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Abstract

We study decentralized optimization and learning problems, where a network of n nodes, such as machines,

edge devices, and robot swarms, cooperatively minimizes a finite sum of cost functions by means of local in-

formation processing and communication with neighboring nodes. Decentralized optimization has emerged

as a promising framework for large-scale machine learning and signal processing problems. It is funda-

mentally important in scenarios where data samples are geographically distributed and/or centralized data

processing is infeasible due to computation and communication overhead or data privacy concerns. Although

decentralized optimization has been extensively researched under convexity over the past decade, the field

still lacks a sound understanding of how to achieve optimal complexities when the underlying problems of

interest become non-convex. In this thesis, we construct provably efficient decentralized stochastic first-

order gradient methods for several important classes of non-convex problems with online or offline data,

with the help of gradient tracking and variance reduction techniques. In particular, we prove that the pro-

posed algorithms, in regimes of practical significance, achieve network topology-independent computation

complexities that match the centralized lower bounds for the corresponding problem classes. This network

topology-independence property further leads to the linear speedup of decentralized stochastic optimiza-

tion algorithms under arbitrary network topologies, in that, the total number of gradient computations at

each node is reduced by a factor of 1/n compared to the centralized optimal algorithms that perform all

gradient computations at a single node. We also discuss several techniques to balance the computation-

communication trade-offs in the proposed algorithms. Our algorithmic frameworks and their companion

analyses are constructed and developed in a systematic manner and may be generalized to other problems of

interest. Extensive numerical experiments with both real and synthetic datasets are included to demonstrate

our main theoretical results.
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Chapter 1

Introduction

1.1 Motivation and background

Minimizing a cost function to select an optimal action or decision has been an important problem in science,

engineering, and mathematics. The cost function, say F : Rp → R, typically quantifies the loss in fitting data

or measurements under a model parameterized by x ∈ Rp. An optimal model or decision x∗ is often chosen

as the one that minimizes the corresponding loss F . Optimization theory and algorithms [5–11] provide the

fundamental tools to address such problems. Examples include the classical signal estimation and optimal

control problems, where the goal in the former is to minimize the estimation error and in the latter is to

minimize the cost of control actions. More recently, with the advent of modern computational machinery,

complex nonlinear problems, such as image classification and natural language processing, have enabled a

resurgence of interest in the domain of optimization theory and methods.

In this thesis, we investigate decentralized stochastic optimization, where data samples and noisy signal

observations are available across multiple nodes, such as machines, sensors, robots, or mobile devices. The

nodes communicate with each other according to a peer-to-peer network, without a central coordinator,

and solve the underlying optimization problem in a cooperative manner. Such problems are prevalent in

modern-day machine learning and signal processing where, for example, a large collection of images are

stored on multiple machines in a data center for the purpose of image classification. Moreover, classical

applications like sensor networks and robotic swarms also fit this paradigm where the sensors and robots

collect measurements in a decentralized manner in order to learn an underlying phenomenon, navigate an

environment, or decide on an optimal control action. In such settings, the data samples available at the i-th

node lead to a local cost fi, and the goal of the networked nodes is to agree on a minimizer of the global cost

F = 1
n

∑n
i=1 fi based on the data across all n nodes. In related applications of practical interest, raw data

1
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sharing among the nodes is often not permitted due to the private nature of data, such as text messages

and medical images, or is inefficient due to limited communication resources. Decentralized first-order

optimization methods thus rely on information exchange among the nodes and local gradient computation

to build the solution of the global optimization problem. In these methods, each node i retains a local state

variable xi
t that is an estimate of a minimizer x∗ of the global cost function F at iteration t, and recursively

updates this estimate according to the estimates of the neighboring nodes and local gradients, and perhaps

a few other auxiliary variables. In other words, the nodes do not share their raw data directly.

The formulation of decentralized stochastic optimization in general can be divided into two types: (i)

online/streaming data, where an imprecise (stochastic) gradient is computed based on data samples drawn

randomly from an underlying probability distribution at each node; or (ii) offline/batch data, where a finite

collection of data samples is available locally at each node and a stochastic gradient is computed from samples

drawn randomly from the local batch. In this thesis, we develop algorithmic frameworks and complexity

results for both online and offline formulations.

1.2 Canonical formulations of decentralized optimization and examples

1.2.1 Canonical formulations

We introduce the canonical forms of the decentralized optimization problems in the following. We consider n

nodes, such as machines or edge devices, communicating over a decentralized network described by a directed

graph G = (V, E), where V = {1, · · · , n} is the set of node indices and E ⊆ V × V is the collection of

ordered pairs (i, r), i, r ∈ V, such that node r sends information to node i. Each node i possesses a private

local cost function fi : Rp → R and the goal of the networked nodes is to solve, via local computation and

communication, the following optimization problem:

min
x∈Rp

F (x) := 1
n

n∑
i=1

fi(x). (1.1)

Here, each fi is only locally accessible and processed by node i and is not shared with any other nodes,

since it encodes the local data. We emphasize that the cooperation (information exchange) among the

nodes is peer-to-peer without the existence of a central coordinator; see Fig. 1.1. It can be observed that the

paradigm of decentralized optimization described above preserves the privacy of local data and achieves data

parallelism, thus enabling effective means for flexible parallel computation. In this thesis, we mainly focus

on the settings where each local cost function fi is non-convex, motivated by the applications in deep neural

networks [12] and robust learning [13]. Our goal is to design and analyze efficient decentralized optimization

algorithms that find a first-order stationary point x∗ of the global cost function F such that ∥∇F (x∗)∥ = 0.
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f1(x)
f2(x)

fi(x)

Figure 1.1: Decentralized Optimization: distributed optimization over a graph.

1.2.2 Examples

Problems (1.1) is quite prevalent in signal processing and machine learning problems [14–18]. We provide

some representative examples below.

1.2.2.1 Signal-plus-noise model

In classical signal processing, we are often interested in finding an unknown signal x∗ ∈ Rp based on the

measurements yi = h⊤
i x∗ + vi, obtained by a collection of sensors indexed by i, where hi ∈ Rp is the sensing

vector at sensor i and vi ∈ R is the measurement noise. Finding x∗ ∈ Rp at each sensor i may be formulated

as a local minimization problem in terms of the squared error, i.e., minx∈Rp(yi − h⊤
i x)2. However, since this

problem may be ill-conditioned and the collected measurements have noise, collaboration among the sensors

often leads to a much more robust estimate. The resulting formulation, in the form of Problem (1.1), is

min
x∈Rp

1
n

n∑
i=1

fi(x), fi(x) := (yi − h⊤
i x)2,

which is also known as the least-squares problem [19].

1.2.2.2 Expected risk minimization

Problem (1.1) also appears in (online) expected risk minimization [7]. In this context, the goal is to find

some model H, parameterized by x ∈ Rp, that maps an input z ∈ Rdz to its corresponding output y ∈ Rdy .

The setup requires defining a loss function L(H(z; x), y) that quantifies the mismatch between the model

prediction H(z; x), under the parameter x, and the actual output data y. Assuming that each node i in the

network obtains samples in real time from an underlying data stream with distribution Di, the goal of the

networked nodes here is to find the optimal parameter x∗ that minimizes the average of the expected losses

across the network, i.e.,

min
x∈Rp

1
n

n∑
i=1

fi(x), fi(x) := E(zi,yi)∼Di
[L (H(zi; x), yi)] . (1.2)



CHAPTER 1. INTRODUCTION 4

Cloud-based
learning

raw  
data inference

cloud-based
learning

model
model  
updates

global 
model

model

federated
learning

model model model

model model

model model

model

model 
updates

model 
updates

Figure 1.2: An illustration of cloud-based, federated, and decentralized learning in the context of distributed
training of machine learning models.

The formulation (1.2) is also known as decentralized online stochastic optimization [4,19–21]. We will provide

efficient algorithms and optimal complexity results for this formulation in Chapter 4, 5, and 6.

1.2.2.3 Empirical risk minimization

In practice, each node often has access to a large set of offline data samples {(zi,j , yi,j)}mi

j=1 drawn from Di

described in (1.2), in stead of sampling in real time. In this case, the average loss incurred by all offline

data samples across all nodes serves as an appropriate surrogate for the expected risk (1.2) and the resulting

problem is often referred as (offline) empirical risk minimization, i.e.,

min
x∈Rp

1
n

n∑
i=1

1
mi

mi∑
j=1

fi,j(x), fi,j(x) := L (H(zi,j ; x), yi,j) . (1.3)

The formulation (1.3) is also known as decentralized finite-sum optimization [22–24]. Chapter 2, 3, and 6

discuss how to leverage variance reduction methods to solve this formulation efficiently, where we provide

optimal complexity results for non-convex problems.
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1.2.3 Advantages over centralized server/worker architectures

In the context of large-scale distributed training of machine learning models, various centralized server/worker

programming models and system architectures have been proposed, such as cloud-based learning, MapRe-

duce [25], and federated learning [16], which are tailored for specific computing needs and environments; see

Fig. 1.2 for a simple illustration. Such server/worker architectures, although provide scalable solutions, may

not be desirable in certain scenarios, described in the following.

• Communication bottleneck. When training large-scale machine learning models with a server/worker

architecture, the server is often required to constantly push and pull information of very high dimen-

sions from all local workers [26]. In this case, the server could become a communication bottleneck,

for instance, in federated learning applications where a massive amount of edge devices cooperatively

trains a model of large size over a wireless network [16]. Conversely, the communication in a decentral-

ized network is generally much sparser in the sense that each node only talks to its several neighboring

nodes specified by the topology [27]. Decentralized topologies thus achieve faster wall-clock time than

the centralized server/worker architectures for each round of communication in network [14, 28, 29].

Leveraging this fact, in this thesis, we demonstrate by rigorous mathematical arguments that decentral-

ized optimization, when properly designed, achieves gradient and communication complexities1 that

are comparable to the centralized optimal ones in practical regimes of interest, thus reducing total run

time required for training. This outperformance of the decentralized over the centralized is particularly

significant if the communication network is of high latency and/or low bandwidth [2].

• System robustness. The operation of a server/worker architecture relies heavily on the functionality

of the central server. Therefore, the underlying training system may be vulnerable to malicious attacks,

as the server is a single point of failure [30]. On the contrary, decentralized optimization methods are

applicable as long as the communication network remains connected and are therefore more robust [15].

• Flexibility. When enormous data is generated in a local and streaming fashion from a large number of

mobile, geographically dispersed, heterogeneous devices, e.g., in the Internet of Things (IoT), one needs

a paradigm shift from a server/worker to a peer-to-peer network, since the latter eliminates the need for

specialized central coordinators and is based on flexible, non-deterministic, local communication [31].

• Power consumption. In federated optimization scenarios, workers typically communicate with the

server through long-distance wireless transmission, where the overall power consumption can be quite
1The complexities here refer to the total number of gradient computation and communication required for decentralized

algorithms to achieve certain accuracy for the underlying optimization problem.
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large since the transmission power is often proportional to the squared distance. On the other hand,

decentralized networks enable short-distance communication between the nodes, when a geometric

nearest-neighbor graph is deployed.2 As a consequence, decentralized optimization methods are appli-

cable and more efficient in scenarios where the power budget at each node is limited [32].

Motivated these facts, we study decentralized optimization throughout the thesis.

1.3 Decentralized gradient descent and its stochastic variants

In this section, we present and discuss the construction, intuition, and performance of decentralized gradient

descent (DGD) and its stochastic variant (DSGD) [19, 21, 33, 34]. It is worth noting that they are the very

first decentralized optimization methods and are the prototype of many sophisticated approaches in the field.

1.3.1 The basic average consensus algorithm

At each node i, given the current estimate xi
t of the solution at iteration t, related decentralized first-order

optimization algorithms typically involve the following steps:

1. compute local (stochastic) gradients of the local function fi;

2. fuse information with the available neighbors;

3. update the local estimate xi
t+1 according to a specific optimization protocol.

Recall that each node in the network only communicates with its neighbors and only has partial knowledge of

the global objective, see Fig. 1.1. Due to this limitation, an information propagation mechanism is required

that disseminates local information over the entire network. Decentralized optimization thus has two key

components: (i) agreement or consensus – all nodes must agree on the same state; and, (ii) optimality – the

agreement should be on a stationary point of the global objective F . Average-consensus algorithms [35] are

information fusion protocols that enable each node to appropriately combine the vectors received from its

neighbors and to agree on the average of the initial states of the nodes. They thus naturally serve as basic

building blocks in decentralized optimization, added to which are local gradient corrections that steer the

agreement to a global stationary point.

To describe average-consensus, we first associate the communication graph with a primitive and doubly-

stochastic weighted adjacency matrix W = {wir} ∈ Rn×n, such that wir ̸= 0 if and only if node r sends

information to node i in the graph. Clearly, we have W1n = 1n and W⊤1n = 1n, where 1n ∈ Rn is the
2In geometric graphs, two nodes are connected if and only if they are in physical vicinity.
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column vector of n ones. There are various ways of constructing such weights in a decentralized manner.

Popular choices include the Laplacian and Metropolis weights; see, e.g., [27] for details. The basic average-

consensus algorithm [35] is given as follows. For all t ≥ 0, each node i starts with some vector xi
0 ∈ Rp and

updates its state according to

xi
t+1 =

n∑
r=1

wirxr
t .

This update can be written in a vector form as

xt+1 = (W ⊗ Ip)xt, (1.4)

where xt = [x1
t

⊤
, · · · , xn

t
⊤]⊤ ∈ Rnp and ⊗ denotes the Kronecker product. Since W is primitive and

doubly-stochastic, from the Perron-Frobenius theorem [36], we have

lim
t→∞

Wt = 1
n

1n1⊤
n

and therefore the states in average consensus follow

lim
t→∞

xt = lim
t→∞

(W ⊗ Ip)tx0 = 1n ⊗ x0

where

x0 := (1⊤
n ⊗ Ip)x0

n
.

In other words, the average consensus protocol in (1.4) enables agreement among the nodes on the average x0

of the initial states. It can be further shown that (1.4) converges at a linear rate of λk [36], where λ ∈ [0, 1)

is the second largest singular value of W.

1.3.2 Construction of DSGD and its basic intuitions

With the agreement protocol (1.4) in place, we now introduce the well-known decentralized gradient descent

(DGD) built on top of it and provide basic intuitions. The update rule of DGD [21, 33, 37] is described as

follows. Each node i starts with an arbitrary xi
0 ∈ Rp and updates, for all t ≥ 0, according to

xi
t+1 =

n∑
r=i

wirxr
t − αt∇fi

(
xi

t

)
, (1.5)

where αt is the step-size. Indeed, DGD adds local gradient corrections to average-consensus (1.4). In order

to understand the iterations of DGD, we write them in a vector form. Let xt and ∇f(xt) collect all local

states and gradients, respectively, i.e., xt := [x1
t

⊤
, · · · , xn

t
⊤]⊤ and ∇f(xt) := [∇f1(x1

t )⊤
, · · · , ∇fn(xn

t )⊤]⊤,

both in Rnp. Then the update of DGD can be compactly written as

xt+1 = (W ⊗ Ip)xt − αt∇f(xt). (1.6)
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We further define the average xt := 1
n (1⊤

n ⊗Ip)xt of the local states at time t and multiply both sides of (1.6)

by 1
n (1⊤

n ⊗ Ip) to obtain:

xt+1 = xt − αt
(1⊤

n ⊗ Ip)∇f (xt)
n

. (1.7)

Based on (1.6) and (1.7), it can be observed that the consensus matrix W makes the states {xi
t}n

i=1 at the

nodes approach their average xt, while the average gradient 1
n (1⊤

n ⊗Ip)∇f (xt) steers xt towards a stationary

point of F . The overall DGD protocol thus ensures agreement and optimality simultaneously, the two key

components of decentralized optimization as we described before.

For large-scale machine learning and signal processing problems, DSGD, a stochastic variant of DGD, is

often used in practice [19, 37–39]. The basic update of DSGD is described as follows. Let xi
t ∈ Rp denote

the state at node i and iteration t. For all t ≥ 0, DSGD performs

xi
t+1 =

n∑
r=1

wirxr
t − αtgi

t, (1.8)

where gi
t ∈ Rp is a stochastic gradient such that E[gi

t|xi
t] = ∇fi(xi

t). DSGD is popular for several inference

and learning tasks due to its simplicity of implementation and speedup in comparison to centralized SGD

algorithms [2]. DSGD and its variants have been extensively studied for different computation and communi-

cation requirements, e.g., momentum [40], directed graphs [41], escaping saddle-points [42,43], zeroth-order

schemes [44], swarming-based implementations [45], and constrained problems [46].

1.3.3 Challenges with DSGD

When each fi is non-convex, the performance of DSGD however suffers from two major challenges:

• the non-degenerate variance of the stochastic gradients at each node;

• the heterogeneity among the local functions/data across the nodes.

To elaborate these issues, we recap the convergence results of DSGD (1.8) when each local function fi

is smooth and non-convex. Let us assume the bounded variance of each local stochastic gradient gi
t, the

bounded heterogeneity between the local and the global gradient [2], i.e., for some ν > 0 and ζ > 0,

sup
i,t

E
[∥∥gi

t − ∇fi(xi
t)
∥∥2
]

≤ ν2 and sup
x∈Rp

1
n

n∑
i=1

∥∇fi(x) − ∇F (x)∥2 ≤ ζ2,

and the L-smoothness of each fi. Then it is shown in [2] that, DSGD achieves an ϵ-accurate stationary point

x∗ of the global function F such that E[∥∇F (x∗)∥] ≤ ϵ in

O

(
Lν2

nϵ4 + nL2ν2

(1 − λ)ϵ2 + nL2ζ2

(1 − λ)2ϵ2

)
(1.9)
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iterations, where λ ∈ [0, 1) is the second largest singular value of the network weight matrix W. The

complexity bound of DSGD in (1.9) is the summation of three terms: the first term matches the iteration

complexity of the centralized SGD with minibatch size n [47]; the second term reveals how the decentral-

ized network topology affects the run time of DSGD; and the last term reveals the adversarial impact of

heterogeneous data on DSGD. Clearly, there are two major issues with the convergence properties of DSGD:

• The bounded heterogeneity assumption on the local and global gradients [2,41,43] or the coercivity of

each local function [42] is essential for establishing the convergence of DSGD. In fact, a counterexample

has been shown in [15] that DSGD diverges for any constant step-size when these types of assumptions

are violated. Furthermore, the theoretical and practical performance of DSGD degrades significantly

when the local and the global gradients are substantially different, i.e., when the data distributions

across the nodes are largely heterogeneous [3, 4, 20].

• Due to the non-degenerate stochastic gradient variance, the gradient complexity of DSGD does not

match the centralized lower bounds for several fundamental classes of stochastic and finite-sum non-

convex optimization problems [48–50].

This thesis designs and analyzes new decentralized optimization algorithms that improve the complexity

bounds and practical performance of DSGD by tackling the above issues. In particular, we address the first

issue by the gradient tracking technique, e.g., [51–56], described in the next section, and the second issue

with the help of variance reduction schemes, e.g., [48–50,57–64].

1.4 The gradient tracking technique

The gradient tracking technique was proposed to address the impact of heterogeneous data across the nodes

in the convergence of decentralized optimization methods [51–56,65] and is a key ingredient of the algorithms

proposed in this thesis. To present the intuition behind the gradient tracking technique, we first recall the

iterations of the (non-stochastic) Decentralized Gradient Descent (DGD) with a constant step-size in (1.5).

Let us first assume, for the sake of argument, that all nodes agree on a stationary point x∗ of the global

function F at some iteration t, i.e., xi
t = x∗, ∀i. Then at the next iteration t + 1, we have

xi
t+1 =

n∑
r=1

wirx∗ − α∇fi(x∗) = x∗ − α∇fi(x∗) ̸= x∗, (1.10)

where the equality uses the fact that W = {wir} is doubly-stochastic and the last equality holds because

fi ̸= F in general. In other words, x∗ is not necessarily a fixed point of the DGD algorithm. Of course,

replacing the local gradient ∇fi

(
xi

t

)
in the DGD algorithm with the gradient ∇F

(
xi

t

)
of the global function
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overcomes this issue but the global gradient is not available at any node due to the decentralized topology.

The natural yet innovative idea of gradient tracking is to design a local iterative gradient tracker yi
t that

asymptotically approaches the global gradient ∇F
(
xi

t

)
as xi

t approaches x∗ [52–56, 65]. Gradient tracking

is implemented with the help of dynamic average consensus (DAC) [51], briefly described next.

In contrast to classical average-consensus [35] that converges to the average of fixed initial states, DAC [51]

tracks the average of time-varying signals. Formally, each node i measures a time-varying signal si
t and the

goal of all nodes is to collaboratively track the average st := 1
n

∑n
i=1 si

t of these signals. For all t ≥ 0, the

DAC protocol is given as follows. Each node i iteratively updates its estimate yi
t of st as

yi
t+1 =

n∑
r=1

wiryr
t + si

t+1 − si
t, (1.11)

where yi
0 = si

0 for all i. It is shown in [51] that if limt→∞
∥∥si

t+1 − si
t

∥∥ = 0, then we have that

lim
t→∞

∥∥yi
t − st

∥∥ = 0.

Clearly, in the aforementioned design of gradient tracking, the time-varying signal that we intend to track is

the average of the local gradients 1
n

∑n
i=1 ∇fi

(
xi

t

)
. We thus combine DGD (1.5) and DAC (1.11) to obtain

GT-DGD (DGD with Gradient Tracking) [52, 54–56,65], as follows:

xi
t+1 =

n∑
r=1

wirxr
t − α · yi

t, (1.12a)

yi
t+1 =

n∑
r=1

wiryr
t + ∇fi

(
xi

t+1
)

− ∇fi

(
xi

t

)
, (1.12b)

where yi
0 = ∇fi

(
xi

0
)

for all i. Intuitively, as xi
t → xt and yi

t → 1
n

∑n
i=1 ∇fi

(
xi

t

)
→ ∇F

(
xt

)
, (1.12a) thus

asymptotically becomes the centralized batch gradient descent. GT-DGD consistently outperforms DGD

in heterogeneous data settings [14]. Although GT-DGD has been widely researched under convexity, see,

e.g., [36, 52–54, 66, 67], its performance for the stochastic non-convex settings remains unclear. We address

this gap in Chapter 4. It is worth noting that all the algorithms proposed in this thesis use the gradient

tracking technique, in order to address the issue of heterogeneous local cost functions.

1.5 A brief literature review

Decentralized optimization, also known as distributed optimization over graphs, starts with several well-

known papers on decentralized gradient descent (DGD) [21,33,34,37,38], where the focus was primarily on

signal processing and control problems defined in sensor and robotic networks. Since then many decentralized

methods with more sophisticated algorithmic structures have been proposed to improve the performance of

DGD from various computation and communication aspects. Decentralized first-order gradient methods that
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improve the performance of DGD include, e.g., EXTRA [68], Exact Diffusion/NIDS [3, 20, 69], DLM [70],

and methods based on gradient tracking [4,54–56,65,67,71,72]; see also primal-dual frameworks [66,73–75]

that unify the aforementioned methods under certain conditions. Dual gradient methods can be found in [71,

76, 77]. Decentralized second-order algorithms that leverage curvature information of the cost functions to

accelerate the convergence can be found in [78–82]. Alternating direction method of multipliers (ADMM) and

its variants have also been used in decentralized optimization [83–89]. References [90–97] design algorithms

that adapt to communication and computation imperfection and trade-offs, e.g., time-varying and random

graphs, asynchronous execution, and quantization. In the context of decentralized non-convex optimization,

there have been results beyond finding first-order stationary points. For instance, [98] develops decentralized

annealing methods for finding a global minima in certain regularized non-convex problems. References [42,

43, 99, 100] establish convergence of related algorithms to second-order stationary points. The work [101]

studies a family of non-convex non-smooth problems with the help of the generalized gradient.

The last decade has witnessed a vastly growing literature in the area of decentralized stochastic, convex,

and non-convex optimization problems; we invite the readers to, e.g., survey articles [14, 15, 27, 31, 102] and

the references therein, in addition to the work discussed above. Despite this fact, it appears that the field still

lacks a sound theory and understanding on how to achieve optimal gradient and communication complexities

for decentralized non-convex optimization under various stochastic settings. This thesis addresses this gap.

1.6 Contributions

The overarching theme of this thesis is to provide optimal gradient and communication complexity results

for finding first-order stationary points in several fundamental classes of decentralized stochastic non-convex

problems. In particular, we find various regimes of practical significance where the gradient complexity of

the proposed decentralized algorithms matches the centralized lower bound for the corresponding problem

classes. While retaining the optimal gradient complexities, we also achieve optimal communication com-

plexities by means of the mini-batch technique and multi-round accelerated consensus algorithms. In the

following, we describe the contribution of each chapter in this thesis.

1.6.1 Smooth strongly-convex finite-sum problems (Chapter 2)

In this chapter, we describe a novel algorithmic framework to construct decentralized stochastic variance-

reduced methods. The proposed framework, which we call GT-VR, is stochastic and decentralized, and thus is

particularly suitable for problems where large-scale, potentially private data, cannot be collected or processed

at a centralized server. The GT-VR framework leads to a family of algorithms with two key ingredients: (i)
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local variance reduction, that enables estimation of the local exact gradients from randomly drawn samples of

local data with reduced variance; and, (ii) global gradient tracking, which fuses the local gradient information

across the nodes to track the global gradient. Naturally, the integration of different variance reduction and

gradient tracking techniques leads to different algorithms of interest with valuable practical trade-offs and

design considerations. For instance, Chapter 2, 3, 5, and 6 respectively apply this framework to different

classes of optimization problems of interest.

In the context of smooth strongly convex functions, we focus on two instantiations of the GT-VR frame-

work, namely GT-SAGA and GT-SVRG, that exhibit a compromise between space and time. We show that

both GT-SAGA and GT-SVRG achieve linear convergence to the optimal solution for smooth and strongly

convex problems and further describe the regimes in which they achieve non-asymptotic, network topology-

independent linear rates that are faster with respect to the existing decentralized first-order schemes. More-

over, we show that both algorithms achieve a linear speedup in such regimes, in that, the total number of

gradient computations required at each node is reduced by a factor of 1/n, where n is the number of nodes,

compared to their centralized counterparts that process all data at a single node.

1.6.2 Smooth non-convex finite-sum problems (Chapter 3)

In this chapter, we consider decentralized minimization of N := nm smooth non-convex cost functions

equally divided over a network of n nodes, where each node possesses a local batch of m cost functions, i.e.,

data samples. In this context, we propose two decentralized stochastic variance-reduced gradient methods,

under the GT-VR framework described in Section 1.6.1, that achieve provably fast and robust convergence.

1.6.2.1 Stochastic recursive variance reduction

We propose GT-SARAH that employs a SARAH-type variance reduction technique and gradient tracking (GT) to

address the stochastic and decentralized nature of the problem. We show that GT-SARAH, with appropriate

algorithmic parameters, finds an ϵ-stationary point with O
(

max
{

N
1/2, n(1 − λ)−2, n

2/3m
1/3(1 − λ)−1}Lϵ−2)

gradient complexity, where (1 − λ) ∈ (0, 1] is the spectral gap of the network weight matrix and L is the

smoothness parameter of the cost functions. This gradient complexity outperforms that of the existing

decentralized stochastic gradient methods. In particular, in a big-data regime such that n = O(N 1/2(1 − λ)3),

this gradient complexity furthers reduces to O(N 1/2Lϵ−2), independent of the network topology, and matches

that of the centralized optimal variance-reduced methods. Moreover, in this regime GT-SARAH achieves a

non-asymptotic linear speedup, in that, the total number of gradient computations at each node is reduced

by a factor of 1/n compared to the centralized optimal algorithms that perform all gradient computations
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at a single node. To the best of our knowledge, GT-SARAH is the first algorithm that achieves this property.

In addition, we show that appropriate choices of local minibatch size balance the trade-offs between the

gradient and communication complexity of GT-SARAH. Over infinite time horizon, we establish that all nodes

in GT-SARAH asymptotically achieve consensus and converge to a first-order stationary point in the almost

sure and mean-squared sense.

1.6.2.2 Stochastic incremental variance reduction

We analyze the performance of the GT-SAGA algorithm proposed in Chapter 2 in the non-convex settings. For

general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA

to a first-order stationary point of the global cost function, and further describe regimes of practical signifi-

cance where it outperforms the existing approaches and achieves a network topology-independent iteration

complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that

GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical

interest where the performance is network topology-independent and improves upon the existing methods.

1.6.3 Smooth non-convex online stochastic problems (Chapter 4)

In this chapter, we study decentralized non-convex optimization, where each node accesses its local function

by means of an online stochastic first-order oracle. Integrating the gradient tracking technique in decen-

tralized stochastic gradient descent, we show that the resulting algorithm, GT-DSGD, enjoys certain desirable

characteristics towards minimizing a sum of smooth non-convex costs. In particular, for general smooth

non-convex functions, we establish non-asymptotic characterizations of GT-DSGD and derive the conditions

under which it achieves network topology-independent performances that match the centralized minibatch

SGD. In contrast, the existing results suggest that GT-DSGD is always network topology-dependent and is

therefore strictly worse than the centralized minibatch SGD. When the global function additionally satisfies

the Polyak-Lojasiewics (PL) condition, we establish the linear rate of GT-DSGD up to a steady-state error

with appropriate constant step-sizes. Moreover, under stochastic approximation step-sizes, we establish, for

the first time, the optimal global sublinear convergence rate on almost every sample path, in addition to the

asymptotically optimal sublinear rate in expectation. Since strongly convex functions are a special case of

the functions satisfying the PL condition, our results are not only immediately applicable but also improve

the currently known best convergence rates and their dependence on problem parameters.
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1.6.4 Non-convex online stochastic problems with mean-squared smoothness

(Chapter 5)

In this chapter, we study decentralized non-convex optimization, where each node accesses its local function

by means of an online stochastic first-order oracle that satisfies a mean-squared smoothness property. In

this context, we propose, under the GT-VR framework described in Section 1.6.1, a novel single-loop decen-

tralized hybrid variance-reduced stochastic gradient method, called GT-HSGD, that outperforms the existing

approaches in terms of both the gradient complexity and practical implementation. GT-HSGD implements

specialized local hybrid stochastic gradient estimators that are fused over the network to track the global

gradient. Remarkably, GT-HSGD achieves a network topology-independent oracle complexity of O(n−1ϵ−3)

when the required error tolerance ϵ is small enough, leading to a linear speedup with respect to the centralized

optimal approaches for this problem class that operate on a single node.

1.6.5 Non-convex non-smooth composite problems (Chapter 6)

In this chapter, we focus on decentralized non-convex composite problems over networked nodes, where the

network cost is the average of local smooth non-convex risks plus an extended valued, convex, possibly non-

differentiable regularizer. To the best of our knowledge, the existing decentralized stochastic optimization

literature lacks non-asymptotic gradient and communication complexity results for this composite prob-

lem formulation. In this chapter, we address this gap by introducing a unified framework, called ProxGT,

that is built upon local stochastic gradient estimators and a global gradient tracking technique. We con-

struct several different instantiations of this framework by choosing appropriate local estimators for the

corresponding problem classes. In particular, we develop ProxGT-SA and ProxGT-SR-O for the expected

risk, and ProxGT-SR-E for the empirical risk. Remarkably, we show that each algorithm achieves a net-

work topology-independent optimal gradient complexity with an optimal communication complexity for the

corresponding problem class.

1.7 Practical concerns and future directions

The major scope of this thesis is to achieve optimal gradient and communication complexities for decentral-

ized optimization in several classical and fundamental classes of stochastic non-convex problems. With the

help of these complexity results, we provide a theoretical justification to the fact that decentralized methods

can outperform the corresponding centralized ones for various machine learning and signal processing tasks.

In the following, we discuss some limitations of the convergence theory developed in this thesis from the

view of practical applications and implementations.
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• Deep learning models. The complexity theory developed in this thesis heavily relies on the Lips-

chitz smoothness assumption [6] made for the local cost functions that encode the underlying model

structure and local data, while we allow the existence of extended-valued non-smooth convex regular-

ization such as ℓ1-norm and/or general closed convex constraints. This smoothness assumption holds,

e.g., for the family of non-convex generalized linear models with convex regularizers [13]. However, for

complex nonlinear problems such as large-scale natural language processing and image classification

tasks, deep neural networks like LSTM [103], ResNets [104], and Transformers [105] are often deployed

in practice. These deep learning models typically use highly convoluted layers with the non-smooth ac-

tivation functions and therefore their associated cost functions do not satisfy the Lipschitz smoothness

assumption in general. Despite this fact, recent studies have shown empirical success of decentralized

methods in training state-of-the-art deep learning models [2,28,29]. Therefore, it may be beneficial and

interesting to establish convergence theory of decentralized optimization methods for deep models by

looking into their specific structures, where classical optimization theory may not apply directly [106].

• Model generalization. Throughout this thesis, we treat the problem of training machine learning

models from pure optimization perspectives, i.e., we establish gradient and communication complexi-

ties to find ϵ-accurate stationary points [7] of the global cost function. That is to say, we primarily use

the gradient norm as the convergence metric. On the other hand, test accuracy (generalization capa-

bility) is typically used to evaluate the quality of a machine learning model in practice and hence may

be a more informative metric [13]. As a future direction, it is interesting to establish statistical gener-

alization bounds [13] and perform large-scale experiments for decentralized optimization methods and

further examine whether the intuitions developed in this thesis, such as network topology-independent

performance, hold true in the sense of model generalization and test accuracy.

• Communication imperfections. In the proposed decentralized stochastic optimization algorithms

and their companion complexity theory, we do not take communication imperfection into account, such

as asynchronous execution of the nodes [107], stragglers [108], time-varying and random topolgies [91,

109], channel noise [110], model and gradient compression techniques [111], quantization [21], and

package losses [112]. However, in modern-day applications like training large models on heterogeneous

mobile devices and the Internet of Things (IoT), handling the aforementioned issues is essential from a

practical implementation standard point, since they significantly affect the run time of the underlying

optimization methods and the quality of the resulting solution. It is hence advantageous to adapt the

algorithms and convergence results established in this thesis to these more practical settings.



Chapter 2

Decentralized Smooth Strongly-Convex

Finite-Sum Optimization

This chapter describes a novel algorithmic framework, GT-VR, for decentralized smooth stochastic problems.

Specifically, GT-VR subsumes a family of efficient algorithms with two major components: (i) variance re-

duction, which produces variance-reduced local exact gradient estimates from random samples of local data;

and, (ii) gradient tracking, which fuses local gradient information across the nodes. It is clear that using

different variance reduction and gradient tracking techniques in GT-VR leads to different constructions of

decentralized optimization methods with valuable trade-offs of practical interest.

In this chapter, we demonstrate the performance of the GT-VR framework by focusing on its two instan-

tiations, which we call GT-SAGA and GT-SVRG, for smooth and strongly-convex problems.1 It is shown that

both GT-SAGA and GT-SVRG achieve accelerated linear convergence to the optimal solution for this problem

class. We further identify the regimes where they achieve non-asymptotic, network topology-independent

linear rates that are faster with respect to the existing decentralized gradient schemes. Moreover, we show

that both algorithms achieve a linear speedup in such regimes, in that, the total number of gradient com-

putations required at each node is reduced by a factor of 1/n, where n is the number of nodes, compared to

the centralized SAGA and SVRG algorithms that process all data at a single node. Extensive simulations

are presented to illustrate the performance of the proposed algorithms.
1In the later chapters, we will discuss other instantiations of GT-VR tailored for various non-convex problems.

16
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2.1 Introduction

In this chapter, we consider decentralized finite-sum minimization problems that take the following form:

min
x∈Rp

F (x) := 1
n

n∑
i=1

fi(x), fi(x) := 1
mi

mi∑
j=1

fi,j(x), (2.1)

where each cost function fi : Rp → R is private to a node i, in a network of n nodes, and is further subdivided

into an average of mi component functions {fi,j}mi
j=1. This formulation has found tremendous interest over

the past decade and has been studied extensively by the signal processing, control, and machine learning

communities [2, 33,34]. When the dataset is large-scale and further contains private information, it is often

not feasible to communicate and process the entire dataset at a central location. Decentralized stochastic

gradient methods thus are preferable as they not only benefit from local (short-range) communication but

also exhibit low computation complexity by sampling and processing small subsets of data at each node i,

instead of the entire local batch of mi functions.

Decentralized stochastic gradient descent (DSGD) was introduced in [19,21,39], which combines network

fusion with local stochastic gradients and has been popular in various decentralized learning tasks. However,

the performance of DSGD is mainly adversely impacted by two components: (i) the variance of the local

stochastic gradients at each node; and, (ii) the dissimilarity between the datasets and local functions across

the nodes. In this chapter, we propose a novel algorithmic framework, namely GT-VR, that systematically

addresses both of these aspects of DSGD by building an estimate of the global descend direction −∇F

locally at each node based on local stochastic gradients. In particular, the GT-VR framework leads to a

family of algorithms with two key ingredients: (i) local variance reduction, that estimates the local batch

gradients
∑

j ∇fi,j from arbitrarily drawn samples of local data; and, (ii) global gradient tracking, which

uses the aforementioned local batch gradient estimates and fuses them across the nodes to track the global

batch gradient
∑

i ∇fi. Naturally, existing methods for variance reduction, such as SAG [113], SAGA [57],

SVRG [61], SARAH [58], and for gradient tracking, such as dynamic average consensus [51, 54–56] and

dynamic average diffusion [114], are all valid choices for the two components in GT-VR and lead to various

design choices and practical trade-offs.

In this chapter, we focus on smooth and strongly convex problems, where simple schemes, such as

SAGA and SVRG, are shown to obtain linear convergence and strong performance. These two methods are

extensively studied in the centralized settings and exhibit a compromise between space and time. Specif-

ically, SAGA in practice demonstrates faster convergence compared with SVRG [31, 57], however at the

expense of additional storage requirements. Consequently, we consider the following two instantiations of

the GT-VR framework: (i) GT-SAGA, which is an incremental gradient method that requires O(pmi) storage
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cost at each node i; and, (ii) GT-SVRG, which is a hybrid gradient method that does not require additional

storage but computes local batch gradients periodically, which leads to stringent requirements on network

synchronization and may add latency to the overall implementation.

2.1.1 Related work

Significant progress has been made recently towards decentralized first-order gradient methods. Examples

include EXTRA [68], Exact-Diffusion [115], methods based on gradient-tracking [52–56,65] and primal-dual

methods [70, 73]; these full gradient methods, based on certain bias-correction principles, achieve linear

convergence to the optimal solution for smooth and strongly convex problems and improve upon the well-

known DGD [33], where a constant step-size leads to linear but inexact convergence. Several stochastic

variants of EXTRA, Exact-Diffusion, and gradient tracking methods have been recently studied in [2–4, 4,

20,43,67,116]; these methods, due to the non-diminishing variance of the local stochastic gradients, converge

sub-linearly to the optimal solution with decaying step-sizes and outperform their deterministic counterparts

when local data batches are large and low-precision solutions suffice [31]. Exact linear convergence to the

optimal solution has been obtained with the help of variance reduction where existing decentralized stochastic

methods include [22,23,117–120]. The proposed GT-VR framework leads to accelerated convergence over the

related stochastic methods; a detailed comparison will be conducted with the help of numerical simulations.

2.1.2 Main contributions

We enlist the main contributions of this chapter as follows:

• We describe GT-VR, a novel algorithmic framework to minimize a finite sum of functions over a decen-

tralized network of nodes.

• Focusing on two particular instantiations of GT-VR, GT-SAGA and GT-SVRG, we show how different

combinations of variance reduction and gradient tracking potentially lead to valuable practical consid-

erations in terms of storage, computation, and communication tradeoffs.

• We show that both GT-SAGA and GT-SVRG achieve accelerated linear convergence to the optimal solution

for smooth and strongly convex problems.

• We characterize the regimes in which GT-SAGA and GT-SVRG achieve non-asymptotic, network-independent

convergence rates and exhibit a linear speedup, in that, the total number of gradient computations at

each node is reduced by a factor of 1/n compared to their centralized counterparts that process all

data at a single node.
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To the best of our knowledge, GT-SAGA and GT-SVRG are the first decentralized stochastic methods that

show provable network-independent linear convergence and linear speedup without requiring the expensive

computation of dual gradients or proximal mappings of the cost functions.

The rest of this chapter is structured as follows. Section 2.2 develops the class of decentralized stochastic

variance-reduced algorithms proposed in this chapter while Section 2.3 presents the main convergence results

and a detailed comparison with the state-of-the-art. Section 2.4 provides extensive numerical simulations

to illustrate the convergence behavior of the proposed methods. Section 2.5 presents a unified approach to

cast and analyze the proposed algorithms, where Sections 2.5.3 and 2.5.4 contain the convergence analysis

for GT-SAGA and GT-SVRG, respectively. Section 2.6 concludes this chapter.

We use lowercase bold letters to denote vectors and ∥ · ∥ to denote the Euclidean norm of a vector.

The matrix Id is the d × d identity, and 1d (resp. 0d) is the d-dimensional column vector of all ones (resp.

zeros). For two matrices X, Y ∈ Rd×d, X ⊗ Y denotes their Kronecker product. The spectral radius of a

matrix X is denoted by ρ(X), while its spectral norm is denoted by |||X |||. The weighted infinity norm

of y = [y1, · · · , yd]⊤ given a positive weight vector x = [x1, · · · , xd]⊤ is defined as ∥y∥x
∞ = maxi |yi|/xi and

||| · |||x∞ is the matrix norm induced by ∥ · ∥x
∞.

2.2 Development of the GT-VR framework

In this section, we systematically build the proposed GT-VR framework and describe its two instantiations,

GT-SAGA and GT-SVRG. To this aim, we consider DSGD [19, 21, 39], a well-know decentralized version of

stochastic gradient descent, and its convergence guarantee for smooth and strongly convex problems as

follows. Let x∗ denote the unique minimizer of Problem (2.1) and xk
i ∈ Rp denote the estimate of x∗ at

node i and iteration k of DSGD. The update of DSGD is given by

xk+1
i =

n∑
r=1

wirxk
r − α · ∇fi,sk

i
(xk

i ), k ≥ 0, (2.2)

where the matrix W = {wir} ∈ Rn×n collects the weights that each node assigns to its neighbors and the

index sk
i is chosen uniformly at random from the set {1, . . . , mi} at each iteration k. Assuming bounded

variance of ∇fi,sk
i
(xk

i ), i.e., E[∥∇fi,sk
i
(xk

i ) − ∇fi(xk
i )∥2 | xk

i ] ≤ ν2, ∀i, k, and cost functions to be smooth

and strongly convex, it can be shown that with an appropriate constant step-size α the mean-squared

error E[∥xk
i − x∗∥2], at each node i, decays linearly up to a steady state error such that [20]

lim sup
k→∞

1
n

n∑
i=1

E
[∥∥xk

i − x∗∥∥2
]

= O
(

αν2

nµ
+ α2Q2ν2

1 − λ
+ α2Q2ζ2

(1 − λ)2

)
, (2.3)

where ζ2 := 1
n

∑n
i=1 ∥∇fi (x∗)∥2

2, (1 − λ) is the spectral gap of the network weight matrix W, and Q is the

condition number of F . This steady-state error, due to the presence of ν2 and ζ2, can be eliminated with
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the help of decaying step-size αk = O(1/k); however, the convergence rate becomes sub-linear O(1/k) [116].

In other words, there is an inherent rate/accuracy trade-off in the performance of DSGD. The proposed

GT-VR framework, built on global gradient tracking and local variance reduction, completely removes the

steady-state error of DSGD and achieves fast convergence with a constant step-size to the exact solution.

The proposed GT-VR framework combines two well-known techniques from recent centralized and decen-

tralized optimization literature to systematically eliminate the steady-state error of DSGD and as a conse-

quence recovers linear convergence to the exact solution. The framework has two key ingredients:

(i) Local Variance Reduction: GT-VR removes the performance limitation due to the variance ν2 of the

stochastic gradients by asymptotically estimating the local batch gradient ∇fi, at each node i, based on

randomly drawn samples from the local data. Many variance reduction schemes, e.g., [57, 58, 61, 113], are

applicable here and a suitable one can be chosen based on the underlying problem specifications.

(ii) Global Gradient Tracking: The other error source ζ2 is due to the fact that ∇fi(x∗) ̸= 0p, ∀i, in

general, because of the difference between the local and global cost functions. This issue is addressed with

the help of gradient tracking techniques [51, 54–56] that properly fuse the local batch gradient estimates

(obtained from the local variance reduction procedures described above) to track the global batch gradient.

Our focus in this chapter is on smooth and strongly convex problems for which the variance reduction

methods SAGA [57] and SVRG, in centralized settings, are shown to achieve strong practical performance and

theoretical guarantees. These two methods contrast each other, in that, they can be viewed as a compromise

between space and time [57], where SAGA requires additional storage but, in practice, demonstrates faster

convergence as compared to SVRG, where additional storage is not required. Additionally, the two methods

are build upon different variance-reduction principles, i.e., SAGA is a randomized incremental gradient

method, whereas SVRG is a hybrid gradient method that evaluates batch gradients periodically in addition

to stochastic gradient computations at each iteration, as will be detailed further. We thus explicitly focus

on these two methods in this chapter, formally described next.

2.2.1 The GT-SAGA algorithm

Algorithm 1 formally describes the SAGA-based implementation of GT-VR. To implement the gradient esti-

mator, each node i maintains a table of component gradients {∇fi,j(zk
i,j)}mi

j=1, where zk
i,j is the most recent

iterate at which the component gradient ∇fi,j was evaluated up to iteration k. At each iteration k, each

node i samples an index sk
i uniformly at random from the local indices {1, · · · , mi} and computes its local
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Algorithm 1 GT-SAGA at each node i

Require: x0
i ; z1

i,j = x0
i , ∀j ∈ {1, · · · , mi}; α; {wir}n

r=1; y0
i = g0

i = ∇fi(x0
i ).

1: for k = 0, 1, 2, · · · do
2: Update the local estimate of the solution:

xk+1
i =

n∑
r=1

wirxk
r − αyk

i ;

3: Select sk+1
i uniformly at random from {1, · · · , mi};

4: Update the local gradient estimator:

gk+1
i = ∇fi,sk+1

i

(
xk+1

i

)
− ∇fi,sk+1

i

(
zk+1

i,sk+1
i

)
+ 1

mi

mi∑
j=1

∇fi,j

(
zk+1

i,j

)
;

5: If j = sk+1
i , then zk+2

i,j = xk+1
i,j ; else zk+2

i,j = zk+1
i,j .

6: Update the local gradient tracker:

yk+1
i =

n∑
r=1

wiryk
r + gk+1

i − gk
i ;

7: end for

gradient estimator as

gk
i = ∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
zk

i,sk
i

)
+ 1

mi

mi∑
j=1

∇fi,j

(
zk

i,j

)
.

After gk
i is computed, the sk

i -th element in the gradient table is replaced by ∇fi,sk
i
(xk

i ), while other entries

remain unchanged. The local estimators gk
i ’s are then fused over the network to compute yk

i , which tracks the

global batch gradient ∇F at each node i, and is used as the descent direction to update the local estimate xk
i

of the optimal solution. Clearly, each local estimator gk
i approximates the local batch gradient ∇fi in an

incremental manner via the average of the past component gradients in the table. This implementation

procedure results in a storage cost of O(pmi) at each node i, which can be reduced to O(mi) for certain

structured problems [57,113].

2.2.2 The GT-SVRG algorithm

Algorithm 2 formally describes the SVRG-based implementation of GT-VR. In contrast to GT-SAGA that

incrementally approximates the local batch gradients via past component gradients, GT-SVRG achieves vari-

ance reduction by evaluating the local batch gradients ∇fi’s periodically. GT-SVRG may be interpreted as

a “double loop" method, where each node i, at every outer loop update {xtT
i }t≥0, calculates a local full

gradient ∇fi(xtT
i ) that is retained in the subsequent inner loop iterations to update the local gradient
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Algorithm 2 GT-SVRG at each node i

Require: x0
i ; τ 0

i = x0
i ; α; {wir}n

r=1; T ; y0
i = v0

i = ∇fi(x0
i ).

1: for k = 0, 1, 2, · · · do
2: Update the local estimate of the solution:

xk+1
i =

n∑
r=1

wirxk
r − αyk

i ;

3: Select sk+1
i uniformly at random from {1, · · · , mi};

4: If mod(k + 1, T ) = 0, then τ k+1
i = xk+1

i , else τ k+1
i = τ k

i ;
5: Update the local stochastic gradient estimator:

vk+1
i = ∇fi,sk+1

i

(
xk+1

i

)
− ∇fi,sk+1

i

(
τ k+1

i

)
+ ∇fi

(
τ k+1

i

)
;

6: Update the local gradient tracker:

yk+1
i =

n∑
r=1

wiryk
r + vk+1

i − vk
i ;

7: end for

estimator vk
i , i.e., for k ∈ [tT, (t + 1)T − 1],

vk
i = ∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
xtT

i

)
+ ∇fi

(
xtT

i

)
.

Clearly, GT-SVRG eliminates the requirement of storing the most recent component gradients at each node and

thus has a favorable storage cost compared with GT-SAGA. However, this advantage comes at the expense of

evaluating two stochastic gradients ∇fi,sk
i

(
xk

i

)
and ∇fi,sk

i

(
xtT

i

)
at every iteration, in addition to calculating

the local batch gradients ∇fi’s every T iterations. See Remarks 2.3.1 and 2.3.2 for additional discussion.

2.3 Main convergence results

The convergence results for GT-SAGA and GT-SVRG are established under the following assumptions.

Assumption 2.3.1. The global cost function F is µ-strongly convex, i.e., ∀x, y ∈ Rp and for some µ > 0,

we have

F (y) ≥ F (x) +
〈
∇F (x), y − x

〉
+ µ

2 ∥x − y∥2.

We note that under Assumption 1, the global cost function F has a unique minimizer, denoted as x∗.

Assumption 2.3.2. Each local cost function fi,j is L-smooth, i.e., ∀x, y ∈ Rp and for some L > 0, we have

∥∇fi,j(x) − ∇fi,j(y)∥ ≤ L∥x − y∥.
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Clearly, under Assumption 2.3.2, the global cost F is also L-smooth and L ≥ µ. We use Q := L/µ to denote

the condition number of the global cost F .

Assumption 2.3.3. The weight matrix W = {wir} associated with the network G is primitive and doubly

stochastic.

Assumption 2.3.3 is not only restricted to undirected graphs and is further satisfied by the class of strongly-

connected directed graphs that admit doubly stochastic weights. This assumption implies that the second

largest singular value λ of W is less than 1, i.e, λ =
∣∣∣∣∣∣W − 1

n 1n1⊤
n

∣∣∣∣∣∣ < 1 [36]. Note that although we focus

on the basic case of static networks which appear, for instance, in data centers, the convergence analysis

provided here can be possibly extended to the more general case of time-varying dynamic networks following

the methodology in [91].

We denote M := maxi mi and m := mini mi, where mi is the number of local component functions at

node i. The main convergence results of GT-SAGA and GT-SVRG are summarized respectively in the following

theorems.

Theorem 2.3.1 (Mean-square convergence of GT-SAGA). Let Assumptions 2.3.1, 2.3.2, and 2.3.3 hold. If

the step-size α in GT-SAGA is such that

α ≍ min
{

1
µM

,
m(1 − λ)2

MLQ

}
,

then we have: ∀k ≥ 0, ∀i ∈ {1, · · · , n},

E
[∥∥xk

i − x∗∥∥2]
≲

(
1 − min

{
1

M
,

m(1 − λ)2

MQ2

})k

.

GT-SAGA thus achieves an ϵ-optimal solution of x∗ in

O
(

max
{

M,
MQ2

m(1 − λ)2

}
log 1

ϵ

)
component gradient computations (iterations) at each node.

Theorem 2.3.2 (Mean-square convergence of GT-SVRG). Let Assumptions 2.3.1, 2.3.2, and 2.3.3 hold. If

the step-size α and the length T of the inner loop are such that

α ≍ (1 − λ)2

LQ
, T ≍ Q2 log Q

(1 − λ)2 ,

then we have: ∀t ≥ 0, ∀i ∈ {1, · · · , n},

E
[∥∥xtT

i − x∗∥∥2]
≲ 0.7t
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GT-SVRG thus achieves an ϵ-optimal solution of x∗ in

O
((

M + Q2 log Q

(1 − λ2)2

)
log 1

ϵ

)
component gradient computations at each node.

Theorems 2.3.1 and 2.3.2 lead to the following linear convergence rates for GT-SAGA and GT-SVRG on

almost every sample path, following directly from Chebyshev’s inequality and the Borel-Cantelli lemma; see

Lemma 2.5.7 for details.

Corollary 2.3.1 (Almost sure convergence of GT-SAGA). Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. For

the choice of the step-size α in Theorem 2.3.1, we have: ∀i ∈ {1, · · · , n},

P
(

lim
k→∞

γ−k
g

∥∥xk
i − x∗∥∥2 = 0

)
= 1,

where

γg ≍ 1 − min
{

1
M

,
m(1 − λ)2

MQ2

}
.

Corollary 2.3.2 (Almost sure convergence of GT-SVRG). Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. For

the choice of the step-size α and the length T of the inner loop in Theorem 2.3.2, we have: ∀i ∈ {1, · · · , n},

P
(

lim
t→∞

(0.7 + δ)−t
∥∥xtT

i − x∗∥∥2 = 0
)

= 1,

where δ > 0 is an arbitrary small constant.

We discuss some salient features of the proposed algorithms next and compare them with the state-of-

the-art.

Remark 2.3.1 (Big data regime). When each node has a large dataset such that M ≈ m ≫ Q2(1 − λ)−2,

we note that both GT-SAGA and GT-SVRG, achieve an ϵ-optimal solution with a network-independent compo-

nent gradient computation complexity of O(M log 1
ϵ ) at each node; in contrast, centralized SAGA and SVRG,

that process all data on a single node, require O((nM + Q) log 1
ϵ ) ≈ O(nM log 1

ϵ ) component gradient com-

putations [57,61]. GT-SAGA and GT-SVRG therefore achieve a non-asymptotic, linear speedup in this big data

regime, i.e., the number of component gradient computations required per node is reduced by a factor of 1/n

compared with their centralized counterparts2.

Remark 2.3.2 (GT-SAGA versus GT-SVRG). It can be observed from Theorems 2.3.1 and 2.3.2 that when

data samples are unevenly distributed across the nodes, i.e., M
m ≫ 1, GT-SVRG achieves a lower gradient

2We emphasize that linear speedup, although desirable and somewhat plausible, is not necessarily achieved for decentralized
methods in general. In other words, the advantage of parallelizing an algorithm over n nodes may not naturally result into a
performance improvement of n.
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computation complexity than GT-SAGA. However, an uneven data distribution may adversely impact the

practical implementation of GT-SVRG. This is because GT-SVRG requires a highly synchronized communication

network as all nodes need to evaluate their local batch gradients every T iterations and cannot proceed to

the next inner loop until all nodes complete this local computation. As a result, the nodes with smaller

datasets have a relatively long idle time at the end of each inner loop that leads to an increase in overall wall-

clock time. Indeed, the inherent trade-off between GT-SAGA and GT-SVRG is the network synchrony versus the

gradient storage. For structured problems, where the component gradients can be stored efficiently, GT-SAGA

may be preferred due to its flexibility of implementation and less dependence on network synchronization.

Conversely, if the problem of interest is large-scale, i.e., m is very large, and storing all component gradients

is not feasible, GT-SVRG may become a more appropriate choice.

Remark 2.3.3 (Communication complexities). Note that since GT-SAGA incurs O(1) communication

round per node at each iteration, its total communication complexity is the same as its iteration complexity,

i.e., O
(

max
{

M, M
m

Q2

(1−λ)2

}
log 1

ϵ

)
. For GT-SVRG, we note that a total number of O(log 1

ϵ ) outer-loop iterations

are required, where each outer-loop iteration incurs T = O
(

Q2 log Q
(1−λ)2

)
rounds of communication per node,

leading to a total communication complexity of O
(

Q2 log Q
(1−λ)2 log 1

ϵ

)
. Clearly, in a big data regime where each

node has a large dataset, GT-SVRG achieves a lower communication complexity than GT-SAGA.

Remark 2.3.4 (Comparison with Related Work). Existing decentralized variance-reduced (VR) gradi-

ent methods include: DSA [22] that integrates EXTRA [68] with SAGA [57] and was the first decentralized

VR method; DAVRG that combines Exact Diffusion [115] and AVRG [121]; DSBA [117] that uses proximal

mapping [122] to accelerate DSA; Ref. [118] that applies edge-based method [123] to DSA; and ADFS [119]

that is a decentralized version of the accelerated randomized proximal coordinate gradient method [124]

based on the dual of Problem (2.1). Both GT-SAGA and GT-SVRG improve upon the convergence rates in

terms of the joint dependence on Q and m for these methods, especially in the “big data" scenarios where m

is very large, with the exception of DSBA and ADFS. We note that DSBA [117] and ADFS [119], both achieve

better a gradient computation complexity albeit at the expense of computing the proximal mapping of a

component function at each iteration that is in general very expensive. Another recent work [120] considers

gradient tracking and variance reduction and proposes a decentralized SVRG type algorithm. However, the

convergence of the decentralized SVRG in [120] is only established when the local functions are sufficiently

similar. In contrast, GT-SAGA and GT-SVRG proposed in this chapter achieve accelerated linear convergence

for arbitrary local functions and are robust to the heterogeneity of local functions and data distributions.

Finally, we emphasize that all existing decentralized VR methods require symmetric weights and thus undi-

rected networks. In contrast, GT-SAGA and GT-SVRG only require doubly stochastic weights and therefore can
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Table 2.1: Summary of datasets used in numerical experiments. All datasets are available in LIBSVM [1].

Dataset train (N = nm) dimension (p) test

Fashion-MNIST 10,000 784 4,000

Covertype 400,000 54 181,012

CIFAR-10 10,000 3,072 2,000

Higgs 90,000 28 8,050

a9a 32,560 123 16,282

w8a 49,740 300 14,960

be implemented over directed graphs that admit doubly stochastic weights [125], providing a more flexible

topology design.

2.4 Numerical Experiments

In this section, we numerically demonstrate the convergence behavior of GT-SAGA and GT-SVRG under different

regimes of interest and compare their performances with the-state-of-the-art decentralized stochastic first-

order algorithms under different graph topologies and datasets. We consider a decentralized training problem

where a network of n nodes with m data samples locally at each node cooperatively finds a regularized logistic

regression model for binary classification:

F (x) = 1
n

n∑
i=1

1
m

m∑
j=1

log
[
1 + e−(x⊤θij)ξij

]
+ λ

2 ∥x∥2
2,

where θij ∈ Rp denotes the feature vector of the j-th data sample at the i-th node, ξij ∈ {−1, +1} is the

corresponding binary label, and λ is a regularization parameter to prevent overfitting of the training data.

The datasets in question are summarized in Table 2.1 and all feature vectors are normalized to be unit vectors,

i.e., ∥θij∥ = 1, ∀i, j. The graph topologies under considerations, shown in Fig 2.1, are directed ring graphs,

directed exponential graphs, and undirected nearest-neighbor geometric graphs, all with self loops. We note

that the directed ring graph has the weakest connectivity among all strongly-connected graphs; directed

exponential graphs, where each node sends information to the nodes 20, 21, 22, · · · hops away, are sparse yet

well-connected and therefore are often preferable when one has the freedom to design the graph topology;

undirected nearest-neighbor geometric graphs, where two nodes are connected if they are in physical vicinity,

are weakly-connected and often arise in ad hoc settings such as robotics swarms, IoTs, and edge computing

networks. The doubly stochastic weights for directed ring and exponential graphs are chosen as uniform

weights, while the weights for geometric graphs are generated by the Metropolis rule [27]. The parameters
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Figure 2.1: The directed ring graph with 10 nodes, directed exponential graph with 10 nodes, and an
undirected geometric graph with 200 nodes.

of all algorithms in all cases are manually tuned for best performance. We characterize the performance of

the decentralized optimization methods in question in terms of the optimality gap 1
n

∑n
i=1
(
F (xi

k) − F (x∗)
)

and model accuracy on the test data sets over epochs, where we assume that each node possesses the same

number m of data samples and one epoch represents m gradient computations per node.

2.4.1 Big data regime: topology-independence and linear speedup

In this subsection, we demonstrate the convergence behavior of GT-SAGA and GT-SVRG in the big data regime,

i.e., m ≈ Q2(1 − σ)−2. To this aim, we choose 500,000 training samples from the Covertype dataset, equally

distributed in a network of n = 10 nodes such that each node has m = 50,000 data samples and set the

regularization parameter as λ = 0.01 that leads to Q ≈ 25, where Q is the condition number of F . We test

the performance of GT-SAGA and GT-SVRG over different graph topologies, i.e., the directed ring, the directed

exponential, and the complete graph with 10 nodes; the second largest singular eigenvalues of the weight

matrices associated with these three graphs are σ = 0.951, 0.6, 0, respectively. It can be verified that the big

data condition holds for the optimization problem defined on these three graphs. The experimental results

are shown in Fig. 2.2 (left and middle) and we observe that, in this big data regime, the convergence rates of
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Figure 2.2: The convergence behavior of GT-SAGA and GT-SVRG in the big data regime: (Left and Middle)
Non-asymptotic, network-independent convergence; (Right) Linear speedup with respect to centralized SAGA
and SVRG that process all data on a single node.
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Figure 2.3: Performance comparison of GT-SAGA and GT-SVRG with DSGD and GT-DSGD on the directed
exponential graph with n = 10 nodes over the Fashion-MNIST, Covertype, and CIFAR-10 datasets. The
top row shows the optimality gap, while the bottom row shows the corresponding test accuracy.

GT-SAGA and GT-SVRG are not affected by the network topology. We next illustrate the speedup of GT-SAGA

and GT-SVRG compared with their centralized counterparts. The speedup is characterized as the ratio of the

number of component gradient computations required for centralized SAGA and SVRG that execute on a

single node over the number of component gradient computations required at each node for GT-SAGA and

GT-SVRG to achieve the optimality gap of 10−13. It can be observed in Fig 2.2 (right) that linear speedup is

achieved for both methods.

2.4.2 Comparison with the state-of-the-art

In this subsection, we compare the performances of the proposed GT-SAGA and GT-SVRG with the state-of-

the-art decentralized stochastic first-order gradient algorithms over the datasets in Table 2.1, i.e., DSGD,
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Figure 2.4: Performance comparison of GT-SAGA and GT-SVRG with DSGD and GT-DSGD on the directed
exponential graph with n = 10 nodes over the Higgs, a9a, and w8a datasets. The top row presents the
optimality gap, while the bottom row presents the corresponding test accuracy.
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Figure 2.5: Comparison of GT-SAGA and GT-SVRG with DSGD, GT-DSGD, DSA, and DAVRG on an undirected
nearest-neighbor geometric graph with n = 200 nodes over the Fashion-MNIST, Higgs, and a9a datasets.
The top row shows the optimality gap, while the bottom row shows the corresponding test accuracy.
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GT-DSGD, DSA, and DAVRG. We consider constant step-sizes for DSGD and GT-DSGD. Throughout this

subsection, we set the regularization parameter as λ = (nm)−1 for better test accuracy [23,113].

We first consider the directed exponential graph with n = 10 nodes that typically arise e.g., in data

centers [41] where data is divided among a small number of very well-connected nodes. Note that DSA

and DAVRG are not applicable to directed graphs since they require symmetric weight matrices. We thus

compare the performances of GT-SAGA, GT-SVRG, DSGD and GT-DSGD, presented in Figs. 2.3 and 2.4. It

can be observed that the performances of DSGD and GT-DSGD are similar in this case, both of which

linearly converge to a neighborhood of the optimal solution. On the other hand, GT-SAGA and GT-SVRG

linearly converge to the exact optimal solution and, moreover, achieve better test accuracy faster.

We next consider a large-scale undirected geometric graph with n = 200 nodes that commonly arises

e.g., in ad hoc network scenarios. The experimental result is presented in Fig. 2.5. We note that in this

case GT-DSGD outperforms DSGD since the graph is not well-connected; this observation is consistent

with [20, 31]. The performance of decentralized VR methods, GT-SAGA, GT-SVRG, DSA and DAVRG are

rather comparable, all of which significantly outperform DSGD and GT-DSGD in terms of both optimality

gap and test accuracy. However, we note that the theoretical guarantees of DSA and DAVRG are relatively

weak, compared with that of GT-SAGA and GT-SVRG.

Finally, we observe that across all experiments shown in Figs. 2.3, 2.4, and 2.5, GT-SAGA exhibit faster

convergence than GT-SVRG, at the expense of the storage cost of the gradient table at each node, demon-

strating the space (storage) and time (convergence rate) tradeoffs of the SAGA and SVRG type variance

reduction procedures.

2.5 Convergence analysis: A general dynamical system approach

Our goal is to develop a unified analysis framework for the GT-VR family of algorithms. To this aim, we

first present a dynamical system that unifies the GT-VR algorithms and develop the results that can be used

in general; see [52, 53, 56, 67] for similar approaches that do not involve local variance reduction schemes.

Next, in Sections 2.5.3 and 2.5.4, we specialize this dynamical system for GT-SAGA and GT-SVRG in order to

formally derive the main results of Section 2.3.

Recall that xk
i ∈ Rp denotes the GT-VR estimate of the optimal solution x∗ at node i and iteration k, which

iteratively descends in the direction of the global gradient tracker yk
i ∈ Rp. Concatenating xk

i ’s and yk
i ’s in

column vectors xk, yk, both in Rpn, and defining W := W ⊗ Ip, we can write the estimate update of GT-VR as

xk+1 = Wxk − αyk, (2.4)
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which is applicable to both GT-SAGA and GT-SVRG. The gradient tracking step next is given by

yk+1 = Wyk + rk+1 − rk, (2.5)

where rk ∈ Rpn concatenates local variance-reduced gradient estimators rk
i ’s, all in Rp, which are given

by gk
i ’s in GT-SAGA and by vk

i ’s in GT-SVRG. For the initial conditions, we have y0 = r0 ∈ Rp and x0 ∈ Rp

is arbitrary.

Clearly, (2.4)-(2.5) are applicable to the GT-VR framework in general and the specialized algorithm of

interest from this family can be obtained by using the corresponding variance-reduced estimator. We there-

fore first analyze the dynamical system (2.4)-(2.5), on top of which the specialized results for GT-SAGA and

GT-SVRG are derived subsequently.

2.5.1 Preliminaries

To proceed, we define several auxiliary variables that will aid the subsequent convergence analysis as follows.

xk := 1
n

(
1⊤

n ⊗ Ip

)
xk,

yk := 1
n

(
1⊤

n ⊗ Ip

)
yk,

rk := 1
n

(
1⊤

n ⊗ Ip

)
rk,

∇f(xk) := [∇f1(xk
1)⊤, . . . , ∇fn(xk

n)⊤]⊤,

∇f(xk) := 1
n

(
1⊤

n ⊗ Ip

)
∇f(xk).

We recall that (2.5) is a stochastic gradient tracking method [4, 67, 126] as an application of dynamic con-

sensus [51]. It is straightforward to verify by induction that [51]:

rk = yk, ∀k ≥ 0.

Clearly, the randomness of both GT-SAGA and GT-SVRG lies in the set of independent random variables {sk
i }k≥1

i={1,··· ,n}.

We denote Fk as the history of the dynamical system generated by {st
i}

t≤k−1
i={1,··· ,n}. For both GT-SAGA and

GT-SVRG, rk
i is an unbiased estimator of ∇fi(xk

i ) given Fk [57, 61], i.e.,

E
[
rk|Fk

]
= ∇f(xk), E

[
yk|Fk

]
= E

[
rk|Fk

]
= ∇f(xk).

In the following, we first present a few well-known results related to decentralized gradient tracking methods

whose proofs can be found in, e.g., [52–54,56].

Lemma 2.5.1. Let Assumptions 2.3.1 and 2.3.2 hold. If 0 < α ≤ 1
L , we have ∥x − α∇F (x) − x∗∥ ≤

(1 − µα) ∥x − x∗∥, ∀x ∈ Rp.
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Lemma 2.5.2. Let Assumption 2.3.2 hold. Consider the iterates {xk} generated by the dynamical sys-

tem (2.4)-(2.5). We have that
∥∥∇f(xk) − ∇F (xk)

∥∥ ≤ L√
n

∥∥xk − Jxk
∥∥ , ∀k ≥ 0.

Lemma 2.5.3. Let Assumption 2.3.3 hold. We have that ∀x ∈ Rnp, ∥Wx − Jx∥ ≤ λ ∥x − Jx∥, where J =
1n1⊤

n

n ⊗ Ip.

2.5.2 Auxiliary results

In this subsection, we analyze the general dynamical system (2.4)-(2.5) by establishing the interrelationships

between the mean-squared consensus error E
[
∥xk − Jxk∥2], network optimality gap E

[
∥xk − x∗∥2] and

gradient tracking error E
[
∥yk − Jyk∥2].

