.29%
SchNet [232] 15.53% 16.57% 14.50% 17.29%
SchNet [232] – force-only 32.41% 33.33% 30.02% 37.48%
DimeNet++ [133, 131] 30.40% 30.77% 29.94% 34.89%
DimeNet++ [133, 131] – force-only 49.05% 46.91% 46.54% 55.23%

Table B.10: Predicting relaxed structure from initial structure (IS2RS ) as evaluated
by Average Distance within Threshold (ADwT). All values in percentages, higher is
better. Results reported for structure to energy-force (S2EF) models trained on the
All training dataset. The initial structure was used as a naive baseline (IS baseline).
Note that metrics requiring expensive DFT calculations – FbT and AFbT – are only
computed for test splits, not val.
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Appendix C

Supplementary Information for

Chapter 5

This work originally appeared as the Supplementary Information for: Tran, R.*, Lan,

J.*, Shuaibi, M.*, Wood, B.M.*, Goyal, S.*, Das, A., Heras-Domingo, J., Kolluru,

A., Rizvi, A., Shoghi, N., Sriram, A., Ulissi, Z., Zitnick, C.L. 2022. The Open Cat-

alyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis. arXiv preprint

arXiv:2206.08917. ACS Catalysis, under review. *These authors contributed equally.

C.1 OC20 S2EF-Total and IS2RE-Total results

To enable the comparison of total energy metrics between the OC22 and OC20

datasets, we trained baseline OC20 models for the proposed S2EF-Total and IS2RE-

Total tasks. Table C.1 shows that across all models, S2EF-Total metrics are consid-

erably worse than their S2EF counterparts. Similar to OC22, we see OOD metrics to

be significantly worse than ID. Table C.2 shows a similar trend of IS2RE-Total with

worse performance. It is worth noting that total energy based metrics are a more

challenging task than their referenced counter parts. A model tasked with predicting

total energies is required to capture all subsurface, surface, and adsorbate interac-

tions accurately. In the case of OC20’s adsorption reference, because a slab reference

energy is subtracted off, models are ultimately focused on the energy associated with
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Table C.1: A comparison of OC20 performance on S2EF and S2EF-Total . Across all
models and splits, S2EF-Total , results in worse performance.

Task Model Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑

ID

S2EF
SchNet 0.447 0.049 0.319
DimeNet++ 0.455 0.044 0.363
GemNet-dT 0.242 0.023 0.613

S2EF-Total
SchNet 3.737 0.047 0.343
DimeNet++ 3.043 0.032 0.515
GemNet-dT 0.466 0.025 0.586

OOD Ads

S2EF
SchNet 0.497 0.057 0.286
DimeNet++ 0.509 0.051 0.340
GemNet-dT 0.247 0.025 0.605

S2EF-Total
SchNet 3.756 0.053 0.318
DimeNet++ 3.052 0.035 0.503
GemNet-dT 0.473 0.028 0.586

OOD Cat

S2EF
SchNet 0.545 0.052 0.297
DimeNet++ 0.518 0.045 0.351
GemNet-dT 0.357 0.027 0.561

S2EF-Total
SchNet 3.853 0.049 0.312
DimeNet++ 3.159 0.034 0.472
GemNet-dT 1.033 0.031 0.526

OOD Both

S2EF
SchNet 0.705 0.069 0.285
DimeNet++ 0.675 0.059 0.356
GemNet-dT 0.415 0.034 0.596

S2EF-Total
SchNet 4.770 0.064 0.313
DimeNet++ 3.946 0.043 0.500
GemNet-dT 1.263 0.039 0.560

only the adsorbate-surface interface.
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Table C.2: A comparison of OC20 performance on IS2RE and IS2RE-Total . Across
all models and splits, IS2RE-Total results in worse performance.

Task Model Energy MAE [eV] ↓ EwT [%] ↑

ID

IS2RE
SchNet 0.637 2.96
DimeNet++ 0.561 4.26
GemNet-dT 0.526 4.65

IS2RE-Total
SchNet 1.698 0.87
DimeNet++ 1.378 1.35
GemNet-dT 1.196 1.41

OOD Ads

IS2RE
SchNet 0.734 2.33
DimeNet++ 0.725 2.06
GemNet-dT 0.705 2.21

IS2RE-Total
SchNet 1.683 1.05
DimeNet++ 1.426 1.19
GemNet-dT 1.218 1.33

OOD Cat

IS2RE
SchNet 0.661 2.95
DimeNet++ 0.575 4.10
GemNet-dT 0.533 4.59

IS2RE-Total
SchNet 2.359 0.64
DimeNet++ 1.766 0.93
GemNet-dT 2.102 0.77

OOD Both

IS2RE
SchNet 0.704 2.22
DimeNet++ 0.661 2.42
GemNet-dT 0.643 2.31

IS2RE-Total
SchNet 2.576 0.59
DimeNet++ 1.994 0.80
GemNet-dT 2.331 0.72
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C.2 Alternative reference scheme

