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Abstract

Voice-based forensic profiling of humans refers to deducing a speaker’s information or

characteristics from their voice samples. Specifically, it refers to the set of methodologies,

technologies, and tools that represent and model human voices, as well as infer the

physical, physiological, psychological, medical, demographic, sociological, and other

bio-parametric traits (bio-relevant parameters) of a person from their voice.

Voice-based forensic profiling of humans is done based on collected objective evi-

dence that relates measurements made from the voice signal to various bio-relevant

parameters of humans. These relations are gauged using a broad spectrum of interdisci-

plinary technologies and investigative procedures that give us insights and information

about these from different perspectives.

Numerous studies from multiple fields in acoustics, speech processing, signal pro-

cessing, medicine, and psychology have revealed that the human voice carries an

enormous number of bio-markers that are unique to the speaker and correlated to the

speaker’s bio-relevant parameters. Such parameters include physical traits such as age,

height, weight, facial skeletal contour, physiological traits such as heart rate, blood

pressure, illness, psychological traits such as emotions, mental diseases, and deviation

from normal mental states, to name a few. These traits are inherent in the physical

articulatory instrument and phonation process and the cognitive and mental processes

that influence voice production. As a result, the evidence derived from voice can be

distinctive and accurately represent bio-relevant parameters. Profiling attempts to

deduce these in a manner that is language/context-agnostic and robust to disguise or

fabrication.

In order to deduce bio-relevant parameters from voice, one must develop the ap-

propriate set of voice processing and modeling methodologies. With recent advances

in speech processing technologies, many methods and tools have emerged that can

potentially be successfully used in this context. For instance, signal processing tech-

niques are used to process raw speech, represent speech, and derive acoustic features
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from speech; machine learning and deep learning models are used to model speech and

predict the speaker’s identity, age, and emotion; dynamical systems are used to model

voice production and characterize changes and abnormalities in voice; to name a few.

This thesis aims to develop computational models of voice characterization that

are more powerful, more efficient, and more effective in extracting and representing

useful information from the voice for forensic profiling. In this thesis, we investigate

three categories of models: (1) target-specific models, (2) data-specific models, and

(3) process-specific models. Target-specific models are tied to a specific task, e.g.,

predicting a speaker’s identity, age, or height from their voice. In this category, we

develop supervised machine learning and deep learning models to represent and model

human voices such that the target can be best predicted. Data-specific models are not

bound to a specific task but aim to extract generic information from the voice that can

be applied to multiple profiling tasks. In this category, we develop generative models

to distill intrinsic data representations, called the “latent features,” from the voice

signal. We also explore how the algebraic and geometric structure of the corresponding

latent feature manifolds aid in target-specific tasks. Process-specific models attempt to

represent and model the process of voice production through physical (bio-mechanical)

means. In this category, we develop dynamical systems of differential equations that

explain or emulate the biomechanics of voice production. This approach examines

the associated dynamical systems’ phase space behaviors and bifurcation maps to

characterize many physiological aspects of the human voice. We aim to develop

theoretical formulations and practical algorithms for these three models and validate

them with simulations or experiments.
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Chapter 1

Introduction

This thesis begins with an introduction to voice-based forensic analysis of humans—

deriving human characteristics from voices. For such purposes, we introduce three

main categories of modeling approaches.

1.1 Voice-Based Forensic Analysis of Humans

Voice-based forensic analysis of humans (VFAH) aims to derive information about a

person from their voice. It refers to a set of audio-enabled methodologies, technologies,

and tools that can be used to “forensically profile” the speaker of interest in a language-

agnostic manner. Thus the focus is not on speech (defined for our purposes as a voice

signal modulated to include linguistic content) but on the voice signal itself. More

specifically, forensic profiling from voice is the process that derives a person’s physical,

physiological, psychological, or other bio-parametric or bio-descriptive traits from their

voice by computational methods.

Before discussing VFAH, let us first briefly discuss forensic analysis in general.

Forensic analysis (FA) comprises a set of procedures that aim to aid the investigation

of legal issues by collecting and analyzing objects and data pertinent to the crime and

presenting relevant information derived from it to the investigating authorities [1]. The

information is usually presented as objective evidence to a court or law enforcement

entity to identify the perpetrators, reasons, causes, and consequences of a breach of
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law or a violation of rules. This evidence, digital or on paper, is obtained through

a broad spectrum of cross-domain, interdisciplinary technologies and investigative

procedures and methods [2]. The source of information being investigated can have

enormous breadth, ranging from biological traces such as fingerprints, DNA, other

biological prints and matter, to paper traces in documents such as handwriting and

artworks, to digital traces such as audio, video, images, and text, all of which may

appear on a wide range of platforms such as computers, phones, mobile devices, etc.

and a wide range of fora such as websites, newsgroups, social networks, etc [3].

With this understanding, forensic analysis of humans (FAH) is the detailed in-

vestigation of humans based on evidence collected from varied sources, intending to

reveal their reasons, motivations, and methods of perpetrating crimes, as well as the

characteristics that can help identify them. In this thesis, we focus on the latter,

wherein forensic analysis may be conducted to describe a person of interest in as much

detail as possible—e.g., deducing the person’s physical characteristics such as age,

height, weight, skeletal ratios, diagnosing the person’s physiological conditions such as

heart rate, blood pressure, state of health, revealing the person’s psychological states

such as emotion, mental diseases, behavior, state of intoxication, etc. VFAH is FAH

that uses voice-centric methodologies and technologies and derives information from

voice evidence.

The use of the human voice as forensic evidence in this context is justified by many

studies in the literature carried out in multiple scientific disciplines. These studies

have revealed that the human voice carries an enormous amount of information about

the speaker at the time of speaking. It carries unique signatures that are correlated to

the speaker’s physical [4, 5, 6, 7, 8, 9], physiological [10, 11, 12, 13] and psychological

traits [14, 15, 16, 17], among many others that we do not explicitly enumerate here.

The traits we study are evident in the voice signal produced by the human vocal

system and hence are language or context-agnostic [18, 19]. These traits are embedded

in the voice signal through the physical workings of a person’s articulatory instrument.

They are consciously or subconsciously influenced by the person’s cognitive and mental

states. Furthermore, such evidence derived from voice can be distinctive and yield
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accurate information about the speaker’s bio-parameters if it is derived in a manner

that makes it robust to voice disguise or fabrication.

1.2 Modeling for VFAH

One of the ways in which computational forensics comes to the aid of traditional FA

and VFAH is by giving us the ability to process and derive information from large

volumes of data efficiently. It also provides other mechanisms that do not rely so

much on data but are more scalable and reliable. The main approaches to VFAH from

this perspective are based on computational models and algorithms that build on

concepts that have been developed in fields, such as signal and image processing, speech

processing, computer vision, artificial intelligence, machine learning, deep learning [20,

21, 22], etc.

With the advances in speech and audio processing technologies, many computational

methods and tools have become promising in the context of computational VFAH. For

instance, signal processing techniques are used to process raw speech, represent speech,

and derive acoustic features from speech [23]; machine learning and deep learning

models are used to model speech and predict the speaker’s identity, age, emotion,

or even the facial features [24, 25, 26]; dynamical systems are used to model voice

production and characterize changes and abnormalities in voice [27, 28]; to name only

a few.

Computational models for VFAH can be divided into three broad categories: (1)

target-specific models, (2) data-specific models, and (3) process-specific models.

Target-specific models have a specific analysis target of interest, and they aim

to derive information from human voices and make judgments about this analysis

target. These models are primarily machine learning models that learn patterns from

human voice data and predict (or infer) the target. The target of interest can be,

for instance, identity, age, height and weight (and hence BMI), skeletal ratio, facial

structure, diseases, emotion, etc.

Data-specific models are target-agnostic models, which are machine learning
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models trying to learn intrinsic patterns from voice data independently of any task

goals. Such models aim to capture data characteristics (e.g., generating distributions)

by modeling observed and confounding variables. These are often captured in terms

of the dependency dynamics between a sample space and one or more latent spaces.

In this context, generative models can generate samples with the same underlying

distribution as the observed data. Common generative models include graphical models

such as Gaussian mixture models, hidden Markov models, Bayesian nets, restricted

Boltzmann machines, deep neural models such as deep belief nets, variational auto-

encoders, generative adversarial nets, etc. Notably, generative models may be able to

encode intrinsic data information into some latent representation(s), which in turn

can be further used in specific tasks.

Process-specific models are physical models that represent a specific physical

process mathematically, often via dynamical systems that comprise coupled differential

equations with constraints. These models may explain the observed data through

ordinary or partial differential equations, often with appropriate assumptions related

to the process’s continuity or smoothness. Such models characterize the dynamics of

the physical process they model in their configuration space or phase space. One can

study the properties and behavior of the process, such as stability, bifurcation, and

sensitivity in these spaces.

1.3 Objectives of this Thesis

So far, we have outlined the definition, objective, and approaches for voice-based

forensic analysis of humans (VFAH). Among the approaches, computational modeling

plays a central role. We are particularly interested in three categories of computational

models, as shown in Figure 1-1.

This thesis aims to develop computational models of the human voice that can

discover, represent, or extract useful information from the voice signal to profile

the speaker accurately. Through this, we also hope to understand these modeling

approaches’ broader strengths and weaknesses and expect this will significantly help
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Figure 1-1: Diagram of the three model categories for VFAH.

design optimal approaches for different voice profiling applications. In this thesis, we

investigate three types of computational models in depth: (1) target-specific models,

(2) data-specific models, and (3) process-specific models. Our specific goals are:

1. In the category of target-specific models, we will develop machine learning and

deep learning approaches to model human speech to best predict the speaker’s

target bio-parameters.

2. In the category of data-specific models, we will develop deep learning-based

latent representations for voice signals that will allow us to design or discover

features that capture the most intrinsic signatures of human voices in a manner

that is most effective for a variety of profiling tasks.

3. In the category of process-specific models, we will develop dynamical system

models for voice production and study and utilize the phase space behaviors of

these systems to characterize many physiological aspects of the human voice.

We build theoretical formulations and practical algorithms in the three model categories

and validate them with relevant, systematically conducted experiments.
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Chapter 2

Target-Specific Models for Speaker

Identification

This chapter presents target-specific models for voice-based forensic analysis of humans

(VFAH). For illustrative purposes, we choose three specific tasks that are most relevant

in VFAH: (1) speaker identification, (2) age estimation, and (3) height estimation.

These three tasks are representative of typical target tasks in VFAH and have also

been extensively researched, e.g., in [1, 2, 3]. We develop specialized models for each

of the tasks. Nonetheless, these models can be easily extended to other VFAH tasks

such as heart rate prediction, blood pressure prediction [4], emotion detection [5], etc.

We start with the speaker identification task.

2.1 Generic Task-Specific Model Representation

The objective of target-specific modeling is to find a model ℎ ∈ ℋ of some class ℋ

that induces a deterministic map ℎ : 𝒳 → 𝒴 from some observed data domain 𝒳 to

the target domain 𝒴. In other words, given a data sample 𝑥 ∈ 𝒳 , the model makes

a prediction 𝑦 = ℎ(𝑥). The target domain is given, and the target 𝑦 ∈ 𝒴 can take

continuous or discrete values.

Apparently, not any model ℎ can make a correct prediction, and there could be

an infinite number of ℎ. Hence, we need a criterion to measure the “correctness” (or
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error) of the prediction, i.e., we need a metric 𝑐 : 𝒴 × 𝒴 → R satisfying the following

requirements:

1. Non-negative: 𝑐 ≥ 0;

2. Reflective: for any 𝑦, 𝑐(𝑦, 𝑦) = 0;

3. Symmetric (optional): for any 𝑦, 𝑦, 𝑐(𝑦, 𝑦) = 𝑐(𝑦, 𝑦);

4. Triangle inequality (optional): for any 𝑦, 𝑦1, 𝑦2, 𝑐(𝑦, 𝑦2) ≤ 𝑐(𝑦, 𝑦1) + 𝑐(𝑦1, 𝑦2).

If only conditions 1 and 2 are satisfied (i.e., positive definiteness), 𝑐 is a divergence

that usually measures the distance from one probability distribution to another, such

as Kullback–Leibler divergence and total variation distance. If additionally conditions

3 and 4 are satisfied, 𝑐 is a pseudometric. If we further equip the metric with identity

of indiscernibles, i.e., 𝑐(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦, the pseudometric becomes a metric.

Common examples of metrics include Euclidean distance, metrics induced by norms, 𝑙1
distance, Wasserstein distance between two probability measures, etc. A metric defines

the “closeness” or “separation” of any two points in a given space (e.g., metric space,

topological manifold). More profoundly, a metric can induce a topology that derives

the concepts of continuity, convergence, and completeness. With a qualified metric,

our objective is to determine an optimal model ℎ* that incurs the minimal error

ℎ* = arg min
ℎ∈ℋ,(𝑥,𝑦)∈𝒳 ×𝒴

𝑐(𝑦, ℎ(𝑥)) (2.1)

2.2 Overview of Speaker Identification

Having defined a generic formulation for task-specific models, we move to a specific task—

speaker identification from voices. Speaker identification is the task of determining

the identity of a speaker from a voice sample. This is done by matching the given

voice sample to samples within a database or a closed set of known speakers. The

algorithms used for matching can be text-dependent with predefined spoken tokens [6],

or text-independent with no prior knowledge of the spoken tokens [7]. Either type of
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algorithm has been proven successful. Associated methodologies and technologies have

also been widely applied for voice authentication in voice-password gated systems,

banking fraud detection, multi-speaker tracking [8, 9], etc.

A standard speaker identification process involves three stages: (1) feature extrac-

tion, (2) speaker modeling, and (3) decision making. At the feature extraction stage,

signal-based acoustic features such as Mel frequency cepstral coefficients (MFCC) are

widely used in this task [10]. For speaker modeling, widely used statistical models

include Gaussian mixture models (GMM) that incorporate a universal background

model (UBM) as a reference (e.g., supervectors, i-vectors), probabilistic linear discrim-

inant analysis (PLDA) based models, deep neural nets [8, 11, 12, 13], etc. For decision

making, machine learning algorithms such as support vector machines (SVM), decision

trees, random forests, etc., and deep learning models such as convolutional neural nets

(CNN), deep belief nets, stacked auto-encoders, etc. [9] have been used.

A speaker identification system has two deployment phases: training and validation.

During the training phase, the system enrolls the features for each candidate speaker,

which may be registered in the form of sufficient statistics of statistical models or

learned weights of neural nets. In the validation/testing phase, its decision-making

algorithms match the features of the unknown speaker with those of enrolled speakers

and make decisions based on some computed confidence measures, such as likelihood

scores.

Despite their success, the effectiveness of these methodologies is limited in the

context of VFAH for two reasons: (1) the length of the acquired utterance may be

too short, and the number of samples too limited to make confident predictions with

conventional statistical models or deep neural models; (2) the presence of background

noise, channel distortions, and even voice disguise may mask the information present

in the voice samples that may be relevant for profiling. For example, coast guard

stations often receive “mayday” distress calls, some of which turn out to be hoax

calls. Profiling from these recordings is challenging; even determining whether a call is

a hoax or not is difficult because these calls are usually of very short duration and

often have maritime noises in the background, such as the sound of the wind, boat
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engines, etc. The problem that arises in such contexts is—how can we make accurate

predictions about a speaker from such limited, noisy data with the possibility that the

call may be in a disguised voice? Even if there is a prior pool of suspect recordings

from earlier calls to match against, the problem is much less studied in the context of

speaker identification.

Target-specific models address these problems through a judicious choice of feature

representations best suited to the target task and a complimentary choice of models.

With these, the problems mentioned above can be addressed to a great extent. For

speaker identification, for example, we thus need (1) robust features to represent short

speech signals that are resistant to change due to voice disguise or mimicry, easy to

extract, and frequently appear enough in the voice signal, and (2) effective models to

capture feature variability and to make accurate predictions.

To this end, we propose to use the sound of intervocalic breaths for speaker

identification [14]. The advantages of using these are that breath sounds are ubiquitous,

their intensity is measurable, their sound is not easy to disguise, and they carry

physiological-structural signatures of the speaker’s vocal tract, which are also not

affected by voice disguise.

2.3 Speaker Identification from the Sound of Hu-

man Breath

Having introduced the general framework and speaker identification issues, we now

examine the speaker identification potential of breath sounds in continuous speech. The

goal is to demonstrate that breath sounds are indeed bio-signatures that can be used

to identify speakers. We show that these sounds can yield remarkably accurate speaker

recognition with appropriate feature representations and target-specific models.
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2.3.1 Introduction

Speech is primarily produced during exhalation. In order to replenish the air in the

lungs, speakers must periodically inhale. When inhalation occurs amid continuous

speech, it is generally through the mouth. Intra-speech breathing behavior has been the

subject of many studies, including patterns, cadence, and variations in energy levels.

However, an often ignored characteristic is the sound produced during the inhalation

phase of this cycle. Intra-speech inhalation is rapid and energetic, performed with an

open mouth and glottis, effectively exposing the entire vocal tract to enable maximum

air intake. This results in vocal tract resonances evoked by turbulence characteristic

of the speaker’s speech-producing apparatus. Consequently, inhalation sounds are

expected to carry information about the speaker’s identity. Moreover, unlike other

spoken sounds, which are subject to active control, inhalation sounds are generally

more natural and less affected by voluntary influences and exertions.

Intervocalic breath sounds are fundamentally different from relaxed breath sounds

outside of speech. This is because breath plays a vital role in controlling the dynamics

of speech. Natural speech is produced as a person exhales. It is almost impossible to

produce sustained speech during inhalation [15]. As a person speaks, a specific volume

of air is pushed out through the lungs and trachea into the vocal chambers, gated

through the vocal folds in the glottis. Intervocalic breath sounds happen when the

speaker exhausts the volume of air previously inhaled during a continuous speech and

needs to inhale again. This inhalation is generally sharp, rapid, and volumetrically

anticipatory of the following speech burst. The volume of air inhaled also depends on

the air-intake capacity of the speaker’s nasal and oral passageways, trachea, and inner

structures leading to the lungs and further varies with myriad other factors related to

the speaker’s lung capacity, energy levels, muscular agility, etc.

Since exhalation is volumetrically linked to inhalation, the quality of the speech

produced during exhalation also varies with all of these factors. Furthermore, when a

person inhales, the vocal tract is usually lax and is in its natural shape. The lips are

not protruded, nor do the articulators obstruct the vocal tract. In lax configurations,
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differences between speakers are expected to appear prominently as differences in

resonant frequencies (due to differences in facial skeletal proportions and dimensions

of the vocal chambers) and relative sound intensities (due to different lung capacities

and states of health), etc.

For all these reasons, we expect many parameters of the speaker’s persona to have

their effects and possibly measurable signatures embedded in intervocalic breath sounds.

Our goal in this paper is to experimentally show that these person-specific signatures

within human breath (inhalation) sounds can be used for speaker identification.

This can be useful in many real-life scenarios, especially those of forensic importance.

For example, we have shown in an earlier study [16] that breath is invariant under

disguise and impersonation. Its resonance patterns are usually not under the speaker’s

voluntary control and are extremely difficult to modify consistently for mechanical

or cognitive reasons. Hence, the resonance patterns of intervocalic breath sounds are

unique to speakers and visible in standard spectrographic representations of the speech

signal. For example, Figure 2-1a and 2-1b show the spectrograms of the breath sounds

of a child and four adult speakers, three of whom were attempting to impersonate the

fourth speaker. This example is extracted from the public performances of voice artists

attempting to impersonate the US presidential candidate in the 2016 elections in the

USA—Mr. Donald Trump. We see the qualitative differences in the breath sounds in

these examples. Even though, in reality, the impersonators of Mr. Trump sound very

similar, their breath sounds show very distinctive speaker-specific patterns.

Related Work

Speaker identification from speech signals is widely applied and well-researched, with

decades of work supporting it. Technology from this area has been the mainstay of

forensic analysis of voice as well, an area that has been primarily centered around

the topics of speaker identification [17, 18, 19, 20], verification [21, 22], detection of

media tampering, enhancement of spoken content, and profiling [23, 24]. All of these

areas have used articulometric considerations to their advantage. However, no reported

studies strongly suggest using breath sounds in these forensic contexts. The closest
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(a)

(b)

Figure 2-1: (a) Spectrogram of breath sounds of a four-year-old child during continuous
speech. The formants F1, F2, and F3 correspond to the resonance of breath sounds
and are clearly visible. (b) Breath sounds of Mr. Donald Trump (label 3) and his
impersonators (labels 1, 2, and 4). All signals are energy-normalized and displayed on
the same scale.

application comes from the medical field, where the sound of the patient’s breath is

used (very subjectively) by the clinician to deduce the patient’s medical condition

(such as lung function, respiratory diseases, response to their treatment, etc.) [25,

26, 27]. The stethoscope is the most ubiquitous medical instrument for this—i.e., for

auscultation, the act of listening to the internal sounds of the body. Upon/after the

publication of our work [14], several other works have also reported success in using

breath sounds for speaker identification, such as [28, 29, 30].

2.3.2 Feature Formulations

Before building speaker identification models, we must ascertain that there is enough

speaker-discriminatory information in breath sounds that can be successfully used for

speaker identification. For this, we must develop appropriate feature representations

that preserve, demonstrate, and magnify this speaker-discriminatory information.

Conventional MFCC-based temporal-spectral representation loses valuable informa-
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tion in the original speech signal due to the irreversible steps taken in the computation

process, such as triangular weighting and DCT. On the other hand, the i-vector is a

widely accepted feature representation successfully deployed in state-of-art and com-

mercial speaker identification and verification systems [31]. However, supervector and

i-vector representations assume a multi-modal, or Gaussian mixture distribution of the

speech spectrum [31, 32], which may not be appropriate or valid for turbulent sounds

like breath. Moreover, these conventional methods face a significant performance

drop for ultra-short (e.g., duration less than one second) speech signals, given their

statistical nature [32, 33, 34]. Meanwhile, deep neural nets (DNNs) have demonstrated

success in speaker identification with short utterances [35]. To verify the utility of

different feature representations for breath sound, we compare i-vector features with a

set of novel CNN-RNN-based features derived from constant-Q representations of the

speech signal.