Lemma 2.5.4. Let Assumption 2.3.3 hold. Consider the iterates {xk} generated by (2.4)-(2.5). We have

the following hold: ∀k ≥ 0,

E
[∥∥xk+1 − Jxk+1∥∥2] ≤ 1 + λ2

2 E
[∥∥xk − Jxk

∥∥2]+ 2α2

1 − λ2E
[∥∥yk − Jyk

∥∥2]
. (2.6)

E
[∥∥xk+1 − Jxk+1∥∥2] ≤ 2E

[∥∥xk − Jxk
∥∥2]+ 2α2E

[∥∥yk − Jyk
∥∥2]

. (2.7)

Proof. Using (2.4) and the fact that JW = J, we have:

∥∥xk+1 − Jxk+1∥∥2 =
∥∥Wxk − Jxk − α

(
yk − Jyk

)∥∥2 (2.8)

Next, we use Young’s inequality that ∥a + b∥2 ≤ (1 + η)∥a∥2 + (1 + 1
η )∥b∥2, ∀a, b ∈ Rnp, ∀η > 0, and

Lemma 2.5.3 in (2.8) to obtain: ∀k ≥ 0,

∥∥xk+1 − Jxk+1∥∥2 ≤ (1 + η) λ2 ∥∥xk − Jxk
∥∥2 +

(
1 + η−1)α2 ∥∥yk − Jyk

∥∥2

Setting η as 1−λ2

2λ2 and 1 in the above inequality respectively leads to (2.6) and (2.7).

Next, we establish an inequality for E
[∥∥xk+1 − x∗

∥∥2
]
.

Lemma 2.5.5. Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Consider the iterates {xk} generated by (2.4)-

(2.5). If 0 < α ≤ 1
L , we have the following inequalities hold: ∀k ≥ 0,

E
[
n
∥∥xk+1 − x∗∥∥2] ≤ L2α

µ
E
[∥∥xk − Jxk

∥∥2]+ (1 − µα)E
[
n∥xk − x∗∥2]+ α2

n
E
[∥∥rk − ∇f(xk)

∥∥2]
. (2.9)

E
[
n
∥∥xk+1 − x∗∥∥2] ≤ 2L2α2E

[∥∥xk − Jxk
∥∥2]+ 2E

[
n∥xk − x∗∥2]+ α2

n
E
[∥∥rk − ∇f(xk)

∥∥2]
. (2.10)

Proof. Multiplying 1⊤
n ⊗Ip

n to (2.4), we have that ∀k ≥ 0,

xk+1 = xk − αyk = xk − αrk.
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We expand E
[
∥xk+1 − x∗∥2|Fk

]
as follows.

E
[∥∥xk+1 − x∗∥∥2 |Fk

]
= E

[∥∥xk − αrk − x∗∥∥2 |Fk
]

= E
[∥∥xk − α∇F (xk) − x∗ + α

(
∇F (xk) − rk

)∥∥2 |Fk
]

=
∥∥xk − α∇F (xk) − x∗∥∥2 + α2E

[∥∥∇F (xk) − rk|
∥∥2 Fk

]
+ 2α

〈
xk − α∇F (xk) − x∗, ∇F (xk) − ∇f(xk)

〉
, (2.11)

where in the last equality we used that E
[
rk|Fk

]
= ∇f(xk). Next, we expand and simplify E

[∥∥∇F (xk) − rk
∥∥2 |Fk

]
:

E
[∥∥∇F (xk) − rk

∥∥2 |Fk
]

=
∥∥∇F (xk) − ∇f(xk)

∥∥2 + E
[∥∥∇f(xk) − rk

∥∥2 |Fk
]

(2.12)

where we used the fact that

〈
∇F (xk) − ∇f(xk),E

[
∇f(xk) − rk|Fk

] 〉
= 0.

For the last term in (2.12), we have that:

E
[∥∥∇f(xk) − rk

∥∥2 |Fk
]

= 1
n2E

∥∥∥∥∥
n∑

i=1

(
rk

i − ∇fi(xk
i )
)∥∥∥∥∥

2 ∣∣∣Fk

 = 1
n2E

[∥∥rk − ∇f(xk)
∥∥2 |Fk

]
, (2.13)

where in the equality above we used the fact that {rk
i }n

i=1 are independent from each other and from Fk

and therefore E
[∑

i ̸=j

〈
rk

i − ∇fi(xk
i ), rk

j − ∇fj(xk
j )
〉
|Fk

]
= 0. Now, we use (2.12), (2.13) and Lemma 2.5.1

in (2.11) to obtain:

E
[∥∥xk+1 − x∗∥∥2 |Fk

]
≤ (1 − µα)2∥xk − x∗∥2 + α2 ∥∥∇F (xk) − ∇f(xk)

∥∥2

+ 2α(1 − µα)
∥∥xk − x∗∥∥∥∥∇F (xk) − ∇f(xk)

∥∥
+ α2

n2 E
[∥∥rk − ∇f(xk)

∥∥2 |Fk
]

. (2.14)

Finally, we apply Young’s inequality such that

2α
∥∥xk − x∗∥∥ ∥∥∇F (xk) − ∇f(xk)

∥∥ ≤ µα
∥∥xk − x∗∥∥2 + µ−1α

∥∥∇F (xk) − ∇f(xk)
∥∥2

and
∥∥∇f(xk) − ∇F (xk)

∥∥ ≤ L√
n

∥∥xk − Jxk
∥∥ , ∀k ≥ 0, from Lemma 2.5.2 to (2.14) and take the total expec-

tation; the resulting inequality is exactly (2.9). Similarly, using

2α
∥∥xk − x∗∥∥ ∥∥∇F (xk) − ∇f(xk)

∥∥ ≤
∥∥xk − x∗∥∥2 + α2 ∥∥∇F (xk) − ∇f(xk)

∥∥
and Lemma 2.5.2 in (2.14) leads to (2.10).

Next, we derive an inequality for E
[
∥yk+1 − Jyk+1∥2].
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Lemma 2.5.6. Let Assumption 2.3.2 and Assumption 2.3.3 hold. Consider the iterates {yk} generated

by (2.4)-(2.5). If 0 < α ≤ 1
4

√
2L

, we have the following inequality hold: ∀k ≥ 0,

E
[∥∥yk+1 − Jyk+1∥∥2] ≤ 33L2

1 − λ2E
[∥∥xk − Jxk

∥∥2]+ L2

1 − λ2E
[
n
∥∥xk − x∗∥∥2]

+
(

1 + λ2

2 + 32L2α2

1 − λ2

)
E
[∥∥yk − Jyk

∥∥2]
+ 5

1 − λ2E
[∥∥rk − ∇f(xk)

∥∥2]+ 4
1 − λ2E

[∥∥rk+1 − ∇f(xk+1)
∥∥2]

.

Proof. Using (2.5) and the fact that JW = J, we have:

∥∥yk+1 − Jyk+1∥∥2 =
∥∥Wyk + rk+1 − rk − J

(
Wyk + rk+1 − rk

)∥∥2

=
∥∥Wyk − Jyk + (Inp − J)

(
rk+1 − rk

)∥∥2
. (2.15)

To proceed from (2.15), we use Young’s inequality that ∥a + b∥2 ≤ (1 + η)∥a∥2 + (1 + 1
η )∥b∥2, ∀a, b ∈ Rnp

with η = 2λ2

1−λ2 and that |||Inp − J ||| = 1 together with Lemma 2.5.3 to obtain:

∥∥yk+1 − Jyk+1∥∥2 ≤
(

1 + 1 − λ2

2λ2

)∥∥Wyk − Jyk
∥∥2 +

(
1 + 2λ2

1 − λ2

)∥∥(Inp − J)
(
rk+1 − rk

)∥∥2

≤ 1 + λ2

2
∥∥yk − Jyk

∥∥2 + 2
1 − λ2

∥∥rk+1 − rk
∥∥2

. (2.16)

We then take the total expectation to obtain:

E
[∥∥yk+1 − Jyk+1∥∥2] ≤ 1 + λ2

2 E
[∥∥yk − Jyk

∥∥2]+ 2
1 − λ2E

[∥∥rk+1 − rk
∥∥2] (2.17)

Now, we derive an upper bound for E[∥rk+1 − rk∥2]. Firstly,

E
[
∥rk+1 − rk∥2] ≤ 2E

[
∥rk+1 − rk − (∇f(xk+1) − ∇f(xk))∥2]+ 2E

[
∥∇f(xk+1) − ∇f(xk)∥2]

≤ 2E
[
∥rk − ∇f(xk)∥2]+ 2E

[
∥rk+1 − ∇f(xk+1)∥2]+ 2L2E

[
∥xk+1 − xk∥2] (2.18)

where in the last inequality above we used that

E
[
⟨rk+1 − ∇f(xk+1), rk − ∇f(xk)⟩

]
= E

[
E
[
⟨rk+1 − ∇f(xk+1), rk − ∇f(xk)⟩|Fk+1]] = 0.

We next bound E
[∥∥xk+1 − xk

∥∥2
]
. Using (2.4) leads to:

∥∥xk+1 − xk
∥∥2 =

∥∥Wxk − αyk − xk
∥∥2

=
∥∥(W − Inp)

(
xk − Jxk

)
− αyk

∥∥2

≤ 8
∥∥xk − Jxk

∥∥2 + 2α2 ∥∥yk
∥∥2

, (2.19)
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where in (2.19) we used the fact that |||W − Inp ||| ≤ 2. We then denote ∇f(x∗) :=
[
∇f1(x∗)⊤, · · · , ∇fn(x∗)⊤]⊤

and note that (1⊤
n ⊗ Ip)∇f(x∗) = 0p. We bound ∥yk∥ as follows.

∥∥yk
∥∥ =

∥∥∥yk − Jyk + Jrk − J∇f(xk) + J∇f(xk) − J∇f(x∗)
∥∥∥

≤
∥∥yk − Jyk

∥∥+
∥∥rk − ∇f(xk)

∥∥+ L
∥∥xk − (1n ⊗ Ip)x∗∥∥

≤
∥∥yk − Jyk

∥∥+
∥∥rk − ∇f(xk)

∥∥+ L
∥∥xk − Jxk

∥∥+
√

nL
∥∥xk − x∗∥∥ ,

where in the first equality we used yk = rk, ∀k ≥ 0. Squaring the above inequality obtains the following:

∥∥yk
∥∥2 ≤ 4L2 ∥∥xk − Jxk

∥∥2 + 4nL2 ∥∥xk − x∗∥∥2 + 4
∥∥yk − Jyk

∥∥2 + 4
∥∥rk − ∇f(xk)

∥∥2
. (2.20)

Using (2.20) in (2.19) with the requirement that 0 < α ≤ 1
4

√
2L

and taking the total expectation, we have:

E
[∥∥xk+1 − xk

∥∥2] ≤ 8.25E
[∥∥xk − Jxk

∥∥2]+ 0.25E
[
n
∥∥xk − x∗∥∥2]

+ 8α2E
[∥∥yk − Jyk

∥∥2]+ 8α2E
[∥∥rk − ∇f(xk)

∥∥2]
. (2.21)

Finally, we apply (2.21) in (2.18) with 0 < α ≤ 1
4

√
2L

to obtain:

E
[∥∥rk+1 − rk

∥∥2] ≤ 16.5L2E
[∥∥xk − Jxk

∥∥2]+ 0.5L2E
[
n
∥∥xk − x∗∥∥2]

+ 16α2L2E
[∥∥yk − Jyk

∥∥2]+ 2.5E
[∥∥rk − ∇f(xk)

∥∥2]+ 2E
[∥∥rk+1 − ∇f(xk+1)

∥∥2]
.

Using the above inequality in (2.17) completes the proof.

We finally present a general convergence result on a sequence of random variables that converge linearly

in the mean-square sense. We note that this result is implied in the probability literature; see [127] for

example. For the sake of completeness, we present its proof here.

Lemma 2.5.7. Let {Xk}k≥0 be a sequence of random variables such that E[|Xk|] ≤ γk for some 0 < γ < 1.

Then we have

P
(

lim
k→∞

(γ + δ)−k|Xk| = 0
)

= 1,

where δ > 0 is an arbitrary positive constant.

Proof. By Chebyshev’s inequality, we have: ∀ϵ > 0, ∀δ > 0,

P
(
(γ + δ)−k|Xk| > ϵ

)
≤ ϵ−1E[(γ + δ)−k|Xk|]

≤ ϵ−1(γ/(γ + δ))k.
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Summing the inequality above over k, we obtain:
∞∑

k=0
P
(
(γ + δ)−k|Xk| > ϵ

)
≤ ϵ−1

∞∑
k=0

( γ

γ + δ

)k

< ∞.

By the Borel-Cantelli lemma,

P
(
(γ + δ)−k|Xk| > ϵ for infinitely many k

)
= 0,

and the proof follows.

We note that Lemma 2.5.7 states that the non-asymptotic linear convergence of a sequence of random

variables in the mean-square sense implies its asymptotic linear convergence in the almost sure sense. As

a consequence, Corollaries 2.3.1 and 2.3.2 will be immediately at hand once Theorems 2.3.1 and 2.3.2 are

established. With the help of the auxiliary results on the general dynamical system (2.4)-(2.5) established

in this section, we now derive explicit convergence rates for the proposed algorithms, GT-SAGA and GT-SVRG,

in the next sections.

2.5.3 Analysis of GT-SAGA

In this section, we establish the mean-square linear convergence of GT-SAGA described in Algorithm 1.

Following the unified representation in (2.4)-(2.5), we recall that the local gradient estimator rk
i is given

by gk
i in GT-SAGA, i.e., ∀i ∈ {1, · · · , n}, ∀k ≥ 1,

gk
i = ∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
zk

i,sk
i

)
+ 1

mi

mi∑
j=1

∇fi,j

(
zk

i,j

)
,

where sk
i is selected uniformly at random from {1, · · · , mi} and the auxiliary variable zk

i,j is the most recent

iterate where the component gradient ∇fi,j was evaluated up to time k.

2.5.3.1 Bounding the variance of the gradient estimator

We first derive an upper bound for E
[
∥gk − ∇f(xk)∥2] that is the variance of the gradient estimator gk. To

do this, we define Υk
i as the averaged optimality gap of the auxiliary variables of {zk

i,j}mi
j=1 at node i:

Υk
i := 1

mi

mi∑
j=1

∥∥zk
i,j − x∗∥∥2

, Υk :=
n∑

i=1
Υk

i . (2.22)

The next lemma shows that Υk admits an intrinsic contraction. Recall that M = maxi mi and m = mini mi.

Lemma 2.5.8. Consider the iterates {Υk} generated by GT-SAGA. We have the following holds: ∀k ≥ 1,

E
[
Υk+1] ≤

(
1 − 1

M

)
E
[
Υk
]

+ 2
m
E
[∥∥xk − Jxk

∥∥2]+ 2
m
E
[
n
∥∥xk − x∗∥∥2]

.
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Proof. Recall Algorithm 1 and note that ∀k ≥ 1, zk+1
i,j = zk

i,j with probability 1 − 1
mi

and zk+1
i,j = xk

i with

probability 1
mi

given Fk. Then we have the following holds: ∀i, ∀k ≥ 1,

E
[
Υk+1

i |Fk
]

= 1
mi

mi∑
j=1

E
[∥∥zk+1

i,j − x∗∥∥2 |Fk
]

= 1
mi

mi∑
j=1

E
[(

1 − 1
mi

)∥∥zk
i,j − x∗∥∥2 + 1

mi

∥∥xk
i − x∗∥∥2

∣∣∣Fk
]

=
(

1 − 1
mi

)
Υk

i + 1
mi

∥∥xk
i − x∗∥∥2

≤
(

1 − 1
M

)
Υk

i + 2
m

∥∥xk
i − xk

∥∥2 + 2
m

∥∥xk − x∗∥∥2 (2.23)

The proof follows by summing (2.23) over i and taking the total expectation.

In the next lemma, we bound the stochastic gradient variance E
[
∥gk − ∇f(xk)∥2] by the mean-square

consensus error and the optimality gap of xk and Υk.

Lemma 2.5.9. Let Assumption 2.3.2 hold. Consider the iterates {gk} generated by GT-SAGA. Then we have

the following inequality hold: ∀k ≥ 1,

E
[∥∥gk − ∇f(xk)

∥∥2] ≤ 4L2E
[∥∥xk − Jxk

∥∥2]+ 4L2E
[
n
∥∥xk − x∗∥∥2]+ 2L2E

[
Υk
]

.

Proof. Recall the local gradient estimator gk
i from Algorithm 1 and proceed as follows.

E
[∥∥gk

i − ∇fi(xk
i )
∥∥2 |Fk

]
= E

[∥∥∥∇fi,sk
i

(
xk

i

)
− ∇fi,sk

i

(
zk

i,sk
i

)
−
(

∇fi(xk
i ) − 1

mi

∑mi

j=1∇fi,j

(
zk

i,j

)) ∥∥∥2∣∣∣Fk
]

≤ E
[∥∥∥∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
zk

i,sk
i

)∥∥∥2 ∣∣∣Fk

]
= 1

mi

∑mi

j=1

∥∥∥ (∇fi,j

(
xk

i

)
− ∇fi,j(x∗)

)
+
(
∇fi,j(x∗) − ∇fi,j

(
zk

i,j

)) ∥∥∥2

≤ 2L2 ∥∥xk
i − x∗∥∥2 + 2L2Υk

i

≤ 4L2 ∥∥xk
i − xk

∥∥2 + 4L2 ∥∥xk − x∗∥∥2 + 2L2Υk
i , (2.24)

where the second inequality uses the standard conditional variance decomposition

E
[∥∥ak

i − E
[
ak

i |Fk
]∥∥2 |Fk

]
= E

[∥∥ak
i

∥∥2 |Fk
]

−
∥∥E [ak

i |Fk
]∥∥2 ≤ E

[∥∥ak
i

∥∥2 |Fk
]

, (2.25)

with ak
i = ∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
zk

i,sk
i

)
. The proof follows by summing (2.24) over i.

Lemma 2.5.9 clearly shows that as xk
i and zk

i,j approach to an agreement on x∗, the variance of the

gradient estimator decays to zero. We have the following corollary.
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Corollary 2.5.1. Let Assumption 2.3.2 and 2.3.3 hold. Consider the iterates {gk} generated by GT-SAGA.

If 0 < α ≤ 1
4

√
2L

, then the following inequality holds ∀k ≥ 0,

E
[∥∥gk+1 − ∇f(xk+1)

∥∥2] ≤ 12.75L2E
[∥∥xk − Jxk

∥∥2]+ 12.5L2E
[
n
∥∥xk − x∗∥∥2]

+ 8L2α2E
[∥∥yk − Jyk

∥∥2]+ 2.25L2E
[
tk
]

.

Proof. Following directly from Lemma 2.5.9, we have: ∀k ≥ 0,

E
[∥∥gk+1 − ∇f(xk+1)

∥∥2] ≤ 4L2E
[∥∥xk+1 − Jxk+1∥∥2]+ 4L2E

[
n
∥∥xk+1 − x∗∥∥2]+ 2L2E

[
tk+1] .

Using (2.7), (2.10) and Lemma 2.5.8 in the inequality above leads to the following: if 0 < α ≤ 1
4

√
2L

,

E
[∥∥gk+1 − ∇f(xk+1)

∥∥2] ≤ 12.25L2E
[∥∥xk − Jxk

∥∥2]+ 12L2E
[
n∥xk − x∗∥2]

+ 8L2α2E
[∥∥yk − Jyk

∥∥2]+ 2L2E
[
tk
]

+ 0.125E
[∥∥gk − ∇f(xk)

∥∥2]
.

The proof follows by applying Lemma 2.5.9 in the above.

2.5.3.2 Proof of Theorem 2.3.1

With the bounds on the gradient variance for GT-SAGA derived in the previous subsection, we are now able

to refine the inequalities obtained for the general dynamical system (2.4)-(2.5) in Section 2.5 and derive the

explicit convergence rates for GT-SAGA. First, we apply the upper bound on E[∥gk−∇f(xk)∥2] in Lemma 2.5.9

to (2.9) to obtain: ∀k ≥ 0,

E
[
n
∥∥xk+1 − x∗∥∥2]

≤ L2α

(
1
µ

+ 4α

n

)
E
[∥∥xk − Jxk

∥∥2]+
(

1 − µα + 4L2α2

n

)
E
[
n∥xk − x∗∥2]+ 2L2α2

n
E
[
tk
]

.

If 0 < α ≤ 1
4µ , then 1

µ + 4α
n ≤ 2

µ ; if 0 < α ≤ µn
8L2 , then we have 1 − µα + 4L2α2

n ≤ 1 − µα
2 . Therefore,

if 0 < α ≤ µ
8L2 , we have the following: ∀k ≥ 0,

E
[
n
∥∥xk+1 − x∗∥∥2] ≤ 2L2α

µ
E
[∥∥xk − Jxk

∥∥2]+
(

1 − µα

2

)
E
[
n∥xk − x∗∥2]+ 2L2α2

n
E
[
tk
]

(2.26)

Second, we apply the upper bounds on E[∥gk − ∇f(xk)∥2] and E[∥gk+1 − ∇f(xk+1)∥2] in Lemma 2.5.9 and

Corollary 2.5.1 to Lemma 2.5.6 to obtain the following: ∀k ≥ 0,

E
[∥∥yk+1 − Jyk+1∥∥2] ≤ 104L2

1 − λ2E
[∥∥xk − Jxk

∥∥2]+ 71L2

1 − λ2E
[
n
∥∥xk − x∗∥∥2]

+ 19L2

1 − λ2E
[
tk
]

+ 3 + λ2

4 E
[∥∥yk − Jyk

∥∥2]
, (2.27)

if 0 < α ≤ 1−λ2

16L . We next write (2.6), (2.26), Lemma 2.5.8 and (2.27) jointly as a linear matrix inequality.
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Proposition 2.5.1. Let Assumptions 2.3.1, 2.3.2, 2.3.3 hold and consider the iterates {xk}, {yk}, {Υk}

generated by GT-SAGA. If the step-size α follows 0 < α ≤ µ(1−λ)
16L2 , we have: ∀k ≥ 1,

uk+1 ≤ Gαuk, (2.28)

where uk ∈ R4 and Gα ∈ R4×4 are defined as follows:

uk =



E
[∥∥xk − Jxk

∥∥2
]

E
[
n
∥∥xk − x∗

∥∥2
]

E
[
Υk
]

E
[
L−2

∥∥yk − Jyk
∥∥2
]


, Gα =



1 + λ2

2 0 0 2α2L2

1 − λ2

2L2α

µ
1 − µα

2
2L2α2

n
0

2
m

2
m

1 − 1
M

0

104
1 − λ2

71
1 − λ2

19
1 − λ2

3 + λ2

4


.

Clearly, to show the linear convergence of GT-SAGA, it suffices to derive the range of α such that ρ(Gα) < 1.

To do this, we present a useful lemma from [36].

Lemma 2.5.10. Let A ∈ Rd×d be non-negative and x ∈ Rd be positive. If Ax ≤ βx for β > 0, then ρ(A) ≤

|||A |||x∞ ≤ β.

We are ready to prove Theorem 2.3.1 based on Proposition 2.5.1.

Proof of Theorem 2.3.1. Recall from Proposition 2.5.1 that if 0 < α ≤ µ(1−λ)
16L2 , we have uk+1 ≤ Gαuk. In

the light of Lemma 2.5.10, we solve for the range of the step-size α and a positive vector ϵ = [ϵ1, ϵ2, ϵ3, ϵ4]⊤

such that the following (entry-wise) linear matrix inequality holds:

Gαϵ ≤
(

1 − µα

4

)
ϵ, (2.29)

which can be written equivalently in the following form:

µα

4 + 2L2

1 − λ2
ϵ4

ϵ1
α2 ≤ 1 − λ2

2 (2.30)

2L2

n
ϵ3α ≤ µ

4 ϵ2 − 2L2

µ
ϵ1 (2.31)

µα

4 ≤ 1
M

− 2
m

ϵ1

ϵ3
− 2

m

ϵ2

ϵ3
(2.32)

µα

4 ≤ 1 − λ2

4 − 104
1 − λ2

ϵ1

ϵ4
− 71

1 − λ2
ϵ2

ϵ4
− 19

1 − λ2
ϵ3

ϵ4
(2.33)

Clearly, that (2.31)–(2.33) hold for some feasible range of α is equivalent to the RHS of (2.31)–(2.33) being

positive. Based on this observation, we will next fix the values of ϵ1, ϵ2, ϵ3, ϵ4 that are independent of α.

First, for the RHS of (2.31) to be positive, we set ϵ1 = 1, ϵ2 = 8.5Q2, where Q = L/µ. Second, the RHS
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of (2.32) being positive is equivalent to

ϵ3 >
2M

m
ϵ1 + 2M

m
ϵ2 = 2M

m
+ 17MQ2

m
. (2.34)

We therefore set ϵ3 = 20MQ2

m . Third, we note that the RHS of (2.33) being positive is equivalent to the

following:

ϵ4 >
4

(1 − λ2)2 (104ϵ1 + 71ϵ2 + 19ϵ3)

= 4
(1 − λ2)2

(
104 + 603.5Q2 + 380MQ2

m

)
Note that 104 + 603.5Q2 + 380MQ2

m ≤ 1087.5MQ2

m . We therefore set ϵ4 = 8700
(1−λ2)2

MQ2

m . We now solve for the

range of α from (2.30)–(2.33) given the previously fixed ϵ1, ϵ2, ϵ3, ϵ4. From (2.31), we have that

α ≤ n

2L2ϵ3

(
µ

4 ϵ2 − 2L2

µ
ϵ1

)
= m

M

n

320QL
. (2.35)

Moreover, it is straightforward to verify that if α satisfies

0 < α ≤ m

M

(1 − λ2)2

320QL
(2.36)

then (2.30) holds. Next, to make (2.32) hold, it suffices to make α:

α ≤ 1
5µM

. (2.37)

Finally, to make (2.33) hold, it suffices to make

α ≤ 1 − λ2

2µ
. (2.38)

To summarize, combining (2.36)–(2.38), we conclude that if the step-size α satisfies

0 < α ≤ α := min
{

1
5µM

,
m

320M

(1 − λ2)2

LQ

}
, (2.39)

then (2.29) holds with some ϵ > 0 and thus ρ (Gα) ≤ 1 − µα
4 according to Lemma 2.5.10. Furhter if α = α,

we have

ρ (Gα) ≤ 1 − min
{

1
20M

,
m

1280M

(1 − λ2)2

Q2

}
,

which completes the proof.

2.5.4 Analysis of GT-SVRG

In this section, we conduct the complexity analysis of GT-SVRG in Algorithm 2 based on the auxiliary results

derived for the general dynamical system (2.4)-(2.5) in Section 2.5. Recall from Algorithm 2 that the gradient
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estimator vk
i at each node i in GT-SVRG is given by the following: ∀k ≥ 1, choose sk

i uniformly at random

in {1, · · · , mi} and

vk
i = ∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
τ k

i

)
+ ∇fi

(
τ k

i

)
(2.40)

where τ k
i = xk

i if mod(k, T ) = 0, where T is the length of each inner loop iterations of GT-SVRG; other-

wise τ k
i = τ k−1

i . To proceed, we define an auxiliary variable τ k := 1
n

∑n
i=1 τ k

i , ∀k ≥ 0.

2.5.4.1 Bounding the variance of the gradient estimator

We first bound the variance of vk
i , following a similar procedure as the proof of Lemma 2.5.9.

Lemma 2.5.11. Let Assumption 2.3.2 hold and consider the iterates {vk} generated by GT-SVRG in Algo-

rithm 2. The following inequality holds ∀k ≥ 0:

E
[∥∥vk − ∇f(xk)

∥∥2] ≤ 4L2E
[∥∥xk − Jxk

∥∥2]+ 4L2E
[
n
∥∥xk − x∗∥∥2]

+ 4L2E
[∥∥τ k − Jτ k

∥∥2]+ 4L2E
[
n
∥∥τ k − x∗∥∥2]

.

Proof. We recall from Algorithm 2 the definition of vk
i in GT-SVRG and proceed as follows.

E
[∥∥vk

i − ∇fi(xk
i )
∥∥2 |Fk

]
= E

[∥∥∥∇fi,sk
i

(
xk

i

)
− ∇fi,sk

i

(
τ k

i

)
−
(
∇fi(xk

i ) − ∇fi

(
τ k

i

)) ∥∥∥2∣∣∣Fk
]

≤ E
[∥∥∥∇fi,sk

i

(
xk

i

)
− ∇fi,sk

i

(
τ k

i

)∥∥∥2 ∣∣∣Fk

]
= 1

mi

mi∑
j=1

∥∥∥ (∇fi,j

(
xk

i

)
− ∇fi,j(x∗)

)
+
(
∇fi,j(x∗) − ∇fi,j

(
τ k

i

)) ∥∥∥2

≤ 2L2 ∥∥xk
i − x∗∥∥2 + 2L2 ∥∥τ k

i − x∗∥∥2

≤ 4L2 ∥∥xk
i − xk

∥∥2 + 4L2 ∥∥xk − x∗∥∥2 + 4L2 ∥∥τ k
i − τ k

∥∥2 + 4L2 ∥∥τ k − x∗∥∥2
, (2.41)

where in the second inequality we used the standard conditional variance decomposition in (2.25). The proof

follows by summing (2.41) over i and taking the total expectation.

Lemma 2.5.11 shows that as xk and τ k progressively approach the optimal solution x∗ of the Prob-

lem (2.1), the variance of the gradient estimator vk goes to zero. We then have the following corollary.

Corollary 2.5.2. Let Assumption 2.3.2 hold and consider the iterates {vk} generated by GT-SVRG. If 0 <

α ≤ 1
8L , then the following inequality holds ∀k ≥ 0:

E
[∥∥vk+1 − ∇f(xk+1)

∥∥2] ≤ 16.75L2E
[∥∥xk − Jxk

∥∥2]+ 16L2α2E
[∥∥yk − Jyk

∥∥2]+ 16.5L2E
[
n∥xk − x∗∥2]

+ 4.5L2E
[∥∥τ k − Jτ k

∥∥2]+ 4.5L2E
[
n
∥∥τ k − x∗∥∥2]

.
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Proof. From Lemma 2.5.11, we have: ∀k ≥ 0,

E
[∥∥vk+1 − ∇f(xk+1)

∥∥2] ≤ 4L2E
[∥∥xk+1 − Jxk+1∥∥2]+ 4L2E

[
n
∥∥xk+1 − x∗∥∥2]+ 4L2E

[∥∥τ k+1 − Jτ k+1∥∥2]
+ 4L2E

[∥∥τ k+1 − Jτ k+1∥∥2]+ 4L2E
[
n
∥∥τ k+1 − x∗∥∥2]

. (2.42)

Recall that τ k+1 = xk+1 if mod(k + 1, T ) = 0; otherwise, τ k+1 = τ k. We first derive upper bounds on the

last two terms in (2.42) for these two cases seperately. On the one hand, if mod(k + 1, T ) ̸= 0, we have that

4L2E
[∥∥τ k+1 − Jτ k+1∥∥2]+ 4L2E

[
n
∥∥τ k+1 − x∗∥∥2]

= 4L2E
[∥∥τ k − Jτ k

∥∥2]+ 4L2E
[
n
∥∥τ k − x∗∥∥2]

. (2.43)

On the other hand, if mod(k + 1, T ) = 0, we have that

4L2E
[∥∥τ k+1 − Jτ k+1∥∥2]+ 4L2E

[
n
∥∥τ k+1 − x∗∥∥2]

= 4L2E
[∥∥xk+1 − Jxk+1∥∥2]+ 4L2E

[
n
∥∥xk+1 − x∗∥∥2]

. (2.44)

Therefore, combining (2.43) and (2.44), we have that ∀k ≥ 0:

4L2E
[∥∥τ k+1 − Jτ k+1∥∥2]+ 4L2E

[
n
∥∥τ k+1 − x∗∥∥2]

≤ 4L2E
[∥∥xk+1 − Jxk+1∥∥2]+ 4L2E

[
n
∥∥xk+1 − x∗∥∥2]

+ 4L2E
[∥∥τ k − Jτ k

∥∥2]+ 4L2E
[
n
∥∥τ k − x∗∥∥2] (2.45)

Next, we apply (2.45) in (2.42) to obtain

E
[∥∥vk+1 − ∇f(xk+1)

∥∥2] ≤ 8L2E
[∥∥xk+1 − Jxk+1∥∥2]+ 8L2E

[
n
∥∥xk+1 − x∗∥∥2]

+ 4L2E
[∥∥τ k − Jτ k

∥∥2]+ 4L2E
[
n
∥∥τ k − x∗∥∥2]

. (2.46)

The proof follows by using (2.7), (2.10) and Lemma 2.5.11 in (2.46).

2.5.4.2 Proof of Theorem 2.3.2

We now apply the upper bounds on the variance of the gradient estimator vk in GT-SVRG obtained in

the previous subsection to refine the inequalities derived for the general dynamical system (2.4)-(2.5) in

Section 2.5 and establish the complexity for GT-SVRG. We first apply the upper bound on E[∥vk − ∇f(xk)∥2]

in Lemma 2.5.11 to (2.10) to obtain ∀k ≥ 0:

E
[
n
∥∥xk+1 − x∗∥∥2] ≤ L2α

(
1
µ

+ 4α

n

)
E
[∥∥xk − Jxk

∥∥2]+
(

1 − µα + 4L2

n
α2
)
E
[
n
∥∥xk − x∗∥∥2]

+ 4L2α2

n
E
[∥∥τ k − Jτ k

∥∥2]+ 4L2α2

n
E
[
n
∥∥τ k − x∗∥∥2]

. (2.47)
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If 0 < α ≤ 1
4µ , we have ( 1

µ + 4α
n ) ≤ 2

µ ; if 0 < α ≤ nµ
8L2 , we have 1 − µα + 4L2

n α2 ≤ 1 − µα
2 . Therefore,

if 0 < α ≤ µ
8L2 , we have k ≥ 0:

E
[
n
∥∥xk+1 − x∗∥∥2] ≤ 2L2α

µ
E
[∥∥xk − Jxk

∥∥2]+
(

1 − µα

2

)
E
[
n
∥∥xk − x∗∥∥2]

+ 4L2α2

n
E
[∥∥τ k − Jτ k

∥∥2]+ 4L2α2

n
E
[
n
∥∥τ k − x∗∥∥2]

. (2.48)

Next, we apply the upper bounds on E[∥vk − ∇f(xk)∥2] and E[∥vk+1 − ∇f(xk+1)∥2] in Lemma 2.5.11 and

Corollary 2.5.2 to Lemma 2.5.6 and obtain: ∀k ≥ 0,

E
[∥∥yk+1 − Jyk+1∥∥2] ≤ 120L2

1 − λ2E
[∥∥xk − Jxk

∥∥2]+ 87L2

1 − λ2E
[
n
∥∥xk − x∗∥∥2]

+ 3 + λ2

4 E
[∥∥yk − Jyk

∥∥2]
+ 38L2

1 − λ2E
[∥∥τ k − Jτ k

∥∥2]+ 38L2

1 − λ2E
[
n
∥∥τ k − x∗∥∥2]

, (2.49)

if 0 < α ≤ 1−λ2

14
√

2L
. Now, we write Lemma 2.6, (2.48) and (2.49) jointly in an entry-wise linear matrix

inequality that characterizes the evolution of GT-SVRG in the following proposition.

Proposition 2.5.2. Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold a nd Consider the iterates {xk}, {yk}, {vk}

generated by GT-SVRG. If the step-size α follows 0 < α ≤ µ(1−λ2)
14

√
2L2 , then the following linear matrix inequality

hold ∀k ≥ 0:

uk+1 ≤ Rαuk + Hαũk, (2.50)

where uk, ũk ∈ R3 and Rα, Hα ∈ R3×3 are defined as

uk =



E
[∥∥xk − Jxk

∥∥2
]

E
[
n
∥∥xk − x∗

∥∥2
]

E
[
L−2

∥∥yk − Jyk
∥∥2
]


, ũk =



E
[∥∥τ k − Jτ k

∥∥2
]

E
[
n
∥∥τ k − x∗

∥∥2]
0


,

Rα =



1 + λ2

2 0 2α2L2

1 − λ2

2L2α

µ
1 − µα

2 0

120
1 − λ2

87
1 − λ2

3 + λ2

4


, Hα =



0 0 0

4L2α2

n

4L2α2

n
0

38
1 − λ2

38
1 − λ2 0


.

Note that T is the number of the inner loop iterations of GT-SVRG. We will show that the subse-

quence {utT }t≥0 of {uk}k≥0, which corresponds to the outer loop updates of GT-SVRG, converges to zero

linearly, based on which the total complexity of GT-SVRG will be established, in terms of the number of
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total component gradient computations required at each node to find the solution x∗. We now recall from

Algorithm 2 that ∀k ≥ 0, τ k+1 = xk+1
i if mod(k + 1, T ) = 0; else τ k+1 = τ k. Therefore, ∀t ≥ 0 and

tT ≤ k ≤ (t + 1)T − 1, we have τ k = xtT . Based on this discussion, (2.50) can be rewritten as the following

dynamical system with delays:

uk+1 ≤ Rαuk + HαutT , ∀k ∈ [tT, (t + 1)T − 1], ∀t ≥ 0.

We recursively apply the above inequality over k to obtain the evolution of the outer loop iterations {utT }t≥0:

u(t+1)T ≤

(
RT

α +
T −1∑
l=0

Rl
αHα

)
utT , ∀t ≥ 0. (2.51)

Clearly, to show the linear decay of {utT }t≥0, it sufficies to find the range of α such that ρ
(
RT

α +
∑T −1

l=0 Rl
αHα

)
<

1. To this aim, we first derive the range of α such that ρ(Rα) < 1.

Lemma 2.5.12. Let Assumptions 2.3.1, 2.3.2, 2.3.3 hold and consider the system matrix Rα defined in

Proposition 2.5.2. If the step-size α follows 0 < α ≤ (1−λ2)2

187QL , then

ρ(Rα) ≤ |||Rα |||δ∞ ≤ 1 − µα

4 , (2.52)

where δ =
[
1, 8Q2, 6528Q2

(1−λ2)2

]⊤
.

Proof. In the light of Lemma 2.5.10, we solve for the range of α and a positive vector δ = [δ1, δ2, δ3] such

that the following entry-wise linear matrix inequality holds:

Rαδ ≤
(

1 − µα

4

)
δ,

which can be written equivalently as

µα

4 + 2L2α2

1 − λ2
δ3

δ1
≤ 1 − λ2

2 , (2.53)

8Q2δ1 ≤ δ2, (2.54)

µα

4 ≤ 1 − λ2

4 − 120
1 − λ2

δ1

δ3
− 87

1 − λ2
δ2

δ3
. (2.55)

Based on (2.54), we set δ1 = 1 and δ2 = 6Q2. With δ1 and δ2 being fixed, we next choose δ3 > 0 such

that the RHS of (2.55) is positive, i.e, 1−λ2

4δ3

(
δ3 − 480+2784Q2

(1−λ2)2

)
> 0. It suffices to set δ3 = 6528Q2

(1−λ2)2 . Now,

with the previously fixed values of δ1, δ2, δ3, in order to make (2.55) hold, it suffices to choose α such

that 0 < α ≤ 1−λ2

2µ . Similary, it can be verified that in order to make (2.53) hold, it sufficies to make α

satisfy 0 < α ≤ (1−λ2)2

187QL , which completes the proof.
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We note that if the step-size α satisfies the condition in Lemma 2.5.12, we have ρ(Rα) < 1. Moreover,

since Rα is nonnegative, we have that

T −1∑
l=0

Rl
α ≤

∞∑
l=0

Rl
α = (I3 − Rα)−1.

Therefore, the following from (2.51), we have:

u(t+1)T ≤
(
RT

α + (I3 − Rα)−1Hα

)
utT , ∀t ≥ 0. (2.56)

The rest of the convergence analysis is to derive the condition on the the number of each inner iterations T

and the step-size α of GT-SVRG such that the following inequality holds:

ρ(RT
α + (I3 − Rα)−1Hα) < 1.

We first show that (I3 − Rα)−1Hα is sufficiently small under an appropriate weighted matrix norm in the

light of Lemma 2.5.10.

Lemma 2.5.13. Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Consider the system matrices Rα, Hα defined

in Proposition 2.5.2. If the step-size α follows 0 < α ≤ (1−λ2)2

187QL , then

∣∣∣∣∣∣ (I3 − Rα)−1Hα

∣∣∣∣∣∣q
∞ ≤ 0.66,

where q =
[
1, 1, 1453

(1−λ2)2

]⊤.

Proof. We start by deriving an entry-wise upper bound for the matrix (I3−Rα)−1. Note that the determinant

of (I3 − Rα)−1 is given by

det (I3 − Rα) = (1 − λ2)2µα

16 − 348L4α3

µ(1 − λ2)2 − 120α3µL2

(1 − λ2)2 .

It can be verified that if 0 < α ≤ (1−λ2)2

187QL ,

det (I3 − Rα) ≥ (1 − λ2)2µα

32 . (2.57)

Then we derive an entry-wise upper bound for adj(I3 − Rα), where adj(·) denotes the adjugate of the

argument matrix and we denote [adj (·)]i,j as its i, jth entry:

[adj (I3 − Rα)]1,2 = 174L2α2

(1 − λ2)2 , [adj (I3 − Rα)]1,3 = µL2α3

1 − λ2 ,

[adj (I3 − Rα)]2,2 ≤ (1 − λ2)2

8 , [adj (I3 − Rα)]2,3 = 4L4α3

µ(1 − λ2) ,

[adj (I3 − Rα)]3,2 = 87
2 , [adj (I3 − Rα)]3,3 = µα(1 − λ2)

4 .
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With the help of the above calculations, an entry-wise upper bound for (I3 − Rα)−1 Hα = adj(I3−Rα)
det(I3−Rα) Hα

can be obtained, i.e., if 0 < α ≤ (1−λ2)2

187QL , we have

(I3 − Rα)−1 Hα ≤


0.039 0.039 0

0.23 0.23 0

334
(1 − λ2)2

334
(1 − λ2)2 0

 .

Using Lemma 2.5.10 in a similar way as the proof of Lemma 2.5.12, it can be verified that
(

(I3 − Rα)−1 Hα

)
q ≤

0.66q, where q = [1, 1, 1453
(1−λ2)2 ]⊤, which completes the proof.

Note that we use two different weighted matrix norms to bound Rα and (I3 − Rα)−1Hα respectively in

Lemma 2.5.12 and 2.5.13, i.e., ||| · |||δ∞ and ||| · |||q∞, where δ = [1, 8Q2, 6528Q2

(1−λ2)2 ]⊤ and q = [1, 1, 1453
(1−λ2)2 ]⊤. It

can be verified that [36]: ∀X ∈ R3×3,

|||X |||q∞ ≤ 8Q2|||X |||δ∞. (2.58)

We next show the linear convergence of the outer loop of GT-SVRG, i.e., the linear decay of the subse-

quence {utT }t≥0 of {uk}k≥0, where T is the number of inner loop iterations.

Proof of Theorem 2.3.2. Consider the iterates {uk} generated by GT-SVRG (defined in Proposition 2.5.2) and

recall the recursion in (2.56): ∀t ≥ 0, u(t+1)T ≤
(
RT

α + (I3 − Rα)−1 Hα

)
utT . Note that the weighted vector

norm ∥·∥q
∞ induces the weighted matrix norm ||| · |||q∞ [36]. Then using Lemma 2.5.12, 2.5.13 and (2.58), If the

step-size α = (1−λ2)2

187QL and the number of inner loop iterations T = 1496Q2

(1−λ2)2 log(200Q), then we have: ∀t ≥ 0,∥∥∥u(t+1)T
∥∥∥q

∞
≤
∣∣∣∣∣∣∣∣∣RT

α + (I3 − Rα)−1 Hα

∣∣∣∣∣∣∣∣∣q
∞

∥∥utT
∥∥q

∞

≤
(∣∣∣∣∣∣RT

α

∣∣∣∣∣∣q
∞ + 0.66

)∥∥utT
∥∥q

∞

≤
(

8Q2(|||Rα |||δ∞
)T + 0.66

)∥∥utT
∥∥q

∞

≤ 0.7
∥∥utT

∥∥q
∞ , (2.59)

Clearly, (2.59) shows that the outer loop of GT-SVRG, i.e., {xtT }t≥0, converges to an ϵ-optimal solution

with O(log 1
ϵ ) iterations. We further note that in each inner loop of GT-SVRG, each node i computes (mi+2T )

local component gradients. Therefore, the total number of component gradient computations at each node

required is O
((

M + Q2 log Q
(1−λ)2

)
log 1

ϵ

)
, where M is the largest number of data points over all nodes and the

proof is complete.
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2.6 Conclusion

In this chapter, we present the GT-VR framework that allows flexible and appropriate constructions of decen-

tralized stochastic variance-reduced gradient methods over weight-balanced directed graphs with the help of

gradient tracking techniques. For definiteness, we develop proper decentralized versions of the centralized

SAGA and SVRG algorithms, namely GT-SAGA and GT-SVRG. It is shown that they achieve linear convergence

to the optimal solution for smooth and strongly convex problems. Furthermore, we show that GT-SAGA and

GT-SVRG in the big data regimes achieve non-asymptotic topology-independent linear speedups compared

with the centralized SAGA and SVRG that execute on a single node.



Chapter 3

Decentralized Smooth Non-Convex

Finite-Sum Optimization

This chapter focuses on decentralized smooth non-convex empirical risk minimization problems. In partic-

ular, we consider n nodes communicating over a balanced directed graph, where each node i has access to a

local, private, collection of m smooth component functions {fi,j : Rp → R}m
j=1 that are possibly non-convex.

Each fi,j can be viewed as a cost incurred by the j-th data sample at the i-th node. Our goal here is to have

the networked nodes agree on a first-order stationary point of the average of all component functions across

the nodes via local computation and decentralized communication. Under the GT-VR framework developed in

Chapter 2, we propose and analyze two decentralized stochastic variance-reduced algorithms, GT-SARAH and

GT-SAGA, to tackle this smooth non-convex finite-sum formulation. Specifically, we show that the gradient

complexity of GT-SARAH matches that of the centralized optimal methods for this problem class in big-data

regimes like data centers, while GT-SAGA exhibits superior performance compared with GT-SARAH and other

existing approaches in large-scale network regimes like Internet of Things (IoT).

3.1 Introduction

We consider decentralized finite-sum minimization of N := nm cost functions that takes the following form:

min
x∈Rp

F (x) := 1
n

n∑
i=1

fi(x), fi(x) := 1
m

m∑
j=1

fi,j(x), (3.1)

where each fi : Rp → R, further decomposed as the average of m component costs {fi,j}m
j=1, is available

only at the i-th node in a network of n nodes. The network is abstracted as a directed graph G := {V, E},

where V := {1, · · · , n} is the set of node indices and E ⊆ V ×V is the collection of ordered pairs (i, r), i, r ∈ V,

such that node r sends information to node i. We adopt the convention that (i, i) ∈ E , ∀i ∈ V. Each node

48
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in the network is restricted to local computation and communication with its neighbors. Throughout the

chapter, we focus on the case where each fi,j is differentiable, not necessarily convex, and F is bounded

below. This formulation often appears in decentralized empirical risk minimization, where each local cost fi

can be considered as an empirical risk computed over a finite number of m local data samples [31], and lies

at the heart of many modern machine learning problems [7,27]. Examples include non-convex linear models

and neural networks. When the local data size m is large, evaluating the exact gradient ∇fi of each local

cost at each iteration becomes computationally expensive and methods that efficiently sample each local

data batch are preferable. We are thus interested in designing fast stochastic gradient algorithms to find

an ϵ-accurate first-order stationary point x̂ ∈ Rp such that E
[
∥∇F (x̂)∥2] ≤ ϵ2.

Towards Problem (3.1), DSGD [19, 37–39], a decentralized version of stochastic gradient descent (SGD) [7,

47, 128], is often used to address the large-scale and decentralized nature of the data. DSGD is popular for

several inference and learning tasks due to its simplicity of implementation and speedup in comparison

to its centralized counterparts [2]. DSGD and its variants have been been extensively studied for different

computation and communication needs, e.g., momentum [40], directed graphs [41], escaping saddle-points [42,

43], zeroth-order schemes [44], swarming-based implementations [45], and constrained problems [46]. The

performance of DSGD for the non-convex Problem (3.1) however suffers from three major challenges: (i) the

non-degenerate variance of the stochastic gradients at each node; (ii) the dissimilarity among the local

functions across the nodes; and (iii) the transient time to reach the network topology independent region.

To elaborate these issues, we recap DSGD for Problem (3.1) and its convergence results as follows. Let xk
i ∈ Rp

denote the iterate of DSGD at node i and iteration k. At each node i, DSGD performs [37,39]

xk+1
i =

n∑
r=1

wirxk
r − α · gk

i , k ≥ 0, (3.2)

where W = {wir} ∈ Rn×n is a weight matrix that respects the network topology, while gk
i ∈ Rp is a

stochastic gradient such that E[gk
i |xk

i ] = ∇fi(xk
i ). Assuming the bounded variance of each local stochastic

gradient gk
i , the bounded dissimilarity between the local and the global gradient [2], i.e., for some ν > 0

and ζ > 0,

sup
i∈V,k≥0

E
[∥∥gk

i − ∇fi(xk
i )
∥∥2
]

≤ ν2 and sup
x∈Rp

1
n

n∑
i=1

∥∇fi(x) − ∇F (x)∥2 ≤ ζ2, (3.3)

and L-smoothness of each fi, it is shown in [2] that, for small enough α > 0,

1
K

K−1∑
k=0

E
[∥∥∇F (xk)

∥∥2
]

= O
(

F (x0) − F ∗

αK
+ αLν2

n
+ α2L2ν2

1 − λ
+ α2L2ζ2

(1 − λ)2

)
, (3.4)

where xk := 1
n

∑n
i=1 xk

i and (1 − λ) ∈ (0, 1] is the spectral gap of the weight matrix W. It then follows that [2]

for K large enough and with an appropriate step-size α, DSGD finds an ϵ-accurate first-order stationary point
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of F in O(ν2Lϵ−4) stochastic gradient computations across all nodes and therefore achieves asymptotic linear

speedup compared to the centralized SGD [7,47] that executes at a single node. Clearly, there are three issues

with the convergence properties of DSGD:

• Due to the non-degenerate stochastic gradient variance, the gradient complexity of DSGD does not

match that of the centralized near-optimal variance-reduced methods when minimizing a finite-sum of

smooth non-convex functions [48–50].

• The bounded dissimilarity assumption on the local and global gradients [2, 41, 43] or the coercivity of

each local function [42] is essential for establishing the convergence of DSGD. In fact, a counterexample

has been shown in [15] that DSGD diverges for any constant step-size when these types of assumptions

are violated. Furthermore, the practical performance of DSGD degrades significantly when the local

and the global gradients are substantially different, i.e., when the data distributions across the nodes

are largely heterogeneous [3, 4, 20].

• DSGD achieves linear speedup only asymptotically, i.e., after a finite number of transient iterations that

is a polynomial function of n, ν, ζ, L, and (1 − λ) [2, 40,116].

In this chapter, we show that the GT-VR framework presented in Chapter 2 provably addresses the

aforementioned challenges posed by DSGD in decentralized non-convex finite-sum optimization. We further

discuss trade-offs between different instantiations of GT-VR in this context.

3.2 Stochastic recursive variance reduction

In this section, we present and analyze the convergence properties of an instance of the GT-VR framework

that uses a recursive variance reduction technique [58].

3.2.1 Main contributions

We propose GT-SARAH, a novel decentralized stochastic variance-reduced gradient method that provably

addresses the aforementioned challenges posed by DSGD. GT-SARAH is based on a local SARAH-type gradient

estimator [48,49], which removes the variance incurred by the local stochastic gradients, and global gradient

tracking (GT) [55,65,129], that fuses the gradient estimators across the nodes such that the bounded dissim-

ilarity or the coercivity type assumptions are not required. Our main technical contributions for GT-SARAH

are summarized in the following.
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• We show that GT-SARAH, under appropriate algorithmic parameters, finds an ϵ-accurate first-order

stationary point x̂ of F such that E
[
∥∇F (x̂)∥2] ≤ ϵ2 in at most

HR := O
(

max
{

N
1/2, n(1 − λ)−2, n

2/3m
1/3(1 − λ)−1}Lϵ−2)

component gradient computations across all nodes. The gradient complexity HR significantly outper-

forms that of the existing decentralized stochastic gradient algorithms for Problem (3.1); see Table 3.1.

• In a big-data regime such that n = O(N 1/2(1 − λ)3), the gradient complexity HR of GT-SARAH reduces

to H̃R := O(N 1/2Lϵ−2). We emphasize that H̃R is independent of the network topology and matches

that of the centralized near-optimal variance-reduced methods [48–50] under a slightly stronger smooth-

ness assumption; see Remark 3.2.1 for details. Furthermore, since GT-SARAH computes n gradients in

parallel at each iteration, its per-node gradient complexity in this regime is O(N 1/2n−1ϵ−2), demon-

strating a non-asymptotic linear speedup compared with the aforementioned centralized near-optimal

methods [48–50] that perform all gradient computations at a single node. To the best of our knowledge,

GT-SARAH is the first decentralized method that achieves this property for Problem (3.1).

• We show that choosing the local minibatch size of GT-SARAH judiciously balances the trade-offs between

the gradient and communication complexity; see Corollary 3.2.1 and Subsection 3.2.4.3 for details.

• We establish that all nodes in GT-SARAH asymptotically achieve consensus and converge to a first-order

stationary point of F over infinite time horizon in the almost sure and mean-squared sense.

3.2.2 Related work

Several algorithms have been proposed to improve certain aspects of DSGD. For example, a stochastic vari-

ant of EXTRA [68], Exact Diffusion [20], and NIDS [69], called D2 [3], removes the bounded dissimilar-

ity assumption in DSGD based on a bias-correction principle. DSGT [4], introduced in [67] for smooth and

strongly convex problems, achieves a similar theoretical performance as D2 via gradient tracking [54–56,72],

but with more general choices of weight matrices. Reference [130] establishes asymptotic properties of a

decentralized stochastic primal-dual algorithm for smooth convex problems. Reference [131] develops de-

centralized primal-dual communication sliding algorithms that achieve communication efficiency for convex

and possibly nonsmooth problems. These methods however are subject to the non-degenerate variance of

the stochastic gradients. Inspired by the variance-reduction techniques for centralized stochastic optimiza-

tion [48–50,57,58,62–64,132–134], decentralized variance-reduced methods for smooth and strongly-convex

problems have been proposed recently, e.g., in [22–24, 31, 120]; in particular, the integration of gradient

tracking and variance reduction described here was introduced in [24,31] to obtain linear convergence.
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Table 3.1: A comparison of the gradient complexities of the-state-of-the-art decentralized stochastic gradient
methods to minimize a sum of N = nm smooth non-convex functions equally divided among n nodes. The
gradient complexity is in terms of the total number of component gradient computations across all nodes to
find a first-order stationary point x̂ ∈ Rp such that E

[
∥∇F (x̂)∥2] ≤ ϵ2. In the table, ν2 denotes the bounded

variance of the stochastic gradients described in (3.3), (1 − λ) ∈ (0, 1] is the spectral gap of the network
weight matrix and L is the smoothness parameter of the cost functions. We note that the complexities of
DSGD, D2, DSGT in the table are established in the setting of stochastic first-order oracles, which is more
general than the finite-sum formulation considered here. Moreover, the complexities of DSGD, D2, DSGT in
the table are stated in the regime that ϵ is small enough for simplicity; see [2–4] for their precise expressions.
Finally, we note that only the best possible gradient complexity of GT-SARAH, in the sense of Theorem 3.2.3,
is presented in the table for conciseness; see Corollary 3.2.1 and Subsection 3.2.4.3 for detailed discussion on
balancing the trade-offs between the gradient and communication complexity of GT-SARAH.

Algorithm Gradient complexity Remarks

DSGD [2] O
(

ν2L

ϵ4

)
bounded variance,

bounded dissimilarity

D2 [3] O
(

ν2L

ϵ4

)
bounded variance

GT-DSGD [4] O
(

ν2L

ϵ4

)
bounded variance

D-GET [135] O
(

n
1/2N

1/2Lb

(1 − λ)aϵ2

)
a, b ∈ R+ are not

explicitly shown in [135]

GT-SARAH
(this work) O

(
max

{
N

1/2,
n

(1 − λ)2 ,
n

2/3m
1/3

1 − λ

}
L

ϵ2

)
See Theorem 3.2.3 and

Corollary 3.2.1

A recent paper [135] proposes D-GET for Problem (3.1), which also considers local SARAH-type variance

reduction and gradient tracking. In the following, we compare our work to [135] from a few major technical

aspects.1 First, the gradient complexity HR of GT-SARAH improves that of D-GET in terms of the dependence

on n and m; see Table 3.1. In particular, in a big-data regime, n = O(N 1/2(1−λ)3), HR matches the gradient

complexity of the centralized near-optimal methods [48–50]; in contrast, the gradient complexity of D-GET

is worse than that of the centralized near-optimal methods by a factor of n
1/2 even if the network is fully-

connected. Second, the complexity results of D-GET are attained with a specific local minibatch size m
1/2.

Conversely, we establish general complexity bounds of GT-SARAH with arbitrary local minibatch size and

characterize the computation-communication trade-offs induced by different choices of the minibatch size.

Third, the Lyapunov function based convergence analysis of D-GET does not show explicit dependence of

several important problem parameters, such as (1−λ) and L, while the analysis in this work reveals explicitly

the dependence of all problem related parameters and sheds light on their implications. Fourth, we note that

both GT-SARAH and D-GET achieve a worst case communication complexity of the form O((1 − λ)−aLbϵ−2),

independent of m and n, for some a, b ∈ R+. Since the dependence of a and b in D-GET are not explicit, it

is unclear which algorithm achieves a lower communication complexity. Finally, [135] presents a variant of

D-GET that is applicable to a more general online setting such as expected risk minimization.
1Note that [135] uses E[∥∇F (x̂)∥2] ≤ ϵ as the performance metric, while we use E[∥∇F (x̂)∥2] ≤ ϵ2 here. We state the

complexities of D-GET established in [135] under our metric for consistency.
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SARAH-based VR 
Node

Global GT 
Network

Figure 3.1: Each node i samples a minibatch of stochastic gradients {∇fi,τl
}B

l=1 at each iteration from its
local data batch and computes an estimator vi of its local batch gradient ∇fi via a SARAH-type variance
reduction (VR) procedure. These local gradient estimators vi’s are then fused over the network via a gradient
tracking technique to obtain yi’s that approximate the global gradient ∇F .

3.2.3 The GT-SARAH algorithm

We now systematically build the proposed algorithm GT-SARAH and provide the basic intuition. We recall

that the performance (3.4) of DSGD, in addition to the first term which is similar to that of the centralized

batch gradient descent, has three additional bias terms. The second and third bias terms in (3.4) depend on

the variance ν2 of local stochastic gradients. A variance-reduced gradient estimation procedure of SARAH-

type [48, 49], employed locally at each node i in GT-SARAH, removes ν2. The last bias term in (3.4) is due

to the dissimilarity ζ2 between the local gradients {∇fi}n
i=1 and the global gradient ∇F . A dynamic fusion

mechanism, called gradient tracking [54–56,65,73], removes ζ2 by tracking the average of the local gradient

estimators in GT-SARAH to learn the global gradient at each node. This process is illustrated in Fig. 3.1.

The complete implementation of GT-SARAH is summarized in Algorithm 3, where we assume that all nodes

start from the same point x0,1 ∈ Rp. GT-SARAH can be interpreted as a double loop method with an outer

loop, indexed by s, and an inner loop, indexed by t. At the beginning of each outer loop s, GT-SARAH com-

putes the local batch gradient v0,s
i := ∇fi(x0,s

i ) at each node i. These batch gradients are then used to

compute the first iteration of the global gradient tracker y1,s
i and the state update x1,s

i . The three quan-

tities, v0,s
i , y1,s

i , x1,s
i , set up the subsequent inner loop iterations. At each inner loop iteration t ≥ 1, each

node i samples two minibatch stochastic gradients from its local data that are used to construct the gradient

estimator vt,s
i . We note that the gradient estimator is of recursive nature, i.e., it depends on vt−1,s

i and

the minibatch stochastic gradients evaluated at the current and the past states xt,s
i and xt−1,s

i . The next

step is to update yt+1,s
i based on the gradient tracking protocol. Finally, the state xt+1,s

i at each node i

is computed as a convex combination of the states of the neighboring nodes followed by a descent in the

direction of the gradient tracker yt+1,s
i . The latest updates xq+1,s

i , yq+1,s
i and vq,s

i then set up the next

inner-outer loop cycle of GT-SARAH.



CHAPTER 3. DECENTRALIZED SMOOTH NON-CONVEX FINITE-SUM OPTIMIZATION 54

Algorithm 3 GT-SARAH at each node i

Require: x0,1
i = x0,1 ∈ Rp, α ∈ R+, q ∈ Z+, S ∈ Z+, B ∈ Z+, {wir}n

r=1, y0,1
i = 0p, v−1,1

i = 0p.
1: for s = 1, 2, · · · , S do
2: v0,s

i = ∇fi(x0,s
i ) = 1

m

∑m
j=1 ∇fi,j(x0,s

i ); ▷ batch gradient computation

3: y1,s
i =

∑n
r=1 wiry0,s

i + v0,s
i − v−1,s

i ▷ gradient tracking

4: x1,s
i =

∑n
r=1 wirx0,s

r − αy1,s
i ▷ state update

5: for t = 1, 2, · · · , q do

6: for l in {1, · · · , B}, choose τ t,s
i,l uniformly at random from {1, · · · , m}; ▷ sampling

7: vt,s
i = 1

B

∑B
l=1

(
∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

))
+ vt−1,s

i ; ▷ SARAH

8: yt+1,s
i =

∑n
r=1 wiryt,s

r + vt,s
i − vt−1,s

i ; ▷ gradient tracking

9: xt+1,s
i =

∑n
r=1 wirxt,s

r − αyt+1,s
i ; ▷ state update

10: end for

11: Set x0,s+1
i = xq+1,s

i ; y0,s+1
i = yq+1,s

i ; v−1,s+1
i = vq,s

i . ▷ next cycle

12: end for

3.2.4 Main convergence results

In this section, we present the main convergence results of GT-SARAH and discuss their implications. We

make the following assumptions to establish the convergence properties of GT-SARAH.

Assumption 3.2.1. Each local component cost fi,j is differentiable and {fi,j}m
j=1 satisfies a mean-squared

smoothness property, i.e., for some L > 0,

1
m

m∑
j=1

∥∇fi,j(x) − ∇fi,j(y)∥2 ≤ L2∥x − y∥2, ∀i ∈ V, ∀x, y ∈ Rp. (3.5)

In addition, the global cost F is bounded below, i.e., F ∗ := infx∈Rp F (x) > −∞.

It is clear that under Assumption 3.2.1, each fi and F are L-smooth. We note that Assumption 3.2.1 is

weaker than requiring each fi,j to be L-smooth.

Remark 3.2.1. The local mean-squared smoothness assumption (3.5), which is also used in the exist-

ing work [135], is slightly stronger than the smoothness assumption required by the existing lower bound

Ω(N 1/2Lϵ−2) [49, 136] and the centralized near-optimal methods [48–50] for finite-sum problems in the fol-

lowing sense. If we view Problem (3.1) as a centralized optimization problem, that is, all fi,j ’s are available

at a single node, then the aforementioned lower bound and the convergence of the centralized near-optimal

methods are established under the following assumption:

1
nm

n∑
i=1

m∑
j=1

∥∇fi,j(x) − ∇fi,j(y)∥2 ≤ L2∥x − y∥2, ∀x, y ∈ Rp. (3.6)
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Clearly, (3.6) is implied by (3.5) but not vice versa. Due to this subtle difference, it is unclear whether the

existing lower bound Ω(N 1/2Lϵ−2) [49, 136] established under (3.6) remains valid under (3.5). Finally, we

note that a lower bound result for decentralized deterministic first-order algorithms in the case of m = 1

can be found in [87].

Assumption 3.2.2. The family
{

τ t,s
i,l : t ∈ [1, q], s ≥ 1, i ∈ V, l ∈ [1, B]

}
of random variables is independent.

Assumption 3.2.2 is standard in the stochastic optimization literature, e.g., [7, 49].

Assumption 3.2.3. The nonnegative weight matrix W := {wir} ∈ Rn×n associated with the network G =

(V, E) has positive diagonals and is primitive. Moreover, W is doubly stochastic, i.e., W1n = 1n and

1⊤
n W = 1⊤

n .

An important consequence of Assumption 3.2.3 is that [56]

λ :=
∥∥W − 1

n 1n1⊤
n

∥∥ = λ2(W) ∈ [0, 1), (3.7)

where λ2(W) denotes the second largest singular value of W.2 We term (1 − λ) as the spectral gap of W

that characterizes the connectivity of the network [27].

Remark 3.2.2. Weight matrices satisfying Assumption 3.2.3 may be designed for the family of strongly-

connected directed graphs that admit doubly-stochastic weights: (i) towards the primitivity requirement

in Assumption 3.2.3, we note that if a graph is strongly-connected, then its associated weight matrix W

is irreducible [36, Theorem 6.2.14, 6.2.24] and W is further primitive since it is nonnegative with positive

diagonals [36, Lemma 8.5.4]; (ii) towards the doubly stochastic requirement in Assumption 3.2.3, we refer

the readers to [125] for necessary and sufficient conditions under which a strongly connected directed graph

admits doubly stochastic weights.

An important special case of this family is undirected connected graphs where doubly stochastic weights

always exist and can be constructed in an efficient and decentralized manner, for instance, by the lazy Metro-

plis rule [27]. Hence, Assumption 3.2.3 is more general than the one required by EXTRA-based algorithms for

decentralized optimization. For example, the weight matrix of D2 needs to be symmetric and meet certain

spectral properties [3] and is therefore not applicable to directed graphs.

We formally state the convergence results of GT-SARAH next, whose proofs are deferred to Subsection 3.2.6.2.
2We note that the relation in (3.7) may be established by following the definition of the spectral norm with the help

of the primitivity and doubly stochasticity of W and W⊤W, Perron-Frobenius theorem, and the spectral decomposition
of W⊤W [36, 56].
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3.2.4.1 Asymptotic almost sure and mean-squared convergence

The following theorem shows the asymptotic convergence of GT-SARAH.

Theorem 3.2.1. Let Assumptions 3.2.1-3.2.3 hold. Suppose that the step-size α, minibatch size B, and the

inner-loop length q of GT-SARAH follow

0 < α ≤ min
{

(1 − λ2)2

4
√

42
,

(
nB

6q

)1/2

,

(
4nB

7nB + 24q

)1/4 1 − λ2

6

}
1

2L
,

where B ∈ [1, m]. Then we have: ∀t ∈ [0, q], ∀i ∈ V,

P
(

lim
s→∞

∥∥∇F (xt,s
i )
∥∥ = 0

)
= 1 and lim

s→∞
E
[∥∥∇F (xt,s

i )
∥∥2
]

= 0,

P
(

lim
s→∞

∥∥xt,s
i − xt,s

∥∥ = 0
)

= 1 and lim
s→∞

E
[∥∥xt,s

i − xt,s
∥∥2
]

= 0,

where xt,s := 1
n

∑n
i=1 xt,s

i .

In addition to the mean-squared convergence that is standard in the stochastic optimization literature,

the almost sure convergence in Theorem 3.2.1 guarantees that all nodes in GT-SARAH asymptotically achieve

consensus and converge to a first-order stationary point of F on almost every sample path.

3.2.4.2 Complexities of GT-SARAH for finding first-order stationary points

We measure the outer-loop complexity of GT-SARAH in the following sense.

Definition 3.2.1. Consider the sequence of random vectors {xt,s
i } generated by GT-SARAH, at each node i.

We say that GT-SARAH finds an ϵ-accurate first-order stationary point of F in S outer-loop iterations if

1
S(q + 1)

S∑
s=1

q∑
t=0

1
n

n∑
i=1

E
[∥∥∇F

(
xt,s

i

)∥∥2 + L2∥∥xt,s
i − xt,s

∥∥2
]

≤ ϵ2. (3.8)

This is a standard metric that is concerned with the minimum of the stationary gaps and consensus

errors over iterations in the mean-squared sense at each node [2, 3, 48–50]. In particular, if (3.8) holds and

the output x̂ of GT-SARAH is chosen uniformly at random from the set {xt,s
i : 0 ≤ t ≤ q, 1 ≤ s ≤ S, i ∈ V},

then we have E[∥∇F (x̂)∥2] ≤ ϵ2. We first provide the outer-loop iteration complexity of GT-SARAH.