Whereas OC20 references systems to correspond to an adsorption energy, OC22 is

only concerned with making total energy predictions. In the context of model training,

an adsorption energy reference modifies the target energy distribution of the dataset.

Normalization schemes have been known to aid in accelerating and improving model

training, particularly for deep neural networks [111]. We present a “linear referencing"

approach as a normalization scheme for OC22. First, we fit a linear regression model

to learn per-atom energies, i.e.

𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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(C.1)

Where 𝐾𝑖
𝑗 corresponds to the count of element 𝑗 in system 𝑖, 𝐸𝑗 the per-element

energy being fit, and 𝐸𝐷𝐹𝑇
𝑖 the ground truth DFT total energy. Once fitted, energy

targets used for training, 𝐸𝑀𝐿
𝑖 , are referenced as follows:

𝐸𝑀𝐿
𝑖 = 𝐸𝐷𝐹𝑇

𝑖 −𝐾𝑖𝑃 (C.2)

Where 𝐾𝑖 are the element counts for system 𝑖 and 𝑃 is the set of fitted per-element

energy coefficients. Table C.3 compares model performance on S2EF-Total with and

without the proposed linear reference. Across all models, we see a 6.5%, 43.9%,

and 48.5% improvement in ID energy metrics for GemNet-OC[76], GemNet-dT[75],

and SpinConv[241], respectively. With the execption of GemNet-OC, all models see
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Table C.3: OC22 S2EF-Total test results for several top performing baseline GNNs,
with and without a linear referencing scheme. A linear reference serves as an energy
normalization strategy, aiding in overall energy performance across all models.

ID OOD

Reference Model Energy Force Force Energy Force Force
MAE [eV] ↓ MAE [eV/Å] ↓ Cosine ↑ MAE [eV] ↓ MAE [eV/Å] ↓ Cosine ↑

None
SpinConv 1.101 0.048 0.5140 1.981 0.070 0.386
GemNet-dT 0.938 0.032 0.6647 1.272 0.041 0.530
GemNet-OC 0.383 0.029 0.6903 0.833 0.040 0.554

Linear
SpinConv 0.567 0.036 0.6112 1.394 0.067 0.400
GemNet-dT 0.470 0.032 0.6727 1.091 0.042 0.526
GemNet-OC 0.357 0.030 0.6914 1.057 0.040 0.550

similar energy improvements for the OOD split. As expected, force metrics across

all models see little change. This referencing was omitted from the main paper as

to encourage other strategies to energy normalization, particularly for large, diverse

datasets like OC22 and OC20.
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C.3 Use of total energy models to predict adsorption

energies

Total DFT energy predictions, although more general than adsorption energies, are

not physically meaningful on their own, as only relative DFT energies are meaningful.

One benefit to total energy prediction is that there are many possible catalysis and

materials relevant properties that can be computed, only one of which is the adsorp-

tion energy. Here we elaborate on adsorption energy predictions via a direct route,

as was done in OC20, and via total energy predictions, as is the case for OC22. The

first approach, which we refer to as ads-ref, directly predicts adsorption energy as:

�̂�𝑎𝑑𝑠 = 𝐸𝑀𝐿
𝑎𝑑𝑠 (C.3)

Where models are trained on adsorption energy targets (𝐸𝑎𝑑𝑠 = 𝐸𝑎𝑑𝑠𝑙𝑎𝑏 − 𝐸𝑠𝑙𝑎𝑏 −

𝐸𝑔𝑎𝑠) that make use of DFT for the adslab, clean slab, and gas-phase adsorbate

reference. The direct approach requires one model forward pass for predictions. The

second approach, referred to as total-ref, involves making two predictions — a relaxed

adslab and clean slab prediction:

�̂�𝑎𝑑𝑠 = 𝐸𝑀𝐿
𝑎𝑑𝑠𝑙𝑎𝑏 − 𝐸𝑀𝐿

𝑠𝑙𝑎𝑏 − 𝐸𝐷𝐹𝑇
𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 (C.4)

The total-ref approach uses total DFT energy targets for both adslabs and slabs

and has the advantage of being more general.