I-Vector Features

Identity-vector (i-vector) based feature representations are ubiquitously used in state-

of-art speaker identification and verification systems. In order to obtain i-vectors for

any speech recording, the distribution of Mel-frequency cepstral coefficient (MFCC)

vectors derived from it is modeled as a Gaussian mixture. The parameters of this

Gaussian mixture model (GMM) are, in turn, obtained through maximum a posteriori

adaptation of a universal background model (UBM) that represents the distribution of

all speech [36, 37]. The mean vectors of the Gaussian modes in the adapted GMM are

concatenated into an extended vector, known as a GMM supervector, which represents

the distribution of the MFCC vectors in the recording [12].

I-vectors are obtained through factor analysis of GMM supervectors. Following the

factor analysis model, each GMM supervector M is modeled as M = m+TwM, where

m is a global mean, T is a triangular loading matrix comprising bases representing a

total variability space, and wM is the i-vector corresponding to M. The loading matrix

T and mean m are learned from training data through the Expectation-Maximization

(EM) algorithm [38]. Subsequently, given any recording M, its i-vector can also be
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derived using EM.

Constant-Q Spectrographic Features

Instead of conventional log-spectrograms or MFCC features, constant-Q representations

of breath sounds may be derived. The constant-Q spectrum keeps the ratio of the

center frequency to the filter bandwidth for each bin a constant w.r.t. the number of

filters per octave [39]. The varied spacing of harmonics resulting from pitch variations

on a normal spectrogram is converted to constant shifts in frequency on a constant-Q

spectrogram. While this makes it robust and insensitive to pitch variations of the

recordings from the same speaker, it also facilitates inter-speaker distinction. The filters

used in constant-Q computation have geometrically spaced center frequencies and

bandwidths like MFCC, but the transform does not need a further DCT step, and thus

there is no further information loss. A counterpart to the constant-Q spectrogram is

the Mel-scale spectrogram, which shares the property of logarithmic-spaced frequency

bins. We compare these by showing the plots of Mel spectrograms and constant-Q

spectrograms for the breath sounds from different speakers in Figure 2-2. We see that

the constant-Q spectrograms show more distinct patterns than the Mel spectrograms,

hence more suitable for representing breath sounds from different speakers with pitch

variations.

Next, we show how a constant-Q spectrogram is obtained. Like the short-term

Fourier transform (STFT), we first divide the speech signal into overlapping, consecutive

frames. Then, we compute the constant-Q spectrum for each frame. These spectra are

displayed in temporal succession, forming the spectrogram. As in general spectrographic

representation used for speech signals, the frames span durations of 20 ∼ 30 ms and

overlap by 50%–75%. For each frame 𝑠[𝑡], we compute its constant-Q transform xcq
𝑡 [40].

Specifically, the constant-Q transform of each frame 𝑠[𝑡] of the signal is given by

𝑥cq[𝑘] = 1
𝑁𝑘

∑︁
𝑛<𝑁𝑘

𝑠[𝑛]𝑤𝑁𝑘
[𝑛]𝑒−𝑗2𝜋𝑛𝑄/𝑁𝑘 , 𝑘 = 1, . . . , 𝐾 (2.2)

with the window function 𝑤[𝑛], sampling frequency 𝑓𝑠, the minimum frequency 𝑓0, the
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(a) (b) (c) (d)

Figure 2-2: Mel-spectrograms (Top) and constant-Q spectrograms (Bottom) of the
breath sounds from (a) female speaker 1, (b) female speaker 2, (c) male speaker 1,
(d) male speaker 2.

maximum frequency 𝑓max, and the number of filters per octave 𝑏. Then the number of

frequency bins 𝐾 = 𝑏 log2
𝑓max
𝑓0

, the 𝑘th center frequency 𝑓𝑘 = 𝑓02 𝑘
𝑏 , and the bandwidth

of the 𝑘th filter 𝛿𝑓 cq
𝑘 = 𝑓𝑘(2

1
𝑏 − 1). Therefore, the ratio of 𝑓𝑘 to 𝛿𝑓 cq

𝑘 is 𝑄 = (2
1
𝑏 − 1)−1

(a constant), and the window length for the 𝑘th bin 𝑁𝑘 = 𝑄 𝑓𝑠

𝑓𝑘
. Collecting all the

𝐾 coefficients gives xcq
𝑡 = [𝑥cq[1], . . . , 𝑥cq[𝐾]]. Concatenating xcq

𝑡 for 𝑇 frames into

a matrix X gives us the constant-Q spectrogram for the input signal. We use these

spectrograms as features for breath sounds.

The primary reason for the choice of constant-Q spectrograms is that the variations

in the spacings of the harmonics due to variations in pitch on a normal spectrogram

become constant shifts in frequency on a constant-Q spectrogram. In addition, the

filters used in constant-Q computation have geometrically spaced center frequencies

and bandwidths, like MFCC, allowing better discrimination for speech sounds in

general.

2.3.3 Speaker Modeling via CNN-LSTM

In this section, we formulate the speaker identification problem and then describe a

CNN-LSTM-based framework to solve the speaker identification problem.
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Problem Formulation

Consider a collection of 𝑁 constant-Q spectrograms X = {X1, . . . ,X𝑁}, X𝑖 ∈ R𝐹×𝑇 ,

𝑖 = 1, . . . , 𝑁 , where 𝐹 is the number of frequency bins and 𝑇 is the number of frames.

We denote the collection of the corresponding labels as Y = {y1, . . . ,y𝑁}, y𝑖 ∈ R𝐶 ,

𝑖 = 1, . . . , 𝑁 , where 𝐶 is the number of speakers. The label y𝑖 = 1𝑖=𝑐 for speaker class

𝑐 has the 𝑐th entry being 1 and the rest entries being 0s. Given the speech spectrograms

X, our goal is to design a classifier ℎ : R𝐹×𝑇 → R𝐶 to predict the probability mass

over the 𝐶 classes: ̂︀y = ℎ(X) = P(y | X). We first define the loss function

𝐿(̂︀y,y) = 𝐷KL(y ‖ ̂︀y) =
𝐶∑︁
𝑗=1

𝑦𝑗 log 𝑦𝑗̂︀𝑦𝑗 (2.3)

where 𝐷KL(y ‖ ̂︀y) is the Kullback–Leibler distance between the true probability mass

y and the predicted probability mass ̂︀y. It is often used to measure the distance

between densities. Now we define the classification risk

𝑅(ℎ) = E(X,Y)∼𝒟 [𝐿(̂︀y,y)] = E(X,Y)∼𝒟 [𝐷KL(y ‖ ̂︀y)] (2.4)

which is the expectation of the loss (2.3) over the data distribution 𝒟. Since the true

data distribution is unknown, we consider the empirical risk instead

̂︀𝑅(ℎ) = 1
𝑁

𝑁∑︁
𝑖=1

𝐷KL(y𝑖 ‖ ̂︀y𝑖) = 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑦𝑖𝑗 log 𝑦𝑖𝑗̂︀𝑦𝑖𝑗 (2.5)

which is the average of the losses over all the 𝑁 samples. Hence, our optimization

objective is to minimize the empirical risk (2.5)

ℎ* = arg min
ℎ∈ℋ

̂︀𝑅(ℎ) (2.6)

where ℋ is a class of classification functions. Later in this section, we construct ℋ as

a family of CNN-LSTM neural networks.

Returning to the generic task-specific model representation (2.1), the data represen-

tation (or data sample) X is the spectrogram, which is a two-dimensional real-valued
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matrix. The target y is discrete-valued, which takes as many values as the number

of different speakers. This is a classification task in machine learning terminology,

where the classifier ℎ is the CNN-LSTM neural model. A qualified error metric 𝑐 is the

Kullback-Leibler divergence. The empirical risk is minimized over a held-out training

set using gradient descent via back-propagation.

Speaker Identification Model

Next, we describe the speaker identification model. With the constant-Q feature

extracted from the intervocalic breath sounds, we propose a deep learning model—a

convolutional neural net combined with a long short-term memory net (CNN-LSTM)

model, to identify the speaker from breath sounds [14]. Figure 2-3 illustrates the

proposed CNN-LSTM architecture. It comprises a convolutional layer, a max-pooling

layer, an LSTM layer, a dropout layer, and a fully connected layer. The CNN part in

the model learns shift and scale-invariant features from the constant-Q spectrogram.

Following that, the LSTM part learns temporal connections of the CNN feature maps.

Together they capture both the spatial and temporal information contained in the

spectrogram while putting no constraint on the length of the input.

The convolutional layer convolves the same set of filters with an input spectrogram

to learn its shift-variant features, which can be used to identify speakers. Specifically, for

a spectrogram X ∈ R𝐹×𝑇 , the convolutional layer convolves it with𝐿 filters W𝑖 ∈ R𝑈×𝑉 ,

𝑖 = 1, . . . , 𝐿 with size (𝑈, 𝑉 ). The resulting feature map Zconv
𝑖 = X *W𝑖 + 𝑏𝑖, where 𝑏𝑖

is a bias term. The feature map is then transformed Xconv
𝑖 = 𝑟(Zconv

𝑖 ) with a nonlinear

activation function. We use the rectifier (or Rectified Linear Unit, ReLU) function

𝑟(𝑥) = max(0, 𝑥).

The collection of feature maps Xconv = {Xconv
1 , . . . ,Xconv

𝐿 } are then down-sampled

along frequency with max-pooling mechanism [41] to reduce the amount of parameters

and computation in the network, and hence to also control over-fitting. In order to learn

the temporal information between the frames in each feature map, the down-sampled

feature maps Xpool are flattened over time and fed into an LSTM layer. The LSTM

layer consists of a sequence of memory units to selectively remember the past sequence
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Figure 2-3: CNN-LSTM model architecture for speaker identification with breath
sounds.

information. For a single unit, it has one memory cell and three control gates: the

forget gate, the input gate, and the output gate [42]. We take the output from the

last time step.

The output of the LSTM layer h is further fed into a dropout layer to avoid

over-fitting [43]. The resultant output hdrop is finally passed to a fully connected layer

and normalized onto a probability simplex using the soft-max function

̂︀𝑦𝑖 = 𝑒w𝑇
𝑖 hdrop∑︀𝐶

𝑗=1 𝑒
w𝑇

𝑗 hdrop , 𝑖 = 1, . . . , 𝐶 (2.7)

where w𝑖 is the weight in the fully connected layer. This final output ̂︀y = [̂︀𝑦1, . . . , ̂︀𝑦𝐶 ]

comprises the multi-class likelihoods for the 𝐶 speakers. We can then minimize the

objective (2.6), where the function class ℋ = {ℎw} for all the parametrization of w in
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the network. Substitution (2.7) into (2.6) yields

w* = arg min
w

̂︀𝑅(ℎw)

= arg min
w

1
𝑁

𝑁∑︁
𝑖=1

(log
𝐶∑︁
𝑗=1

𝑒w𝑇
𝑗 hdrop −w𝑇

𝑖 hdrop) (2.8)

To obtain the optimal set of parameters w*, we train our network using back-

propagation. The gradients of the risk with regard to the parameters in the last

layer are back-propagated, and the parameters are updated until convergence.

2.3.4 Experiments

In this section, we describe our experimental setup and compare the results of our

CNN-LSTM speaker identification framework with the results of i-vectors.

Task and Data

The data used for both sets of experiments are the same. We select the LDC Hub-4

1997 Broadcast News database [44], comprising single-channel recordings of reading

speeches from multiple news anchors and people interviewed within the news episodes.

The recordings are sampled at 16000 Hz. We use Sphinx-3, a state-of-art Hidden

Markov Model (HMM) based automatic speech recognition (ASR) system [45, 46], to

obtain accurate phoneme segmentation for all the speech signals in the database. The

ASR system is trained on this database, and the resultant acoustic models are used to

obtain highly accurate phoneme segmentation. Breath is modeled as a phoneme during

the training process; thus, the process of phoneme segmentation directly yields the

breath sounds that we need for our experiments. Each breath segment’s duration is less

than one second, and we do not concatenate them. We have verified that these speech

segments are indeed breath sounds rather than silences. The complete set of breath

sounds extracted from the Hub-4 database includes more than 3000 combinations of

the speaker, channel (broadband and telephone), fidelity (high, low, medium), and

type of speech (read and conversational). Since this study aims to demonstrate that
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breath can be used to identify speakers, we do not attempt to explore the performance

in different speech styles, physical conditions, channel types, noise conditions, etc.

Hence, we only choose breath sounds corresponding to high-fidelity clean reading

speech signals for our experiments, resulting in a subset consisting of 50 speakers. The

breath data consists of 9915 instances corresponding to 50 speakers, which is sufficient

for our experiments.

For comparison, we construct a baseline speaker identification system using a

standard i-vector-based approach and all utterances (not just breath sounds). We also

compare speaker identification using the /EY/ phoneme (as in “mayday”). The /EY/

data consists of 10400 samples corresponding to 50 speakers. Next, we describe the

experiments in detail.

I-Vector Based Experiments

The baseline speaker identification system adopts a standard text-independent i-vector-

PLDA-based approach [47]. For each speaker, 70% of the data is used as the training

set and 30% as the test set. For an utterance, we use a 20 ms window with 10 ms

overlap and short time Gaussianization with 3 sec sliding window [47], and extract

the 20-dimensional (including energy) MFCC features with delta and double delta

coefficients, resulting in 60-dimensional vectors. We train a universal background model

(UBM) of 512 Gaussian mixtures on the training data and generate 400-dimensional

i-vectors. After length normalization and whitening [48], we perform PLDA for scoring.

The Kaldi toolkit is used for this process [49].

We use similar settings for i-vector experiments with breath and /EY/ sounds,

except that we compute i-vectors of different dimensions (20, 30, 40, 60, 80, 100, 200,

300). Besides the i-vector-PLDA pipeline, we also compare with classifying i-vectors

using SVM and neural nets. For SVM experiments, we implement a multi-class SVM

using the LIB-SVM library [50]. We reduce the dimension of i-vectors greater than 60

to 49 using Linear Discriminant Analysis (LDA) [51]. The neural networks are in the

form of multi-layer perceptrons and implemented using Theano [52] and Keras [53]

toolkits. The network architecture includes different activation functions in different
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layers: the first hidden layer uses the rectified linear unit (ReLU), the second hidden

layer, when present, uses the sigmoid function, and the output layer uses the soft-max

function. The learning rate is 0.1 with a decay rate of 1𝑒−9 and a momentum of 0.9.

The batch size used in each epoch of training is 400.

The speaker identification accuracies obtained under different settings are shown

in Table 2.1 and Figure 2-4a. We see that the i-vector-PLDA pipeline on all utterances

(row 1) achieves the best accuracy. The performance of i-vector-based approaches

significantly degrades as the utterance duration reduces to less than one second (row 2–

3, 5–9). This is because ultra-short utterances fail to satisfy the statistical assumptions

of i-vector-based approaches. In comparison, the i-vector with /EY/ sound (row 2–3)

yields better performance than the i-vector with breath sound (row 5–9). This is

because the /EY/ sound has distinct formants; hence, its spectral distribution is more

Gaussian-like and more amenable to GMM modeling. The PLDA scoring (row 2)

achieves higher accuracy than the SVM classification (row 3) and further supports

this observation.

On the other hand, PLDA scoring (row 5) performs relatively worse than SVM

classification (row 7) for breath sounds. This is because the breath sound is turbulent,

less Gaussian-like, not context-dependent, less prone to external influences, and has

less session variability, rendering the subspace decomposition assumption less valid.

SVM classification with dimensionality reduction (row 7) achieves higher accuracy

than SVM without dimensionality reduction (row 6). This is because SVM does not

operate well in high-dimensional spaces. This is supported by the observation that

neural nets (row 8) achieve higher accuracy than SVMs (row 6) in high dimensions, as

also demonstrated in Figure 2-4a. Further, neural nets with one layer (row 8) yield

better performance than two-layer neural nets (row 9). These results suggest that the

speaker-specific information is supported in a lower-dimensional quasi-linear subspace.

Hence, the i-vector with LDA yields a more robust and consistent performance across

dimensions.

24



Table 2.1: Speaker Identification Results

Method Accuracy (%)
1 all+ivec-plda 96.3

2 ey+ivec-plda 81.8
3 ey+ivec-lda-svm 76.9
4 ey+cnn-lstm 90.7

5 breath+ivec-plda 73.4
6 breath+ivec-svm 72.8
7 breath+ivec-lda-svm 74.1
8 breath+ivec-1nn 73.5
9 breath+ivec-2nn 71.9
10 breath+cnn-lstm 91.3

CNN-LSTM Experiments

For CNN-LSTM-based experiments, we first convert all breath sounds to constant-Q

spectrograms [40]. We use 48 filters per octave, sampling frequency 𝑓s = 44100 Hz,

lowest frequency 𝑓min = 27.5 Hz, and highest frequency 𝑓max = 𝑓s/2, resulting in 463

frequency bins for each frame. To compensate for pitch variations within speakers, we

further augment the data using the elastic transform [54] with 𝜎 = 2 and 𝛼 = 15. Then,

we select the network hyper-parameters using cross-validation to avoid over-fitting.

For each speaker, we select 70% of the utterances as the training set, 20% as the

validation set, and 10% as the test set. We configure the network to have the following

parameters—input dimension: 463× 𝑇 (𝑇 represents varying time duration), CNN

filter size: 8× 3× 3, max pooling stride: 2× 1, dropout rate: 0.4, output dimension:

44. The network is implemented using Theano [52], and trained using Adadelta [55]

with decay constant 0.9 and batch size 1. The training is stopped when the error on

the validation set stops decreasing.

Table 2.1 and Figure 2-5 show the speaker identification performance using breath

and /EY/ sounds. Our CNN-LSTM model with constant-Q features (row 4, 10)

achieves remarkably higher accuracy than i-vector-based methods on ultra-short

utterances. This suggests that constant-Q spectrograms do not depend on spectral

distribution assumptions and are more distinctive and robust feature representations
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Figure 2-4: Speaker identification performance using breath sounds. (a) Speaker
identification accuracy with the change of i-vector dimensionality in four different
classifier settings. (b) ROC curves for CNN-LSTM and i-vector-SVM.

for short speech signals than i-vectors. Further, our CNN-LSTM model extracts robust

spatial-temporal features from constant-Q representations and performs better than

conventional models. Moreover, CNN-LSTM with breath sounds (row 10) gives higher

accuracy than with /EY/ sounds (row 4) and a larger area under the curve (AUC)

in the receiver operating curves (ROC), as shown in Figure 2-5. This validates our

hypothesis that intervocalic breath sounds carry unique and speaker-characteristic

information and, when properly represented, can effectively and robustly identify

speakers.

As a final test, we use the individual breath recordings in a speaker verification

setting. For each speaker, a two-class classifier is trained to distinguish between the

speaker and all other speakers. Figure 2-4b shows the ROC for both the CNN-LSTM

based experiments and the i-vector based experiments. Our CNN-LSTM framework

achieves a higher true positive rate than the i-vector-based approach. In both cases, the

large AUC sufficiently demonstrates the potential of using breath sounds in practical

speaker identification tasks.
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Figure 2-5: Speaker identification performance for breath and /EY/ sounds using
CNN-LSTM framework.

2.3.5 Conclusions

Experiments with both i-vectors and constant-Q spectrograms show that breath sounds

can be successfully used to identify speakers. The accuracies are surprisingly good

for the clean speech signals we used in our experiments. The proposed constant-

Q representations for breath sounds can effectively preserve the invariant speaker-

discriminatory information under other confounding influences (e.g., noise, disguise,

impersonation) and maximize the cross-speaker distinctions. The proposed CNN-

LSTM model achieves high speaker identification performance. It automatically learns

the shift-invariant and temporal features and combines feature extraction, speaker

modeling, and decision making into a single pipeline. This model is also distribution-

assumption free and works effectively for short recordings.

Note that since our primary objective in this study is to demonstrate that the

sound of the human breath can be used for speaker identification, this choice of features

was judiciously made to fulfill our goal of providing proof of concept. In the future,

we can explore the ability of other phonemes to identify speakers individually and

collectively and evaluate other feature representations and model choices. We can

also extend the work to investigate these under adverse conditions such as noise and

disguise.
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Chapter 3

Target-Specific Models for Age and

Height Estimation

In this chapter, we continue to present target-specific models for voice-based forensic

analysis of humans (VFAH). In the previous chapter, our focus was on the feature—we

demonstrated how the choice of more targeted features can improve performance using

the example task of speaker identification. In this chapter and the next, our focus is

more on the models. We investigate the effects of using better features while refining

the models to be more specific to the target task. As examples, we focus on two

challenging VFAH tasks: age and height estimation. In this chapter, we first discuss

direct modeling approaches for these via regression. Next, we introduce an indirect

modeling approach—regression-via-classification and propose a new model for this:

the Neural Regression Tree (NRT).

3.1 Direct Modeling Approaches

Age and height estimation are treated differently from speaker identification because

the target 𝑦 is now continuous-valued. This represents a continuous-valued prediction

or regression task in machine learning terminology. For such tasks, direct approaches

employ traditional regression models such as linear regression, ridge regression, least

absolute shrinkage, and selection operator (LASSO) regression, or deep learning models
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such as multi-layer perceptron (MLP), convolutional neural network (CNN), etc. One

of the many qualified metrics used in these approaches is the 𝑙2 distance.

In the context of age estimation, commonly used features include fundamental

frequency, Mel-frequency cepstral coefficients (MFCC), supervectors, i-vectors, etc.

Prediction models that work well with these features include support vector machine

(SVM), Gaussian mixture models (GMM), neural networks, etc [1, 2, 3, 4, 5].