Theorem 3.2.2. Let Assumptions 3.2.1-3.2.3 hold. Suppose that the step-size α, minibatch size B, and the

inner-loop length q of GT-SARAH follow

0 < α ≤ min
{

(1 − λ2)2

4
√

42
,

(
nB

6q

)1/2

,

(
4nB

7nB + 24q

)1/3 1 − λ2

6

}
1

2L
,

where B ∈ [1, m]. Then the number of the outer-loop iterations S required by GT-SARAH to find an ϵ-accurate

stationary point of F is at most

1
(q + 1)αLϵ2

(
4L
(
F (x0,1) − F ∗)+ 1

n

n∑
i=1

∥∥∇fi(x0,1)
∥∥2
)

.
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Using Theorem 3.2.2, the gradient and communication complexities of GT-SARAH can be readily established.

Theorem 3.2.3. Let Assumptions 3.2.1-3.2.3 hold. Suppose that the step-size α and the length q of the

inner loop of GT-SARAH are chosen as3

q = O
(m

B

)
and α = O

(
min

{
(1 − λ)2,

n
1/2B

m1/2
,

n
1/3B

2/3(1 − λ)
m1/3

}
1
L

)
, (3.9)

where B ∈ [1, m]. Then GT-SARAH finds an ϵ-accurate stationary point of F in

HB := O
(

max
{

nB

(1 − λ)2 , N
1/2,

m
1/3n

2/3B
1/3

1 − λ

}
∆
ϵ2

)
component gradient computations across all nodes and

KB := O
(

max
{

1
(1 − λ)2 ,

m
1/2

n1/2B
,

m
1/3

n1/3B2/3(1 − λ)

}
∆
ϵ2

)
rounds of communication, where ∆ := L

(
F
(
x0,1)− F ∗)+ 1

n

∑n
i=1 ∥∇fi(x0,1)∥2.

Remark 3.2.3. Theorem 3.2.3 holds for an arbitrary minibatch size B ∈ [1, m].

Remark 3.2.4. The gradient complexity at each node of GT-SARAH is HB/n.

In view of Theorem 3.2.3, as the minibatch size B increases, the gradient complexity HB (resp. the

communication complexity KB) of GT-SARAH is non-decreasing (resp. non-increasing). The following corol-

lary may be obtained from Theorem 3.2.3 by standard algebraic manipulations and shows that choosing the

minibatch size B appropriately leads to favorable computation and communication trade-offs.

Corollary 3.2.1. Let Assumptions 3.2.1-3.2.3 hold. Suppose that the step-size α and the inner-loop length q

of GT-SARAH are chosen according to (3.9). We have the following complexity results.

(i) If B ∈ [1, ⌊R⌋], where R := max
{

m
1/2n−1/2(1 − λ)3, 1

}
, then GT-SARAH attains the best possible, in

the sense of Theorem 3.2.3, gradient complexity

HR := O
(

max
{

n

(1 − λ)2 , N
1/2,

m
1/3n

2/3

1 − λ

}
∆
ϵ2

)
; (3.10)

moreover, when B = ⌊R⌋, the corresponding communication complexity of GT-SARAH is

KR := O
(

max
{

1
(1 − λ)2 , min

{
m

1/2

n1/2
,

1
(1 − λ)3

}
, min

{
m

1/3

n1/3(1 − λ)
,

1
(1 − λ)3

}}
∆
ϵ2

)
. (3.11)

(ii) If B ∈ [⌈C⌉, m], where C := max
{

m
1/2n−1/2(1 − λ)3/2, 1

}
, then GT-SARAH attains the best possible,

in the sense of Theorem 3.2.3, communication complexity

KC := O
(

1
(1 − λ)2

∆
ϵ2

)
; (3.12)

3The O notation only hides universal constants that are independent of problem parameters.
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moreover, when B = ⌈C⌉, the corresponding gradient complexity of GT-SARAH is

HC := O
(

max
{

n

(1 − λ)2 ,
N

1/2

(1 − λ)1/2
,

m
1/3n

2/3

1 − λ

}
∆
ϵ2

)
. (3.13)

Comparing (3.10) (3.11) with (3.13) (3.12), we clearly have HR ≤ HC and KR ≥ KC .

3.2.4.3 Two regimes of practical significance

We now discuss the implications of the complexity results in Corollary 3.2.1 and the corresponding computation-

communication trade-offs in the following regimes of practical significance.

• Big-data regime: n = O(N 1/2(1 − λ)3). In this regime, typical to large-scale machine learning, i.e.,

the total number of data samples N is very large, it can be verified that HR reduces to H̃R :=

O(N 1/2∆ϵ−2) and KR reduces to K̃R := O((1 − λ)−3∆ϵ−2). It is worth noting that H̃R is independent

of the network topology and matches the gradient complexity of the centralized near-optimal variance-

reduced methods [48–50] for this problem class up to constant factors, under a slightly stronger smooth-

ness assumption; see Remark 3.2.1. Moreover, H̃R demonstrates a non-asymptotic linear speedup in

that the number of component gradient computations required at each node to achieve an ϵ-accurate

stationary point of F is reduced by a factor of 1/n, compared to the aforementioned centralized near-

optimal algorithms [48–50] that perform all gradient computations at a single node. On the other

hand, it is straightforward to verify that HC reduces to H̃C := O(N 1/2(1 − λ)−1/2∆ϵ−2). In other

words, in this big-data regime, choosing a large minibatch size B = ⌈C⌉ improves the communication

complexity from K̃R to KC while deteriorates the gradient complexity from H̃R to H̃C , demonstrating

an interesting trade-off between computation and communication.

• Large-scale network regime: n = Ω(N 1/2(1 − λ)3/2). In this regime, typical to ad hoc IoT networks,

i.e., the number of the nodes n and the network spectral gap inverse (1 − λ)−1 are large compared

with the total number of samples N , it can be verified that R = C = 1 and consequently HR = HC

reduce to O(n(1 − λ)−2∆ϵ−2) while KR = KC reduce to O((1 − λ)−2∆ϵ−2). In other words, in this

large-scale network regime, the minibatch size B = O(1) is preferred since it attains the best possible

gradient and communication complexity simultaneously, in the sense of Theorem 3.2.3.

Remark 3.2.5 (Characterization of the big-data regime). We note that the number of nodes n may be

interpreted as the intrinsic minibatch size of GT-SARAH. We recall that the centralized near-optimal variance-

reduced algorithms [48–50] for this problem class retain their best possible gradient complexity if their

minibatch size does not exceed N
1/2 [48]. Thus, the aforementioned big-data regime n = O(N 1/2(1 − λ)3)
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approaches the centralized one as the network connectivity improves and matches the centralized one when

the network is fully connected, i.e., λ = 0.

3.2.5 Numerical experiments

In this section, we illustrate, by numerical experiments, our main theoretical claim that GT-SARAH finds a

first-order stationary point of Problem (3.1) with a significantly improved gradient complexity compared to

the existing decentralized stochastic gradient methods.

3.2.5.1 Setup

We consider a non-convex logistic regression model [137] for binary classification over a decentralized network

of n nodes with m data samples at each node: minx∈Rp F (x) := 1
n

∑n
i=1

1
m

∑m
j=1

(
fi,j(x) + r(x)

)
, such that

the logistic loss fi,j(x) and the non-convex regularization r(x) are given by

fi,j(x) := log
[
1 + exp

{
− (x⊤θi,j)ξi,j

}]
and r(x) := R

p∑
d=1

[x]2d
1 + [x]2d

, (3.14)

where [x]d denotes the d-th coordinate of x. In (3.14), note that θi,j ∈ Rp is the j-th data sample at

the i-th node and ξi,j ∈ {−1, +1} is the corresponding binary label. The details of the datasets under

consideration are provided in Table 3.2. We normalize each data sample such that ∥θi,j∥ = 1, ∀i, j, and

set the regularization parameter as R = 10−3. The doubly stochastic weight matrices associated with the

networks are generated by the lazy Metroplis rule [27]. We characterize the performance of the algorithms

in comparison in terms of the decrease of the network stationary gap versus epochs, where the stationary

gap is defined as ∥∇F (x)∥+ 1
n

∑n
i=1 ∥xi −x∥, where xi is the estimate of the stationary point of F at node i

and x := 1
n

∑n
i=1 xi, and each epoch represents m component gradient computations at each node.

3.2.5.2 Performance comparisons

We compare the performance of GT-SARAH with DSGT [4] and D-GET [135]; we note that D2 [3] and DSGD [2]

are not presented here for conciseness, since in general the former achieves a similar performance with DSGT

and the latter underperforms DSGT and D2 [3, 15, 31]. Towards the parameter selection of each algorithm,

we use the following setup: (i) for GT-SARAH, we choose its minibatch size as B = 1 and its inner-loop

length as q = m in light of Corollary 3.2.1; (ii) for D-GET, we choose its minibatch size and inner-loop length

as ⌊m
1/2⌋ under which its convergence is established; see Theorem 1 in [135]; and (iii) we manually optimize

the step-sizes for GT-SARAH, D-GET, and DSGT across all experiments.

We first compare the performances of GT-SARAH, DSGT, and D-GET in the big-data regime, that is, the

number of samples m at each node is relatively large. To this aim, we distribute the covertype, MiniBooNE,
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Table 3.2: Datasets used in numerical experiments, available at https://www.openml.org/.

Dataset Number of samples (N = nm) dimension (p)

covertype 100,000 54

MiniBooNE 100,000 51

KDD98 82,000 477

w8a 60,000 300

a9a 48,800 124

Fashion-MNIST (T-shirt versus dress) 10,000 784
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Figure 3.2: Performance comparison of GT-SARAH, DSGT, and D-GET over a 10-node exponential graph on the
covertype, MiniBooNE, and KDD98 dataset.
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Figure 3.3: Performance comparison of GT-SARAH, DSGT, and D-GET over the 10 × 10 grid graph on the w8a,
a9a, and Fashion-MNIST dataset.

and KDD98 dataset over a 10-node exponential graph [27] whose associated second largest singular value λ ≈

0.71. The experimental results are presented in Fig. 3.2, where GT-SARAH outperforms DSGT and D-GET. We

also observe that D-GET outperforms DSGT in this case since the performance of the latter is deteriorated by

the large variance of the stochastic gradients as the number of the samples m at each node is large.

We next consider the large-scale network regime, where the network spectral gap inverse (1 − λ)−1 and

the number of the nodes n are relatively large compared with the local sample size m. We distribute the

w8a, a9a, and Fashion-MNIST dataset over the n = 10 × 10 grid graph whose associated second largest

eigenvalue λ ≈ 0.99. The performance comparison of the algorithms is shown in Fig. 3.3, where we observe

that GT-SARAH still outperforms DSGT and D-GET. Besides, it is worth noting that D-GET underperforms DSGT

https://www.openml.org/
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in this case. We provide an explanation about this phenomenon in the following. In the regime where m

is relatively small, the variance of the stochastic gradients is relatively small and as a consequence DSGT

performs well. On the other hand, the minibatch size ⌊m
1/2⌋ of D-GET is too large in this regime to achieve

a satisfactory performance; see the related discussion in Subsection 3.2.4.3.

3.2.6 Outline of the convergence analysis

In this section, we present the proof pipeline for Theorems 3.2.1, 3.2.2, and 3.2.3. The analysis framework

is novel and general and may be applied to other decentralized algorithms built around variance reduction

and gradient tracking. To proceed, we first write GT-SARAH in a matrix form. Recall that GT-SARAH is a

double loop method, where the outer loop index is s ∈ {1, . . . , S} and the inner loop index is t ∈ {0, . . . , q}.

It is straightforward to verify that GT-SARAH can be equivalently written as: ∀s ≥ 1 and t ∈ [0, q],

yt+1,s = Wyt,s + vt,s − vt−1,s, (3.15a)

xt+1,s = Wxt,s − αyt+1,s, (3.15b)

where vt,s, xt,s, and yt,s, in Rnp, that concatenate local gradient estimators {vt,s
i }n

i=1, states {xt,s
i }n

i=1,

and gradient trackers {yt,s
i }n

i=1, respectively, and W := W ⊗ Ip. We recall that x0,s+1 = xq+1,s, y0,s+1 =

yq+1,s, v−1,s+1 = vq,s, ∀s ≥ 1, and v−1,1 = 0np from Algorithm 3 under the vector notation. Under

Assumption 3.2.3, we have [36]

J := lim
k→∞

Wk =
(

1
n 1n1⊤

n

)
⊗ Ip,

i.e., the power limit of the network weight matrix W is the exact averaging matrix J. We also introduce the

following notation for convenience:

∇f(xt,s) :=
[
∇f1(xt,s

1 )⊤, · · · , ∇fn(xt,s
n )⊤]⊤ , ∇f(xt,s) := 1

n (1⊤
n ⊗ Ip)∇f(xt,s),

xt,s := 1
n (1⊤

n ⊗ Ip)xt,s, yt,s = 1
n (1⊤

n ⊗ Ip)yt,s, vt,s := 1
n (1⊤

n ⊗ Ip)vt,s.

In particular, we note that ∥∇f(x0,1)∥2 :=
∑n

i=1 ∥∇fi(x0,1)∥2. Through the rest of Section 3.2, we assume

that Assumptions 3.2.1, 3.2.2, and 3.2.3 hold without explicitly stating them. We define the natural filtration

associated with the probability space, an increasing family of sub-σ-algebras of F , as

F t,s := σ
(

σ
(
τ t−1,s

i,l : i ∈ V, l ∈ [1, B]
)
, F t−1,s

)
, t ∈ [2, q + 1], s ≥ 1,

where F1,s :=: F0,s := Fq+1,s−1, s ≥ 2, and F1,1 :=: F0,1 are the trivial σ-algebra. It can be verified by

induction that xt,s, yt,s are F t,s-measurable, and vt,s is F t+1,s-measurable, ∀s ≥ 1 and t ∈ [0, q]. We assume

that the starting point x0,1 of GT-SARAH is a constant vector. We next present some standard results in
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the context of decentralized optimization and gradient tracking methods. The following lemma provides an

upper bound on the difference between the exact global gradient and the average of local batch gradients in

terms of the state consensus error, as a result of the L-smoothness of each fi.

Lemma 3.2.1.
∥∥∇f(xt,s) − ∇F (xt,s)

∥∥2 ≤ L2

n

∥∥xt,s − Jxt,s
∥∥2, ∀s ≥ 1 and t ∈ [0, q].

Proof. Observe that: ∀s ≥ 1 and t ∈ [0, q],

∥∥∇f(xt,s) − ∇F
(
xt,s
)∥∥2 = 1

n2

∥∥∥∥∥
n∑

i=1

(
∇fi

(
xt,s

i

)
− ∇fi

(
xt,s
))∥∥∥∥∥

2

= 1
n

n∑
i=1

∥∥∇fi

(
xt,s

i

)
− ∇fi

(
xt,s
)∥∥2

≤ L2

n

n∑
i=1

∥∥xt,s
i − xt,s

∥∥2
,

where the last line is due to the L-smoothness of each fi. The proof is complete.

The following are some standard inequalities on the state consensus error.

Lemma 3.2.2. The following inequalities holds: ∀s ≥ 1 and t ∈ [0, q],

∥∥xt+1,s − Jxt+1,s
∥∥2 ≤ 1 + λ2

2
∥∥xt,s − Jxt,s

∥∥2 + 2α2

1 − λ2

∥∥yt+1,s − Jyt+1,s
∥∥2

. (3.16)∥∥xt+1,s − Jxt+1,s
∥∥2 ≤ 2

∥∥xt,s − Jxt,s
∥∥2 + 2α2∥∥yt+1,s − Jyt+1,s

∥∥2
. (3.17)

Proof. Using (3.15b) and the fact that JW = J, we have: ∀s ≥ 1 and ∀t ∈ [0, q],

∥∥xt+1,s − Jxt+1,s
∥∥2 =

∥∥Wxt,s − αyt+1,s − J
(
Wxt,s − αyt+1,s

)∥∥2

=
∥∥Wxt,s − Jxt,s − α

(
yt+1,s − Jyt+1,s

)∥∥2 (3.18)

We apply Young’s inequality, ∥a +b∥2 ≤ (1+η)∥a∥2 +(1+η−1)∥b∥2, ∀a, b ∈ Rnp, ∀η > 0, and Lemma 3.2.4

to (3.18) to obtain: ∀s ≥ 1 and ∀t ∈ [0, q],

∥∥xt+1,s − Jxt+1,s
∥∥2 ≤ (1 + η) λ2∥∥xt,s − Jxt,s

∥∥2 +
(
1 + η−1)α2∥∥yt+1,s − Jyt+1,s

∥∥2
.

Setting η as 1−λ2

2λ2 and 1 respectively yields (3.16) and (3.17).

3.2.6.1 Auxiliary relationships

First, as a consequence of the gradient tracking update (3.15b), it is straightforward to show by induction

the following result.

Lemma 3.2.3. yt+1,s = vt,s, ∀s ≥ 1 and t ∈ [0, q].
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Proof. See Section 3.2.7.1.

The above lemma states that the average of gradient trackers preserves the average of local gradient

estimators. Under Assumption 3.2.3, we obtain that the weight matrix W is a contraction operator [56].

Lemma 3.2.4. ∥Wx − Jx∥ ≤ λ∥x − Jx∥, ∀x ∈ Rnp, for λ ∈ [0, 1) defined in (3.7).

Lemmas 3.2.3 and 3.2.4 are standard in decentralized optimization and gradient tracking [54,56]. The L-

smoothness of F leads to the following quadratic upper bound [6]:

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩ + L

2 ∥y − x∥2
, ∀x, y ∈ Rp. (3.19)

Consequently, the following descent type lemma on the iterates generated by GT-SARAH may be established

by setting y = xt+1,s and x = xt,s in (3.19) and taking a telescoping sum across all iterations of GT-SARAH

with the help of Lemmas 3.2.3 and the L-smoothness of each fi.

Lemma 3.2.5. If the step-size follows that 0 < α ≤ 1
2L , then we have:

E
[
F
(
xq+1,S

)]
≤ F

(
x0,1)− α

2

S∑
s=1

q∑
t=0

E
[∥∥∇F (xt,s)

∥∥2
]

− α

4

S∑
s=1

q∑
t=0

E
[
∥vt,s∥2]

+ α

S∑
s=1

q∑
t=0

E
[∥∥vt,s− ∇f(xt,s)

∥∥2
]

+ αL2
S∑

s=1

q∑
t=0

E
[

∥xt,s − Jxt,s∥2

n

]
.

Proof. See Section 3.2.7.2.

In light of Lemma 3.2.5, our analysis approach is to derive the range of α of GT-SARAH such that

1
4

S∑
s=1

q∑
t=0

E
[
∥vt,s∥2]−

S∑
s=1

q∑
t=0

E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

− L2
S∑

s=1

q∑
t=0

E
[

∥xt,s − Jxt,s∥2

n

]
≥ 0,

and therefore establishes the convergence of GT-SARAH to a first-order stationary point following the standard

arguments in batch gradient descent for non-convex problems [6, 7]. To this aim, we need to derive upper

bounds for two error terms in the above expression: (i) ∥vt,s − ∇f(xt,s)∥2, the gradient estimation error;

and (ii) ∥xt,s − Jxt,s∥2, the state consensus error. We quantify these two errors next and then return to

Lemma 3.2.5. The following lemma is obtained with similar probabilistic arguments for SARAH-type [48–50]

estimators, however, with subtle modifications due to the decentralized network effect.

Lemma 3.2.6. We have: ∀s ≥ 1,

q∑
t=0

E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

≤ 3qα2L2

nB

q−1∑
t=0

E
[
∥vt,s∥2]+ 6qL2

nB

q∑
t=0

E
[

∥xt,s − Jxt,s∥2

n

]
.

Proof. See Section 3.2.7.3.
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Note that Lemma 3.2.6 shows that the accumulated gradient estimation error over one inner loop may

be bounded by the accumulated state consensus error and the norm of the gradient estimators. Lemma 3.2.6

thus may be used to simplify the right hand side of the descent inequality in Lemma 3.2.5. Naturally, what

is left is to seek an upper bound for the state consensus error in terms of E[∥vt,s∥2]. This result is presented

in the following lemma.

Lemma 3.2.7. If the step-size follows 0 < α ≤ (1−λ2)2

8
√

42L
, then

S∑
s=1

q∑
t=0

E
[

∥xt,s − Jxt,s∥2

n

]
≤ 64α2

(1 − λ2)3
∥∇f(x0,1)∥2

n
+ 1536α4L2

(1 − λ2)4

S∑
s=1

q∑
t=0

E
[
∥vt,s∥2].

Proof. See Section 3.2.7.4.

Establishing Lemma 3.2.7 requires a careful analysis; here, we provide a brief sketch. Recall the

GT-SARAH algorithm in (3.15a)-(3.15b) and note that the state vector xt,s is coupled with the gradient

tracker yt,s. Thus, in order to quantify the state consensus error ∥xt,s − Jxt,s∥2, we need to establish its

relationship with the gradient tracking error ∥yt,s−Jyt,s∥2. In fact, we show that these coupled errors jointly

formulate a linear time-invariant (LTI) system dynamics whose system matrix is stable under a certain range

of the step-size α. Solving this LTI yields Lemma 3.2.7.

Finally, it is straightforward to use Lemmas 3.2.6 and 3.2.7 to refine the descent inequality in Lemma 3.2.5

to obtain the following result.

Lemma 3.2.8. If 0 < α ≤ α := min
{

(1−λ2)2

4
√

42 ,
(

nB
6q

)1/2
,
( 4nB

7nB+24q

)1/4 1−λ2

6

}
1

2L , then

L2
S∑

s=1

q∑
t=0

E
[

∥xt,s − Jxt,s∥2

n

]
+ 1

n

n∑
i=1

S∑
s=1

q∑
t=0

E
[∥∥∇F

(
xt,s

i

)∥∥2
]

≤
4(F

(
x0,1)− F ∗)

α
+
(

7
4 + 6q

nB

)
256α2L2

(1 − λ2)3
∥∇f(x0,1)∥2

n
.

Proof. See Section 3.2.7.5.

We note that the descent inequality in Lemma 3.2.8 that characterizes the convergence of GT-SARAH is

independent of the variance of local gradient estimators and of the difference between the local and the

global gradient. In fact, it has similarities to that of the centralized batch gradient descent [6,7]; see also the

discussion on DSGD in Section 3.1. This is a consequence of the joint use of the local variance reduction and

the global gradient tracking. This is essentially why we are able to match the gradient complexity of the

centralized near-optimal methods for finite sum problems and obtain the almost sure convergence guarantee

of GT-SARAH to a stationary point.
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3.2.6.2 Proofs of the main theorems

With Lemma 3.2.8 at hand, Theorems 3.2.1, 3.2.2, and 3.2.3 are now straightforward to prove.

Proof of Theorem 3.2.1. We observe from Lemma 3.2.8 that if 0 < α ≤ α, then
∞∑

s=1

q∑
t=0

E
[
∥∇F (xt,s

i )∥2 + L2∥xt,s
i − xt,s∥2] < ∞, ∀i ∈ V,

which implies all nodes achieve consensus and converge to a stationary point in the mean-squared sense.

Further, by monotone convergence theorem [127], we exchange the order of the expectation and the series

to obtain:

E

[ ∞∑
s=1

q∑
t=0

(
∥∇F (xt,s

i )∥2 + L2∥xt,s
i − xt,s∥2)] < ∞, ∀i ∈ V,

which leads to

P

( ∞∑
s=1

q∑
t=0

(
∥∇F (xt,s

i )∥2 + L2∥xt,s
i − xt,s∥2) < ∞

)
= 1, ∀i ∈ V,

i.e., the consensus and convergence to a stationary point in the almost sure sense.

Proof of Theorem 3.2.2. We recall the metric of the outer loop complexity in Definition 3.2.1 and we divide

the descent inequality in Lemma 3.2.8 by S(q +1) from both sides. It is then clear that to find an ϵ-accurate

stationary point of F , it suffices to choose the total number of the outer loop iterations S such that

4
(
F (x0,1) − F ∗)
S(q + 1)α +

(
7
4 + 6q

nB

)
256α2L2

S(q + 1)(1 − λ2)3
∥∇f(x0,1)∥2

n
≤ ϵ2. (3.20)

The proof follows by that if 0 < α ≤
( 4nB

7nB+24q

)1/3 1−λ2

12L , then ( 7
4 + 6q

nB ) 256α2L2

(1−λ2)3 ≤ 1
αL , and by solving for the

lower bound on S such that (3.20) holds.

Proof of Theorem 3.2.3. During each inner loop, GT-SARAH incurs n(m + 2qB) component gradient com-

putations across all nodes and q rounds of communication of the network. Hence, to find an ϵ-accurate

stationary point of F , GT-SARAH requires, according to Theorem 3.2.2, at most

H = O
(

n(m + qB)
qαLϵ2

(
L
(
F
(
x0,1)− F ∗)+ ∥∇f(x0,1)∥2

n

)
component gradient computations across all nodes and

K = O
(

1
αLϵ2

(
L
(
F
(
x0,1)− F ∗)+ ∥∇f(x0,1)∥2

n

))
rounds of communication of the network. The proof follows by setting the step-size α as its upper bound in

Theorem 3.2.2 and the length of the inner loop as q = O( m
B ).

3.2.7 Detailed proofs for lemmata in Section 3.2.6

In this section, we present the proofs of the technical lemmas 3.2.3, 3.2.5, 3.2.6, 3.2.7, 3.2.8.
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3.2.7.1 Proof of Lemma 3.2.3

Using Assumption 3.2.3, we multiply (3.15a) by 1
n (1⊤

n ⊗ Ip) to obtain: ∀s ≥ 1 and t ∈ [0, q],

yt+1,s = yt,s + vt,s − vt−1,s

= yt−1,s + vt,s − vt−2,s

· · ·

= y0,s + vt,s − v−1,s

= yq+1,s−1 + vt,s − vq,s−1

· · ·

= y0,1 + vt,s − v−1,1 = vt,s,

where the above series of equalities follows directly from the updates of GT-SARAH.

3.2.7.2 Proof of Lemma 3.2.5

We multiply (3.15b) by 1
n (1⊤

n ⊗ Ip) and then use Lemma 3.2.3 to obtain the recursion of the mean state xt,s

as follows:

xt+1,s = xt,s − αyt+1,s = xt,s − αvt,s, ∀s ≥ 1 and t ∈ [0, q].

Setting y = xt+1,s and x = xt,s in (3.19), we have: ∀s ≥ 1 and t ∈ [0, q],

F (xt+1,s) ≤ F (xt,s) − α
〈
∇F (xt,s), vt,s

〉
+ α2L

2
∥∥vt,s

∥∥2
. (3.21)

Applying ⟨a, b⟩ = 0.5
(
∥a∥2 + ∥b∥2 − ∥a − b∥2) , ∀a, b ∈ Rp, to (3.21), we obtain an inequality that charac-

terizes the descent of the network mean state over one inner loop iteration: ∀s ≥ 1 and t ∈ [0, q],

F (xt+1,s) ≤ F (xt,s) − α
2
∥∥∇F (xt,s)

∥∥2 − α(1−αL)
2

∥∥vt,s
∥∥2 + α

2
∥∥vt,s − ∇F (xt,s)

∥∥2
,

≤ F (xt,s) − α
2
∥∥∇F (xt,s)

∥∥2 − α
4
∥∥vt,s

∥∥2 + α
∥∥vt,s − ∇f(xt,s)

∥∥2

+ α
∥∥∇f(xt,s) − ∇F (xt,s)

∥∥2 (3.22)

≤ F (xt,s) − α
2
∥∥∇F (xt,s)

∥∥2 − α
4
∥∥vt,s

∥∥2 + α
∥∥vt,s − ∇f(xt,s)

∥∥2

+ αL2

n

∥∥xt,s − Jxt,s
∥∥2

, (3.23)

where (3.22) is due to 0 < α ≤ 1
2L and (3.23) is due to Lemma 3.2.1. We then take the telescoping sum

of (3.23) over t from 0 to q to obtain: ∀s ≥ 1,

F (x0,s+1) ≤ F (x0,s) − α
2
∑q

t=0∥∇F (xt,s)∥2 − α
4
∑q

t=0
∥∥vt,s

∥∥2 (3.24)

+ α
∑q

t=0
∥∥vt,s − ∇f(xt,s)

∥∥2 + αL2

n

∑q
t=0
∥∥xt,s − Jxt,s

∥∥2
.
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The proof then follows by taking the telescoping sum of (3.24) over s from 1 to S and taking the expectation

of the resulting inequality.

3.2.7.3 Proof of Lemma 3.2.6

We first provide a useful result.

Lemma 3.2.9. The following inequality holds: ∀s ≥ 1, ∀t ∈ [1, q], ∀i ∈ V, ∀l ∈ [1, B],

E
[∥∥∥∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

)∥∥∥2∣∣F t,s

]
≤ L2∥∥xt,s

i − xt−1,s
i

∥∥2
.

Proof. In the following, we denote 1{A} as the indicator function of an event A ∈ F . Observe that: ∀s ≥

1, ∀t ∈ [1, q], ∀i ∈ V, ∀l ∈ [1, B],

E
[∥∥∥∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]

= E

∥∥∥∥∥
m∑

j=1
1
{

τ t,s
i,l = j

}(
∇fi,j

(
xt,s

i

)
− ∇fi,j

(
xt−1,s

i

))∥∥∥∥∥
2∣∣∣∣F t,s


=

m∑
j=1

E
[
1
{

τ t,s
i,l = j

}∥∥∥∇fi,j

(
xt,s

i

)
− ∇fi,j

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]

=
m∑

j=1
E
[
1
{

τ t,s
i,l = j

}∣∣F]∥∥∥∇fi,j

(
xt,s

i

)
− ∇fi,j

(
xt−1,s

i

)∥∥∥2

= 1
m

m∑
j=1

∥∥∥∇fi,j

(
xt,s

i

)
− ∇fi,j

(
xt−1,s

i

)∥∥∥2
,

where the last line uses that τ t,s
i,l is independent of F , i.e., E

[
1{τ t,s

i,l = j}|F
]

= 1
m . The proof follows by using

Assumption 3.2.1.

Next, we derive an upper bound on the estimation error of the average of local SARAH gradient estimators

across the nodes at each inner loop iteration.

Lemma 3.2.10. The following inequality holds: ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

≤ 3α2L2

nB

t−1∑
u=0

E
[∥∥vu,s

∥∥2
]

+ 6L2

n2B

t∑
u=0

E
[∥∥xu,s − Jxu,s

∥∥2
]
.

Proof. For the ease of exposition, we denote: ∀t ∈ [1, q], ∀s ≥ 1, ∀i ∈ V, ∀l ∈ [1, B],

∇̂t,s
i,l := ∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

)
, ∇̂t,s

i := 1
B

∑B
l=1∇̂t,s

i,l . (3.25)

Since xt,s
i and xt−1,s

i are F-measurable, we have

E
[
∇̂t,s

i,l |F
]

= E
[
∇̂t,s

i |F
]

= ∇fi

(
xt,s

i

)
− ∇fi

(
xt−1,s

i

)
. (3.26)
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With the notations in (3.25), the local update of vt,s
i described in Algorithm 3 may be written as

vt,s
i = ∇̂t,s

i + vt−1,s
i , ∀t ∈ [1, q], ∀s ≥ 1, ∀i ∈ V.

In the light of (3.26), we have the following: ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2∣∣F t,s
]

= E

[∥∥∥∥ 1
n

n∑
i=1

(
∇̂t,s

i + vt−1,s
i − ∇fi

(
xt,s

i

))∥∥∥∥2∣∣∣∣F t,s

]

= E

[∥∥∥∥ 1
n

n∑
i=1

(
∇̂t,s

i − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)
+ vt−1,s

i − ∇fi

(
xt−1,s

i

))∥∥∥∥2∣∣∣∣F t,s

]

= E

[∥∥∥∥ 1
n

n∑
i=1

(
∇̂t,s

i − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

))∥∥∥∥2∣∣∣∣F t,s

]
+
∥∥∥∥ 1

n

n∑
i=1

(
vt−1,s

i − ∇fi

(
xt−1,s

i

))∥∥∥∥2

= E

[∥∥∥∥ 1
n

n∑
i=1

(
∇̂t,s

i − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

))∥∥∥∥2∣∣∣∣F t,s

]
+
∥∥vt−1,s − ∇f(xt−1,s)

∥∥2
, (3.27)

where the third equality is due to (3.26) and the fact that
∑n

i=1
(
vt−1,s

i − ∇fi(xt−1,s
i )

)
is F t,s-measurable.

To proceed from (3.27), we note that since the collection of random variables
{

τ t,s
i,l : i ∈ V, l ∈ [1, B]

}
are

independent of each other and of the filtration F t,s, by (3.26), we have: ∀t ∈ [1, q] and s ≥ 1,

E
[〈

∇̂t,s
i − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)
, ∇̂t,s

r − ∇fr(xt,s
r

)
+ ∇fr

(
xt−1,s

r

)〉∣∣∣F t,s
]

= 0, (3.28)

whenever i, r ∈ V such that i ̸= r. Similarly, we have: ∀t ∈ [1, q] and s ≥ 1, ∀i ∈ V,

E
[〈

∇̂t,s
i,l − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)
, ∇̂t,s

i,h − ∇fi(xt,s
i

)
+ ∇fi

(
xt−1,s

i

)〉∣∣∣F t,s
]

= 0, (3.29)

whenever l, h ∈ [1, m] such that l ̸= h. With the help of (3.28) and (3.29), we may simplify (3.27) in the

following: ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2∣∣F t,s
]

= 1
n2

n∑
i=1

E
[∥∥∥∇̂t,s

i − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]
+
∥∥vt−1,s − ∇f

(
xt−1,s

)∥∥2

= 1
n2

n∑
i=1

E

[∥∥∥∥ 1
B

B∑
l=1

(
∇̂t,s

i,l − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

))∥∥∥∥2∣∣∣F t,s

]
+
∥∥vt−1,s − ∇f

(
xt−1,s

)∥∥2

= 1
(nB)2

n∑
i=1

B∑
l=1

E
[∥∥∥∇̂t,s

i,l − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]
+
∥∥vt−1,s − ∇f

(
xt−1,s

)∥∥2
, (3.30)

where the first line is due to (3.28) and the last line is due to (3.29). To proceed from (3.30), we observe
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that ∀t ∈ [1, q], ∀s ≥ 1, ∀i ∈ V, ∀l ∈ [1, B],

E
[∥∥∥∇̂t,s

i,l − ∇fi(xt,s
i ) + ∇fi(xt−1,s

i )
∥∥∥2∣∣∣F t,s

]
= E

[∥∥∥∇̂t,s
i,l − E

[
∇̂t,s

i,l |F
]∥∥∥2∣∣F t,s

]
≤ E

[∥∥∥∇̂t,s
i,l

∥∥∥2
|F t,s

]
≤ L2∥∥xt,s

i − xt−1,s
i

∥∥2
, (3.31)

where the last line uses Lemma 3.2.9. Applying (3.31) to (3.30) yields: ∀s ≥ 1, t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2∣∣F t,s
]

≤ L2

n2B

∥∥xt,s − xt−1,s
∥∥2 +

∥∥vt−1,s − ∇f(xt−1,s)
∥∥2

. (3.32)

We next bound the first term on the right hand side of (3.32). Observe that ∀s ≥ 1 and t ∈ [1, q + 1],

∥∥xt,s − xt−1,s
∥∥2 =

∥∥xt,s − Jxt,s + Jxt,s − Jxt−1,s + Jxt−1,s − xt−1,s
∥∥2

≤ 3
∥∥xt,s − Jxt,s

∥∥2 + 3n
∥∥xt,s − xt−1,s

∥∥2 + 3
∥∥xt−1,s − Jxt−1,s

∥∥2

= 3
∥∥xt,s − Jxt,s

∥∥2 + 3nα2∥∥vt−1,s
∥∥2 + 3

∥∥xt−1,s − Jxt−1,s
∥∥2

. (3.33)

Applying (3.33) to (3.32) and taking the expectation of the resulting inequality leads to: ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f

(
xt,s
)∥∥2
]

≤ E
[∥∥vt−1,s − ∇f

(
xt−1,s

)∥∥2
]

+ 3α2L2

nB
E
[∥∥vt−1,s

∥∥2
]

+ 3L2

n2B
E
[∥∥xt,s − Jxt,s

∥∥2
]

+ 3L2

n2B
E
[∥∥xt−1,s − Jxt−1,s

∥∥2
]
. (3.34)

We recall the initialization of each inner loop that v0,s = ∇f(x0,s), ∀s ≥ 1, and take the telescoping sum

of (3.34) over t from 1 to z to obtain: ∀s ≥ 1 and ∀z ∈ [1, q],

E
[∥∥vz,s − ∇f(xz,s)

∥∥2
]

≤ 3α2L2

nB

z∑
t=1

E
[∥∥vt−1,s

∥∥2
]

+ 3L2

n2B

z∑
t=1

E
[∥∥xt,s − Jxt,s

∥∥2
]

+ 3L2

n2B

z∑
t=1

E
[∥∥xt−1,s − Jxt−1,s

∥∥2
]
. (3.35)

The proof follows by merging the last two terms on the right hand side of (3.35).

Proof of Lemma 3.2.6. Summing up Lemma 3.2.10 over t from 1 to q gives: ∀s ≥ 1,
q∑

t=1
E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

≤ 3α2L2

nB

q∑
t=1

t−1∑
u=0

E
[
∥vu,s∥2]+ 6L2

n2B

q∑
t=1

t∑
u=0

E
[∥∥xu,s − Jxu,s

∥∥2
]
. (3.36)

The proof follows by relaxing the right hand side of (3.36) on the summations and the initialization of each

inner loop that v0,s = ∇f(x0,s), ∀s ≥ 1.

3.2.7.4 Proof of Lemma 3.2.7

We first provide some useful bounds on the gradient estimator tracking errors. These bounds will later be

coupled with (3.16) to formulate a dynamical system to characterize the error evolution of GT-SARAH. The
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following lemma establishes an upper bound on the sum of the local gradient estimation errors across the

nodes. Its proof is similar to that of Lemma 3.2.10.

Lemma 3.2.11. The following inequality holds ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

≤ 3nα2L2

B

t−1∑
u=0

E
[∥∥vu,s

∥∥2
]

+ 6L2

B

t∑
u=0

E
[∥∥xu,s − Jxu,s

∥∥2
]
.

Proof. See Section 3.2.7.6.

We note that Lemma 3.2.11 does not follow directly from the results of Lemma 3.2.6 because vt,s
i is not

a conditionally unbiased estimator of ∇fi(xt,s
i ) with respect to F t,s. With Lemma 3.2.11 at hand, we now

quantify the gradient tracking errors.

Lemma 3.2.12. We have the following three statements.

(i) It holds that
∥∥y1,1 − Jy1,1

∥∥2 ≤
∥∥∇f

(
x0,1)∥∥2.

(ii) If 0 < α ≤ 1−λ2

4
√

3L
, the following inequality holds: ∀s ≥ 1 and t ∈ [1, q],

E
[

∥yt+1,s − Jyt+1,s∥2

nL2

]
≤ 3 + λ2

4 E
[

∥yt,s − Jyt,s∥2

nL2

]
+ 18

1 − λ2E
[

∥xt−1,s − Jxt−1,s∥2

n

]
+ 6α2

1 − λ2E
[∥∥vt−1,s

∥∥2
]
.

(iii) If 0 < α ≤ 1−λ2

4
√

6L
, the following inequality holds: ∀s ≥ 2,

E
[

∥y1,s − Jy1,s∥2

nL2

]
≤ 3 + λ2

4 E
[

∥yq+1,s−1 − Jyq+1,s−1∥2

nL2

]
+ 18

1 − λ2E
[

∥xq,s−1 − Jxq,s−1∥2

n

]
+ 12α2

1 − λ2

q∑
t=0

E
[∥∥vt,s−1∥∥2

]
+ 42

1 − λ2

q∑
t=0

E
[

∥xt,s−1 − Jxt,s−1∥2

n

]
.

Proof. (i) Recall that v−1,1 = 0np, y0,1 = 0np and v0,1 = ∇f
(
x0,1). Using the gradient tracking update at

iteration (1, 1) and ∥Inp − J∥ = 1, we have:

∥∥y1,1 − Jy1,1∥∥2 =
∥∥(Inp − J)

(
Wy0,1 + v0,1 − v−1,1) ∥∥2 ≤

∥∥∇f
(
x0,1)∥∥2

,

which proves the first statement in the lemma. In the following, we prove the second and the third statements.

We have: ∀s ≥ 1 and ∀t ∈ [0, q],

∥∥yt+1,s − Jyt+1,s
∥∥2 =

∥∥Wyt,s + vt,s − vt−1,s − J
(
Wyt,s + vt,s − vt−1,s

) ∥∥2

=
∥∥Wyt,s − Jyt,s + (Inp − J)

(
vt,s − vt−1,s

) ∥∥2
. (3.37)
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We apply the inequality that ∥a + b∥2 ≤ (1 + η)∥a∥2 + (1 + 1
η )∥b∥2, ∀a, b ∈ Rnp, with η = 1−λ2

2λ2 and

that ∥Inp − J∥ = 1 to (3.37) to obtain: ∀s ≥ 1 and ∀t ∈ [0, q],

∥∥yt+1,s − Jyt+1,s
∥∥2 ≤ 1 + λ2

2λ2

∥∥Wyt,s − Jyt,s
∥∥2 + 1 + λ2

1 − λ2

∥∥vt,s − vt−1,s
∥∥2

≤ 1 + λ2

2
∥∥yt,s − Jyt,s

∥∥2 + 2
1 − λ2

∥∥vt,s − vt−1,s
∥∥2

, (3.38)

where the last line is due to Lemma 3.2.4. Next, we derive upper bounds for the last term in (3.38) under

different ranges of t and s.

(ii) ∀t ∈ [1, q] and ∀s ≥ 1. By the update of each local vt,s
i , we have that

E
[∥∥vt,s − vt−1,s

∥∥2 |F t,s
]

=
n∑

i=1
E

[∥∥∥∥ 1
B

B∑
l=1

(
∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

))∥∥∥∥2∣∣∣F t,s

]

≤ 1
B

n∑
i=1

B∑
l=1

E
[∥∥∥∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]
≤ L2 ∥∥xt,s − xt−1,s

∥∥2
. (3.39)

where the last line is due to Lemma 3.2.9. To proceed, we further use (3.33) and (3.17) to refine (3.39) as

follows: ∀s ≥ 1 and ∀t ∈ [1, q],

E
[∥∥vt,s − vt−1,s

∥∥2|F t,s
]

≤ 3L2 ∥∥xt,s − Jxt,s
∥∥2 + 3nα2L2 ∥∥vt−1,s

∥∥2 + 3L2 ∥∥xt−1,s − Jxt−1,s
∥∥2

≤ 3nα2L2 ∥∥vt−1,s
∥∥2 + 9L2 ∥∥xt−1,s − Jxt−1,s

∥∥2 + 6α2L2 ∥∥yt,s − Jyt,s
∥∥2

. (3.40)

We take the expectation of (3.40) and use it in (3.38) to obtain: ∀s ≥ 1 and ∀t ∈ [1, q],

E
[∥∥yt+1,s − Jyt+1,s

∥∥2
]

≤
(

1 + λ2

2 + 12α2L2

1 − λ2

)
E
[∥∥yt,s − Jyt,s

∥∥2
]

+ 18L2

1 − λ2E
[∥∥xt−1,s − Jxt−1,s

∥∥2
]

+ 6nα2L2

1 − λ2 E
[∥∥vt−1,s

∥∥2
]
.

The second statement in the lemma follows by the fact that 1+λ2

2 + 12α2L2

1−λ2 ≤ 3+λ2

4 if 0 < α ≤ 1−λ2

4
√

3L
.

(iii) t = 0 and ∀s ≥ 2. By the update of GT-SARAH, we observe that: ∀s ≥ 2,

∥∥v0,s − v−1,s
∥∥2 =

∥∥∇f(xq+1,s−1) − vq,s−1∥∥2

=
∥∥∇f(xq+1,s−1) − ∇f(xq,s−1) + ∇f(xq,s−1) − vq,s−1∥∥2

≤ 2L2 ∥∥xq+1,s−1 − xq,s−1∥∥2 + 2
∥∥∇f

(
xq,s−1)− vq,s−1∥∥2

,

≤ 6L2 ∥∥xq+1,s−1 − Jxq+1,s−1∥∥2 + 6nα2L2 ∥∥vq,s−1∥∥2

+ 6L2 ∥∥xq,s−1 − Jxq,s−1∥∥2 + 2
∥∥∇f

(
xq,s−1)− vq,s−1∥∥2

≤ 18L2 ∥∥xq,s−1 − Jxq,s−1∥∥2 + 6nα2L2 ∥∥vq,s−1∥∥2

+ 12α2L2 ∥∥yq+1,s−1 − Jyq+1,s−1∥∥2 + 2
∥∥∇f

(
xq,s−1)− vq,s−1∥∥2

, (3.41)
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where the first inequality uses the L-smoothness of each fi, the second inequality uses (3.33), and the last

inequality uses (3.17). Taking the expectation of (3.41) and then using Lemma 3.2.11 gives: ∀s ≥ 2,

E
[∥∥v0,s − v−1,s

∥∥2
]

≤ 18L2E
[∥∥xq,s−1 − Jxq,s−1∥∥2

]
+ 6nα2L2

q∑
t=0

E
[∥∥vt,s−1∥∥2

]
+ 12α2L2E

[∥∥yq+1,s−1 − Jyq+1,s−1∥∥2
]

+ 12L2

B

q∑
t=0

E
[∥∥xt,s−1 − Jxt,s−1∥∥2

]
. (3.42)

We recall from (3.38) that ∀s ≥ 2,

∥∥y1,s − Jy1,s
∥∥2 ≤ 1 + λ2

2
∥∥yq+1,s−1 − Jyq+1,s−1∥∥2 + 2

1 − λ2

∥∥v0,s − v−1,s
∥∥2

. (3.43)

We finally apply (3.42) to (3.43) to obtain: ∀s ≥ 2,

E
[∥∥y1,s − Jy1,s

∥∥2
]

≤
(

1 + λ2

2 + 24α2L2

1 − λ2

)
E
[∥∥yq+1,s−1 − Jyq+1,s−1∥∥2

]
+ 36L2

1 − λ2E
[∥∥xq,s−1 − Jxq,s−1∥∥2

]
+ 12nα2L2

1 − λ2

q∑
t=0

E
[∥∥vt,s−1∥∥2

]
+ 24L2

B(1 − λ2)

q∑
t=0

E
[∥∥xt,s−1 − Jxt,s−1∥∥2

]
.

We note that 1+λ2

2 + 24α2L2

1−λ2 ≤ 3+λ2

4 if 0 < α ≤ 1−λ2

4
√

6L
and then the third statement in the lemma follows.

With the help of (3.16) and Lemma 3.2.12, we now abstract GT-SARAH with an LTI system to quantify

jointly the state consensus and the gradient tracking error.

Lemma 3.2.13. If the step-size α follows that 0 < α ≤ 1−λ2

4
√

6L
, then we have

ut,s ≤ Gut−1,s + bt−1,s, ∀s ∈ [1, S] and t ∈ [1, q], (3.44)

u0,s ≤ Guq,s−1 + bq,s−1 +
q∑

t=0

(
bt,s−1 + Hut,s−1

)
, ∀s ∈ [2, S], (3.45)

where, ∀s ≥ 1 and ∀t ∈ [0, q],

ut,s :=


1
n
E
[∥∥xt,s − Jxt,s

∥∥2
]

1
nL2E

[∥∥yt+1,s − Jyt+1,s
∥∥2
]
 , b :=

 0

12α2

1 − λ2

 , bt,s := bE
[∥∥vt,s

∥∥2
]
,

G :=


1 + λ2

2
2α2L2

1 − λ2

18
1 − λ2

3 + λ2

4

 , H :=

 0 0

42
1 − λ2 0

 .

Proof. Write the inequalities in (3.16) and Lemma 3.2.12 jointly in a matrix form.
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We next derive the range of the step-size α such that ρ(G) < 1, i.e. the LTI system does not diverge,

with the help of the following lemma.

Lemma 3.2.14 ([36]). Let X ∈ Rd×d be (entry-wise) non-negative and x ∈ Rd be (entry-wise) positive.

If Xx < x (entry-wise), then ρ(X) < 1.

Lemma 3.2.15. If the step-size α follows that 0 < α < (1−λ2)2

8
√

5L
, then ρ(G) < 1 and therefore

∑∞
k=0 Gk is

convergent such that
∑∞

k=0 Gk = (I2 − G)−1.

Proof. In the light of Lemma 3.2.14, we solve the range of α and a positive vector ε = [ε1, ε2]⊤ such

that Gε < ε, which is equivalent to the following two inequalities.
1 + λ2

2 ε1 + 2α2L2

1 − λ2 ε2 < ε1

18
1 − λ2 ε1 + 3 + λ2

4 ε2 < ε2

⇐⇒


α2 <

(1 − λ2)2

4L2
ε1
ε2

ε1

ε2
<

(1 − λ2)2

72

(3.46)

According to the second inequality of (3.46), we set ε1/ε2 = (1 − λ2)2/80 and the proof follows by using it

in the first inequality of (3.46) to solve for the range of α.

Based on Lemma 3.2.15, the LTI system is stable under an appropriate step-size α and therefore we can

solve the LTI system to obtain the following lemma, the proof of which is deferred to Section 3.2.7.7 for the

ease of exposition.

Lemma 3.2.16. If 0 < α < (1−λ2)2

8
√

5L
, then the following inequality holds.

(
I2 − (I2 − G)−1H

) S∑
s=1

q∑
t=0

ut,s ≤ (I2 − G)−1u0,1 + 2(I2 − G)−1
S∑

s=1

q∑
t=0

bt,s.

Proof. See Section 3.2.7.7.

In the following lemma, we compute (I2 − G)−1 and (I2 − G)−1b.

Lemma 3.2.17. If 0 < α ≤ (1−λ2)2

24L , then the following entry-wise inequality holds:

(I2 − G)−1 ≤


4

1 − λ2
32α2L2

(1 − λ2)3

288
(1 − λ2)3

8
1 − λ2

 , (I2 − G)−1b ≤


384α4L2

(1 − λ2)4

96α2

(1 − λ2)2

 .

Proof. We first derive a lower bound for det(I2 − G). Note that if 0 < α ≤ (1−λ2)2

24L , then det(I2 − G) =
(1−λ2)2

8 − 36α2L2

(1−λ2)2 ≥ (1−λ2)2

16 and therefore

(I2 − G)−1 ≤ 16
(1 − λ2)2


1 − λ2

4
2α2L2

1 − λ2

18
1 − λ2

1 − λ2

2

 =


4

1 − λ2
32α2L2

(1 − λ2)3

288
(1 − λ2)3

8
1 − λ2

 ,

and the proof follows by the definition of b in Lemma 3.2.13.
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Using Lemma 3.2.17, we have: if 0 < α ≤ (1−λ2)2

8
√

42L
,

I2 − (I2 − G)−1H ≥

1 − 1344α2L2

(1 − λ2)4 0

− 336
(1 − λ2)2 1

 ≥


1
2 0

− 336
(1 − λ2)2 1

 . (3.47)

Finally, we apply (3.47) and Lemma 3.2.17 to Lemma 3.2.16 to obtain

1
2n

S∑
s=1

q∑
t=0

E
[∥∥xt,s − Jxt,s

∥∥2
]

≤ 32α2

n(1 − λ2)3E
[∥∥y1,1 − Jy1,1∥∥2

]
+ 768α4L2

(1 − λ2)4

S∑
s=1

q∑
t=0

E
[∥∥vt,s

∥∥2
]
. (3.48)

The proof of Lemma 3.2.7 follows by applying the first statement in Lemma 3.2.12 to (3.48).

3.2.7.5 Proof of Lemma 3.2.8

We have: ∀s ≥ 1 and ∀t ∈ [0, q],

1
2n

n∑
i=1

E
[∥∥∇F

(
xt,s

i

)∥∥2
]

≤ 1
n

n∑
i=1

E
[∥∥∇F

(
xt,s

i

)
− ∇F (xt,s)

∥∥2
]

+ E
[∥∥∇F (xt,s)

∥∥2
]

≤ L2

n
E
[∥∥xt,s − Jxt,s

∥∥2
]

+ E
[∥∥∇F (xt,s)

∥∥2
]
, (3.49)

where the second line is due to the L-smoothness of F . Since F is bounded below by F ∗, we may apply (3.49)

to Lemma 3.2.5 to obtain the following: if 0 < α ≤ 1
2L ,

F ∗ ≤ F
(
x0,1)− α

4n

n∑
i=1

S∑
s=1

q∑
t=0

E
[∥∥∇F

(
xt,s

i

)∥∥2]− α

4

S∑
s=1

q∑
t=0

E
[∥∥vt,s

∥∥2
]

+ α

S∑
s=1

q∑
t=0

E
[∥∥vt,s − ∇f(xt,s)

∥∥2]+ 3αL2

2

S∑
s=1

q∑
t=0

E
[∥xt,s − Jxt,s∥2

n

]
. (3.50)

We then apply Lemma 3.2.6 to (3.50) to obtain: if 0 < α ≤ 1
2L ,

F ∗ ≤ F
(
x0,1)− α

4n

n∑
i=1

S∑
s=1

q∑
t=0

E
[∥∥∇F

(
xt,s

i

)∥∥2]− α

8

S∑
s=1

q∑
t=0

E
[∥∥vt,s

∥∥2
]

+ αL2
(

3
2 + 6q

nB

) S∑
s=1

q∑
t=0

E
[∥xt,s − Jxt,s∥2

n

]
− α

8

(
1 − 24qα2L2

nB

) S∑
s=1

q∑
t=0

E
[∥∥vt,s

∥∥2
]

. (3.51)

If 0 < α ≤
√

nB
2

√
6qL

then 1 − 24α2qL2

nB ≥ 0 and thus the last term in (3.51) may be dropped. We finally apply

Lemma 3.2.7 to (3.51) to obtain: if 0 < α ≤ min
{

(1−λ2)2

4
√

42 ,
√

nB
6q

}
1

2L ,

F ∗ ≤ F
(
x0,1)− α

4n

n∑
i=1

S∑
s=1

q∑
t=0

E
[∥∥∇F

(
xt,s

i

)∥∥2
]

+
(

7
4 + 6q

nB

)
64α3L2

(1 − λ2)3
∥∇f(x0,1)∥2

n

− αL2

4

S∑
s=1

q∑
t=0

E
[∥xt,s − Jxt,s∥2

n

]
− α

8

(
1 −

(
7
4 + 6q

nB

)
12288α4L4

(1 − λ2)4

) S∑
s=1

q∑
t=0

E
[∥∥vt,s

∥∥2
]
.

We observe that if 0 < α ≤
( 4nB

7nB+24q

)1/4 1−λ2

12L , then 1 − ( 7
4 + 6q

nB ) 12288α4L4

(1−λ2)4 ≥ 0 and thus the last term in the

above inequality may be dropped; the proof follows.
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3.2.7.6 Proof of Lemma 3.2.11

In the following, we use the notation in (3.25). Using the update of each local recursive gradient estima-

tor vt,s
i , we have that: ∀i ∈ V, ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s

i − ∇fi(xt,s
i )
∥∥2∣∣F t,s

]
= E

[∥∥∥∇̂t,s
i − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)
+ vt−1,s

i − ∇fi

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]

= E

∥∥∥∥∥ 1
B

B∑
l=1

(
∇̂t,s

i,l − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

))∥∥∥∥∥
2 ∣∣∣F t,s

+
∥∥vt−1,s

i − ∇fi

(
xt−1,s

i

)∥∥2
,

= 1
B2

B∑
l=1

E
[∥∥∥∇̂t,s

i,l − ∇fi

(
xt,s

i

)
+ ∇fi

(
xt−1,s

i

)∥∥∥2 ∣∣∣F t,s

]
+
∥∥vt−1,s

i − ∇fi

(
xt−1,s

i

)∥∥2
,

≤ 1
B2

B∑
l=1

E
[∥∥∥∇fi,τt,s

i,l

(
xt,s

i

)
− ∇fi,τt,s

i,l

(
xt−1,s

i

)∥∥∥2∣∣∣F t,s

]
+
∥∥vt−1,s

i − ∇fi

(
xt−1,s

i

)∥∥2
,

≤ L2

B

∥∥xt,s
i − xt−1,s

i

∥∥2 +
∥∥vt−1,s

i − ∇fi

(
xt−1,s

i

)∥∥2
.

The above derivations follow a similar line of arguments as in the proof of Lemma 3.2.10 and hence we omit

the details here. Summing up the last inequality above over i from 1 to n and taking the expectation, we

have: ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f

(
xt,s
)∥∥2
]

≤ E
[

L2

B

∥∥xt,s − xt−1,s
∥∥2 +

∥∥vt−1,s − ∇f
(
xt−1,s

)∥∥2
]

. (3.52)

Recall from (3.33) that ∀s ≥ 1 and t ∈ [1, q],

∥∥xt,s − xt−1,s
∥∥2 ≤ 3

∥∥xt,s − Jxt,s
∥∥2 + 3nα2∥∥vt−1,s

∥∥2 + 3
∥∥xt−1,s − Jxt−1,s

∥∥2
. (3.53)

Applying (3.53) to (3.52) obtains: ∀s ≥ 1 and t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

≤ E
[∥∥vt−1,s − ∇f(xt−1,s)

∥∥2
]

+ 3nα2L2

B
E
[∥∥vt−1,s

∥∥2
]

+ 3L2

B
E
[∥∥xt,s − Jxt,s

∥∥2
]

+ 3L2

B
E
[∥∥xt−1,s − Jxt−1,s

∥∥2
]
. (3.54)

Recall that v0,s = ∇f(x0,s), ∀s ≥ 1, and we take the telescoping sum of (3.54) over t to obtain: ∀s ≥ 1

and t ∈ [1, q],

E
[∥∥vt,s − ∇f(xt,s)

∥∥2
]

≤ 3nα2L2

B

t∑
u=1

E
[∥∥vu−1,s

∥∥2
]

+ 3L2

B

t∑
u=1

E
[∥∥xu,s − Jxu,s

∥∥2
]

+ 3L2

B

t∑
u=1

E
[∥∥xu−1,s − Jxu−1,s

∥∥2
]
.

The proof follows by merging the last two terms on the RHS of the inequality above.
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Table 3.3: The one-on-one mapping between the single-loop sequences {uk}, {bk} for k ∈ [0, S(q + 1) − 1]
and the double-loop sequences {ut,s}, {bt,s} for s ∈ [1, S] and t ∈ [0, q].

k (t, s)
0, · · · , q (0, 1), · · · , (q, 1)

q + 1, · · · , 2q + 1 (0, 2), · · · , (q, 2)
· · · · · ·

(S − 1)(q + 1), · · · , S(q + 1) − 1 (0, S), · · · , (q, S)

3.2.7.7 Proof of Lemma 3.2.16

Step 1: A loop-less dynamical system. For the ease of calculations, we first write the LTI system in

Lemma 3.2.13 in a equivalent loopless form. To do this, we unroll the original double loop sequences {ut,s}

and {bt,s}, where t ∈ [0, q] and s ∈ [1, S], respectively as loopless sequences {uk} and {bk}, where k ∈

[0, S(q + 1) − 1], as follows:

uk := ut,s, bk := bt,s, where k = t + (s − 1)(q + 1), (3.55)

for t ∈ [0, q] and s ∈ [1, S]. Reversely, given uk and bk, for k ∈ [0, S(q + 1) − 1], we can find their positions

in the original double loop sequence, ut,s and bt,s, by

t = mod (k, q + 1) and s = ⌊k/(q + 1)⌋ + 1, for k ∈ [0, S(q + 1) − 1]. (3.56)

This one-on-one correspondence is visualized in Table 3.2.7.7.

With (3.55) and (3.56) at hand, it can be verified that the following single-loop system is equivalent to

the double loop system in (3.44) and (3.45). For k ∈ [1, S(q + 1) − 1],

uk ≤ Guk−1 + bk−1, if mod (k, q + 1) ̸= 0. (3.57)

uz(q+1) ≤ Guz(q+1)−1 + bz(q+1)−1 +
z(q+1)−1∑

r=(z−1)(q+1)

hr, ∀z ∈ [1, S − 1], (3.58)

where

hk := bk + Huk.

The system in (3.57) and (3.58) can be further written equivalently as the following: ∀k ∈ [1, S(q + 1) − 1],

uk ≤ Guk−1 + dk, (3.59)

where

dk := bk−1 + 1
{

mod (k, q + 1) = 0
} k−1∑

r=k−(q+1)

hr,

such that 1{·} is the indicator function of an event, and
∑k−1

r=k−(q+1) hr := 0 for k ∈ [1, q].
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Step 2: Analyzing the recursion. We recursively apply (3.59) over k to obtain: ∀k ∈ [1, S(q + 1) − 1],

uk ≤ Gku0 +
k∑

r=1
Gk−rdr. (3.60)

Summing up (3.60) over k from 0 to S(q + 1) − 1 gives: if 0 < α ≤ (1−λ2)2

8
√

5L
,

S(q+1)−1∑
k=0

uk ≤
S(q+1)−1∑

k=0
Gku0 +

S(q+1)−1∑
k=1

k∑
r=1

Gk−rdr

≤

( ∞∑
k=0

Gk

)
u0 +

S(q+1)−1∑
k=1

( ∞∑
r=1

Gr

)
dk

= (I2 − G)−1 u0 + (I2 − G)−1
S(q+1)−1∑

k=1
dk. (3.61)

To proceed, we recall the definition of dk and hk and observe that

S(q+1)−1∑
k=1

dk =
S(q+1)−2∑

k=0
bk +

S(q+1)−1∑
k=1

(
1
{

mod (k, q + 1) = 0
} k−1∑

r=k−(q+1)

hr
)

=
S(q+1)−2∑

k=0
bk +

S−1∑
z=1

 z(q+1)−1∑
r=(z−1)(q+1)

hr


=

S(q+1)−2∑
k=0

bk +
(S−1)(q+1)−1∑

k=0
hk

≤ 2
S(q+1)−1∑

k=0
bk +

(S−1)(q+1)−1∑
k=0

Huk, (3.62)

where the first line and the last line are due to the definition of dk and hk respectively. Finally, we use (3.62)

in (3.61) to obtain: if 0 < α ≤ (1−λ2)2

8
√

5L
, then

S(q+1)−1∑
k=0

uk ≤ (I2 − G)−1u0 + 2(I2 − G)−1
S(q+1)−1∑

k=0
bk + (I2 − G)−1H

S(q+1)−1∑
k=0

uk,

which is the same as

(
I2 − (I2 − G)−1H

) S(q+1)−1∑
k=0

uk ≤ (I2 − G)−1u0 + 2(I2 − G)−1
S(q+1)−1∑

k=0
bk.

We conclude the proof of Lemma 3.2.16 by rewriting the above inequality in the original double loop form.

3.3 Stochastic incremental variance reduction

In this section, we revisit and analyze the GT-SAGA algorithm, originally proposed in Chapter 2 under strong

convexity, for solving the decentralized smooth non-convex finite-sum problem (3.1).
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3.3.1 Main contributions

We analyze GT-SAGA, a single-timescale randomized incremental gradient method, originally proposed in [24]

for strongly-convex problems, and show that it achieves fast convergence in non-convex settings. At the

node level, GT-SAGA adopts a local SAGA-type [57,60,138–140] randomized incremental approach to obtain

variance-reduced estimates of local batch gradients, by leveraging historical component gradient information.

At the network level, GT-SAGA employs a gradient tracking mechanism [55,65] to fuse the local batch gradi-

ent estimates, obtained from the local SAGA procedures, to track the global batch gradient. These are the

two building blocks that amount to the fast convergence and robustness to heterogeneous data in GT-SAGA

for non-convex problems. Compared with the existing two-timescale variance reduced methods [135, 141]

for decentralized non-convex optimization, GT-SAGA is single-timescale and eliminates completely the need

of batch gradient computations and periodic network synchronizations, and is hence much easier to imple-

ment especially in ad hoc settings; see Remarks 3.3.1 and 3.3.2 for further discussion. Our main technical

contributions are summarized as follows:

• General smooth non-convex problems. For this problem class, we show the asymptotic conver-

gence of GT-SAGA to a first-order stationary point in the almost sure and mean-squared sense. In a

big-data regime, where the local batch size m is very large, GT-SAGA achieves a network topology-

independent convergence rate, leading to a non-asymptotic linear speedup compared with the cen-

tralized SAGA [60] at a single node. In large-scale network regimes, i.e., when the number of the

nodes and the network spectral gap inverse are relatively large compared to the local batch size m, we

show that GT-SAGA outperforms the existing best known convergence rate [141]. We also introduce a

measure of function heterogeneity across the nodes. Based on this measure, we show that the effect

of function heterogeneity on the convergence rate of GT-SAGA appears in a fashion that is separable

from the effects of local batch size and the network spectral gap. As a consequence, the effect of

function heterogeneity often diminishes when the local batch size is large and/or the connectivity of

the network is weak, demonstrating the robustness of GT-SAGA to function heterogeneity. In contrast,

the state-of-the-art decentralized non-convex variance-reduced method [141] does not achieve such sep-

aration and hence has worse convergence rate than GT-SAGA when the function heterogeneity is large

and the network is weakly connected. These improvements are achieved by leveraging the conditional

unbiasedness of SAGA estimators to obtain tighter bounds in the stochastic gradient tracking analysis;

see Remarks 3.3.3, 3.3.4, and 3.3.5.

• Smooth non-convex problems under the Polyak-Lojasiewicz (PL) condition. For this prob-

lem class, we show that GT-SAGA achieves linear convergence to an optimal solution in expectation. To
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the best of our knowledge, this is the first linear rate result for decentralized variance-reduced methods

under the PL condition, while the existing ones require strong convexity [22–24, 120, 142]. This gen-

eralization is non-trivial since the existing analysis essentially uses the unique optimal solution under

strong convexity as a reference point to bound related error terms, while the PL condition allows for

the existence of multiple optimal solutions. In comparison with the existing linearly-convergent, decen-

tralized deterministic batch gradient methods under the PL condition [4, 143, 144], GT-SAGA provably

achieves faster linear rate, in terms of the component gradient computation complexity at each node,

when the local batch size m is large, demonstrating the advantage of the employed variance reduction

technique. In a big-data regime where m is large enough, we show that the linear rate of GT-SAGA

becomes network topology-independent. See Remarks 3.3.6 and 3.3.7 for details.

• Technical analysis. We note that our analysis of SAGA-type variance reduction procedures is dif-

ferent from the existing ones [60,145], which require careful constructions of Lyapunov functions. We

avoid such delicate constructions by adopting a direct analysis approach, based on linear time-invariant

(LTI) dynamics, which may be of independent interest and perhaps more readily extendable to other

non-convex problems. We note that the LTI dynamics-based analysis has mainly been used in convex

problems in the existing literature of gradient tracking methods, e.g., [56,67]. Somewhat surprisingly,

a special case of our analysis, i.e., when the network is complete, provides the first linear rate result

of the original centralized SAGA algorithm [57] under the PL condition. Indeed, the existing analy-

sis [60,145] is only applicable to a modified SAGA, which periodically restarts and samples its iterates;

see Remark 3.3.8 for details. Our analysis is also substantially different from that of the existing

decentralized non-convex variance-reduced methods [135, 141], where the variances of the stochastic

gradients are bounded recursively, due to their hybrid nature. In contrast, we introduce a proper

auxiliary sequence to bound the variance of GT-SAGA; see Subsection 3.3.5.2, 3.3.5.4 for details.

3.3.2 The non-convex GT-SAGA algorithm

GT-SAGA, built upon local SAGA estimators [57] and global gradient tracking [55, 65], is formally presented

in Algorithm 4. We refer the readers to Chapter 2 for detailed discussion on the development of GT-SAGA. It

should be noted, however, that Algorithm 4 is different from Algorithm 1 in terms of the sampling procedure,

for ease of the convergence analysis. We require for conciseness that all nodes start at the same point, but

the complexity results of GT-SAGA established here hold, up to factors of universal constants, for the case

where the nodes are initialized differently. We comment on the practical implementation aspects of GT-SAGA

in comparison with the existing approaches in the following remarks.
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Algorithm 4 Non-convex GT-SAGA at each node i

Require: x0
i = x0 ∈ Rp; α ∈ R+; {wir}n

r=1; z0
i,j = x0

i , ∀j ∈ {1, · · · , m}; y0
i = 0p; g−1

i = 0p.

for k = 0, 1, 2, · · · do

Select τk
i uniformly at random from {1, · · · , m};

Update the local stochastic gradient estimator:

gk
i = ∇fi,τk

i

(
xk

i

)
− ∇fi,τk

i

(
zk

i,τk
i

)
+ 1

m

m∑
j=1

∇fi,j

(
zk

i,j

)
;

Update the local gradient tracker:

yk+1
i =

n∑
r=1

wir

(
yk

r + gk
r − gk−1

r

)
;

Update the local estimate of the solution:

xk+1
i =

n∑
r=1

wir

(
xk

r − αyk+1
r

)
;

Select sk
i uniformly at random from {1, · · · , m};

Set zk+1
i,j = xk

i for j = sk
i ; zk+1

i,j = zk
i,j for j ̸= sk

i ;

end for

Remark 3.3.1 (Single-timescale implementation). The existing decentralized variance-reduced meth-

ods for non-convex optimization [135,141] are based on a two-timescale, double-loop implementation. Specif-

ically, these methods, within each inner-loop, run a fixed number of stochastic gradient type iterations, while,

at each outer-loop iteration, a local batch gradient is computed at each node. This double-loop nature im-

poses challenges on the practical implementation of the two methods in [135, 141]. First, periodic batch

gradient computation incurs a synchronization overhead on the communication network and jeopardizes

the actual wall-clock time when the networked nodes have largely heterogeneous computational capabili-

ties. Second, these two methods have an additional parameter to tune, i.e., the length of each inner loop,

other than the step-size. Although this parameter maybe be chosen as m [141], this particular choice may

not lead to the best performance in practice. In sharp contrast, GT-SAGA admits a simple single-timescale

implementation since it only evaluates one randomly selected component gradient at each iteration. Fur-

thermore, it only has one parameter to tune, i.e., the step-size α. Therefore, GT-SAGA leads to significantly

simpler implementation and tuning compared with the existing decentralized non-convex variance-reduced

methods [135, 141], especially over large-scale ad-hoc networks. Finally, we note that GT-SAGA takes two

successive communication rounds per iteration to transmit the state and gradient tracker respectively, as in
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other gradient tracking-based methods, e.g., [4, 67,135,141].