The motivation for the change in referencing is two-fold: it enables adsorption en-

ergy predictions that span different surface coverages that are particularly important

in oxide catalysts and it opens up the possibility of new property predictions such

as surface energies. In order to maximize the properties accessible in the dataset we

allowed all the slab atoms to relax. However, this adds the complication of poten-

tially having possible inconsistent slab references. We note that to make an accurate

adsorption energy calculation, the corresponding relaxed slab reference needs to be

identical or similar to that of the relaxed adslab (Figure C-1a). Since OC22 created
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Figure C-1: (a) A correct adsorption calculation assumes the relaxed adslab and re-
laxed clean slab reference are consistent. (b) A histogram of cumulative slab displace-
ment between the relaxed adslab and relaxed clean slab. OC22 systems observed a
significant amount of movement compared to OC20, a consequence of all OC22 atoms
being unconstrained and slabs not being optimized before adsorbate placement.

adslabs from unrelaxed slabs and relaxed corresponding pairs in parallel, it is possible

that the slab is no longer a consistent reference. Figure C-1b illustrates the cumu-

lative slab atom displacement between the relaxed adslab and relaxed clean slab for

both OC20 and OC22.

Unsurprising, allowing the slab atoms to relax results in more atom movement

on average in OC22 slabs compared to OC20. To account for this, we introduce

a maximum allowed slab displacement to limit the validity of our systems to those

within a tolerable threshold. As reference, OC20 had on average a maximum slab

Table C.4: Predicting OC22 adsorption energies via the proposed total-ref approach.
Due to OC22 not always having consistent references, results are reported for varying
subsets of the validation set in which max cumulative slab displacement is below a
specified threshold.

Energy MAE [eV] (validation size)

Max slab displacement[A] ID OOD

None 0.890 (1097) 1.07 (1750)
10 0.568 (499) 0.71 (683)
6 0.533 (295) 0.65 (369)
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displacement of ∼4Å. Table C.4 reports the adsorption energy performance of the

total-ref on the OC22 dataset. A max slab displacement of “None" corresponds to

the baseline of not filtering any OC22 systems. Without filtering any systems we

observe large adsorption energy errors. When we limit our analysis to systems in

which slabs are fairly consistent we see significantly better error metrics, suggesting

a possible cancellation of errors.

While our analysis here is fairly limited given the size of the OC22 validation sets,

it does provide a promising application of OC22 models to adsorption energy. Future

work will involve a more rigorous analysis of OC22 models on adsorption energy upon

curation of the relevant validation dataset. Regardless, all of the total energy models

trained in this work will be relevant to these applications.
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Table C.5: S2EF-Total results on adslab and slab subsets of the OC22 test splits.
Models were trained and evaluated on only that subset. GemNet-OC* corresponds to
the baseline model trained on all of OC22 but evaluated on the subsets in isolation.

Subset Model Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑
ID OOD ID OOD ID OOD

Adslabs

SpinConv 0.933 1.955 0.034 0.062 0.601 0.409
GemNet-dT 0.891 1.404 0.030 0.040 0.659 0.527
GemNet-OC 0.448 0.871 0.029 0.037 0.674 0.548
GemNet-OC * 0.358 0.815 0.027 0.037 0.695 0.553

Slabs

SpinConv 1.479 2.147 0.071 0.090 0.696 0.492
GemNet-dT 1.613 2.033 0.057 0.062 0.490 0.414
GemNet-OC 1.126 1.660 0.052 0.055 0.531 0.436
GemNet-OC* 0.482 0.905 0.037 0.050 0.673 0.558

C.4 OC22 adslab and slab only performance

The OC22 dataset contains a combination of both adslab (adsorbate on a slab) and

slab systems. While evaluation metrics are averaged across all systems, it may be

useful to explore the performance of a particular subset. We trained several models

on subsets in isolation and report results in Table C.5. Adslab performance does

considerably better than slabs, a possible consequence of dataset size and the nature

of adslab relaxations sampling a larger configurational space (e.g. slab relaxations

often only require a few dozen DFT calculations). Best adslab and slab performance

is achieved when training on both subsplits, suggesting adslabs are useful to improving

slab performance, and vice-versa.