In the context of height estimation, commonly used features include MFCC, linear

predictive coding (LPC) coefficients, fundamental frequency, harmonic-to-noise ratio,

subglottal resonance, i-vectors, etc., and the corresponding models include SVM, linear

regression, GMM, Gaussian process, non-negative factor analysis, neural networks,

etc [6, 7, 8, 9, 10, 11].

However, the relationship between the features and the target variable (e.g., age

or height) is generally unknown and may not be deterministic. The general approach

to the problem is to assume a formula for the relationship and estimate the formula’s

details from training data. Linear regression models assume a linear relationship

between the features and the target. Other models, such as neural networks, assume

a non-linear relationship. The problem is that the model parameters for one data

regime may not be appropriate for others. Statistical fits of the model to the data will

minimize a measure of the overall prediction error but may not be truly appropriate

for any specific subset of the data. For instance, age or height prediction involves a

trade-off between selecting a subset of features correlated highly with age or height

and prediction accuracy. The prediction error may be high for the young or the old,

with different levels of variability for different subsets of speech features. Thus, merely

fitting a single model to the data may minimize the overall prediction error but may

not be appropriate for any specific subset of the data.

Therefore, the problem that arises is this: how can we construct a model that

can adaptively optimize its prediction performance over subsets of data to accurately

estimate age or height across an entire range of speakers? To address the above

problem, we need to (1) devise a model that can predict based on local decisions made

on optimally partitioned data and (2) derive local features for optimal prediction.
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There are two solutions to these requirements. One is partitioning the input

(feature) space and making predictions by combining local predictions. Many models

utilize such a strategy. Kernel regressions, for example, predict using inherited data

“closeness” information exploited by local kernels, such as Gaussian kernel, polynomial

kernel [12], Mercer kernel [13], locally adaptive kernel [14], etc. Another example is

regression trees, which predict using hierarchical local predictors. They include decision

trees such as CART [15], ID3 [16], m5 [17], C4.5 [18], ensemble random forests [19],

and more recent models that combine the power of tree structures and neural nets,

such as convolutional decision trees [20], neural decision trees [21, 22], adaptive neural

trees [23], deep neural decision forests [24], and deep regression forests [25], to name a

few. All of these approaches partition the input feature space.

Notwithstanding their merits, though, they share two issues: first, for high-dimensional

data, any computed partition runs the risk of over-fitting; second, there is no guarantee

that the data is partitioned in a way to maximize prediction performance [16, 26].

3.2 Indirect Modeling Approaches

Another solution, which is the path we take, is partitioning the output (target) space,

i.e., partitioning based on the target variable. Formally, given a response variable 𝑦 that

takes continuous values in the range (𝑦min, 𝑦max), we find a set of thresholds 𝑡0, . . . , 𝑡𝑁 ,

and map the response variable into bins as 𝑦 ↦→ 𝐶𝑛 if 𝑡𝑛−1 < 𝑦 ≤ 𝑡𝑛 for 𝑛 = 1, . . . , 𝑁 .

This effectively defines a partition Π on a set 𝒴 ⊂ R as Π(𝒴) := {𝐶1, . . . , 𝐶𝑁}

satisfying ⋃︀𝑁
𝑛=1 𝐶𝑛 = 𝒴. The bins 𝐶𝑛 are mutually disjoint. This process, which

essentially converts the continuous-valued 𝑦 into a categorical one 𝐶, is referred to as

discretization. In order to determine the value 𝑦 for any 𝑥, we must find out which

bin 𝐶𝑛 the feature 𝑥 belongs to. Once the appropriate bin has been identified, the

estimated 𝑦 can be computed via local regression within the bin 𝐶𝑛. Consequently, the

problem of regression is transformed into classification. This process of converting a

regression problem to a classification problem is known as regression-via-classification

(RvC) [27]. The idea for RvC was introduced in [28], in which k-means clustering was
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employed to categorize numerical variables.

3.2.1 Regression-via-Classification

Regression-via-Classification (RvC) is the process of converting a regression problem

to a classification one. The RvC framework permits partitioning the input space based

on output variables that maximize the local predictors’ performance and optimize the

overall performance. The challenge is to decide on an optimal discretization strategy for

the response variable 𝑦. Conventional approaches usually discretize 𝑦 based on equally

probable intervals, i.e., intervals with the same number of elements, or equal-width

intervals, i.e., intervals of the same range [27, 29]. However, these approaches are

ad-hoc.

Further, a naïve implementation of RvC can result in very poor regression. In-

appropriate choice of bin boundaries {𝑡𝑖} can result in bins that are too difficult to

classify (since classification accuracy depends on the distribution of feature 𝑥 within

the bins). Although permitting near-perfect classification, the bins may be too wide,

and the corresponding “regression” may be meaningless.

To address the problem of deciding the optimal discretization within RvC, we

propose a tree-structured RvC model with neural node-classifiers to learn the optimal

partition thresholds [30]. We refer to this framework as a “neural regression tree”

(NRT).

3.2.2 Neural Regression Tree

Inspired by the original idea of regression trees [16], we follow a greedy strategy of

hierarchical binary partitioning of the target variable 𝑦, where each split is locally

optimized. This results in a tree-structured RvC model with a classifier at each node.

Moreover, such a model structure affords us additional optimization. Instead of using

a single generic feature for classification (such as margin-based linear classifiers), we

can now optimize the features extracted from the data individually for each classifier

in the tree. We employ neural node classifiers to partition the data and optimize the
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local features at each node. At the leaf nodes, we can then use the expected mean of

local bins as the final predicted value of the target variable.

Ideally, the NRT must optimize the discretization boundaries for classification

and regression accuracy. However, the complexity of joint optimization over the

discretization boundaries {𝑡𝑛} and the classifier parameters {𝜃𝑛} scales exponentially

with 𝑛. To solve this problem, we adopt a divide-and-conquer strategy and perform

greedy optimization over each node-classifier. We further propose a triviality loss to

regularize the node optimization.

Next, we formulate the NRT model for the optimal discretization of the target

variables in RvC and provide the algorithm to solve the model.

Partition

The key aspect of an RvC system is its partition method. We define the partition Π

on a set Y ⊂ R as

Π(Y) = {𝐶1, . . . , 𝐶𝑁} (3.1)

satisfying the requirement that ⋃︀𝑁𝑛=1 𝐶𝑛 = Y and 𝐶𝑛s are mutually disjoint. When

acting on a 𝑦 ∈ Y, Π(𝑦) := 𝐶𝑛 subjected to 𝑦 ∈ 𝐶𝑛.

NRT Model Formulation

Formally, an RvC framework consists of two main rules: a classification rule and

a regression rule. The classification rule classifies an input 𝑥 into disjoint bins, i.e.,

ℎ𝜃 : 𝑥 ↦→ {𝐶1, · · · , 𝐶𝑁} with parameter 𝜃 (𝜃, for example, could be the parameter of

a specific classifier, such as a neural net or an SVM), where 𝐶𝑛 = Π(𝑦) corresponds

to 𝑡𝑛−1 < 𝑦 ≤ 𝑡𝑛 for 𝑛 = 1, . . . , 𝑁 . The regression rule 𝑟 : (𝑥,𝐶𝑛) ↦→ (𝑡𝑛−1, 𝑡𝑛] maps

the combination of input 𝑥 and bin 𝐶𝑛 onto the interval (𝑡𝑛−1, 𝑡𝑛] which contains the

prediction 𝑦(𝑥)) Then, the combined RvC rule that predicts the value of the target

variable for an input 𝑥 is

𝑦(𝑥) = 𝑟(𝑥, ℎ𝜃(𝑥)) (3.2)
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Instead of making a hard assignment of bins, alternatively, the classification rule

ℎ𝜃 may make a “soft” assignment by mapping an input 𝑥 onto the 𝑁 -dimensional

probability simplex, i.e., ℎ𝜃 : 𝑥 ↦→ P𝑁 where P𝑁 represents the set of 𝑁 -dimensional

non-negative vectors whose entries sum to 1. The output of this classification rule

is, therefore, the vector of a posteriori probabilities over the 𝑁 classes (bins), i.e.,

ℎ𝑛𝜃 (𝑥) = 𝑃 (𝐶𝑛 | 𝑥) where ℎ𝑛𝜃 (𝑥) represents the 𝑛th component of ℎ𝜃(𝑥). Hence, the

probabilistic RvC rule is given by

𝑦(𝑥) = E𝐶𝑛 [𝑟(𝑥,𝐶𝑛)] =
𝑁∑︁
𝑛=1

ℎ𝑛𝜃 (𝑥)𝑟𝐶𝑛(𝑥) (3.3)

where 𝑟𝐶𝑛(·) := 𝑟(·, 𝐶𝑛) fixes the second coordinate of 𝑟 at𝐶𝑛. Defining an error function

ℰ(𝑦, 𝑦(𝑥)) between the true 𝑦 and the estimated 𝑦(𝑥), our objective is to determine

the partition thresholds {𝑡0, . . . , 𝑡𝑁} and the classifier parameters {𝜃0, . . . , 𝜃𝑁} such

that the expected error is minimized

{𝑡*𝑛}, {𝜃*
𝑛} ← arg min

𝑡,𝜃
E𝑥 [ℰ(𝑦, 𝑦(𝑥))] (3.4)

Note that the number of thresholds (𝑁 + 1) is also a variable that may be manually

set or explicitly optimized. In practice, instead of minimizing the expected error, we

minimize the empirical error avg(ℰ(𝑦𝑖, 𝑦(𝑥𝑖))) computed over a training set.

However, joint optimization of {𝑡𝑛} and {𝜃𝑛} is a challenging problem as it scales

exponentially with 𝑛. To solve this problem, we adopt a divide-and-conquer approach

and propose a binary tree-based algorithm—the neural regression tree (NRT) mentioned

earlier—to solve the RvC problem, where each node in the tree is greedily optimized.

The structure of the proposed binary tree is shown in Figure 3-1.

We now describe the binary tree algorithm. For notational convenience, the nodes

are numbered such that for two nodes 𝑛𝑖 and 𝑛𝑗, if 𝑖 < 𝑗, 𝑛𝑖 occurs either to the left

of 𝑛𝑗 or above it in the tree. Each node 𝑛 in the tree is associated with a threshold 𝑡𝑛,

which is used to partition the data into its two children 𝑛′ and 𝑛′′ (we will assume

w.l.o.g. that 𝑛′ < 𝑛′′). A datum (𝑥, 𝑦) is assigned to the “left” child 𝑛′ if 𝑦 < 𝑡𝑛, and
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Figure 3-1: Illustration of neural regression tree. Each node is equipped with a neural
classifier ℎ𝜃. The splitting threshold 𝑡 depends on the target variable 𝑦 and is locally
optimized.

to the “right” child 𝑛′′ otherwise. Then, the actual partitions of the target variable are

the tree’s leaves. To partition the data, each node carries a classifier ℎ𝜃𝑛 : 𝑥 ↦→ {𝑛′, 𝑛′′},

which assigns any instance with features 𝑥, to one of 𝑛′ or 𝑛′′. In our instantiation of

this model, the classifier ℎ𝜃𝑛 is a neural classifier that not only classifies the features

but also adapts and refines the features to each node.

Given an entire tree along with all its parameters and an input 𝑥, we can compute

the a posteriori probability of the partitions (i.e., the leaves) as follows. For any leaf

𝑙, let 𝑙0 → · · · → 𝑙𝑝 represent the chain of nodes from root 𝑙0 to the leaf itself 𝑙𝑝 ≡ 𝑙.

The a posteriori probability of the leaf is given by 𝑃 (𝑙 | 𝑥) = ∏︀𝑝
𝑟=1 𝑃 (𝑙𝑟 | 𝑙𝑟−1, 𝑥), where

each 𝑃 (𝑙𝑟 | 𝑙𝑟−1, 𝑥) is given by the neural classifier on node 𝑙𝑟−1. Substitution into (3.3)

yields the final predicted value of the target variable

𝑦(𝑥) =
∑︁

𝑙∈leaves
𝑃 (𝑙 | 𝑥)𝑟𝑙(𝑥) (3.5)

where 𝑟𝑙(𝑥) := 𝑟(𝑥, 𝑙), in our setting, is simply the mean value of the leaf bin. Other

options include the center of gravity of the leaf bin, using a specific regression function,

etc.
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NRT Optimization

We optimize each node of the NRT tree individually. The procedure to optimize an

individual node 𝑛 is as follows. Let D𝑛 = {(𝑥𝑖, 𝑦𝑖)} represent the set of training samples

arriving at node 𝑛. Let 𝑛′ and 𝑛′′ be the children nodes induced by the threshold

𝑡𝑛. In principle, to locally optimize 𝑛, we must minimize the average regression error

ℰ(D𝑛; 𝑡𝑛, 𝜃𝑛) = avg (ℰ(𝑦, 𝑦𝑛(𝑥))) between the true target 𝑦 and the estimated target

𝑦𝑛(𝑥) computed using only the subtree rooted at 𝑛. In practice, ℰ(D𝑛; 𝑡𝑛, 𝜃𝑛) is not

computable, since the subtree at 𝑛 is as yet unknown. Instead, we will approximate

it through the classification accuracy of the classifier at 𝑛, with safeguards to ensure

that the resultant classification is not trivial and permits useful regression.

Let 𝑦(𝑡𝑛) = sign(𝑦− 𝑡𝑛) be a binary indicator function that indicates if an instance

(𝑥, 𝑦) has to be assigned to child 𝑛′ or 𝑛′′. Let ℰ(𝑦(𝑡𝑛), ℎ𝜃𝑛(𝑥)) be a qualifier of the

classification error (which can be binary cross entropy loss, hinge loss, etc.) for any

sample (𝑥, 𝑦). We define the classification loss at node 𝑛 as

𝐸𝜃𝑛,𝑡𝑛 = 1
|D𝑛|

∑︁
(𝑥,𝑦)∈D𝑛

ℰ(𝑦(𝑡𝑛), ℎ𝜃𝑛(𝑥)) (3.6)

where |D𝑛| is the size of D𝑛. The classification loss (3.6) cannot be directly minimized

w.r.t 𝑡𝑛, since this can lead to trivial solutions, e.g., setting 𝑡𝑛 to an extreme value

such that all data are assigned to a single class. While such a setting would result

in perfect classification, it would contribute little to the regression. To prevent such

solutions, we include a triviality penalty 𝒯 that attempts to ensure that the tree

remains balanced in terms of the number of samples at each node. For our purpose, we

define the triviality penalty at any node as the entropy of the distribution of samples

over the partition induced by 𝑡𝑛 (other triviality penalties such as the Gini index [15]

may also apply)

𝒯 (𝑡𝑛) = −𝑝(𝑡𝑛) log 𝑝(𝑡𝑛)− (1− 𝑝(𝑡𝑛)) log(1− 𝑝(𝑡𝑛)) (3.7)
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where

𝑝(𝑡𝑛) =
∑︀

(𝑥,𝑦)∈D𝑛
(1 + 𝑦(𝑡𝑛))

2|D𝑛|

The overall optimization objective of node 𝑛 is

𝜃*
𝑛, 𝑡

*
𝑛 = arg min

𝜃𝑛,𝑡𝑛

𝜆𝐸𝜃𝑛,𝑡𝑛 + (1− 𝜆)𝒯 (𝑡𝑛) (3.8)

where 𝜆 ∈ (0, 1) is used to assign the relative importance of the two components of

the loss and is a hyper-parameter to be tuned.

In the optimization of (3.8), the loss function depends on 𝑡𝑛 through 𝑦(𝑡𝑛), which is

a discontinuous function of 𝑡𝑛. We have two possible ways to overcome this difficulty:

the scan and the gradient method. In the first, we can scan through all possible

values of 𝑡𝑛 to select the one that results in a minimal loss. Alternatively, a faster

gradient-descent approach is obtained by making the objective differentiable w.r.t.

𝑡𝑛. Here the discontinuous function sign(𝑦 − 𝑡𝑛) is approximated by a differentiable

relaxation: 𝑦(𝑡𝑛) = 0.5(tanh(𝛽(𝑦 − 𝑡𝑛)) + 1), where 𝛽 controls the steepness of the

function and must typically be set to a large value (𝛽 = 10 in our settings) for close

approximation. The triviality penalty is also redefined (to be differentiable w.r.t. 𝑡𝑛)

as the proximity to the median 𝒯 (𝑡𝑛) = ‖𝑡𝑛 − median(𝑦 | (𝑥, 𝑦) ∈ D𝑛)‖2, since the

median is the minimizer of (3.7). We use coordinate descent to optimize the resultant

loss.

Once optimized, the data D𝑛 at 𝑛 is partitioned into 𝑛′ and 𝑛′′ w.r.t. threshold

𝑡*𝑛, and the process proceeds recursively down the tree. The tree’s growth may be

continued until the regression performance on a held-out set saturates. Algorithm 3.1

describes the entire training algorithm.

3.2.3 Experiments

To demonstrate the utility of the proposed approach, we conduct experiments on a

pair of notoriously challenging regression tasks in VFAH—estimating the age and

height of speakers from their voice [1, 4, 7, 31, 32, 33, 34, 35, 36]. Our model performs
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Algorithm 3.1: NRT Optimization. The tree is built recursively. For each
node 𝑛, the neural classifier adapts and classifies the features and partitions
the data based on the locally optimal classification threshold.

Input: data D
Parameter : {𝑡𝑛}, {𝜃𝑛}
Output: {𝑡*𝑛}, {𝜃*

𝑛}
Function BuildTree(D𝑛):

Initialize 𝑡𝑛, 𝜃𝑛
𝑡*𝑛, 𝜃

*
𝑛 ← NeuralClassifier(D𝑛, 𝑡𝑛, 𝜃𝑛)

D𝑛′ ,D𝑛′′ ← Partition(D𝑛, 𝑡
*
𝑛)

for D𝑛 in {D𝑛′ ,D𝑛′′} do
if D𝑛 is pure then

Continue
else

BuildTree(D𝑛)
end

end
end
BuildTree(D)

significantly better than other regression models, including those known to achieve

the current state-of-the-art in these problems.

Data

To promote a fair comparison, we select two well-established public datasets in the

speech community. For age estimation, we use the Fisher English corpus [37]. It consists

of a 2-channel conversational telephone speech for 11, 971 speakers, comprising 23, 283

recordings. After removing 58 speakers with no age specified, we are left with 11, 913

speakers with 5, 100 male and 4, 813 female speakers. To the best of our knowledge,

the Fisher corpus is the largest English language database that includes the speaker’s

age information for the age estimation task. The data division for the age estimation

task is shown in Table 3.1. The division is made through stratified sampling such

that there is no speaker overlap, and all age groups are represented across the splits.

Furthermore, Figure 3-2 shows the age distribution of the dataset for the three splits

(train, development, test) in relation to the Table 3.1.

For height estimation, we use the NIST speaker recognition evaluation (SRE) 2008
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Table 3.1: Fisher Dataset Statistics

# of Speakers / Utterances
Male Female

Train 3,100 / 28,178 4,813 / 45,041
Dev 1,000 / 9,860 1,000 / 9,587
Test 1,000 / 9,813 1,000 / 9,799

Figure 3-2: Age distribution (in percentages) for male (Top) and female (Bottom) speak-
ers for the Fisher database for train (Left), development (Center) and test (Right) sets.
The horizontal axis is age.

corpus [38]. We only obtain heights for 384 male and 651 female speakers. We evaluate

this task using cross-validation because of data scarcity. Table 3.2 and Figure 3-3 show

the statistics for the NIST-SRE8 dataset.

Since the recordings for both datasets have plenty of silences and the silences do

not contribute to the information gain, Gaussian-based voice activity detection (VAD)

is performed on the recordings. Then, the resulting recordings are segmented into

one-minute segments.

To properly represent the speech signals, we adopt one of the most influential and

well-studied representations—i-vectors [39]. I-vectors are statistical low-dimensional

representations over the distributions of spectral features and are commonly used in
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Table 3.2: NIST-SRE8 Dataset Statistics

# of Speakers / Utterances
Male Female

384 / 33,493 651 / 59,530

(a) (b)

Figure 3-3: Height distribution (in percentages) for (a) male and (b) female speakers
for the NIST-SRE8 dataset. The horizontal axis is height.

state-of-the-art speaker recognition systems [40] and age estimation systems [41, 42].

Respectively, 400-dimensional and 600-dimensional i-vectors are extracted for Fisher

and SRE datasets using the state-of-the-art speaker identification system [43].

Specifically, we first calculate the 60-dimensional Mel frequency cepstral coefficients

(MFCCs) and then train the universal background model (UBM) on 3500 speakers with

512 Gaussian mixtures. Next, we train the 400-dimensional i-vector projector on 9346

speakers. Finally, we project all utterances to their i-vectors. The i-vector extraction

process is implemented with the Bob toolbox [44, 45]. To maximize the performance of

SVM-based classification, we further employ compensation strategies for the i-vectors.

We apply Fisher linear discriminant analysis (LDA) with the subspace dimension of

50, within-class covariance normalization (WCCN), and length normalization (LN)

sequentially [46]. The i-vectors for the NIST-SRE dataset are extracted similarly using

the Kaldi SRE10 recipe [47]. The UBM has 2048 Gaussian components, and the

i-vectors are 600-dimensional.
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Models

We compare our model with (1) a regression baseline using the support vector re-

gression (SVR) [48], (2) a regression tree baseline using classification and regression

tree (CART) [15], and (3) a neural net baseline with multi-layer perceptron (MLP).

Furthermore, to show the effectiveness of the “neural part” of our NRT model, we

further compare our neural regression tree with another baseline (4) regression tree

with the support vector machine (SVM-RT).

The proposed NRT is a binary tree with neural classification models, where the

neural classifiers are 3-layer feedforward neural nets. Each model is associated with a

set of hyper-parameters that have to be tuned on the development set, such as the

𝜆 in (3.8); the number of neurons and layers, batch size, learning rate for the neural

nets; the margin penalty, kernel type and bandwidth for SVM and SVR; the depth for

CART, etc. These hyperparameters control the complexity and generalization ability

of the corresponding models. We tune them based on the bias-variance trade-off until

the best performance on the development set has been achieved. Table 3.3 shows the

specifications for our model and the baseline models.