Remark 3.3.2 (Storage requirement). To practically implement GT-SAGA, each node i needs to retain

a gradient table {∇fi,j(zk
i,j)}m

j=1 of size m × p in general, which may be expensive. However, for certain

structured problems, the size of the gradient table can be largely reduced [57]. For instance, in non-convex

generalized linear models [146], each component function takes the form fi,j(x) = ℓ(x⊤θi,j), where ℓ : R → R

is a non-convex loss and θi,j is the j-th data at the i-th node. Clearly, ∇fi,j(x) = ℓ′(x⊤θi,j)θi,j and thus each

node i only needs to retain {ℓ′(z⊤
i,jθi,j)}m

j=1, a gradient table of size m × 1, since the data samples {θi,j}m
j=1

are already stored locally. See Section 3.3.4.1 for numerical experiments based on one such example.

3.3.3 Main convergence results

We now enlist the assumptions of interest.

Assumption 3.3.1. The family {τk
i , sk

i : i ∈ V, k ≥ 0} of random variables in Algorithm 4 is independent.

Assumption 3.3.1 is standard in stochastic gradient methods. Specifically, the index sk
i used for updating

the gradient table {∇fi,j(zk
i,j)}m

j=1 is sampled independently from the index τk
i used for updating the local

SAGA estimator gk
i per node per iteration. This independence requirement is straightforward to implement

and is often posed to simplify the analysis of SAGA type estimators for non-convex problems [60, 145]; see

Section 3.3.5.4 for analysis based on this assumption.

Assumption 3.3.2. Each component function fi,j : Rp → R is differentiable and L-smooth, i.e., there ex-

ists L > 0, such that ∥∇fi,j(x) − ∇fi,j(y)∥ ≤ L ∥x − y∥ , ∀x, y ∈ Rp, ∀i ∈ V, ∀j ∈ {1, · · · , m}. Moreover,

the global function F is bounded below, i.e., F ∗ := infx∈Rp F (x) > −∞.

Under Assumption 3.3.2, the local batch functions {fi}n
i=1 and the global function F are L-smooth.

We note that L stated in Assumption 3.3.2 is essentially the maximum of the smoothness parameters of

all component functions. We further consider the case when the global F additionally satisfies the Polyak-

Lojasiewicz (PL) condition described below.

Assumption 3.3.3. The global function F : Rp → R satisfies 2µ(F (x) − F ∗) ≤ ∥∇F (x)∥2, ∀x ∈ Rp, for

some µ > 0.

The PL condition, originally introduced in [5], generalizes the notion of strong convexity to non-convex

functions; see [147] for more discussion. When Assumption 3.3.3 holds, we denote κ := L
µ ≥ 1, which may be

interpreted as the condition number of F . Note that the PL condition implies that every stationary point x∗

of F , such that ∇F (x∗) = 0p, is a global minimizer of F , while F is not necessarily convex.
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Assumption 3.3.4. The weight matrix W = {wir} ∈ Rn×n of the network is primitive and doubly-

stochastic, i.e., W1n = 1n, 1⊤
n W = 1⊤

n , and λ := λ2(W) ∈ [0, 1), where λ2(W) is the second largest

singular value of W.

Weight matrices that satisfy Assumption 3.3.4 may be designed for strongly-connected, weight-balanced,

directed networks or for connected, undirected networks. We next discuss the performance metrics of

GT-SAGA for different problem classes. For general smooth non-convex problems, we define the iteration

complexity of GT-SAGA as the minimum number of iterations required to achieve an ϵ-accurate stationary

point of the global function F , i.e.,

inf
{

K : 1
n

n∑
i=1

1
K

K−1∑
k=0

E
[
∥∇F (xk

i )∥2] ≤ ϵ

}
.

When the global function F satisfies the PL condition, we define the iteration complexity of GT-SAGA as

inf
{

k : E
[

1
n

n∑
i=1

(
F (xk

i ) − F ∗)] ≤ ϵ

}
.

These are standard metrics for decentralized stochastic non-convex optimization methods [2,4,135,141]. We

refer the iteration complexity as the the convergence rate metric of GT-SAGA, since it is the same as the

communication and component gradient computation complexity at each node. We are now ready to state

the main results of GT-SAGA in the next subsections and discuss their implications.

3.3.3.1 General smooth non-convex functions

In this section, we present the convergence results of GT-SAGA for general smooth non-convex functions.

Theorem 3.3.1. Let Assumptions 3.3.1, 3.3.2, and 3.3.4 hold. If the step-size α of GT-SAGA satisfies 0 <

α ≤ α1, where

α1 := min
{

(1 − λ2)2

48λ
,

2n1/3

13m2/3 ,
1
2 ,

(1 − λ2)3/4

18λ1/2m1/2

}
1
L

,

then all nodes asymptotically agree on a stationary point in both mean-squared and almost sure sense,

i.e., ∀i, r ∈ V,

P
(

lim
k→∞

∥xk
i − xk

r ∥ = 0
)

= 1, lim
k→∞

E
[
∥xk

i − xk
r ∥2] = 0,

P
(

lim
k→∞

∥∇F (xk
i )∥ = 0

)
= 1, lim

k→∞
E
[
∥∇F (xk

i )∥2] = 0.

Moreover, if α = α1, GT-SAGA achieves an ϵ-accurate stationary point in

O
(

EL(F (x0) − F ∗)
ϵ

+ λ2(1 − λ2)∥∇f(x0)∥2

nϵ

)
(3.63)
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iterations, where E is given by

E := max
{

m2/3

n1/3 , 1,
λ

(1 − λ)2 ,
λ1/2m1/2

(1 − λ)3/4

}
and ∥∇f(x0)∥2 =

∑n
i=1 ∥∇fi(x0)∥2.

Theorem 3.3.1 is proved in Subsection 3.3.5.6. We discuss its implications in the following remarks.

Remark 3.3.3 (Effect of the function heterogeneity). We note that ∥∇f(x0)∥2/n in the second term

of (3.63) can be viewed as a measure of heterogeneity among the local functions. In particular, when all

local functions are identical such that fi = fr = F , ∀i, r ∈ V, this term diminishes, i.e., it can be shown that

∥∇f(x0)∥2/n = ∥∇F (x0)∥2 ≤ 2L(F (x0)−F ∗). On the other hand, when the local functions are significantly

different, ∥∇f(x0)∥2/n can be fairly large compared with L(F (x0) − F ∗). Based on Theorem 3.3.1, it is

important to note that the effect of the function heterogeneity ∥∇f(x0)∥2/n on the convergence rate of

GT-SAGA is decoupled from E, the effect of the local batch size m and the network spectral gap 1 − λ. It is

further interesting to observe that the heterogeneity effect diminishes when the network is sufficiently either

well-connected or weakly-connected. In other words, the function heterogeneity effect is dominated by the

network effect in these two extreme cases of interest.

We next view Theorem 3.3.1 in two different regimes.

Remark 3.3.4 (Big-data regime). We first consider a big-data regime that is often applicable in data

centers, where the local batch size m is relatively large compared with the network spectral gap inverse (1 −

λ)−1 and the number of the nodes n. In particular, if m large enough such that

max
{

1,
λ

(1 − λ)2 ,
λ1/2m1/2

(1 − λ)3/4

}
≲

m2/3

n1/3 , (3.64)

Theorem 3.3.1 results into an iteration complexity of

O
(

m2/3L(F (x0) − F ∗)
n1/3ϵ

+ λ2(1 − λ2)∥∇f(x0)∥2

nϵ

)
. (3.65)

We emphasize that the first term in (3.65) matches the iteration complexity of the centralized SAGA

with a minibatch size n [60], as GT-SAGA computes n component gradients across the nodes in parallel at

each iteration. We note that under the big-data condition (3.64), it typically holds that ∥∇f(x0)∥2/n ≲

m2/3L(F (x0)−F ∗)/n1/3, i.e., the first term dominates the second term in (3.65). Therefore, GT-SAGA in this

regime achieves a non-asymptotic linear speedup, i.e., the total number of component gradient computations

required at each node to achieve an ϵ-accurate stationary point is reduced by a factor of 1/n, compared with

the centralized minibatch SAGA that operates on a single machine.
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Remark 3.3.5 (Large-scale network regime). We now consider the case where a large number of nodes

are weakly connected, a scenario that commonly appears in sensor networks, robotic swarms, and ad hoc

IoT (Internet of Things) networks. In this case, the number of the nodes n and the network spectral gap

inverse (1 − λ)−1 are relatively large in comparison with the local batch size m. In particular, if

max
{

1,
m2/3

n1/3 ,
λ1/2m1/2

(1 − λ)3/4

}
≲

λ

(1 − λ)2 , (3.66)

then the component gradient computation complexity at each node of GT-SAGA, according to Theorem 3.3.1,

becomes

O
(

λL(F (x0) − F ∗)
(1 − λ)2ϵ

+ λ2(1 − λ2)∥∇f(x0)∥2

nϵ

)
. (3.67)

We note that the component gradient complexity at each node of GT-SARAH [141], the state-of-the-art

decentralized non-convex variance-reduced method, in this regime is

O
(

λ

(1 − λ)2ϵ

(
L(F (x0) − F ∗) + ∥∇f(x0)∥2

n

))
. (3.68)

Comparing (3.68) to (3.67), we observe that GT-SARAH, unlike GT-SAGA, does not achieve a separation between

the dependence of the network spectral gap 1 − λ and the function heterogeneity measure ∥∇f(x0)∥2/n on

the convergence rate. We hence conclude that GT-SAGA outperforms GT-SARAH if the network is weakly

connected and the local functions are largely heterogeneous, i.e., when 1 − λ is small and ∥∇f(x0)∥2/n is

large. Moreover, we recall from Remark 3.3.1 that GT-SAGA is single-timescale and thus is much easier to

implement than the two-timescale GT-SARAH over large-scale networks. We also emphasize that the storage

requirement of GT-SAGA in this regime is significantly relaxed since the data samples are distributed across

a large network, leading to a small local batch size m at each node.

3.3.3.2 Smooth non-convex functions under PL condition

Theorem 3.3.2. Let Assumptions 3.3.1, 3.3.2, 3.3.3, and 3.3.4 hold. If the step-size α of GT-SAGA satis-

fies 0 < α ≤ α2, where

α2 := min
{

(1 − λ2)2

55λL
,

1 − λ2

13λκ1/4L
,

(1 − λ2)3

388λ2nL
,

n1/3

10.5m2/3κ1/3L
,

1
36L

,
1 − λ2

2µ
,

1
4mµ

}
,

then all nodes converge linearly at the rate O((1−µα)k) to a global minimizer of F . In particular, if α = α2,

then all nodes agree on an ϵ-accurate global minimizer in

O
(

max
{

Qopt, Qnet

}
log 1

ϵ

)
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iterations, where Qopt and Qnet are given respectively by

Qopt := max
{

m2/3κ4/3

n1/3 , κ, m

}
,

Qnet := max
{

λκ

(1 − λ)2 ,
λκ5/4

1 − λ
,

λ2nκ

(1 − λ)3 ,
1

1 − λ

}
.

Theorem 3.3.2 is proved in Section 3.3.5.7. The following remarks are in place.

Remark 3.3.6 (Linear rate under the global PL condition). Theorem 3.3.2 shows that GT-SAGA

linearly converges to an optimal solution when the global F additionally satisfies the PL condition. This is the

first linear rate result for decentralized variance-reduced methods under the PL condition while the existing

ones require strong convexity, e.g., [22–24, 120, 142]. A notable feature of the linear rate in Theorem 3.3.2

is that the effects of the local batch size m and the network spectral gap 1 − λ are decoupled. Hence, in a

big-data regime where the local batch size m is sufficiently large such that Qnet ≲ Qopt, GT-SAGA achieves

a network topology-independent rate of O(Qopt log 1
ϵ ). In addition, we note that Theorem 3.3.2 implies the

linear rate of GT-SAGA in the almost sure sense under the PL condition, by Chebyshev’s inequality and the

Borel-Cantelli lemma; see Lemma 7 in [24] for details.

Remark 3.3.7 (Comparison with other decentralized gradient methods). When the local batch

size m is relatively large, the linear rate of GT-SAGA improves that of the existing decentralized batch gradient

methods [4, 143, 144] under the PL condition in terms of the component gradient computation complexity.

Moreover, decentralized online stochastic gradient methods, e.g., [4,148], only exhibit sublinear rate under the

PL condition due to the persistent variances of the stochastic gradients. Therefore, GT-SAGA achieves faster

convergence under the PL condition compared with the existing decentralized methods, demonstrating the

advantage of the employed SAGA variance reduction scheme that is able to exploit the finite-sum structure

of local functions.

Remark 3.3.8 (Improved convergence results for the centralized minibatch SAGA). When λ = 0,

i.e., when the underlying network is a complete graph whose weight matrix can be easily chosen as W =
1
n 1n1⊤

n , GT-SAGA reduces to the centralized minibatch SAGA and achieves the linear rate of O(Qopt log 1
ϵ ).

Hence, a special case of Theorem 3.3.2, i.e, λ = 0, provides the first linear rate result under the PL condition

for the centralized SAGA. Indeed, the existing linear rate results [60, 145] under the PL condition are only

applicable to a modified SAGA that periodically restarts O(log 1
ϵ ) times with the output of each cycle

being selected randomly from the past iterates in this cycle. This procedure is not feasible particularly in

decentralized settings. In contrast, the linear rate shown Theorem 3.3.2 is on the last iterate of the original

SAGA without periodic restarting and sampling.
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Table 3.4: Datasets used in numerical experiments, available at https://www.openml.org/.

Dataset train (N = nm) dimension (p)
nomao 30,000 119

a9a 48,800 124
w8a 60,000 300

KDD98 80,000 478
covertype 100,000 55

MiniBooNE 100,000 51
BNG(sonar) 100,000 61

3.3.4 Numerical experiments

In this section, we present numerical simulations to illustrate our main theoretical results. The network

topologies of interest are undirected ring, undirected 2D-grid, directed exponential, undirected geometric,

and complete graphs; see [24,27,41] for details of these graphs. The doubly stochastic weights are set to be

equal for the ring and exponential graphs, and are generated by the lazy Metropolis rule for the grid and

geometric graphs. We manually optimize the parameters of all algorithms in all experiments for their best

performance.

3.3.4.1 Non-convex binary classification

In this subsection, we consider a decentralized non-convex generalized linear model for binary classification.

In view of Problem (3.1), each component cost fi,j is defined as [146]

fi,j(x) := ℓ
(
ξi,jx⊤θi,j

)
, ℓ(u) :=

(
1 − 1

1 + exp(−u)

)2
,

where θi,j ∈ Rp is the j-th data vector at the i-th node, ξi,j ∈ {−1, +1} is the label of θi,j , and ℓ : R →

R is a 4
3 -smooth non-convex loss. We normalize each data to be ∥θi,j∥ = 1, ∀i, j. Since ∇2fi,j(x) =

ℓ′′(ξi,jx⊤θi,j)θi,jθ⊤
i,j , it can be verified that ∥∇2fi,j(x)∥ = |ℓ′′(ξi,jx⊤θi,j)| ≤ 4

3 . Hence each component

cost fi,j is non-convex and 4
3 -smooth. We measure the performance of the algorithms in question in terms

of the decrease of the stationary gap ∥∇F (x)∥ versus epochs, where x := 1
n

∑n
i=1 xi for xi being the model

at node i and each epoch represents m component gradient evaluations at each node. All nodes start from

a vector randomly generated from the standard Gaussian distribution. The statistics of the datasets used

in the experiments are provided in Table 3.4.

• Big data regime. We first test the convergence behavior of GT-SAGA in the big data regime by

uniformly distributing the KDD98, covertype, MiniBooNE, and BNG(sonar) datasets over a network

https://www.openml.org/


CHAPTER 3. DECENTRALIZED SMOOTH NON-CONVEX FINITE-SUM OPTIMIZATION 87

of n = 20 nodes. We consider four different network topologies with decreasing sparsity, i.e., the

undirected ring, undirected 2D-grid, directed exponential, and complete graph; their corresponding

second largest singular values of the weight matrices are λ = 0.98, 0.97, 0.6, 0, respectively. It can be

verified that the big data condition (3.64) holds. The experimental results are shown in Fig. 3.4, where

we observe that the convergence rate of GT-SAGA is independent of the network topology in this big

data regime; see Remark 3.3.4.

• Large-scale network regime. We next compare the performance of GT-SAGA with DSGD [2] and

GT-SARAH [141] in the large-scale network regime. To this aim, we generate a sparse geometric

graph of n = 200 nodes with λ ≈ 0.99 and uniformly distribute the nomao, a9a, w8a, and BNG(sonar)

datasets over the nodes. It can be verified that the large-scale network condition (3.66) holds. The

numerical results are presented in Fig. 3.5: the first three plots show that GT-SAGA achieves the best

performance among the algorithms in comparison, while the last plot shows that the convergence rate

of GT-SAGA is dependent on the network topology in this large-scale network regime; see Remark 3.3.5.

• Robustness to heterogeneous data. We now make the data distributions across the nodes signif-

icantly heterogeneous by letting each node only have data samples of one label, so that no node can

train a valid classification model only from its local data. We compare the performance of GT-SAGA un-

der heterogeneous and homogeneous distribution of the nomao dataset. We consider a well-connected

graph, i.e., the 20-node exponential graph, and a weakly-connected graph, i.e., the 200-node geometric

graph. The numerical results are shown in Fig. 3.6, where we observe that the convergence rate of

GT-SAGA is not affected by the data heterogeneity over both graphs; see Remark 3.3.3.

3.3.4.2 Synthetic functions that satisfy the PL condition

Finally, we verify the linear rate of GT-SAGA when the global function F satisfies the PL condition. Specifi-

cally, we choose each component function fi,j : R → R as

fi,j(x) = x2 + 3 sin2(x) + ai,j cos(x) + bi,jx,

where
∑n

i=1
∑m

j=1 ai,j = 0 and
∑n

i=1
∑m

j=1 bi,j = 0 such that ai,j ̸= 0, bi,j ̸= 0, ∀i, j. This formulation hence

leads to the global function F (x) = x2 + 3 sin2(x). It can be verified that F is non-convex and satisfies the

PL condition [147]. Note that each fi,j is nonlinear and highly deviated from F ; see the last three plots

in Fig. 3.7 for a comparison of local and global geometries. We use the 20-node exponential graph and

set m = 5. It can be observed from the first plot in Fig. 3.7 that GT-SAGA achieves linear rate to the optimal

solution, while DSGD converges to an inexact solution; see Remark 3.3.7.
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Big-data regime: the covertype dataset
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Big-data regime: the MiniBooNE dataset
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Figure 3.4: Big data regime: the network topology-independent convergence rate of GT-SAGA on the KDD98,
covertype, MiniBooNE, and BNG(sonar) datasets.
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DSGD
GT-SARAH
GT-SAGA

0 20 40 60 80 100
Epoch

10 4

10 3

10 2

10 1

St
at

io
na

ry
 g

ap

Large-scale net. regime: the KDD98 dataset
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Figure 3.5: Large-scale network regime: (i) the first three plots present the performance comparison between
GT-SAGA, DSGD, and GT-SARAH on the nomao, a9a, and KDD98 datasets; (ii) the last plot presents the
performance of GT-SAGA over different graph topologies in this regime on the BNG(sonar) dataset.
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Figure 3.6: Robustness of GT-SAGA to heterogeneous data over well- and weakly-connected graphs on the
nomao dataset.
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Figure 3.7: The PL condition: (i) the first plot presents the performance comparison between GT-SAGA and
DSGD when the global function satisfies the PL condition; (ii) the last three plots present the geometry
comparison of the global and local component functions.

3.3.5 Convergence analysis

In this section, we present the convergence analysis of GT-SAGA, i.e., the sublinear convergence for general

smooth non-convex functions and the linear convergence when the global function F additionally satisfies the

PL condition. Throughout this section, we assume Assumption 3.3.1, 3.3.2, and 3.3.4 hold without explicitly

stating them; we only assume Assumption 3.3.3 hold in Subsection 3.3.5.7. In Subsections 3.3.5.2-3.3.5.5, we

establish key relationships between several important quantities, based on which the proofs of Theorem 3.3.1

and 3.3.2 are derived in Subsections 3.3.5.6 and 3.3.5.7 respectively.
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3.3.5.1 Preliminaries

GT-SAGA can be written in the following form: ∀k ≥ 0,

yk+1 = W
(
yk + gk − gk−1) , (3.69a)

xk+1 = W
(
xk − αyk+1) , (3.69b)

where xk, yk, gk are random vectors in Rnp that concatenate all local states {xk
i }n

i=1, gradient track-

ers {yk
i }n

i=1, local SAGA estimators {gk
i }n

i=1, respectively, and W = W ⊗ Ip. We denote Fk as the filtration

of GT-SAGA, i.e., ∀k ≥ 1,

Fk := σ
({

τ t
i , st

i : i ∈ V, t ≤ k − 1
})

,

and F0 is the trivial σ-algebra. It can be verified that xk, yk and zk
i,j , ∀i, j, are Fk-measurable and gk

is Fk+1-measurable for all k ≥ 0. We use E[·|Fk] to denote the conditional expectation with respect to Fk.

For the ease of exposition, we introduce the following quantities:

J :=
(
1n1⊤

n /n
)

⊗ Ip,

∇f(xk) =
[
∇f1(xk

1)⊤, · · · , ∇fn(xk
n)⊤]⊤,

∇f(xk) =
(
1⊤

n ⊗ Ip/n
)

∇f(xk), xk =
(
1⊤

n ⊗ Ip/n
)

xk,

yk =
(
1⊤

n ⊗ Ip/n
)

yk, gk =
(
1⊤

n ⊗ Ip/n
)

gk.

We assume x0 ∈ Rp is constant and hence all random variables generated by GT-SAGA have bounded second

moment. The following lemma lists several well-known facts in the context of gradient tracking and SAGA

estimators, which may be found in [5, 24,55–57].

Lemma 3.3.1. The following relationships hold.

(a) ∀x ∈ Rnp, ∥Wx − Jx∥ ≤ λ∥x − Jx∥.

(b) yk+1 = gk, ∀k ≥ 0.

(c) ∥∇f(xk) − ∇F (xk)∥2 ≤ L2

n ∥xk − Jxk∥2, ∀k ≥ 0.

(d) E[gk
i |Fk] = ∇fi(xk

i ), ∀i ∈ V, ∀k ≥ 0.

(e) ∥∇F (x)∥2 ≤ 2L (F (x) − F ∗) .

Note that Lemma 3.3.1(e) is a consequence of the L-smoothness of the global function F and is only used

in Subsection 3.3.5.7 while other statements in Lemma 3.3.1 are frequently utilized throughout the analysis.

The next lemma states some standard inequalities on the network consensus error [4, 24].
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Lemma 3.3.2. The following inequality holds: k ≥ 0,

∥xk+1 − Jxk+1∥2 ≤ 1+λ2

2 ∥xk − Jxk∥2 + 2α2λ2

1−λ2 ∥yk+1 − Jyk+1∥2. (3.70)

∥xk+1 − Jxk+1∥2 ≤ 2λ2∥xk − Jxk∥2 + 2α2λ2∥yk+1 − Jyk+1∥2. (3.71)

∥xk+1 − Jxk+1∥ ≤ λ∥xk − Jxk∥ + αλ∥yk+1 − Jyk+1∥. (3.72)

3.3.5.2 Bounds on the variance of local SAGA estimators

In this subsection, we bound the variance of the local SAGA gradient estimators gk
i ’s. For analysis purposes,

we construct two auxiliary Fk-adapted sequences: ∀i ∈ V, ∀k ≥ 0,

tk
i := 1

m

m∑
j=1

∥xk − zk
i,j∥2, tk := 1

n

n∑
i=1

tk
i .

These two sequences are essential in the convergence analysis. We note that tk measures the average distance

between the mean state xk of the networked nodes and the latest iterates zk
i,j ’s where the component gradients

were computed at iteration k in the gradient tables. Intuitively, tk goes to 0 as all nodes in GT-SAGA reach

consensus on a stationary point. We will establish a contraction argument in tk in Subsection 3.3.5.4. In the

following lemma, we show that the variance of gk
i may be bounded by the network consensus error and tk.

Lemma 3.3.3. The following inequality holds: ∀k ≥ 0,

E
[
∥gk − ∇f(xk)∥2|Fk

]
≤ 2L2∥xk − Jxk∥2 + 2nL2tk, (3.73)

E
[
∥gk∥2|Fk

]
≤ 2L2

n2 ∥xk − Jxk∥2 + 2L2

n
tk + ∥∇f(xk)∥2. (3.74)

Proof. We denote ∇̂k
i := ∇fi,τk

i

(
xk

i

)
− ∇fi,τk

i

(
zk

i,τk
i

)
for ease of exposition. Observe from Algorithm 4 that

E
[
∇̂k

i |Fk
]

= ∇fi(xk
i ) − 1

m

m∑
j=1

∇fi,j

(
zk

i,j

)
(3.75)

for all k and i. In light of (3.75), we bound the variance of gk
i in the following: ∀k ≥ 0, ∀i ∈ V,

E
[
∥gk

i − ∇fi(xk
i )∥2|Fk

]
= E

[
∥∇̂k

i − E
[
∇̂k

i |Fk
]
∥2|Fk

]
(i)
≤ E

[
∥∇̂k

i ∥2∣∣Fk
]

= E
[ m∑

j=1
1{τk

i
=j}

∥∥∇fi,j

(
xk

i

)
− ∇fi,j

(
zk

i,j

)∥∥2 ∣∣Fk

]
(ii)= 1

m

m∑
j=1

∥∥∇fi,j

(
xk

i

)
− ∇fi,j

(
zk

i,j

)∥∥2

(iii)
≤ L2

m

m∑
j=1

∥∥xk
i − zk

i,j

∥∥2

≤ 2L2 ∥∥xk
i − xk

∥∥2 + 2L2tk
i . (3.76)
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where (i) the conditional variance decomposition, (ii) uses that ∥∇fi,j(xk
i ) − ∇fi,j(zk

i,j)∥2 is Fk-measurable

and that τk
i is independent of Fk, and (iii) uses the L-smoothness of each fi,j . Summing up (3.76) over i

from 1 to n gives (3.73). Towards (3.74), we have: ∀k ≥ 0,

E
[
∥gk∥2|Fk

] (i)= E
[
∥gk − ∇f(xk)∥2|Fk

]
+ ∥∇f(xk)∥2

(ii)= 1
n2E

[
∥gk − ∇f(xk)∥2|Fk

]
+ ∥∇f(xk)∥2, (3.77)

where (i) uses that E[gk|Fk] = ∇f(xk) and that ∇f(xk) is Fk-measurable while (ii) uses that, whenever i ̸=

j, E[⟨gk
i − ∇fi(xk

i ), gk
j − ∇fj(xk

j )⟩|Fk] = 0, since τk
i is independent of σ(σ(τk

j ), Fk) and E[gk|Fk] = ∇f(xk).

The proof follows by applying (3.73) to (3.77).

3.3.5.3 A descent inequality

In this subsection, we provide a key descent inequality that characterizes the expected decrease of the global

function value at each iteration of GT-SAGA.

Lemma 3.3.4. If 0 < α ≤ 1
2L , then ∀k ≥ 0,

E
[
F (xk+1)|Fk

]
≤ F (xk) − α

2 ∥∇F (xk)∥2 − α

4 ∥∇f(xk)∥2 + αL2

n
∥xk − Jxk∥2 + α2L3

n
tk.

Proof. Since F is L-smooth, we have [10]: ∀x, y ∈ Rp,

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩ + L

2 ∥y − x∥2
. (3.78)

We multiply (3.69b) by 1
n (1⊤

n ⊗ Ip) and use Lemma 3.3.1(b) to obtain:

xk+1 = xk − αyk+1 = xk − αgk, ∀k ≥ 0.

Setting y = xk+1 and x = xk in (3.78) obtains: ∀k ≥ 0,

F (xk+1) ≤ F (xk) − α⟨∇F (xk), gk⟩ + α2L

2 ∥gk∥2. (3.79)

Conditioning (3.79) with respect to Fk, since ∇F (xk) is Fk-measurable, we have:

E
[
F (xk+1)|Fk

]
≤ F (xk) − α

〈
∇F (xk), ∇f(xk)

〉
+ α2L

2 E
[
∥gk∥2|Fk

]
. (3.80)

Using 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2,∀a, b ∈ Rp, in (3.80), we obtain: ∀k ≥ 0,

E
[
F (xk+1)|Fk

]
≤ F (xk) − α

2 ∥∇F (xk)∥2 − α

2 ∥∇f(xk)∥2

+ α

2 ∥∇F (xk) − ∇f(xk)∥2 + α2L

2 E
[
∥gk∥2|Fk

]
. (3.81)
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Applying Lemma 3.3.1(c) and (3.74) to (3.81), we have: ∀k ≥ 0,

E[F (xk+1)|Fk] ≤ F (xk) − α

2 ∥∇F (xk)∥2 − α(1 − αL)
2 ∥∇f(xk)∥2

+
(αL2

2n
+ α2L3

n2

)
∥xk − Jxk∥2 + α2L3

n
tk. (3.82)

The proof follows by the fact that if 0 < α ≤ 1
2L , we have − α(1−αL)

2 ≤ − α
4 and αL2

2n + α2L3

n2 ≤ αL2

n .

Compared with the corresponding descent inequality for centralized batch gradient descent [10], Lemma 3.3.4

exhibits two additional bias terms, i.e., ∥xk − Jxk∥ and tk, that are due to the decentralized nature of the

problem and sampling. To establish the convergence of GT-SAGA, we therefore bound these bias terms by

∥∇f(xk)∥ and show that they are dominated by the descent effect −∥∇f(xk)∥.

3.3.5.4 Bounds on the auxiliary sequence tk

In this subsection, we analyze the evolution of the auxiliary sequence tk and establish useful bounds.

Lemma 3.3.5. The following inequality holds: ∀k ≥ 0,

E
[
tk+1|Fk

]
≤ θtk +

(
2α2 + α

β

)
∥∇f(xk)∥2 +

(2α2L2

n
+ 2

m

) 1
n

∥xk − Jxk∥2,

where the parameter θ ∈ R is given by

θ := 1 − 1
m

+ αβ + 2α2L2

n
, (3.83)

and β > 0 is an arbitrary positive constant.

Proof. We define Ak := σ
(
∪n

i=1σ(τk
i ), Fk

)
and clearly Fk ⊆ Ak. By the tower property of the conditional

expectation, we have: ∀i ∈ V, ∀k ≥ 0,

E
[
tk+1
i |Fk

]
= 1

m

m∑
j=1

E
[
E
[
∥xk+1 − zk+1

i,j ∥2|Ak
]
|Fk

]
. (3.84)

Since sk
i is independent of Ak under Assumption 3.3.1, we have: ∀i ∈ V, ∀j ∈ {1, · · · , m}, k ≥ 0,

E
[
1{sk

i
=j}|Ak

]
= 1

m
and E

[
1{sk

i
̸=j}|Ak

]
= 1 − 1

m
. (3.85)

In light of (3.85), we have: ∀i ∈ V, ∀j ∈ {1, · · · , m}, k ≥ 0,

E
[
∥xk+1 − zk+1

i,j ∥2|Ak
]

= E
[ ∥∥∥xk+1 −

(
1{sk

i
=j}xk

i + 1{sk
i

̸=j}zk
i,j

)∥∥∥2 ∣∣∣Ak
]

= E
[
∥xk+1∥2|Ak

]
+ E

[ ∥∥∥1{sk
i

=j}xk
i + 1{sk

i
̸=j}zk

i,j

∥∥∥2 ∣∣∣Ak
]

− 2E
[ 〈

xk+1,1{sk
i

=j}xk
i + 1{sk

i
̸=j}zk

i,j

〉 ∣∣∣Ak
]

(i)= ∥xk+1∥2 − 2
〈

xk+1,
1
m

xk
i +

(
1 − 1

m

)
zk

i,j

〉
+ 1

m
∥xk

i ∥2 +
(

1 − 1
m

)
∥zk

i,j∥2,

= 1
m

∥xk+1 − xk
i ∥2 +

(
1 − 1

m

)
∥xk+1 − zk

i,j∥2 (3.86)
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where (i) uses (3.85) and that xk+1, xk
i , and zk

i,j are Ak-measurable. Using (3.86) in (3.84), we obtain the

following: ∀i ∈ V, ∀k ≥ 0,

E
[
tk+1
i |Fk

]
= 1

m
E
[∥∥xk+1 − xk

i

∥∥2
∣∣∣Fk

]
+
(

1 − 1
m

) 1
m

m∑
j=1

E
[∥∥xk+1 − zk

i,j

∥∥2
∣∣∣Fk

]
. (3.87)

We next bound the two terms on the RHS of (3.87) separately. For the first term, we have: ∀i ∈ V, k ≥ 0,

E
[
∥xk+1 − xk

i ∥2|Fk
]

= E
[
∥xk+1 − xk + xk − xk

i ∥2|Fk
]

= α2E
[
∥gk∥2|Fk

]
− 2
〈
α∇f(xk), xk − xk

i

〉
+ ∥xk − xk

i ∥2

≤ α2E
[
∥gk∥2|Fk

]
+ α2∥∇f(xk)∥2 + 2∥xk

i − xk∥2, (3.88)

where the last line uses the Cauchy-Schwarz inequality. Towards the second term on the RHS of (3.87), we

have: ∀i ∈ V, j ∈ {1, · · · , m}, ∀k ≥ 0, ∀β > 0,

E
[
∥xk+1 − zk

i,j∥2|Fk
]

= E
[
∥xk+1 − xk + xk − zk

i,j∥2∣∣Fk
]

= α2E
[
∥gk∥2|Fk

]
− 2α

〈
∇f(xk), xk − zk

i,j

〉
+ ∥xk − zk

i,j∥2

≤ α2E
[
∥gk∥2|Fk

]
+ (1 + αβ)∥xk − zk

i,j∥2 + α

β
∥∇f(xk)∥2, (3.89)

where the last line uses Young’s inequality. We apply (3.88) and (3.89) to (3.87) to obtain: ∀i ∈ V, ∀k ≥ 0,

E
[
tk+1
i |Fk

]
≤
(

1 − 1
m

)
(1 + αβ)tk

i + α2E
[
∥gk∥2|Fk

]
+ 2

m
∥xk

i − xk∥2 +
(α2

m
+
(

1 − 1
m

)α

β

)
∥∇f(xk)∥2. (3.90)

We average (3.90) over i from 1 to n and use (3.74) in the resulting inequality to obtain: ∀k ≥ 0,

E
[
tk+1|Fk

]
≤
(2α2L2

n
+ 2

m

) 1
n

∥xk − Jxk∥2 +
(

α2 + α2

m
+
(

1 − 1
m

)α

β

)∥∥∇f(xk)
∥∥2

+
(

2α2L2

n
+
(

1 − 1
m

)
(1 + αβ)

)
tk. (3.91)

We conclude by using 1
m + 1 ≤ 2 and 1 − 1

m ≤ 1 in (3.91).

Next, we specify some particular choices of β and the range of α in Lemma 3.3.5 to obtain useful bounds

on the auxiliary sequence tk. The following corollary shows that tk has an intrinsic contraction property.

Corollary 3.3.1. If 0 < α ≤
√

n√
8mL

, then ∀k ≥ 0,

E
[
tk+1|Fk

]
≤
(

1 − 1
4m

)
tk + 4mα2∥∇f(xk)∥2 + 9

4mn
∥xk − Jxk∥2.
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Proof. We choose β = 1
2mα in Lemma 3.3.5 to obtain: if 0 < α ≤

√
n√

8mL
, i.e., 2α2L2

n ≤ 1
4m , then

θ = 1 − 1
m

+ αβ + 2α2L2

n
≤ 1 − 1

4m
. (3.92)

2α2 + α

β
= 2α2 + 2mα2 ≤ 4mα2. (3.93)

2α2L2

n
+ 2

m
≤ 1

4m
+ 2

m
= 9

4m
. (3.94)

We conclude by applying (3.92), (3.93), (3.94) to Lemma 3.3.5.

The following corollary of Lemma 3.3.5 will be only used to bound E[∥gk+1 − ∇f(xk+1)∥2|Fk].

Corollary 3.3.2. If 0 < α ≤
√

n√
8mL

, then ∀k ≥ 0,

E
[
tk+1|Fk

]
≤ 2tk + 3α2∥∇f(xk)∥2 + 9

4mn
∥xk − Jxk∥2.

Proof. Setting β = 1/α in Lemma 3.3.5, we have: if 0 < α ≤
√

n√
8mL

, i.e., 2α2L2

n ≤ 1
4m , then

θ = 1 − 1
m

+ αβ + 2L2α2

n
≤ 2 (3.95)

2α2 + α

β
= 3α2 (3.96)

2α2L2

n
+ 2

m
≤ 1

4m
+ 2

m
= 9

4m
, (3.97)

We conclude by applying (3.95), (3.96), (3.97) to Lemma 3.3.5.

With the help of (3.71), (3.73) and Corollary 3.3.2, we provide an upper bound on E[∥gk+1−∇f(xk+1)∥2|Fk].

Lemma 3.3.6. If 0 < α ≤
√

n√
8mL

, then ∀k ≥ 0,

E[∥gk+1 − ∇f(xk+1)∥2|Fk] ≤ 8.5L2∥xk − Jxk∥2+ 4nL2tk

+ 6nα2L2∥∇f(xk)∥2 + 4α2L2E
[
∥yk+1 − Jyk+1∥2|Fk

]
.

Proof. By the tower property of the conditional expectation, we have: ∀k ≥ 0,

E
[
∥gk+1 − ∇f(xk+1)∥2|Fk

]
= E

[
E
[
∥gk+1 − ∇f(xk+1)∥2|Fk+1] |Fk

]
≤ 2L2E

[
∥xk+1 − Jxk+1∥2|Fk

]
+ 2nL2E

[
tk+1|Fk

]
≤ 2L2 (2∥xk − Jxk∥2 + 2α2E

[
∥yk+1 − Jyk+1∥2|Fk

])
+ 2nL2

(
2tk + 3α2∥∇f(xk)∥2 + 9

4mn
∥xk − Jxk∥2

)
,

where the second line uses (3.73) and the third line uses (3.71) and Corollary 3.3.2. The desired inequality

then follows.
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3.3.5.5 Bounds on stochastic gradient tracking process

In this subsection, we analyze the variance-reduced stochastic gradient tracking process (3.69a). The analysis

techniques presented here are related to [4,67], where uniformly bounded variance of each stochastic gradient

is assumed as they focus on the online setting. In contrast, due to the local variance reduction technique in

GT-SAGA that leverages the finite sum structure of the problem, such assumption is not needed here and we

use Lemma 3.3.3 to control the variance of stochastic gradients.

Lemma 3.3.7. The following inequality holds: ∀k ≥ 0,

E
[
∥yk+2 − Jyk+2∥2] ≤ λ2E

[
∥yk+1 − Jyk+1∥2]+ λ2E

[
∥gk+1 − gk∥2]

+ 2E
[ 〈

(W − J)yk+1, (W − J)
(
∇f(xk+1) − ∇f(xk)

)〉 ]
+ 2E

[ 〈
(W − J)yk+1, (W − J)

(
∇f(xk) − gk

)〉 ]
.

Proof. Using (3.69a) and JW = J, we have: ∀k ≥ 0,

∥yk+2 − Jyk+2∥2

= ∥Wyk+1 − Jyk+1 + (W − J)
(
gk+1 − gk

)
∥2

= ∥Wyk+1 − Jyk+1∥2 + ∥ (W − J)
(
gk+1 − gk

)
∥2 + 2

〈
Wyk+1 − Jyk+1, (W − J)

(
gk+1 − gk

)〉
≤ λ2∥yk+1 − Jyk+1∥2 + λ2∥gk+1 − gk∥2 + 2

〈
Wyk+1 − Jyk+1, (W − J)

(
gk+1 − gk

)〉
, (3.98)

where the last line uses Lemma 3.3.1(a) and ∥W − J∥ = λ. To proceed, we observe that ∀k ≥ 0,

E
[〈

Wyk+1 − Jyk+1, (W − J)
(
gk+1 − gk

)〉
|Fk+1]

=
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1) − gk

)〉
=
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1) − ∇f(xk)

)〉
+
〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk) − gk

)〉
, (3.99)

where the first line uses that E[gk+1|Fk+1] = ∇f(xk+1) and that yk+1 and gk are Fk+1-measurable for

all k ≥ 0. We conclude by using (3.99) in (3.98) and taking the expectation.

We next bound the third term in Lemma 3.3.7.

Lemma 3.3.8. The following inequality holds: ∀k ≥ 0,

〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1) − ∇f(xk)

)〉
≤ (λαL + 0.5η1 + η2) λ2∥yk+1 − Jyk+1∥2 + 0.5η−1

1 λ2α2L2n∥gk∥2 + η−1
2 λ2L2∥xk − Jxk∥2,

where η1 > 0 and η2 > 0 are arbitrary.



CHAPTER 3. DECENTRALIZED SMOOTH NON-CONVEX FINITE-SUM OPTIMIZATION 97

Proof. Using Lemma 3.3.1(a) and ∥W − J∥ = λ, we have: ∀k ≥ 0,

〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1) − ∇f(xk)

)〉
≤ λ2L∥yk+1 − Jyk+1∥∥xk+1 − xk∥. (3.100)

Observe that ∀k ≥ 0,

∥xk+1 − xk∥ = ∥xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk∥

≤ ∥xk+1 − Jxk+1∥ +
√

nα∥gk∥ + ∥xk − Jxk∥

≤ 2∥xk − Jxk∥ +
√

nα∥gk∥ + αλ∥yk+1 − Jyk+1∥, (3.101)

where the last line is due to (3.72). We use (3.101) in (3.100) to obtain: ∀k ≥ 0,

〈
Wyk+1 − Jyk+1, (W − J)

(
∇f(xk+1) − ∇f(xk)

)〉
≤ λ3αL∥yk+1 − Jyk+1∥2 + λ2∥yk+1 − Jyk+1∥

√
nαL∥gk∥ + 2λ2∥yk+1 − Jyk+1∥L∥xk − Jxk∥. (3.102)

By Young’s inequality, we have: ∀k ≥ 0, for some η1 > 0,

λ2∥yk+1 − Jyk+1∥
√

nαL∥gk∥ ≤ 0.5λ2 (η1∥yk+1 − Jyk+1∥2 + η−1
1 nα2L2∥gk∥2) , (3.103)

and, ∀k ≥ 0, for some η2 > 0,

2λ2∥yk+1 − Jyk+1∥L∥xk − Jxk∥ ≤ λ2η2∥yk+1 − Jyk+1∥2 + λ2η−1
2 L2∥xk − Jxk∥2. (3.104)

The proof follows by applying (3.103) and (3.104) to (3.102).

We next bound the fourth term in Lemma 3.3.7.

Lemma 3.3.9. The following inequality holds: ∀k ≥ 0,

E
[ 〈

Wyk+1 − Jyk+1, (W − J)
(
∇f(xk) − gk

)〉 ]
≤ E

[
∥gk − ∇f(xk)∥2]/n.

Proof. In the following, we denote ∇fk := ∇f(xk) to simplify the notation. Observe that ∀k ≥ 0,

E
[〈

Wyk+1 − Jyk+1, (W − J)
(
∇fk − gk

)〉
|Fk

]
(i)= E

[〈
W2(yk + gk − gk−1), (W − J)(∇fk − gk)

〉
|Fk

]
(ii)= E

[〈
W2gk, (W − J)

(
∇fk − gk

)〉
|Fk

]
(iii)= E

[〈
W2 (gk − ∇fk

)
, (W − J)

(
∇fk − gk

)〉
|Fk

]
(iv)= E

[
(gk − ∇fk)⊤(J − W⊤W2)(gk − ∇fk)|Fk

]
, (3.105)

where (i) uses (3.69a) and JW = J, (ii) and (iii) use that yk, gk−1 and ∇fk are Fk-measurable and

that E[gk|Fk] = ∇fk for all k ≥ 0, and (iv) uses JW = J. Using

E
[〈

gk
i − ∇fi(xk

i ), gk
j − ∇fj(xk

j )
〉
|Fk

]
= 0
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for all i ̸= j ∈ V and the fact that W⊤W2 is nonnegative, we have: ∀k ≥ 0,

E
[
(gk − ∇fk)⊤ (J − W⊤W2) (gk − ∇fk

)
|Fk

]
= E

[
(gk − ∇fk)⊤diag

(
J − W⊤W2) (gk − ∇fk

)
|Fk

]
≤ E

[
(gk − ∇fk)⊤diag(J)

(
gk − ∇fk

)
|Fk

]
. (3.106)

The proof follows by taking the expectation of (3.106).

We finally bound the second term in Lemma 3.3.7.

Lemma 3.3.10. The following inequality holds: ∀k ≥ 0,

E
[
∥gk+1 − gk∥2] ≤ 12λ2α2L2E

[
∥yk+1 − Jyk+1∥2]+ 2E

[
∥gk − ∇f(xk)∥2]+ E

[
∥gk+1 − ∇f(xk+1)∥2]

+ 18L2E
[
∥xk − Jxk∥2]+ 6nα2L2E

[
∥gk∥2].

Proof. Since gk and ∇f(xk+1) are Fk+1-measurable, and E[gk+1|Fk+1] = ∇f(xk+1), we have: ∀k ≥ 0,

E
[
∥gk+1 − gk∥2|Fk+1]

= E
[
∥gk+1 − ∇f(xk+1)∥2|Fk+1]+ ∥∇f(xk+1) − gk∥2

≤ E
[
∥gk+1 − ∇f(xk+1)∥2|Fk+1]+ 2∥∇f(xk+1) − ∇f(xk)∥2 + 2∥∇f(xk) − gk∥2

≤ E
[
∥gk+1 − ∇f(xk+1)∥2|Fk+1]+ 2L2∥xk+1 − xk∥2 + 2∥∇f(xk) − gk∥2. (3.107)

Similar to the derivation of (3.101), we have: ∀k ≥ 0,

∥xk+1 − xk∥2 = ∥xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk∥2

≤ 3∥xk+1 − Jxk+1∥2 + 3nα2∥gk∥2 + 3∥xk − Jxk∥2

≤ 9∥xk − Jxk∥2 + 3nα2∥gk∥2 + 6α2λ2∥yk+1 − Jyk+1∥2,

where the last line is due to (3.71). We conclude by applying the last line above to (3.107).

Now, we apply Lemma 3.3.8, 3.3.9, 3.3.10 to Lemma 3.3.7.

Lemma 3.3.11. The following inequality holds: ∀k ≥ 0,

E
[
∥yk+2 − Jyk+2∥2] ≤

(
1 + 2λαL + η1 + 2η2 + 12λ2α2L2)λ2E

[
∥yk+1 − Jyk+1∥2]

+
(
2η−1

2 + 18
)

λ2L2E
[
∥xk − Jxk∥2]+

(
η−1

1 + 6
)

λ2α2L2nE
[
∥gk∥2]

+
(
2λ2 + 2/n

)
E
[
∥gk − ∇f(xk)∥2]+ λ2E

[
∥gk+1 − ∇f(xk+1)∥2] .

Proof. Apply Lemma 3.3.8, 3.3.9, 3.3.10 to Lemma 3.3.7.
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Finally, we use Lemma 3.3.3 and 3.3.6 to refine Lemma 3.3.11 and establish a contraction in the gradient

tracking process.

Lemma 3.3.12. If 0 < α ≤ min
{

1−λ2

16λ ,
√

n√
8m

}
1
L , then we have: ∀k ≥ 0,

E
[
∥yk+2 − Jyk+2∥2] ≤ 1 + λ2

2 E
[
∥yk+1 − Jyk+1∥2]+ 30.5L2

1 − λ2 E
[
∥xk − Jxk∥2]

+ 97L2n

8 E
[
tk
]

+ 16λ2α2L2n

1 − λ2 E
[
∥∇f(xk)∥2].

Proof. We apply Lemma 3.3.3 and 3.3.6 to Lemma 3.3.11 to obtain: if 0 < α ≤
√

n√
8mL

, then ∀k ≥ 0,

E
[
∥yk+2 − Jyk+2∥2] ≤

(
1 + 2λαL + η1 + 2η2 +

(
12λ2 + 4

)
α2L2)λ2E

[
∥yk+1 − Jyk+1∥2]

+
(

(2η−1
2 + 18)λ2 + (η−1

1 + 6)2λ2α2L2

n
+ 4

n
+ 12.5λ2

)
L2E

[
∥xk − Jxk∥2]

+
(

2(η−1
1 + 6)λ2α2L2 +

(
2λ2 + 1/n

)
4n
)

L2E
[
tk
]

+(η−1
1 + 12)λ2α2L2nE

[
∥∇f(xk)∥2] . (3.108)

We fix η1 = 1−λ2

16λ2 and η2 = 1−λ2

8λ2 . It can then be verified that 1 + 2λαL + η1 + 2η2 + (12λ2 + 4)α2L2 ≤ 1+λ2

2λ2 ,

if 0 < α ≤ 1−λ2

16λL . The proof then follows by applying this inequality and the values of η1 and η2 to (3.108).

3.3.5.6 Proof of Theorem 3.3.1

In this subsection, we prove the convergence of GT-SAGA for general smooth non-convex functions. To this

aim, we write the contraction inequalities in (3.70), Corollary 3.3.1, and Lemma 3.3.12 as a linear time-

invariant (LTI) dynamics that jointly characterizes the evolution of the consensus, gradient tracking, and

the auxiliary sequence tk.

Proposition 3.3.1. If 0 < α ≤ min
{

1−λ2

16λ ,
√

n√
8m

}
1
L , then

uk+1 ≤ Gαuk + bk, ∀k ≥ 0,

where uk ∈ R3, Gα ∈ R3×3, and bk ∈ R3 are given by

uk :=



E
[

∥xk − Jxk∥2

n

]
E
[
tk
]

E
[

∥yk+1 − Jyk+1∥2

nL2

]


, b :=



0

4mα2

16λ2α2

1 − λ2


, Gα :=



1 + λ2

2 0 2λ2α2L2

1 − λ2

9
4m

1 − 1
4m

0

30.5
1 − λ2

97
8

1 + λ2

2


,

and bk := bE
[
∥∇f(xk)∥2].
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We first derive the range of the step-size α under which the spectral radius of Gα defined in Proposi-

tion 3.3.1 is less than 1, with the help of the following Lemma from [36].

Lemma 3.3.13. Let X ∈ Rd×d be a non-negative matrix and x ∈ Rd be a positive vector. If Xx < x,

then ρ(X) < 1. Moreover, if Xx ≤ βx, for some β ∈ R, then ρ(X) ≤ β.

Lemma 3.3.14. If 0 < α ≤ min
{

(1−λ2)2

35λ ,
√

n√
8m

}
1
L , then ρ(Gα) < 1 and thus

∑∞
k=0 Gk

α = (I3 − Gα)−1.

Proof. In light of Lemma 3.3.13, we find a positive vector ϵ = [ϵ1, ϵ2, ϵ3]⊤ and the range of α such that

Gαϵ < ϵ, which is equivalent to the following set of inequalities:

α2 <
(1 − λ2)2

4λ2L2
ϵ1

ϵ3
, (3.109)

9ϵ1 < ϵ2, (3.110)
61

(1 − λ2)2 ϵ1 + 97
4 (1 − λ2)ϵ2 < ϵ3, (3.111)

Based on (3.110), we set ϵ1 = 1 and ϵ2 = 10. Then based on (3.111), we set ϵ3 = 303.5
(1−λ2)2 . The proof follows

by using the values of ϵ1 and ϵ3 in (3.109).

Based on the LTI dynamics in Proposition 3.3.1, we derive the following lemma that is the key to establish

the convergence of GT-SAGA for general smooth nonconvex functions.

Lemma 3.3.15. If 0 < α ≤ min
{

(1−λ2)2

35λ ,
√

n√
8m

}
1
L , then we have: ∀K ≥ 1,

K∑
k=0

uk ≤ (I − Gα)−1

(
u0 + b

K−1∑
k=0

E
[
∥∇f(xk)∥2]) .

Proof. We recursively apply the dynamics in Proposition 3.3.1 to obtain: uk ≤ Gk
αu0+

∑k−1
r=0 Gr

αbk−1−r, ∀k ≥

1. We sum this inequality over k to obtain: ∀K ≥ 1,
K∑

k=0
uk ≤

K∑
k=0

Gk
αu0 +

K∑
k=1

k−1∑
r=0

Gr
αbk−1−r

≤

( ∞∑
k=0

Gk
α

)
u0 +

K−1∑
k=0

( ∞∑
k=0

Gk
α

)
bk.

The proof follows by
∑∞

k=0 Gk
α = (I − Gα)−1 and the definition of bk in Proposition 3.3.1.

Lemma 3.3.16. If 0 < α ≤ min
{

(1−λ2)2

48λ ,
√

n√
8m

}
1
L , then

(I3 − Gα)−1 ≤



⋆
776λ2mα2L2

(1 − λ2)3
16λ2α2L2

(1 − λ2)3

⋆ 8m
114λ2α2L2

(1 − λ2)3

⋆ ⋆ ⋆


, (I3 − Gα)−1b ≤



(
3104m2 + 256λ2

1 − λ2

)
λ2α4L2

(1 − λ2)3

33m2α2

⋆


,

where the ⋆ entries are not needed for further derivations.
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Proof. In the following, for a matrix X, we denote X∗ as its adjugate and [X]i,j as its (i, j)-th entry. We first

note that if 0 < α ≤ (1−λ2)2

48λL , det (I3 − Gα) ≥ (1−λ2)2

32m . We next derive upper bounds for entries of (I3−Gα)∗:

[(I3 − Gα)∗]1,2 = 97λ2α2L2

4 (1 − λ2) , [(I3 − Gα)∗]1,3 = λ2α2L2

2m(1 − λ2) ,

[(I3 − Gα)∗]2,2 ≤ (1 − λ2)2

4 , [(I3 − Gα)∗]2,3 = 9λ2α2L2

2m(1 − λ2) .

The upper bound on (I3 − Gα)−1 then follows by using the above relations. Finally, we have:

(I3 − Gα)−1b ≤



3104λ2m2α4L2

(1 − λ2)3 + 256λ4α4L2

(1 − λ2)4

32m2α2 + 2304λ4α4L2

(1 − λ2)4

⋆


.

If 0 < α ≤ (1−λ2)2

48λL , then 32m2α2 + 2304λ4α4L2

(1−λ2)4 ≤ 33m2α2 and the bound on (I3 − Gα)−1b follows.

We now bound two important quantities as follows.

Lemma 3.3.17. If 0 < α ≤ min
{

(1−λ2)2

48λ ,
√

n√
8m

}
1
L , then we have: ∀K ≥ 1,

K∑
k=0

E
[

1
n

∥xk − Jxk∥2
]

≤ 16λ4α2

(1 − λ2)3
∥∇f(x0)∥2

n
+
(

97m2 + 8λ2

1 − λ2

)
32λ2α4L2

(1 − λ2)3

K−1∑
k=0

E
[
∥∇f(xk)∥2], (3.112)

K∑
k=0

E
[
tk
]

≤ 114λ4α2

(1 − λ2)3
∥∇f(x0)∥2

n
+ 33m2α2

K−1∑
k=0

E
[
∥∇f(xk)∥2]. (3.113)

Proof. By (3.69a), we have ∥y1 − Jy1∥2 = ∥(W − J)(y0 + g0 − g−1)∥2 ≤ λ2∥∇f(x0)∥2. The proof then

follows by applying this inequality and Lemma 3.3.16 to Lemma 3.3.15.

Now, we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. We sum up the inequality in Lemma 3.3.4 over k: if 0 < α ≤ 1
2L , then ∀K ≥ 1,

E
[
F (xK)

]
≤ F (x0) − α

2

K−1∑
k=0

E
[
∥∇F (xk)∥2]− α

4

K−1∑
k=0

E
[
∥∇f(xk)∥2]+ α2L3

n

K−1∑
k=0

E
[
tk
]

+ αL2
K−1∑
k=0

E
[ 1

n
∥xk − Jxk∥2

]
. (3.114)

By the L-smoothness of F , we have: 1
2n

∑n
i=1 ∥∇F (xk

i )∥2 ≤ ∥∇F (xk)∥2 + L2

n ∥xk − Jxk∥2, ∀k ≥ 0. Using

this inequality in (3.114), we obtain: if 0 < α ≤ 1
2L , then ∀K ≥ 1,

E
[
F (xK)

]
≤ F (x0) − α

4n

n∑
i=1

K−1∑
k=0

E
[
∥∇F (xk

i )∥2]− α

4

K−1∑
k=0

E
[
∥∇f(xk)∥2]+ α2L3

n

K−1∑
k=0

E
[
tk
]

+ 3αL2

2

K−1∑
k=0

E
[ 1

n
∥xk − Jxk∥2

]
. (3.115)
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Applying (3.113) to (3.115), we obtain the following: if 0 < α ≤ min
{

(1−λ2)2

48λ ,
√

n√
8m

, 1
2

}
1
L , then ∀K ≥ 1,

E
[
F (xK)

]
≤ F (x0) − α

4n

n∑
i=1

K−1∑
k=0

E
[
∥∇F (xk

i )∥2]− α

8

K−1∑
k=0

E
[
∥∇f(xk)∥2]+ 114λ4α4L3

n(1 − λ2)3
∥∇f(x0)∥2

n

+ 3αL2

2

K−1∑
k=0

E
[ 1

n
∥xk − Jxk∥2

]
− α

8

(
1 − 264m2α3L3

n

)K−1∑
k=0

E
[
∥∇f(xk)∥2]. (3.116)

If 0 < α ≤ 2n1/3

13m2/3L
, 1 − 264m2α3L3

n ≥ 0 and thus the last term in (3.116) may be dropped. We then use (3.112)

in (3.116) to obtain: if 0 < α ≤ min
{

(1−λ2)2

48λ , 2n1/3

13m2/3 , 1
2

}
1
L , then ∀K ≥ 1,

E
[
F (xK)

]
≤ F (x0) − α

4n

n∑
i=1

K−1∑
k=0

E
[
∥∇F (xk

i )∥2]− αL2

4

K−1∑
k=0

E
[

1
n

∥xk − Jxk∥2
]

+
(

114αL

28n
+ 1
)

28λ4α3L2

(1 − λ2)3
∥∇f(x0)∥2

n

− α

8

(
1 − max

{
97m2,

8λ2

1 − λ2

}
896λ2α4L4

(1 − λ2)3

)K−1∑
k=0

E
[
∥∇f(xk)∥2] . (3.117)

If 0 < α ≤ min
{

(1−λ2)3/4

18λ1/2m1/2 , 1−λ2

12λ

}
1
L , then max

{
97m2, 8λ2

1−λ2

} 896λ2α4L4

(1−λ2)3 ≤ 1 and the last term in (3.117)

may be dropped. Thus, if 0 < α ≤ α1 for α1 defined in Theorem 3.3.1, we obtain from (3.117) that

E
[
F (xK)

]
≤ F (x0) − α

4n

n∑
i=1

K−1∑
k=0

E
[
∥∇F (xk

i )∥2]− αL2

4

K−1∑
k=0

E
[ 1

n
∥xk − Jxk∥2

]
+ 112λ4α3L2

(1 − λ2)3
∥∇f(x0)∥2

n
.

for all K ≥ 1. Since F is bounded below by F ∗, the above inequality leads to, ∀K ≥ 1,
K−1∑
k=0

1
n

n∑
i=1

E
[
∥∇F (xk

i )∥2 + L2∥xk
i − xk∥2

]
≤ 4(F (x0) − F ∗)

α
+ 448λ4α2L2

(1 − λ2)3
∥∇f(x0)∥2

n
. (3.118)

Since the RHS of (3.118) is finite and independent of K, we let K → ∞ in (3.118) to obtain:
∞∑

k=0

n∑
i=1

E
[
∥∇F (xk

i )∥2 + ∥xk
i − xk∥2

]
< ∞, (3.119)

which shows that all nodes in GT-SAGA asymptotically agree on a stationary point of F in the mean-squared

sense. Moreover, since the series on the LHS of (3.119) is nonnegative, we may exchange the order of the

series and expectation to obtain [127]: E
[∑∞

k=0
∑n

i=1(∥∇F (xk
i )∥2 + ∥xk

i − xk∥2)
]

< ∞, which implies that

P

( ∞∑
k=0

n∑
i=1

(
∥∇F (xk

i )∥2 + ∥xk
i − xk∥2

)
< ∞

)
= 1, (3.120)

i.e., all nodes in GT-SAGA asymptotically agree on a stationary point of F in the almost sure sense. Finally,

towards the iteration complexity of GT-SAGA, we set α = α1 in (3.118) and divide the resulting inequality

by K to obtain: ∀K ≥ 1,

1
n

n∑
i=1

1
K

K−1∑
k=0

E
[
∥∇F (xk

i )∥2] ≤ 4(F (x0) − F ∗)
α1K

+ 448λ4α2
1L2

(1 − λ2)3K

∥∇f(x0)∥2

n
. (3.121)

Based on (3.121), the iteration complexity of GT-SAGA then follows by recalling the definition of α1 in

Theorem 3.3.1 and that 448λ4α2
1L2

(1−λ2)3 ≤ λ2(1−λ2)
4 since 0 < α1 ≤ (1−λ2)2

48λL .
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3.3.5.7 Proof of Theorem 3.3.2

In this subsection, we prove the linear rate of GT-SAGA when the global function F additionally satisfies the

PL condition. In particular, we use the PL condition and Lemma 3.3.1(e) to refine the descent inequality in

Lemma 3.3.4 and the previously obtained LTI system in Proposition 3.3.1.

Lemma 3.3.18. If 0 < α ≤ 1
2L , then ∀k ≥ 0,

E
[
F (xk+1) − F ∗|Fk

]
≤ (1 − µα)(F (xk) − F ∗) + αL2

n
∥xk − Jxk∥2 + α2L3

n
tk.

Proof. Apply the PL condition to Lemma 3.3.4 and then subtract F ∗ from the resulting inequality.

Next, we refine Corollary 3.3.1 as follows.

Lemma 3.3.19. If 0 < α ≤
√

n√
8mL

, then ∀k ≥ 0,

E
[
tk+1|Fk

]
≤
(

1 − 1
4m

)
tk + 16mα2L

(
F (xk) − F ∗)+

(
8mα2L2 + 9

4m

) 1
n

∥xk − Jxk∥2.

Proof. By Lemma 3.3.1(c) and 3.3.1(e), we have: ∀k ≥ 0,

∥∇f(xk)∥2 ≤ 2∥∇F (xk)∥2 + 2∥∇F (xk) − ∇f(xk)∥2

≤ 4L
(
F (xk) − F ∗)+ 2L2

n
∥xk − Jxk∥2. (3.122)

The proof follows by applying (3.122) to Corollary 3.3.1.

We finally refine Lemma 3.3.12 as follows.

Lemma 3.3.20. If 0 < α ≤ min
{

1−λ2

16λ ,
√

n√
8m

}
1
L , then ∀k ≥ 0,

E
[
∥yk+2 − Jyk+2∥2] ≤ 1 + λ2

2 E
[
∥yk+1 − Jyk+1∥2]+ 31L2

1 − λ2E
[
∥xk − Jxk∥2]

+ 97L2n

8 E
[
tk
]

+ 64λ2α2L3n

1 − λ2 E
[
F (xk) − F ∗].

Proof. Applying (3.122) to Lemma 3.3.12, we have: if 0 < α ≤ min
{

1−λ2

16λ ,
√

n√
8m

}
1
L , then ∀k ≥ 0,

E
[
∥yk+2 − Jyk+2∥2] ≤ 1 + λ2

2 E
[
∥yk+1 − Jyk+1∥2]+

(
30.5 + 32λ2α2L2) L2

1 − λ2E
[
∥xk − Jxk∥2]

+ 97L2n

8 E
[
tk
]

+ 64λ2α2L3n

1 − λ2 E
[
F (xk) − F ∗].

We conclude by 30.5 + 32λ2α2L2 ≤ 31 if 0 < α ≤ 1−λ2

16λL .

Now, we write (3.70), Lemma 3.3.18, 3.3.19 and 3.3.20 in a LTI system.
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Proposition 3.3.2. If 0 < α ≤ min
{

1−λ2

16λ ,
√

n√
8m

, 1
2

}
1
L , then

vk+1 ≤ Hαvk, ∀k ≥ 0,

where vk ∈ R4 and Hα ∈ R4×4 are given by

vk :=



E
[

1
n

∥xk − Jxk∥2
]

1
L
E
[
F (xk) − F ∗]
E
[
tk
]

E
[

1
nL2 ∥yk+1 − Jyk+1∥2

]


, Hα :=



1 + λ2

2 0 0 2λ2α2L2

1 − λ2

αL 1 − µα
α2L2

n
0

8mα2L2 + 9
4m

16mα2L2 1 − 1
4m

0

31
1 − λ2

64λ2α2L2

1 − λ2
97
8

1 + λ2

2


.

We are ready to prove Theorem 3.3.2, i.e., to establish an upper bound on ρ(Hα) that characterizes the

explicit linear rate of GT-SAGA under the PL condition.

Proof of Theorem 3.3.2. In light of Lemma 3.3.13, we solve for the range of α under which there exists a

positive vector sα = [s1, s2, s3, s4]⊤ s.t. Hαsα ≤ (1 − µα
2 )sα, i.e.,

2λ2α2L2

1 − λ2 s4 ≤
(1 − λ2

2 − µα

2

)
s1, (3.123)

αLs1 + α2L2

n
s3 ≤ µα

2 s2, (3.124)(
8mα2L2 + 9

4m

)
s1 + 16mα2L2s2 ≤ 1 − 2mµα

4m
s3, (3.125)

31
1 − λ2 s1 + 64λ2α2L2

1 − λ2 s2 + 97
8 s3 ≤ 1 − λ2 − µα

2 s4. (3.126)

We first note that (3.124) is equivalent to αL2

n s3 ≤ µ
2 s2 − Ls1 and hence we set the values of s1, s2, s3 as

s1 = 1/(4κ), s2 = 1, s3 = n/(4ακL), (3.127)

where κ = L/µ. Next, we write (3.125) equivalently as

8mα2L2 (s1 + 2s2) ≤ 1 − 2mµα

4m
s3 − 9

4m
s1. (3.128)

According to (3.128), we enforce 0 < α ≤ 1
4mµ , i.e., 1−2mµα

4m ≥ 1
8m ; therefore to make (3.128) hold, with the

help of the values of s1, s2, s3 in (3.127), it suffices to further choose α such that

18mα2L2 ≤ 1
16mκ

( n

2αL
− 9
)

. (3.129)

According to (3.129), we enforce 0 < α ≤ n
36L , i.e., n

2αL − 9 ≥ n
4αL , and therefore to make (3.129) hold,

it suffices to further choose α such that 0 < α ≤ n1/3

10.5m2/3κ1/3L
. Next, according to (3.126) we further

enforce 0 < α ≤ 1−λ2

2µ , i.e., 1−λ2−µα
2 ≥ 1−λ2

4 and therefore to make (3.126) hold we set s4 as

s4 = 124
(1 − λ2)2 s1 + 256λ2α2L2

(1 − λ2)2 s2 + 97
2(1 − λ2)s3. (3.130)



CHAPTER 3. DECENTRALIZED SMOOTH NON-CONVEX FINITE-SUM OPTIMIZATION 105

Finally, since 0 < α ≤ 1−λ2

2µ , to make (3.123) hold, it suffices to further choose α such that 8λ2α2L2

(1−λ2)2
s4
s1

≤ 1,

which, using the values of s1, s4, becomes

992λ2α2L2

(1 − λ2)4 + 8192κλ4α4L4

(1 − λ2)4 + 388λ2nαL

(1 − λ2)3 ≤ 1. (3.131)

If 0 < α ≤ min
{

(1−λ2)2

55λ , 1−λ2

13λκ1/4 , (1−λ2)3

388λ2n

}
1
L , then the terms on the LHS of (3.131) are respectively less

than 1
3 and thus (3.131) holds. Based on the above derivations and Lemma 3.3.13, we have: if 0 < α ≤ α2

for α2 defined in Theorem 3.3.2, then ρ(Hα) ≤ 1 − µα
2 which concludes the proof.