C.5 Training and hyperparameters

Baseline models used hyperparameters originally from OC20 or included a light sweep

over some of the training settings - learning rate, optimizer, scheduler. For experi-

ments within a particular task, model architectures were fixed. All model hyperpa-

rameters will be accessible at https://github.com/Open-Catalyst-Project/ocp/

tree/main/configs/oc22. S2EF-Total models trained only on OC22 used an atom-

wise loss function[24, 171] - weighing energy+forces in the loss function by 1 : 𝑁2
𝑎𝑡𝑜𝑚𝑠.

We found this to improve force metrics. A stepwise learning rate scheduler was also
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used for these experiments, decaying the learning rate at 2,3,4,5,6 epochs. S2EF-Total

joint training jobs used the original OC20 loss function and used a reduce-on-plateau

learning rate scheduler. S2EF-Total fine-tuning experiments all used the original

OC20 loss function as we noticed an atomwise loss function overfit very quickly on

forces. The OC22-only experiments of the main paper used the OC20 loss function

to allow for direct comparisons with the fine-tuning experiments. All joint training

experiments involving OC20 used DFT total energies instead of adsorption energies.

Unlike OC20, no energy normalization was done for training as we saw it to hurt

performance across the board.

Models were trained using anywhere from 4-64 GPUs on 32Gb NVIDIA Volta

cards. Learning rates for all fine-tuning experiments were reduced by 5-10x as com-

pared to their base counterparts to ensure stable training. All models were optimized

using AMSGrad. We provide the hyperparameters for our best performing S2EF-

Total model variant, GemNet-OC, for the joint and fine-tuning training strategies in

Table C.6.
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Table C.6: Model hyperparameters for the top performing GemNet-OC joint and
fine-tuning experiments.

Hyperparameters OC20+OC22 OC20→OC22
No. spherical basis 7 7
No. radial basis 128 128
No. blocks 4 4
Atom embedding size 256 256
Edge embedding size 512 512

Triplet edge embedding input size 64 64
Triplet edge embedding output size 64 64
Quadruplet edge embedding input size 32 32
Quadruplet edge embedding output size 32 32
Atom interaction embedding input size 64 64
Atom interaction embedding output size 64 64
Radial basis embedding size 16 16
Circular basis embedding size 16 16
Spherical basis embedding size 32 32

No. residual blocks before skip connection 2 2
No. residual blocks after skip connection 2 2
No. residual blocks after concatenation 1 1
No. residual blocks in atom embedding blocks 3 3
No. atom embedding output layers 3 3

Cutoff 12.0 12.0
Quadruplet cutoff 12.0 12.0
Atom edge interaction cutoff 12.0 12.0
Atom interaction cutoff 12.0 12.0
Max interaction neighbors 30 30
Max quadruplet interaction neighbors 8 8
Max atom edge interaction neighbors 20 20
Max atom interaction neighbors 1000 1000

Radial basis function Gaussian Gaussian
Circular basis function Spherical harmonics Spherical harmonics
Spherical basis function Legendre Outer Legendre Outer
Quadruplet interaction True True
Atom edge interaction True True
Edge atom interaction True True
Atom interaction True True
Direct forces True True

Activation Silu Silu
Optimizer AdamW AdamW
EMA decay 0.999 0.999
Gradient clip norm threshold 10 10
Learning rate 0.0005 0.0001
Scheduler ReduceLROnPlateau StepwiseLRDecay
LR Milestones N/A epochs 2-10, 0.5 after
Force loss function AtomwiseL2 L2
Energy loss function MAE MAE
Force coefficient 1 100
Energy coefficient 1 1
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Table C.7: Predicting total energy and force from a structure (S2EF-Total). Re-
sults are shared for the default, joint training, and fine-tuning training strategies.
Experiments are evaluated on the validation set.

S2EF-Total Validation

Training Model Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑ EFwT [%] ↑
ID OOD ID OOD ID OOD ID OOD

OC22-only

Median Baseline 169.733 164.316 0.076 0.074 0.002 0.002 0.00 0.00
SchNet [232] 8.081 12.562 0.060 0.092 0.359 0.233 0.00 0.00
DimeNet++ [133, 131] 2.354 2.838 0.043 0.061 0.599 0.459 0.00 0.00
ForceNet [108] - - 0.057 0.066 0.343 0.302 0.00 0.00
SpinConv [241] 1.268 2.359 0.048 0.087 0.507 0.379 0.00 0.00
PaiNN [233] 1.125 2.948 0.046 0.062 0.478 0.364 0.00 0.00
GemNet-dT [75] 1.108 1.844 0.032 0.041 0.657 0.560 0.01 0.00
GemNet-OC [76] 0.543 1.011 0.030 0.040 0.683 0.580 0.03 0.00