Results

To measure the performance of our models on the age and height estimation tasks,

we use the mean absolute error (MAE) and the root mean squared error (RMSE) as

evaluation metrics. The results are summarized in Table 3.4. To reduce the effect of

weights initialization on the performance of models consisting of neural nets, we run

those models multiple (10) times with different initializations and report the average

performance error.

For age and height estimation, we observe that the proposed neural regression tree

model generally outperforms other baselines in both MAE and RMSE. For the height

task, the neural regression tree has a slightly higher RMSE than SVR, indicating

higher variance. This is reasonable as our NRT does not directly optimize the mean

squared error. Bagging or forest mechanisms may be used to reduce the variance.
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Table 3.3: Model Specifications

Model Specification
Age Height

NRT

Linear: (400, 1000)
Linear: (1000, 1000)
Linear: (1000, 1)
Nonlin.: ReLU
Optim.: Adam (lr 0.001)

(Same with Age
except input dim. 600)

SVM-RT
Kernel: RBF
Regul.: ℓ1
Optim.: Scan

(Same with Age
except linear kernel)

SVR Kernel: RBF
Regul.: ℓ1

Kernel: Linear
Regul.: ℓ1

CART Criterion: MSE Criterion: MSE

MLP

Linear: (400, 512)
Linear: (512, 1)
Nonlin.: ReLU
Optim.: Adam (lr 0.01)

Linear: (600, 2048)
Linear: (2048, 1)
Nonlin.: ReLU
Optim.: Adam (lr 0.005)

Furthermore, with the neural classifier in NRT being replaced by an SVM classifier

(SVM-RT), we obtain higher errors than in NRT, demonstrating the effectiveness of

the neural part of the NRT as it enables the features to refine with each partition

and adapt to each node. Nevertheless, SVM-RT still yields smaller MAE and RMSE

values than SVR and CART and is on par with the MLP on the age task. On the

height task, SVM-RT outperforms SVR, CART, and MLP in terms of MAE values

with relatively small variances. This consolidates our claim that even without using a

neural network, our model can find optimal thresholds for the discretization of the

target variable. On the other hand, this also confirms that using neural nets without

tree adaptation only contributes to a small portion of the performance gain, provided

that the neural nets generalize well. Additionally, we observe that a simple-structured

MLP, compared to the MLP component in NRT, is required to obtain reasonable

performance—a more complex-structured MLP would not generalize well to the test

set and yield high estimation bias. This, in turn, implies that our NRT model can

employ high-complexity neural nets to adapt the features to be more discriminative
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Table 3.4: Experiment Results

Task Dataset Method Male Female

MAE RMSE MAE RMSE

Age Fisher

SVR 9.22 12.03 8.75 11.35
CART 11.73 15.22 10.75 13.97
MLP 9.06 11.91 8.21 10.75
SVM-RT 8.83 11.47 8.61 11.17
NRT 7.20 9.02 6.81 8.53

Height SRE

SVR 6.27 6.98 5.24 5.77
CART 8.01 9.34 7.08 8.46
MLP 8.17 10.92 7.46 9.47
SVM-RT 5.70 7.07 4.85 6.22
NRT 5.43 6.40 4.27 6.07

as the discretization refines and, simultaneously, maintain the model’s generalization.

To test the significance of the results, we further conduct pairwise statistical

significance tests. We hypothesize that the errors achieved from our NRT method

are significantly smaller than the closest competitor, SVR. Paired t-tests for SVR

v.s. SVM-RT and SVM-RT v.s. NRT yield p-values less than 2.2× 10−16, indicating

significant improvement. Similar results are obtained for height experiments as well.

Hence, we validate the significance of the performance improvement of our NRT

method in estimating age and height over the baseline methods.

Node-Based Error Analysis

The hierarchical nature of our formulation allows us to analyze the model on every level

and node of the tree in terms of its classification and regression error. Figure 3-4 shows

the per-level regression errors in terms of MAE for female and male speakers, where the

nodes represent the age thresholds used as splitting criteria at each level, and the edges

represent the regression errors. We notice that regression error increases from left to

right for female and male speakers (except for the leftmost nodes, possibly due to data

scarcity issues), meaning the regression error for the younger speakers is lower than

the error for older speakers. In other words, our model can discriminate better between
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Figure 3-4: Regression errors for different age groups for female (Top) and male (Bot-
tom) for the age estimation task. Each node represents the age threshold used as a
splitting criterion, and each edge represents the regression error in terms of MAE.

younger speakers. This is in agreement with the fact that the vocal characteristics of

humans undergo noticeable changes during earlier ages and then relatively stabilize

for a specific age interval [49]. Hence, the inherent structural properties of our model

not only improve the overall regression performance, as we see in the previous section,

but also model the real-world patterns of aging in the case of age estimation.

Triviality Loss

Since our model relies on the target variable to make the partition, it is imperative

to avoid any trivial partitions. A trivial partition would be where, for example, all

the training samples fall into a single category. To account for that, we introduce a

novel abstraction of the trivial partition—the triviality loss (3.7). Figure 3-5 shows

how the triviality loss of the age estimation task increases from top to bottom for

49



0.22

0.24

0.31

0.46 0.38

0.39

0.50 0.46

0.41

0.38

0.48 0.47

0.35

0.42 0.48

0.26

0.34

0.31

0.43 0.43

0.42

0.50 0.50

0.37

0.47

0.43 0.43

0.44

0.49 0.47

Figure 3-5: The breakdown of triviality loss on each level for female (Top) and
male (Bottom) speakers for the task of age estimation.

both male and female speakers. This qualitative analysis indicates that it is relatively

easier for our model to distinguish between young and old speakers than between finer

age groups.

3.2.4 Related Work

Regression Trees Tree-structured models have been around for a long time. Among

them, the most closely related are the regression trees. A regression tree is a regression

function in which the partitioning is performed on features 𝑥 instead of target variable

𝑦. The first regression tree algorithm was presented by [50], where they propose a

greedy approach to fit a piece-wise constant function by recursively splitting the data

into two subsets based on the partition of the features 𝑥. The optimal split results from

minimizing the impurity, which defines the homogeneity of the split. This algorithm
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set the basis for a whole line of research on classification and regression trees. Improved

algorithms include CART [15], ID3 [16], m5 [17], and C4.5 [18]. Recent work combines

the tree-structure and neural nets to gain the power of structure and representation

learning. Such work includes the convolutional decision trees [20], neural decision

trees [21, 22], adaptive neural trees [23], deep neural decision forests [24], and deep

regression forests [25].

We emphasize a fundamental difference between our approach and traditional

regression tree-based approaches. Instead of doing the split based on the feature space,

our splitting criterion is based on the target variable, enabling the features to adapt

to the partitions of the target variable.

Regression via Classification (RvC) The idea for RvC was presented by [28].

Their algorithm is based on k-means clustering to categorize numerical variables. Other

conventional approaches [27, 29] for the discretization of continuous values are based

on equally probable (EP) or equal width (EW) intervals. EP creates a set of intervals

with an equal number of elements, and EW divides them into intervals of the same

range. These approaches are ad-hoc. Instead, we propose a discretization strategy to

learn the optimal thresholds by improving the neural classifiers.

Ordinal Regression Because our model is essentially a method to discretize con-

tinuous values into ordered partitions, it can be somewhat compared to ordinal

regression [51]. Ordinal regression is a class of regression analysis that operates on

data where the target variable is categorical but exhibits an order relation. Naïve

approaches for ordinal regression often simplify the problem by ignoring the ordering

information and treating the target variables as nominal categories. A slightly sophisti-

cated method [52] decomposes the target variable into several binary ones (such as via

binary, ordered partition) and estimates them using multiple models. Another relevant

class of approaches uses the threshold models [52]. These approaches resemble our

approach in that they assume unobserved continuous target variables underlying the

ordinal values and use thresholds to discretize them. Various models (such as support
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vector machines and perceptrons) are used to model the underlying target variables.

Our proposed model shares many characteristics with these approaches. However,

one big difference is that the partitions are predefined by the domain problem in

ordinal regression and may not be optimized for statistical inference. On the other

hand, our model is based on a data-driven partition strategy where partitions are

optimized for a more discriminative representation of the data hierarchy and better

performance at inference time.

Limitations and Future Work We acknowledge that our model might not be

ubiquitous in its utility across all regression tasks. This is, however, expected and

observed to be a characteristic of target-specific models—they are indeed highly specific

to the target task. We hypothesize that this model will work well with tasks that can

benefit from a partition-based formulation by reducing the inherent noise in the data.

We empirically show this to be true for the two example tasks above. As a natural

extension of this work, we expect to test our model for other standard regression tasks

in the future. Furthermore, because our model formulation inherits its properties from

the regression-via-classification (RvC) framework, the objective function is optimized

to reduce the classification error rather than the regression error. This limits our ability

to compare our model to other regression methods directly. In the future, we intend

to explore ways to minimize regression error while employing the RvC framework

directly. For instance, we can develop an overall objective for the neural regression

tree and study the comprehensive optimization strategy.

3.2.5 Conclusions

This study proposes a neural regression tree (NRT) for the optimal discretization

of target variables in regression-via-classification (RvC) tasks. It targets the two

challenges in traditional RvC approaches: finding optimal discretization thresholds

and selecting the optimal set of features. We develop a hierarchical discretization

strategy by recursive binary partition based on the optimality of node-wise neural

classifiers. Furthermore, each partition node on the tree could locally optimize features
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to be more discriminative. We propose an algorithm to optimize partition thresholds,

node classifiers, and node features jointly. We also present a triviality loss to avoid

trivial partitions and relaxations to enable gradient-based optimization. The proposed

NRT model outperforms baselines in two challenging VFAH tasks: age and height

estimation, and demonstrates significant improvements. Through these models, we

demonstrate the advantages and shortcomings of target-specific modeling.
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Chapter 4

Target-Specific Models for

Complicated Distributions

The last chapter presents the neural regression tree (NRT) model for the task of age

and height estimation. This chapter improves the NRT model for complicated data

distributions and proposes a new modeling approach: the hierarchical routing mixture

of experts (HRME).

4.1 Introduction

One of the challenges in modeling a regression task is dealing with data that have

complicated distributions. The distribution can be multimodal, rendering any single

regression model highly biased. For instance, Figure 4-1a shows a synthetic data set

uniformly sampled from three intersecting lines with different amounts of noise. A

single regression model would fail to capture the multi-modality of this data and yield

poor performance. This necessitates another strategy through divide-and-conquer to

partition the input space into simple sub-regions and assign a regression model to

each sub-region.

Many partition-based models employ this strategy. For example, decision trees [1]

and random forests [2] divide the input space by hard-partitioning of feature dimensions

and make piece-wise linear predictions on each partition. Mixture models [3] and
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(a) (b) (c)

Figure 4-1: (a) A toy example: synthetic 3-lines data with different amounts of noises.
(b) Predictions made by experts in our HRME model. Each curve represents the
prediction made by one expert. Darker color indicates stronger prediction confidence.
(c) Prediction made by our HRME model via selecting the top-1 experts.

mixtures-of-experts [4] perform soft-partition on the input space and assign regression

models to each of the partitions. In particular, the mixture of expert models is tree-

structured with a gating mechanism to partition the input space and a collection of

experts at the leaves to make local predictions.

Although well-studied and proven effective, these models do not leverage the input-

output dependency of the data distributions. For instance, as in our toy example,

different regions of the output space (the 𝑦 label) correspond to different data modes.

Solely partitioning the input space would fit multiple data modes into each partition,

requiring complex regression models to capture each input-output relation.

To address this issue, the neural regression tree (NRT) [5] was proposed (in the

previous chapter) to partition the output space—it uses hierarchical regression-via-

classification (RvC) to divide the data through an optimal output space partition

and, at the same time, to optimize local features. However, it has a few disadvantages.

First, it is a greedy approach and is locally optimal. Second, it does not leverage the

input-output dependency of multimodally-distributed data, and strong local models

such as neural nets are required to make reliable predictions.

The issues mentioned above of conventional partition-based regression methods

and the NRT model can be resolved by partitioning the input-output space such that

each partition only requires a simple local regression model. To accomplish this, we
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propose a hierarchical routing mixture of experts (HRME) model [6], which separates

the modes in the multimodal data distribution by jointly soft-partitioning the input

and output spaces and makes probabilistic inferences by assigning simple regression

models to each of the resultant partitions.

HRME is binary-tree structured and has two types of experts—margin-based

classifiers as non-leaf node experts and simple regression models as leaf node experts.

The non-leaf node experts function as a new gating mechanism to soft-partition the

data based on their modes, predicated on the distribution of input and output variables.

A node-specific binary classifier performs the partitioning. Together, the non-leaf node

classifiers hierarchically partition the space into many regions. Each region corresponds

to a leaf node in the tree, and within the region, the relationship between input and

output variables is ideally unimodal. The leaf node experts make predictions on each

resulting partition. These leaf node experts can now be relatively simple if the data

is well partitioned. The basic assumption is that the multi-modally distributed data

are nevertheless locally (and non-linearly) separable, and hence the non-leaf experts

of the tree function as a routing mechanism to partition the data into subsets of

simple (uni-modal) distributions and route each subset to a simple leaf expert to make

predictions.

However, the actual distributions of the data and its modes are unknown a priori.

Consequently, the binary classes for each classifier (non-leaf) node are unknown. This

effectively makes the partition of the output space itself a variable to be determined.

To address this, we develop a probabilistic framework for our HRME model and

propose a recursive Expectation-Maximization (EM) based algorithm to optimize the

joint input-output partition and the expert models. Notably, the tree structure is also

optimized such that no extra pruning is required. Compared to NRT, the HRME

model is globally rather than locally optimized. Figure 4-2a shows the probabilistic

structure of the HRME model. Figure 4-2b shows the predictions made by the experts

in the HRME model to fit the toy example in Figure 4-1a. The three intersecting

lines in the synthetic example have different noise levels, which is difficult to fit for

conventional regression models.
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(a) (b)

Figure 4-2: (a) Illustration of the HRME model. It is a probabilistic binary tree. Each
non-leaf node (circle) carries a classifier ℎ𝛽 and a partition threshold 𝑡, and each leaf
node (square) carries a regressor 𝑟𝜃. Prediction is made via a probabilistic combination
of leaf regressors. The model is learned via recursive EM. (b) Predictions made by
HRME experts to fit a three-line example. Each curve represents an expert prediction,
with darker color indicating higher confidence. The red curve is the prediction made
by combining all experts.

4.1.1 Related Work

Decision trees [1, 7, 8] are a family of supervised learning methods that utilize a

partition on the input feature space and make piece-wise linear predictions. Based

on them, random forests [2, 9] take an ensemble learning approach by aggregating

a collection of decision trees to reduce the over-fitting tendency of a single decision

tree. An issue with these tree-based methods is that they rely on hard partitions and

piece-wise linear predictions, leading to discontinuities and high biases in predictions.

On the other hand, our HRME model can be viewed as a new member of the

mixture models [3] and mixtures-of-experts [4]. The mixture of experts (ME) is a

probabilistic tree-structured model with a gating mechanism and a collection of experts

at the leaves. The gating mechanism is responsible for soft partitioning the input space

into sub-regions such that a local expert models the distribution of each sub-region [10].
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The flexibility of the ME family embraces a wide variety of gating mechanisms

and expert models. Examples include hierarchical mixture of experts (HME) [11]

which employs a binary tree structure, Bayesian HME [12] with a Bayesian approach,

mixture of Gaussian processes (HME-GP) [13, 14, 15, 16], mixture of support vector

machines (HME-SVM) [17, 18], etc, to name only a few.

However, the ME models have three issues:

1. The gating mechanism does not explicitly leverage the input-output dependencies

of the data. Rather, it performs probabilistic input-space partitioning, based on

assumed data distributions such as the multinomial distribution [11], Gaussian

distribution [15], Dirichlet process [14], Gaussian process [13], etc.

2. In ME models, strong experts are often needed to achieve good performance [10].

3. The structure of the ME models, namely the tree depth and the number of

experts, is often optimized through additional procedures, such as pruning [19]

and Bayesian model selection [12, 20]. This increases the complexity of model

learning.

Our HRME model addresses the issues with these conventional methods by (1) joint

soft-partitioning of the input-output space based on the natural separability of the

multimodal data and (2) joint optimization of the tree structure and the expert models

without extra pruning procedures.

4.2 Hierarchical Routing Mixture of Experts

This section presents the HRME model’s specifications, formulates the optimization

objective, and develops the optimization algorithm.

4.2.1 Model Specification

Figure 4-2a shows the structure of the tree model. It is a binary tree. In this case,

each non-leaf node is equipped with a classification expert, a binary classifier. The
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node classifiers hierarchically refine the data into separate modes until the data is

uni-modal at leaf nodes. Each leaf node is equipped with a regression expert, a simple

linear model.

We denote the input features as 𝑥 ∈ R𝑑 and the continuous output label as 𝑦 ∈ R.

Separating the data modes requires determining the optimal classifier at each non-leaf

node. However, we do not have the data class information beforehand, i.e., we do

not know how data can be locally separated. As a remedy, we adopt a thresholding

strategy—setting a threshold 𝑡 on 𝑦 such that 𝑦 = 0 if 𝑦 < 𝑡 and 𝑦 = 1 otherwise. As

a result, we assign binary classes to data via thresholding on 𝑦. However, note that by

doing so, we effectively make 𝑡 a variable to be optimized; namely, we are not only

partitioning on 𝑥 but also partitioning on 𝑦. We will explain the optimization of this

joint partition in a later section.

At this point, let us assume we have known the optimal tree settings—that is, we

know the tree structure (the depth and the number of nodes), and for each non-leaf

node, the optimal splitting threshold 𝑡* and the classifier ℎ𝛽* parameterized by the

optimal parameter 𝛽*, and for each leaf node, the regressor 𝑟𝜃* parameterized by the

optimal parameter 𝜃*. We then explain the prediction of 𝑦 given an input 𝑥.

Specifically, for notational convenience, we assume that the nodes are numbered

such that for any two nodes 𝑛𝑖 and 𝑛𝑗 if 𝑖 < 𝑗, 𝑛𝑖 occurs either to the left of 𝑛𝑗 or above

it in the tree. Each node 𝑛𝑖 carries a classifier ℎ𝛽*
𝑛𝑖

: 𝑥 ↦→ {𝑛𝑖+1, 𝑛𝑖+2}, which assigns

any instance with input 𝑥 to one of the children nodes 𝑛𝑖+1 or 𝑛𝑖+2. We introduce a

binary-valued random variable z𝑛𝑖
∈ {0, 1} to indicate 𝑥 being assigned to 𝑛𝑖 or not.

Then, the corresponding likelihood of 𝑥 being assigned to node 𝑛𝑖 is estimated by the

classifier on node 𝑛𝑖−1

𝑞(z𝑛𝑖
| 𝑥) ≡ 𝑞(z𝑛𝑖

= 1 | 𝑥)← ℎ𝛽*
𝑛𝑖−1

(𝑥) (4.1)

Next, we would like to know the likelihood of a data point 𝑥 being routed to a specific

leaf. Denote the chain from root 𝑙1 ≡ 𝑛0 to leaf 𝑙𝑘 as 𝑙1 → . . .→ 𝑙𝑘, then the likelihood
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of 𝑥 being assigned to leaf 𝑙𝑘 is

𝑞(z𝑙𝑘 | 𝑥) =
∑︁
z𝑙1

. . .
∑︁

z𝑙𝑘−1

𝑞(z𝑙1 , . . . , z𝑙𝑘 | 𝑥) (4.2)

Applying the sum-product rule and using the conditional dependency to (4.2) yields

𝑞(z𝑙𝑘 | 𝑥) =
𝑘−1∏︁
𝑗=1

𝑞(z𝑙𝑗+1 | z𝑙𝑗 ,𝑥) (4.3)

For leaf 𝑙𝑘, it carries a regressor 𝑟𝜃*
𝑙𝑘

such that the prediction ̂︀𝑦𝑙𝑘 = 𝑟𝜃*
𝑙𝑘

(𝑥). Then, an

estimate of 𝑦 is given by the expectation of the predictions over all leaves

̂︀𝑦 =
∑︁

𝑙𝑘∈leaves
𝑟𝜃*

𝑙𝑘
(𝑥)𝑞(z𝑙𝑘 | 𝑥) (4.4)

and the corresponding conditional density for leaf 𝑙𝑘 is

𝑝(𝑦 | z𝑙𝑘 ,𝑥)← 𝑟𝜃*
𝑙𝑘

(𝑥) (4.5)

4.2.2 Learning Algorithm

From the previous section, we have shown that in order to make predictions using

the tree, we need to determine the optimal tree settings, i.e., the tree structure {𝑛𝑖},

the non-leaf node thresholds {𝑡𝑛𝑖
}, the classifier parameters {𝛽𝑛𝑖

}, and the leaf node

regressor parameters {𝜃𝑛𝑖
}.

We adopt a maximum-likelihood approach. Specifically, our objective is to maximize
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the log-likelihood for each 𝑥

max log 𝑝(𝑦 | 𝑥) (4.6)

= log 𝑝(𝑦 | 𝑥)𝑞(z | 𝑥)
𝑞(z | 𝑥)

∑︁
z
𝑞(z | 𝑥)

=
∑︁

z
𝑞(z | 𝑥) log 𝑝(𝑦, z | 𝑥)

𝑝(z | 𝑦,𝑥)
𝑞(z | 𝑥)
𝑞(z | 𝑥)

=
∑︁

z
𝑞(z | 𝑥) log 𝑝(𝑦, z | 𝑥)

𝑞(z | 𝑥) + (4.7)

∑︁
z
𝑞(z | 𝑥) log 𝑞(z | 𝑥)

𝑝(z | 𝑦,𝑥) (4.8)

where 𝑞(z | 𝑥) is an estimate for the true assignment mass 𝑝(z | 𝑥); (4.7) is commonly

referred to as the evidence lower bound (ELBO) which needs to be improved to

maximize the log-likelihood (4.6); (4.8) is the Kullback-Leibler divergence which

measures the distance of two probability masses, and is always greater than or equal

to zero.