3.4 Conclusion

In this chapter, we consider decentralized empirical risk minimization problems defined in a network of n

nodes, where each node holds m smooth non-convex cost functions. The goal of the networked nodes is to find

an ϵ-accurate first-order stationary point of the average of N := nm cost functions across all nodes. For this

formulation, we consider two instances of the GT-VR framework proposed in Chapter 2, called GT-SARAH and

GT-SAGA, that exhibit trade-offs in regimes of practical interest. In a big-data regime n = O(N 1/2(1 − λ)3),

the gradient complexity of GT-SARAH reduces to O(LN
1/2ϵ−2) which matches that of the centralized optimal

methods [48–50] for this problem class, where L is the smoothness parameter of the cost functions and (1 − λ)

is the spectral gap of the network weight matrix. On the other hand, in large-scale network regimes where

the number of the nodes and the spectral gap of the network are large, we show that GT-SAGA achieves faster

convergence than GT-SARAH and other existing approaches.



Chapter 4

Decentralized Online Stochastic Non-Convex

Optimization

In this chapter, we study decentralized smooth non-convex expected risk minimization problems. In par-

ticular, we establish the convergence properties of the well-known GT-DSGD algorithm which combines DSGD

with the gradient tracking technique. For general smooth non-convex functions, we establish the conditions

under which GT-DSGD exhibits network topology-independent performances that match the centralized SGD.1

Conversely, the results in the existing literature imply that GT-DSGD is always worse than the centralized SGD.

When the global function further satisfies the Polyak-Łojasiewics (PL) condition, it is shown that GT-DSGD

converges linearly up to a steady-state error with appropriate constant step-sizes. With a family of stochastic

approximation step-sizes, we show that GT-DSGD achieves the optimal global sublinear rate with probability

one and the asymptotically optimal sublinear rate in mean.

4.1 Introduction

We consider decentralized non-convex optimization where n nodes cooperate to solve the following problem:

min
x∈Rp

F (x) := 1
n

n∑
i=1

fi(x), (4.1)

such that each function fi : Rp → R is local and private to node i and the nodes communicate over a balanced

directed graph G = {V, E}, where V = {1, · · · , n} is the set of node indices and E is the collection of ordered

pairs (i, j), i, j ∈ V, such that node j sends information to node i. Throughout the chapter, we assume that

each local fi is smooth and non-convex. We focus on an online2 setup where data samples are collected in
1Reference [149] shows that centralized SGD is optimal for this problem class.
2We note that “online" sometimes refers to time-varying functions, which is different from the problem setup in this thesis.
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real-time and hence each node i only has access to a noisy sample gi of the true gradient at each iteration,

such that gi is an unbiased estimate of ∇fi with bounded variance. Problems of this nature have found

significant interest in signal processing, machine learning, and control [7, 14].

4.1.1 Related work

Based on the classical stochastic gradient descent (SGD) [7], a well-known solution to Problem (4.1) is

decentralized SGD (DSGD) [37,39]. However, the convergence of DSGD for non-convex problems has only been

established under certain regularity assumptions such as uniformly bounded difference between local and

global gradients [2,41,43], or coercivity of each local function [42]. It has also been observed that if the data

distributions across the nodes are heterogeneous, the practical performance of DSGD degrades significantly [14,

20, 67]. One notable line of work towards improving the performance of DSGD is EXTRA [68] and Exact

Diffusion [115], where the convergence under the stochastic non-convex setting is established without the

aforementioned regularity assumptions [3]; however, they require the weight matrix to be symmetric and the

smallest eigenvalue is lower bounded by −1/3. Another family of algorithms to eliminate the performance

limitation of DSGD is based on gradient tracking, introduced in [55,65], where the basic idea is to replace the

local gradients with a tracker of the global gradient ∇F . Decentralized first-order methods with gradient

tracking have been well studied under exact gradients, where relevant work can be found, e.g., in [52–54,

56, 129]. However, the convergence behavior of gradient tracking methods has many unanswered questions

when it comes to non-convex online stochastic problems [126,150].

4.1.2 Main contributions

This chapter considers GT-DSGD [67], that adds gradient tracking to DSGD, for online stochastic non-convex

problems and rigorously develops novel results, key insights, and new analysis techniques that fill the theory

gaps in the existing literature on gradient tracking methods [67, 126, 150]. The main contributions are

described in the following.

• General smooth non-convex problems. We explicitly characterize the non-asymptotic, transient

and steady-state performance of GT-DSGD and derive the conditions under which they are comparable

to that of the centralized minibatch SGD. In particular, we show that its non-asymptotic mean-squared

rate is network-independent and further matches the centralized minibatch SGD when the number

of iterations is large enough. In sharp contrast, the existing results in [126, 150] suggest that the

convergence rate and steady-state performance of GT-DSGD are always network-dependent and therefore

are strictly worse than that of the centralized minibatch SGD; see Section 4.3.1 for details.
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• Problems satisfying the global Polyak-Łojasiewicz (PL) condition. We analyze GT-DSGD when

the global (smooth non-convex) function F further satisfies the PL condition. For both constant and

decaying step-sizes, we explicitly characterize the non-asymptotic, transient and steady-state behaviors

in expectation, and establish the conditions under which they are comparable to that of the centralized

minibatch SGD. We further establish global sublinear convergence rates on almost every sample path.

The obtained sample path-wise rates are order-optimal. To the best of our knowledge, these are

the first results on path-wise convergence rate for online decentralized stochastic optimization under

non-convexity, thus generalizing prior results in the decentralized stochastic approximation literature,

e.g., [151], where the convergence analysis is mostly performed under assumptions of local convexity.

As special cases, these results improve the current state-of-the-art on exact gradient methods under

the PL condition [143] and stochastic strongly convex problems [67]; see Section 4.3.2 for details.

• Technical analysis. We emphasize that the analysis techniques in this work are substantially different

from the existing ones [67], [150], [126] and may be applied to other gradient methods built upon

similar principles. We describe a few key features in the following. We establish tighter bounds on the

stochastic gradient tracking process, by exploiting the unbiasedness of the online stochastic gradients,

based on which all convergence theorems are derived; see Section 4.5.1.2. To prove the convergence

under general non-convexity, we characterize a descent inequality explicitly with network consensus

errors and further show that the cumulative consensus errors along the algorithm path are dominated

by the cumulative descent effect of the local gradients; see Section 4.5.1.3. Towards the convergence

analysis under the global PL condition, we derive the uniform boundedness of gradient tracking errors

that is crucial in simplifying the ensuing analysis; see Lemma 4.5.18. Subsequently, we construct an

appropriate stochastic process that forms an almost supermartingale [152] to prove sublinear rates on

almost every sample path; see Section 4.5.2.2. To develop the convergence results in mean under the

global PL condition, we use the analytical tools developed for recursive processes with time-varying

step-sizes; see Section 4.5.2.3.

The rest of the chapter is organized as follows. Section 4.2 describes the assumptions and the GT-DSGD

algorithm. In Section 4.3, we present the main results and discuss the contributions of this chapter in the

context of the current state-of-the-art, whereas Section 4.3.1 and 4.3.2 respectively focus on the general

non-convex and the PL case. We present detailed numerical experiments in Section 4.4 to demonstrate the

main theoretical results in this chapter. Section 4.5 presents the detailed proofs of the main theorems in this

chapter. Section 4.5.1 establishes general bounds on the stochastic gradient tracking process and proves the

convergence for smooth non-convex functions. Sections 4.5.2.1, 4.5.2.2, and 4.5.2.3 provide the convergence
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analysis under the PL condition on top of the results obtained in Section 4.5.1. In particular, Sections 4.5.2.1

and 4.5.2.3 focus on the convergence in mean with constant and decaying step-sizes respectively while

Section 4.5.2.2 focuses on the almost sure convergence. Section 4.6 concludes the chapter.

We use lowercase bold letters to denote vectors and uppercase bold letters for matrices. The matrix, Id

(resp. Od), represents the d×d identity (resp. zero matrix); 1d and 0d are the d-dimensional column vectors

of all ones and zeros, respectively. We denote [x]i as the i-th entry of a vector x. The Kronecker product

of two matrices A and B is denoted by A ⊗ B. We use ∥·∥ to denote the Euclidean norm of a vector or

the spectral norm of a matrix. For a matrix X, we use ρ(X) to denote its spectral radius, X∗ to denote its

adjugate, det(X) to denote its determinant, [X]i,j to denote its (i, j)th element and diag(X) as the diagonal

matrix that consists of the diagonal entries of X. Matrix-vector inequalities are interpreted in the entry-wise

sense. We use σ(·) to denote the σ-algebra generated by the random variables and/or sets in its argument.

4.2 Assumptions and the GT-DSGD Algorithm

We are interested in finding a first-order stationary point of Problem (4.1) via local computation and commu-

nication at each node. We first enlist the necessary assumptions that are standard in the literature [5,7,20,67].

Assumption 4.2.1 (Objective functions). Each fi is L-smooth, i.e., ∃L > 0 s.t. ∥∇fi(x) − ∇fi(y)∥ ≤

L∥x − y∥, ∀x, y ∈ Rp. Moreover, F is bounded below, i.e., F ∗ := infx F (x) > −∞.

Assumption 4.2.2 (Network model). The directed communication network is strongly-connected and

admits a primitive doubly-stochastic weight matrix W = {wir} ∈ Rn×n.

We consider iterative processes that generate at each node i a sequence of state vectors {xi
k : k ≥ 0},

where xi
0 is assumed to be a constant. At each iteration k, each node i is able to call the local oracle

that returns a stochastic gradient gi(xi
k, ξi

k), where ξi
k is a random vector in Rq and gi : Rp × Rq → Rp is a

Borel-measurable function. For example, gi(xi
k, ξi

k) may be considered as the stochastic gradient evaluated

at the state xi
k with the data sample ξi

k observed at node i and iteration k. We work with a rich enough

probability space (Ω, F ,P) and define the natural filtration as, ∀k ≥ 1,

Fk := σ
({

ξi
t : 0 ≤ t ≤ k − 1, i ∈ V

})
, F0 := {Ω, ϕ},

where ϕ is the empty set. The intuitive meaning of Fk is that it contains the historical information of the

algorithm iterates in question up to iteration k − 1.
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Algorithm 5 GT-DSGD at each node i

Require: xi
0; {αk}; {wir}; y0

i = 0p; gr

(
xr

−1, ξr
−1
)

:= 0p.
1: for k = 0, 1, . . . , do

yi
k+1 =

n∑
r=1

wir

(
yr

k + gr(xr
k, ξr

k) − gr(xr
k−1, ξr

k−1)
)

xi
k+1 =

n∑
r=1

wir

(
xr

k − αkyr
k+1
)

2: end for

Assumption 4.2.3 (Oracle model). The stochastic gradient process {gi(xi
k, ξi

k) : ∀k ≥ 0, ∀i ∈ V} satisfies:

• E
[
gi(xi

k, ξi
k)|Fk

]
= ∇fi(xi

k), ∀k ≥ 0, ∀i ∈ V;

• E
[ ∥∥gi(xi

k, ξi
k) − ∇fi(xi

k)
∥∥2 |Fk

]
≤ ν2

i , ∀k ≥ 0, ∀i ∈ V, for some constant νi > 0;

• The family
{

ξi
k : ∀k ≥ 0, ∀i ∈ V

}
of random vectors is independent.

We denote ν2
a := 1

n

∑n
i=1 ν2

i , the average of the variance of local stochastic gradients. We are also inter-

ested in the case when the global objective function F further satisfies the Polyak-Łojasiewicz (PL) condition

that was introduced in [5].

Assumption 4.2.4. ∃µ > 0 s.t. the global F : Rp → R satisfies 2µ (F (x) − F ∗) ≤ ∥∇F (x)∥2
, ∀x ∈ Rp.

When Assumption 4.2.4 holds, we denote κ := L
µ ≥ 1, which can be interpreted as the condition number

of F ; see Lemma 4.5.12. Note that under the PL condition, every stationary point x∗ of F is a global

minimum of F , while F is not necessarily convex. Assumption 4.2.4 holds, e.g., in certain reinforcement

learning problems [153], see [5, 147] for more details.

GT-DSGD, introduced in [67] for smooth strongly convex problems and formally described in Algorithm 5,

recursively descends in the direction of an auxiliary variable yi
k at each node, instead of the local stochastic

gradient gi(xi
k, ξi

k). The auxiliary variable yi
k is constructed under the dynamic average consensus princi-

ple [51] and tracks a time-varying signal
∑

i gi(xi
k, ξi

k), which mimics the global gradient; see [14, 67] for

further intuition and explanation. We note that GT-DSGD uses the adapt-then-combine (ATC) structure [37]

resulting in improved stability of the algorithm.

4.3 Main results

In this section, we present our main convergence results for GT-DSGD and compare them with the correspond-

ing state-of-the-art. For analysis purposes and the ease of presentation of main results, we let xk, yk, gk,
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all in Rnp, respectively concatenate xi
k’s, yi

k’s, gi(xi
k, ξi

k)’s, and write GT-DSGD in the following matrix

form: ∀k ≥ 0,

yk+1 = W (yk + gk − gk−1) , (4.2a)

xk+1 = W (xk − αkyk+1) , (4.2b)

where W = W ⊗ Ip. We denote the exact averaging matrix as J := ( 1
n 1n1⊤

n ) ⊗ Ip and λ := ∥W − J∥, which

characterizes the network connectivity. Under Assumption 4.2.2, we have λ ∈ [0, 1); see [36]. For convenience,

we let ∇fk ∈ Rnp concatenate all local exact gradients ∇fi(xi
k)’s and denote

xk := 1
n

(1⊤
n ⊗ Ip)xk, yk := 1

n
(1⊤

n ⊗ Ip)yk,

∇fk := 1
n

(1⊤
n ⊗ Ip)∇fk, gk := 1

n
(1⊤

n ⊗ Ip)gk.

We assume without loss of generality that xi
0 = xr

0, ∀i, r ∈ V.

4.3.1 General smooth non-convex functions

In this subsection, we are concerned with the convergence of GT-DSGD for general smooth non-convex func-

tions.

Theorem 4.3.1. Let Assumptions 4.2.1, 4.2.2, and 4.2.3 hold and consider GT-DSGD under a constant

step-size αk = α, ∀k ≥ 0, such that 0 < α ≤ min
{

1, 1−λ2

12λ , (1−λ2)2

4
√

6λ2

} 1
2L , then, ∀K > 1,

1
n

n∑
i=1

1
K

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2
]

︸ ︷︷ ︸
Mean-squared stationary gap

≤ 4(F (x0) − F ∗)
αK

+ 2αν2
aL

n︸ ︷︷ ︸
Centralized minibatch SGD

+ 448α2L2λ2ν2
a

(1 − λ2)3 + 64α2L2λ4

(1 − λ2)3K

∥∇f0∥2

n︸ ︷︷ ︸
Decentralized network effect

.

Further, 1
n

∑n
i=1

1
K

∑K−1
k=0 E

[
∥∇F (xi

k)∥2] decays at the rate of O( 1
K ) up to a steady-state error such that

lim sup
K→∞

1
n

n∑
i=1

1
K

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2] ≤ 2αν2

aL

n︸ ︷︷ ︸
Centralized minibatch SGD

+ 448α2L2λ2ν2
a

(1 − λ2)3︸ ︷︷ ︸
Decentralized network effect

.

Theorem 4.3.1 is proved in Section 4.5.1.

Remark 4.3.1 (Transient and steady-state performance). Theorem 4.3.1 explicitly characterizes the

non-asymptotic performance of GT-DSGD for general smooth non-convex functions with an appropriate con-

stant step-size. In particular, the stationary gap of GT-DSGD for any finite number of iterations K is bounded

by the sum of four terms. The first two terms are independent of the network spectral gap 1 − λ and match

the complexity of the centralized minibatch SGD up to constant factors [7]. The third and the fourth terms

depend on 1 − λ reflecting the decentralized network and are in the order of O(α2). This is a much tighter
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characterization compared with the existing results [126,150] on GT-DSGD and leads to provably faster non-

asymptotic rate, see Remark 4.3.2 below. Theorem 4.3.1 also shows that as K → ∞, the stationary gap

of GT-DSGD decays sublinearly at the rate of O(1/K) up to a steady-state error. It can be observed that

if α = O
( (1−λ)3

λ2nL

)
, then the steady state stationary gap of GT-DSGD matches that of the centralized minibatch

SGD up to constant factors. The existing analysis [126], however, suggests that under the same choice of the

step-size α, the steady state stationary gap of GT-DSGD is strictly worse than the centralized minibatch SGD.

The following corollary of Theorem 4.3.1 is concerned with the non-asymptotic convergence rate of GT-DSGD over

a finite time horizon for general smooth non-convex functions.

Corollary 4.3.1. Let Assumptions 4.2.1, 4.2.2, and 4.2.3 hold and suppose that ∥∇f0∥2 = O(n). Set-

ting α =
√

n/K in Theorem 4.3.1, for K ≥ 4nL2 max
{

1, 144λ2

(1−λ2)2 , 96λ4

(1−λ2)4

}
, we obtain:

1
n

n∑
i=1

1
K

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2] ≤ 4(F (x0) − F ∗)√

nK
+ 2ν2

aL√
nK︸ ︷︷ ︸

Centralized minibatch SGD

+ 448nλ2ν2
aL2

(1 − λ2)3K
+ 64L2λ4 ∥∇f0∥2

(1 − λ2)3K2︸ ︷︷ ︸
Decentralized network effect

.

Thus, if K further satisfies that K ≥ Knc := O
(

n3λ4L2

(1−λ)6

)
, then we have

1
n

n∑
i=1

1
K

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2] = O

(
ν2

aL√
nK

)
.

Remark 4.3.2 (Non-asymptotic mean-squared rate and transient time for network indepen-

dence). Corollary 4.3.1 shows that if the number of iterations is large enough, i.e., K ≥ Knc, by setting

α =
√

n√
K

, the non-asymptotic rate of GT-DSGD matches that of the centralized minibatch SGD up to factors of

universal constants. This discussion shows that, in the regime that K ≥ Knc, GT-DSGD achieves a network-

independent linear speedup compared with the centralized minibatch SGD that processes all data at a single

node. In other words, the number of stochastic gradient computations required to achieve an approximate

stationary point is reduced by a factor of 1/n at each node in the network. These results significantly

improve the existing convergence guarantees of GT-DSGD for general smooth non-convex functions [126,150].

In particular, references [126, 150] show that if α = c0√
K

, where K is large enough and c0 is some positive

constant, GT-DSGD achieves the convergence rate of c1√
K

, where c1 is a function of the network spectral

gap (1 − λ). The convergence results in [126, 150] thus suggest that the rate of GT-DSGD is always network-

dependent and is strictly worse than that of the centralized minibatch SGD and hence fail to characterize the

network-independent performance of GT-DSGD.

Remark 4.3.3 (Comparison with DSGD). We observe from Corollary 4.3.1 that the convergence of

GT-DSGD is robust to the difference between the local and the global functions. In other words, GT-DSGD
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outperforms DSGD when data distributions across the nodes are significantly heterogeneous, since the con-

vergence rate of the latter explicitly depends on a factor that measures the heterogeneity between the local

and the global functions [2]. However, the transient time for GT-DSGD to achieve network independent per-

formance has a network dependence of O((1−λ)−6) which is worse than that of DSGD where the dependence

is O((1 − λ)−4). Moreover, we note that GT-DSGD requires two consecutive rounds of communication per

node per iteration to update the state and the gradient tracker variables respectively, compared to DSGD.

4.3.2 Smooth non-convex functions under PL condition

In this subsection, we discuss the performance of GT-DSGD when the global objective function F further

satisfies the PL condition. We begin with the case of constant step-size.

Theorem 4.3.2. Let Assumption 4.2.1, 4.2.2, 4.2.3 and 4.2.4 hold. If the step-size αk = α, ∀k ≥ 0, satisfies

0 < α ≤ α := min
{

1
2L

,
(1 − λ2)2

42λ2L
,

1 − λ2

24λLκ1/4 ,
1 − λ2

2µ

}
,

then E[∥xk − Jxk∥2] and E[F (xk) − F ∗] decay linearly at O((1 − µα)k) up to a steady-state error such that

lim sup
k→∞

E
[

∥xk − Jxk∥2

n

]
≤ 288λ4α5L3κν2

a

n(1 − λ2)4 + 144λ2α2ν2
a

(1 − λ2)3 ,

lim sup
k→∞

E [F (xk) − F ∗] ≤ 3ακν2
a

2n
+ 72λ2α2κLν2

a

(1 − λ2)3 .

Moreover, 1
n

∑n
i=1 E

[
F (xi

k) − F ∗] decays linearly at O((1 − µα)k) up to a steady-state error such that

lim sup
k→∞

1
n

n∑
i=1

E
[
F (xi

k) − F ∗] = O
(

ακν2
a

n

)
︸ ︷︷ ︸

Centralized minibatch SGD

+ O
(

λ2α2κLν2
a

(1 − λ)3

)
︸ ︷︷ ︸

Decentralized network effect

.

Theorem 4.3.2 is proved in Section 4.5.2.1. Here we highlight some key features in the following remarks.

Remark 4.3.4 (Transient and steady-state performance). Theorem 4.3.2 shows that when the global

objective function F satisfies the PL condition and the constant step-size α is less than α, the optimality

gap of GT-DSGD decays linearly up to a steady-state error that is the sum of two terms. The first term is

independent of the network and matches that of the centralized minibatch SGD up to constant factors, while

the second term is due to the network and is controlled by O(α2). In contrast to [67], which requires a

stronger assumption that the global objective function is strongly convex, we note that our stability range

of the step-size α is larger by a factor of O(κ5/12); this relaxed upper bound on α further leads to a faster

linear convergence when exact gradients are available, see Remark 4.3.5. Next, it can be verified from

Theorem 4.3.2 that to match the steady-state error performance of the centralized minibatch SGD (up to

constant factors), it suffices to choose the step-size α in GT-DSGD such that α = O
( (1−λ)3

λ2nL

)
, which is larger
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by a factor of O(κ) than the corresponding result in [67]; in other words, Theorem 4.3.2 demonstrates a

tighter and faster convergence rate to achieve the same steady-state error.

Remark 4.3.5 (Global linear convergence under exact gradient oracle). Theorem 4.3.2 further

shows that when the exact gradient oracle is available at each node, i.e., ν2
i = 0, ∀i ∈ V, GT-DSGD reduces to

its deterministic counterpart [54, 56, 65] and achieves global linear convergence to an optimal solution with

an appropriate constant step-size. In other words, when α = α, it achieves an q-accurate optimal solution

in O
(

max
{

κ, λ2κ
(1−λ)2 , λκ5/4

1−λ , 1
1−λ

}
log 1

q

)
iterations. This result improves upon the state-of-the-art gradi-

ent computation and communication complexity under the PL condition [143]. The gradient computation

complexity can be further improved to O
(
κ log 1

ϵ

)
by performing O

( 1
1−λ log κ

1−λ

)
rounds of consensus com-

munication at each iteration. This gradient computation complexity result matches the state-of-the-art [69]

on decentralized exact gradient methods (without Nesterov acceleration), which further requires a stronger

assumption that each local function is convex and the global function is strongly convex. In contrast, we

only require the PL condition on the global objective F .

We now proceed to the case of decaying step-sizes. The next result shows the sample path-wise perfor-

mance of GT-DSGD under a family of stochastic approximation step-sizes [154], i.e., αk > 0,
∑∞

k=0 αk = ∞,

and
∑∞

k=0 α2
k < ∞, which enables the exact sublinear convergence in contrast to the inexact linear conver-

gence under a constant step-size.

Theorem 4.3.3. Let Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4 hold. Consider the step-size sequence {αk}

such that αk = δ(k + φ)−ϵ, ∀k ≥ 0, where ϵ ∈ (0.5, 1], δ ≥ 1/µ, and φ ≥ max
{

(δ/α)1/ϵ, 4
1−λ2

}
for α given

in Theorem 4.3.2. Then ∀i, j ∈ V and for arbitrarily small ϵ1 > 0, we have:

P

( ∞∑
k=0

k2ϵ−1−ϵ1
∥∥xi

k − xj
k

∥∥2
< ∞

)
= 1,

P
(

lim
k→∞

k2ϵ−1−ϵ1
(
F (xi

k) − F ∗) = 0
)

= 1.

Theorem 4.3.3 is proved in Section 4.5.2.2.

Remark 4.3.6 (Global sublinear rate on almost every sample path). Theorem 4.3.3 guarantees that

GT-DSGD exhibits a global sublinear convergence on almost every sample path, under decaying step-sizes,

when the global function F satisfies the PL condition. This result is of significant practical value in that it is

applicable to every instantiation of the algorithm while the expectation type convergence only characterizes,

roughly speaking, the performance on average. Furthermore, in the case of general non-degenerate variances

(see Assumption 4.2.3), these path-wise rates are order-optimal, in the sense of polynomial time decay;

this follows by considering the stochastic approximation reformulation of the optimization problem (i.e.,
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the problem of obtaining zeros of the gradient function ∇F (x)) and invoking standard central limit type

arguments, see [154].) To the best of our knowledge, Theorem 4.3.3 is the first to show path-wise convergence

for online decentralized stochastic optimization under non-convexity, thus generalizing prior results in the

decentralized stochastic approximation and optimization literature, such as [151], where such analysis is

performed under assumptions of local convexity.

Finally, we consider the convergence rate of GT-DSGD in expectation when αk = O(1/k), ∀k ≥ 0.

Theorem 4.3.4. Let Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4 hold. Consider the step-size sequence {αk}

such that αk = β(k + γ)−1,∀k ≥ 0, where β > 2/µ, and γ ≥ max
{

β
α , 8

1−λ2

}
for α given in Theorem 4.3.2.

We have: ∀k ≥ 0,

1
n

n∑
i=1

E
[
F (xi

k)−F ∗] ≤ 2Lν2
aβ2

n(µβ − 1)(k + γ)︸ ︷︷ ︸
Centralized minibatch SGD

+ 2 (F (x0) − F ∗)
(k/γ + 1)µβ

+ 3L2x̂β3

n(µβ − 2)(k + γ)2︸ ︷︷ ︸
Decentralized network effect

,

where x̂ is a positive constant given in (4.63).

The non-asymptotic rate in Theorem 4.3.4 shows that GT-DSGD asymptotically achieves network inde-

pendent O(1/k) rate in mean when the global objective function F satisfies the PL condition, matching

the Ω(1/k) oracle lower bound [7]. The following corollary examines the number of transient iterations

required to achieve network-independence under specific choices of parameter β and γ in Theorem 4.3.4.

Corollary 4.3.2. Let Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4 hold. Set β = 6/µ and γ = max
{ 6

µα , 8
1−λ2

}
in Theorem 4.3.4 and suppose that ∥∇f0∥2 = O(n). Then we have:

1
n

n∑
i=1

E
[
F (xi

k) − F ∗] = O
(

κ2 (F (x0) − F ∗)
k2 + κν2

a

nµk

)
,

if k is large enough such that k ≳ KPL, where

KPL := λ2nκ

(1 − λ)3 + λκ5/4

1 − λ
+ κ + λ3/2κ11/8

(1 − λ)3/2 + κ−1/2

(1 − λ)3/2 + λ2nκ1/2L(F (x0) − F ∗)
(1 − λ)2ν2

a

.

Theorem 4.3.4 and Corollary 4.3.2 are proved in Section 4.5.2.3.

Remark 4.3.7 (Transient time for network independent rate). Corollary 4.3.2 shows after KPL

iterations, the convergence rate of GT-DSGD matches that of the centralized minibatch SGD [7] up to constant

factors and therefore achieves an asymptotic linear speedup. We now compare this transient time with the

existing literature. First, Ref. [67] shows that, under the strong convexity of F , GT-DSGD asymptotically

converges at O(1/k); however, the convergence rate derived in [67] depends on arbitrary constants and

therefore the transient time is not clear. Second, recent work [116] shows that when each local function fi is
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Table 4.1: A summary of the datasets used in numerical experiments, available at https://www.openml.org/.

Dataset train dimension classes

a9a 48,832 124 2

w8a 60,000 301 2

creditcard 100,000 30 2

Fashion-MNIST 60,000 785 10

CIFAR-10 50,000 3073 10

STL-10 5,000 27649 10

strongly convex, the corresponding transient time of DSGD is O
(
nκ6(1 − λ)−2). Our results on the transient

time KP L therefore significantly improve upon the dependence of the condition number κ under weaker

assumptions on the objective functions, while being moderately worse in terms of the network dependence.

4.4 Numerical Experiments

In this section, we present numerical experiments to demonstrate the main theoretical results in Section 4.3

with the help of learning problems on real-world datasets, summarized in Table 4.1, and minimizing certain

synthetic functions to illustrate the PL condition. We consider three different graph topologies, i.e., a directed

exponential graph with 16 nodes, an undirected grid graph with 16 nodes, and an undirected geometric graph

with 100 nodes; see Fig. 4.1. The primitive doubly stochastic weights are set to be equal for the exponential

graph and are generated by the Metroplis rule [27] for the grid and the geometric graphs. The second largest

singular values λ associated with the weight matrices of these graphs are 0.6, 0.93 and 0.99, respectively.

Towards the stochastic gradient oracle, we consider two different setups: (i) each node has access to a finite

collection of data samples and the stochastic gradient is computed with respect to one randomly selected

data sample at each iteration; (ii) each node has access to the gradient of its local function subject to random

noise, with zero-mean and bounded variance, at each iteration. The performance metric of interest is the

average of global function values across the nodes 1
n

∑n
i=1 F (xi

k), which we refer to as loss, versus the number

of epochs3 in (i) and the number of iterations in (ii). We manually optimize the parameters of all algorithms

across all experiments to achieve their best performances.

To study the convergence behavior of GT-DSGD, we conduct three different experiments: binary classifica-

tion with non-convex logistic regression [137], multiclass classification with neural networks, and minimizing

synthetic non-convex functions that satisfy the global PL condition. We compare the performance of GT-DSGD

with DSGD [2] to illustrate the advantages of the former in the setting of heterogeneous data distributions
3Each epoch is one effective pass of local data samples at each node.

https://www.openml.org/
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Figure 4.1: A directed exponential graph with 16 nodes, an undirected grid graph with 16 nodes, and an
undirected geometric graph with 100 nodes.

across the nodes; moreover, we use the centralized minibatch SGD as the benchmark to illustrate the scenarios

in which GT-DSGD achieves a network-independent performance. The experimental results are described in

the next subsections. It can be verified that the numerical results of GT-DSGD are consistent with the theory

in this chapter.

4.4.1 Non-convex logistic regression for binary classification

We first consider a binary classification problem with the help of a non-convex logistic regression model [137].

Specifically, the decentralized optimization problem of interest is given by minx∈Rp F (x) := 1
n

∑n
i=1 fi(x) +

r(x), such that

fi(x) = 1
m

m∑
j=1

log
[
1 + e−(x⊤θij)ξij

]
, r(x) =

p∑
d=1

R[x]2d
1 + [x]2d

,

where θi,j is the feature vector, ξi,j is the corresponding binary label, and r(x) is a non-convex regularizer

with R = 10−4.

We compare the performance of GT-DSGD over the directed exponential and the grid graphs, both with 16

nodes, to the centralized SGD with a minibatch size of 16. We consider the best possible constant step-size for

both algorithms. The numerical results over the a9a, w8a, and creditcard datasets are shown in Fig. 4.2. It

can be observed that, across all datasets, the convergence behavior of GT-DSGD matches that of the centralized

minibatch SGD and is independent of the underlying graph topology, as long as the total number of iterations

is large enough. This observation is consistent with Corollary 4.3.1, demonstrating the network-independent

convergence of GT-DSGD under an appropriate constant step-size for general smooth non-convex functions.

4.4.2 Neural network for multiclass classification

We next compare the performance of DSGD (without gradient tracking) and GT-DSGD, both with a constant

step-size, when the data distributions across the nodes are significantly heterogeneous. To this aim, we

consider a harsh problem setup where the data samples are distributed over the 100-node geometric graph
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in Fig. 4.1 such that each node has the same number of data samples and the samples belong to only one or

two classes (out of 10 possible classes). We consider decentralized training of a neural network with one fully

connected hidden layer of 64 neurons and sigmoid activation. The experimental results over the Fashion-

MNIST, CIFAR-10, and STL-10 datasets are shown in Fig. 4.3. We observe that GT-DSGD significantly

outperforms DSGD in this setting, demonstrating the robustness of GT-DSGD to heterogeneous data across the

nodes; see also Remark 4.3.3.

4.4.3 Synthetic functions that satisfy the global PL condition

Finally, we show the performance of GT-DSGD when the global function satisfies the PL condition and

compare it with DSGD and the centralized minibatch SGD. In particular, each local function is chosen

as fi(x) = x2 + 3 sin2(x) + aix cos(x), such that
∑n

i=1 ai = 0 and ai ̸= 0, ∀i ∈ V, leading to the global

function F (x) = x2 + 3 sin2(x), which is clearly non-convex and further satisfies the PL condition [147]. It

can be verified that each local function is highly nonlinear and significantly different from the global func-

tion; see Fig. 4.4. We inject random Gaussian noise with mean 0 and the standard deviation 0.5 to the

gradient computation at each node. The corresponding numerical results can be found in Fig. 4.5, where

the experiments in the first three plots of Fig. 4.5 are performed over the directed exponential graph with 16

nodes. It can be observed from the first plot of Fig. 4.5 that GT-DSGD achieves inexact linear convergence

under constant step-sizes; moreover, a smaller step-size leads to a smaller steady-state error but at a slower

rate. Compared with the convergence of DSGD under constant step-sizes shown in the second plot of Fig. 4.5,

GT-DSGD achieves a smaller steady-state error much faster benefiting from gradient tracking that effectively

exploits the global geometry. The third plot of Fig. 4.5 shows that GT-DSGD achieves exact sublinear conver-

gence to the optimal solution with decaying step-sizes of the form αk = (k + 3)−τ under different values of τ

chosen in (0.5, 1]. Clearly, a larger τ leads to a faster rate as Theorem 4.3.3 suggests. Finally, we observe

from the last plot of Fig. 4.5 that the convergence rate of GT-DSGD with τ = 1 matches that of the centralized

minibatch SGD with the same decaying step-size after a small number of transient iterations over different

graphs. This phenomenon demonstrates the asymptotically network-independent and optimal O(1/k) rate

achieved by GT-DSGD. This observation is consistent with Theorem 4.3.4.

4.5 Convergence analysis

4.5.1 The general non-convex case

It is straightforward to verify that the random variables generated by GT-DSGD are square-integrable and that

xk, yk are Fk-measurable and g(xk, ξk) is Fk+1-measurable, ∀k. In this section, we derive general bounds
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Figure 4.2: The performance of GT-DSGD for non-convex logistic regression over different graphs and com-
parison with the centralized minibatch SGD on the a9a, w8a and creditcard datasets.
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Figure 4.3: Performance comparison between GT-DSGD and DSGD for one-hidden-layer neural network under
heterogeneous data distributions across the nodes on the Fashion-MNIST, CIFAR-10 and STL-10 datasets.
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Figure 4.4: The global and local geometries in the experiment with synthetic functions that satisfy the global
PL condition.
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Figure 4.5: Convergence of GT-DSGD and DSGD under the global PL condition: Inexact linear convergence
with different constant step-sizes α, exact sublinear convergence of GT-DSGD with decaying step-sizes αk =
(k + 3)−τ under different values of τ , exact sublinear convergence of GT-DSGD over different graphs in
comparison with the centralized minibatch SGD with the decaying step-size αk = (k + 3)−1.

on the stochastic gradient tracking process, which may be of independent interest, and prove Theorem 4.3.1.

We start by presenting some standard results on decentralized stochastic gradient tracking algorithms; their

proofs can be found, e.g., in [24,56,67].

Lemma 4.5.1. Under Assumption 4.2.1-4.2.3, We have the following:

(a) ∥Wx − Jx∥ ≤ λ ∥x − Jx∥ , ∀x ∈ Rnp.

(b) yk+1 = gk, ∀k ≥ 0.

(c)
∥∥∇fk − ∇F (xk)

∥∥2 ≤ L2

n ∥xk − Jxk∥2
, ∀k ≥ 0.

(d) E[⟨gi(xi
k, ξi

k) − ∇fi(xi
k), gr(xr

k, ξr
k) − ∇fr(xr

k)⟩|Fk] = 0, ∀k ≥ 0, ∀i, r ∈ V such that i ̸= r.

(e) E
[
∥gk − ∇fk∥2|Fk

]
≤ ν2

a/n, ∀k ≥ 0.

As a consequence of the state update of GT-DSGD described in (4.2b) and Lemma 4.5.1(b), we have: ∀k ≥ 0,

xk+1 = xk − αkyk+1 = xk − αkgk, (4.3)

i.e., the mean state xk of the network proceeds in the direction of the average of local stochastic gradients gk.

The following lemma provides several useful relations on the consensus process of the state vectors across

the network [24].



CHAPTER 4. DECENTRALIZED ONLINE STOCHASTIC NON-CONVEX OPTIMIZATION 121

Lemma 4.5.2. Let Assumption 4.2.2 hold. We have the following inequalities: ∀k ≥ 0,

∥xk+1 − Jxk+1∥2 ≤ 1 + λ2

2 ∥xk − Jxk∥2 + 2α2
kλ2

1 − λ2 ∥yk+1 − Jyk+1∥2
.

∥xk+1 − Jxk+1∥2 ≤ 2λ2 ∥xk − Jxk∥2 + 2α2
kλ2 ∥yk+1 − Jyk+1∥2

.

∥xk+1 − Jxk+1∥ ≤ λ ∥xk − Jxk∥2 + αkλ ∥yk+1 − Jyk+1∥ .

4.5.1.1 A descent inequality

In this subsection, we establish a key descent inequality that characterizes the expected decrease of the value

of the global objective function F over each iteration in light of (4.3).

Lemma 4.5.3. Let Assumptions 4.2.1-4.2.3 hold. If 0 < αk ≤ 1
2L , then we have: ∀k ≥ 0,

E [F (xk+1)|Fk] ≤ F (xk) − αk

2 ∥∇F (xk)∥2 − αk

4
∥∥∇fk

∥∥2 + αkL2

2
∥xk − Jxk∥2

n
+ α2

kLν2
a

2n
.

Proof. Since F is L-smooth, we have [5]: ∀x, y ∈ Rp,

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩ + L

2 ∥y − x∥2. (4.4)

Setting y = xk+1 and x = xk in (4.4) to obtain: ∀k ≥ 0,

F (xk+1) ≤ F (xk) − αk ⟨∇F (xk), gk⟩ + α2
kL

2 ∥gk∥2.

Conditioning on Fk, by E[gk|Fk] = ∇fk, obtains: ∀k ≥ 0,

E[F (xk+1)|Fk] ≤ F (xk) − αk

〈
∇F (xk), ∇fk

〉
+ α2

kL

2 E
[
∥gk∥2 |Fk

]
= F (xk) − αk

2 ∥∇F (xk)∥2 − αk

2
∥∥∇fk

∥∥2 + αk

2 ∥∇F (xk) − ∇fk∥2 + α2
kL

2 E
[
∥gk∥2 |Fk

]
≤ F (xk) − αk

2 ∥∇F (xk)∥2 − αk

2 ∥∇fk∥2 + αkL2

2n
∥xk − Jxk∥2 + α2

kL

2 E
[
∥gk∥2 |Fk

]
, (4.5)

where the equality above uses ⟨x, y⟩ = 1
2 (∥x∥2 + ∥y∥2 − ∥x − y∥2), ∀x, y ∈ Rp, and the last inequality is due

to Lemma 4.5.1(c). For the last term in (4.5), note that: ∀k ≥ 0,

E
[
∥gk∥2 |Fk

]
= E

[∥∥gk − ∇fk + ∇fk

∥∥2 |Fk

]
= E

[∥∥gk − ∇fk

∥∥2 |Fk

]
+ ∥∇fk∥2 ≤ ν2

a/n +
∥∥∇fk

∥∥2
, (4.6)

where the second equality uses that ∇fk is Fk-measurable and E[gk|Fk] = ∇fk, and the last inequality uses

Lemma 4.5.1(e). We now use (4.6) in (4.5) to obtain: ∀k ≥ 0,

E[F (xk+1)|Fk] ≤ F (xk) − αk

2 ∥∇F (xk)∥2 + α2
kLν2

a

2n
− αk (1 − αkL)

2 ∥∇fk∥2 + αkL2

2n
∥xk − Jxk∥2.

The proof follows by noting that 1 − αkL ≥ 1
2 , if 0 < αk ≤ 1

2L , ∀k ≥ 0, in the inequality above.
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Compared with the corresponding descent inequality for the centralized stochastic gradient descent, see,

e.g., [5, 7], the descent inequality for GT-DSGD derived in Lemma 4.5.3 has an additional network consensus

error term ∥xk − Jxk∥. We therefore seeks for means to control this perturbation in order to establish the

convergence of GT-DSGD. We will bound the consensus and the gradient tracking error jointly.

4.5.1.2 Bounding the gradient tracking error

In this subsection, we analyze the gradient tracking process.

Lemma 4.5.4. Let Assumption 4.2.1-4.2.3 hold. We have: ∀k ≥ 0,

E
[

∥yk+2 − Jyk+2∥2 ] ≤ λ2E
[

∥yk+1 − Jyk+1∥2 ]+ λ2E
[

∥gk+1 − gk∥2 ]
+ 2E [⟨(W − J) yk+1, (W − J) (∇fk − gk)⟩]

+ 2E [⟨(W − J) yk+1, (W − J) (∇fk+1 − ∇fk)⟩]

Proof. Using the gradient tracking update (4.2a), and the fact that WJ = JW = J, we have: ∀k ≥ 0,

∥yk+2 − Jyk+2∥2

= ∥W (yk+1 + gk+1 − gk) − J (yk+1 + gk+1 − gk)∥2

= ∥Wyk+1 − Jyk+1 + (W − J) (gk+1 − gk)∥2

= ∥Wyk+1 − Jyk+1∥2 + ∥(W − J) (gk+1 − gk)∥2 + 2 ⟨(W − J) yk+1, (W − J) (gk+1 − gk)⟩

≤ λ2 ∥yk+1 − Jyk+1∥2 + λ2 ∥gk+1 − gk∥2 + 2 ⟨(W − J) yk+1, (W − J) (gk+1 − gk)⟩︸ ︷︷ ︸
C1

, (4.7)

where the last inequality is due to Lemma 4.5.1(a). Towards C1, since yk+1 and gk are Fk+1-measurable,

we have: ∀k ≥ 0,

E [C1|Fk+1] = ⟨(W − J) yk+1, (W − J) (∇fk+1 − gk)⟩

= ⟨(W − J) yk+1, (W − J) (∇fk − gk)⟩ + ⟨(W − J) yk+1, (W − J) (∇fk+1 − ∇fk)⟩ . (4.8)

The proof then follows by taking the expectation on (4.7) and using (4.8) in the resulting inequality.

Next, we bound the terms in Lemma 4.5.4. For the second term in Lemma 4.5.4, we have the following.

Lemma 4.5.5. Let Assumption 4.2.1-4.2.3 hold. We have: ∀k ≥ 0,

E
[

∥gk+1 − gk∥2 ] ≤ 18L2E
[

∥xk − Jxk∥2 ]+ 6nα2
kL2E

[
∥gk∥2 ]

+ 12α2
kL2λ2E

[
∥yk+1 − Jyk+1∥2 ]+ 3nν2

a.
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Proof. Since both ∇fk+1 and gk are Fk+1-measurable and E[gk+1|Fk+1] = ∇fk+1, we have: ∀k ≥ 0,

E
[

∥gk+1 − gk∥2 ] = E
[

∥gk+1 − ∇fk+1∥2 ]+ E
[

∥∇fk+1 − gk∥2 ]
,

≤ nν2
a + E

[
∥∇fk+1 − gk∥2 ]

≤ nν2
a + 2E

[
∥∇fk+1 − ∇fk∥2 ]+ 2E

[
∥∇fk − gk∥2 ]

≤ 3nν2
a + 2L2 E

[
∥xk+1 − xk∥2 ]︸ ︷︷ ︸

C2

(4.9)

where the first inequality uses Assumption 4.2.3 and the last inequality uses Assumption 4.2.3 and the L-

smoothness of each fi. Towards C2, we have: ∀k ≥ 0,

C2 = E
[

∥xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk∥2 ]
≤ 3E

[
∥xk+1 − Jxk+1∥2 ]+ 3nα2

kE
[

∥gk∥2 ]+ 3E
[

∥xk − Jxk∥2 ]
≤ 9E

[
∥xk − Jxk∥2 ]+ 3nα2

kE
[

∥gk∥2 ]+ 6α2
kλ2E

[
∥yk+1 − Jyk+1∥2 ]

, (4.10)

where the second inequality uses (4.3) and the last inequality uses Lemma 4.5.2. The proof follows by

using (4.10) in (4.9).

For the third term in Lemma 4.5.4, we have the following.

Lemma 4.5.6. Let Assumption 4.2.1-4.2.3 hold. We have: ∀k ≥ 0,

E [⟨(W − J) yk+1, (W − J) (∇fk − gk)⟩] ≤ ν2
a.

Proof. Using the fact that J(W − J) = Onp and the gradient tracking update (4.2a), we have: ∀k ≥ 0,

E [⟨(W − J) yk+1, (W − J) (∇fk − gk)⟩ |Fk]

= E [⟨Wyk+1, (W − J) (∇fk − gk)⟩ |Fk]

= E
[〈

W2 (yk + gk − gk−1) , (W − J) (∇fk − gk)
〉

|Fk

]
= E

[〈
W2gk, (W − J) (∇fk − gk)

〉
|Fk

]
= E

[〈
W2 (gk − ∇fk) , (W − J) (∇fk − gk)

〉
|Fk

]
= E

[
(gk − ∇fk)⊤(J − W⊤W2) (gk − ∇fk) |Fk

]
, (4.11)

where the third and the fourth equality exploit the fact that the random vectors yk, gk−1 and ∇fk are Fk-
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measurable and that E[gk|Fk] = ∇fk. In light of Lemma 4.5.1(d), (4.11) reduces to

E [⟨(W − J) yk+1, (W − J) (∇fk − gk)⟩ |Fk]

= E
[
(gk − ∇fk)⊤diag(J − W⊤W2) (gk − ∇fk) |Fk

]
≤ E

[
(gk − ∇fk)⊤diag(J) (gk − ∇fk) |Fk

]
,

= E
[
∥gk − ∇fk∥2|Fk

]
/n (4.12)

where the inequality holds since diag(W⊤W2) is nonnegative. The proof follows by using Assumption 4.2.3

in (4.12) and taking the expectation on the resulting inequality.

For the last term in Lemma 4.5.4, we have the following.

Lemma 4.5.7. Let Assumption 4.2.1-4.2.3 hold. We have: ∀k ≥ 0,

⟨(W − J) yk+1, (W − J) (∇fk+1 − ∇fk)⟩ ≤ (λαkL + 0.5η1 + η2)λ2 ∥yk+1 − Jyk+1∥2

+ η−1
2 λ2L2 ∥xk − Jxk∥2 + 0.5η−1

1 λ2α2
kL2n ∥gk∥2

,

where η1 and η2 are arbitrary positive constants4.

Proof. Using (W − J)J = Onp and the Cauchy-Schwarz inequality, we have: ∀k ≥ 0,

⟨(W − J) yk+1, (W − J) (∇fk+1 − ∇fk)⟩

= ⟨(W − J) (yk+1 − Jyk+1), (W − J) (∇fk+1 − ∇fk)⟩

≤ λ2L ∥yk+1 − Jyk+1∥ ∥xk+1 − xk∥ , (4.13)

where the last inequality uses ∥W − J∥ = λ and the L-smoothness of each fi. We note that, ∀k ≥ 0,

∥xk+1 − xk∥

= ∥xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk∥

≤ ∥xk+1 − Jxk+1∥ + αk

√
n ∥gk∥ + ∥xk − Jxk∥

≤ 2 ∥xk − Jxk∥ + αk

√
n ∥gk∥ + αkλ ∥yk+1 − Jyk+1∥ . (4.14)

where the last inequality uses Lemma 4.5.2. We use (4.14) in (4.13) to obtain: ∀k ≥ 0,

⟨(W − J) yk+1, (W − J) (∇fk+1 − ∇fk)⟩ ≤ λ3αkL ∥yk+1 − Jyk+1∥2 + (λ ∥yk+1 − Jyk+1∥)
(
λαkL

√
n ∥gk∥

)︸ ︷︷ ︸
C3

+ 2(λ ∥yk+1 − Jyk+1∥)(λL ∥xk − Jxk∥)︸ ︷︷ ︸
C4

. (4.15)

4We note that η1 and η2 will be fixed later.
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By Young’s inequality, we have that

C3 ≤ 0.5η1λ2 ∥yk+1 − Jyk+1∥2 + 0.5η−1
1 λ2α2

kL2n ∥gk∥2
,

where η1 > 0 is arbitrary, and that,

C4 ≤ η2λ2 ∥yk+1 − Jyk+1∥2 + η−1
2 λ2L2 ∥xk − Jxk∥2

,

where η2 > 0 is arbitrary. The proof follows by Using the bounds on C3 and C4 in (4.15).

With the help of auxiliary Lemmas 4.5.5-4.5.7, we now prove an upper bound on the gradient tracking error.

Lemma 4.5.8. Let Assumption 4.2.1-4.2.3 hold. If 0 < αk ≤ 1−λ2

24λL , then we have: ∀k ≥ 0,

E
[

∥yk+2 − Jyk+2∥2

nL2

]
≤ 1 + λ2

2 E
[

∥yk+1 − Jyk+1∥2

nL2

]
+ 24λ2

1 − λ2E
[

∥xk − Jxk∥2

n

]
+ 6λ2α2

k

1 − λ2E
[ ∥∥∇fk

∥∥2 ]+ 6ν2
a

L2 .

Proof. We apply Lemma 4.5.5, 4.5.6 and 4.5.7 to Lemma 4.5.4 to obtain: ∀k ≥ 0, ∀η1 > 0, ∀η2 > 0,

E
[

∥yk+2 − Jyk+2∥2 ] ≤ λ2(1 + 12λ2α2
kL2 + 2λαkL + η1 + 2η2)E

[
∥yk+1 − Jyk+1∥2 ]+ (3λ2n + 2)ν2

a

+
(
18 + 2η−1

2
)

λ2L2E
[

∥xk − Jxk∥2 ]+
(
6 + η−1

1
)

λ2α2
kL2nE

[
∥gk∥2 ]

. (4.16)

We set η1 = 1−λ2

6λ2 and η2 = 1−λ2

12λ2 in (4.16). It is straightforward to verify that if 0 < αk ≤ 1−λ2

24λ2L , ∀k ≥ 0,

then we have:

λ2(1 + 12λ2α2
kL2 + 2λαkL + η1 + 2η2) ≤ 1 + λ2

2 . (4.17)

Moreover, recall from (4.6) that

E
[
∥gk∥2] ≤ E

[
∥∇fk∥2]+ ν2

a/n. (4.18)

Using (4.17), (4.18), η1 = 1−λ2

6λ2 and η2 = 1−λ2

12λ2 in (4.16), we have: if 0 < αk ≤ 1−λ2

24λ2L , then

E
[
∥yk+2 − Jyk+2∥2] ≤ 1 + λ2

2 E
[
∥yk+1 − Jyk+1∥2]+

(
6λ2α2

kL2

1 − λ2 + 5n

)
ν2

a

+ 24λ2L2

1 − λ2 E
[
∥xk − Jxk∥2]+ 6λ2α2

kL2n

1 − λ2 E
[
∥∇fk∥2].

The proof follows by 6λ2α2
kL2

1−λ2 ≤ 1 if 0 < αk ≤ 1−λ2

24λL , ∀k.

4.5.1.3 LTI dynamics

In this subsection, we establish the convergence rate of GT-DSGD for general smooth non-convex functions

under an appropriate constant step-size such that αk = α, ∀k ≥ 0. To this end, we now jointly write

Lemma 4.5.2 and 4.5.8 in the following linear-time-invariant system that characterizes the convergence of

consensus and gradient tracking process.
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Proposition 4.5.1. Let Assumption 4.2.1-4.2.3 hold. If 0 < α ≤ 1−λ2

24λL , then we have the following (entry-

wise) matrix-vector inequality hold: ∀k ≥ 0,

uk+1 ≤ Guk + bk, (4.19)

where the state vector uk ∈ R2, the system matrix G ∈ R2×2 and the input vector bk ∈ R2 are given by

uk =


E
[

∥xk − Jxk∥2

n

]
E
[

∥yk+1 − Jyk+1∥2

nL2

]
 , G =


1 + λ2

2
2α2λ2L2

1 − λ2

24λ2

1 − λ2
1 + λ2

2

 , bk =

 0
6λ2α2

1 − λ2E
[∥∥∇fk

∥∥2]+ 6ν2
a

L2

 .

In light of Proposition 4.5.1, we solve the range of α such that ρ(G) < 1, using the next lemma from [36].

Lemma 4.5.9. Let X ∈ Rd×d be a non-negative matrix and x ∈ Rd be a positive vector. If Xx < x,

then ρ(X) < 1. Moreover, if Xx ≤ zx, for some z > 0, then ρ(X) ≤ z.

Lemma 4.5.10. If 0 < α ≤ min
{ 1−λ2

24λ , (1−λ2)2

15λ2

} 1
L , then ρ(G) < 1 and hence

∑∞
k=0 Gk = (I2 − G)−1.

Proof. In the light of Lemma 4.5.9, we solve the range of α and a positive vector s = [s1, s2]⊤ such that Gs <

s, which is equivalent to the following two inequalities:
1 + λ2

2 s1 + 2α2λ2L2

1 − λ2 s2 < s1

24λ2

1 − λ2 s1 + 1 + λ2

2 s2 < s2

⇐⇒


α2 <

(1 − λ2)2

4λ2L2
s1

s2

s1

s2
<

(1 − λ2)2

48λ2

We set s1/s2 = (1 − λ2)2/(50λ2) and the proof follows by using it to solve for the range of α such that the

first inequality above holds.

Now, we prove an upper bound on the accumulated consensus errors along the algorithm path as follows.

Lemma 4.5.11. Let Assumption 4.2.1-4.2.3 hold. If 0 < α ≤ min
{ 1−λ2

24λ , (1−λ2)2

8
√

6λ2

} 1
L , then we have:

K∑
k=0

E
[

∥xk − Jxk∥2

n

]
≤ 96α4λ4L2

(1 − λ2)4

K−1∑
k=0

E
[∥∥∇fk

∥∥2]+ 16α2λ4

(1 − λ2)3
∥∇f0∥2

n
+ 112α2λ2ν2

aK

(1 − λ2)3 .

Proof. We recursively apply (4.19) to obtain: ∀k ≥ 1,

uk ≤ Gku0 +
k−1∑
t=0

Gtbk−1−t. (4.20)

Summing up (4.20) over k from 1 to K, we obtain: ∀K ≥ 1,
K∑

k=0
uk ≤

K∑
k=0

Gku0 +
K∑

k=1

k−1∑
t=0

Gtbk−1−t

≤

( ∞∑
k=0

Gk

)
u0 +

( ∞∑
k=0

Gk

)
K−1∑
k=0

bk

= (I2 − G)−1u0 + (I2 − G)−1
K−1∑
k=0

bk. (4.21)
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In light of (4.21), we next compute an (entry-wise) upper bound on (I2 − G)−1 as follows. We note that

if 0 < α ≤ (1−λ2)2

8
√

6λ2L
,

det(I2 − G) = (1 − λ2)2

4 − 48α2λ4L2

(1 − λ2)2 ≥ (1 − λ2)2

8 .

Using the lower bound on det(I2 − G) above, we have that

(I2 − G)−1 = (I2 − G)∗

det(I2 − G) ≤


4

1 − λ2
16α2λ2L2

(1 − λ2)3

192λ2

(1 − λ2)3
4

1 − λ2

 . (4.22)

We use (4.22) in (4.21) with ∥x0 − Jx0∥ = 0 to obtain: ∀K ≥ 1,

K∑
k=0

E
[

∥xk − Jxk∥2

n

]
≤ 16α2λ2

(1 − λ2)3E
[

∥y1 − Jy1∥2

n

]
+ 96α4λ4L2

(1 − λ2)4

K−1∑
k=0

E
[∥∥∇fk

∥∥2]+ 96α2λ2ν2
aK

(1 − λ2)3 . (4.23)

Finally, we use the gradient tracking update (4.2a) to obtain:

E
[

∥y1 − Jy1∥2 ]
= E

[
E
[

∥(W − J)g0∥2 ]|F0
]

= E
[

∥(W − J)(g0 − ∇f0)∥2 ]+ E
[

∥(W − J)∇f0∥2 ]
≤ λ2nν2

a + λ2 ∥∇f0∥2
, (4.24)

where the second equality uses E[g0|F0] = ∇f0 and that ∇f0 is constant and the last inequality uses ∥W −

J∥ = λ. The proof follows by using (4.24) in (4.23).

Lemma 4.5.11 states that the accumulated consensus error may be bounded by the accumulated average of

local exact gradients and the accumulated variance of stochastic gradients. We next show that this bound

leads to the convergence of GT-DSGD for general smooth non-convex functions, i.e., Theorem 4.3.1.

Proof of Theorem 4.3.1. We take the expectation of the descent inequality in Lemma 4.5.3 and sum up the

resulting inequality over k from 0 to K − 1, ∀K ≥ 1, to obtain: if 0 < α ≤ 1
2L ,

E [F (xK)] ≤ E [F (x0)] − α

2

K−1∑
k=0

E
[
∥∇F (xk)∥2

]
− α

4

K−1∑
k=0

E
[∥∥∇fk

∥∥2]+ α2ν2
aLK

2n

+ αL2

2

K−1∑
k=0

E
[

∥xk − Jxk∥2

n

]
. (4.25)

Rearranging (4.25) and using that F is bounded below by F ∗ obtains: if 0 < α ≤ 1
2L , ∀K ≥ 1,

K−1∑
k=0

E
[
∥∇F (xk)∥2

]
≤ 2(F (x0) − F ∗)

α
+ αν2

aLK

n
− 1

2

K−1∑
k=0

E
[∥∥∇fk

∥∥2]+ L2
K−1∑
k=0

E
[

∥xk − Jxk∥2

n

]
. (4.26)
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Moreover, we observe: ∀K ≥ 1,

1
n

n∑
i=1

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2]

≤ 2
n

n∑
i=1

K−1∑
k=0

(
E
[∥∥∇F (xi

k) − ∇F (xk)
∥∥2 + ∥∇F (xk)∥2

])
≤ 2L2

K−1∑
k=0

E
[

∥xk − Jxk∥2

n

]
+ 2

K−1∑
k=0

E
[
∥∇F (xk)∥2

]
,

where the last inequality uses the L-smoothness of F . Using (4.26) in the inequality above obtains: ∀K ≥ 1,

1
n

n∑
i=1

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2] ≤ 4(F (x0) − F ∗)

α
+ 2αν2

aLK

n

−
K−1∑
k=0

E
[∥∥∇fk

∥∥2]+ 4L2
K−1∑
k=0

E
[

∥xk − Jxk∥2

n

]
. (4.27)

We finally apply the upper bound derived in Lemma 4.5.11 on the term of (4.27) to obtain: If 0 < α ≤

min
{ 1

2 , 1−λ2

24λ , (1−λ2)2

8
√

6λ2

} 1
L ,

1
n

n∑
i=1

K−1∑
k=0

E
[∥∥∇F (xi

k)
∥∥2]

≤ 4(F (x0) − F ∗)
α

+ 2αν2
aLK

n
+ 448α2L2λ2ν2

aK

(1 − λ2)3 −
(

1 − 384α4L4λ4

(1 − λ2)4

)K−1∑
k=0

E
[∥∥∇fk

∥∥2]+ 64α2L2λ4

(1 − λ2)3
∥∇f0∥2

n
.

Clearly, if 0 < α ≤ 1−λ2

5Lλ , then 1 − 384α4L4λ4

(1−λ2)4 ≥ 0, and the proof follows by dropping the negative term.

4.5.2 The PL case

4.5.2.1 Linear convergence up to steady state error with constant step-sizes

In this section, we, built on top of the results established in Section 4.5.1, develop general bounds on the

iterates of GT-DSGD when the global function F further satisfies the PL condition and prove Theorem 4.3.2.

The following is a useful inequality that may be found in [5].

Lemma 4.5.12. Let Assumption 4.2.1 hold. We have: ∀x ∈ Rp.

∥∇F (x)∥2 ≤ 2L (F (x) − F ∗) .

Proof. By (4.4) and the fact that F is bounded below by F ∗, we have F ∗ ≤ F
(
x − L−1∇F (x)

)
≤ F (x) −

1
2L ∥∇F (x)∥2, which yields the desired inequality.

We conclude from Lemma 4.5.12 that, under Assumption 4.2.1 and 4.2.4, µ ≤ L and recall κ := L
µ ≥ 1. The

following lemma is helpful in establishing the performance of GT-DSGD at each node.
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Lemma 4.5.13. Let Assumption 4.2.1 hold. We have

1
n

n∑
i=1

(F (xi
k) − F ∗) ≤ 2 (F (xk) − F ∗) + L

∥xk − Jxk∥2

n
.

Proof. Setting y = xi
k and x = xk in (4.4), we obtain

F (xi
k) − F ∗ ≤ F (xk) − F ∗ +

〈
∇F (xk), xi

k − xk

〉
+ 1

2 L
∥∥xi

k − xk

∥∥2
,

≤ F (xk) − F ∗ + ∥∇F (xk)∥
∥∥xi

k − xk

∥∥+ 1
2 L
∥∥xi

k − xk

∥∥2
,

≤ F (xk) − F ∗ + 1
2 L−1 ∥∇F (xk)∥2 + L

∥∥xi
k − xk

∥∥2

≤ 2 (F (xk) − F ∗) + L
∥∥xi

k − xk

∥∥2
, (4.28)

where the third inequality uses Young’s inequality and the last inequality is due to Lemma 4.5.12. Averag-

ing (4.28) over i from 1 to n proves the lemma.

We next refine several results developed in Section 4.5.1. We first use the PL inequality to in Lemma 4.5.3.

Lemma 4.5.14. Let Assumptions 4.2.1-4.2.4 hold. If 0 < αk ≤ 1
2L , then we have: ∀k ≥ 0,

E
[

F (xk+1) − F ∗

L

∣∣∣Fk

]
≤ (1 − µαk)F (xk) − F ∗

L
+ αkL

2
∥xk − Jxk∥2

n
+ α2

kν2
a

2n
.

Proof. The proof follows by using the PL condition in the descent inequality in Lemma 4.5.3 and then

substracting F ∗ from both sides of the resulting inequality.

We next use Lemma 4.5.12 to refine Lemma 4.5.8 as follows.

Lemma 4.5.15. Let Assumption 4.2.1-4.2.3 hold. If 0 < αk ≤ min
{ 1−λ2

12λ , 1
} 1

2L , then we have: ∀k ≥ 0,

E
[

∥yk+2 − Jyk+2∥2

nL2

]
≤ 1 + λ2

2 E
[

∥yk+1 − Jyk+1∥2

nL2

]
+ 24λ2α2

kL2

1 − λ2 E
[

F (xk) − F ∗

L

]
+ 27λ2

1 − λ2E
[

∥xk − Jxk∥2

n

]
+ 6ν2

a

L2 .

Proof. By Lemma 4.5.1(c) and Lemma 4.5.12, we have: ∀k ≥ 0,

∥∥∇fk

∥∥2 ≤ 2 ∥∇F (xk)∥2 + 2
∥∥∇F (xk) − ∇fk

∥∥2

≤ 4L (F (xk) − F ∗) + 2L2n−1 ∥xk − Jxk∥2
. (4.29)

Using the inequality above in Lemma 4.5.8 to obtain: ∀k ≥ 0,

E
[

∥yk+2 − Jyk+2∥2

nL2

]
≤
(

24λ2

1 − λ2 + 12λ2α2
kL2

1 − λ2

)
E
[

∥xk − Jxk∥2

n

]
+ 6ν2

a

L2

+ 24λ2α2
kL

1 − λ2 E
[
F (xk)−F ∗]+ 1 + λ2

2 E
[

∥yk+1−Jyk+1∥2

nL2

]
.

The proof follows by 12λ2α2
kL2

1−λ2 ≤ 3λ2

1−λ2 if 0 < αk ≤ 1
2L .
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We now write the inequalities in Lemma 4.5.2, 4.5.14 and 4.5.15 jointly in a linear dynamics as follows.

Proposition 4.5.2. Let Assumption 4.2.1-4.2.4 hold. If 0 < αk ≤ min
{

1, 1−λ2

12λ , (1−λ2)2

4
√

6λ2

} 1
2L , then we have

the following (entry-wise) matrix-vector inequality: ∀k ≥ 0,

vk+1 ≤ Hkvk + uk, (4.30)

where the state vector vk ∈ R3, the system matrix H ∈ R3×3 and the input vector uk ∈ R3 are given by

vk =



E
[

∥xk − Jxk∥2

n

]
E
[

F (xk) − F ∗

L

]
E
[

∥yk+1 − Jyk+1∥2

nL2

]


, uk =



0

α2
kν2

a

2n

6ν2
a

L2


, Hk =



1 + λ2

2 0 2α2
kλ2L2

1 − λ2

αkL

2 1 − µαk 0

27λ2

1 − λ2
24λ2α2

kL2

1 − λ2
1 + λ2

2


.

In the following lemma, we find the range of the step-size αk such that ρ(Hk) < 1, ∀k ≥ 0, with the help of

Lemma 4.5.9.

Lemma 4.5.16. Let Assumption 4.2.1-4.2.4 hold. If the step-size sequence αk satisfies for all k that

0 < αk ≤ α := min
{

1
2L

,
(1 − λ2)2

42λ2L
,

1 − λ2

24λLκ1/4 ,
1 − λ2

2µ

}
, (4.31)

then we have: ρ(Hk) ≤ 1 − µαk

2 < 1, ∀k ≥ 0.

Proof. In the light of Lemma 4.5.9, we solve for the range of the step-size αk and a positive vector δ =

[δ1, δ2, δ3] such that Hkδ ≤
(
1 − µαk

2
)

δ, which may be written as

µαk

2 + 2α2
kλ2L2

1 − λ2
δ3

δ1
≤ 1 − λ2

2 , (4.32)

κδ1 ≤ δ2, (4.33)

µαk

2 ≤ 1 − λ2

2 − 27λ2

1 − λ2
δ1

δ3
− 24λ2α2

kL2

1 − λ2
δ2

δ3
. (4.34)

According to (4.33), we fix δ1 = 1 and δ2 = κ. We now impose that 0 < αk ≤ 1−λ2

2µ , ∀k ≥ 0. Then, according

to (4.34), we choose δ3 > 0 such that 27λ2

1−λ2
1
δ3

+ 24λ2α2
kL2

1−λ2
κ
δ3

≤ 1−λ2

4 . It suffices to fix δ3 = 108λ2

(1−λ2)2 + 96λ2α2
kL2κ

(1−λ2)2 .

Now, we use the fixed values of δ1, δ2, δ3 and the requirement that 0 < αk ≤ 1−λ2

2µ to solve the range of αk

such that (4.32) holds, i.e.,

216α2
kλ4L2

(1 − λ2)3 + 192α4
kλ4L4κ

(1 − λ2)3 ≤ 1 − λ2

4 .

It therefore suffices to choose αk such that

0 < αk ≤ min
{

1 − λ2

6λLκ1/4 ,
(1 − λ2)2

42λ2L

}
.

Summarizing the obtained upper bounds on αk in the discussion completes the proof.
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We note that α defined in (4.31) is the same as the one given in Theorem 4.3.2. The following lemma

drives upper bounds on several important quantities.

Lemma 4.5.17. Let Assumption 4.2.1-4.2.4 hold. If 0 < αk ≤ α, where α is given in (4.31), then we

have: ∀k ≥ 0,

[
(I3 − Hk)−1 uk

]
1 ≤ 288λ4α5

kL3κν2
a

n(1 − λ2)4 + 144α2
kλ2ν2

a

(1 − λ2)3 ,

[
(I3 − Hk)−1 uk

]
2 ≤ 3αkν2

a

2µn
+ 72λ2α2

kκν2
a

(1 − λ2)3 .

Proof. By the definition of Hk in Proposition 4.5.2, we first compute the determinant of (I3 − Hk): ∀k ≥ 0,

det(I3 − Hk) = µαk(1 − λ2)2

4 − 24α5
kL5λ4

(1 − λ2)2 − 54µα3
kL2λ4

(1 − λ2)2

≥ µαk(1 − λ2)2

12 .

if 0 < αk ≤ α, where α is given in (4.31). Moreover, the adjugate of I3 − Hk, denoted as H∗, is given by

[H∗]1,2 = 48λ4α4
kL4

(1 − λ2)2 , [H∗]1,3 = 2µα3
kλ2L2

1 − λ2 ,

[H∗]2,2 ≤ (1 − λ2)2

4 , [H∗]2,3 = α3
kL3λ2

1 − λ2 .