OC20-2M + OC22
PaiNN[233] 0.572 1.576 0.048 0.069 0.460 0.337 0.02 0.00
SpinConv[241] 1.050 2.138 0.035 0.063 0.626 0.462 0.00 0.00
GemNet-OC [76] 0.602 1.092 0.030 0.038 0.685 0.589 0.03 0.01

OC20-20M + OC22
PaiNN[233] 0.542 1.321 0.047 0.064 0.472 0.359 0.02 0.00
SpinConv[241] 1.097 2.189 0.036 0.060 0.602 0.468 0.00 0.00
GemNet-OC [76] 0.485 1.109 0.028 0.036 0.713 0.615 0.08 0.02

OC20-All + OC22 SpinConv[241] 1.399 2.275 0.040 0.054 0.527 0.447 0.00 0.00
GemNet-OC [76] 0.463 0.858 0.027 0.034 0.698 0.617 0.10 0.01

OC20→OC22

SpinConv[241] 1.173 2.518 0.035 0.056 0.604 0.468 0.00 0.00
GemNet-dT [75] 0.878 1.300 0.032 0.042 0.660 0.567 0.02 0.00
GemNet-OC [76] 0.394 1.042 0.030 0.040 0.671 0.569 0.11 0.00
GemNet-OC-Large [76] 0.613 1.196 0.029 0.039 0.707 0.602 0.03 0.01

C.6 S2EF-Total, IS2RE-Total, IS2RS validation re-

sults

Full validation results are shown in Tables C.7, C.8, C.9 for S2EF-Total , IS2RE-Total ,

and IS2RS , respectively.
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Table C.8: Predicting total relaxed energy from an initial structure (IS2RE-Total).
Results are shared for the default, joint training, and fine-tuning training strategies.
Experiments are evaluated on the validation set.

IS2RE-Total Validation

Approach Training Model Energy MAE [eV] ↓ EwT [%] ↑
ID OOD ID OOD

Direct

OC22-only

Median Baseline 183.987 177.349 0.00 0.00
SchNet 2.019 5.287 1.14 0.47
DimeNet++ 1.992 4.336 0.91 0.50
PaiNN 1.770 4.336 1.49 0.36
GemNet-dT 1.690 4.522 1.37 0.47

OC20+OC22

SchNet 3.030 5.076 0.65 0.43
DimeNet++ 1.989 4.450 0.91 0.61
PaiNN 1.764 4.690 1.33 0.36
GemNet-dT 2.519 5.150 0.61 0.40

OC20→OC22 GemNet-OC* 1.227 2.360 4.08 1.08

Relaxation

OC22
SpinConv 2.014 3.422 1.07 0.50
GemNet-dT 1.894 2.575 1.07 0.83
GemNet-OC 1.328 1.883 2.06 1.29

OC20+OC22 SpinConv 2.313 3.492 0.69 0.61
GemNet-OC 1.247 2.059 3.05 1.12

OC20→OC22
SpinConv 1.878 3.460 1.49 0.61
GemNet-OC 1.173 1.901 5.18 1.83
GemNet-OC-Large 1.270 2.040 1.30 1.22

*GemNet-OC pretrained on OC20+OC22 S2EF-Total

Table C.9: Predicting relaxed structures from an initial structure IS2RS . All models
predicted relaxed structures through an iterative relaxation approach. The initial
structure was used as a naive baseline (IS baseline). Experiments are evaluated on
the validation set.

IS2RS Validation

Training Model ADwT [%] ↑
ID OOD

OC22-only

IS baseline 44.77 42.59
SpinConv 57.69 43.30
GemNet-dT 59.68 51.25
GemNet-OC 60.69 52.90

OC20+OC22 SpinConv 55.79 47.31
GemNet-OC 60.99 53.85

OC20→OC22
SpinConv 56.69 45.78
GemNet-OC 58.03 48.33
GemNet-OC-Large 59.69 51.66
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C.7 Additional DFT settings