Therefore, it is natural to apply the expectation-maximization (EM) method to

optimize (4.6). Specifically, in the E-step, we compute the ELBO (4.7) for all the

training instances

𝑄(𝑝, 𝑞) =
∑︁
𝑥

∑︁
z
𝑞(z | 𝑥) log 𝑝(𝑦, z | 𝑥)

𝑞(z | 𝑥)

=
∑︁
𝑥

∑︁
z
𝑞(z | 𝑥) log 𝑝(𝑦 | z,𝑥)𝑝(z | 𝑥)

𝑞(z | 𝑥) (4.9)

where 𝑞(z | 𝑥) is given by (4.3), and 𝑝(𝑦 | z,𝑥) is given by (4.5) (for example, the leaf

node gives a Gaussian distribution over 𝑦 if we assume a linear model with Gaussian

noise). The true leaf node assignment mass 𝑝(z | 𝑥) is yet unknown. However, we can

estimate it using the empirical frequency of the number of samples at the leaf node

over the total number of training samples. This is a crude estimation, but we will

provide a better strategy in the latter part of this section.

In the M-step, we optimize the parameters to increase the ELBO (4.7). Specifically,

we optimize the non-leaf node expert to maximize the classification accuracy and the
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leaf-node expert to minimize the regression error.

However, the data classes are unavailable, and the non-leaf node threshold 𝑡 is

unknown. We provide an alternative approach to mitigate this difficulty. For each

non-leaf node, we perform a grid search over the possible values of 𝑡, and for each 𝑡, we

perform the M-step. The best 𝑡 value is obtained as the one with a maximum 𝑄-value.

Although different sampling strategies can be used when searching for 𝑡, grid-search

works well in practice.

As we mentioned earlier, it is difficult to estimate the true leaf node assignment mass

𝑝(z | 𝑥). Although variational approximation may be used, we propose an empirically

simpler strategy. Instead of using the 𝑄-value as a global indicator of the optimality

of the tree, we propose to use an alternative proxy: the negative mean-square-error

𝑄alternative = −mean(𝑦 − ̂︀𝑦)2 (4.10)

where ̂︀𝑦 is given by (4.4).

The recursive EM algorithm is summarized in Algorithm 4.1. We start from the

root node and grow the tree recursively in a depth-first manner, i.e., from top to

bottom, from left to the right. Each time we grow a three-node subtree. We keep

increasing the number of nodes until the lower bound 𝑄 stops increasing or the ratio

of the number of samples at the leaf to the total number of samples is below some

preset threshold.

4.3 Experiments

This section evaluates our HRME model and the recursive EM algorithm on a collection

of regression tasks. We describe the experimental settings and present the results for

our method and a wide range of baseline methods.
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Algorithm 4.1: Recursive EM for HRME
Input: {𝑑𝑎𝑡𝑎}, {𝑟𝑜𝑜𝑡}
Parameter : {𝑡}, classifier parameters, regressor parameters
Output: HRME Tree
Function GrowTree({𝑑𝑎𝑡𝑎}, {𝑛𝑜𝑑𝑒𝑠}):

for 𝑛 in {𝑛𝑜𝑑𝑒𝑠} do
𝑛𝑙, 𝑛𝑟 ← GrowSubtree(𝑛)
D← {𝑑𝑎𝑡𝑎}
for 𝑡 do

D𝑙,D𝑟 ← SplitData(D, 𝑡)
if min(|D𝑙|,|D𝑟|)

#total samples < threshold then
Continue

end
𝑛.TrainClassifier(D, 𝑡)
PropagateConditional() using Equation (4.3)
𝑛𝑙.TrainLeaf(D𝑙)
𝑛𝑟.TrainLeaf(D𝑟)
𝑄← ComputeQ() using Equation (4.10)

end
if 𝑄 > 𝑄* then

𝑄* ← 𝑄
{𝑑𝑎𝑡𝑎} ← D𝑙,D𝑟

{𝑛𝑜𝑑𝑒𝑠} ← 𝑛𝑙, 𝑛𝑟
GrowTree({𝑑𝑎𝑡𝑎}, {𝑛𝑜𝑑𝑒𝑠})

else
Remove the subtree 𝑛𝑙, 𝑛𝑟
Continue

end
end

end

4.3.1 Data

For demonstration purposes, we synthesize a 3-lines dataset (as shown in Figure 4-1a).

We select five other standard datasets commonly used in regression tasks for further

evaluation. Four of these datasets are from the UCI machine learning repository [21]:

the CCPP dataset [22, 23], the concrete dataset [24], the Boston housing dataset [25],

and the energy dataset [26]. The fifth is the kin40k dataset [27, 28]. The datasets

range from small-sized to large-sized and from low-dimensional to high-dimensional.

The statistics are shown in Table 4.1. The train and test divisions either use the
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Table 4.1: Dataset Statistics

Dataset Feature Dim Train Test
3-lines 1 1750 750
Housing 13 354 152
Concrete 8 721 309
CCPP 4 6697 2871
Energy 28 14803 4932
Kin40k 8 10000 30000

default split or the 0.7 : 0.3 split. Further, to demonstrate the effectiveness of the

HRME model on more challenging regression tasks, we test it on two VFAH tasks:

age and height estimation from speech. The task and data details are described in

Section 3.2.3. The same i-vector representations are used as input features to the

models.

4.3.2 Models

Baselines To conduct a fair evaluation, we compare our method with a wide range

of baselines: linear regression (LR), support vector regression (SVR), decision trees

(DT), random forests (RF), the hierarchical mixture of experts (HME) with strong

Gaussian or Gaussian process experts, and multi-layer perceptron (MLP). Each model

carries a set of parameters to be estimated and hyperparameters (e.g., margin and

kernels in SVR, depth and number of nodes in DT and RF, number of neurons and

learning rate in MLP, etc.) to be tuned. We train the models on training sets and

fine-tune the hyperparameters using grid-search and three-fold cross-validation on

the training sets to obtain the best performance. The models are implemented with

scikit-learn toolkit [29] or PyTorch [30]. For HME models, we obtain the best results

from the literature under the same experimental settings.

HRME Models For our HRME model, we train it following Algorithm 4.1. In

our model instantiation, the non-leaf experts are support vector machines with radial

basis function kernels (SVM-RBF). We choose two simple models for leaf experts,
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the linear regression model (HRME-LR) or the support vector regression model with

a radial basis function kernel (HRME-SVR). Similar to baselines, our models are

also trained and fine-tuned on the same training sets, following the same strategy as

the baseline methods. In addition, all non-leaf experts on the tree share the same

hyperparameters, and so do the leaf experts. Although it would be desirable to use

different hyperparameters for nodes on different tree levels as the data size shrinks

with the tree depth, our model is robust to such variations. To account for the high

feature dimensionality for age and height prediction tasks, we further construct an

HRME-MLP variant that uses a simple two-layer multi-layer perceptron (MLP) as

the non-leaf expert and SVR as the leaf expert.

4.3.3 Results

We evaluate our method and baseline methods with two metrics: the mean absolute

error (MAE) and the root mean squared error (RMSE). On the synthetic 3-line data,

Figure 4-3 shows the fitting results on the test set for our method and baseline methods.

Our HRME models provide more accurate predictions than the baselines. Specifically,

the linear model predicts the mean of the three different distributions; the decision tree

and random forest provide a better fit than linear regression, but discontinuities and

higher variance occur due to these two models’ piece-wise linear nature. MLP achieves

a smaller prediction error than DT and RF but shows discontinuities and failure to

capture the data modality. In comparison, our HRME models provide much smoother

fitting with lower bias and variance than the baselines. Note that even with linear

leaf experts, the HRME-LR model can capture the data’s nonlinear modality and

make regional predictions by soft-switching its experts among the three distributions.

Further, the HRME-SVR model yields smoother predictions using nonlinear leaf

experts than the HRME-LR model, with lower bias and variance. Additionally, we

observe that all models here prefer the upper line to the lower line due to the higher

noise level in the lower line.

Figure 4-1b shows the predictions made by the experts in the HRME-SVR model.

Fourteen experts (indicated by colored curves) are allocated to different data regions.
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(a) LR (b) DT (c) RF

(d) MLP (e) HRME-LR (f) HRME-SVR

Figure 4-3: Fitting results on synthetic data with different models: linear regression
(LR), decision tree (DT), random forest (RF), multi-layer perceptron (MLP), our
HRME with linear regressor (HRME-LR) and SVR regressor (HRME-SVR).

Each expert is confident of making predictions within one data mode, as indicated

by higher posterior probabilities (darker colors), and all data modes are successfully

captured. Consequently, if we have prior knowledge of the data distribution, this could

be used to select the experts for making the best predictions. Further, instead of using

the weighted average of all experts, we select the top-1 expert to make predictions.

Figure 4-1c shows the corresponding fitting results. We see a much better fit than

in Figure 4-3f—in the former, our HRME-SVR model successfully predicts all data

modes.

We further show the growth of the HRME tree on the training set. In Figure 4-4,

the number in each circled node is the partition threshold 𝑡. The number beside each

circle is the RMSE if growth stops at that node. The tree is grown depth-first (top

to bottom, left to right). We observe that the RMSE reduces as the tree grows. This

validates our hypothesis that our algorithm can automatically learn the optimal tree
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Figure 4-4: The HRME tree after training on the synthetic data. The tree is grown
recursively in a depth-first manner—top to bottom, left to right. Each circle represents
a classifier node, and the number within it is the partition threshold 𝑡. The number
on edge represents the root mean square error if it stops growing at that node. Each
dashed edge leads to a leaf regressor.

structure without pruning afterward, and the proposed 𝑄-value is a good indicator of

the tree’s global optimality. Further, our HRME model also successfully partitions the

output space based on the separability of data modes by finding the thresholds like

−1.9, 5.6, −6.4, etc.

Table 4.2 shows comprehensive results for all the methods on all the datasets. We

observe an overall improvement of our HRME methods over the baseline methods.

Specifically, for large datasets like engery and kin40k, our methods outperform all

other baselines in terms of bias (MAE) and variance (RMSE), even for the HME

models with strong Gaussian process experts and the MLP. For medium-sized datasets

like CCPP and concrete, our methods generally outperform other baselines except RF.

Nevertheless, like RF, our method can also be ensembled or boosted (now averaged)

to improve performance [31]. For small datasets like Boston housing, our methods

do not outperform DT and RF. However, on a closer look, we find that HRME-LR

yields much smaller MAE and RMSE than HRME-SVR and is on par with DT and
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RF. This observation indicates the linear nature of the data distribution; hence, a

nonlinear regression expert would be inappropriate for this dataset. This observation

is also confirmed by the poor performance of the nonlinear MLP model. Further, the

data is small (506 samples) but has a high dimensionality (13), making it difficult

to separate the modes by SVM. Instead, other classifiers can be used to improve the

performance of our model. We also observe that our methods can reduce the variance

(RMSE) on most tasks. This shows that our methods can mitigate the high variance

problem of conventional tree models. In addition, we see that even with simple linear

leaf experts, our method can significantly outperform LR and compete with nonlinear

models like SVR, RF, and MLP. This validates our hypothesis that simple leaf experts

can make good predictions with our data modality-aware routing mechanism. Lastly,

MLP performs poorly in most tasks, even with fine-tuning. This shows that MLP

cannot capture the specific modality of data distributions in this case.

Table 4.3 shows the results for age and height estimation from speech. The SVM-RT

and NRT results are taken from Section 3.2.3 in Chapter 3. HRME achieves better

performance than NRT in terms of estimation error and variance—HRME with SVM

experts (HRME-SVR) performs better than its SVM-RT counterpart, and HRME with

MLP experts (HRME-MLP) performs better than its NRT counterpart, suggesting

that HRME enjoys global optimality. In contrast, SVM-RT and NRT only achieve local

optimality. In both comparisons, HRME yields smaller variances, implying robustness

to overfitting. HRME-MLP performs better than HRME-SVR, indicating MLP non-

leaf experts can better classify high-dimensional features than SVM experts. Further,

compared to NRT, which uses 3-layer MLP node classifiers, HRME-MLP uses simpler

2-layer MLP node experts, confirming our claim that HRME can optimally partition

the complexly-distributed data into simple modes such that simple experts can make

reliable predictions.

To this point, comprehensive experiment results show that our HRME methods

perform well on various regression tasks, especially on large, high-dimensional, and

complicated datasets. Our HRME methods can capture the complex data hierarchy,

reduce variance, and make good predictions with simple leaf experts. We further
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Table 4.2: Standard Regression Task Results

Dataset Metric LR SVR DT RF HME MLP HRME
LR SVR

3-lines MAE
RMSE

3.352
4.104

2.006
3.173

2.224
3.291

2.131
3.072

—
—

1.960
2.795

2.337
2.885

2.250
2.859

Housing MAE
RMSE

3.651
4.911

3.498
5.126

2.537
3.665

2.103
3.043

4.1701

5.6102
6.711
8.535

2.682
3.857

3.266
4.376

Concrete MAE
RMSE

8.088
10.204

8.013
10.772

4.919
8.000

3.436
4.806

—
6.2503

5.394
6.594

4.121
5.664

4.020
5.609

CCPP MAE
RMSE

3.601
4.578

2.746
3.856

2.941
4.151

2.383
3.409

—
4.1004

4.013
5.078

2.965
3.951

2.712
3.805

Energy MAE
RMSE

52.075
93.564

43.141
101.267

43.996
99.654

52.002
95.558

—
—

40.521
88.191

42.121
89.203

40.009
87.022

Kin40k MAE
RMSE

0.806
0.996

0.092
0.161

0.592
0.773

0.433
0.548

—
0.2305

0.237
0.312

0.150
0.212

0.071
0.114

1 using Gaussian experts; results taken from [32]
2 using Gaussian experts; results taken from [32]
3 using Gaussian process experts; results taken from [33]
4 using Gaussian process experts; results taken from [33]
5 using Gaussian process experts; results taken from [16]

explore some theoretical properties of our HRME model.

4.4 Convergence and Complexity Analysis

Convergence Let 𝑛, 𝑑, and 𝑘 be the number of training samples, the dimension of

each sample, and the number of experts, respectively. In [34], authors prove that with

large samples, the ME models can uniformly approximate Sobolev class functions of

order 𝑟 in the 𝐿𝑝 norm at a rate of at least 𝒪(𝐶𝑘−𝑟/𝑑) with constant 𝐶. This bounds

the approximation error of the general ME family. Further, in [35], the authors prove

that the HME mean functions can approximate the true mean function at a rate of

𝒪(𝑘−2/𝑑) in the 𝐿𝑝 norm. Authors in [36] also show that the HME probability density

functions can approximate the data density at a rate of 𝒪(𝑘−4/𝑑) in KL divergence.

For our HRME model, since the general assumptions of these results hold, the uniform

convergence also holds.

74



Table 4.3: Age and Height Estimation Results

Task Dataset Method Male Female
MAE RMSE MAE RMSE

Age Fisher

SVM-RT 8.83 11.47 8.61 11.17
NRT 7.20 9.02 6.81 8.53
HRME-SVR 8.11 11.44 8.09 10.46
HRME-MLP 6.91 8.74 6.40 8.07

Height SRE

SVM-RT 5.70 7.07 4.85 6.22
NRT 5.43 6.40 4.27 6.07
HRME-SVR 5.49 6.89 4.69 6.09
HRME-MLP 5.24 6.24 4.15 5.87

Complexity The complexity of EM-based algorithms for HME models mainly lies

in the M-step, where the re-estimation of parameters involves solving a system of

equations using the Newton (or Newton-like) update. In the HME models, a Newton

iteration cost is 𝒪(𝑛3). In our case, the complexity of the M-step is in solving the SVM.

Specifically, for a standard SVM solver with the primal-dual interior-point method, the

complexity is in the Newton update and evaluation of the kernel. Hence, the iteration

cost is 𝒪(𝑛3 + 𝑛2𝑑). As a result, to attain 𝜖-error we need 𝒪(𝜖−𝑑/2) experts. For the

HME models, we can assume uniform data partition among experts, and the total

cost is 𝒪(𝑛3𝜖𝑑). For our HRME model, each node’s data decreases with depth, and

we can take the average among nodes. The resultant total cost is 𝒪(𝑛3𝜖𝑑 + 𝑑𝑛2𝜖𝑑/2).

Although the total complexity increases for our algorithm, the computation can be

accelerated using dynamic programming at the price of storage cost. Moreover, the

computation at each node can be done in parallel.

Consistency Authors in [34] prove that the least-squares estimators for the ME

models are consistent under regularity conditions. Further, authors in [37] show that

maximum likelihood estimators are consistent and asymptotically normal. Therefore,

our HRME model also produces consistent estimators.

Identifiability Authors in [38] prove that the ME models are identifiable under

regularity conditions that the experts are ordered, and the model parameters are
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carefully initialized.

In future work, we would like to conduct a more rigorous study of the HRME

model’s theoretical behaviors.

4.5 Conclusions

This study proposes a hierarchical routing mixture of experts (HRME) model to address

the difficulty of partitioning and routing data in conventional regression models. By

utilizing a novel gating mechanism that jointly partitions the input-output space, the

non-leaf classification experts can separate the modes in the complexly distributed

data and route the data to simple leaf regression experts for effective prediction.

Furthermore, we develop a probabilistic framework for the HRME model and propose

a recursive Expectation-Maximization (EM) based algorithm to optimize the input-

output partition, tree structure, and the experts. Comprehensive experimental results

on a collection of standard and challenging regression tasks validate our model’s

effectiveness and highlight some nice properties.
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Chapter 5

Data-Specific Models for Speech

Feature Discovery

Data-specific models aim to extract intrinsic representations from data that are most

informative for VFAH. These representations usually capture patterns that may be

hypothesized to be present in the high-dimensional data space, condensed into lower

dimensions. The lower-dimensional space is often termed as the embedding space, or

the latent space, and the representations in latent space are called latent features.

While the latent features are task-agnostic, they are informative and usable in a range

of specific tasks.

5.1 Data Assumptions and Latent Feature Discov-

ery

Latent feature discovery is concerned with the automated design or discovery of latent

features whose presence is hypothesized but not directly observable or measurable in

standard ways. This can be effectively done with data-specific models. To achieve this,

we make two basic data assumptions.

Assumption 5.1 (Manifold assumption). Most information in high-dimensional data

from the natural world lies on low-dimensional manifolds. Formally, let ℳ and 𝒩 be
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𝑀 and 𝑁 dimensional differentiable manifolds, 𝑀 < 𝑁 . We say that ℳ is embedded

in 𝒩 if there exists a homeomorphism 𝑓 : ℳ → 𝒩 such that for all 𝑝 ∈ ℳ, the

differential 𝑑𝑓𝑝 : 𝑇𝑝ℳ → 𝑇𝑓(𝑝)𝒩 is an injection [1]. Additionally, we may impose

metrics on the manifolds (ℳ, 𝑔) and (𝒩 , ℎ) where 𝑔 and ℎ are Riemannian metrics,

i.e., (0, 2)-tensors acting as inner products ⟨·, ·⟩𝑝 (symmetric, bilinear, positive-definite

forms) in the tangent space 𝑇𝑝ℳ and 𝑇𝑓(𝑝)𝒩 for all 𝑝 ∈ℳ. We say the embedding 𝑓

is metric-preserving, or an isometric embedding, if for all 𝑝 ∈ℳ and all 𝑣, 𝑤 ∈ 𝑇𝑝ℳ,

we have 𝑔𝑝(𝑣, 𝑤) = ⟨𝑣, 𝑤⟩𝑝 = ℎ𝑓(𝑝) (𝑑𝑓𝑝(𝑣), 𝑑𝑓𝑝(𝑤)) = ⟨𝑑𝑓𝑝(𝑣), 𝑑𝑓𝑝(𝑤)⟩𝑓(𝑝), i.e., 𝑔 is the

pull-back of ℎ: 𝑔 = 𝑓 *ℎ [1, 2].

Assumption 5.2 (Separability assumption). The distributions of different data sub-

classes on a manifold are separable. Let ℳ be a manifold on which the data lies;

𝒰 and 𝒱 are subsets of ℳ with an induced topology where two data sub-classes

lie. We impose a probabilistic structure on the subsets (𝒰 ,Σ𝒰 , 𝜇) and (𝒱 ,Σ𝒱 , 𝜈)

where Σ𝒰 and Σ𝒱 are Borel 𝜎-algebra compatible with the topology, and 𝜇 and 𝜈

are probability measures1 [3, 4]. Define 𝒦𝒰 := supp(𝜇) ≡ {𝐸 ∈ Σ𝒰 : 𝜇(𝐸) ̸= 0}

and 𝒦𝒱 := supp(𝜈) ≡ {𝐹 ∈ Σ𝒱 : 𝜈(𝐹 ) ̸= 0} such that ⋃︀𝒦𝒰 ⊇ 𝒰 and ⋃︀𝒦𝒱 ⊇ 𝒱,

i.e., 𝒦𝒰 and 𝒦𝒱 are classes covering 𝒰 and 𝒱. Then we have 𝒦𝒰
⋃︀𝒦𝒱 = 𝒰 ⋃︀𝒱 and

𝒦𝒰
⋂︀𝒦𝒱 = ∅.

The two assumptions above are schematically illustrated in Figure 5-1. Based

on these assumptions, we can build data-specific models that can (1) encode high-

dimensional data into lower dimensions and (2) ensure that the low-dimensional

encodings (representations) from different sub-classes are separable. Consequently, we

obtain a latent space that admits a separable structure of the latent features from

different sub-classes. The latent features in each sub-class are associated with a subset

of profiling parameters from the data. From this point of view, these latent features

are disentangled. They can be used in specific VFAH tasks, such as classifying or

predicting profiling parameters.
1The Borel 𝜎-algebra is used to assign probabilities to the open sets in the topology.
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Figure 5-1: Illustration of manifold data assumptions. The data lies on a lower-
dimensional manifold, where the two data sub-classes (red and yellow) are separable
by topology.