The proof follows by (I3−Hk)−1 = H∗/ det (I3 − Hk) and the definition of uk given in Proposition 4.5.2.

We are now ready to prove Theorem 4.3.2 that characterizes the performance of GT-DSGD under a constant

step-size.

Proof of Theorem 4.3.2. We consider a constant step-size such that αk = α, ∀k ≥ 0, with 0 < α ≤ α where α

is given in (4.31). We denote Hk := H and uk := u, ∀k ≥ 0, and recursively apply (4.30) from k to 1 to

obtain: ∀k ≥ 1,

vk ≤ Hkv0 +
k−1∑
t=0

Htu ≤ Hkv0 + (I3 − H)−1 u. (4.35)

It is then clear that the first two statements in Theorem 4.3.2 follow by using Lemma 4.5.16 and 4.5.17

in (4.35) and the third statement in Theorem 4.3.2 follows by Lemma 4.5.13.

4.5.2.2 Almost sure sublinear rate with stochastic approximation step-sizes

In this section, we prove Theorem 4.3.3, i.e., the almost sure sublinear convergence rates of GT-DSGD when

the global function satisfies the PL condition under a family of stochastic approximation step-sizes. We first

establish a key fact that under appropriate step-sizes, the stochastic gradient tracking errors are uniformly

bounded in mean squared across all iterations. This fact will also be used in Section 4.5.2.3.
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Lemma 4.5.18. Let Assumptions 4.2.1-4.2.4 hold. If 0 < αk ≤ α, for α given in (4.31), then we have:

sup
k≥0

E
[

∥yk − Jyk∥2 ] ≤ ŷ,

where ŷ is a positive constant given by

ŷ := 30λ2α3L3κν2
a

(1 − λ2)2 + 60nλ2α2L3(F (x0) − F ∗)
(1 − λ2)2 + 16nν2

a

1 − λ2 + λ2∥∇f0∥2. (4.36)

Proof. We prove by mathematical induction that for the state vector vk defined in Proposition 4.5.2, there

exists some positive constant vector v̂ = [v̂1, v̂2, v̂3]⊤ such that

vk ≤ v̂, ∀k ≥ 0. (4.37)

if 0 < αk ≤ α, where α is given in (4.31). We first note that in order to make (4.37) hold when k = 0,

according to the definition of v0 and (4.24), it suffices to choose v̂ such that

v̂⊤ ≥
[
0,

F (x0) − F ∗

L
,

λ2ν2
a

L2 + λ2∥∇f0∥2

nL2

]
. (4.38)

Next, we show that if vk ≤ v̂ for some k ≥ 0 and then we also have vk+1 ≤ v̂ with an appropriate choice

of v̂. In light of Proposition 4.5.2, we have vk+1 ≤ Hkvk + uk ≤ Hkv̂ + uk, and hence it suffices to choose v̂

such that Hkv̂ + uk ≤ v̂, ∀k, which is equivalent to the following set of inequalities:

2α2
kλ2L2

1 − λ2 v̂3 ≤ 1 − λ2

2 v̂1, (4.39)

κ

2 v̂1 + αkν2
a

2µn
≤ v̂2, (4.40)

27λ2

1 − λ2 v̂1 + 24λ2α2
kL2

1 − λ2 v̂2 + 6ν2
a

L2 ≤ 1 − λ2

2 v̂3, (4.41)

where 0 < αk ≤ α and κ = L/µ. First, we note that to make (4.39) hold, it suffices to choose v̂1 as

v̂1 = 4α2λ2L2

(1 − λ2)2 v̂3. (4.42)

Second, based on (4.38), (4.40), and (4.42), we choose v̂2 as

v̂2 = 2α2λ2L2κ

(1 − λ2)2 v̂3 + αν2
a

2µn
+ F (x0) − F ∗

L
. (4.43)

Third, to make (4.41) hold, it suffices to choose v̂3 such that

v̂3 ≥ 54λ2

(1 − λ2)2 v̂1 + 48λ2α2L2

(1 − λ2)2 v̂2 + 12ν2
a

L2(1 − λ2) , (4.44)

which, using (4.42) and (4.43), is equivalent to

v̂3 ≥ 216α2λ4L2

(1 − λ2)4 v̂3 + 96λ4α4L4κ

(1 − λ2)4 v̂3 + 24λ2α3Lκν2
a

n(1 − λ2)2 + 48λ2α2L(F (x0) − F ∗)
(1 − λ2)2 + 12ν2

a

L2(1 − λ2) . (4.45)
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By the definition of α in (4.31), we have 216α2λ4L2

(1−λ2)4 ≤ 6
49 and that 96α4λ4L4κ

(1−λ2)4 ≤ 1
3456 ; therefore, to make (4.45)

hold, it suffices to choose v̂3 such that

v̂3 ≥ 30λ2α3Lκν2
a

n(1 − λ2)2 + 60λ2α2L(F (x0) − F ∗)
(1 − λ2)2 + 15ν2

a

L2(1 − λ2) .

Based on the above inequality and (4.38), we choose v̂3 as

v̂3 = 30λ2α3Lκν2
a

n(1 − λ2)2 + 60λ2α2L(F (x0) − F ∗)
(1 − λ2)2 + 16ν2

a

L2(1 − λ2) + λ2∥∇f0∥2

nL2 .

The induction is complete and the proof then follows by the definition of vk in Proposition 4.5.2.

We prove Theorem 4.3.3 using the Robbins-Siegmund almost supermartingale convergence theorem [152],

presented as follows.

Lemma 4.5.19 (Robbins-Siegmund). Let (Ω, F , {Fk},P) be a filtered space. Suppose that Zk, Bk, Ck

and Dk are nonnegative and Fk-measurable random variables such that

E [Zk+1|Fk] ≤ (1 + Bk) Zk + Ck − Dk, ∀k ≥ 0.

Then on the event {
∑∞

k=0 Bk < ∞,
∑∞

k=0 Ck < ∞}, we have that limk→∞ Zk exists and is finite almost

surely, and that
∑∞

k=0 Dk < ∞ almost surely.

We are now ready to present the proof of Theorem 4.3.3, where we construct appropriate almost super-

martingales that characterize the sample path-wise convergence rate of GT-DSGD under a family of stochastic

approximation step-sizes.

Proof of Theorem 4.3.3. We consider the step-size sequence {αk} of the following form: ∀k ≥ 0,

αk = δ(k + φ)−ϵ, where δ ≥ 1/µ and ϵ ∈ (0.5, 1], (4.46)

such that φ ≥ max{(δ/α)1/ϵ, 4
1−λ2 }. Hence, 0 < αk ≤ α for α given in (4.31). We construct Fk-adapted

processes: ∀k ≥ 0,

Rk := (k + φ)τ x̃k := (k + φ)τ n−1 ∥xk − Jxk∥2
,

Qk := (k + φ)τ ∆k := (k + φ)τ L−1(F (xk) − F ∗),

where τ = 2ϵ − 1 − ϵ1, where ϵ1 ∈ (0, 2ϵ − 1) is an arbitrarily small constant. By 1 + x ≤ ex, ∀x ∈ R, we

have (k + φ + 1)τ = (k + φ)τ
(
1 + 1

k+φ

)τ ≤ (k + φ)τ e
τ

k+φ . Since 0 < τ
k+φ ≤ 1, we have: ∀k ≥ 0,

(k + φ + 1)τ ≤ e(k + φ)τ . (4.47)
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Further, by ex ≤ 1 + x + x2 for 0 ≤ x ≤ 1,5 we have: ∀k ≥ 0,

(k + φ + 1)τ ≤
(

1 + τ

k + φ
+ τ2

(k + φ)2

)
(k + φ)τ . (4.48)

Recursion of Rk. We use Lemma 4.5.18 in Lemma 4.5.2 with the definition of αk in (4.46) to obtain: ∀k ≥ 0,

E [x̃k+1] ≤ 1 + λ2

2 E [x̃k] + 2λ2ŷ

n(1 − λ2)
δ2

(k + φ)2ϵ
, (4.49)

where ŷ is given in (4.36). We multiply (4.49) by (k + φ + 1)τ and apply (4.47) and (4.48) to obtain: ∀k ≥ 0,

E [Rk+1] ≤ 1 + λ2

2

(
1 + τ

k + φ
+ τ2

(k + φ)2

)
︸ ︷︷ ︸

Tk

E [Rk] + 2eλ2ŷ

n(1 − λ2)
δ2

(k + φ)2ϵ−τ
. (4.50)

Since φ ≥ 4
1−λ2 , i.e., τ

k+φ ≤ 1−λ2

4 , ∀k ≥ 0, we have

Tk =
(

1 − 1 − λ2

2

)(
1 + τ

k + φ
+ τ2

(k + φ)2

)
≤ 1 + τ

k + φ
+ τ2

(k + φ)2 − 1 − λ2

2

≤ 1 + τ2

(k + φ)2 − 1 − λ2

4 . (4.51)

Using (4.51) in (4.50), we have: ∀k ≥ 0,

E [Rk+1] ≤
(

1 + τ2

(k + φ)2

)
E [Rk] − 1 − λ2

4 E [Rk] + 2eλ2ŷ

n(1 − λ2)
δ2

(k + φ)2ϵ−τ
. (4.52)

Note that
∑∞

k=0(k + φ)−2 < ∞ and
∑∞

k=0(k + φ)τ−2ϵ < ∞ since 2ϵ − τ > 1. Applying a special case of

Lemma 4.5.19 for deterministic recursions in (4.52) leads to
∑∞

k=0 E [Rk] < ∞. Since Rk is nonnegative, by

monotone convergence theorem, we have E [
∑∞

k=0 Rk] =
∑∞

k=0 E [Rk] < ∞ which implies

P

( ∞∑
k=0

Rk < ∞

)
= 1. (4.53)

The first statement in Theorem 4.3.3 then follows by (4.53).

Recursion of Qk. We recall from Lemma 4.5.14: ∀k ≥ 0,

E [∆k+1|Fk] ≤
(

1 − µδ

(k + φ)ϵ

)
∆k + Lδ

2(k + φ)ϵ
x̃k + ν2

a

2n

δ2

(k + φ)2ϵ
. (4.54)

We multiply (4.54) by (k + φ + 1)τ and then use (4.47) and (4.48) to obtain: ∀k ≥ 0,

E[Qk+1|Fk] ≤
(

1 − µδ

(k + φ)ϵ

)(
1 + τ

k + φ
+ τ2

(k + φ)2

)
︸ ︷︷ ︸

Pk

Qk + eLδ

2(k + φ)ϵ
Rk + eν2

a

2n

δ2

(k + φ)2ϵ−τ
. (4.55)

5Note that ex = 1 + x + x2
∑∞

k=2
xk−2

k! , ∀x ∈ R. If 0 ≤ x ≤ 1, then we have ex ≤ 1 + x + x2
∑∞

k=2
1
k! = 1 + x + (e − 2)x2 ≤

1 + x + x2.
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We observe that

Pk ≤ 1 + τ

k + φ
+ τ2

(k + φ)2 − µδ

(k + φ)ϵ

≤ 1 + τ2

(k + φ)2 − µδ − τ

(k + φ)ϵ
. (4.56)

We use (4.56) in (4.55) to obtain: ∀k ≥ 0,

E [Qk+1|Fk] ≤
(

1 + τ2

(k + φ)2

)
Qk − µδ − τ

(k + φ)ϵ
Qk + eLδ

2(k + φ)ϵ
Rk + eν2

a

2n

δ2

(k + φ)2ϵ−τ
. (4.57)

Recall that
∑∞

k=0(k+φ)−2 < ∞ and
∑∞

k=0(k+φ)τ−2ϵ < ∞ since 2ϵ−τ > 1. Note that δ ≥ 1/µ, i.e., µδ > τ ,

applying Lemma 4.5.19 in (4.57) with the help of (4.53) gives:

P
(

lim
k→∞

Qk = Q
)

= 1, (4.58)

where Q is some almost surely finite random variable, and

P
( ∞∑

k=0

µδ − τ

(k + φ)ϵ
Qk < ∞

)
= 1. (4.59)

Since
∑∞

k=0
µδ−τ

(k+φ)ϵ = ∞, where ϵ ∈ (0.5, 1], we have{ ∞∑
k=0

µδ − τ

(k + φ)ϵ
Qk < ∞

}
⊆
{

lim inf
k→∞

Qk = 0
}

, (4.60)

where “⊆" denotes the inclusion relation for two events. By the monotonicity of P(·), we note that (4.59)

and (4.60) lead to

P
(

lim inf
k→∞

Qk = 0
)

= 1. (4.61)

From (4.61) and (4.58), we conclude that P (Q = 0) = 1 and the proof follows by (4.53) and Lemma 4.5.13.

4.5.2.3 Asymptotically optimal rate in mean with O(1/k) step-size

In this section, we prove Theorem 4.3.4 and Corollary 4.3.2, i.e., the asymptotically optimal convergence rate

of GT-DSGD in expectation and the corresponding transient time to achieve network-independent performance,

when the global function F satisfies the PL condition. Recall that in this context we focus on the following

step-size sequence [7]:

αk = β

k + γ
, ∀k ≥ 0, (4.62)

where β > 0 and γ > 0 are parameters to be restricted later. We require γ ≥ β/α so that 0 < αk ≤ α for α

in (4.31). We first prove a non-asymptotic rate on the consensus errors.
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Lemma 4.5.20. Let Assumption 4.2.1-4.2.4 hold. If γ ≥ max
{

β
α , 8

1−λ2

}
for α given in (4.31), then we

have: ∀k ≥ 0,

E
[
∥xk − Jxk∥2

]
≤ x̂β2

(k + γ)2 . (4.63)

where x̂ := 8λ2ŷ(1 − λ2)−2 for ŷ given in (4.36).

Proof. We prove by induction that there exists a constant x̂ such that (4.63) holds. First, since xi
0 =

xr
0, ∀i, r ∈ V, (4.63) holds trivially when k = 0. We next show that if (4.63) holds for some k ≥ 0 and then

it also holds for k + 1. From Lemma 4.5.2 and 4.5.18, we have: ∀k ≥ 0,

E[∥xk+1 − Jxk+1∥2] ≤ 1 + λ2

2 E[∥xk − Jxk∥2] + 2λ2ŷα2
k

1 − λ2 .

Therefore, it suffices to choose x̂ such that ∀k ≥ 0,

1 + λ2

2
x̂β2

(k + γ)2 + 2λ2ŷ

1 − λ2
β2

(k + γ)2 ≤ x̂β2

(k + γ + 1)2 ,

which is equivalent to

2λ2ŷ

1 − λ2 ≤
(

(k + γ)2

(k + γ + 1)2 − 1 + λ2

2

)
x̂. (4.64)

Since the RHS of (4.64) monotonically increases with k, we suffice to choose x̂ such that (4.64) holds

when k = 0, i.e.,
2λ2ŷ

1 − λ2 ≤
(

γ2

(γ + 1)2 − 1 + λ2

2

)
x̂ =

(
1 − λ2

2 − 2γ + 1
(γ + 1)2

)
x̂.

Since 2γ+1
(γ+1)2 ≤ 2

γ , it suffices to choose x̂ such that 2λ2ŷ
1−λ2 ≤

( 1−λ2

2 − 2
γ

)
x̂. Finally, if γ ≥ 8

1−λ2 , it can be

observed that the induction is complete by setting x̂ := 8λ2ŷ(1 − λ2)−2.

We next present a useful lemma adapted from [116,151,154].

Lemma 4.5.21. Consider the step-size sequence {αk} in (4.62). We have: for any nonnegative integers a, b

such that 0 ≤ a ≤ b,
b∏

s=a

(1 − µαs) ≤ (a + γ)µβ

(b + γ + 1)µβ
.

Proof. By (4.62) and 1 + x ≤ ex, ∀x ∈ R, we have: 0 ≤ a ≤ b,
b∏

s=a

(1 − µαs) =
b∏

s=a

(
1 − µβ

s + γ

)
≤ exp

{
−

b∑
s=a

µβ

s + γ

}
. (4.65)

Since 1
s+γ ≥

∫ s+γ+1
s+γ

1
x dx, ∀s ≥ 0, we have: 0 ≤ a ≤ b,

b∑
s=a

1
s + γ

≥
b∑

s=a

∫ s+γ+1

s+γ

1
x

dx = log
(

b + γ + 1
a + γ

)
. (4.66)

Applying (4.66) to (4.65) completes the proof.



CHAPTER 4. DECENTRALIZED ONLINE STOCHASTIC NON-CONVEX OPTIMIZATION 137

Now we are ready to prove Theorem 4.3.4 through a non-asymptotic analysis inspired by [67,93,116,151].

Proof of Theorem 4.3.4. We denote Ψk := E[L−1(F (xk)−F ∗)]. Using Lemma 4.5.20 in Lemma 4.5.14 gives:

if γ ≥ max
{

β
α , 8

1−λ2

}
,

Ψk+1 ≤ (1 − µαk)Ψk + ûα2
k + ẑα3

k, ∀k ≥ 0, (4.67)

where û and ẑ are defined as, for x̂ given in (4.63),

û := ν2
a

2n
and ẑ := Lx̂

2n
. (4.68)

We recursively apply (4.67) from k to 0 to obtain6: ∀k ≥ 1,

Ψk ≤ Ψ0

k−1∏
t=0

(1 − µαt) +
k−1∑
t=0

((
ûα2

t + ẑα3
t

) k−1∏
l=t+1

(1 − µαl)
)

≤ Ψ0
γµβ

(k + γ)µβ
+

k−1∑
t=0

( ûβ2

(t + γ)2 + ẑβ3

(t + γ)3

) (t + 1 + γ)µβ

(k + γ)µβ

= Ψ0
γµβ

(k + γ)µβ
+ ûβ2

(k + γ)µβ

k−1∑
t=0

(t + 1 + γ)µβ

(t + γ)2 + ẑβ3

(k + γ)µβ

k−1∑
t=0

(t + 1 + γ)µβ

(t + γ)3 , (4.69)

where the second inequality uses Lemma 4.5.21. By 1 + x ≤ ex, ∀x ∈ R, we have: for 0 ≤ t ≤ k − 1,

(t + 1 + γ)µβ

(t + γ)µβ
=
(

1 + 1
t + γ

)µβ

≤ exp
{

µβ

γ

}
≤

√
e, (4.70)

where the last inequality uses µβ/γ ≤ µα ≤ 0.5. We use (4.70) in (4.69) to obtain: ∀k ≥ 1,

Ψk ≤ Ψ0
γµβ

(k + γ)µβ
+

√
eûβ2

(k + γ)µβ

k−1+γ∑
s=γ

sµβ−2 +
√

eẑβ3

(k + γ)µβ

k−1+γ∑
s=γ

sµβ−3. (4.71)

By sµβ−2 ≤ max
{ ∫ s+1

s
xµβ−2dx,

∫ s

s−1 xµβ−2dx
}

, we have: if β > 1/µ, then ∀k ≥ 1,

k−1+γ∑
s=γ

sµβ−2 ≤
∫ k+γ

γ−1
xµβ−2dx ≤ (k + γ)µβ−1

µβ − 1 . (4.72)

Likewise, by sµβ−3 ≤ max
{ ∫ s+1

s
xµβ−3dx,

∫ s

s−1 xµβ−3dx
}

, we have: if β > 2/µ, then ∀k ≥ 1,

k−1+γ∑
s=γ

sµβ−3 ≤
∫ k+γ

γ−1
xµβ−3dx ≤ (k + γ)µβ−2

µβ − 2 . (4.73)

Now, we apply (4.72) and (4.73) in (4.71) to obtain: ∀k ≥ 1,

Ψk ≤ Ψ0γµβ

(k + γ)µβ
+

√
eûβ2

(µβ − 1)(k + γ) +
√

eẑβ3

(µβ − 2)(k + γ)2 . (4.74)

Using (4.74) and Lemma 4.5.20 in Lemma 4.5.13, we obtain: ∀k ≥ 1,

1
n

n∑
i=1

E[F (xi
k) − F ∗] ≤2(F (x0) − F ∗)

(k/γ + 1)µβ
+ 2

√
eLûβ2

(µβ − 1)(k + γ) + 2
√

eLẑβ3

(µβ − 2)(k + γ)2 + 2ẑβ2

(k + γ)2 .

The proof follows by that ẑβ2

(k+γ)2 ≤ Lẑβ3

(µβ−2)(k+γ)2 and by recalling the definitions of û and ẑ given in (4.68).
6For a sequence {sk}, we adopt the convention

∏y

k=x
sk = 1 if y < x.
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Proof of Corollary 4.3.2. We derive the conditions under which the rate expression in Theorem 4.3.4 is

network-independent. We first solve for the lower bound on k such that

Lν2
aβ2

n(µβ − 1)(k + γ) ≥ L2x̂β3

n(µβ − 2)(k + γ)2 ,

which may be written equivalently as

k + γ ≥ µβ − 1
µβ − 2

Lx̂β

ν2
a

. (4.75)

We suppose that ∥∇f0∥2 = O(n), β = θ/µ, where θ > 2. Since αL = O
( 1−λ

λκ1/4

)
, for α defined in (4.31), we

have

x̂ = O
(

λ2nν2
a

(1 − λ)3 + λκ1/4ν2
a

1 − λ
+ λ2nL(F (x0) − F ∗)

(1 − λ)2κ1/2

)
,

where x̂ is defined in (4.63). Therefore, to make (4.75) hold, it suffices to let

k ≳
λ2nκ

(1 − λ)3 + λκ5/4

1 − λ
+ λ2nκ1/2L(F (x0) − F ∗)

(1 − λ)2ν2
a

. (4.76)

Next, we solve for the range of k such that for some δ ∈ [1, θ), ( k
γ + 1)θ ≥ ( k+1

κ )δ, i.e., (k+γ)θ

(k+1)δ ≥ γθ

κδ .

Since γ > 1, it suffices choose k such that

k ≥ γ
θ

θ−δ κ− δ
θ−δ . (4.77)

We fix γ = max{ θ
µα , 8

1−λ2 } ≍ max{κ, λ2κ
(1−λ)2 , λκ5/4

1−λ , 1
1−λ }. Using (4.76) and (4.77) in Theorem 4.3.4, we have

1
n

n∑
i=1

(
F (xi

k) − F ∗) = O
(

κδ (F (x0) − F ∗)
kδ

+ κν2
a

nµk

)
,

if k ≳ max {K1, K2}, where K1 and K2 are given by

K1 = λ2nκ

(1 − λ)3 + λκ5/4

1 − λ
+ λ2nκ1/2L(F (x0) − F ∗)

(1 − λ)2ν2
a

,

K2 = max
{

κ,
λ2κ

(1 − λ)2 ,
λκ5/4

1 − λ
,

1
1 − λ

} θ
θ−δ

κ− δ
θ−δ .

The proof follows by setting δ = 2 and θ = 6 in the above.

4.6 Conclusion

In this chapter, we study the convergence properties of the well-known GT-DSGD algorithm for decentralized

smooth non-convex expected risk minimization problems. For both constant and decaying step-sizes, we

comprehensively establish the conditions under which the performances of GT-DSGD are network topology-

independent and match that of the centralized SGD algorithm for general non-convex problems and problems

where the global PL condition is satisfied. In sharp contrast, the existing theory suggests that the perfor-

mances of GT-DSGD are strictly worse than that of the centralized SGD.



Chapter 5

Decentralized Online Stochastic Non-Convex

Optimization with Mean-Squared Smoothness

In this chapter, we study decentralized non-convex expected risk minimization problems with mean-squared

smoothness. Inspired by the GT-VR framework proposed in Chapter 2, we propose GT-HSGD, a new single-

loop decentralized variance-reduced stochastic gradient method, which achieves improved oracle complexity

and practical implementation compared with the existing approaches. In particular, we show that GT-HSGD

achieves an ϵ-accurate stationary point of the problem with a network topology-independent oracle com-

plexity of O(ϵ−3) that matches the centralized optimal methods for this problem class, when the required

error tolerance ϵ is small enough. We present numerical experiments to verify our main technical results.

5.1 Introduction

We consider n nodes, such as machines or edge devices, communicating over a decentralized network described

by a directed graph G = (V, E), where V = {1, · · · , n} is the set of node indices and E ⊆ V ×V is the collection

of ordered pairs (i, j), i, j ∈ V, such that node j sends information to node i. Each node i possesses a private

local cost function fi : Rp → R and the goal of the networked nodes is to solve, via local computation and

communication, the following optimization problem:

min
x∈Rp

F (x) = 1
n

n∑
i=1

fi(x).

This canonical formulation is known as decentralized optimization [19, 21, 33, 34] that has emerged as a

promising framework for large-scale data science and machine learning problems [2,41]. Decentralized opti-

mization is essential in scenarios where data is geographically distributed and/or centralized data processing

is infeasible due to communication and computation overhead or data privacy concerns. In this chapter, we

139
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focus on an online and non-convex setting. In particular, we assume that each local cost fi is non-convex

and each node i only accesses fi by querying a local stochastic first-order oracle (SFO) [128] that returns a

stochastic gradient, i.e., a noisy version of the exact gradient, at the queried point. As a concrete example

of practical interest, the SFO mechanism applies to many online learning and expected risk minimization

problems where the noise in SFO lies in the uncertainty of sampling from the underlying streaming data

received at each node [19, 21]. We are interested in the oracle complexity, i.e., the total number of queries

to SFO required at each node, to find an ϵ-accurate first-order stationary point x∗ of the global cost F such

that E[∥∇F (x∗)∥] ≤ ϵ.

5.1.1 Related work

We now briefly review the literature of decentralized non-convex optimization with SFO, which has been

widely studied recently. Perhaps the most well-known approach is the decentralized stochastic gradient

descent (DSGD) and its variants [2, 19, 21, 43, 155], which combine average consensus and a local stochastic

gradient step. Although being simple and effective, DSGD is known to have difficulties in handling heteroge-

neous data [31]. Recent works [3,4,148,150] achieve robustness to heterogeneous environments by leveraging

certain decentralized bias-correction techniques such as EXTRA (type) [20,68,156], gradient tracking [14,54–

56,65,67,157], and primal-dual principles [66,69,73,74]. Built on top of these bias-correction techniques, very

recent works [135] and [158] propose D-GET and D-SPIDER-SFO respectively that further incorporate online

SARAH/SPIDER-type variance reduction schemes [48–50] to achieve lower oracle complexities, when the SFO

satisfies a mean-squared smoothness property. Finally, we note that the family of decentralized variance

reduced methods has been significantly enriched recently, see, for instance, [22,23,31,120,141,142,159–161];

however, these approaches are explicitly designed for empirical minimization where each local cost fi is

decomposed as a finite-sum of component functions, i.e., fi = 1
m

∑m
r=1 fi,r; it is therefore unclear whether

these algorithms can be adapted to the online SFO setting, which is the focus of this chapter.

5.1.2 Main contributions

In this chapter, we propose GT-HSGD, a novel online variance reduced method for decentralized non-convex op-

timization with stochastic first-order oracles (SFO). To achieve fast and robust performance, the GT-HSGD al-

gorithm is built upon global gradient tracking [55, 65] and a local hybrid stochastic gradient estimator [59,

162, 163] that can be considered as a convex combination of the vanilla stochastic gradient returned by

the SFO and a SARAH-type variance-reduced stochastic gradient [58]. In the following, we emphasize the key

advantages of GT-HSGD compared with the existing decentralized online (variance-reduced) approaches, from
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both theoretical and practical aspects.

• Improved oracle complexity. A comparison of the oracle complexity of GT-HSGD with related

algorithms is provided in Table 5.1, from which we have the following important observations. First

of all, the oracle complexity of GT-HSGD is lower than that of DSGD, D2, GT-DSGD and D-PD-SGD, which

are decentralized online algorithms without variance reduction; however, GT-HSGD imposes on the SFO

an additional mean-squared smoothness (MSS) assumption that is required by all online variance-

reduced techniques in the literature [48–50, 59, 134, 135, 149, 158, 162, 163]. Secondly, GT-HSGD further

achieves a lower oracle complexity than the existing decentralized online variance-reduced methods

D-GET [135] and D-SPIDER-SFO [158], especially in a regime where the required error tolerance ϵ and

the network spectral gap (1−λ) are relatively small.1. Moreover, when ϵ is small enough such that ϵ ≲

min
{

λ−4(1−λ)3n−1, λ−1(1−λ)1.5n−1}, it can be verified that the oracle complexity of GT-HSGD reduces

to O(n−1ϵ−3), independent of the network topology, and GT-HSGD achieves a linear speedup, in terms

of the scaling with the network size n, compared with the centralized optimal online variance-reduced

approaches that operate on a single node [48–50,59,134,162]; see Section 5.3 for a detailed discussion.

In sharp contrast, the speedup of D-GET [135] and D-SPIDER-SFO [158] is not clear compared with the

aforementioned centralized optimal methods even if the network is fully connected, i.e., λ = 0.

• More practical implementation. Both D-GET [135] and D-SPIDER-SFO [158] are double-loop al-

gorithms that require very large minibatch sizes. In particular, during each inner loop they execute

a fixed number of minibatch stochastic gradient type iterations with O(ϵ−1) oracle queries per up-

date per node, while at every outer loop they obtain a stochastic gradient with mega minibatch size

by O(ϵ−2) oracle queries at each node. Clearly, querying the oracles exceedingly, i.e., obtaining a large

amount of samples, at each node and every iteration in online steaming data scenarios substantially

jeopardizes the actual wall-clock time. This is because the next iteration cannot be performed until all

nodes complete the sampling process. Moreover, the double-loop implementation may incur periodic

network synchronizations. These issues are especially significant when the working environments of the

nodes are heterogeneous. Conversely, the proposed GT-HSGD is a single-loop algorithm with O(1) ora-

cle queries per update and only requires a large minibatch size with O(ϵ−1) oracle queries once in the

initialization phase, i.e., before the update recursion is executed; see Algorithm 6 and Corollary 5.3.1.

1A small network spectral gap (1 − λ) implies that the connectivity of the network is weak.
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Table 5.1: A comparison of the oracle complexity of decentralized online stochastic gradient methods. The
oracle complexity is in terms of the total number of queries to SFO required at each node to obtain an ϵ-
accurate stationary point x∗ of the global cost F such that E[∥∇F (x∗)∥] ≤ ϵ. In the table, n is the number
of the nodes and (1 − λ) ∈ (0, 1] is the spectral gap of the weight matrix associated with the network. We
note that the complexity of D2 and D-SPIDER-SFO also depends on the smallest eigenvalue λn of the weight
matrix; however, since λn is less sensitive to the network topology, we omit the dependence of λn in the table
for conciseness. The MSS column indicates whether the algorithm in question requires the mean-squared
smoothness assumption on the SFO. Finally, we emphasize that DSGD requires bounded heterogeneity such
that supx

1
n

∑n
i=1 ∥∇fi(x) − ∇F (x)∥2 ≤ ζ2, for some ζ ∈ R+, while other algorithms in the table do not

need this assumption.

Algorithm Oracle Complexity MSS Remarks

DSGD [2] O

(
max

{
1

nϵ4 ,
λ2n

(1 − λ)2ϵ2

})
✗ bounded heterogeneity

D2 [3] O

(
max

{ 1
nϵ4 ,

n

(1 − λ)bϵ2

})
✗

b ∈ R+ is not explicitly
shown in [3]

GT-DSGD [4] O

(
max

{
1

nϵ4 ,
λ2n

(1 − λ)3ϵ2

})
✗

D-PD-SGD [148] O

(
max

{ 1
nϵ4 ,

n

(1 − λ)cϵ2

})
✗

c ∈ R+ is not explicitly
shown in [148]

D-GET [135] O

( 1
(1 − λ)dϵ3

)
✓

d ∈ R+ is not explicitly
shown in [135]

D-SPIDER-SFO
[158] O

( 1
(1 − λ)hϵ3

)
✓

h ∈ R+ is not explicitly
shown in [158]

GT-HSGD
(this work) O

(
max

{
1

nϵ3 ,
λ4

(1 − λ)3ϵ2 ,
λ1.5n0.5

(1 − λ)2.25ϵ1.5

})
✓

The rest of this chapter is organized as follows. In Section 5.2, we state the problem formulation and

develop the proposed GT-HSGD algorithm. Section 5.3 presents the main convergence results of GT-HSGD and

their implications. Section 5.4 provides numerical experiments to illustrate our theoretical claims. Section 5.5

outlines the convergence analysis of GT-HSGD, while the detailed proofs and derivations are provided in

Section 5.6. Section 5.7 concludes the chapter.

We adopt the following notations throughout the chapter. We use lowercase bold letters to denote

vectors and uppercase bold letters to denote matrices. The ceiling function is denoted as ⌈·⌉. The matrix Id

represents the d×d identity; 1d and 0d are the d-dimensional column vectors of all ones and zeros, respectively.

We denote [x]i as the i-th entry of a vector x. The Kronecker product of two matrices A and B is denoted

by A ⊗ B. We use ∥ · ∥ to denote the Euclidean norm of a vector or the spectral norm of a matrix. We use

σ(·) to denote the σ-algebra generated by the sets and/or random vectors in its argument.

5.2 Problem setup and the GT-HSGD algorithm

In this section, we introduce the mathematical model of the stochastic first-order oracle (SFO) at each node

and the communication network. Based on these formulations, we develop the proposed GT-HSGD algorithm.
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5.2.1 Optimization and network model

We work with a rich enough probability space {Ω,P, F}. We consider decentralized recursive algorithms of

interest that generate a sequence of estimates {xi
t}t≥0 of the first-order stationary points of F at each node i,

where xi
0 is assumed constant. At each iteration t, each node i observes a random vector ξi

t in Rq, which, for

instance, may be considered as noise or as an online data sample. We then introduce the natural filtration

(an increasing family of sub-σ-algebras of F) induced by these random vectors observed sequentially by the

networked nodes:

F0 := {Ω, ϕ},

Ft := σ
({

ξi
0, ξi

1, · · · , ξi
t−1 : i ∈ V

})
, ∀t ≥ 1, (5.1)

where ϕ is the empty set. We are now ready to define the SFO mechanism in the following. At each iteration t,

each node i, given an input random vector x ∈ Rp that is Ft-measurable, is able to query the local SFO to

obtain a stochastic gradient of the form gi(x, ξi
t), where gi : Rp × Rq → Rp is a Borel measurable function.

We assume that the SFO satisfies the following four properties.

Assumption 5.2.1 (Oracle). For any Ft-measurable random vectors x, y ∈ Rp, we have the following: ∀i ∈

V, ∀t ≥ 0,

• E
[
gi(x, ξi

t)|Ft

]
= ∇fi(x);

• E
[
∥gi(x, ξi

t) − ∇fi(x)∥2] ≤ ν2
i , ν2 := 1

n

∑n
i=1 ν2

i ;

• the family
{

ξi
t : ∀t ≥ 0, i ∈ V

}
of random vectors is independent;

• E
[
∥gi(x, ξi

t) − gi(y, ξi
t)∥2] ≤ L2E

[
∥x − y∥2].

The first three properties above are standard and commonly used to establish the convergence of decen-

tralized stochastic gradient methods. They however do not explicitly impose any structures on the stochastic

gradient mapping gi other than the measurability. On the other hand, the last property, the mean-squared

smoothness, roughly speaking, requires that gi is L-smooth on average with respect to the input arguments x

and y. As a simple example, Assumption 5.2.1 holds if fi(x) = 1
2 x⊤Qix and gi(x, ξi) = Qix + ξi, where Qi

is a constant matrix and ξi has zero mean and finite second moment. We further note that the mean-squared

smoothness of each gi implies, by Jensen’s inequality, that each fi is L-smooth, i.e., ∥∇fi(x) − ∇fi(y)∥ ≤

L∥x − y∥, and consequently the global function F is also L-smooth.

In addition, we make the following assumptions on F and the communication network G.

Assumption 5.2.2 (Global Function). F is bounded below, i.e., F ∗ := infx∈Rp F (x) > −∞.
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Assumption 5.2.3 (Communication Network). The directed network G admits a primitive and doubly-

stochastic weight matrix W = {wij} ∈ Rn×n. Hence, W1n = W⊤1n = 1n and λ := ∥W − 1
n 1n1⊤

n ∥ ∈ [0, 1).

The weight matrix W that satisfies Assumption 5.2.3 may be designed for strongly-connected weight-

balanced directed graphs (and thus for arbitrary connected undirected graphs). For example, the family

of directed exponential graphs is weight-balanced and plays a key role in decentralized training [41]. We

note that λ is known as the second largest singular value of W and measures the algebraic connectivity

of the graph, i.e., a smaller value of λ roughly means a better connectivity. We note that several existing

approaches require strictly stronger assumptions on W. For instance, D2 [3] and D-PD-SGD [148] require W

to be symmetric and hence are restricted to undirected networks.

5.2.2 Algorithm development

We now describe the proposed GT-HSGD algorithm and provide an intuitive construction. Recall that xi
t is the

estimate of an stationary point of the global cost F at node i and iteration t. Let gi(xi
t, ξi

t) and gi(xi
t−1, ξi

t)

be the corresponding stochastic gradients returned by the local SFO queried at xi
t and xi

t−1 respectively.

Motivated by the strong performance of recently introduced decentralized methods that combine gradient

tracking and various variance reduction schemes for finite-sum problems [120,135,141,160], we seek similar

variance reduction for decentralized online problems with SFO. In particular, we focus on the following local

hybrid variance reduced stochastic gradient estimator vi
t introduced in [59, 162, 163] for centralized online

problems: ∀t ≥ 1,

vi
t = gi(xi

t, ξi
t) + (1 − β)

(
vi

t−1 − gi(xi
t−1, ξi

t)
)
, (5.2)

for some applicable weight parameter β ∈ [0, 1]. This local gradient estimator vi
t is fused, via a gradient

tracking mechanism [55, 65], over the network to update the global gradient tracker yi
t, which is subse-

quently used as the descent direction in the xi
t-update. The complete description of GT-HSGD is provided in

Algorithm 6. We note that the update (5.2) of vi
t may be equivalently written as

vi
t = β · gi(xi

t, ξi
t)︸ ︷︷ ︸

Stochastic gradient

+(1 − β) ·
(
gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) + vi

t−1
)︸ ︷︷ ︸

SARAH

,

which is a convex combination of the local vanilla stochastic gradient returned by the SFO and a SARAH-

type [49, 50, 58] gradient estimator. This discussion leads to the fact that GT-HSGD reduces to GT-DSGD [4,

67, 150] when β = 1, and becomes the inner loop of GT-SARAH [141] when β = 0. However, our convergence

analysis shows that GT-HSGD achieves its best oracle complexity and outperforms the existing decentralized

online variance-reduced approaches [135,158] with a weight parameter β ∈ (0, 1). It is then clear that neither
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Algorithm 6 GT-HSGD at each node i

Require: xi
0 = x0; α; β; b0; yi

0 = 0p; vi
−1 = 0p; T .

1: Sample {ξi
0,r}b0

r=1 and vi
0 = 1

b0

∑b0
r=1 gi(xi

0, ξi
0,r);

2: yi
1 =

∑n
j=1 wij

(
yj

0 + vj
0 − vj

−1
)
;

3: xi
1 =

∑n
j=1 wij

(
xj

0 − αyj
1
)
;

4: for t = 1, 2, · · · , T − 1 do

5: Sample ξi
t;

6: vi
t = gi(xi

t, ξi
t) + (1 − β)

(
vi

t−1 − gi(xi
t−1, ξi

t)
)
.

7: yi
t+1 =

∑n
j=1wij

(
yj

t + vj
t − vj

t−1
)
;

8: xi
t+1 =

∑n
j=1wij

(
xj

t − αyj
t+1
)
;

9: end for
10: return x̃T selected uniformly at random from {xi

t}i∈V
0≤t≤T .

GT-DSGD nor the inner loop of GT-SARAH, on their own, are able to outperform the proposed approach,

making GT-HSGD a non-trivial algorithmic design for this problem class.

Remark 5.2.1. Clearly, each vi
t is a conditionally biased estimator of ∇fi(xi

t), i.e., E[vi
t|Ft] ̸= ∇fi(xi

t) in

general. However, it can be shown that E[vi
t] = E[∇fi(xi

t)], meaning that vi
t serves as a surrogate for the

underlying exact gradient in the sense of total expectation.

5.3 Main results

In this section, we present the main convergence results of GT-HSGD in this chapter and discuss their salient

features. The formal convergence analysis is deferred to Section 5.5.

Theorem 5.3.1. If the weight parameter β = 48L2α2

n and the step-size α is chosen as

0 < α < min
{

(1 − λ2)2

90λ2 ,

√
n(1 − λ)
26λ

,
1

4
√

3

}
1
L

,

then the output x̃T of GT-HSGD satisfies: ∀T ≥ 2,

E
[
∥∇F (x̃T )∥2] ≤ 4(F (x0) − F ∗)

αT
+ 8βν2

n
+ 4ν2

βb0nT
+

64λ4∥∇f
(
x0
)
∥2

(1 − λ2)3nT
+ 96λ2ν2

(1 − λ2)3b0T
+ 256λ2β2ν2

(1 − λ2)3 ,

where ∥∇f
(
x0
)
∥2 =

∑n
i=1 ∥∇fi

(
x0
)
∥2

Remark 5.3.1. Theorem 5.3.1 holds for GT-HSGD with arbitrary initial minibatch size b0 ≥ 1.

Theorem 5.3.1 establishes a non-asymptotic bound, with no hidden constants, on the mean-squared

stationary gap of GT-HSGD over any finite time horizon T .
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Remark 5.3.2 (Transient and steady-state performance over infinite time horizon). If α and β

are chosen according to Theorem 5.3.1, the mean-squared stationary gap E
[
∥∇F (x̃T )∥2] of GT-HSGD decays

sublinearly at a rate of O(1/T ) up to a steady-state error (SSE) such that

lim sup
T →∞

E
[
∥∇F (x̃T )∥2] ≤ 8βν2

n
+ 256λ2β2ν2

(1 − λ2)3 . (5.3)

In view of (5.3), the SSE of GT-HSGD is bounded by the sum of two terms: (i) the first term is in the order

of O(β) and the division by n demonstrates the benefit of increasing the network size2; (ii) the second term

is in the order of O(β2) and reveals the impact of the spectral gap (1 − λ) of the network topology. Clearly,

the SSE can be made arbitrarily small by choosing small enough β and α. Moreover, since the spectral

gap (1 − λ) only appears in a higher order term of β in (5.3), its impact reduces as β becomes smaller, i.e.,

as we require a smaller SSE.

The following corollary is concerned with the finite-time convergence rate of GT-HSGD with specific choices

of the algorithmic parameters α, β, and b0.

Corollary 5.3.1. Setting α = n2/3

8LT 1/3 , β = 3n1/3

4T 2/3 , and b0 = ⌈ T 1/3

n2/3 ⌉ in Theorem 5.3.1, we have

E
[
∥∇F (x̃T )∥2] ≤ 32L(F (x0) − F ∗) + 12ν2

(nT )2/3 +
64λ4∥∇f

(
x0
)
∥2

(1 − λ2)3nT
+ 240λ2n2/3ν2

(1 − λ2)3T 4/3 ,

for all

T ≥ max
{

1424λ6n2

(1 − λ2)6 ,
35λ3n0.5

(1 − λ)1.5

}
.

As a consequence, GT-HSGD achieves an ϵ-accurate stationary point x∗ of the global cost F such that E[∥∇F (x∗)∥] ≤

ϵ with

H = O (max {Hopt, Hnet})

iterations3, where Hopt and Hnet are given respectively by

Hopt = (L(F (x0) − F ∗) + ν2)1.5

nϵ3 ,

Hnet = max
{

λ4∥∇f
(
x0
)
∥2

(1 − λ2)3nϵ2 ,
λ1.5n0.5ν1.5

(1 − λ2)2.25ϵ1.5

}
.

The resulting total number of oracle queries at each node is thus ⌈H + H1/3n−2/3⌉.

Remark 5.3.3. Since H1/3n−2/3 is much smaller than H, we treat the oracle complexity of GT-HSGD as H

for the ease of exposition in Table 5.1 and the following discussion.
2Since GT-HSGD computes O(n) stochastic gradients in parallel per iteration across the nodes, the network size n can be

interpreted as the minibatch size of GT-HSGD.
3The O(·) notation here does not absorb any problem parameters, i.e., it only hides universal constants.
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An important implication of Corollary 5.3.1 is given in the following.

Remark 5.3.4 (A regime for network topology-independent oracle complexity and linear speedup).

According to Corollary 5.3.1, the oracle complexity of GT-HSGD at each node is bounded by the max-

imum of two terms: (i) the first term Hopt is independent of the network topology and, more impor-

tantly, is n times smaller than the oracle complexity of the optimal centralized online variance-reduced

methods that execute on a single node for this problem class [48–50, 59, 162]; (ii) the second term Hnet

depends on the network spectral gap 1 − λ and is in the lower order of 1/ϵ. These two observations

lead to the interesting fact that the oracle complexity of GT-HSGD becomes independent of the network

topology, i.e., Hopt dominates Hnet, if the required error tolerance ϵ is small enough such that4 ϵ ≲

min
{

λ−4(1 − λ)3n−1, λ−1(1 − λ)1.5n−1}. In this regime, GT-HSGD thus achieves a network topology-

independent oracle complexity Hopt = O(n−1ϵ−3), exhibiting a linear speed up compared with the afore-

mentioned centralized optimal algorithms [48–50, 59, 134, 162], in the sense that the total number of oracle

queries required to achieve an ϵ-accurate stationary point at each node is reduced by a factor of 1/n.

Remark 5.3.5. The small error tolerance regime in the above discussion corresponds to a large number of

oracle queries, which translates to the scenario where the required total number of iterations T is large. Note

that a large T further implies that the step-size α and the weight parameter β are small; see the expression

of α and β in Corollary 5.3.1.

5.4 Numerical Experiments

In this section, we illustrate our theoretical results on the convergence of the proposed GT-HSGD algorithm

with the help of numerical experiments. The basic setup is given in the following.

• Model. We consider a non-convex logistic regression model [137], where the decentralized non-convex

optimization problem of interest takes the form minx∈Rp F (x) := 1
n

∑n
i=1 fi(x) + r(x), such that

fi(x) = 1
m

m∑
j=1

log
[
1 + e−⟨x,θij⟩lij

]
and

r(x) = R

p∑
k=1

[x]2k
1 + [x]2k

,

where θi,j is the feature vector, li,j ∈ {−1, +1} is the corresponding binary label, and r(x) is a

non-convex regularizer. To simulate the online SFO setting described in Section 5.2, each node i is

only able to sample with replacement from its local data {θi,j , li,j}m
j=1 and compute the corresponding

4This boundary condition follows from basic algebraic manipulations.
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Table 5.2: Datasets used in numerical experiments, all available at https://www.openml.org/.
Dataset train (nm) dimension (p)

a9a 48,840 123

covertype 100,000 54

KDD98 75,000 477

MiniBooNE 100,000 11

(minibatch) stochastic gradient. Throughout all experiments, we set the number of the nodes to n = 20

and the regularization parameter to R = 10−4.

• Data. To test the performance of the applicable algorithms, we distribute the a9a, covertype, KDD98,

MiniBooNE datasets uniformly over the nodes and normalize the feature vectors such that ∥θi,j∥ =

1, ∀i, j. The statistics of these datasets are provided in Table 5.2.

• Network topology. We consider the following network topologies: the undirected ring graph, the

undirected and directed exponential graphs, and the complete graph; see [2, 14, 27, 41] for detailed

configurations of these graphs. For all graphs, the associated doubly stochastic weights are set to

be equal. The resulting second largest singular value λ of the weight matrices are 0.98, 0.75, 0.67, 0,

respectively, demonstrating a significant difference in the algebraic connectivity of these graphs.

• Performance measure. We measure the performance of the decentralized algorithms in question

by the decrease of the global cost function value F (x), to which we refer as loss, versus epochs,

where x = 1
n

∑n
i=1 xi with xi being the model at node i and each epoch contains m stochastic gradient

computations at each node.

5.4.1 Comparison with the existing decentralized stochastic gradient methods

We conduct a performance comparison of GT-HSGD with GT-DSGD [4,67,150], D-GET [135], and D-SPIDER-SFO

[158] over the undirected exponential graph of 20 nodes. Note that we use GT-DSGD to represent methods

that do not incorporate online variance reduction techniques, since it in general matches or outperforms

DSGD [2] and has a similar performance with D2 [3] and D-PD-SGD [148].

We set the parameters of GT-HSGD, GT-DSGD, D-GET, and D-SPIDER-SFO according to the following pro-

cedures. First, we find a very large step-size candidate set for each algorithm in comparison. Second, we

choose the minibatch size candidate set for all algorithms as B := {1, 4, 8, 16, 32, 64, 128, 256, 512, 1024}:

the minibatch size of GT-DSGD, the minibatch size of GT-HSGD at t = 0, the minibatch size of D-GET and

D-SPIDER-SFO at inner- and outer-loop are all chosen from B. Third, for D-GET and D-SPIDER-SFO, we

choose the inner-loop length candidate set as { m
20b , m

19b , · · · , m
b , 2m

b , · · · , 20m
b }, where m is the local data size

https://www.openml.org/
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Figure 5.1: A comparison of GT-HSGD with other decentralized online stochastic gradient algorithms over
the undirected exponential graph of 20 nodes on the a9a, covertype, KDD98, and MiniBooNE datasets.

Figure 5.2: Convergence of GT-HSGD over different network topologies on the a9a and covertype datasets.

and b is the minibatch size at the inner-loop. Fourth, we iterate over all combinations of parameters for

each algorithm to find its best performance. In particular, we find that the best performance of GT-HSGD is

attained with a small β and a relatively large α as Corollary 5.3.1 suggests.

The experimental results are provided in Fig. 5.1, where we observe that GT-HSGD achieves faster rate

than other algorithms in comparison on those four datasets. This observation is coherent with our main

results that GT-HSGD achieves a lower oracle complexity than the existing approaches; see Table 5.1.
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5.4.2 Topology-independent rate of GT-HSGD

We test the performance of GT-HSGD over different network topologies. In particular, we follow the procedures

described in Section 5.4.1 to find the best set of parameters for GT-HSGD over the complete graph and then

use this parameter set for other graphs. The corresponding experimental results are presented in Fig. 5.2.

Clearly, it can be observed that when the number of iterations is large enough, that is to say, the required

error tolerance is small enough, the convergence rate of GT-HSGD is not affected by the underlying network

topology. This interesting phenomenon is consistent with our convergence theory; see Corollary 5.3.1 and

the related discussion in Section 5.3.

5.5 Outline of the convergence analysis

In this section, we outlines the proof of Theorem 5.3.1, while the detailed proofs are provided in the Appendix.

We let Assumptions 5.2.1-5.2.3 hold without explicitly stating them. For the ease of exposition, we write

the xt- and yt-update of GT-HSGD in the following equivalent matrix form: ∀t ≥ 0,

yt+1 = W (yt + vt − vt−1) , (5.4a)

xt+1 = W (xt − αyt+1) , (5.4b)

where W := W⊗Ip and xt, yt, vt are square-integrable random vectors in Rnp that respectively concatenate

the local estimates {xi
t}n

i=1 of a stationary point of F , gradient trackers {yi
t}n

i=1, stochastic gradient estima-

tors {vi
t}n

i=1. It is straightforward to verify that xt and yt are Ft-measurable while vt is Ft+1-measurable

for all t ≥ 0. For convenience, we also denote

∇f(xt) :=
[
∇f1(x1

t )⊤, · · · , ∇fn(xn
t )⊤]⊤

and introduce the following quantities:

J :=
(

1
n

1n1⊤
n

)
⊗ Ip

xt := 1
n

(1⊤
n ⊗ Ip)xt,

yt := 1
n

(1⊤
n ⊗ Ip)yt,

vt := 1
n

(1⊤
n ⊗ Ip)vt,

∇f(xt) := 1
n

(1⊤
n ⊗ Ip)∇f(xt).

In the following lemma, we enlist several well-known results in the context of gradient tracking-based

algorithms for decentralized stochastic optimization, whose proofs may be found in [24,55,56,67].
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Lemma 5.5.1. The following relationships hold.

(a) ∥Wx − Jx∥ ≤ λ∥x − Jx∥, ∀x ∈ Rnp.

(b) yt+1 = vt, ∀t ≥ 0.

(c)
∥∥∇f(xt) − ∇F (xt)

∥∥2 ≤ L2

n ∥xt − Jxt∥2
, ∀t ≥ 0.

We note that Lemma 5.5.1(a) holds since W is primitive and doubly-stochastic, Lemma 5.5.1(b) is a

direct consequence of the gradient tracking update (5.4a) and Lemma 5.5.1(c) is due to the L-smoothness of

each fi. By the update of GT-HSGD described in (5.4b) and Lemma 5.5.1(b), it is straightforward to obtain:

xt+1 = xt − αyt+1 = xt − αvt, ∀t ≥ 0. (5.5)

Hence, the mean state xt proceeds in the direction of the average of local stochastic gradient estimators vt.

With the help of (5.5) and the L-smoothness of F and each fi, we establish the following descent inequality

which sheds light on the overall convergence analysis.

Lemma 5.5.2. If 0 < α ≤ 1
2L , then we have: ∀T ≥ 0,

T∑
t=0

∥∥∇F (xt)
∥∥2 ≤ 2(F (x0) − F ∗)

α
− 1

2

T∑
t=0

∥vt∥2 + 2
T∑

t=0

∥∥vt − ∇f(xt)
∥∥2 + 2L2

n

T∑
t=0

∥xt − Jxt∥2
.

Proof. See Section 5.6.1.

In light of Lemma 5.5.2, our approach to establishing the convergence of GT-HSGD is to seek the conditions

on the algorithmic parameters of GT-HSGD, i.e., the step-size α and the weight parameter β, such that

− 1
2T

T∑
t=0

E
[
∥vt∥2]+ 2

T

T∑
t=0

E
[
∥vt − ∇f(xt)∥2]+ 2L2

nT

T∑
t=0

E
[
∥xt − Jxt∥2] = O

(
α, β,

1
b0

,
1
T

)
, (5.6)

where O(α, β, 1/b0, 1/T ) represents a nonnegative quantity which may be made arbitrarily small by choosing

small enough α and β along with large enough T and b0. If (5.6) holds, then Lemma 5.5.2 reduces to

1
T + 1

T∑
t=0

E
[
∥∇F (xt)∥2] ≤ 2(F (x0) − F ∗)

αT
+ O

(
α, β,

1
b0

,
1
T

)
,

which leads to the convergence of GT-HSGD. To this aim, we quantify E
[
∥vt − ∇f(xt)∥2] and E

[
∥xt − Jxt∥2].

5.5.1 Contraction relationships

First of all, we bound the gradient variances by exploiting the hybrid and recursive update of vt.
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Lemma 5.5.3. The following inequalities hold: ∀t ≥ 1,

E
[
∥vt − ∇f(xt)∥2] ≤ (1 − β)2E

[
∥vt−1 − ∇f(xt−1)∥2]+ 6L2α2

n
(1 − β)2E

[
∥vt−1∥2]+ 2β2ν2

n

+ 6L2

n2 (1 − β)2E
[
∥xt − Jxt∥2 + ∥xt−1 − Jxt−1∥2] , (5.7)

E
[
∥vt − ∇f(xt)∥2] ≤ (1 − β)2E

[
∥vt−1 − ∇f(xt−1)∥2]+ 6nL2α2(1 − β)2E

[
∥vt−1∥2]+ 2nβ2ν2

+ 6L2(1 − β)2E
[
∥xt − Jxt∥2 + ∥xt−1 − Jxt−1∥2] . (5.8)

Proof. See Section 5.6.2.

Remark 5.5.1. Since vt is a conditionally biased estimator of ∇f(xt), (5.7) and (5.8) do not directly imply

each other and need to be established separately.

We emphasize that the contraction structure of the gradient variances shown in Lemma 5.5.3 plays a cru-

cial role in the convergence analysis. The following contraction bounds on the consensus errors E
[
∥xt − Jxt∥2]

are standard in decentralized algorithms based on gradient tracking, e.g., [67, 141]; in particular, it follows

directly from the xt-update (5.4b) and Young’s inequality.

Lemma 5.5.4. The following inequalities hold: ∀t ≥ 0,

∥xt+1 − Jxt+1∥2 ≤ 1 + λ2

2 ∥xt − Jxt∥2 + 2α2λ2

1 − λ2 ∥yt+1 − Jyt+1∥2
. (5.9)

∥xt+1 − Jxt+1∥2 ≤ 2λ2 ∥xt − Jxt∥2 + 2α2λ2 ∥yt+1 − Jyt+1∥2
. (5.10)

It is then clear from Lemma 5.5.4 that we need to further quantify the gradient tracking errors E
[
∥yt − Jyt∥2]

in order to bound the consensus errors. These error bounds are shown in the following lemma.

Lemma 5.5.5. We have the following.

(a) E
[
∥y1 − Jy1∥2] ≤ λ2

∥∥∇f
(
x0
)∥∥2 + λ2nν2/b0.

(b) If 0 < α ≤ 1−λ2

2
√

42λ2L
, then ∀t ≥ 1,

E
[
∥yt+1 − Jyt+1∥2] ≤ 3 + λ2

4 E
[
∥yt − Jyt∥2]+ 21λ2nL2α2

1 − λ2 E[∥vt−1∥2] + 63λ2L2

1 − λ2 E
[
∥xt−1 − Jxt−1∥2]

+ 7λ2β2

1 − λ2E
[
∥vt−1 − ∇f(xt−1)∥2]+ 3λ2nβ2ν2.

Proof. See Section 5.6.3.

We note that establishing the contraction argument of gradient tracking errors in Lemma 5.5.5 requires

a careful examination of the structure of the vt-update.
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5.5.2 Error accumulations

To proceed, we observe, from Lemma 5.5.3, 5.5.4, and 5.5.5, that the recursions of the gradient variances,

consensus, and gradient tracking errors admit similar forms. Therefore, we abstract out formulas for the

accumulation of the error recursions of this type in the following lemma.

Lemma 5.5.6. Let {Vt}t≥0, {Rt}t≥0 and {Qt}t≥0 be nonnegative sequences and C ≥ 0 be some constant

such that Vt ≤ qVt−1 +qRt−1 +Qt +C, ∀t ≥ 1, where q ∈ (0, 1). Then the following inequality holds: ∀T ≥ 1,

T∑
t=0

Vt ≤ V0

1 − q
+ 1

1 − q

T −1∑
t=0

Rt + 1
1 − q

T∑
t=1

Qt+ CT

1 − q
. (5.11)

Similarly, if Vt+1 ≤ qVt + Rt−1 + C, ∀t ≥ 1, then we have: ∀T ≥ 2,

T∑
t=1

Vt ≤ V1

1 − q
+ 1

1 − q

T −2∑
t=0

Rt + CT

1 − q
. (5.12)

Proof. See Section 5.6.4.

Applying Lemma 5.5.6 to Lemma 5.5.3 leads to the following upper bounds on the accumulated variances.

Lemma 5.5.7. For any β ∈ (0, 1), the following inequalities hold: ∀T ≥ 1,

T∑
t=0

E
[
∥vt − ∇f(xt)∥2] ≤ ν2

βb0n
+ 6L2α2

nβ

T −1∑
t=0

E
[
∥vt∥2

]
+ 12L2

n2β

T∑
t=0

E
[
∥xt − Jxt∥2]+ 2βν2T

n
, (5.13)

T∑
t=0

E
[
∥vt − ∇f(xt)∥2] ≤ nν2

βb0
+ 6nL2α2

β

T −1∑
t=0

E
[
∥vt∥2]+ 12L2

β

T∑
t=0

E
[
∥xt − Jxt∥2]+ 2nβν2T. (5.14)

Proof. See Section 5.6.5.

It can be observed that (5.13) in Lemma 5.5.7 may be used to refine the left hand side of (5.6). The

remaining step, naturally, is to bound
∑

t E
[
∥xt − Jxt∥2] in terms of

∑
t E
[
∥vt∥2]. This result is provided

in the following lemma that is obtained with the help of Lemma 5.5.4, 5.5.5, 5.5.6, and 5.5.7.

Lemma 5.5.8. If 0 < α ≤ (1−λ2)2

70λ2L and β ∈ (0, 1), then the following inequality holds: ∀T ≥ 2,

T∑
t=0

E
[
∥xt − Jxt∥2]

n
≤ 2016λ4L2α4

(1 − λ2)4

T −2∑
t=0

E
[
∥vt∥2]+ 32λ4α2

(1 − λ2)3
∥∇f

(
x0
)
∥2

n
+
(

7β

1 − λ2 + 1
)

32λ4ν2α2

(1 − λ2)3b0

+
(

14β

1 − λ2 + 3
)

32λ4β2ν2α2T

(1 − λ2)3 .

Proof. See Section 5.6.6.

Finally, we note that Lemma 5.5.7 and 5.5.8 suffice to establish (5.6) and hence lead to Theorem 5.3.1,

whose detailed proof is presented in the next subsection.
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5.5.3 Proof of Theorem 5.3.1

For the ease of presentation, we denote ∆0 := F (x0) − F ∗ in the following. We apply (5.13) to Lemma 5.5.2

to obtain: if 0 < α ≤ 1
2L , then ∀T ≥ 1,

T∑
t=0

E
[
∥∇F (xt)∥2

]
≤ 2∆0

α
− 1

2

T∑
t=0

E
[
∥vt∥2

]
+ 2L2

n

T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 2ν2

βb0n
+ 12L2α2

nβ

T −1∑
t=0

E
[
∥vt∥2

]
+ 24L2

n2β

T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 4βν2T

n

≤ 2∆0

α
− 1

4

T∑
t=0

E
[
∥vt∥2

]
+ 2L2

n

(
1 + 12

nβ

) T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 2ν2

βb0n
+ 4βν2T

n
−
(

1
4 − 12L2α2

nβ

) T∑
t=0

E
[
∥vt∥2

]
. (5.15)

Therefore, if 0 < α < 1
4

√
3L

and 48L2α2

n ≤ β < 1, i.e., 1
4 − 12L2α2

nβ ≥ 0, we may drop the last term in (5.15)

to obtain: ∀T ≥ 1,
T∑

t=0
E
[
∥∇F (xt)∥2

]
≤ 2∆0

α
− 1

4

T∑
t=0

E
[
∥vt∥2

]
+ 2L2

n

(
1 + 12

nβ

) T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 2ν2

βb0n
+ 4βν2T

n
.

(5.16)

Moreover, we observe: ∀T ≥ 1,

1
n

n∑
i=1

T∑
t=0

E
[∥∥∇F (xi

t)
∥∥2] ≤ 2

n

n∑
i=1

T∑
t=0

E
[∥∥∇F (xi

t) − ∇F (xt)
∥∥2 + ∥∇F (xt)∥2

]
= 2L2

n

T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 2

T∑
t=0

E
[
∥∇F (xt)∥2

]
, (5.17)

where the last line uses the L-smoothness of F . Using (5.16) in (5.17) yields: if 0 < α < 1
4

√
3L

and 48L2α2/n ≤

β < 1, then we have: ∀T ≥ 1,

1
n

n∑
i=1

T∑
t=0

E
[∥∥∇F (xi

t)
∥∥2] ≤ 4∆0

α
− 1

2

T∑
t=0

E
[
∥vt∥2

]
+ 6L2

n

(
1 + 8

nβ

) T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 4ν2

βb0n
+ 8βν2T

n
. (5.18)

According to (5.18), if 0 < α < 1
4

√
3L

and β = 48L2α2/n, we have: ∀T ≥ 1,

1
n

n∑
i=1

T∑
t=0

E
[∥∥∇F (xi

t)
∥∥2] ≤ 4∆0

α
− 1

2

T∑
t=0

E
[
∥vt∥2

]
+ 6L2

n

(
1 + 1

6L2α2

) T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 4ν2

βb0n
+ 8βν2T

n

≤ 4∆0

α
−1

2

T∑
t=0

E
[
∥vt∥2

]
+ 2

nα2

T∑
t=0

E
[
∥xt − Jxt∥2

]
︸ ︷︷ ︸

=:ΦT

+ 4ν2

βb0n
+ 8βν2T

n
, (5.19)
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where the last line is due to 6L2α2 < 1/8. To simplify ΦT , we use Lemma 5.5.8 to obtain: if 0 < α ≤ (1−λ2)2

70λ2L

then ∀T ≥ 2,

ΦT ≤ − 1
2

(
1 − 8064λ4L2α2

(1 − λ2)4

) T∑
t=0

E
[
∥vt∥2

]
+ 64λ4

(1 − λ2)3

∥∥∇f
(
x0
)∥∥2

n

+
(

7β

1 − λ2 + 1
)

64λ4ν2

(1 − λ2)3b0
+
(

14β

1 − λ2 + 3
)

64λ4β2ν2T

(1 − λ2)3 . (5.20)

In (5.20), we observe that if 0 < α ≤ (1−λ2)2

90λ2L , then 1 − 8064λ4L2α2

(1−λ2)4 ≥ 0 and thus the first term in (5.20)

may be dropped; moreover, if 0 < α ≤
√

n(1−λ2)
26λL , then β = 48L2α2

n ≤ 1−λ2

14λ2 . Hence, if 0 < α ≤

min
{

(1−λ2)2

90λ2 ,

√
n(1−λ2)

26λ

}
1
L , then (5.20) reduces to: ∀T ≥ 2,

ΦT ≤ 64λ4

(1 − λ2)3

∥∥∇f
(
x0
)∥∥2

n
+ 96λ2ν2

(1 − λ2)3b0
+ 256λ2β2ν2T

(1 − λ2)3 . (5.21)

Finally, we use (5.21) in (5.19) to obtain: if 0 < α < min
{

1
4

√
3 , (1−λ2)2

90λ2 ,

√
n(1−λ2)

26λ

}
1
L , we have: ∀T ≥ 2,

1
n(T + 1)

n∑
i=1

T∑
t=0

E
[∥∥∇F (xi

t)
∥∥2] ≤ 4∆0

αT
+ 4ν2

βb0nT
+ 8βν2

n

+ 64λ4

(1 − λ2)3T

∥∥∇f
(
x0
)∥∥2

n
+ 96λ2ν2

(1 − λ2)3b0T
+ 256λ2β2ν2

(1 − λ2)3 . (5.22)

The proof follows by (5.22) and that E[∥∇F (x̃T )∥2] = 1
n(T +1)

∑n
i=1
∑T

t=0 E[∥∇F (xi
t)∥2] since x̃T is chosen

uniformly at random from {xi
t : ∀i ∈ V, 0 ≤ t ≤ T}.

5.6 Detailed proofs for lemmata in Section 5.5

5.6.1 Proof of Lemma 5.5.2

We recall the standard Descent Lemma [6], i.e., ∀x, y ∈ Rp,

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩ + L

2 ∥y − x∥2
, (5.23)

since F is L-smooth. Setting y = xt+1 and x = xt in (5.23) and using (5.5) , we have: ∀t ≥ 0,

F (xt+1) ≤ F (xt) −
〈
∇F (xt), xt+1 − xt

〉
+ L

2 ∥xt+1 − xt∥2

≤ F (xt) − α
〈
∇F (xt), vt

〉
+ Lα2

2 ∥vt∥2
. (5.24)

Using ⟨a, b⟩ = 1
2
(
∥a∥2 + ∥b∥2 − ∥a − b∥2) , ∀a, b ∈ Rp, in (5.24) gives: for 0 < α ≤ 1

2L and ∀t ≥ 0,

F (xt+1) ≤ F (xt) − α

2 ∥∇F (xt)∥2 −
(

α

2 − Lα2

2

)
∥vt∥2 + α

2 ∥vt − ∇F (xt)∥2
,

≤ F (xt) − α

2 ∥∇F (xt)∥2 −
(

α

2 − Lα2

2

)
∥vt∥2 + α

∥∥vt − ∇f(xt)
∥∥2 + α

∥∥∇f(xt) − ∇F (xt)
∥∥2

,

(i)
≤ F (xt) − α

2 ∥∇F (xt)∥2 − α

4 ∥vt∥2 + α
∥∥vt − ∇f(xt)

∥∥2 + αL2

n
∥xt − Jxt∥2

, (5.25)
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where (i) is due to Lemma 5.5.1(c) and that Lα2

2 ≤ α
4 since 0 < α ≤ 1

2L . Rearranging (5.25), we have:

for 0 < α ≤ 1
2L and ∀t ≥ 0,

∥∇F (xt)∥2 ≤ 2(F (xt) − F (xt+1))
α

− 1
2 ∥vt∥2 + 2

∥∥vt − ∇f(xt)
∥∥2 + 2L2

n
∥xt − Jxt∥2

. (5.26)

Taking the telescoping sum of (5.26) over t from 0 to T , ∀T ≥ 0 and using the fact that F bounded below

by F ∗ in the resulting inequality finishes the proof.