All structure relaxations were performed using the Vienna ab initio simulation pack-

age (VASP) [140, 138, 139, 273, 141] with the projector augmented wave (PAW)

approach. We modelled the exchange-correlation effects using the Perdew-Berke-

Ernzerhof (PBE), generalized gradient approximation (GGA) [197] which is generally

accepted for modeling surface reactions on oxides[83, 104, 271]. All calculations were

performed with spin-polarization to account for the significant spin states in metal

oxides. The external electrons were expanded in plane waves with kinetic energy

cut-offs of 500 eV. The energies and atomic forces of all calculations were converged

to within 1 × 10−4 eV and 0.05 eV Å−1, respectively. We used Γ-centered k -point

meshes of 50
𝑎
× 50

𝑏
× 50

𝑐
and 30

𝑎
× 30

𝑏
×1 for bulk and slab calculations, respectively, with

non-integer values rounded up to the nearest integer. We used a Gaussian smearing al-

gorithm for setting the partial occupancies of each orbital. We defaulted to a mixture

of the blocked Davidson iteration[118] and the RMM-DIIS[284, 204] scheme as the

algorithm for electron minimization and withdrew to using only the blocked Davidson

iteration for calculations containing Pb and In that failed to converge electronically.

Ions were updated using the conjugated gradient algorithm.

In this study, we placed adsorbates on one of the two surfaces of our slab which

results in uneven charges between the two surfaces. This results in an nonphysical

dipole moments that can lead to diverging total DFT energies. To account for this

dipole moment, we introduced an electrostatic potential to the local potential of our

adsorbed slab.

C.8 Hubbard U corrections

Materials with certain combinations of transition metals and oxygen are known to

have strongly correlated electrons, i.e. the movement of electrons significantly influ-

ences the properties of other electrons. It is well known that the GGA functional is

unable to properly account for these strong electron correlations leading to inaccurate

234



Table C.10: Hubbard U values for transition metals available on the Materials
Project.

U (eV)
Co 3.32
Cr 3.7
Fe 5.3
Mn 3.9
Mo 4.38
Ni 6.2
V 3.25
W 6.2

calculations of thermodynamic and electronic properties. We account for this missing

electron interaction by introducing the Hubbard U correction which uses a repulsive

Coulombic force between the electrons. The strength of this repulsion stems from the

“U" value which is empirically fitted to experimental quantities such as the band gap

or formation enthalpy. To properly account for the effects of strong electron corre-

lation on the thermodynamic properties of our dataset, we adapted the Hubbard U

values from the Materials Project which were fitted to correctly calculate the experi-

mental enthalpy of formation[113] (see Table C.10 for the list of Hubbard U values).
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C.9 Chemical systems

The dataset of slabs in OC22 is constructed from a set of 51 elements shown in Fig-

ure C-2 resulting in
(︀
51
1

)︀
= 51 and

(︀
51
2

)︀
= 1275 possible unary and binary oxides

respectively. We considered all transitions metals up to the 5d group with the excep-

tion of Tc due to its radioactivity (29 metals), all alkali and alkaline earth metals up

to Fr (10), the lanthanides of Ce and Lu (2), and the p-block metals and metalloids:

except Te and up to Po (11). We queried the materials project for materials with

the top five lowest energy above hull and less than 150 atoms for all unary and bi-

nary oxides composed of these elements. This resulted in 4,728 bulk oxide structures

considered. Figure C-3 provides a 2D grid heat map showing the frequency of chem-

ical systems sampled in the OC22 dataset. Only 4,286 of the 4,728 bulk oxides were

sampled in the dateset. Unary oxides are shown in the diagonal of the grid while all

other blocks represent binary oxides. Not all chemical systems were sampled in the

final dataset as some chemical systems did not exist in the Materials Project (red

hatches) while other chemical systems had bulk oxide systems that were too large to

create slabs of less than 150 atoms (grey blocks). We observe that for each chemical

system considered, around 50 to 100 slabs and adsorbed slabs were included in the

final dataset which demonstrates the even distribution of chemical space sampled in

the dataset. Slabs and adsorbed slabs with Li-O, Sb-Cr-O and Ag-O were randomly

over sampled with over 250 entries in the final dataset.
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Ac Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr

Figure C-2: Periodic table showing the 51 elements considered in the OC22 dataset in
blue. Elements that were not considered are show in grey. All slabs were constructed
from bulk oxides composed of one (unary) or two (binary) of these metals.
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Figure C-3: A 2D grid heat map indicating the number of slabs and adsorbed slabs
in the dataset containing specific pairs of metals of binary composition AxByOz.
Grid points on the diagonal correspond to unary compositions of AxOy. Grey grids
containing red hatches correspond to compositions that were not available in the
Materials Project. Grey grids without hatches indicate compositions that were in
our possible sample set of materials, but were not randomly sampled during the
construction of the dataset.
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