5.2 Discovering Separable Latent Features with

Generative Models

To extract latent features from data, one needs models that satisfy the two requirements

introduced above. Many generative models satisfy the first requirement only—the

manifold requirement. They can “condense” high dimensional data distributions into

lower-dimensional representations and then generate samples of the same distribution

from these representations. For example, graphical generative models such as principle

component analysis (PCA) [5], Gaussian mixture models (GMM) [5], hidden Markov

model (HMM) [6, 7], Bayesian nets, Markov random fields [8, 9], restricted Boltzmann

machines (RBM) [10] etc, represent data distributions via low-dimensional sufficient

statistics or hidden states. On the other hand, deep generative models such as deep belief

nets (DBN) [11, 12, 13], variational autoencoders (VAE) [14], generative adversarial

nets (GAN) [15, 16, 17] contain data distribution information in their hidden neurons

or latent encoding. Among these models, GANs attract intensive interest from the

research community due to their ability to generate samples (especially images) with

intricate detail and remarkable fidelity.

For these models, while the first requirement of a low-dimensional manifold enabling

latent feature discovery is easy to achieve, the second requirement of separability is not.

The separability of the latent representations presents a non-trivial problem in this
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context. The separability of latent features is related to the “disentanglement” in the

representation learning literature. From the perspective of VFAH, one can view this as

the problem of disambiguating the influences of different profiling parameters on voice

by designing non-confounding features. Several deep models have been proposed for

latent feature disentanglement. Among the deep generative models, many attempts to

learn low-dimensional multivariate latent variables that semantically correlate with the

observations in an unsupervised manner [18, 19, 20, 21, 22] have been made. However,

well-disentangled representations are difficult to find in an unsupervised manner [23].

To understand this, let us first formally define disentanglement (a weaker requirement

than separability).

Definition 5.1 (Disentangled latent representation). On the latent manifold, denote

the underlying subset of a data sub-class 𝒰 as 𝒰 . For each data 𝑥 ∈ 𝒰 and a latent

representation 𝑧 ∈ 𝒰 , there exists a local diffeomorphism 𝐺 : 𝑈 → 𝑈 where 𝑈 and 𝑈

are neighborhoods of 𝑧 and 𝑥, and hence the differential 𝑑𝑧𝐺 : 𝑇𝑧𝒰 → 𝑇𝑥𝒰 is a linear

isomorphism. In finite-dimensional space, this means the Jacobian 𝐽𝑧𝐺 is non-singular.

Then 𝑧 is a disentangled latent representation for the data 𝑥.

In this way, a variation in the latent dimension independently leads to a correspond-

ing variation in the original data space [24]. However, the problem is that the latent

representations may not be identifiable, i.e., they may have the same distribution.

Stating formally

Definition 5.2 (Unidentifiable latent representation). Consider a latent manifold

equipped with a probability measure (𝒰 ,Σ𝒰 , 𝜇). For every latent representations 𝑤 ∈ 𝒰 ,

there exists a measure-preserving map 𝑔 : 𝒰 → 𝒰 (such as change of coordinate)

such that 𝜇({𝑢 | 𝑢 ≤ 𝑔(𝑤)}) = 𝑔*𝜇({𝑢 | 𝑢 ≤ 𝑤}) where 𝑔*𝜇 is the pull-back of

𝜇 [25]. Therefore, two latent representations can have the same probability and are

unidentifiable up to isomorphism.

This motivates us to adopt a supervised or semi-supervised approach and use

a supervision signal to identify latent representations on the latent manifold while

keeping them disentangled. To this end, many supervised or semi-supervised deep
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generative models have been proposed, such as [26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37].

Among these models, one school of methods attempts to impose geometric structures

onto the latent space, such as multi-modal distributions, orthogonal subspaces, and

Riemannian manifold [34, 35, 36, 38, 39, 40]. These methods are of particular interest

because they disentangle and further enforce the separability constraint on the latent

manifold, and separability is a stronger property than disentanglement.

Our study pursues this school of geometric approaches. We propose a semi-

supervised generative model to enforce disentanglement and geometric separability of

latent representations. Further, we impose an algebraic structure on the latent manifold

to allow vector-space arithmetic operations, which have semantic interpretations in

the data (observation) space. In the context of VFAH, we would like to discover latent

features that represent the information in the voice and are also separable w.r.t. classes

such as gender, dialect, emotions, etc. In other words, they are disambiguated. To

this end, we propose a class-dependent adversarial latent structure matching (CALM)

framework. We describe this framework in detail in the following section.

5.3 Automatic Speech Feature Discovery via Class-

Dependent Adversarial Latent Structure Match-

ing

Having discussed the general approaches to learning latent features using generative

models, we present an adversarial modeling and learning approach to discovering

speech features.

5.3.1 Introduction

As speech technology advances, deriving features for characterizing domain-specific

explanatory traits in speech remains an active and challenging task [41]. The domain-

specific speech features are mainly derived from spectrograms, including cepstral
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representations such as the Mel-frequency cepstral coefficients [42], statistical represen-

tations such as the Gaussian mixture models [43], subspace representations such as the

i-vectors [44], and lately developed latent representations such as neural networks [45].

These domain-specific features have proven their effectiveness in various speech-related

tasks [46].

On the other hand, the speech spectrogram is a powerful representation of the time

and frequency information in voice production, transmission, and acquisition, capable

of characterizing both biometric and environmental traits [47]. More specifically, the

variations in spectrogram are underpinned by a set of profiling parameters, including

physical parameters such as unique articulatory apparatus configurations and body

shape, physiological parameters such as age and illness, psychological parameters such

as mental states and emotions, sociological parameters such as race and education

level, environmental parameters such as location and surroundings, etc. [48]. These

parameters embody high-resolution, fine-detail signatures in time and frequency in

the spectrogram and can be used to predict speaker traits. For instance, the harmonic

bandwidth can predict age [49], the voicing onset time can identify Parkinson’s

disease [50], the variations in formant characteristics can help break voice disguise [48],

etc.

Generally, such signature variations are detected through human observation as

patterns within quantifiable entities such as formants, jitter, shimmer, etc. However,

not all profiling parameters may necessarily be present or well-disambiguated in

spectrograms. They may be highly transient and micro in terms of distinguishability

and may measurably emerge in higher-dimensional space. Further, we may not be able

to disentangle the correspondence of different parameters with signature variations

as-is.

This study addresses the problem of automatic speech feature discovery by con-

necting the time-spectral domain and the latent feature domain. Specifically, we build

a bi-directional mapping between the spectrogram and its latent space representation

and impose a fully parametric class-dependent geometry onto the latent space via

adversarial matching. This provides a semantic link between latent representations
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Table 5.1: Symbol List

Symbol Description
𝒳 original spectral space
𝒴 original label spacê︁𝒳 reconstructed/generated spectral space
𝒵 latent spacẽ︀𝒵 latent space with prior structure
P𝑠 Gaussian distributions on ̃︀𝒵: P𝑠 = {𝒩 (𝜇𝑖,Σ𝑖) | 𝜇𝑖 ∈ R𝐿,Σ𝑖 ∈ Λ𝐿}𝐶𝑖=1
𝑓𝜃 encoding map 𝑓𝜃 : 𝒳 → 𝒵
𝑔𝜓 decoding/generating map 𝑔𝜓 : 𝒵 → ̂︁𝒳
ℎ𝜁 preconditioning map ℎ𝜁 : 𝒴 → ̃︀𝒵
𝑚𝜑 discriminating map 𝑚𝜑 : 𝒵 ∪ ̃︀𝒵 → R
𝑢 probability measure on 𝒳
𝑣 probability measure on 𝒵̃︀𝑣 probability measure on ̃︀𝒵

𝒲(·, ·) Wasserstein distance

and spectrograms, enabling semantic operations such as sampling, interpolation, and

reconstruction to be performed on them. Moreover, the latent space admits a nat-

ural clustering, enabling direct classification. We call our approach class-dependent

adversarial latent structure matching (CALM).

5.3.2 Class-Dependent Adversarial Latent Structure Match-

ing

This section proposes the class-dependent adversarial latent structure matching

(CALM) framework. Consider a collection of data 𝒟 = 𝒳 × 𝒴 = {(X𝑖, 𝑦𝑖)}𝑁𝑖=1 with 𝑁

samples from 𝐶 classes, where X𝑖 represents the spectrogram in class 𝑦𝑖 ∈ [1, . . . , 𝐶].

Assume the underlying distribution for 𝒳 is P𝒳 with probability measure 𝑢, and the

underlying distribution for the latent space 𝒵 ∈ R𝐿 of dimension 𝐿 is P𝒵 with proba-

bility measure 𝑣. First, define the encoding map between 𝒳 and 𝒵 as 𝑓𝜃 : 𝒳 → 𝒵,

and the decoding/reconstructing/generating map as 𝑔𝜓 : 𝒵 → ̂︁𝒳 where ̂︁𝒳 is the

reconstructed/generated data space. The encoder (𝐸) 𝑓𝜃 and generator (𝐺) 𝑔𝜓 are in

the form of deterministic universal approximators (e.g., a multi-layer neural networks)
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parameterized by 𝜃 and 𝜓 respectively. In order to encode sufficient information of 𝒳

in 𝒵 such that one can reconstruct X ∈ 𝒳 from z ∈ 𝒵 , we minimize the difference

between 𝒳 and ̂︁𝒳 :

min
𝜓
ℒreconstruction := EX∼𝑢,z∼𝑣 ‖X− 𝑔𝜓(z)‖2

𝐹 (5.1)

where ‖ · ‖𝐹 is the Frobenius norm.

Second, we impose the latent space 𝒵 with a desirable structure by matching it to

a prior ̃︀𝒵, which carries a class-dependent distribution P𝑠 with probability measure
̃︀𝑣. The choice of the prior distribution controls the information encoded in the latent

space. Studies show that imposing a Gaussian prior to the latent space realizes global

and local information decomposition [27]. We further show that by imposing a class-

dependent Gaussian prior, the latent vectors in the latent space naturally cluster into

different classes and, therefore, can be directly used for classification tasks. For instance,

if the prior depends on speaker classes, we can deduce a voice sample’s speaker id

by finding the prior class having the smallest distance (defined by the geodesic on

the latent manifold) to its latent vector. Hence, we formulate P𝑠 as a collection of

Gaussians P𝑠 = {𝒩 (𝜇𝑖,Σ𝑖) | 𝜇𝑖 ∈ R𝐿,Σ𝑖 ∈ Λ𝐿}𝐶𝑖=1 where Λ𝐿 denotes the group of

𝐿-by-𝐿 diagonal matrices. We train a preconditioner (𝑃 ) network ℎ𝜁 : 𝒴 → ̃︀𝒵 to

transform class labels into prior vectors. Additionally, we adopt the reparameterization

trick [14] to avoid computing stochastic gradients in the network

̃︀z𝑖 ∼ 𝒩 (𝜇𝑖,Σ𝑖)⇒ ̃︀z𝑖 = 𝜇𝑖 + 𝜖
√︁
Σ𝑖, 𝜖 ∼ 𝒩 (0,1) (5.2)

After reparameterization, the preconditioner produces the mean 𝜇 and variance Σ for

each 𝑦 ∈ 𝒴, and randomly samples from standard normal distribution to produce ̃︀z.

Next, we impose a separable structure to the Gaussians P𝑠 by minimizing the scatter

87



loss

minℒscatter :=
⃒⃒⃒⃒
⃒ 1
𝐶

𝐶∑︁
𝑖=1
‖𝜇𝑖‖ −

√
𝐶

⃒⃒⃒⃒
⃒+

𝐶∑︁
𝑖=1

⃒⃒⃒⃒
⃒‖Σ𝑖‖+

√
𝐶

2 − ‖𝜇𝑖‖
⃒⃒⃒⃒
⃒+

𝐶−1∑︁
𝑖=1

𝐶∑︁
𝑗=𝑖+1

⃒⃒⃒⃒
⃒
⟨

𝜇𝑖

‖𝜇𝑖‖
,

𝜇𝑗

‖𝜇𝑗‖

⟩⃒⃒⃒⃒
⃒ (5.3)

where the first term constrains the mean vectors onto a hyper-sphere with diameter
√
𝐶, the second term is a constraint on within-class scatter relative to between-class

scatter, and the third term is the relative scatter of mean vectors. Having defined the

separable, class-dependent distribution structure on the prior ̃︀𝒵, now we can pull the

latent space 𝒵 close to ̃︀𝒵 via adversarial matching. This is achieved by minimizing the

approximation error between 𝑣 and ̃︀𝑣, i.e., minimizing their Wasserstein distance [16]

min ℒWasserstein :=𝒲(𝑣, ̃︀𝑣) = inf
𝛾∈
∏︀(𝑣,̃︀𝑣)E(z,̃︀z)∼𝛾‖z− ̃︀z‖1 (5.4)

where ∏︀ (𝑣, ̃︀𝑣) denotes the set of joint probability measures 𝛾(z, ̃︀z) whose marginals are

respectively 𝑣 and ̃︀𝑣, and ‖ · ‖ denotes the 𝑙1 norm. In [16] it shows that 𝒲(𝑣, ̃︀𝑣)→ 0

implies 𝑣 𝑑→ ̃︀𝑣. To minimize (5.4), we train a discriminator (𝐷) 𝑚𝜑 : 𝒵 ∪ ̃︀𝒵 → R in

the family of 1-Lipschitz continuous functions. The discriminator reaches its optimum

when 𝑣 matches with ̃︀𝑣 [16]. The discriminator makes equal errors identifying samples

from 𝒵 or ̃︀𝒵.

In addition to the separability of latent features, our CALM framework adds an

algebraic structure to the latent space. From the tangent space of the latent manifold,

vector space operations such as vector addition (translation) and scalar multiplication

(scaling) can be performed on the latent vectors. Consequently, interpolation can be

done in the latent space. Since we have regularized the latent manifold to be spherical,

its geodesics are the great circles through the center. By spherically interpolating along

the geodesic on the hyper-sphere, we can generate a smooth transition of samples in the

sample space. Hence, the algebraic operations in the latent space have corresponding
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(a) (b)

Figure 5-2: CALM framework. (a) The class-dependent adversarial latent matching
model. It consists of an encoder 𝐸, a decoder𝐺, a preconditioner 𝑃 , and a discriminator
𝐷. (b) The 𝐸, 𝐺, 𝑃 , and 𝐷 together project the data sub-classes onto separable sub-
manifolds in the latent manifold. The 𝐸, 𝐺 pair encodes necessary information in the
latent manifold for reconstruction, 𝑃 enforces class-dependent separable distribution
constraint, and the game between 𝐷 and 𝐺 ensures the sub-classes are mapped to
corresponding sub-manifolds.

semantic interpretations in the sample space.

The proposed CALM framework with components 𝐸, 𝐺, 𝑃 , and 𝐷 is shown in

Figure 5-2a. The encoder-decoder pair (E, G) encodes the speech’s spectrograms (or

other data representations) into latent features in the latent space. The preconditioner

𝑃 transforms class labels (referring to classes such as gender, dialect, and emotion) into

a prior distribution of non-overlapping Gaussians over the latent manifold. This can be

done by transforming the labels through a neural net into mean and variance vectors

using the reparameterization trick. The collection of Gaussians is constrained to be

evenly distributed on a hyper-sphere (as illustrated in Figure 5-2b), with their centers

scattered and their spread confined by the scatter loss (5.3). The number of Gaussians

is equal to the number of classes. The discriminator tries to match the latent feature

distribution with the prior; the latent features are separable and class-dependent.

To jointly optimize over objective (5.1), (5.3), and (5.4), we propose a three-phase

iterative training comprising an encoding phase, discriminating phase, and adversarial

phase (see Figure 5-3). In phase one, the encoder produces encoding z by minimizing

(5.1), and the preconditioner elects prior encoding ̃︀z by minimizing (5.3). In phase

two, the discriminator classifies between z and ̃︀z by minimizing (5.4). In phase three,

the encoder and preconditioner adjust themselves by minimizing the reverse of (5.4),
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Figure 5-4: The game among encoder 𝐸, decoder 𝐺, preconditioner 𝑃 and discriminator
𝐷 in CALM.

which is an adversarial process [15].

The three-phase learning can be viewed as a game among 𝐸, 𝐺, 𝑃 , 𝐷 (as illustrated

in Figure 5-4): the encoder and preconditioner projects data to the latent space, and

the latent space with separable densities, respectively; then the discriminator measures

the difference between the two latent spaces and pulls them toward each other following

the gradient flow; meanwhile, the generator fights against the discriminator by pulling

the latent spaces in opposite directions.

5.3.3 Experiments

This section describes the experiments we conduct to validate the effectiveness of the

CALM framework. We demonstrate some nice properties of the latent space learned

by our CALM framework and the utility of the learned features in VFAH classification

and regression tasks.
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Experimental Settings

Task and Data We evaluate our CALM framework by (1) reconstructing spec-

trograms from latent features, (2) sampling latent space across classes, (3) sampling

latent space within a class, and (4) performing various classification and regression

tasks using the latent features, including the deduction of gender, dialect, age, and

height from speech.

For gender and dialect classification, we use the TIMIT dataset [51], which consists

of 6300 recordings with ten sentences spoken by 630 speakers in eight major dialect

regions of the United States. The recordings are first chunked into 2-second segments

and then converted to constant-Q spectrograms [52] of dimension 414×450 to leverage

pitch variations. Eighty percent of the data is used for training, and the rest is used for

testing. The data are normalized to zero mean and identity covariance. For age and

height estimation, we use the task and data settings described in Section 3.2.3, except

that instead of extracting i-vector features, we compute the constant-Q features.

Network Structure The encoder 𝐸 has five blocks of {convolutional layer, batch

normalization, leaky ReLU activation} with filter size 4, stride size 2, padding size 1 and

number of filters {64, 128, 256, 512, 1024}, respectively. It outputs a 200 dimensional

latent vector via average pooling. The generator 𝐺 has five blocks of {transposed

convolutional layer, batch normalization, leaky ReLU activation} with filter size 4,

stride size 2, padding size 1 and number of filters {1024, 512, 256, 128, 64}, respectively.

It outputs the spectrogram via max pooling. The preconditioner 𝑃 has three fully

connected layers with size 1000, batch normalization, and leaky ReLU activation. The

discriminator 𝐷 has three fully connected layers with size 1000, leaky ReLU activation,

and additional gradient penalty to ensure the 1-Lipschitz continuity [53].

Training We use the proposed three-phase training. We use an ADAM optimizer

with an initial learning rate of 0.0001 and batch size of 4.
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Latent Reconstruction and Sampling

Figure 5-5 shows the reconstructed spectrograms for different genders and dialects

on the test data. It demonstrates high-quality reconstruction with continuous har-

monics and fine details, indicating that the latent features capture class-dependent

information. Figure 5-6 shows the samples generated from the spherical sampling of

the latent space from speaker A to speaker B [54]. It demonstrates a smooth transition

between the two speakers and empirically suggests that the latent manifold admits a

spherical structure and supports algebraic-semantic operations. Figure 5-7 shows the

spectrograms generated from sampling the latent submanifolds for different genders

and dialects. It demonstrates strong class dependency and within-class variations,

implying that the latent manifold has class-dependent submanifolds.

Classification and Regression with Latent Features

Further, we test the learned latent space with gender and dialect classification. For

a test spectrogram X𝑡, we encode it to its latent representation z𝑡 and select the

class label with the smallest Mahalanobis distance to the prior distribution: label =

arg min𝑖 𝑑𝑖𝑠𝑡(z𝑡, {𝒩 (𝜇𝑖,Σ𝑖)}𝐶𝑖=1). We obtain 76% accuracy for gender classification and

72% for dialect classification. This empirically verifies that the latent space observes

a class-dependent clustering structure. It is worth noting that we do not train a

classifier but rather implicitly incorporate the class information into the latent space.

Classification accuracy can be improved by imposing a more refined separated structure

or employing an additional classifier (e.g., neural nets) to classify the latent features.

To this end, we train a two-layer feedforward network on the latent features obtained

from our CALM framework and obtain 99% gender classification accuracy and 97%

dialect classification accuracy.

For age and height estimation, we need to adapt our CALM framework to a

regression setting. Specifically, we first train our CALM models conditioned on speaker

id—using speaker ids as inputs to the preconditioner. Consequently, the learned latent

space carries a speaker-class-dependent structure (though it is not refined enough for
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Table 5.2: Age and Height Estimation Results

Task Dataset Method Male Female
MAE RMSE MAE RMSE

Age Fisher
NRT 7.20 9.02 6.81 8.53
HRME-MLP 6.91 8.74 6.40 8.07
CALM-MLP 7.28 9.64 7.25 9.58

Height SRE
NRT 5.43 6.40 4.27 6.07
HRME-MLP 5.24 6.24 4.15 5.87
CALM-MLP 5.95 6.53 4.88 6.18

(a)

(b)

(c)

Figure 5-5: Within-class spectrogram reconstruction: (a) original and reconstructed
females, (b) original and reconstructed males, (c) original and reconstructed dialects.

direct use in identifying speakers). Then, we train a two-layer feedforward network on

the learned latent features to predict age and height.

Table 5.2 shows the results for age and height estimation. The NRT and HRME

results are taken from Section 3.2.3 and 4.3.3, respectively. We observe that MLP

with CALM features achieves comparable performance to NRT with i-vector features.

Considering that the CALM features are conditioned on speaker ids, we validate that

the CALM feature space embeds a speaker-dependent structure potentially similar to

the i-vector subspace structure.
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Figure 5-6: Generated spectrograms via sampling the latent space from speaker A to
speaker B.