5.6.2 Proof of Lemma 5.5.3

5.6.2.1 Proof of Eq. (5.7)

We recall that the update of each local stochastic gradient estimator vi
t, ∀t ≥ 1, in (5.2) may be written

equivalently as follows:

vi
t = βgi(xi

t, ξi
t) + (1 − β)

(
gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) + vi

t−1

)
,

where β ∈ (0, 1). We have: ∀t ≥ 1 and ∀i ∈ V,

vi
t − ∇fi(xi

t) = βgi(xi
t, ξi

t) + (1 − β)
(

gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) + vi
t−1

)
− β∇fi(xi

t) − (1 − β)∇fi(xi
t)

= β
(

gi(xi
t, ξi

t) − ∇fi(xi
t)
)

+ (1 − β)
(

gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) + vi
t−1 − ∇fi(xi

t)
)

= β
(

gi(xi
t, ξi

t) − ∇fi(xi
t)
)

+ (1 − β)
(

gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) + ∇fi(xi
t−1) − ∇fi(xi

t)
)

+ (1 − β)
(

vi
t−1 − ∇fi(xi

t−1)
)

. (5.27)

In (5.27), we observe that ∀t ≥ 1 and ∀i ∈ V,

E
[
gi(xi

t, ξi
t) − ∇fi(xi

t)|Ft

]
= 0p, (5.28)

E
[
gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) + ∇fi(xi

t−1) − ∇fi(xi
t)|Ft

]
= 0p, (5.29)

by the definition of the filtration Ft in (5.1). Averaging (5.27) over i from 1 to n gives: ∀t ≥ 0,

vt − ∇f(xt) = (1 − β)
(

vt−1 − ∇f(xt−1)
)

+ β · 1
n

n∑
i=1

(
gi(xi

t, ξi
t) − ∇fi(xi

t)
)

︸ ︷︷ ︸
=:st

+ (1 − β) · 1
n

n∑
i=1

(
gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) + ∇fi(xi

t−1) − ∇fi(xi
t)
)

︸ ︷︷ ︸
=:zt

. (5.30)
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Note that E[st|Ft] = E[zt|Ft] = 0p by (5.28) and (5.29). In light of (5.30), we have: ∀t ≥ 1,

E
[
∥vt − ∇f(xt)∥2|Ft

]
= (1 − β)2∥vt−1 − ∇f(xt−1)∥2 + E

[
∥βσt + (1 − β)zt∥2 |Ft

]
+ 2E

[〈
(1 − β)

(
vt−1 − ∇f(xt−1)

)
, βσt + (1 − β)zt

〉
|Ft

]
(i)= (1 − β)2∥vt−1 − ∇f(xt−1)∥2 + E

[
∥βσt + (1 − β)zt∥2 |Ft

]
≤ (1 − β)2∥vt−1 − ∇f(xt−1)∥2 + 2β2E

[
∥σt∥2 |Ft

]
+ 2(1 − β)2E

[
∥zt∥2 |Ft

]
, (5.31)

where (i) is due to

E
[〈

(1 − β)
(
vt−1 − ∇f(xt−1)

)
, βσt + (1 − β)zt

〉
|Ft

]
= 0,

since E[σt|Ft] = E[zt|Ft] = 0p and (vt−1 − ∇f(xt−1)) is Ft-measurable. We next bound the second and the

third term in (5.31) respectively. For the second term in (5.31), we observe that ∀t ≥ 1,

E
[
∥σt∥2] = 1

n2

n∑
i=1

E
[∥∥gi(xi

t, ξi
t) − ∇fi(xi

t)
∥∥2]+ 1

n2

∑
i̸=j

E
[〈

gi(xi
t, ξi

t) − ∇fi(xi
t), gj(xj

t , ξj
t ) − ∇fj(xj

t )
〉]

(i)= 1
n2

n∑
i=1

E
[∥∥gi(xi

t, ξi
t) − ∇fi(xi

t)
∥∥2] ≤ ν2

n
. (5.32)

We note that (i) in (5.32) uses that whenever i ̸= j,

E
[〈

gi(xi
t, ξi

t) − ∇fi(xi
t), gj(xj

t , ξj
t ) − ∇fj(xj

t )
〉∣∣Ft

]
(ii)= E

[〈
E
[
gi(xi

t, ξi
t)|σ(ξj

t , Ft)
]

− ∇fi(xi
t), gj(xj

t , ξj
t ) − ∇fj(xj

t )
〉∣∣Ft

]
(iii)= E

[〈
E
[
gi(xi

t, ξi
t)|Ft

]
− ∇fi(xi

t), gj(xj
t , ξj

t ) − ∇fj(xj
t )
〉∣∣∣Ft

]
= 0, (5.33)

where (ii) is due to the tower property of the conditional expectation and (iii) uses that ξj
t is independent

of {ξi
t, Ft} and xi

t is Ft-measurable. Towards the third term (5.31), we define, ∀t ≥ 1,

∇̂i
t := ∇fi(xi

t) − ∇fi(xi
t−1)

and recall that E
[
gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t)|Ft

]
= ∇̂i

t. Observe that ∀t ≥ 1,

E
[
∥zt∥2|Ft

]
= E

[∥∥∥∥ 1
n

n∑
i=1

(
gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) − ∇̂i

t

)∥∥∥∥2∣∣∣Ft

]

= 1
n2

n∑
i=1

E
[∥∥∥gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) − ∇̂i

t

∥∥∥2 ∣∣Ft

]
+ 1

n2

∑
i ̸=j

E
[〈

gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) − ∇̂i
t, gj(xj

t , ξj
t ) − gj(xj

t−1, ξj
t ) − ∇̂j

t

〉∣∣Ft

]
︸ ︷︷ ︸

=0

(i)= 1
n2

n∑
i=1

E
[∥∥∥gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t) − ∇̂t

∥∥∥2 ∣∣Ft

]
,

(ii)
≤ 1

n2

n∑
i=1

E
[∥∥gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t)
∥∥2
∣∣∣Ft

]
, (5.34)
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where (i) follows from a similar line of arguments as (5.33) and (ii) uses the conditional variance decompo-

sition, i.e., for any random vector a ∈ Rp consisted of square-integrable random variables,

E
[∥∥∥a − E [a|Ft]

∥∥∥2
|Ft

]
= E

[
∥a∥2 |Ft

]
− ∥E [a|Ft]∥2

. (5.35)

To proceed from (5.34), we take its expectation and observe that ∀t ≥ 1,

E
[
∥zt∥2] ≤ 1

n2

n∑
i=1

E
[∥∥gi(xi

t, ξi
t) − gi(xi

t−1, ξi
t)
∥∥2]

(i)
≤ L2

n2

n∑
i=1

E
[∥∥xi

t − xi
t−1
∥∥2]

= L2

n2 E
[
∥xt − xt−1∥2

]
= L2

n2 E
[
∥xt − Jxt + Jxt − Jxt−1 + Jxt−1 − xt−1∥2

]
≤ 3L2

n2 E
[
∥xt − Jxt∥2 + n ∥xt − xt−1∥2 + ∥xt−1 − Jxt−1∥2

]
(ii)= 3L2α2

n
E
[
∥vt−1∥2

]
+ 3L2

n2

(
E
[
∥xt − Jxt∥2 + ∥xt−1 − Jxt−1∥2

] )
, (5.36)

where (i) uses the mean-squared smoothness of each gi and (ii) uses the update of xt in (5.5). The proof

follows by taking the expectation (5.31) and then using (5.32) and (5.36) in the resulting inequality.

5.6.2.2 Proof of Eq. (5.8)

We recall from (5.27) the following relationship: ∀t ≥ 1,

vi
t − ∇fi(xi

t) = β
(

gi(xi
t, ξi

t) − ∇fi(xi
t)
)

+ (1 − β)
(

gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) + ∇fi(xi
t−1) − ∇fi(xi

t)
)

+ (1 − β)
(

vi
t−1 − ∇fi(xi

t−1)
)

. (5.37)

Note that the conditional expectation of the first and second term in (5.37) given Ft is 0 and that the third

term in (5.37) is Ft-measurable. Following a similar procedure in the proof of (5.31), we have: ∀t ≥ 1,

E
[
∥vi

t − ∇fi(xi
t)∥2|Ft

]
≤ (1 − β)2 ∥∥vi

t−1 − ∇fi(xi
t−1)

∥∥2 + 2β2E
[∥∥gi(xi

t, ξi
t) − ∇fi(xi

t)
∥∥2 |Ft

]
+ 2(1 − β)2E

[∥∥gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) −
(
∇fi(xi

t) − ∇fi(xi
t−1)

)∥∥2 |Ft

]
(i)
≤ (1 − β)2 ∥∥vi

t−1 − ∇fi(xi
t−1)

∥∥2 + 2β2E
[∥∥gi(xi

t, ξi
t) − ∇fi(xi

t)
∥∥2 |Ft

]
+ 2(1 − β)2E

[∥∥gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t)
∥∥2 |Ft

]
(5.38)
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where (i) uses the conditional variance decomposition (5.35). We then take the expectation of (5.38) with

the help of the mean-squared smoothness and the bounded variance of each gi to proceed: ∀t ≥ 1,

E
[∥∥vi

t − ∇fi(xi
t)
∥∥2] ≤ (1 − β)2E

[∥∥vi
t−1 − ∇fi(xi

t−1)
∥∥2]+ 2β2ν2

i + 2(1 − β)2L2E
[∥∥xi

t − xi
t−1
∥∥2]

≤ (1 − β)2E
[∥∥vi

t−1 − ∇fi(xi
t−1)

∥∥2]+ 2β2ν2
i

+ 6(1 − β)2L2
(
E
[∥∥xi

t − xt

∥∥2 + ∥xt − xt−1∥2 +
∥∥xt−1 − xi

t−1
∥∥2])

,

= (1 − β)2E
[∥∥vi

t−1 − ∇fi(xi
t−1)

∥∥2]+ 2β2ν2
i + 6(1 − β)2L2α2E

[
∥vt−1∥2

]
+ 6(1 − β)2L2E

[∥∥xi
t − xt

∥∥2 +
∥∥xi

t−1 − xt−1
∥∥2]

, (5.39)

where the last line uses the xt-update in (5.5). Summing up (5.39) over i from 1 to n completes the proof.

5.6.3 Proof of Lemma 5.5.5

5.6.3.1 Proof of Lemma 5.5.5(a)

Recall the initialization of GT-HSGD that v−1 = 0np, y0 = 0np, and vi
0 = 1

b0

∑b0
r=1 gi(xi

0, ξi
0,r). Using the

gradient tracking update (5.4a) at iteration t = 0, we have:

E
[
∥y1 − Jy1∥2

]
= E

[
∥W (y0 + v0 − v−1) − JW (y0 + v0 − v−1)∥2

]
(i)= E

[
∥(W − J) v0∥2

]
(ii)
≤ λ2E

[
∥v0 − ∇f(x0) + ∇f(x0)∥2

]
= λ2

n∑
i=1

E
[∥∥vi

0 − ∇fi(xi
0)
∥∥2]+ λ2 ∥∇f(x0)∥2

(iii)= λ2
n∑

i=1
E
[∥∥∥∥ 1

b0

b0∑
r=1

(
gi(xi

0, ξi
0,r) − ∇fi(xi

0)
)∥∥∥∥2]

+ λ2 ∥∇f(x0)∥2

(iv)= λ2

b2
0

n∑
i=1

b0∑
r=1

E
[∥∥gi(xi

0, ξi
0,r) − ∇fi(xi

0)
∥∥2]+ λ2 ∥∇f(x0)∥2

, (5.40)

where (i) uses JW = J and the initial condition of v−1 and y0, (ii) uses ∥W − J∥ = λ, (iii) is due to

the initialization of vi
0, and (iv) follows from the fact that {ξi

0,1, ξi
0,2, · · · , ξi

0,b0
}, ∀i ∈ V, is an independent

family of random vectors, by a similar line of arguments in (5.32) and (5.33). The proof then follows by

using the bounded variance of each gi in (5.40).
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5.6.3.2 Proof of Lemma 5.5.5(b)

Following the gradient tracking update (5.4a), we have: ∀t ≥ 1,

∥yt+1 − Jyt+1∥2 = ∥W (yt + vt − vt−1) − JW (yt + vt − vt−1)∥2

(i)= ∥Wyt − Jyt + (W − J) (vt − vt−1)∥2

= ∥Wyt − Jyt∥2 + 2
〈
Wyt − Jyt, (W − J) (vt − vt−1)

〉
+ ∥(W − J) (vt − vt−1)∥2

(ii)
≤ λ2 ∥yt − Jyt∥2 + 2

〈
Wyt − Jyt, (W − J) (vt − vt−1)

〉︸ ︷︷ ︸
=:At

+λ2 ∥vt − vt−1∥2
, (5.41)

where (i) uses JW = J and (ii) is due to ∥W − J∥ = λ. In the following, we bound At and the last term

in (5.41) respectively. We recall the update of each local stochastic gradient estimator vi
t in (5.2): ∀t ≥ 1,

vi
t = gi(xi

t, ξi
t) + (1 − β)vi

t−1 − (1 − β)gi(xi
t−1, ξi

t).

We observe that ∀t ≥ 1 and ∀i ∈ V,

vi
t − vi

t−1 = gi(xi
t, ξi

t) − βvi
t−1 − (1 − β)gi(xi

t−1, ξi
t)

= gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) − βvi
t−1 + βgi(xi

t−1, ξi
t)

= gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t) − β
(

vi
t−1 − ∇fi(xi

t−1)
)

+ β
(

gi(xi
t−1, ξi

t) − ∇fi(xi
t−1)

)
. (5.42)

Moreover, we observe from (5.42) that ∀t ≥ 1,

E [vt − vt−1|Ft] = ∇f(xt) − ∇f(xt−1) − β
(

vt−1 − ∇f(xt−1)
)

. (5.43)

Towards At, we have: ∀t ≥ 1,

E [At|Ft]
(i)= 2

〈
Wyt − Jyt, (W − J)E [vt − vt−1|Ft]

〉
(ii)= 2

〈
Wyt − Jyt, (W − J)

(
∇f(xt) − ∇f(xt−1) − β

(
vt−1 − ∇f(xt−1)

)〉
(iii)
≤ 2λ ∥yt − Jyt∥ · λ

∥∥∥∇f(xt) − ∇f(xt−1) − β
(

vt−1 − ∇f(xt−1)
)∥∥∥

(iv)
≤ 1 − λ2

2 ∥yt − Jyt∥2 + 2λ4

1 − λ2

∥∥∥∇f(xt) − ∇f(xt−1) − β
(

vt−1 − ∇f(xt−1)
)∥∥∥2

,

(v)
≤ 1 − λ2

2 ∥yt − Jyt∥2 + 4λ4L2

1 − λ2 ∥xt − xt−1∥2 + 4λ4β2

1 − λ2 ∥vt−1 − ∇f(xt−1)∥2
, (5.44)

where (i) is due to the Ft-measurability of yt, (ii) uses (5.43), (iii) is due to the Cauchy-Schwarz inequality

and ∥W−J∥ = λ, (iv) uses the elementary inequality that 2ab ≤ ηa2 +b2/η, with η = 1−λ2

2λ2 for any a, b ∈ R,

and (v) holds since each fi is L-smooth. Next, towards the last term in (5.41), we take the expectation
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of (5.42) to obtain: ∀t ≥ 1 and ∀i ∈ V,

E
[∥∥vi

t − vi
t−1
∥∥2] ≤ 3E

[∥∥gi(xi
t, ξi

t) − gi(xi
t−1, ξi

t)
∥∥2]+ 3β2E

[∥∥vi
t−1 − ∇fi(xi

t−1)
∥∥2]

+ 3β2E
[∥∥gi(xi

t−1, ξi
t) − ∇fi(xi

t−1)
∥∥2]

≤ 3L2E
[∥∥xi

t − xi
t−1
∥∥2]+ 3β2E

[∥∥vi
t−1 − ∇fi(xi

t−1)
∥∥2]+ 3β2ν2

i , (5.45)

where (5.45) is due to the mean-squared smoothness and the bounded variance of each gi. Summing up (5.45)

over i from 1 to n gives an upper bound on the last term in (5.41): ∀t ≥ 1,

λ2E
[
∥vt − vt−1∥2

]
≤ 3λ2L2E

[
∥xt − xt−1∥2

]
+ 3λ2β2E

[
∥vt−1 − ∇f(xt−1)∥2

]
+ 3λ2nβ2ν2. (5.46)

We now use (5.44) and (5.46) in (5.41) to obtain: ∀t ≥ 1,

E
[
∥yt+1 − Jyt+1∥2

]
≤ 1 + λ2

2 E
[
∥yt − Jyt∥2

]
+ 7λ2L2

1 − λ2E
[
∥xt − xt−1∥2

]
+ 7λ2β2

1 − λ2E
[
∥vt−1 − ∇f(xt−1)∥2

]
+ 3λ2nβ2ν2. (5.47)

Towards the second term in (5.47), we use (5.10) to obtain: ∀t ≥ 1,

∥xt − xt−1∥2 = ∥xt − Jxt + Jxt − Jxt−1 + Jxt−1 − xt−1∥2

(i)
≤ 3 ∥xt − Jxt∥2 + 3nα2 ∥vt−1∥2 + 3 ∥xt−1 − Jxt−1∥2

≤ 6λ2α2 ∥yt − Jyt∥2 + 3nα2 ∥vt−1∥2 + 9 ∥xt−1 − Jxt−1∥2
, (5.48)

where (i) uses the xt-update in (5.5). Finally, we use (5.48) in (5.47) to obtain: ∀t ≥ 1,

E
[
∥yt+1 − Jyt+1∥2

]
≤
(

1 + λ2

2 + 42λ4L2α2

1 − λ2

)
E
[
∥yt − Jyt∥2

]
+ 21λ2nL2α2

1 − λ2 E
[
∥vt−1∥2

]
+ 63λ2L2

1 − λ2 E
[
∥xt−1 − Jxt−1∥2

]
+ 7λ2β2

1 − λ2E
[
∥vt−1 − ∇f(xt−1)∥2

]
+ 3λ2nβ2ν2.

The proof is completed by the fact that 1+λ2

2 + 42λ4L2α2

1−λ2 ≤ 3+λ2

4 if 0 < α ≤ 1−λ2

2
√

42λ2L
.

5.6.4 Proof of Lemma 5.5.6

5.6.4.1 Proof of Eq. (5.11)

We recursively apply the inequality on Vt from t to 0 to obtain: ∀t ≥ 1,

Vt ≤ qVt−1 + qRt−1 + Qt + C

≤ q2Vt−2 + (q2Rt−2 + qRt−1) + (qQt−1 + Qt) + (qC + C)

· · ·

≤ qtV0 +
t−1∑
i=0

qt−iRi +
t∑

i=1
qt−iQi + C

t−1∑
i=0

qi. (5.49)
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Summing up (5.49) over t from 1 to T gives: ∀T ≥ 1,

T∑
t=0

Vt ≤ V0

T∑
t=0

qt +
T∑

t=1

t−1∑
i=0

qt−iRi +
T∑

t=1

t∑
i=1

qt−iQi + C

T∑
t=1

t−1∑
i=0

qi

≤ V0

∞∑
t=0

qt +
T −1∑
t=0

( ∞∑
i=0

qi

)
Rt +

T∑
t=1

( ∞∑
i=0

qi

)
Qt + C

T∑
t=1

∞∑
i=0

qi,

and the proof follows by
∑∞

i=0 qi = (1 − q)−1.

5.6.4.2 Proof of Eq. (5.12)

We recursively apply the inequality on Vt from t + 1 to 1 to obtain: ∀t ≥ 1,

Vt+1 ≤ qVt + Rt−1 + C

≤ q2Vt−1 + (qRt−2 + Rt−1) + (qC + C)

· · ·

≤ qtV1 +
t−1∑
i=0

qt−1−iRi + C

t−1∑
i=0

qi. (5.50)

We sum up (5.50) over t from 1 to T − 1 to obtain: ∀T ≥ 2,

T −1∑
t=0

Vt+1 ≤ V1

T −1∑
t=0

qt +
T −1∑
t=1

t−1∑
i=0

qt−1−iRi + C

T −1∑
t=1

t−1∑
i=0

qi

≤ V1

∞∑
t=0

qt +
T −2∑
t=0

( ∞∑
i=0

qi

)
Rt + C

T −1∑
t=1

∞∑
i=0

qi,

and the proof follows by
∑∞

i=0 qi = (1 − q)−1.

5.6.5 Proof of Lemma 5.5.7

5.6.5.1 Proof of Eq. (5.13)

We first observe that 1
1−(1−β)2 ≤ 1

β for β ∈ (0, 1). Applying (5.11) to (5.7) gives: ∀T ≥ 1,

T∑
t=0

E
[∥∥vt − ∇f(xt)

∥∥2]
≤

E
[
∥v0 − ∇f(x0)∥2]

β
+ 6L2α2

nβ

T −1∑
t=0

E
[
∥vt∥2

]
+ 6L2

n2β

T −1∑
t=0

E
[∥∥xt+1 − Jxt+1∥2 + ∥xt − Jxt

∥∥2
]

+ 2βν2T

n

≤
E
[
∥v0 − ∇f(x0)∥2]

β
+ 6L2α2

nβ

T −1∑
t=0

E
[
∥vt∥2

]
+ 12L2

n2β

T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 2βν2T

n
. (5.51)
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Towards the first term in (5.51), we observe that

E
[∥∥v0 − ∇f(x0)

∥∥2] = E

[∥∥∥ 1
n

n∑
i=1

1
b0

b0∑
r=1

(
gi(xi

0, ξi
0,r) − ∇fi(xi

0)
)∥∥∥2

]
(i)= 1

n2b2
0

n∑
i=1

b0∑
r=1

E
[∥∥gi(xi

0, ξi
0,r) − ∇fi(xi

0)
∥∥2] ≤ ν2

nb0
, (5.52)

where (i) follows from a similar line of arguments in (5.33). Then (5.13) follows from using (5.52) in (5.51).

5.6.5.2 Proof of Eq. (5.14)

We apply (5.11) to (5.8) to obtain: ∀T ≥ 1,

T∑
t=0

E
[
∥vt − ∇f(xt)∥2

]
≤

E
[
∥v0 − ∇f(x0)∥2]

β
+ 6nL2α2

β

T −1∑
t=0

E
[
∥vt∥2

]
+ 6L2

β

T −1∑
t=0

E
[∥∥xt+1 − Jxt+1∥2 + ∥xt − Jxt

∥∥2
]

+ 2nβν2T

≤
E
[
∥v0 − ∇f(x0)∥2]

β
+ 6nL2α2

β

T −1∑
t=0

E
[
∥vt∥2

]
+ 12L2

β

T∑
t=0

E
[
∥xt − Jxt∥2

]
+ 2nβν2T. (5.53)

In (5.53), we observe that

E
[
∥v0 − ∇f(x0)∥2] =

n∑
i=1

E

[∥∥∥ 1
b0

b0∑
r=1

(
gi(xi

0, ξi
0,r) − ∇fi(xi

0)
) ∥∥∥2

]
(i)= 1

b2
0

n∑
i=1

b0∑
r=1

E
[∥∥gi(xi

0, ξi
0,r) − ∇fi(xi

0)
∥∥2] ≤ nν2

b0
, (5.54)

where (i) follows from a similar line of arguments in (5.33). Then (5.14) follows from using (5.54) in (5.53).

5.6.6 Proof of Lemma 5.5.8

We recall that ∥xt − Jxt∥ = 0, since it is assumed without generality that xi
0 = xj

0 for any i, j ∈ V.

Applying (5.11) to (5.9) yields: ∀T ≥ 1,

T∑
t=0

∥xt − Jxt∥2 ≤ 4λ2α2

(1 − λ2)2

T∑
t=1

∥yt − Jyt∥2
. (5.55)
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To further bound
∑T

t=1 ∥yt − Jyt∥2, we apply (5.12) in Lemma 5.5.5(b) to obtain: if 0 < α ≤ 1−λ2

2
√

42λ2L
,

then ∀T ≥ 2,

T∑
t=1

E
[
∥yt − Jyt∥2

]
≤

4E
[
∥y1 − Jy1∥2]

1 − λ2 + 84λ2nL2α2

(1 − λ2)2

T −2∑
t=0

E
[
∥vt∥2]+ 252λ2L2

(1 − λ2)2

T −2∑
t=0

E
[
∥xt − Jxt∥2]

+ 28λ2β2

(1 − λ2)2

T −2∑
t=0

E
[
∥vt − ∇f(xt)∥2]+ 12λ2nβ2ν2T

1 − λ2

≤ 84λ2nL2α2

(1 − λ2)2

T −2∑
t=0

E
[
∥vt∥2]+ 252λ2L2

(1 − λ2)2

T −2∑
t=0

E
[
∥xt − Jxt∥2]

+ 28λ2β2

(1 − λ2)2

T −2∑
t=0

E
[
∥vt − ∇f(xt)∥2]+ 12λ2nβ2ν2T

1 − λ2 +
4λ2

∥∥∇f
(
x0
)∥∥2

1 − λ2 + 4λ2nν2

(1 − λ2)b0
, (5.56)

where the last inequality is due to Lemma 5.5.5(a). To proceed, we use (5.14), an upper bound on
∑

t E
[
∥vt − ∇f(xt)∥2],

in (5.56) to obtain: if 0 < α ≤ 1−λ2

2
√

42λ2L
and β ∈ (0, 1), then ∀T ≥ 2,

T∑
t=1

E
[
∥yt − Jyt∥2

]
≤ 252λ2nL2α2

(1 − λ2)2

T −2∑
t=0

E
[
∥vt∥2]+ 588λ2L2

(1 − λ2)2

T −1∑
t=0

E
[
∥xt − Jxt∥2]

+ 28λ2nβν2

(1 − λ2)2b0
+ 56λ2nβ3ν2T

(1 − λ2)2 + 12λ2nβ2ν2T

1 − λ2 +
4λ2

∥∥∇f
(
x0
)∥∥2

1 − λ2 + 4λ2nν2

(1 − λ2)b0

= 252λ2nL2α2

(1 − λ2)2

T −2∑
t=0

E
[
∥vt∥2]+ 588λ2L2

(1 − λ2)2

T −1∑
t=0

E
[
∥xt − Jxt∥2]

+
(

7β

1 − λ2 + 1
)

4λ2nν2

(1 − λ2)b0
+
(

14β

1 − λ2 + 3
)

4λ2nβ2ν2T

1 − λ2 +
4λ2

∥∥∇f
(
x0
)∥∥2

1 − λ2 . (5.57)

Finally, we use (5.57) in (5.55) to obtain: ∀T ≥ 2,

T∑
t=0

E
[
∥xt − Jxt∥2

]
≤ 1008λ4nL2α4

(1 − λ2)4

T −2∑
t=0

E
[
∥vt∥2]+ 2352λ4L2α2

(1 − λ2)4

T −1∑
t=0

E
[
∥xt − Jxt∥2]

+
(

7β

1 − λ2 + 1
)

16λ4nν2α2

(1 − λ2)3b0
+
(

14β

1 − λ2 + 3
)

16λ4nβ2ν2α2T

(1 − λ2)3 +
16λ4

∥∥∇f
(
x0
)∥∥2

α2

(1 − λ2)3 ,

which may be written equivalently as(
1 − 2352λ4L2α2

(1 − λ2)4

) T∑
t=0

E
[
∥xt − Jxt∥2

]
≤ 1008λ4nL2α4

(1 − λ2)4

T −2∑
t=0

E
[
∥vt∥2]+

(
7β

1 − λ2 + 1
)

16λ4nν2α2

(1 − λ2)3b0

+
(

14β

1 − λ2 + 3
)

16λ4nβ2ν2α2T

(1 − λ2)3 +
16λ4

∥∥∇f
(
x0
)∥∥2

α2

(1 − λ2)3 . (5.58)

We observe in (5.58) that 2352λ4L2α2

(1−λ2)4 ≤ 1
2 if 0 < α ≤ (1−λ2)2

70λ2L , and the proof follows.
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5.7 Conclusion

In this chapter, we propose GT-HSGD, a stochastic variance-reduced gradient algorithm as an instance of the

GT-VR framework developed in Chapter 2, for decentralized non-convex expected risk minimization problems

with mean-squared smoothness. It is shown that GT-HSGD achieves an improved oracle complexity compared

to the existing decentralized stochastic gradient methods. Furthermore, we show that the oracle complexity

of GT-HSGD, when the required error tolerance is small enough, reduces to O(ϵ−3), which is independent of

the network topology and matches that of the centralized optimal methods for this problem class. To the

best of our knowledge, this is the first such result in the literature.



Chapter 6

Decentralized Stochastic Non-Convex

Composite Optimization

In this chapter, we consider decentralized non-convex composite problems, where the goal of the networked

nodes is to find a first-order stationary point of the average of local, smooth, possibly non-convex risk func-

tions plus an extended valued, convex, possibly non-differentiable regularizer. This non-convex non-smooth

composite problem may be viewed as a generalization of the problems considered in the previus chapters.

To tackle this general formulation, we develop a unified stochastic gradient tracking framework, ProxGT,

that allows flexible constructions of local stochastic (variance-reduced) gradient estimators. For definite-

ness, we construct instantiations of ProxGT by specifying appropriate local estimators for several problem

classes of interest. For each problem class, an instance of ProxGT achieves gradient and communication com-

plexities that match that of the corresponding centralized optimal methods. Several intermediate technical

results in the convergence analysis are of independent interest. Numerical simulation results are included to

demonstrate our theoretical claims.1

6.1 Introduction

Decentralized optimization, also known as distributed optimization over graphs, is a general parallel compu-

tation model for minimizing a sum of cost functions distributed over a network of nodes without a central

coordinator [33]. This cooperative minimization paradigm, built upon local communication and computation,

has numerous applications in estimation and learning problems that arise in multi-agent systems [21,31,37].

In particular, the sparse and localized peer-to-peer information exchange pattern in decentralized networks

substantially reduces the communication overhead on the parameter server in the centralized networks, thus
1The content presented in this chapter can be partially found in [164].

166
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making decentralized optimization algorithms especially appealing in large-scale data analytics and machine

learning tasks [2, 3, 29,40,41,165].

In this chapter, we consider the following decentralized non-convex non-smooth composite optimization

problem defined over a network of n nodes:

min
x∈Rp

Ψ(x) := F (x) + h(x), F (x) := 1
n

n∑
i=1

fi(x). (6.1)

Here, each fi : Rp →R is smooth, possibly non-convex, and is only locally accessible by node i, while h :

Rp → R ∪ {+∞} is convex, possibly non-differentiable, and is commonly known by all nodes. In particular,

each fi is a cost function associated with local data at node i, while h serves as a regularization term that

is often used to impose additional problem structure such as convex constraints and/or sparsity; common

examples of h include the indicator function of a convex set or the ℓ1-norm. The communication over the

networked nodes is abstracted as a directed graph G := (V, E), where V := {1, · · · , n} denotes the set of node

indices and E ⊆ V × V collects ordered pairs (i, r), i, r ∈ V, such that node r sends information to node i.

Our focus in this chapter is on the following formulations of the local costs {fi}n
i=1 that frequently appear

in the context of machine learning [7]:

• Expected risk. In this case, each fi in Problem (6.1) is defined as

fi(x) := Eξi∼Di
[Gi(x, ξi)], (6.2)

where ξi is a random data vector supported on Ξi ⊆ Rq with some unknown probability distribution Di

and Gi : Rp ×Rq → R is a Borel function. The stochastic formulation (6.2) often corresponds to online

scenarios such that samples are generated from the underlying data stream in real time at each node i,

in order to construct stochastic approximation of fi for the subsequent optimization procedure [166].

• Empirical risk. We are also concerned with a special case of (6.2), i.e., when ξi has a finite support

set Ξi := {ξi,(1), · · · , ξi,(m)} for some m ≥ 1 and each fi takes the deterministic form of

fi(x) := 1
m

m∑
s=1

Gi

(
x, ξi,(s)

)
. (6.3)

As an alternate viewpoint, the formulation (6.3) may be considered as the sample average approxi-

mation of (6.2), where {ξi,(1), · · · , ξi,(m)} take the role of offline samples generated from the distribu-

tion Di [167]. We are particularly interested in modern-day big-data scenarios, where the local sample

size m is very large and thus stochastic gradient methods are often preferable over exact gradient ones

that use the entire local data per update.
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The above formulations are quite general and have found applications in, e.g., sparse non-convex linear

models [146], principle component analysis [129], and matrix factorization [168]. Our goal in this chapter is

thus on the design and analysis of efficient decentralized stochastic gradient algorithms to find an ϵ-stationary

point of the global non-convex non-smooth composite function Ψ in Problem (6.1) under expected risk (6.2)

or empirical risk (6.3).

6.1.1 Related work

The last decade has witnessed a growing literature in the area of decentralized optimization; see, e.g.,

survey articles [14, 27]. For convex composite problems, we refer the readers to, e.g., [74, 75, 169–172] and

the references therein. On the other hand, the work on decentralized methods for non-convex non-smooth

composite problems is fairly limited. In the following, we review the existing results that are closely related

to Problem (6.1) under either (6.2) or (6.3).

The first algorithmic framework for decentralized non-convex composite problems was proposed by [55],

where h is handled in a successive convex approximation scheme with the help of gradient tracking. Refer-

ence [173] presents decentralized proximal gradient descent which tackles h via proximal mapping. These

works [55, 173], however, require the gradient of F and the subdifferential of h to be uniformly bounded.

These boundedness assumptions are removed in [129,174], where unbalanced directed graphs and compres-

sion are also considered respectively. A decentralized Frank-Wolfe method is proposed in [72] to handle

the case where h is the indicator function of a convex compact set. We note that the aforementioned re-

sults [55, 72, 129, 173, 174] are exact gradient methods, which are in general not applicable to the expected

risk (6.2) and also may not be sample-efficient in the empirical risk setting (6.3) when the local data size m is

relatively large. Towards stochastic gradient methods, [175] analyzes a projected DSGD method for problems

with compact inequality constraints. Reference [42] establishes the asymptotic convergence of DSGD for a

family of non-convex non-smooth coercive functions. A recent work [176] presents SPPDM, a decentralized

stochastic proximal primal-dual method, and provides related convergence guarantees under the assumption

that the epigraph of h is a polyhedral set.

To the best of our knowledge, the decentralized stochastic optimization literature lacks non-asymptotic

gradient and communication complexity results for the non-convex non-smooth composite problem under a

general convex, possibly non-differentiable regularizer h. We address this gap in this chapter.
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Table 6.1: A summary of the gradient and communication complexities of the instances of ProxGT studied in
this chapter for finding an ϵ-stationary point of the global composite function Ψ over an undirected network.
In the table, n is the number of the nodes, (1−λ∗) ∈ (0, 1] is the spectral gap of the weight matrix associated
with the network, L is the smoothness parameter for the risk functions, ∆ is the function value gap, ν2 is
the stochastic gradient variance under the expected risk, m is the local sample size under the empirical risk.
The MSS column specifies whether the convergence of the algorithm in question requires the mean-squared
smoothness assumption.

Algorithm Sample Complexity at Each Node Communication Complexity MSS Remarks

ProxGT-SA O
(

L∆ν2

nϵ4

)
O
(

L∆
ϵ2 ·

log n
√

1 − λ∗

)
✗

Population
Risk (6.2)

ProxGT-SR-O O
(

L∆ν

nϵ3 +
ν2

nϵ2

)
O
((

L∆
ϵ2 +

ν

ϵ

)
·

log n
√

1 − λ∗

)
✓

Population
Risk (6.2)

ProxGT-SR-E O
(

L∆
ϵ2 max

{√
m

n
, 1
}

+ max
{

m,
√

nm
})

O
((

L∆
ϵ2 +

√
nm

)
·

1
√

1 − λ∗

)
✓

Empirical
Risk (6.3)

6.1.2 Main contributions

We develop ProxGT, a unified stochastic proximal gradient tracking framework for designing and analyzing

decentralized methods for the general non-convex non-smooth composite problem. ProxGT allows flexible

construction of local gradient estimators, where a suitable one may be chosen in light of the underlying

problem specifications and practical applications. We highlight our main contributions in the following.

• Algorithms. We present three instances of the proposed ProxGT framework. For the general expected

risk, we develop ProxGT-SA by using the minibatch stochastic approximation technique [177]. Lever-

aging SARAH/SPIDER type recursive variance reduction schemes [48–50], we provide two accelerated

algorithms, named ProxGT-SR-O and ProxGT-SR-E, for the population and empirical risk respectively

that outperform ProxGT-SA under a mean-squared smoothness property [149].

• Gradient and communication complexity results. We establish non-asymptotic gradient and

communication complexities of the proposed ProxGT-SA, ProxGT-SR-O, and ProxGT-SR-E algorithms

to find an ϵ-stationary solution of the non-convex non-smooth composite problem; see Table 6.1 for

a summary. Remarkably, these sample complexities at each node are network topology-independent

and are n times smaller than that of the centralized optimal algorithms [48, 50, 177] implemented on

a single node for the corresponding problem classes. In other words, the proposed methods achieve a

topology-independent linear speedup compared to their respective optimal centralized counterparts.

• Special cases. For the special case h = 0, it is worth emphasizing that ProxGT-SR-E and ProxGT-SR-O

also constitute improvements over the state-of-the-art decentralized variance-reduced methods GT-SARAH [141]

and GT-HSGD [178] for smooth problems in the following sense. For the empirical risk, GT-SARAH attains
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the optimal centralized gradient complexity when the local sample size m is large enough. Similarly,

for the expected risk, the gradient complexity of GT-HSGD is optimal when the required accuracy is

small enough. ProxGT-SR-O and ProxGT-SR-E relax these regime restrictions and achieve improved

communication complexities simultaneously, by performing multiple (accelerated) consensus updates

per iteration with proper mini-batches.

• Analysis techniques. We establish a new stochastic gradient mapping descent inequality and a new

consensus error bound for the non-convex non-smooth composite problem. Their proofs are novel and

substantially different from their counterparts in decentralized smooth optimization, e.g., [135, 141,

178,179], due to the nonlinear coupling of the proximal mapping, gradient noise, consensus errors, and

non-convexity of the risks. We emphasize that these intermediate technical results are of independent

interest and are instrumental in analyzing other methods based on similar principles, such as proximal

DSGD and its variants. This is because these results hold true regardless of the underlying gradient

estimation procedure. Finally, we note that the convergence analyses of ProxGT-SA, ProxGT-SR-O,

and ProxGT-SR-E are developed in a unified manner and can be used to analyze other instances of the

ProxGT framework.

The set of positive real numbers is denoted by R+. For an integer z ≥ 1, we denote [z] := {1, · · · , z}. We

use lowercase bold letters to denote vectors and uppercase bold letters to denote matrices. The d×d identity

matrix is denoted by Id, while the d-dimensional column vectors of all ones and zeros are represented by 1d

and 0d, respectively. For a matrix X ∈ Rd×d, its (i, r)-th entry is denoted by [X]i,r. The Kronecker product

of two matrices is denoted by ⊗. The ℓ2-norm of a vector or the spectral norm of a matrix is denoted by ∥·∥,

while the ℓ1-norm of a vector is denoted by ∥ · ∥1. For an extended valued function h : Rp → R ∪ {+∞}, we

denote dom(h) := {x : h(x) < +∞}, and h is said to be proper if dom(h) is nonempty. For x ∈ dom(h), we

denote the subdifferential of h at x by ∂h(x). The proximal mapping of h is defined as

proxh(x) := argminu∈Rp

{
1
2∥u − x∥2 + h(u)

}
. (6.4)

Given a σ-algebra H and a random vector x, we write x ∈ H if x is H-measurable. We use σ(·) to denote

the generated σ-algebra.

The remainder of this chapter is organized as follows. Section 6.2 formulates the problems. Section 6.3

develops the proposed algorithmic framework and its instances of interest in this paper. Section 6.4 presents

the main convergence results of the proposed algorithms and discuss their implications. Numerical illustra-

tions are presented in Section 6.5. The convergence analysis outline of the proposed algorithms is provided

in Section 6.6, while the detailed proofs and derivations are presented in Section 6.7.



CHAPTER 6. DECENTRALIZED STOCHASTIC NON-CONVEX COMPOSITE OPTIMIZATION 171

6.2 Problem formulation

In this section, we formulate the optimization and network models of interest in this chapter.

6.2.1 The non-convex non-smooth composite model

Throughout this chapter, we make the following assumption on the objective functions.

Assumption 6.2.1 (Functions). In Problem (6.1), the following statements hold:

(a) h : Rp → R ∪ {+∞} is proper, closed, and convex;

(b) Each fi : Rp → R is L-smooth, i.e., ∃L ∈ R+, s.t. ∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rp;

(c) Ψ is bounded below, i.e., Ψ := infxRp Ψ(x) > −∞.

Assumption 6.2.1 characterizes the standard non-convex non-smooth composite model [10], where a point

x̂ ∈ dom(h) is said to be stationary for Problem (6.1) if

−∇F (x̂) ∈ ∂h(x̂). (6.5)

A simple example of an extended valued function h that satisfies Assumption 6.2.1(a) is the indicator of a

nonempty, closed, and convex set in Rp.

Remark 6.2.1. It is shown in [10] that the stationary condition (6.5) is a necessary condition for a point x̂

to be a local optimal solution of Problem (6.1).

With the help of the proximal mapping (6.4), it can be shown that the stationarity condition (6.5) is

equivalent to a fixed point equation [10], i.e., x̂ ∈ Rp is stationary for Problem (6.1) if and only if

x̂ = proxαh

(
x̂ − α∇F (x̂)

)
, ∀α > 0. (6.6)

In view of (6.6), we define the gradient mapping [8, 10] for Problem (6.1): ∀x ∈ dom(h),

s(x) := 1
α

(
x − proxαh

(
x − α∇F (x)

))
, (6.7)

where α > 0. We note that the gradient mapping s(x) can be viewed as a generalized gradient of Ψ at x in

the sense that s(x) = ∇F (x) if h = 0. The size of s(·) thus serves as a natural measure for the approximate

stationarity of a solution [8, 10].

Definition 6.2.1 (ϵ-stationarity). Under Assumption 6.2.1, we say a random vector x ∈ dom(h) is an

ϵ-stationary solution for Problem (6.1) if E[∥s(x)∥] ≤ ϵ, where σ(·) is defined in (6.7).
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6.2.2 The network model

We consider the following assumption on the directed graph G = (V, E), which characterizes the decentralized

communication between the networked nodes.

Assumption 6.2.2 (Network). The directed network G = (V, E) is strongly connected. Moreover, there

exists a weight matrix W∗ ∈ Rn×n associated with G that satisfies the following conditions:

(a) [W∗]i,r > 0, if (i, r) ∈ E;

(b) [W∗]i,r = 0, if (i, r) /∈ E;

(c) W∗1n = W⊤
∗ 1n = 1n.

Under Assumption 6.2.2, it is well known that the consensus weight matrix W∗ is primitive and doubly

stochastic [27,36], i.e.,

λ∗ :=
∥∥W∗ − 1

n 1n1⊤
n

∥∥ ∈ [0, 1). (6.8)

We refer (1 − λ∗) ∈ (0, 1] as the spectral gap of G which characterizes the connectivity of the network.

6.2.3 Stochastic gradient models

We make a blanket assumption that each node i at every iteration t is able to obtain i.i.d. minibatch samples

{ξt
i,s : s ∈ [bt]} for the local random data vector ξi. The induced natural filtration is given by, ∀t ≥ 2,

Ft := σ
(
ξr

i,s : ∀i ∈ V, s ∈ [br], 1 ≤ r ≤ t − 1
)
, (6.9)

while F1 is the trivial σ-algebra. Intuitively, the filtration Ft collects the historical information of an

algorithm that constantly samples ξi up to iteration t. We require that the stochastic gradient ∇G(·, ξi) is

conditionally unbiased.

Assumption 6.2.3 (Unbiasedness). ∀i ∈ V, ∀t ≥ 1, ∀x ∈ Ft, we have E
[
∇Gi(x, ξi)|Ft

]
= ∇fi(x).

Remark 6.2.2. Under the empirical risk formulation (6.3), Assumption 6.2.3 amounts to uniform sampling

indices at random from [m] at each node.

We next consider a bounded variance assumption [8] for the stochastic gradient ∇G(·, ξi), which will be

used in the expected risk setting (6.2).

Assumption 6.2.4 (Bounded Variance). Let νi ∈ R+, ∀i ∈ V. We have E
[
∥∇Gi(x, ξi)−∇fi(x)∥2|Ft

]
≤

ν2
i , ∀t ≥ 1, ∀x ∈ Ft, ∀i ∈ V; ν2 := 1

n

∑n
i=1 ν2

i .
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We are also interested in the case when the stochastic gradients further satisfy a mean-squared smoothness

property [149], which is often satisfied by many machine learning models [8].

Assumption 6.2.5 (Mean-Squared Smoothness). Let L ∈ R+. For the expected risk (6.2), we have

E
[
∥∇Gi(x, ξi) − ∇Gi(y, ξi)∥2] ≤ L2E

[
∥x − y∥2],

for all i ∈ V and x, y ∈ Rp. In the case of empirical risk (6.3), the above statement reduces to

1
m

m∑
s=1

∥∥∇Gi(x, ξi,(s)) − ∇Gi(y, ξi,(s))
∥∥2 ≤ L2∥x − y∥2,

for all i ∈ V and x, y ∈ Rp.

6.3 Algorithm development

A popular centralized fixed-point method to solve (6.6) is the proximal gradient descent method [10]:

xt+1 = proxαh

(
xt − α∇F (xt)

)
, ∀t ≥ 1, (6.10)

where α > 0. However, (6.10) cannot be directly implemented in a decentralized manner. The main challenge

lies in the fact that the global gradient ∇F cannot be computed via one-shot aggregation of local gradient

information in decentralized networks. Moreover, the local gradients {∇fi}n
i=1 are often significantly different

due to the heterogeneous data across the nodes, making the classical gradient consensus approaches [27] less

effective especially in the non-convex settings [141]. One popular technique to overcome these issues is

gradient tracking [55, 65], which has been adopted in several decentralized stochastic gradient methods for

smooth non-convex problems; see, e.g., [4, 135, 150, 178, 179]. Inspired by these works, we propose a general

proximal stochastic gradient tracking framework, termed as ProxGT, to tackle the non-convex non-smooth

composite Problem (6.1).

6.3.1 A generic algorithmic procedure

We now describe the proposed ProxGT framework. At every iteration t, each node i in the network retains

three local variables xi
t, vi

t, and yi
t, all in Rp, where xi

t approximates a stationary point of Problem (6.1),

vi
t estimates the local exact gradient ∇fi(xi

t) from the samples generated for ξi, and yi
t tracks the global

gradient ∇F (xi
t) via a stochastic gradient tracking type update [67] from the local gradient estimates {vi

t}n
i=1.

With the global gradient tracker yi
t at hand, each node i performs a local inexact fixed point update for (6.6):

zi
t+1 := proxαh

(
xi

t − αyi
t+1
)
,
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Algorithm 7 ProxGT for Problem (6.1)
Require: x1 = 1n ⊗ x1; K; α; y1 = 0np; v0 = 0np.

1: for t = 1, · · · , T do

2: Generate an estimator vi
t of ∇fi(xi

t), ∀i.

3: Tracking: yt+1 = WK
(
yt + vt − vt−1

)
.

4: Prox-Descent: zi
t+1 = proxαh

(
xi

t − αyi
t+1
)
, ∀i.

5: Consensus: xt+1 = WKzt+1.

6: end for

where α > 0 is the step-size. The local solution xi
t+1 at the next iteration is then updated by performing

consensus on the intermediate variables {zi
t+1}n

i=1 over the network. For the ease of presentation, we define

W := W∗ ⊗ Ip.

and the global variables xt, vt, yt, zt which concatenate their corresponding local variables, i.e.,

xt =


x1

t

...
xn

t

 , vt =


v1

t

...
vn

t

 , yt =


y1

t

...
yn

t

 , zt =


z1

t

...
zn

t

 ,

all in Rnp. With the help of these notations, we formally present ProxGT in Algorithm 7 from a global view.

Remark 6.3.1. In Algorithm 7, the decentralized propagation and averaging of local variables over the

network appear as matrix-vector products, while the node-wise implementation of ProxGT can be obtained

accordingly.

Remark 6.3.2. We note that WK leads to K decentralized averaging step(s) over K rounds of communi-

cation in the corresponding update. This multi-consensus update with an appropriately chosen K is often

helpful to achieve faster convergence in the corresponding algorithms [120,171,180].

It is straightforward to show by induction that the y-update in Algorithm 7 satisfies an important

dynamic tracking property [51]:

1
n

n∑
i=1

yi
t+1 = 1

n

n∑
i=1

vi
t, ∀t ≥ 1. (6.11)

In view of (6.11) and the recursion of Algorithm 7, it is expected that each yi
t approaches 1

n

∑n
i=1 vi

t and

thus asymptotically tracks the global gradient ∇F (xi
t).

Clearly, different choices of the gradient estimator vi
t lead to different instances of the ProxGT framework.

Many local gradient estimation schemes are applicable here, such as the minibatch stochastic approximation

[166,177] and various variance reduction schemes, e.g., [49,50,59,62]. As we explicitly show next, a suitable

choice can be made in light of the underlying problem class and practical applications.
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Algorithm 8 ProxGT-SA for Problem (6.1) with (6.2)
Ensure: Replace Line 2 in Algorithm 7 by the following for all i ∈ V.

Require: b.

1: Obtain i.i.d samples {ξt
i,s : s ∈ [b]} for ξi.

2: vi
t := 1

b

∑b
s=1 ∇Gi(xi

t, ξt
i,s).

Algorithm 9 ProxGT-SR-O for Problem (6.1) with (6.2)
Ensure: Replace Line 2 in Algorithm 7 by the following for all i ∈ V.

Require: B, b, q.

1: if t mod q = 1 then

2: Obtain i.i.d samples {ξt
i,s : s ∈ [B]} for ξi.

3: Set vi
t := 1

B

∑B
s=1 ∇Gi(xi

t, ξt
i,s).

4: else

5: Obtain i.i.d samples {ξt
i,s : s ∈ [b]} for ξi.

6: vi
t := 1

b

∑b
s=1

(
∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s)
)

+ vi
t−1.

7: end if

6.3.2 Instances of interest

In this section, we present several instances of ProxGT that are of particular interest for the population and

empirical risk formulations considered in this chapter.

Expected risk minimization. A natural choice of the gradient estimator vi
t in ProxGT is the minibatch

stochastic approximation [177]. The resulting instance, called ProxGT-SA, is presented in Algorithm 8. An

alternate approach is to construct the gradient estimator vi
t in ProxGT via an online SARAH type recursive

variance reduction scheme that effectively leverages the historical information to achieve faster convergence.

When Assumption 6.2.5, the mean-squared smoothness, holds, the resulting algorithm ProxGT-SR-O, given

in Algorithm 9, shows superior performance over Algorithm 8.

Empirical risk minimization. We now consider Problem (6.1) under the empirical risk (6.3). Although

ProxGT-SA and ProxGT-SR-O developed in Section 6.3.2 remain applicable, the finite-sum structure of each fi

under (6.3) lends itself to faster stochastic variance reduction procedures [48–50]. In particular, we replace

the periodic minibatch stochastic approximation step in ProxGT-SR-O by exact gradient computation. This

corresponding implementation, named ProxGT-SR-E, is presented in Algorithm 10.
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Algorithm 10 ProxGT-SR-E for Problem (6.1) with (6.3)
Ensure: Replace Line 2 in Algorithm 7 by the following for all i ∈ V.

Require: b, q.

1: if t mod q = 1 then

2: Set vi
t := ∇fi(xi

t).

3: else

4: Obtain i.i.d. samples {ξt
i,s : s ∈ [b]} for ξi.

5: vi
t := 1

b

∑b
s=1

(
∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s)
)

+ vi
t−1.

6: end if

6.4 Main results

In this section, we present the main convergence results of the proposed algorithms and highlight their

implications. Throughout this section, we let Assumption 6.2.1, 6.2.2, and 6.2.3 hold without explicit

statements. The iteration complexity of the ProxGT family is quantified in the following sense, while the

gradient and communication complexities can be obtained accordingly.

Definition 6.4.1 (Iteration Complexity). Consider the random vectors {xi
t} generated by ProxGT. We

say that ProxGT finds an ϵ-stationary point of Problem (6.1) in T iterations if

1
T

T∑
t=1

1
n

n∑
i=1

E
[∥∥s
(
xi

t

)∥∥2 + L2∥∥xi
t − xt

∥∥2
]

≤ ϵ2, (6.12)

where xt := 1
n

∑n
i=1 xi

t and the gradient mapping s(·) is defined in (6.7).

In view of Definition 6.2.1, if (6.12) holds true and we select the output, say x̂, of ProxGT uniformly at

random from {xi
t : t ∈ [T ], i ∈ V}, then E[∥s(x̂)∥] ≤ ϵ, i.e., x̂ is an ϵ-stationary solution for Problem (6.1).

6.4.1 Gradient and communication complexity

For ease of presentation, we define

∆ := Ψ(x1) − Ψ and ζ2 := 1
n

∑n
i=1
∥∥∇fi(x1)

∥∥2
. (6.13)

Note that O(·) in this section only hides universal constants that are not related to the problem parameters.

Theorem 6.4.1 (Convergence of ProxGT-SA). Consider Problem (6.1) under the expected risk (6.2) and

let Assumption 6.2.4 hold. Set K ≍ log(nζ)
1−λ∗

, α ≍ 1
L , b ≍ ν2

nϵ2 in ProxGT-SA. Then ProxGT-SA finds an ϵ-

stationary solution in O
(

L∆
ϵ2

)
iterations, leading to

O
(

L∆ν2

nϵ4

)
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stochastic gradient samples at each node and

O
(

L∆
ϵ2 · log(nζ)

1 − λ∗

)
rounds of communication over the network.

In view of Theorem 6.4.1, ProxGT-SA achieves a topology-independent gradient complexity at each

node that exhibits linear speedup against the centralized optimal minibatch stochastic proximal gradient

method [149,177] execuated on a single node. To the best of our knowledge, this is the first time that such

gradient complexity result is established in the literature of the general decentralized non-convex non-smooth

composite expected risk minimization problems.

Theorem 6.4.2 (Convergence of ProxGT-SR-O). Consider Problem (6.1) under the expected risk (6.2) and

let Assumption 6.2.4 and 6.2.5 hold. Set K ≍ log(nζ)
1−λ∗

, α ≍ 1
L , q ≍ ν

ϵ , b ≍ ν
nϵ , B ≍ ν2

nϵ2 in ProxGT-SR-O.

Then ProxGT-SR-O finds an ϵ-stationary solution in O
(

L∆
ϵ2 + ν

ϵ

)
iterations, leading to

O
(

L∆ν

nϵ3 + ν2

nϵ2

)
stochastic gradient samples at each node and

O
((

L∆
ϵ2 + ν

ϵ

)
· log(nζ)

1 − λ∗

)
rounds of communication over the network.

Theorem 6.4.2 shows that ProxGT-SR-O attains a topology-independent gradient complexity at each node

that exhibits linear speedup compared to the centralized optimal proximal online variance reduction methods

[48, 50, 149] implemented on a single node. To the best of our knowledge, this is the first such gradient

complexity result in the literature of the decentralized non-convex non-smooth composite expected risk

minimization problems with mean-squared smoothness.

For the special case h = 0, ProxGT-SR-O also improves the state-of-the-art gradient complexity result

given by GT-HSGD [178] for smooth problems in the following sense. GT-HSGD achieves the optimal gradient

complexity in the regime where the error tolerance ϵ of the problem is small enough, i.e., ϵ ≲ (1 − λ∗)3n−1.

ProxGT-SR-O removes this regime restriction by performing K ≍ log(nζ)
1−λ∗

rounds of consensus update per

iteration.

Theorem 6.4.3 (Convergence of ProxGT-SR-E). Consider Problem (6.1) under the empirical risk (6.3) and

let Assumption 6.2.4 and 6.2.5 hold. Set K ≍ log ζ
1−λ∗

, α ≍ 1
L , q ≍

√
nm, b ≍ max

{√
m
n , 1

}
in ProxGT-SR-E.

Then ProxGT-SR-E finds an ϵ-stationary solution in O
(

L∆
ϵ2 +

√
nm
)

iterations, leading to

O
(

L∆
ϵ2 max

{√
m

n
, 1
}

+ max
{

m,
√

nm
})
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stochastic gradient samples at each node and

O
((

L∆
ϵ2 +

√
nm

)
· log ζ

1 − λ∗

)
rounds of communication over the network.

Theorem 6.4.3 indicates that under a moderate big-data condition m ≳ n, ProxGT-SR-E achieves a

topology-independent gradient complexity of O
(

L∆
ϵ2

√
m
n + m

)
at each node, leading to a linear speedup

compared to the centralized optimal proximal finite-sum variance reduction methods [48, 50] implemented

on a single node. To our knowledge, this is the first such gradient complexity result for decentralized

non-convex non-smooth composite empirical risk minimization.

For the special case h = 0, ProxGT-SR-E also improves the state-of-the-art gradient complexity result

achieved by GT-SARAH [141] for smooth problems in the following sense. The gradient complexity of GT-SARAH

is optimal in the regime that the local sample size is large enough, i.e., m ≳ n(1 − λ∗)−6. ProxGT-SR-E

improves this regime to m ≳ n by performing K ≍ log ζ
1−λ∗

rounds of consensus updates per iteration.

Remark 6.4.1. In Theorem 6.4.1, 6.4.2, and 6.4.3, we set the number of communication rounds per iteration

in ProxGT as a nontrivial constant K > 1 to obtain satisfactory gradient and communication complexities

for Prox-SA, Prox-SR-O, and Prox-SR-E respectively. The complexity results of these algorithms for the

case K = 1 can be obtained by slightly modifying the proofs of Theorem 6.4.1, 6.4.2, and 6.4.3 given in the

appendix.

6.4.2 Improving communication complexity via accelerated consensus

It is possible to employ accelerated consensus algorithms, e.g., [77,181], to implement the multiple consensus

step WK in ProxGT to achieve improved communication complexities when the network is undirected.

The basic intuition is that the standard consensus algorithm xt+1 = Wxt returns an δ-average of the

initial states in O
( 1

1−λ∗
log 1

δ

)
rounds of communication, while the accelerated consensus methods only take

O
( 1√

1−λ∗
log 1

δ

)
rounds of communication.

In particular, we can replace WK by a Chebyshev type polynomial of W; see, e.g., [77,142], for details.

In this case, the communication complexity of ProxGT-SA stated in Theorem 6.4.1 improves to

O
(

L∆
ϵ2 · log(nζ)√

1 − λ∗

)
, (6.14)

and the communication complexity of ProxGT-SR-O stated in Theorem 6.4.2 improves to

O
((

L∆
ϵ2 + ν

ϵ

)
· log(nζ)√

1 − λ∗

)
, (6.15)
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Table 6.2: Datasets used in numerical experiments, available at https://www.openml.org/.
Dataset train (nm) dimension (p)
nomao 30,000 119

w8a 60,000 300
creditcard 100,000 29

and the communication complexity of ProxGT-SR-E stated in Theorem 6.4.3 improves to

O
((

L∆
ϵ2 +

√
nm

)
· log ζ√

1 − λ∗

)
, (6.16)

while their sample complexities remain the same; we omit the detailed calculations here for conciseness. We

note that the communication complexity of ProxGT-SA in (6.14) attains the lower bound provided in [179]

for problems without the mean-squared smoothness and is hence optimal. Moreover, the communication

complexity of ProxGT-SR-O and ProxGT-SR-E in (6.15) and (6.16) outperforms the respective state-of-the-

art variance-reduced methods [141,178] for smooth problems with mean-squared smoothness, with the help

of multi-round accelerated consensus and proper mini-batches per iteration.

6.5 Numerical experiments

In this section, we numerically demonstrate the performance of the proposed ProxGT framework with the

help of a sparse non-convex linear model [146] for decentralized binary classification problems.

Setup. In view of Problem (6.1), each local risk fi and the convex non-smooth regularizer h take the

following form:

fi(x) := 1
m

m∑
j=1

ℓ
(
bi,j · a⊤

i,jx
)

and h(x) := c∥x∥1,

where ℓ : R → R is given by

ℓ(u) :=
(

1 − 1
1 + exp(−u)

)2
.

Here, ai,j ∈ Rp is the j-th feature vector at the i-th node, while bi,j ∈ {−1, +1} is the label for ai,j . It can

be verified that ℓ is 4
3 -smooth and non-convex. We normalize each feature vector such that ∥ai,j∥ = 1, ∀i, j,

so that each fi satisfies the mean-squared smoothness property with parameter 4
3 . We set c = 10−3 across

all experiments, resulting in a relatively sparse solution, while the underlying network is an undirected

geometric graph with 100 nodes. The doubly stochastic network weight matrix W∗ is formulated by the

lazy Metroplis rule [27], leading to a spectral gap (1 − λ∗) ≈ 0.05. A summary of the datasets used in the

experiments is provided in Table 6.2.

Algorithms. Under the above formulation, we compare the ProxGT-SA and ProxGT-SR-O algorithms

proposed in this chapter to SPPDM [176], the state-of-the-art decentralized stochastic proximal gradient

https://www.openml.org/


CHAPTER 6. DECENTRALIZED STOCHASTIC NON-CONVEX COMPOSITE OPTIMIZATION 180

0 5 10 15
number of samples 1e3

10 3

10 2

10 1

st
at

io
na

ry
 g

ap
the nomao dataset

SPPDM
ProxGT-SA
ProxGT-SR-O

0 10 20 30
number of samples 1e3

10 4

10 3

10 2

10 1

st
at

io
na

ry
 g

ap

the w8a dataset
SPPDM
ProxGT-SA
ProxGT-SR-O

0 10 20 30
number of samples 1e3

10 4

10 3

10 2

10 1

st
at

io
na

ry
 g

ap

the creditcard dataset
SPPDM
ProxGT-SA
ProxGT-SR-O

Figure 6.1: Sample efficiency comparison of ProxGT-SA, ProxGT-SA-O, and SPPDM on the nomao, w8a, and
creditcard datasets over an undirected geometric graph with 100 nodes.
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Figure 6.2: Communication efficiency comparison of ProxGT-SA, ProxGT-SA-O, and SPPDM on the nomao,
w8a, and creditcard datasets over an undirected geometric graph with 100 nodes.

method. We do not consider ProxGT-SR-E here since it can be viewed as a special case of ProxGT-SR-O

from a practical implementation viewpoint. We measure the performance of the algorithms in terms of the

stationary gap ∥s(x)∥, given in Definition 6.2.1, versus number of samples and rounds of communication,

where x := 1
n

∑n
i=1 xi with xi being the model at node i. For the sake of fair comparison, we set K = 1 in

ProxGT and tune the algorithmic parameters by grid search for ProxGT-SA, ProxGT-SR-O, and SPPDM.

Observations. The experimental results are shown in Fig. 6.1 and 6.2. We observe that ProxGT-SA is

more sample-efficient than SPPDM with a similar level of communication efficiency. Notably, ProxGT-SR-O

significantly outperforms ProxGT-SA and SPPDM in terms of both gradient and communication efficiency,

demonstrating the benefit of variance reduction.

Remark 6.5.1. It is worth mentioning that SPPDM is significantly more difficult to tune than the ProxGT

family since the former has 7 algorithmic parameters to be optimized. Moreover, we emphasize that SPPDM

is only provably applicable when the epigraph of h is a polyhedral set [176], while ProxGT does not have this

restriction.
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6.6 Outline of the convergence analysis

In this section, we describe a unified analysis for the proposed Prox-GT framework. Throughout the rest of

the chapter, we let Assumption 6.2.1, 6.2.2, and 6.2.3 hold without explicit statements.

6.6.1 Preliminaries

We start by introducing some additional notations for Algorithm 7, 8, 9, and 10. We find it convenient to

abstract the local proximal descent step by a stochastic gradient mapping: ∀t ≥ 1 and i ∈ V,

gi
t := 1

α

(
xi

t − zi
t+1
)
. (6.17)

For all t ≥ 1, we let

gt :=


g1

t

...
gn

t

 , ∇f(xt) :=


∇f1(x1

t )
...

∇fn(xn
t )

 ,

and define the following network mean states:

xt := 1
n

n∑
i=1

xi
t, yt := 1

n

n∑
i=1

yi
t, zt := 1

n

n∑
i=1

zi
t,

vt := 1
n

n∑
i=1

vi
t, gt := 1

n

n∑
i=1

gi
t, ∇f(xt) := 1

n

n∑
i=1

∇fi(xi
t).

In addition, we define the exact averaging matrix

J :=
(

1
n

1n1⊤
n

)
⊗ Ip.

Averaging (6.17) over i from 1 to n gives: ∀t ≥ 1,

zt+1 = xt − αgt. (6.18)

We multiply 1
n (1⊤

n ⊗ Ip) to the x-update of Algorithm 7 to obtain: ∀t ≥ 1,

xt+1 = zt+1. (6.19)

Combining (6.18) and (6.19) yields: ∀t ≥ 1,

xt+1 = xt − αgt. (6.20)

Throughout the analysis, we fix arbitrary K ≥ 1 and denote

λ := λK
∗ . (6.21)
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6.6.2 Basic facts

This section presents several basic facts that are used frequently in our analysis. We make use of a well-known

non-expansiveness result for proximal mappings.

Lemma 6.6.1. [10] Let h : Rp → R ∪ {+∞} be a proper, closed, and convex function. Then we have the

following:

∥proxh(x) − proxh(y)∥ ≤ ∥x − y∥, ∀x, y ∈ Rp.

For ease of reference, we give a trivial accumulation formula for scalar sequences with contraction.

Lemma 6.6.2. Let {at} and {bt} be scalar sequences and 0 < q < 1, such that

at+1 ≤ qat + bt, ∀t ≥ 1.

Then for all T ≥ 2, we have
T∑

t=1
at ≤ 1

1 − q
a1 + 1

1 − q

T −1∑
t=1

bt

and
T +1∑
t=2

at ≤ 1
1 − q

a2 + 1
1 − q

T∑
t=2

bt.

Proof. The proof follows from standard arguments of convolution sums and we omit the details.

The following lemma concerns the interplay between W and J. We provide its proof for completeness.

Lemma 6.6.3. The following statements hold for all K ≥ 1.

(a) WKJ = JWK = J.

(b)
∥∥WK − J

∥∥ = λK
∗ .

(c)
∥∥WKx − Jx

∥∥ ≤ λK
∗
∥∥x − Jx

∥∥, ∀x ∈ Rnp.

Proof. Since W∗ is doubly stochastic, we have

WJ = JW = J, (6.22)

which leads to part (a) by induction. Part (b) follows from

∥∥WK − J
∥∥ =

∥∥(W − J)K
∥∥ = λK

∗ ,

where the first equality uses (6.22) and the second equality uses the definition of the spectral norm of a

matrix. Finally, part (c) is due to

∥∥WKx − Jx
∥∥ =

∥∥(WK − J)(x − Jx)
∥∥ ≤

∥∥WK − J
∥∥∥∥x − Jx

∥∥ = λK
∗
∥∥x − Jx

∥∥,
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where the first equality uses part (a) and J2 = J, and the last equality uses part (b).

Finally, we present a simple yet useful decomposition inequality.

Lemma 6.6.4. Consider the iterates generated by Algorithm 7. Then we have: ∀T ≥ 2,

T∑
t=2

∥xt − xt−1∥2 ≤ 6
T∑

t=1
∥xt − Jxt∥2 + 3nα2

T −1∑
t=1

∥gt∥2,

Proof. We note that ∀t ≥ 2,

∥xt − xt−1∥2 =
∥∥xt − Jxt + Jxt − Jxt−1 + Jxt−1 − xt−1

∥∥2

≤ 3∥xt − Jxt∥2 + 3n∥xt − xt−1∥2 + 3∥xt−1 − Jxt−1∥2,

≤ 3∥xt − Jxt∥2 + 3nα2∥gt−1∥2 + 3∥xt−1 − Jxt−1∥2, (6.23)

where the second line uses (6.20). Summing up (6.23) gives

T∑
t=2

∥xt − xt−1∥2 ≤ 3
T∑

t=2

(
∥xt − Jxt∥2 + ∥xt−1 − Jxt−1∥2

)
+ 3nα2

T∑
t=2

∥gt−1∥2

≤ 6
T∑

t=1
∥xt − Jxt∥2 + +3nα2

T∑
t=2

∥gt−1∥2

which finishes the proof.

6.6.3 Descent inequality and error bounds

We first establish a key descent inequality in terms of the value of the global composite objective function Ψ.

This result plays a central role in our analysis.

Lemma 6.6.5 (Descent). Consider the iterates generated by Algorithm 7. If 0 < α ≤ 1
8L , then we

have: ∀t ≥ 1,

1
n

T∑
t=1

(
n∑

i=1

∥∥s(xi
t)
∥∥2 + L2 ∥xt − Jxt∥2

)
≤ 8∆

α
− 1

n

T∑
t=1

n∑
i=1

∥∥gi
t

∥∥2 + 76
T∑

t=1

∥∥vt − ∇f(xt)
∥∥2

+ 6
α2n

T∑
t=1

∥xt − Jxt∥2 + 10
n

T +1∑
t=2

∥yt − Jyt∥2.