5.3.4 Related Work

Our work adopts the idea of adversarial matching of two distributions and the adver-

sarial autoencoder structure [27, 37]. The adversarial learning is originally proposed

in [15], and then variants arise to improve the generalization ability and stability [16,

55]. The generative adversarial net is mainly used to generate samples close to the

original data domain [27] or transfer them to a different domain [56, 57, 58].

One challenging task in adversarial learning is interpreting the relation between

the data domain and the latent domain [59, 60, 61]. Some recent work uses the latent

domain to improve generalization in data domain [62] or cross domains [57, 58], or

to decompose information in the data domain [27]. While related, our work takes a

very different path by imposing a class-dependent structure on the latent domain,

whereas similar work uses standard normal [16] or categorical manifolds [27, 37]. One

close work [63] sets the latent space to be a unit ball by re-scaling random vectors

drawn from the Gaussian but does not account for class dependency. By enforcing the

latent structure prior to being class-dependent, we obtain a semantic interpretation

and manipulation of the latent space.

5.3.5 Conclusions

This study presents a class-dependent adversarial latent structure matching (CALM)

framework to encode a class-dependent separable structure into the latent space. The

latent features in the latent space fall into natural clusters and can be directly used

for classification tasks. The latent space also admits an algebraic structure that allows

sampling and interpolation within/across classes with semantic interpretation. Hence,

our CALM framework provides a semantic link between the latent and data space
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(a)

(b)

(c)

(d)

Figure 5-7: Generated spectrograms via sampling the latent space for (a) female,
(b) male, (c) and (d) dialect 1 and 2.

and a tool to discover and analyze latent features. The effectiveness of our framework

is validated through various VFAH classification and regression tasks. Future work

could further study the structure in latent space, such as via subspace decomposition,

and improve the stability of the adversarial matching. Another research direction

is to explore the utility of generated samples to augment data and improve task

performance.
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Chapter 6

Process-Specific Approaches for

Vocal Fold Modeling

Process-specific models deal with physical processes and model them with dynamical

systems. In the context of VFAH, we are interested in the physical (bio-mechanical)

process of voice production, particularly phonation. By formulating process-specific

models, we can study the dynamics of voice production within the phase space of

these models and characterize various profiling parameters based on them.1 We use

these models to work with the specific case of identifying and characterizing different

voice abnormalities.

6.1 Brief Introduction to Dynamical Systems

Our study primarily concerns real-time dynamical systems.

Definition 6.1 (Dynamical system). A real-time dynamical system is a tuple (𝑇,𝑀,Φ),

where 𝑇 is a monoid (an algebraic construct, such as an open interval in R+). 𝑀 is a

manifold locally diffeomorphic to a Banach space, usually called the phase space. As
1Note here that we are not specifically interested in synthesizing speech with them—that would

involve modeling other linguistic, prosodic, articulatory, and co-articulatory phenomena inherent
in speech. Instead, we are simply interested in using them to model the process of phonation and
deduce the physical and aerodynamic properties of the vocal folds, based on which we expect to be
able to make accurate deductions about the underlying factors that influence the speaker’s voice.
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opposed to the configuration space describing the “position” of a dynamical system,

the phase space describes the “states” or “motion” of the dynamical system. It is often

defined as the tangent bundle 𝑇𝑀 or the cotangent bundle 𝑇 *𝑀 of the underlying

manifold. Φ : 𝑇 ×𝑀 ⊇ 𝑈 →𝑀 , where proj2(𝑈) = 𝑀 , is the (continuous) evolution

function [1].

Definition 6.2 (Evolution function). Denote the duration of evolution of a dynamical

system as 𝐼(𝑥) = {𝑡 ∈ 𝑇 | (𝑡, 𝑥) ∈ 𝑈}. The evolution function Φ is a group action of

𝑇 on 𝑀 satisfying

1. Φ(0, 𝑥) = 𝑥, for all 𝑥 ∈𝑀 ;

2. Φ(𝑡2 + 𝑡1, 𝑥) = Φ(𝑡2,Φ(𝑡1, 𝑥)), for 𝑡1, 𝑡2 + 𝑡1 ∈ 𝐼(𝑥), 𝑡2 ∈ 𝐼(Φ(𝑡1, 𝑥)).

A dynamical system can be instantiated with ordinary or partial differential

equations with initial conditions, and the evolution function Φ is the solution to

the ODE or PDE. We write Φ𝑥(𝑡) ≡ Φ𝑡(𝑥) ≡ Φ(𝑡, 𝑥). The map Φ𝑡 : 𝑀 → 𝑀 is a

diffeomorphism (i.e., differentiable, invertible, bijection map between manifolds).

Definition 6.3 (Flow, orbit, invariance). The map Φ𝑥 : 𝐼(𝑥) → 𝑀 is the flow or

trajectory through 𝑥. The set of all flows 𝛾𝑥 := {Φ𝑥 | 𝑡 ∈ 𝐼(𝑥)} is the orbit through

𝑥. Particularly, a subset 𝑆 ⊆𝑀 is called Φ-invariant if Φ(𝑡, 𝑥) ∈ 𝑆 for all 𝑥 ∈ 𝑆 and

𝑡 ∈ 𝑇 .

The behaviors of flows can be described by their attractor/attraction sets.

Definition 6.4 (Attractor). An attractor set 𝐴 ⊆𝑀 in the phase space is a closed

subset satisfying the condition that for an initial point 𝑥, there exists a 𝑡0 such that

Φ𝑥(𝑡) ∈ 𝐴 for any 𝑡 > 𝑡0.

Namely, the orbit 𝛾𝑥 is “trapped” in the interior of 𝐴. A dynamical system can

have more than one attractor set depending on the initial points (or the choice of

parameters, as we will see later). Locally we can talk about a basin of attraction 𝐵(𝐴),

which is a neighborhood of 𝐴 satisfying for any initial point 𝑥 ∈ 𝐵(𝐴), and its orbit is

eventually trapped in 𝐴. There are different types of attractor sets, and the specific
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Figure 6-1: Illustration of different attractors in a dynamical system’s phase space.

types exhibited by the system depend on its parameter settings. Some are shown

in Figure 6-1. The simplest one is a fixed point or an equilibrium point, to which

the solutions of the system eventually converge, regardless of the initial setting of

the variables. We are particularly interested in those attractors that exhibit periodic

motion of the flow (the solution trajectory) in phase space. Such attractors include

the limit cycle or the limit torus, an isolated periodic or toroidal orbit. Some attractor

sets have a fractal structure emerging from a chaotic state of the dynamical system [2,

3]. Chaos is a characteristic state of a nonlinear dynamic system. There are different

definitions of chaos. Putting it simply

Definition 6.5 (Chaos). Equip a distance metric 𝑑 on the phase space 𝑀 . Then

𝐶 ∈𝑀 is referred to as a chaotic set of Φ if, for any 𝑥, 𝑦 ∈ 𝐶, 𝑥 ̸= 𝑦, we have

lim
𝑛→∞

inf 𝑑(Φ𝑛(𝑥),Φ𝑛(𝑦)) = 0 (6.1)

lim
𝑛→∞

sup 𝑑(Φ𝑛(𝑥),Φ𝑛(𝑦)) > 0 (6.2)

This captures the system’s sensitivity to initial conditions when it is in a state

of chaos—for any two arbitrarily close initial points, the solution trajectories will

diverge in phase space, and the rate of divergence is exponential. This characteristic of

the exponential rate of divergence is captured by the Lyapunov exponent, which also

measures the sensitivity of the evolution of the dynamical system to initial conditions.
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These different types of attractor sets exhibit different levels of stability of dynamical

systems.

Definition 6.6 (Stability). A compact Φ-invariant subset 𝐴 = Φ(𝐴) ⊆𝑀 is called a

Lyapunov stable attraction set if

1. It has an open basin of attraction 𝐵(𝐴);

2. The Lyapunov stability condition is satisfied: every neighborhood 𝑈 of 𝐴 contains

a smaller neighborhood 𝑉 such that every iterative forward image Φ𝑛(𝑉 ) is

contained in 𝑈 .

To study the orbit structure of the trajectories of dynamical systems, we use the

Poincaré map or Poincaré section.

Definition 6.7 (Poincaré map [1]). For an 𝑛-dimensional phase space with a periodic

orbit 𝛾𝑥, a Poincaré section 𝑆 is an (𝑛− 1)-dimensional section (hyper-plane) that is

transverse to 𝛾𝑥. Given an open, connected neighborhood 𝑈 ⊆ 𝑆 of 𝑥, the Poincaré

map on Poincaré section 𝑆 is a map 𝑃 : 𝑈 → 𝑆, 𝑥 ↦→ Φ𝑥(𝑡𝑠) where 𝑡𝑠 is the time

between the two intersections, satisfying

1. 𝑃 (𝑈) is a neighborhood of 𝑥 and 𝑃 : 𝑈 → 𝑃 (𝑈) is a diffeomorphism;

2. For every point 𝑥 in 𝑈 , the positive semi-orbit of 𝑥 intersects 𝑆 for the first time

at 𝑃 (𝑥).

Since the flow of a dynamical system in its phase space is a function of its parameters,

the topological structure of the trajectories (including attractor sets) in phase space

changes as the parameters change. To see how the topological structure changes with

system parameters, we study the bifurcation map of the system.

Definition 6.8 (Bifurcation). A bifurcation occurs when a small smooth change in a

system parameter value causes an abrupt change in the topological structure of the

trajectory in phase space. A bifurcation diagram is a visualization of the system’s

parameter space showing the number and behavior of attractor sets for each parameter

configuration.
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Figure 6-2: Illustration of the phonation process. Airflow from the lungs, driven by
the subglottal pressure 𝑃𝑠, passes through the glottis, and vocal folds are set into a
state of self-sustained vibration, producing the glottal flow 𝑢𝑔 which is a quasi-periodic
pressure wave. The vibration of vocal folds is analogous to a pair of mass-spring-damper
oscillators. Further, the glottal flow resonates in the speaker’s vocal tract and produces
voiced sound.

At a bifurcation point, the system stability may change as the topological structure

splits or merges, such as the periodic doubling or halving of a limit cycle.

6.2 Phonation Modeling and Characterization

Phonation is the process wherein the vocal folds in the larynx are set into a state of

self-sustained vibration, causing an excitation signal to be produced at the glottal

source. This signal, called the glottal flow, is a quasi-periodic pressure wave at a

fundamental frequency (the pitch) of a few hundred hertz. Further, it resonates in

the speaker’s vocal tract, consisting of the laryngeal cavity, the pharynx, the oral

cavity, and the nasal cavity. Depending on the vocal tract’s shape and the articulators’

configuration (tongue, lip, jaw, etc.), the pressure wave is heard as a characteristic

voiced sound by the listener. Figure 6-2 illustrates the phonation process. Phonation

is important in the production of all vowels and all voiced consonants in all languages

of the world.

At the biomechanical level, phonation happens due to a specific pattern of events

in the glottal region. The vocal folds are membranes that are set into self-sustained
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Figure 6-3: Schematic of the balance of forces through one cycle of the self-sustained
vibrations of the vocal folds. The color codes for the arrows depict net forces due to the
following: Pink–muscular; Green–Bernoulli effect; Yellow–Coandǎ effect; Blue–vocal
fold elasticity and other factors; Black and Red–air pressure. Lighter shades of each
color depict smaller forces. Figure from [6] with permission.

vibratory motion. By the myoelastic-aerodynamic theory of phonation, such motion is

initiated and driven by a complex and delicate interplay of physical and aerodynamic

forces in the laryngeal region [4, 5]. These forces relate to (a) pressure balances and

airflow dynamics within the supra-glottal and sub-glottal regions and (b) muscular

control within the glottis and the larynx. The balance of forces necessary to cause

self-sustained vibrations is created by two physical phenomena: the Bernoulli effect

and the Coandǎ effect. Figure 6-3 illustrates the interaction between these effects that

drives the oscillations of the vocal folds.

The process of phonation begins with the closing of the glottis. This closure is

voluntary and facilitated by the laryngeal muscles. Once closed, the muscles do not

actively play a role in sustaining the vibrations. Glottal closure is followed by a

contraction of the lungs which pushes out air and causes an increase in pressure just

below the glottis. When this subglottal pressure crosses a threshold, the vocal folds
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are pushed apart, and air rushes out of the narrow glottal opening into the much

wider supra-glottal region, creating negative intra-glottal pressure (with reference to

atmospheric air pressure) [6].

From the airflow perspective, the glottis thus forms a flow-separation plane. The

air expansion in this region and the low pressure created in the vicinity of the glottis

through the Coandǎ effect-induced entrainment cause a lowering of pressure close to

the glottis and a net downward force on the glottis. At the same time, lowered pressure

in the glottal region due to the Bernoulli effect that ensues from the high-velocity air

volume flow through the glottis exerts a negative force on the glottis. The negative

Bernoulli pressure causes elastic recoil, causing it to begin to close again. The closing

reduces the volume flow through the glottis, diminishing the downward forces acting on

it. Increased pressure buildup in the sub-glottal region causes the glottis to open again.

This chain of oscillations continues in a self-sustained fashion throughout phonation

until voluntary muscle control intervenes to alter or stop it or as the respiratory volume

of air in the lungs is exhausted [6].

6.2.1 Phonation Models

Physical models of phonation attempt to explain this complex physical process using

relations derived from actual physics, especially aerodynamics and the physics of

mechanical structures. The exact physics of the airflow through the glottis during

phonation is well studied, e.g., [5, 7, 8, 9, 10, 11], and several physical models have been

proposed for it, e.g., [6, 8, 12, 13, 14, 15, 16, 17]. Specifically, the phonation process can

be divided into two sub-processes: (1) vocal folds oscillation, and (2) wave propagation

in the vocal tract. Correspondingly, the models include vocal fold models and vocal

tract models. The vocal fold models describe the vibration of vocal folds and their

aerodynamic interaction with airflow. Such models are of four broad types: one-mass

models e.g. [5, 13, 18, 19, 20], two-mass models e.g. [8, 12], multi-mass models [15], and

finite element models [14]. Each of these has proven to be useful in different contexts.

On the other hand, the vocal tract models describe the interaction of the acoustic

pressure wave with the vocal chambers. The vocal tract can be described by statistical

108



models [21], geometric models [22], biomechanical models [23], etc. In order to describe

the aero-acoustic interaction of airflow and vocal tract, different models are applied,

such as the reflection type line analog model, the transmission line circuit analog

model [24], hybrid time-frequency domain models [25], finite-element models [26], etc.

One-mass model One-mass models describe vocal fold vibration as a mass-damper-

spring oscillator. As an example

𝑀�̈�+𝐵�̇�+𝐾𝑥 = 𝑓(𝑥, �̇�, 𝑡)

where 𝑥 is lateral displacement, 𝑀 , 𝐵, 𝐾 are mass, damping, and stiffness coefficients,

𝑓 is the driving force, and 𝑡 is time [5]. The driving force is velocity-dependent and

can be estimated by Bernoulli’s energy law

𝑃𝑔 = 𝑃𝑠 −
1
2𝜌𝑣

2

where 𝑃𝑔 is mean glottal pressure, 𝑃𝑠 is sub-glottal pressure, 𝜌 is air density, and 𝑣 is

air-particle velocity. The kinetic pressure in the supra-glottal region is neglected [5].

Two-mass model Two-mass models describe vocal fold motion as two coupled

mass-damper-spring oscillators. As an example

𝑀1�̈�1 +𝐵1�̇�1 +𝐾(𝑥1 − 𝑥2) +𝑅1 = 𝐹1

𝑀2�̈�2 +𝐵2�̇�2 +𝐾(𝑥2 − 𝑥1) +𝑅2 = 𝐹2

where 𝑥𝑖, 𝑀𝑖, and 𝐵𝑖 are the 𝑖-th oscillator’s displacement, mass, and viscous damping

coefficient, respectively, 𝐾 is the coupling stiffness between the two masses, 𝐹𝑖 is the

driving force, and 𝑅𝑖 is the elastic restoring force [12]. This model assumes (1) small

air inertia and quasi-steady glottal flow, (2) negligible supra-glottal pressure, and (3)

that the nonlinearity induced by vocal fold collision is small. These assumptions lead

to small-amplitude oscillations and allow model simplification [12].
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Multi-mass model Multi-mass models have a large degree of freedom and hence

can model vocal fold motion with high precision. For the 𝑖-th mass component, their

equation of motion is

𝑀𝑖�̈�𝑖 = 𝐹 𝐴
𝑖 + 𝐹 𝑉

𝑖 + 𝐹 𝐿
𝑖 + 𝐹 𝐶

𝑖 + 𝐹𝐷
𝑖

where 𝑥𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is the three-dimensional displacement, 𝑀𝑖 is the mass, 𝐹 𝐴
𝑖 is

the anchor force associated with the anchor spring and damping, 𝐹 𝑉
𝑖 and 𝐹 𝐿

𝑖 are the

vertical and longitudinal coupling forces associated with spring and damping, 𝐹 𝐶
𝑖 is

the collision restoring force, and 𝐹𝐷
𝑖 is the driving force from glottal pressure [15].

In [15], 50 masses are used.

Finite element model Finite element models discretize the vocal fold motion in

space and time—the geometry of the vocal fold is discretized into small elements

(cells). In each cell, the differential equation governed by the laws of physics is solved.

These models can handle complex geometries, continuous deformation, and complex

driving forces [14]. Consider a cube element with six stress and strain components. By

the principles of mechanics for elasticity-mediated movements

𝜎 = 𝑆𝜖

where 𝜎 is the stress tensor, 𝜖 is the strain tensor, and 𝑆 is the stiffness matrix

consisting of Young’s modulus, shear modulus, and Poisson’s ratio [14]. The relation
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between stress and displacement is governed by

𝜎𝑥 = 𝐶1𝜇
𝜕𝑢

𝜕𝑥
+ 𝐶2𝜇

𝜕𝑤

𝜕𝑧

𝜎𝑧 = 𝐶2𝜇
𝜕𝑢

𝜕𝑥
+ 𝐶1𝜇

𝜕𝑤

𝜕𝑧

𝜏𝑥𝑦 = 𝜇′𝜕𝑢

𝜕𝑦

𝜏𝑦𝑧 = 𝜇′𝜕𝑤

𝜕𝑦

𝜏𝑧𝑥 = 𝜇

(︃
𝜕𝑤

𝜕𝑥
+ 𝜕𝑢

𝜕𝑧

)︃

where 𝜏 is the shear stress, 𝑢 and 𝑤 are the lateral and vertical components of the

displacement vector, 𝜇 and 𝜇′ are shear modulus, and 𝐶1 and 𝐶2 are constants [14].

This system of partial differential equations can be efficiently solved by finite element

methods. We will describe this in more detail in the next chapter.

Vocal tract models in general The vocal tract models fall into one of three

categories—statistical, geometrical, or biomechanical. Statistical models describe

the vocal tract as statistical factors or components. For instance, factor analysis

describes the vocal tract profile as a sum of articulatory components and analyzes

the relationship between individual or combination of components and vocal tract

parameters [21]. Geometric models attempt to depict the shape and geometric

configurations of the vocal tract. They specify the articulatory state with vocal tract

parameters that define the position and shape of the tongue, lips, jaw, larynx, etc [22].

However, such models are not scalable because they do not account for the continuous

variations of the anatomy and articulatory state, require clinical measurements such

as from magnetic resonance imaging, and are not amendable to coupling with vocal

fold models. On the other hand, biomechanical models are more scalable and

accurate. They simulate the geometry and articulatory movements of the vocal tract

using displacement-based finite element methods and take into account the continuous

tissue deformation and variation of the physiological, biomechanical, and viscoelastic

properties of muscles [23]. Consequently, such models lend us more fine-grained control
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over muscular forces, articulator positions, and movements. To study the interaction

between vocal folds and the rest of the vocal tract, modeling approaches often take

analog processes into the digital circuit regime and model the propagation of glottal

flow in the vocal tract as a transmission line circuit [24]. One can evaluate the system

(vocal tract)’s transfer function in the time and frequency domain and acquire the

system output in response to the input (glottal flow) [25]. We take a different approach

by uniting the vocal folds and tract into a single model. We efficiently solve the

vocal fold-tract model and estimate model parameters directly from recorded speech

measurements. We dedicate the next chapter to studying such integration of the vocal

fold and tract model.

Asymmetric one-mass body-cover model for disordered phonation In this

study, we are interested in process-specific modeling and characterization of disordered

phonations as an illustrative example. This serves the additional purpose of giving us

tools to aid the diagnosis and treatment of voice pathologies. The term “voice disorders”

refers to any abnormality wherein voice quality differs from its normal status [27].

The abnormality can be physiological, i.e., due to the structural alteration of voice

apparatus, such as edema or occurrence of vocal nodules, or neurogenic changes, such

as vocal tremor, spasmodic dysphonia, or paralysis of vocal folds. The abnormality

can also be functional, i.e., due to the improper use of the voice production apparatus,

such as vocal fatigue, muscle tension dysphonia, aphonia, diplophonia, or ventricular

phonation.

In most vocal pathologies such as vocal palsy, phonotrauma, neoplasm, etc., the

properties of the vocal structures vary from their generic settings [28]. These often

cause the movements of the vocal folds to become asymmetric [16, 29]—where the

movements of the left and right folds are out of sync—in a manner that is characteristic

of the underlying pathology. For our purpose, the one-mass asymmetric body-cover

model [5, 18, 19, 20] is adopted, as illustrated in Figure 6-4. This model incorporates

an asymmetry parameter, which can emulate the asymmetry in the vibratory motions

of the left and right vocal folds. Hence, it is ideally suited to modeling pathological
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Figure 6-4: Diagram of the one-mass body-cover model for vocal folds. The lateral
displacements at the midpoint of the left and right vocal folds are denoted as 𝜉𝑙 and
𝜉𝑟, and 𝜉0 represents the half glottal width at rest.

phonation [30]. The key assumptions made in formulating this model are:

(a) The degree of asymmetry is independent of the oscillation frequency;

(b) The glottal flow is stationary, frictionless, and incompressible;

(c) All subglottal and supraglottal loads are neglected, eliminating the effect of

source-vocal tract interaction;

(d) There is no glottal closure and hence no vocal fold collision during the oscillation

cycle;

(e) The small-amplitude body-cover assumption is applicable (see definition below).