Proof. See Section 6.7.1.

In light of Lemma 6.6.5, our analysis approach is to show that the accumulated descent effect of the

stochastic gradient mappings
∑n

i=1 ∥gi
t∥ dominates the accumulated consensus, variance, and gradient track-

ing errors up to constant factors. To this aim, we establish useful error bounds for different algorithms. The

following one is a consequence of the non-expansiveness of the proximal operator.
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Lemma 6.6.6 (Consensus). Consider the iterates generated by Algorithm 7. We have: ∀t ≥ 1,
T∑

t=1

∥∥xt − Jxt

∥∥2 ≤ 4λ2α2

(1 − λ2)2

T∑
t=2

∥∥yt − Jyt

∥∥2
.

Proof. See Section 6.7.2.

Remark 6.6.1. It is worth noting that Lemma 6.6.5 and 6.6.6 do not use any properties of the gradient

estimator vt. Therefore they may be of independent interest and used in other decentralized stochastic

proximal gradient type methods for non-convex composite problems.

The next lemma establishes variance bounds for different algorithms.

Lemma 6.6.7 (Variance). The following statements hold.

(a) Let Assumption 6.2.4 hold and consider the iterates generated by Algorithm 8. Then we have: ∀t ≥ 1,

E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ ν2

nb
.

(b) Let Assumption 6.2.4 and 6.2.5 hold. Consider the iterates generated by Algorithm 9. Suppose that

T = Rq for some R ∈ Z+. Then we have: ∀T ≥ q,
T∑

t=1
E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ 6L2q

n2b

T∑
t=1

E
[∥∥xt − Jxt

∥∥2
]

+ qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]

+ Tν2

nB
.

(c) Let Assumption 6.2.5 hold. Consider the iterates generated by Algorithm 10. Suppose that T = Rq for

some R ∈ Z+. Then we have: ∀T ≥ q,
T∑

t=1
E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ 6L2q

n2b

T∑
t=1

E
[∥∥xt − Jxt

∥∥2
]

+ qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]
.

Proof. See Section 6.7.3.

Finally, we give tracking error bounds for different algorithms in the following lemma.

Lemma 6.6.8 (Tracking). The following statements hold.

(a) Let Assumption 6.2.4 hold and consider the iterates generated by Algorithm 8. Then we have: ∀T ≥ 2,
T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 12λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]+ 24λ2L2

(1 − λ2)2

T∑
t=1

E
[
∥xt − Jxt∥2]

+ 4T (2λ2n + 1)ν2

b(1 − λ2) .



CHAPTER 6. DECENTRALIZED STOCHASTIC NON-CONVEX COMPOSITE OPTIMIZATION 185

(b) Let Assumption 6.2.4 and 6.2.5 hold. Consider the iterates generated by Algorithm 9. Let T = Rq for

some R ∈ Z+ and R ≥ 2. Then we have:
T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 96λ2L2

(1 − λ2)2

T∑
t=1

E
[
∥xt − Jxt∥2]+ 48λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]

+ 14λ2Tnν2

(1 − λ2)2Bq
.

(c) Let Assumption 6.2.5 hold. Consider the iterates generated by Algorithm 10. Let T = Rq for some

R ∈ Z+ and R ≥ 2. Then we have:
T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 96λ2L2

(1 − λ2)2

T∑
t=1

E
[
∥xt − Jxt∥2]+ 48λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2].

Proof. See Section 6.7.4.

6.6.4 Proofs of the main theorems

We first use the consensus error bound in Lemma 6.6.6 to refine the descent inequality in Lemma 6.6.5.

Proposition 6.6.1. Consider the iterates generated by Algorithm 7. If 0 < α ≤ 1
8L , then we have: ∀t ≥ 1,

1
n

T∑
t=1

(
n∑

i=1

∥∥s(xi
t)
∥∥2 + L2 ∥xt − Jxt∥2

)
≤ 8∆

α
−

T∑
t=1

∥gt∥
2 + 76

T∑
t=1

∥∥vt − ∇f(xt)
∥∥2

+ 34
(1 − λ2)2n

T +1∑
t=2

∥yt − Jyt∥2.

Proof. This result follows by applying Lemma 6.6.6 to Lemma 6.6.5 and ∥gt∥2 ≤ 1
n

∑n
i=1 ∥gi

t∥2.

6.6.4.1 Proof of Theorem 6.4.1

We apply Lemma 6.6.6 to Lemma 6.6.8(a) to obtain: ∀T ≥ 2,(
1 − 96λ4α2L2

(1 − λ2)4

) T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ

1 − λ2 + 12λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]+ 4T (2λ2n + 1)ν2

b(1 − λ2) . (6.24)

If 0 < α ≤ (1−λ2)2

14λ2L , then 1 − 96λ4α2L2

(1−λ2)4 ≥ 1
2 and hence (6.24) implies that ∀T ≥ 2,

T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 4λ2nζ2

1 − λ2 + 24λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]+ 8T (2λ2n + 1)ν2

b(1 − λ2) . (6.25)
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Plugging Lemma 6.6.7(a) and (6.25) into Proposition 6.6.1 gives: if 0 < α ≤ min
{

(1−λ2)2

14λ2 , 1
8

}
1
L , then

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

−
T∑

t=1
E
[
∥gt∥2]+ 76Tν2

nb
+ 272T (2λ2n + 1)ν2

nb(1 − λ2)3 + 136λ2ζ2

(1 − λ2)3 + 816λ2α2L2

(1 − λ2)4

T −1∑
t=1

E
[
∥gt∥2]

≤ 8∆
α

−
(

1 − 816λ2α2L2

(1 − λ2)4

) T∑
t=1

E
[
∥gt∥2]+ 136λ2ζ2

(1 − λ2)3 + 348Tν2

nb(1 − λ2)3 + 544λ2Tν2

b(1 − λ2)3 . (6.26)

From (6.26), we have: if 0 < α ≤ min
{

(1−λ2)2

30λ , 1
8

}
1
L , then ∀T ≥ 2,

1
nT

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
αT

+ 136λ2ζ2

(1 − λ2)3T
+ 348ν2

nb(1 − λ2)3 + 544λ2ν2

b(1 − λ2)3 . (6.27)

Recall from (6.21) that λ := λK
∗ and we set

K ≍ log(nζ)
1 − λ∗

,

so that 1
1−λ = O(1), λζ = O(1), λn = O(1). As a consequence, from (6.27) we have: if 0 < α ≲ 1

L , then

1
nT

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]
≲

∆
αT

+ ν2

nb
. (6.28)

Finally, we observe that choosing

α ≍ 1
L

, b ≍ ν2

nϵ2 , T ≍ L∆
ϵ2

in (6.28) gives 1
nT

∑T
t=1
∑n

i=1 E
[
∥s(xi

t)∥2+L2∥xi
t−xt∥2] ≲ ϵ2. The ensuing complexity results follow from the

fact that each iteration of Algorithm 8 incurs b stochastic gradient samples and K rounds of communication.

6.6.4.2 Proof of Theorem 6.4.2

Consider T = Rq for some R ∈ Z+ and R ≥ 2. Plugging Lemma 6.6.6 to Lemma 6.6.7(b) gives:
T∑

t=1
E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ 24λ2α2L2q

(1 − λ2)2n2b

T∑
t=2

E
[∥∥yt − Jyt

∥∥2
]

+ qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]

+ Tν2

nB
.

In particular, if 0 < α ≤
√

nb
24q

1
L , we have:

T∑
t=1

E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ λ2

(1 − λ2)2n

T∑
t=2

E
[∥∥yt − Jyt

∥∥2
]

+ qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]

+ Tν2

nB
. (6.29)

Applying (6.29) to Proposition 6.6.1 yields: if 0 < α ≤ min
{

1
8 ,
√

nb
24q

}
1
L , then

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

−
(

1 − 76qL2α2

nb

) T∑
t=1

E
[∥∥gt

∥∥2
]

+ 110
(1 − λ2)2n

T +1∑
t=2

E
[∥∥yt − Jyt

∥∥2
]

+ 76Tν2

nB
.
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In particular, if 0 < α ≤ min
{

1
8 ,
√

nb
152q

}
1
L , we have:

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

− 1
2

T∑
t=1

E
[∥∥gt

∥∥2
]

+ 110
(1 − λ2)2n

T +1∑
t=2

E
[∥∥yt − Jyt

∥∥2
]

+ 76Tν2

nB
.

(6.30)

To proceed, we apply Lemma 6.6.6 to Lemma 6.6.8(b) to obtain:(
1 − 384λ4α2L2

(1 − λ2)4

) T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 48λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]+ 14λ2Tnν2

(1 − λ2)2Bq
. (6.31)

If 0 < α ≤ (1−λ2)2

28λ2L , (6.31) implies that

T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 4λ2nζ2

1 − λ2 + 96λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]+ 28λ2Tnν2

(1 − λ2)2Bq
. (6.32)

Finally, plugging (6.32) to (6.30), we obtain: if 0 < α ≤ min
{

1
8 ,
√

nb
152q , (1−λ2)2

28λ2

}
1
L , then

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

+ 76Tν2

nB
+ 440λ2ζ2

(1 − λ2)3 + 3080λ2Tν2

(1 − λ2)4Bq

− 1
2

(
1 − 21120λ2α2L2

(1 − λ2)4

) T∑
t=1

E
[∥∥gt

∥∥2
]
.

Hence, if 0 < α ≤ min
{

1
8 ,
√

nb
152q , (1−λ2)2

146λ2

}
1
L , then

1
nT

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
αT

+ 76ν2

nB
+ 440λ2ζ2

(1 − λ2)3T
+ 3080λ2ν2

(1 − λ2)4Bq
. (6.33)

Let ϵ > 0 be given. Recall from (6.21) that λ := λK
∗ and we set

K ≍ log(nζ)
1 − λ∗

,

so that 1
1−λ = O(1), λζ = O(1), λn = O(1); moreover, we let

q = nb and α ≍ 1
L

.

As a consequence, we have from (6.33) that

1
nT

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]
≲

L∆
T

+ ν2

nB
. (6.34)

In view of (6.34), we further choose

T ≍ L∆
ϵ2 + q and B ≍ ν2

nϵ2 , (6.35)
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which lead to 1
nT

∑T
t=1
∑n

i=1 E
[
∥s(xi

t)∥2 + L2∥xi
t − xt∥2] ≲ ϵ2. Since ProxGT-SR-O requires B samples every

q iterations and b samples at each iteration, its total gradient complexity is bounded by

O
(

T

(
b + B

q

))
. (6.36)

Setting b = B/q, together with q = nb stated above, gives

b ≍
√

B

n
= ν

nϵ
, and q ≍ ν

ϵ
. (6.37)

Applying (6.35) and (6.37) to (6.36) concludes the ensuing gradient complexity and the corresponding

communication complexity is given by TK.

6.6.4.3 Proof of Theorem 6.4.3

Consider T = Rq for some R ∈ Z+ and R ≥ 2. Plugging Lemma 6.6.6 to Lemma 6.6.7(c) gives:

T∑
t=1

E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ 24λ2α2L2q

(1 − λ2)2n2b

T∑
t=2

E
[∥∥yt − Jyt

∥∥2
]

+ qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]
.

In particular, if 0 < α ≤
√

nb
24q

1
L , we have:

T∑
t=1

E
[∥∥vt − ∇f(xt)

∥∥2
]

≤ λ2

(1 − λ2)2n

T∑
t=2

E
[∥∥yt − Jyt

∥∥2
]

+ qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]
. (6.38)

Applying (6.38) to Proposition 6.6.1 yields: if 0 < α ≤ min
{

1
8 ,
√

nb
24q

}
1
L , then

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

−
(

1 − 76qL2α2

nb

) T∑
t=1

E
[∥∥gt

∥∥2
]

+ 110
(1 − λ2)2n

T +1∑
t=2

E
[∥∥yt − Jyt

∥∥2
]
.

In particular, if 0 < α ≤ min
{

1
8 ,
√

nb
152q

}
1
L , we have:

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

− 1
2

T∑
t=1

E
[∥∥gt

∥∥2
]

+ 110
(1 − λ2)2n

T +1∑
t=2

E
[∥∥yt − Jyt

∥∥2
]
. (6.39)

To proceed, we apply Lemma 6.6.6 to Lemma 6.6.8(b) to obtain:(
1 − 384λ4α2L2

(1 − λ2)4

) T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 48λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]. (6.40)

If 0 < α ≤ (1−λ2)2

28λ2L , (6.40) implies that

T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 4λ2nζ2

1 − λ2 + 96λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]. (6.41)
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Finally, plugging (6.41) to (6.39), we obtain: if 0 < α ≤ min
{

1
8 ,
√

nb
152q , (1−λ2)2

28λ2

}
1
L , then

1
n

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
α

+ 440λ2ζ2

(1 − λ2)3 − 1
2

(
1 − 21120λ2α2L2

(1 − λ2)4

) T∑
t=1

E
[∥∥gt

∥∥2
]
.

Hence, if 0 < α ≤ min
{

1
8 ,
√

nb
152q , (1−λ2)2

146λ2

}
1
L , then

1
nT

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]

≤ 8∆
αT

+ 440λ2ζ2

(1 − λ2)3T
. (6.42)

Let ϵ > 0 be given. Recall from (6.21) that λ := λK
∗ and we set

K ≍ log ζ

1 − λ∗
,

so that 1
1−λ = O(1), λζ = O(1); moreover, we let

q =
√

nm, b = max
{√

m

n
, 1
}

, α ≍ 1
L

. (6.43)

As a consequence, we have from (6.42) that

1
nT

T∑
t=1

n∑
i=1

E
[∥∥s(xi

t)
∥∥2 + L2∥∥xi

t − xt

∥∥2
]
≲

L∆
T

. (6.44)

In view of (6.44), we further choose

T ≍ L∆
ϵ2 + q (6.45)

which leads to 1
nT

∑T
t=1
∑n

i=1 E
[
∥s(xi

t)∥2 + L2∥xi
t − xt∥2] ≲ ϵ2. The communication complexity is thus TK.

Since ProxGT-SR-E requires m samples every q iterations and b samples at each iteration, its total gradient

complexity is bounded by

O
(

T

(
b + m

q

))
. (6.46)

Plugging (6.43) and (6.45) into (6.46) concludes the ensuing gradient complexity.
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6.7 Detailed proofs for lemmata in Section 6.6

6.7.1 Proof of Lemma 6.6.5

6.7.1.1 Step 1: Descent inequality for the convex part

First of all, we write the proximal descent step in Algorithm 7 in an equivalent form for analysis purposes.

For all t ≥ 1 and i ∈ V, we observe that

zi
t+1 = proxαh

(
xi

t − αyi
t+1
)

= argminu∈Rp

{
1
2
∥∥u − (xi

t − αyi
t+1)

∥∥2 + αh(u)
}

= argminu∈Rp

{
1
2
∥∥u − xi

t

∥∥2 +
〈
αyi

t+1, u − xi
t

〉
+ 1

2
∥∥αyi

t+1
∥∥2 + αh(u)

}
= argminu∈Rp

{〈
yi

t+1, u
〉

+ 1
2α

∥∥u − xi
t

∥∥2 + h(u)
}

. (6.47)

In light of the optimality condition of the strongly convex optimization problem (6.47) and the sum rule of

subdifferential calculus [10], for all t ≥ 1 and i ∈ V, there exists h′(zi
t+1) ∈ ∂h(zi

t+1) such that

h′(zi
t+1) = −yi

t+1 − 1
α

(
zi

t+1 − xi
t

)
. (6.48)

By the subgradient inequality, we have: ∀t ≥ 1, ∀i ∈ V, and ∀u ∈ Rp,

h(u) ≥ h(zi
t+1) +

〈
h′(zi

t+1), u − zi
t+1
〉

,

which is the same as

h(zi
t+1) ≤ h(u) +

〈
h′(zi

t+1), zi
t+1 − u

〉
. (6.49)

Applying (6.48) to (6.49), we obtain: ∀t ≥ 1, ∀i ∈ V, and ∀u ∈ Rp,

h(zi
t+1) ≤ h(u) − 1

α

〈
xi

t − zi
t+1, u − zi

t+1
〉

−
〈
yi

t+1, zi
t+1 − u

〉
. (6.50)

We have the following algebraic identity: ∀t ≥ 1, ∀i ∈ V, and ∀u ∈ Rp,

〈
xi

t − zi
t+1, u − zi

t+1
〉

= 1
2
∥∥u − zi

t+1
∥∥2 + 1

2
∥∥xi

t − zi
t+1
∥∥2 − 1

2
∥∥xi

t − u
∥∥2

. (6.51)

Applying (6.51) to (6.50), we obtain: ∀t ≥ 1, ∀i ∈ V, and ∀u ∈ Rp,

h(zi
t+1) ≤ h(u) − 1

2α

∥∥u − zi
t+1
∥∥2 − 1

2α

∥∥xi
t − zi

t+1
∥∥2 + 1

2α

∥∥xi
t − u

∥∥2 −
〈
yi

t+1, zi
t+1 − u

〉
. (6.52)

Setting u := xt, we have: ∀t ≥ 1 and ∀i ∈ V,

h(zi
t+1) ≤ h(xt) − 1

2α

∥∥xt − zi
t+1
∥∥2 − 1

2α

∥∥xi
t − zi

t+1
∥∥2 + 1

2α

∥∥xi
t − xt

∥∥2 −
〈
yi

t+1, zi
t+1 − xt

〉
= h(xt) − 1

2α

∥∥xt − zi
t+1
∥∥2 − α

2
∥∥gi

t

∥∥2 + 1
2α

∥∥xi
t − xt

∥∥2 −
〈
yi

t+1 − yt+1, zi
t+1 − xt

〉
−
〈
yt+1, zi

t+1 − xt

〉
, (6.53)
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where the last line uses (6.17). For the second last term in (6.53), we have: ∀t ≥ 1 and ∀i ∈ V,

−
〈
yi

t+1 − yt+1, zi
t+1 − xt

〉
≤ ∥yi

t+1 − yt+1∥∥zi
t+1 − xt∥

≤ α

2 ∥yi
t+1 − yt+1∥2 + 1

2α
∥zi

t+1 − xt∥2, (6.54)

where the first and the second line use the Cauchy-Schwarz and Young’s inequality respectively. Plug-

ging (6.54) into (6.53) gives: ∀t ≥ 1 and ∀i ∈ V,

h(zi
t+1) ≤ h(xt) − α

2
∥∥gi

t

∥∥2 + 1
2α

∥∥xi
t − xt

∥∥2 + α

2 ∥yi
t+1 − yt+1∥2 −

〈
yt+1, zi

t+1 − xt

〉
. (6.55)

We now average (6.55) over i from 1 to n to obtain: ∀t ≥ 1,

1
n

n∑
i=1

h(zi
t+1) ≤ h(xt) − α

2n

n∑
i=1

∥∥gi
t

∥∥2 + 1
2αn

∥xt − Jxt∥2 + α

2n
∥yt+1 − Jyt+1∥2 −

〈
yt+1, zt+1 − xt

〉
= h(xt) − α

2n

n∑
i=1

∥∥gi
t

∥∥2 + 1
2αn

∥xt − Jxt∥2 + α

2n
∥yt+1 − Jyt+1∥2 + α

〈
yt+1, gt

〉
, (6.56)

where the second line follows from (6.18). In light of the convexity of h and Jensen’s inequality, for all t ≥ 1

we have that h(zt+1) ≤ 1
n

∑n
i=1 h(zi

t+1) and hence (6.56) implies

h(zt+1) ≤ h(xt) − α

2n

n∑
i=1

∥∥gi
t

∥∥2 + 1
2αn

∥xt − Jxt∥2 + α

2n
∥yt+1 − Jyt+1∥2 + α

〈
yt+1, gt

〉
, ∀t ≥ 1. (6.57)

In view of (6.19), we observe that (6.57) is the same as

h(xt+1) ≤ h(xt) − α

2n

n∑
i=1

∥∥gi
t

∥∥2 + 1
2αn

∥xt − Jxt∥2 + α

2n
∥yt+1 − Jyt+1∥2 + α

〈
yt+1, gt

〉
, ∀t ≥ 1. (6.58)

6.7.1.2 Step 2: Descent inequality for the non-convex part

Since F is L-smooth, we have the standard quadratic upper bound [10]:

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩ + L

2 ∥y − x∥2, ∀x, y ∈ Rp. (6.59)

Setting y = xt+1 and x = xt in (6.59), we obtain: ∀t ≥ 1,

F (xt+1) ≤ F (xt) + ⟨∇F (xt), xt+1 − xt⟩ + L

2 ∥xt+1 − xt∥2

= F (xt) − α ⟨∇F (xt), gt⟩ + Lα2

2 ∥gt∥2, (6.60)

where the last line is due to (6.20).

6.7.1.3 Step 3: combining step 1 and step 2

Recall that Ψ := F + h. Summing up (6.60) and (6.58), we obtain: ∀t ≥ 1,

Ψ(xt+1) ≤ Ψ(xt) − α

2n

n∑
i=1

∥∥gi
t

∥∥2 + 1
2αn

∥xt − Jxt∥2 + α

2n
∥yt+1 − Jyt+1∥2

+ α
〈
yt+1 − ∇F (xt), gt

〉
+ Lα2

2 ∥gt∥2. (6.61)
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By the Cauchy-Schwarz and Young’s inequality, we have: ∀η > 0 and ∀t ≥ 1,

〈
yt+1 − ∇F (xt), gt

〉
≤ 1

2η

∥∥yt+1 − ∇F (xt)
∥∥2 + η

2 ∥gt∥
2 (6.62)

Applying (6.62) to (6.61), we obtain: ∀η > 0 and ∀t ≥ 1,

Ψ(xt+1) ≤ Ψ(xt) − α

2n

n∑
i=1

∥∥gi
t

∥∥2 + 1
2αn

∥xt − Jxt∥2 + α

2n
∥yt+1 − Jyt+1∥2

+ α

2η

∥∥yt+1 − ∇F (xt)
∥∥2 + ηα + Lα2

2 ∥gt∥2. (6.63)

6.7.1.4 Step 4: Refining error terms and telescoping sum

We first bound the difference between the local stochastic gradient mapping gi
t defined in (6.17) and the

exact gradient mapping s(xi
t) defined in (6.7). Observe that ∀t ≥ 1 and ∀i ∈ V,

∥∥gi
t − s(xi

t)
∥∥2 =

∥∥∥∥ 1
α

(
xi

t − proxαh

(
xi

t − αyi
t+1
))

− 1
α

(
xi

t − proxαh

(
xi

t − α∇F (xi
t)
))∥∥∥∥2

= 1
α2

∥∥∥proxαh

(
xi

t − αyi
t+1
)

− proxαh

(
xi

t − α∇F (xi
t)
)∥∥∥2

≤
∥∥yi

t+1 − ∇F (xi
t)
∥∥2

=
∥∥yi

t+1 − yt+1 + yt+1 − ∇F (xt) + ∇F (xt) − ∇F (xi
t)
∥∥2

≤ 3
∥∥yi

t+1 − yt+1
∥∥2 + 3

∥∥yt+1 − ∇F (xt)
∥∥2 + 3L2∥∥xt − xi

t

∥∥2
, (6.64)

where the third line is due to Lemma 6.6.1 and the last line uses the L-smoothness of F . Observe that ∀t ≥ 1,

−
∥∥gi

t

∥∥2 ≤ − 1
2
∥∥s(xi

t)
∥∥2 +

∥∥gi
t − s(xi

t)
∥∥2

≤ − 1
2
∥∥s(xi

t)
∥∥2 + 3

∥∥yi
t+1 − yt+1

∥∥2 + 3
∥∥yt+1 − ∇F (xt)

∥∥2 + 3L2∥∥xt − xi
t

∥∥2
, (6.65)

where the first line is due to the standard triangular inequality and the second line uses (6.64). Averag-

ing (6.65) over i from 1 to n gives: ∀t ≥ 1,

− 1
n

n∑
i=1

∥∥gi
t

∥∥2 ≤ − 1
2n

n∑
i=1

∥∥s(xi
t)
∥∥2 + 3

n
∥yt+1 − Jyt+1∥2 + 3

∥∥yt+1 − ∇F (xt)
∥∥2 + 3L2

n

∥∥xt − Jxt

∥∥2
. (6.66)

We now plug (6.66) into (6.63) to obtain: ∀η > 0 and ∀t ≥ 1,

Ψ(xt+1) ≤ Ψ(xt) − α

4n

n∑
i=1

∥∥gi
t

∥∥2 − α

8n

n∑
i=1

∥∥s(xi
t)
∥∥2 +

(
1

2α
+ 3αL2

4

)
1
n

∥xt − Jxt∥2 + 5α

4n
∥yt+1 − Jyt+1∥2

+
(

3
2 + 1

η

)
α

2
∥∥yt+1 − ∇F (xt)

∥∥2 + ηα + Lα2

2 ∥gt∥2

≤ Ψ(xt) − α − 2ηα − 2Lα2

4n

n∑
i=1

∥∥gi
t

∥∥2 − α

8n

n∑
i=1

∥∥s(xi
t)
∥∥2 +

(
1

2α
+ 3αL2

4

)
1
n

∥xt − Jxt∥2

+ 5α

4n
∥yt+1 − Jyt+1∥2 +

(
3
2 + 1

η

)
α

2
∥∥yt+1 − ∇F (xt)

∥∥2
, (6.67)
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where the last line is due to ∥gt∥2 ≤ 1
n

∑n
i=1 ∥gi

t∥2. Setting η = 1
8 and 0 < α ≤ 1

8L in (6.67), we have: ∀t ≥ 1,

Ψ(xt+1) ≤ Ψ(xt) − α

8n

n∑
i=1

∥∥gi
t

∥∥2 − α

8n

n∑
i=1

∥∥s(xi
t)
∥∥2 +

(
1

2α
+ 3αL2

4

)
1
n

∥xt − Jxt∥2

+ 5α

4n
∥yt+1 − Jyt+1∥2 + 19α

4
∥∥yt+1 − ∇F (xt)

∥∥2
. (6.68)

Towards the last term in (6.68), observe that, ∀t ≥ 1,

∥∥yt+1 − ∇F (xt)
∥∥2 = ∥vt − ∇F (xt)∥2

≤ 2
∥∥vt − ∇f(xt)

∥∥2 + 2
∥∥∇f(xt) − ∇F (xt)

∥∥2

≤ 2
∥∥vt − ∇f(xt)

∥∥2 + 2L2n−1∥∥xt − Jxt

∥∥2
, (6.69)

where the first line is due to (6.11) while the last line uses the L-smoothness of each fi, i.e.,

∥∥∇f(xt) − ∇F (xt)
∥∥2 =

∥∥∥∥∥ 1
n

n∑
i=1

(
∇fi(xi

t) − ∇fi(xt)
)∥∥∥∥∥

2

≤ 1
n

n∑
i=1

∥∥∇fi(xi
t) − ∇fi(xt)

∥∥2 ≤ L2

n

∥∥xt − Jxt

∥∥2
.

Plugging (6.69) into (6.68), we have: if 0 < α ≤ 1
8L , then ∀t ≥ 1,

Ψ(xt+1) ≤ Ψ(xt) − α

8n

n∑
i=1

∥∥gi
t

∥∥2 − α

8n

n∑
i=1

∥∥s(xi
t)
∥∥2 +

(
1

2α
+ 41αL2

4

)
1
n

∥xt − Jxt∥2

+ 5α

4n
∥yt+1 − Jyt+1∥2 + 19α

2
∥∥vt − ∇f(xt)

∥∥2
. (6.70)

Telescoping sum (6.70) over t from 1 to T , we have: if 0 < α ≤ 1
8L , then

Ψ(xT +1) ≤ Ψ(x1) − α

8n

T∑
t=1

n∑
i=1

∥∥gi
t

∥∥2 − α

8n

T∑
t=1

n∑
i=1

∥∥s(xi
t)
∥∥2 +

(
1

2α
+ 41αL2

4

)
1
n

T∑
t=1

∥xt − Jxt∥2

+ 5α

4n

T∑
t=1

∥yt+1 − Jyt+1∥2 + 19α

2

T∑
t=1

∥∥vt − ∇f(xt)
∥∥2

. (6.71)

With infx∈Rp Ψ(x) ≥ Ψ > −∞ and minor rearrangement, (6.71) implies the following: if 0 < α ≤ 1
8L , then

1
n

T∑
t=1

(
n∑

i=1

∥∥s(xi
t)
∥∥2 + L2 ∥xt − Jxt∥2

)
≤ 8(Ψ(x1) − Ψ)

α
− 1

n

T∑
t=1

n∑
i=1

∥∥gi
t

∥∥2 + 76
T∑

t=1

∥∥vt − ∇f(xt)
∥∥2

+
(

4
α2 + 83L2

)
1
n

T∑
t=1

∥xt − Jxt∥2 + 10
n

T +1∑
t=2

∥yt − Jyt∥2,

which finishes the proof of Lemma 6.6.5 by 83L2 ≤ 2
α2 .

6.7.2 Proof of Lemma 6.6.6

For ease of exposition, we define a block-wise proximal mapping for h:

proxαh(c) :=


proxαh(c1)

...
proxαh(cn)

 ∈ Rnp, where c :=


c1
...

cn

 (6.72)
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such that ci ∈ Rp, ∀i ∈ [n]. In view of (6.72), the x-update in Algorithm 7 can compactly be written as

xt+1 = WKproxαh(xt − αyt+1), ∀t ≥ 1. (6.73)

We find the following quantity helpful: ∀t ≥ 1,(
WK − J

)
proxαh(Jxt − αJyt+1) =

((
WK

∗ − 1
n 1n1⊤

n

)
⊗ Ip

)(
1n ⊗ proxαh

(
xt − αyt+1

))
=
((

WK
∗ − 1

n 1n1⊤
n

)
1n

)
⊗ proxαh

(
xt − αyt+1

)
= 0np, (6.74)

where the first line uses the definition of W, J, and proxαh, and the last line is due to the doubly stochasticity

of W∗. We are now prepared to analyze the consensus error recursion in the following. For all t ≥ 1, we

have ∥∥xt+1 − Jxt+1
∥∥2 =

∥∥∥WKproxαh(xt − αyt+1) − JWKproxαh(xt − αyt+1)
∥∥∥2

=
∥∥∥(WK − J

)
proxαh(xt − αyt+1)

∥∥∥2

=
∥∥∥(WK − J

)(
proxαh(xt − αyt+1) − proxαh(Jxt − αJyt+1)

)∥∥∥2

≤ λ2
∥∥∥proxαh(xt − αyt+1) − proxαh(Jxt − αJyt+1)

∥∥∥2
, (6.75)

where the first line uses (6.73), the second line follows from Lemma 6.6.3(a), the third line is due to (6.74),

and the last line uses Lemma 6.6.3(b). To proceed from (6.75), we observe that ∀t ≥ 1,∥∥∥proxαh(xt − αyt+1) − proxαh(Jxt − αJyt+1)
∥∥∥2

=
n∑

i=1

∥∥∥proxαh(xi
t − αyi

t+1) − proxαh(xt − αyt+1)
∥∥∥2

≤
n∑

i=1

∥∥xi
t − xt − α(yi

t+1 − yt+1)
∥∥2

=
∥∥xt − Jxt − α(yt+1 − Jyt+1)

∥∥2
, (6.76)

where the first and the second line uses (6.72) and Lemma 6.6.1 respectively. We then plug (6.76) into (6.75)

to obtain: ∀t ≥ 1 and ∀η > 0,∥∥xt+1 − Jxt+1
∥∥2 ≤ λ2∥∥xt − Jxt − α(yt+1 − Jyt+1)

∥∥2

= λ2∥∥xt − Jxt

∥∥2 + λ2α2∥∥yt+1 − Jyt+1
∥∥2 − 2λ2〈xt − Jxt, α(yt+1 − Jyt+1)

〉
≤ λ2∥∥xt − Jxt

∥∥2 + λ2α2∥∥yt+1 − Jyt+1
∥∥2 + 2λ2∥∥xt − Jxt

∥∥∥∥α(yt+1 − Jyt+1)
∥∥

≤ λ2(1 + η
)∥∥xt − Jxt

∥∥2 + λ2α2(1 + η−1)∥∥yt+1 − Jyt+1
∥∥2

, (6.77)

where the third and the last line use the Cauchy-Schwarz and Young’s inequality with parameter η respec-

tively. Finally, setting η = 1−λ2

2λ2 in (6.77) yields: ∀t ≥ 1,∥∥xt+1 − Jxt+1
∥∥2 ≤ 1 + λ2

2
∥∥xt − Jxt

∥∥2 + λ2α2(1 + λ2)
1 − λ2

∥∥yt+1 − Jyt+1
∥∥2

. (6.78)
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Applying Lemma 6.6.2 to (6.78), we have: ∀T ≥ 2,
T∑

t=1

∥∥xt − Jxt

∥∥2 ≤ 2λ2α2(1 + λ2)
(1 − λ2)2

T −1∑
t=1

∥∥yt+1 − Jyt+1
∥∥2

,

which finishes the proof of Lemma 6.6.6.

6.7.3 Proof of Lemma 6.6.7

6.7.3.1 Proof of Lemma 6.6.7(a)

We first recall that the gradient estimator vi
t in Algorithm 8 takes the following form: ∀t ≥ 1 and i ∈ V,

vi
t := 1

b

b∑
s=1

∇Gi

(
xi

t, ξt
i,s

)
.

Observe that ∀t ≥ 1,

E
[∥∥vt − ∇f(xt)

∥∥2∣∣Ft

]
= E

∥∥∥∥∥ 1
nb

n∑
i=1

b∑
s=1

(
∇Gi

(
xi

t, ξt
i,s

)
− ∇fi(xi

t)
)∥∥∥∥∥

2 ∣∣∣∣∣Ft


= 1

(nb)2

n∑
i=1

b∑
s=1

E
[∥∥∇Gi

(
xi

t, ξt
i,s

)
− ∇fi(xi

t)
∥∥2 ∣∣Ft

]
≤ 1

(nb)2

n∑
i=1

b∑
s=1

ν2
i

= ν2

nb
,

where the second line uses Assumption 6.2.3 and the fact that xt is Ft-measurable and {ξt
i,s : i ∈ V, s ∈ [b]}

is independent of Ft, while the third line is due to Assumption 6.2.4.

6.7.3.2 Proof of Lemma 6.6.7(b) and Lemma 6.6.7(c)

To facilitate the analysis, we first note that the gradient estimator vi
t in both Algorithm 9 and 10 take the

following form: ∀i ∈ V and ∀t ≥ 1 such that mod(t, q) ̸= 1,

vi
t := 1

b

b∑
s=1

(
∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s)
)

+ vi
t−1.

To simplify notation, we denote in this section that

δt :=
∥∥vt − ∇f(xt)

∥∥2
, ∀t ≥ 1.

We establish an upper bound on δt that is applicable to both Algorithm 9 and 10.

Lemma 6.7.1. Let Assumption 6.2.5 hold. Suppose that T = Rq for some R ∈ Z+. Consider the iterates

generated by Algorithm 9 or 10. Then we have: ∀T ≥ q,
T∑

t=1
E
[
δt

]
≤ 6L2q

n2b

T∑
t=1

E
[∥∥xt − Jxt

∥∥2
]

+ 3qL2α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]

+ q

R∑
z=1

E
[
δ(z−1)q+1

]
.
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Proof. Consider any t ≥ 1 such that mod(t, q) ̸= 1. For convenience, we define: ∀i ∈ V,

di,s
t := ∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s), di

t := 1
b

b∑
s=1

di,s
t ,

and we clearly have

E
[
di,s

t |Ft

]
= E

[
di

t|Ft

]
= ∇fi(xi

t) − ∇fi(xi
t−1). (6.79)

As a consequence of (6.79) and of the independence between ξt
i,s and Ft for all i ∈ V and s ∈ [b], we have

E
[〈

di
t − ∇fi(xi

t) + ∇fi(xi
t−1), dr

t − ∇fr(xr
t ) + ∇fr(xr

t−1)
〉∣∣Ft

]
= 0, (6.80)

whenever i ̸= r, and

E
[〈

di,s
t − ∇fi(xi

t) + ∇fi(xi
t−1), di,a

t − ∇fi(xi
t) + ∇fi(xr

t−1)
〉∣∣Ft

]
= 0, (6.81)

whenever s ̸= a. Moreover, using the conditional variance decomposition with (6.79) gives: ∀i ∈ V and

s ∈ [b],

E
[∥∥di,s

t − ∇fi(xi
t) + ∇fi(xi

t−1)
∥∥2|Ft

]
≤ E

[∥∥di,s
t

∥∥2|Ft

]
. (6.82)

By the update of vi
t, we observe that

E
[
δt|Ft

]
= E

∥∥∥∥∥ 1
n

n∑
i=1

(
di

t + vi
t−1 − ∇fi(xi

t)
)∥∥∥∥∥

2∣∣∣∣Ft


= E

∥∥∥∥∥ 1
n

n∑
i=1

(
di

t − ∇fi(xi
t) + ∇fi(xi

t−1) + vi
t−1 − ∇fi(xi

t−1)
)∥∥∥∥∥

2∣∣∣∣Ft


= E

∥∥∥∥∥ 1
n

n∑
i=1

(
di

t − ∇fi(xi
t) + ∇fi(xi

t−1)
)∥∥∥∥∥

2∣∣∣Ft

+ δt−1

= 1
n2

n∑
i=1

E
[∥∥∥di

t − ∇fi(xi
t) + ∇fi(xi

t−1)
∥∥∥2∣∣∣Ft

]
+ δt−1

= 1
n2b2

n∑
i=1

b∑
s=1

E
[∥∥∥di,s

t − ∇fi(xi
t) + ∇fi(xi

t−1)
∥∥∥2∣∣∣Ft

]
+ δt−1

≤ 1
n2b2

n∑
i=1

b∑
s=1

E
[∥∥di,s

t

∥∥2∣∣Ft

]
+ δt−1, (6.83)

where the third line uses (6.79), the fourth line uses (6.80), the fifth line uses (6.81), and the last line

uses (6.82). We note that the mean-squared smoothness of ∇G(·) implies that for all i ∈ V and s ∈ [b],

E
[∥∥di,s

t

∥∥2
]

≤ L2E
[∥∥xi

t − xi
t−1
∥∥2
]
. (6.84)
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Applying (6.84) to (6.83) gives: for all t ≥ 1 such that mod(t, q) ̸= 1,

E
[
δt

]
≤ L2

n2b
E
[∥∥xt − xt−1

∥∥2
]

+ E
[
δt−1

]
. (6.85)

For convenience, we define

φt :=
⌊

t − 1
q

⌋
, ∀t ≥ 1.

It can be verified that

φtq + 1 ≤ t ≤ (φt + 1)q, ∀t ≥ 1.

With the help of the above notations, we recursively apply (6.85) from t to (φtq + 2) to obtain: for all t ≥ 1

such that mod(t, q) ̸= 1,

E
[
δt

]
≤ L2

n2b

t∑
j=φtq+2

E
[∥∥xj − xj−1

∥∥2
]

+ E
[
δφtq+1

]
. (6.86)

Summing up (6.86), we observe that ∀z ≥ 1,

zq∑
t=(z−1)q+1

E
[
δt

]
≤

zq∑
t=(z−1)q+2

 L2

n2b

t∑
j=φtq+2

E
[∥∥xj − xj−1

∥∥2
]

+ E
[
δφtq+1

]+ E
[
δ(z−1)q+1

]
= L2

n2b

zq∑
t=(z−1)q+2

t∑
j=(z−1)q+2

E
[∥∥xj − xj−1

∥∥2
]

+ qE
[
δ(z−1)q+1

]
≤ L2

n2b

zq∑
t=(z−1)q+2

zq∑
j=(z−1)q+2

E
[∥∥xj − xj−1

∥∥2
]

+ qE
[
δ(z−1)q+1

]
= L2(q − 1)

n2b

zq∑
j=(z−1)q+2

E
[∥∥xj − xj−1

∥∥2
]

+ qE
[
δ(z−1)q+1

]
, (6.87)

where the second line uses the fact that φt = z − 1 when (z − 1)q + 1 ≤ t ≤ zq for all z ≥ 1. Finally, we sum

up (6.87) over z from 1 to R, we obtain: ∀R ≥ 1,
R∑

z=1

zq∑
t=(z−1)q+1

E
[
δt

]
≤ L2(q − 1)

n2b

R∑
z=1

zq∑
j=(z−1)q+2

E
[∥∥xj − xj−1

∥∥2
]

+ q

R∑
z=1

E
[
δ(z−1)q+1

]
. (6.88)

Recall that T = Eq and from (6.88) we obtain that ∀T ≥ q,
T∑

t=1
E
[
δt

]
≤ L2(q − 1)

n2b

T∑
t=2

E
[∥∥xt − xt−1

∥∥2
]

+ q

R∑
z=1

E
[
δ(z−1)q+1

]
. (6.89)

Finally, we apply Lemma 6.6.4 to (6.89) to obtain: ∀T ≥ q,
T∑

t=1
E
[
δt

]
≤ 6L2(q − 1)

n2b

T∑
t=1

E
[
∥xt − Jxt∥2]+ 3L2(q − 1)α2

nb

T −1∑
t=1

E
[∥∥gt

∥∥2
]

+ q

R∑
z=1

E
[
δ(z−1)q+1

]
,

which finishes the proof.

We observe that Lemma 6.6.7(b) follows from Lemma 6.7.1 by δ(z−1)q+1 = 0 for all z ≥ 1, while

Lemma 6.6.7(c) follows by applying Lemma 6.6.7(a) to Lemma 6.7.1, i.e., E[δ(z−1)q+1] ≤ ν2

nB for all z ≥ 1.
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6.7.4 Proof of Lemma 6.6.8

We first present a simple result that is useful for our later development.

Proposition 6.7.1. Consider the iterates generated by Algorithm 7. The following inequality holds: ∀t ≥ 1,

∥yt+1 − Jyt+1∥2 ≤ λ2∥yt − Jyt∥2 + λ2∥vt − vt−1∥2 + 2
〈
WKyt − Jyt,

(
WK − J

)(
vt − vt−1

)〉
. (6.90)

Proof. Using the y-update in Algorithm 7 and Lemma 6.6.3(a), we have: ∀t ≥ 1,

∥yt+1 − Jyt+1∥2

=
∥∥WK

(
yt + vt − vt−1

)
− JWK

(
yt + vt − vt−1

)∥∥2

=
∥∥WKyt − Jyt +

(
WK − J

)(
vt − vt−1

)∥∥2

=
∥∥WKyt − Jyt

∥∥2 +
∥∥(WK − J

)(
vt − vt−1

)∥∥2 + 2
〈
WKyt − Jyt,

(
WK − J

)(
vt − vt−1

)〉
,

and the proof follows by using Lemma 6.6.3(c).

6.7.4.1 Proof of Lemma 6.6.8(a)

Step 1: Decomposition. Recall that we are concerned with Algorithm 8 in this section. Condition-

ing (6.90) on Ft, we have: ∀t ≥ 2,

E
[
∥yt+1 − Jyt+1∥2|Ft

]
≤ λ2∥yt − Jyt∥2 + λ2E

[
∥vt − vt−1∥2|Ft

]
+ 2
〈
WKyt − Jyt,

(
WK − J

)(
∇f(xt) − vt−1

)〉
= λ2∥yt − Jyt∥2 + λ2E

[
∥vt − vt−1∥2|Ft

]
+ 2
〈
WKyt − Jyt,

(
WK − J

)(
∇f(xt−1) − vt−1

)〉
+ 2
〈
WKyt − Jyt,

(
WK − J

)(
∇f(xt) − ∇f(xt−1)

)〉
= λ2∥yt − Jyt∥2 + λ2E

[
∥vt − vt−1∥2|Ft

]
+ 2
〈
WKyt,

(
WK − J

)(
∇f(xt−1) − vt−1

)〉
+ 2
〈
WKyt − Jyt,

(
WK − J

)(
∇f(xt) − ∇f(xt−1)

)〉︸ ︷︷ ︸
=:At

, (6.91)

where the first line uses the fact that xt, yt, vt−1 are Ft-measurable and also Assumption 6.2.3, while the

last line uses Lemma 6.6.3(a). Towards the last term in (6.91), we observe that ∀t ≥ 2 and ∀η > 0,

At ≤ 2
∥∥WKyt − Jyt

∥∥∥∥(WK − J
)(

∇f(xt) − ∇f(xt−1)
)∥∥

≤ 2λ∥yt − Jyt∥λ∥∇f(xt) − ∇f(xt−1)∥

≤ 2λ∥yt − Jyt∥λL∥xt − xt−1∥

≤ ηλ2∥yt − Jyt∥2 + η−1λ2L2∥xt − xt−1∥2, (6.92)
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where the first line uses the Cauchy-Schwarz inequality, the second line uses Lemma 6.6.3, the third line uses

the L-smoothness of each fi, and last the line uses Young’s inequality. Combining (6.92) and (6.91) leads

to the following: ∀t ≥ 2,

E
[
∥yt+1 − Jyt+1∥2|Ft

]
≤ (1 + η)λ2∥yt − Jyt∥2 + η−1λ2L2∥xt − xt−1∥2

+ λ2 E
[
∥vt − vt−1∥2|Ft

]︸ ︷︷ ︸
=:Bt

+2
〈
WKyt,

(
WK − J

)(
∇f(xt−1) − vt−1

)〉︸ ︷︷ ︸
=:Ct

. (6.93)

In the following, we bound Bt and Ct in (6.93) respectively.

Step 2: Controlling Bt. We decompose Bt as follows: ∀t ≥ 2,

Bt = E
[
∥vt − ∇f(xt) + ∇f(xt) − vt−1∥2|Ft

]
= E

[
∥vt − ∇f(xt)∥2|Ft

]
+ ∥∇f(xt) − vt−1∥2

≤ E
[
∥vt − ∇f(xt)∥2|Ft

]
+ 2∥∇f(xt) − ∇f(xt−1)∥2 + 2∥∇f(xt−1) − vt−1∥2

≤ E
[
∥vt − ∇f(xt)∥2|Ft

]
+ 2L2∥xt − xt−1∥2 + 2∥∇f(xt−1) − vt−1∥2, (6.94)

where the first line utilizes Assumption 6.2.3 and the fact that ∇f(xt) and vt−1 are Ft-measurable, while

the last line uses the L-smoothness of each fi. To proceed, we note that ∀t ≥ 1,

E
[
∥vt − ∇f(xt)∥2|Ft

]
=

n∑
i=1

E

∥∥∥∥∥1
b

b∑
s=1

∇Gi(xi
t, ξt

i,s) − ∇fi(xi
t)

∥∥∥∥∥
2 ∣∣∣∣Ft


= 1

b2

n∑
i=1

b∑
s=1

E
[∥∥∇Gi(xi

t, ξt
i,s) − ∇fi(xi

t)
∥∥2∣∣Ft

]
≤ nν2

b
, (6.95)

where the second line uses the fact that xi
t is Ft-measurable and {ξt

i,1, · · · , ξt
i,b, Ft} is an independent family

for all i ∈ V. Combining (6.94) and (6.95), we conclude that

E
[
Bt

]
≤ 2L2E

[
∥xt − xt−1∥2]+ 3nν2

b
, ∀t ≥ 2. (6.96)

Step 3: Controlling Ct. Towards Ct, we observe that ∀t ≥ 2,

E[Ct|Ft−1] = E
[〈

W2K
(
yt−1 + vt−1 − vt−2

)
,
(
WK − J)(∇f(xt−1) − vt−1

)〉∣∣Ft−1

]
= E

[〈
W2Kvt−1,

(
WK − J

)(
∇f(xt−1) − vt−1

)〉∣∣Ft−1

]
= E

[〈
W2K

(
vt−1 − ∇f(xt−1)

)
,
(
J − WK

)(
vt−1 − ∇f(xt−1)

)〉∣∣Ft−1

]
, (6.97)

where the first line uses the y-update in Algorithm 7, while the second and the last line use Assumption 6.2.3

with the Ft−1-measurability of yt−1, vt−2 and ∇f(xt−1). To proceed, note that for all t ≥ 1 we have

E
[〈

vi
t − ∇fi(xi

t), vr
t − ∇fi(xr

t )
〉∣∣Ft

]
= 0, (6.98)
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whenever i ̸= r. In light of (6.98), we proceed from (6.97) as follows: ∀t ≥ 2,

E[Ct|Ft−1] = E
[(

vt−1 − ∇f(xt−1)
)⊤(J − (WK)⊤W2K

)(
vt−1 − ∇f(xt−1)

)∣∣Ft−1

]
,

= E
[(

vt−1 − ∇f(xt−1)
)⊤diag

(
J − (W⊤)KW2K

)(
vt−1 − ∇f(xt−1)

)∣∣Ft−1

]
≤ E

[(
vt−1 − ∇f(xt−1)

)⊤diag(J)
(
vt−1 − ∇f(xt−1)

)∣∣Ft−1

]
= 1

n
E
[
∥vt−1 − ∇f(xt−1)∥2|Ft−1

]
≤ ν2

b
, (6.99)

where the first line uses Lemma 6.6.3(a), the second line uses (6.98), the third line uses the entry-wise

nonnegativity of W, and the last line uses (6.95). Therefore, we conclude from (6.99) that

E[Ct] ≤ ν2

b
, ∀t ≥ 2. (6.100)

Step 4: Putting bounds together and refining. We substitute (6.96) and (6.100) into (6.93) to

obtain: ∀t ≥ 2,

E
[
∥yt+1 − Jyt+1∥2] ≤ (1 + η)λ2E

[
∥yt − Jyt∥2]+ (η−1 + 2)λ2L2E

[
∥xt − xt−1∥2]+ (3λ2n + 2)ν2/b.

(6.101)

Setting η = 1−λ2

2λ2 , we have: ∀t ≥ 2,

E
[
∥yt+1 − Jyt+1∥2] ≤ 1 + λ2

2 E
[
∥yt − Jyt∥2]+ 2λ2L2

1 − λ2E
[
∥xt − xt−1∥2]+ (3λ2n + 2)ν2

b
. (6.102)

We then apply Lemma 6.6.2 to (6.102) to obtain: ∀T ≥ 2,
T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤

2E
[
∥y2 − Jy2∥2]

1 − λ2 + 4λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+ 2(T − 1)(3λ2n + 2)ν2

b(1 − λ2) .

(6.103)

Since y1 = v0 = 0np, we have

E
[
∥y2 − Jy2∥2] = E

[
∥(WK − J)v1∥2] ≤ λ2E

[
∥v1∥2] = λ2∥∇f(x1)∥2 + λ2E

[
∥v1 − ∇f(x1)∥2]

≤ λ2∥∇f(x1)∥2 + λ2nν2/b, (6.104)

where the second line uses Lemma 6.6.3(b), the third line uses Lemma 6.2.3, and the last line is due to (6.95).

Finally, we apply (6.104) to (6.103) to obtain: ∀T ≥ 2,
T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 4λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+ 2T (3λ2n + 2)ν2

b(1 − λ2) + 2λ2nν2

b(1 − λ2) .

The proof of Lemma 6.6.8(a) follows by applying Lemma 6.6.4 to the above inequality with minor manipu-

lations.
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6.7.4.2 Proof of Lemma 6.6.8(b) and 6.6.8(c)

We first establish a gradient tracking error bound that is applicable to both Algorithm 9 and 10. For ease

of exposition, we denote

Υt := ∥vt − ∇f(xt)∥2, ∀t ≥ 1. (6.105)

Lemma 6.7.2. Let Assumption 6.2.5 hold. Suppose that T = Rq for some R ∈ Z+. Consider the iterates

generated by Algorithm 9 or 10. Then we have: ∀T ≥ 2q,
T +1∑
t=2

E
[
∥yt − Jyt∥2] ≤ 2λ2nζ2

1 − λ2 + 96λ2L2

(1 − λ2)2

T∑
t=1

E
[
∥xt − Jxt∥2]+ 48λ2nα2L2

(1 − λ2)2

T −1∑
t=1

E
[
∥gt∥2]

+ 14λ2

(1 − λ2)2

R−1∑
z=0

E
[
Υzq+1

]
. (6.106)

Proof. We first recall from (6.90) that ∀t ≥ 1,

∥yt+1 − Jyt+1∥2 ≤ λ2∥yt − Jyt∥2 + λ2∥vt − vt−1∥2 + 2
〈
WKyt − Jyt,

(
WK − J

)(
vt − vt−1

)〉
. (6.107)

In the first two steps, we refine (6.107) for mod(t, q) ̸= 1 and mod(t, q) = 1 respectively.

Step 1: consider any t ≥ 2 such that mod(t, q) ̸= 1. From (6.107), we observe that for all η > 0,

∥yt+1 − Jyt+1∥2 ≤ λ2∥yt − Jyt∥2 + λ2∥vt − vt−1∥2 + 2
∥∥WKyt − Jyt

∥∥∥∥(WK − J
)(

vt − vt−1
)∥∥

≤ λ2∥yt − Jyt∥2 + λ2∥vt − vt−1∥2 + 2λ2∥∥yt − Jyt

∥∥∥∥vt − vt−1
∥∥

≤ λ2(1 + η)∥yt − Jyt∥2 + λ2(1 + η−1)∥vt − vt−1∥2, (6.108)

where the first line uses Cauchy-Schwarz inequality, the second line uses Lemma 6.6.3, and the last uses

Young’s inequality. Setting η = 1−λ2

2λ2 in (6.108) gives:

∥yt+1 − Jyt+1∥2 ≤ 1 + λ2

2 ∥yt − Jyt∥2 + λ2(1 + λ2)
1 − λ2 ∥vt − vt−1∥2 (6.109)

Note that

E
[
∥vt − vt−1∥2] =

n∑
i=1

E

∥∥∥∥∥1
b

b∑
s=1

(
∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s)
)∥∥∥∥∥

2
≤ 1

b

n∑
i=1

b∑
s=1

E
[∥∥∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s)
∥∥2]

≤ L2E
[
∥xt − xt−1∥2], (6.110)

where the last line uses the mean-squared smoothness. Applying (6.110) to (6.109), we obtain:

E
[
∥yt+1 − Jyt+1∥2] ≤ 1 + λ2

2 E
[
∥yt − Jyt∥2]+ 2λ2L2

1 − λ2E
[
∥xt − xt−1∥2] (6.111)
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Step 2: consider any t ≥ 2 such that mod(t, q) = 1. In this case, we have E[vt|Ft] = ∇f(xt). Taking

the conditional expectation of (6.107) with respect to the filtration Ft, we obtain

E
[
∥yt+1 − Jyt+1∥2|Ft

]
≤ λ2∥yt − Jyt∥2 + λ2E

[
∥vt − vt−1∥2|Ft

]
+ 2
〈
WKyt − Jyt,

(
WK − J

)(
∇f(xt) − vt−1

)〉
≤ λ2(1 + η)∥yt − Jyt∥2 + λ2E

[
∥vt − vt−1∥2|Ft

]
+ λ2η−1∥∇f(xt) − vt−1∥2,

(6.112)

where the first line uses the fact that xt and yt are Ft-measurable and the second line follows a similar line

of arguments as in (6.108). Setting η = 1−λ2

2λ2 in (6.112), we obtain:

E
[
∥yt+1 − Jyt+1∥2] ≤ 1 + λ2

2 E
[
∥yt − Jyt∥2]+ λ2E

[
∥vt − vt−1∥2]+ 2λ4

1 − λ2E
[
∥∇f(xt) − vt−1∥2]. (6.113)

We recall the definition of Υt in (6.105) and observe that

∥vt − vt−1∥2 = ∥vt − ∇f(xt) + ∇f(xt) − ∇f(xt−1) + ∇f(xt−1) − vt−1∥2

≤ 3Υt + 3∥∇f(xt) − ∇f(xt−1)∥2 + 3Υt−1

≤ 3Υt + 3L2∥xt − xt−1∥2 + 3Υt−1, (6.114)

where the last uses the L-smoothness of each fi. Similarly, we have

∥∇f(xt) − vt−1∥2 = ∥∇f(xt) − ∇f(xt−1) + ∇f(xt−1) − vt−1∥2

≤ 2L2∥xt − xt−1∥2 + 2Υt−1. (6.115)

Plugging (6.114) and (6.115) into (6.113) gives

E
[
∥yt+1 − Jyt+1∥2] ≤ 1 + λ2

2 E
[
∥yt − Jyt∥2]+

(
3λ2 + 4λ4

1 − λ2

)
L2E

[
∥xt − xt−1∥2]

+ 3λ2E
[
Υt

]
+
(

3λ2 + 4λ4

1 − λ2

)
E
[
Υt−1

]
≤ 1 + λ2

2 E
[
∥yt − Jyt∥2]+ 4λ2L2

1 − λ2E
[
∥xt − xt−1∥2]+ 3λ2E

[
Υt

]
+

4λ2E
[
Υt−1

]
1 − λ2 .

(6.116)

Step 3: combining step 1 and step 2. Combining (6.111) and (6.116), we obtain: ∀t ≥ 2,

E
[
∥yt+1 − Jyt+1∥2] ≤ 1 + λ2

2 E
[
∥yt − Jyt∥2]+ 4λ2L2

1 − λ2E
[
∥xt − xt−1∥2]

+ 1{mod (t,q)=1}

(
3λ2E

[
Υt

]
+ 4λ2E[Υt−1]

1 − λ2

)
. (6.117)
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Let T = Rq for some R ∈ Z+. We apply Lemma 6.6.2 to (6.117) to obtain: ∀T ≥ 2q,
T +1∑
t=2

E
[
∥yt − Jyt∥2]

≤
2E
[
∥y2 − Jy2∥2]

1 − λ2 + 8λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+

T∑
t=2

1{mod (t,q)=1}

(
6λ2E[Υt]

1 − λ2 + 8λ2E[Υt−1]
(1 − λ2)2

)

=
2E
[
∥y2 − Jy2∥2]

1 − λ2 + 8λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+

R−1∑
z=1

(
6λ2

1 − λ2E
[
Υzq+1

]
+ 8λ2

(1 − λ2)2E
[
Υzq

])
.

(6.118)

Note that

E
[
∥y2 − Jy2∥2] = E

[
∥(WK − J)v1∥2] ≤ λ2E

[
∥v1∥2] = λ2∥∇f(x1)∥2 + λ2E

[
Υ1
]

(6.119)

Applying (6.119) to (6.118) gives the following: ∀T ≥ 2q,
T +1∑
t=2

E
[
∥yt − Jyt∥2]

≤ 2λ2nζ2

1 − λ2 + 8λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+ 2λ2

1 − λ2E[Υ1] + 6λ2

1 − λ2

R−1∑
z=1

E
[
Υzq+1

]
+ 8λ2

(1 − λ2)2

R−1∑
z=1

E
[
Υzq

]
≤ 2λ2nζ2

1 − λ2 + 8λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+ 6λ2

1 − λ2

R−1∑
z=0

E
[
Υzq+1

]
+ 8λ2

(1 − λ2)2

R−1∑
z=1

E
[
Υzq

]
(6.120)

Step 4: bounding E
[
Υt

]
. The derivations in this step essentially repeat the proof of Lemma 6.7.1. Recall

the definition of Υt in (6.105). Consider any t ≥ 1 such that mod(t, q) ̸= 1 and define: ∀i ∈ V,

di,s
t := ∇Gi(xi

t, ξt
i,s) − ∇Gi(xi

t−1, ξt
i,s), di

t := 1
b

b∑
s=1

di,s
t .

By the update of vi
t, we observe that

E
[
Υt|Ft

]
=

n∑
i=1

E
[∥∥di

t + vi
t−1 − ∇fi(xi

t)
∥∥2 ∣∣Ft

]
=

n∑
i=1

E
[∥∥di

t − ∇fi(xi
t) + ∇fi(xi

t−1) + vi
t−1 − ∇fi(xi

t−1)
∥∥2 ∣∣Ft

]
=

n∑
i=1

E
[∥∥di

t − ∇fi(xi
t) + ∇fi(xi

t−1)
∥∥2 ∣∣Ft

]
+ Υt−1

= 1
b2

n∑
i=1

b∑
s=1

E
[∥∥di,s

t − ∇fi(xi
t) + ∇fi(xi

t−1)
∥∥2∣∣Ft

]
+ Υt−1

≤ 1
b2

n∑
i=1

b∑
s=1

E
[∥∥di,s

t

∥∥2∣∣Ft

]
+ Υt−1, (6.121)

where the above derivations follow a very similar line of arguments as in (6.83) and thus we omit the detailed

explanations. Taking the expectation of (6.121) and using the mean-squared smoothness of ∇G(·, ξ), we

obtain

E
[
Υt

]
≤ L2

b
E
[
∥xt − xt−1∥2]+ E

[
Υt−1

]
. (6.122)
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For convenience, we define φt :=
⌊

t−1
q

⌋
, ∀t ≥ 1. It can be verified that φtq + 1 ≤ t ≤ (φt + 1)q, ∀t ≥ 1.

Recursively applying (6.122) from t to (φt + 1), we obtain

E
[
Υt

]
≤ L2

b

t∑
j=φt+1

E
[
∥xj − xj−1∥2]+ E

[
Υφt

]
. (6.123)

In particular, taking t = zq for some z ∈ Z+ in (6.123) gives

E
[
Υzq

]
≤ L2

b

zq∑
j=(z−1)q+2

E
[
∥xj − xj−1∥2]+ E

[
Υ(z−1)q+1

]
. (6.124)

We sum up (6.124) over z from 1 to R to obtain:

R∑
z=1

E
[
Υzq

]
≤ L2

b

R∑
z=1

zq∑
j=(z−1)q+2

E
[
∥xj − xj−1∥2]+

R∑
z=1

E
[
Υ(z−1)q+1

]
≤ L2

b

T∑
t=2

E
[
∥xt − xt−1∥2]+

R−1∑
z=0

E
[
Υzq+1

]
. (6.125)

Step 5: putting bounds together. Applying (6.125) to (6.120) gives the following: ∀T ≥ 2q,

T +1∑
t=2

E
[
∥yt − Jyt∥2]

≤ 2λ2nζ2

1 − λ2 +
(

1 + 1
b

)
8λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+ 6λ2

1 − λ2

R−1∑
z=0

E
[
Υzq+1

]
+ 8λ2

(1 − λ2)2

R−1∑
z=0

E
[
Υzq+1

]
≤ 2λ2nζ2

1 − λ2 + 16λ2L2

(1 − λ2)2

T∑
t=2

E
[
∥xt − xt−1∥2]+ 14λ2

(1 − λ2)2

R−1∑
z=0

E
[
Υzq+1

]
. (6.126)

Plugging Lemma 6.6.4 into (6.126) finishes the proof.

Note that Lemma 6.6.8(b) follows from (6.106) by Υzq+1 ≤ nν2/B for all z ∈ Z+, while Lemma 6.6.8(c)

follows from (6.106) by Υzq+1 = 0 for all z ∈ Z+.

6.8 Conclusion

In this chapter, we have studied decentralized non-convex non-smooth composite problems under expected

or empirical risk. This formulation generalizes the problems considered in the previous chapters by adding

an extended valued, convex, possibly non-smooth regularization term to the risk functions. In this context,

we propose the first provably efficient decentralized proximal gradient framework whose instances achieve

gradient and communication complexities that match the centralized optimal methods for the corresponding

problem classes. Several technical lemmas in the convergence analysis are of independent interest and helpful

to analyze other decentralized algorithms based on similar principles.



Chapter 7

Epilogue

We now revisit the major contributions of this thesis. In this thesis, we study several fundamental classes

of decentralized stochastic non-convex optimization and learning problems over heterogeneous data, with

emphasis on machine learning and signal processing applications. In particular, we propose a family of

provably fast and robust decentralized algorithms with the help of gradient tracking, variance reduction,

mini-batch stochastic gradient, and multi-round accelerated consensus techniques. We further prove that

these decentralized algorithms, with appropriate parameters, achieve optimal gradient and communication

complexities for the corresponding problem classes. In light of these convergence results, we provide a the-

oretical justification that decentralized optimization methods can outperform the corresponding centralized

optimal ones in regimes of practical significance, e.g., when the communication network is of low bandwidth

or the power budget at each node is limited. Throughout the thesis, we also provide numerical illustrations

to validate our theoretical results. The convergence analysis and several intermediate technical results devel-

oped in this thesis are of independent interest and may be helpful to address other decentralized non-convex

formulations. In the following, we recap the contributions of each chapter.

• Chapter 2: smooth strongly-convex empirical risk minimization. In this chapter, we have pro-

posed a novel framework for constructing variance-reduced decentralized stochastic first-order methods

over undirected and weight-balanced directed graphs that hinge on gradient tracking techniques. In

particular, we derive under this framework decentralized versions of the centralized SAGA and SVRG al-

gorithms, namely GT-SAGA and GT-SVRG, that achieve accelerated linear convergence for smooth and

strongly convex functions compared with existing decentralized stochastic first-order methods. We

have further shown that in the big-data regimes, GT-SAGA and GT-SVRG achieve non-asymptotic, lin-

ear speedups in terms of the number of nodes compared with centralized SAGA and SVRG. Extensive

numerical experiments based on real-world datasets are provided to validate our theoretical findings.

205



CHAPTER 7. EPILOGUE 206

• Chapter 3: smooth non-convex empirical risk minimization. In this chapter, we have proposed

two decentralized variance-reduced first-order gradient methods, GT-SARAH and GT-SAGA, to minimize a

finite-sum of N smooth non-convex cost functions equally distributed over a decentralized network of n

nodes. With appropriate algorithmic parameters, GT-SARAH achieves significantly improved gradient

complexity compared with the existing decentralized stochastic gradient methods. In particular, in a

big-data regime n = O(N 1/2(1 − λ)3), the gradient complexity of GT-SARAH reduces to O(N 1/2Lϵ−2)

which matches the centralized lower bound for this problem class, where L is the smoothness parameter

and (1 − λ) is the spectral gap of the network weight matrix. Furthermore, GT-SARAH in this regime

achieves non-asymptotic linear speedup compared with the centralized optimal approaches such as

SPIDER [49,50] and SARAH [48] that perform all gradient computations on a single machine. Compared

with the implementations of SPIDER and SARAH over server-worker architectures [132], the decentralized

GT-SARAH enjoys the same non-asymptotic linear speedup in terms of the gradient complexity, however,

admits sparser and more flexible communication topology and thus reduced total run time. In a large-

scale network regime like the Internet of Things (IoT) where the number of nodes and the spectral

gap of the network are considerably large, we show that GT-SAGA provably achieves faster convergence

rate and more practical implementation than GT-SARAH and other existing decentralized algorithms.

• Chapter 4: general smooth expected risk minimization. In this chapter, we have comprehen-

sively improved the existing convergence results of decentralized stochastic first-order methods based

on gradient tracking for online stochastic non-convex problems. In particular, for both constant and

decaying step-sizes, we systematically develop the conditions under which the performance of GT-DSGD

matches that of the centralized minibatch SGD for both general non-convex functions and non-convex

functions that further satisfy the PL condition. Specifically, we show that if the required error tolerance

of the solution is small enough, then GT-DSGD matches the centralized lower bound for these problem

classes. Our convergence results significantly improve upon the existing theory, which suggests that

GT-DSGD is strictly worse than the centralized minibatch SGD. For a family of stochastic approxima-

tion step-sizes, we establish, for the first time, the optimal global sublinear convergence to an optimal

solution on almost every sample path of GT-DSGD, when the global function satisfies the PL condition.

• Chapter 5: non-convex expected risk minimization with mean-squared smoothness. In this

chapter, we have investigated decentralized stochastic optimization to minimize smooth non-convex

cost functions distributed over networked nodes. Under the assumption that the stochastic gradient

satisfies the mean-squared smoothness condition, we propose GT-HSGD, a novel single-loop decentralized

algorithm that leverages local hybrid variance-reduced estimators and gradient tracking to achieve
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provably fast convergence rate and robust performance under heterogenous data. Compared with the

existing decentralized online variance-reduced methods, GT-HSGD achieves a lower gradient complexity

with a more practical implementation. We further show that GT-HSGD matches the centralized lower

bound for this problem class, when the required error tolerance is small enough, leading to a linear

speedup with respect to the centralized optimal methods that are implemented on a single machine.

• Chapter 6: non-convex non-smooth composite problems. In this chapter, we have developed

a unified stochastic proximal gradient tracking framework, called ProxGT, for decentralized non-convex

non-smooth composite minimization problems with empirical or expected risk. Here, a decentralized

network of nodes collaborates to find a stationary point of the average of smooth non-convex local

costs plus an extended valued, convex, possibly non-smooth global regularizer that enfores additional

structures to the problem. This composite formulation is considerably general and covers many prac-

tical applications of interest such as sparse and constrained optimization problems. We specifically

develop instances of ProxGT that achieve optimal gradient and communication complexities simulta-

neously for different problem classes. In the convergence analysis, we establish a novel decentralized

stochastic proximal descent inequality and a new proximal consensus error bound which may be of

independent interest and can be helpful to analyze other decentralized stochastic algorithms based on

similar principles such as proximal variants of DSGD.
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