Assumption 6.1 (Body-cover assumption). The body-cover assumption assumes that

a glottal flow-induced mucosal wave travels upwards within the transglottal region,

causing a small displacement of the mucosal tissue, which attenuates down within a

few millimeters into the tissue as an energy exchange happens between the airstream

and the tissue [5].

This assumption allows us to represent the mucosal wave as a one-dimensional surface

wave on the mucosal surface (the cover) and treat the remainder of the vocal folds
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(the body) as a single mass or safely neglect it. As a result, the oscillation model can

be linearized, and the oscillatory conditions are much simplified while maintaining

the model’s accuracy. We adopt the specific formulation of the one-mass asymmetric

model from [20]. As shown in Figure 6-4, the left and right vocal folds oscillate with

lateral displacement 𝜉𝑙 and 𝜉𝑟, resulting in a pair of coupled Van der Pol oscillators

𝜉𝑟 + 𝛽(1 + 𝜉2
𝑟 )𝜉𝑟 + 𝜉𝑟 −

Δ
2 𝜉𝑟 = 𝛼(𝜉𝑟 + 𝜉𝑙)

𝜉𝑙 + 𝛽(1 + 𝜉2
𝑙 )𝜉𝑙 + 𝜉𝑙 + Δ

2 𝜉𝑙 = 𝛼(𝜉𝑟 + 𝜉𝑙)

where 𝛽 is the coefficient incorporating mass, spring, and damping coefficients, 𝛼 is

the glottal pressure coupling coefficient, and Δ is the asymmetry coefficient.

Inverse problem of model parameter estimation In the case of both the vocal

folds model and vocal tract model—their actual dynamics, i.e., the flows in phase

space, are governed by various biomechanical parameters of the vocal folds such as

elasticity, resistance, Young’s modulus, viscosity, etc., as well as the configurations of

vocal tract such as time-varying cross-sectional area. While these models effectively

solve the forward problem of accurately emulating vocal fold and vocal tract dynamics

during phonation, the inverse problem of finding the correct model parameters given

a set of observed speech signals has not been addressed. Hence, our research problem

is: (1) how can we effectively solve the inverse problem of accurately estimating the

parameters of vocal folds and vocal tract models (and hence their dynamics) from

observed voice signals, and (2) how can we use the model dynamics to characterize

pathological phonation?

The inverse problem is challenging to solve in real-life settings. For example, to

estimate the parameters for the vocal folds oscillation model, one needs to consider the

vocal tract coupling, the effect of lossy medium and lip radiation, etc. We eventually find

this problem intractable as we add more factors to consider. Two schools of approaches

have been proposed to ease the difficulty induced by vocal folds–tract coupling. One is

to isolate and only examine the vocal folds model. For this, however, one must acquire
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measurements of the vocal fold displacements. This in turn requires either high-speed

photography [31] or physical or numerical simulations [14, 32], which are often not

easily accessible. Even with the measurements, solving the inverse problem remains

hard [33]. It is usually solved via iterative matching procedures [34, 35, 36], stochastic

optimization, or heuristic procedures [15, 37]. Alternative approaches attempt to

discretize the vocal tract with consecutive, cross-sectional area varying tubes or with

a mesh-grid [38, 39], simplifying the solution. However, such approximation increases

the estimation error.

Forward and backward approaches for inverse problems To address the

problems inherent in conventional approaches, we propose a solution incorporating

a backward approach and a forward approach. The backward approach eliminates

the need for a vocal tract model by estimating the glottal flow from speech signals

via inverse filtering. As a specific instance of this approach, we propose an adjoint

least-squares (ADLES) method [40] to effectively solve an ODE-constrained functional

minimization problem and hence, accurately estimate the parameters of the asymmetric

vocal folds model.

On the other hand, the forward approach combines the vocal folds oscillation

model and the vocal tract propagation model. In the simplest case, the vocal folds

oscillation model is a one-mass model with asymmetry parameters described by coupled

ODEs. The vocal tract model is an acoustic wave propagation model described by

PDEs. Combined, they accurately represent phonation for both normal and disordered

voices. As an instance of this approach, we propose an iterative adjoint method to

solve the ODE/PDE constrained inverse problem. It enables the estimation of model

parameters directly from speech measurements. Our approach significantly alleviates

the difficulty of obtaining physical measurements in clinical settings while at the same

time promoting model accurateness.

Once we recover the model parameters through our backward or forward approach,

we further show how the re-estimated model parameters can be mapped into the phase

space of the nonlinear dynamical systems and how the location of these parameters
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in the model parameter space can directly indicate the underlying pathology in the

observed speech signal. Since the vocal fold dynamics are nonlinear, the models

are systems of coupled nonlinear dynamical equations. They output a phase space

trajectory of state variables that describes the movements of the vocal folds. The

trajectories tend to fall into orbits with regular or irregular behaviors that explain

observed behavior patterns of the vocal folds. The possible types and distributions of

these orbits depend on the system parameters.

Having broadly introduced the approaches and tools for modeling and characterizing

normal and pathological phonation, next, we present a specific example. Taking the

backward approach, in the following sections, we propose an efficient method to

estimate the parameters of the asymmetric vocal fold oscillation model and use them

to classify vocal fold pathologies. The next chapter will extend this and present the

forward approach.

6.3 Speech-Based Parameter Estimation of a Vocal

Fold Model for Voice Pathology Discrimination

So far, several physical models have been proposed to study vocal fold oscillations

during phonation. The parameters of these models, such as vocal fold elasticity,

resistance, etc., are traditionally determined through observing and measuring the

vocal fold vibrations in the larynx. Since such direct measurements tend to be the most

accurate, the traditional practice has been to set the parameter values of these models

based on averaged measurements across an ensemble of human subjects. However, the

direct measurement process is hard to revise outside clinical settings. In many cases,

especially in pathological ones, the properties of the vocal folds often deviate from

their generic values—sometimes asymmetrically, wherein the characteristics of the two

vocal folds differ for the same individual. In such cases, it is desirable to find a more

scalable way to adjust the model parameters on a case-by-case basis.

We present a novel and alternate way to solve the inverse problem of phonation:
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determining vocal fold model parameters from the speech signal. Given a model for

asymmetric movements of the vocal folds and a set of speech signals from people

affected by various pathologies (which affect vocal fold movements), we propose a

method to estimate the parameters of the asymmetric model that explains them.

We further show that for such models, differences in estimated parameters can be

successfully used to discriminate between voices characteristic of different underlying

vocal fold pathologies.

The premise of this study is that if these movements of the vocal folds and the

underlying parameters of the system that produces them could also be recovered

from the speech signal, the underlying pathologies could be identified. Note that this

diverges from the traditional approach of classifying these through analysis of the

surface-level waveform. In contrast, we present this novel paradigm wherein the goal

is to estimate the actual vocal fold dynamics from the waveform. In order to do so, we

must consider the actual physics of the vocal-fold movements, the physical properties

of the vocal folds, how they influence their movements, and how these manifest in the

speech signal itself.

6.3.1 The Asymmetric Vocal Folds Oscillation Model

For this study, we consider the asymmetric one-mass body-cover model [5, 18, 19, 20]

as described in the previous section. The vibration of vocal folds is modeled with a

pair of mass-damper-spring oscillators, as shown in Figure 6-2 and 6-4. Adopting the

specific formulation in [20], we denote the center-line of the glottis as the 𝑧-axis. At

the midpoint (𝑧 = 0) of the thickness of the vocal folds, the left and right vocal folds

oscillate with lateral displacement 𝜉𝑙 and 𝜉𝑟, resulting in a pair of coupled Van der Pol

oscillators

𝜉𝑟 + 𝛽(1 + 𝜉2
𝑟 )𝜉𝑟 + 𝜉𝑟 −

Δ
2 𝜉𝑟 = 𝛼(𝜉𝑟 + 𝜉𝑙)

𝜉𝑙 + 𝛽(1 + 𝜉2
𝑙 )𝜉𝑙 + 𝜉𝑙 + Δ

2 𝜉𝑙 = 𝛼(𝜉𝑟 + 𝜉𝑙) (6.3)
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where 𝛽 is the coefficient incorporating mass, spring, and damping coefficients, 𝛼 is

the glottal pressure coupling coefficient, and Δ is the asymmetry coefficient. For a

male adult with normal voice, the reference values for the model parameters may be

𝛼 = 0.5, 𝛽 = 0.32 and Δ = 0.

6.3.2 Physical Interpretation of Phase Space of Asymmetric

Model

We have introduced the concepts and tools used to study the behaviors (e.g., flow,

orbit, attractor, stability, Poincaré map, bifurcation) of nonlinear dynamical systems

such as (6.3) in the previous sections. The phase space of the system in (6.3) is four-

dimensional and includes states (𝜉𝑟, 𝜉𝑟, 𝜉𝑙, 𝜉𝑙). For this nonlinear system, it is expected

that attractors such as limit cycles or toruses will appear in the phase space. Such

phenomena are consequences of specific parameter settings. Specifically, the parameter

𝛽 determines the periodicity of oscillations; the parameter 𝛼 and Δ quantify the

asymmetry of the displacement of left and right vocal folds and the degree to which

one of the vocal folds is out of phase with the other [20, 29]. We can visualize them by

plotting the left and right displacements and the phase space portrait.

The coupling of right and left oscillators is described by their entrainment; they

are in 𝑛 : 𝑚 entrainment if their phase 𝜃𝑟, 𝜃𝑙 satisfy |𝑛𝜃𝑟 −𝑚𝜃𝑙| < 𝐶 where 𝑛,𝑚 are

integers and 𝐶 is a constant [20]. Such entrainment can be shown by the Poincaré

map, where the number of trajectory crossings of the right or left oscillator with

the Poincaré section shows the periodicity of its limit cycles. Therefore, their ratio

represents the entrainment. We can use the bifurcation diagram to visualize how the

entrainment changes with parameters. An example of such a bifurcation diagram is

shown in Figure 6-5 [12, 29]. As we will see later (and as indicated in Figure 6-5),

model parameters can characterize voice pathologies, which will also be visible in

phase portraits and bifurcation plots.
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(a)

(b)

(c)

(d)

Figure 6-5: Bifurcation diagram of the asymmetric vocal fold model. It shows the
entrainment ratio 𝑛 : 𝑚 (coded as different shades of grey) as a function of model
parameters 𝛼 and Δ, where 𝑛 and 𝑚 are the number of intersections of the orbits
of right and left oscillators across the Poincaré section 𝜉𝑟,𝑙 = 0 at stable status. This
is consistent with the theoretical results in [20]. (b), (c), and (d) show the phase
portraits for points A, B, and C, where the horizontal axis is displacement and the
vertical axis is velocity.

6.3.3 Model Parameter Estimation

Finding the parameters of any physical model that emulates vocal fold oscillations is

not trivial. For this, one must acquire measurements of the vocal fold displacements,

which in turn require either high-speed photography [31] or physical or numerical

simulations [14, 32], which are often not easily accessible. Even with the measurements,

estimating the model parameters remain hard. The problem itself is commonly termed

as the inverse problem [33], and is usually solved via iterative matching procedures [34,
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35, 36], stochastic optimization or heuristic procedures [15, 37].

We propose a method to solve the inverse problem and bypass the difficulties

inherent in traditional methods, namely that of either obtaining direct measurements of

vocal fold displacements or of the complexity of solving inverse problems. Our proposed

solution comprises an adjoint least-squares (ADLES) method [40] to effectively solve an

ODE-constrained functional minimization problem and hence, accurately estimate the

parameters of the asymmetric vocal folds model directly from speech measurements.

First, we formulate our objective. The vibration of vocal folds oscillates the air

particles at the glottal region, producing a pressure wave that propagates through the

upper vocal channel into the open air. This pressure wave is considered planar when its

frequency is under 4 kHz [41], and hence a function of position 𝑥 ∈ Ω and time 𝑡 ∈ 𝑇 :

𝑝(𝑥, 𝑡) ∈ ℒ2(Ω× 𝑇 ), where Ω := [0, 𝐿], 𝐿 is the length of the upper vocal channel, and

𝑇 := [0, 𝑡𝑚] for maximum duration 𝑡𝑚. The acoustic pressure 𝑝𝐿(𝑡) := 𝑝(𝐿, 𝑡), which

represents the speech signal measured by a microphone near the mouth, is a result of

the pressure wave 𝑝0(𝑡) := 𝑝(0, 𝑡) at the glottis modulated by the upper vocal channel.

If we denote the effect of the upper vocal channel as a filter

ℱ :ℒ2(𝑇 )→ ℒ2(𝑇 ) (6.4)

𝑝0(𝑡) ↦→ 𝑝𝐿(𝑡) (6.5)

we can deduce 𝑝0(𝑡) from 𝑝𝐿(𝑡) using inverse filtering [42]

𝑝0(𝑡) = ℱ−1(𝑝𝐿(𝑡)) (6.6)

Let 𝐴(𝑥) be the area function of the vocal channel for 𝑥 ∈ [0, 𝐿] and 𝐴(0) represent the

cross-sectional area at the glottis. The corresponding volume velocity 𝑢0(𝑡) through

the vocal channel is given by

𝑢0(𝑡) = 𝐴(0)
𝜌𝑐

𝑝0(𝑡) (6.7)

where 𝑐 is the speed of sound, and 𝜌 is the ambient air density. As a result, given a
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measured speech signal 𝑝𝑚(𝑡), we have

𝑢𝑚0 (𝑡) = 𝐴(0)
𝜌𝑐
ℱ−1(𝑝𝑚(𝑡)) (6.8)

Alternatively, we can derive 𝑢0(𝑡) from the displacement of vocal folds by

𝑢0(𝑡) = 𝑐𝑑 (2𝜉0 + 𝜉𝑙(𝑡) + 𝜉𝑟(𝑡)) (6.9)

where 𝜉0 is the half glottal width at rest and is set to 0.1 cm, 𝑑 is the length of vocal

fold and is set to 1.75 cm, and 𝑐 is the air particle velocity at the midpoint of the

vocal fold. Our objective is then to minimize the difference

min
∫︁ 𝑇

0
(𝑢0(𝑡)− 𝑢𝑚0 (𝑡))2 𝑑𝑡⇔ (6.10)

min
∫︁ 𝑇

0

(︃
𝑐𝑑 (2𝜉0 + 𝜉𝑙(𝑡) + 𝜉𝑟(𝑡))−

𝐴(0)
𝜌𝑐
ℱ−1(𝑝𝑚(𝑡))

)︃2

𝑑𝑡 (6.11)

such that

𝜉𝑟 + 𝛽(1 + 𝜉2
𝑟 )𝜉𝑟 + 𝜉𝑟 −

Δ
2 𝜉𝑟 = 𝛼(𝜉𝑟 + 𝜉𝑙) (6.12)

𝜉𝑙 + 𝛽(1 + 𝜉2
𝑙 )𝜉𝑙 + 𝜉𝑙 + Δ

2 𝜉𝑙 = 𝛼(𝜉𝑟 + 𝜉𝑙) (6.13)

𝜉𝑟(0) = 𝐶𝑟 (6.14)

𝜉𝑙(0) = 𝐶𝑙 (6.15)

𝜉𝑟(0) = 0 (6.16)

𝜉𝑙(0) = 0 (6.17)

where 𝐶𝑟 and 𝐶𝑙 are constants.

The Adjoint Least Squares Solution

To solve the functional least squares in (6.11), we require the gradients of (6.11)

w.r.t. the model parameters 𝛼, 𝛽 and Δ. Subsequently, we can adopt any gradient-

based (local or global) method to obtain the solution. Denote the residual as 𝑅 =
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𝑐𝑑 (2𝜉0 + 𝜉𝑙(𝑡) + 𝜉𝑟(𝑡)) − 𝐴(0)
𝜌𝑐
ℱ−1(𝑝𝑚(𝑡)); then 𝑓(𝜉𝑙, 𝜉𝑟;𝜗) = 𝑅2, and 𝐹 (𝜉𝑙, 𝜉𝑟;𝜗) =∫︀ 𝑇

0 𝑓(𝜉𝑙, 𝜉𝑟;𝜗)𝑑𝑡, where 𝜗 = [𝛼, 𝛽,Δ]. We define the Lagrangian

ℒ(𝜗) =
∫︁ 𝑇

0

[︃
𝑓 + 𝜆

(︃
𝜉𝑟 + 𝛽

(︁
1 + 𝜉2

𝑟

)︁
𝜉𝑟 + 𝜉𝑟 −

Δ
2 𝜉𝑟 − 𝛼

(︁
𝜉𝑟 + 𝜉𝑙

)︁)︃

+ 𝜂

(︃
𝜉𝑙 + 𝛽

(︁
1 + 𝜉2

𝑙

)︁
𝜉𝑙 + 𝜉𝑙 + Δ

2 𝜉𝑙 − 𝛼
(︁
𝜉𝑟 + 𝜉𝑙

)︁)︃]︃
𝑑𝑡

+ 𝜇𝑙 (𝜉𝑙(0)− 𝐶𝑙) + 𝜇𝑟 (𝜉𝑟(0)− 𝐶𝑟) + 𝜈𝑙𝜉𝑙(0) + 𝜈𝑟𝜉𝑟(0) (6.18)

where 𝜆, 𝜂, 𝜇 and 𝜈 are Lagrangian multipliers. Taking the derivative of the Lagrangian

w.r.t. the model parameter 𝛼 yields

ℒ𝛼 =
∫︁ 𝑇

0

[︂
2𝑐𝑑𝑅(𝜕𝛼𝜉𝑙 + 𝜕𝛼𝜉𝑟)

+ 𝜆
(︂
𝜕𝛼𝜉𝑟 + 2𝛽𝜉𝑟𝜉𝑟𝜕𝛼𝜉𝑟 + 𝛽

(︁
1 + 𝜉2

𝑟

)︁
𝜕𝛼𝜉𝑟

+ 𝜕𝛼𝜉𝑟 −
Δ
2 𝜕𝛼𝜉𝑟 − 𝛼

(︁
𝜕𝛼𝜉𝑟 + 𝜕𝛼𝜉𝑙

)︁
−
(︁
𝜉𝑟 + 𝜉𝑟

)︁)︃

+ 𝜂
(︁
𝜕𝛼𝜉𝑙 + 2𝛽𝜉𝑙𝜉𝑙𝜕𝛼𝜉𝑙 + 𝛽

(︁
1 + 𝜉2

𝑙

)︁
𝜕𝛼𝜉𝑙

+ 𝜕𝛼𝜉𝑙 + Δ
2 𝜕𝛼𝜉𝑙 − 𝛼

(︁
𝜕𝛼𝜉𝑟 + 𝜕𝛼𝜉𝑙

)︁
−
(︁
𝜉𝑟 + 𝜉𝑟

)︁)︃]︃
𝑑𝑡

+ 𝜇𝑙𝜕𝛼𝜉𝑙(0) + 𝜇𝑟𝜕𝛼𝜉𝑟(0) + 𝜈𝑙𝜕𝛼𝜉𝑙(0) + 𝜈𝑟𝜕𝛼𝜉𝑟(0) (6.19)

Integrating the term 𝜆𝜕𝛼𝜉𝑟 twice by parts yields

∫︁ 𝑇

0
𝜆𝜕𝛼𝜉𝑟𝑑𝑡 =

∫︁ 𝑇

0
𝜕𝛼𝜉𝑟�̈�𝑑𝑡− 𝜕𝛼𝜉𝑟�̇�

⃒⃒⃒⃒𝑇
0

+ 𝜕𝛼𝜉𝑟𝜆

⃒⃒⃒⃒𝑇
0

(6.20)
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Applying the same to 𝜂𝜕𝛼𝜉𝑙, substituting into (6.19) and simplifying the final expression

we obtain

ℒ𝛼 =
∫︁ 𝑇

0

[︃(︃
�̈�+

(︃
2𝛽𝜉𝑟𝜉𝑟 + 1− Δ

2

)︃
𝜆+ 2𝑐𝑑𝑅

)︃
𝜕𝛼𝜉𝑟

+
(︃
𝜂 +

(︃
2𝛽𝜉𝑙𝜉𝑙 + 1 + Δ

2

)︃
𝜆+ 2𝑐𝑑𝑅

)︃
𝜕𝛼𝜉𝑙

+
(︁
𝛽(1 + 𝜉2

𝑟 )𝜆− 𝛼(𝜆+ 𝜂)
)︁
𝜕𝛼𝜉𝑟

+
(︁
(𝛽(1 + 𝜉2

𝑙 )𝜂 − 𝛼(𝜆+ 𝜂)
)︁
𝜕𝛼𝜉𝑙

− (𝜉𝑟 + 𝜉𝑙)(𝜆+ 𝜂)
]︂
𝑑𝑡

+
(︁
𝜇𝑟 + �̇�

)︁
𝜕𝛼𝜉𝑟(0)− �̇�𝜕𝛼𝜉𝑟(𝑇 )

+ (𝜈𝑟 − 𝜆) 𝜕𝛼𝜉𝑟(0) + 𝜆𝜕𝛼𝜉𝑟(𝑇 )

+ (𝜇𝑙 + �̇�) 𝜕𝛼𝜉𝑙(0)− �̇�𝜕𝛼𝜉𝑙(𝑇 )

+ (𝜈𝑙 − 𝜂) 𝜕𝛼𝜉𝑙(0) + 𝜂𝜕𝛼𝜉𝑙(𝑇 ) (6.21)

Since the partial derivative of the model output 𝜉 w.r.t. the model parameter 𝛼 is

difficult to compute, we eliminate the related terms by setting

For 0 < 𝑡 < 𝑇 :

�̈�+
(︃

2𝛽𝜉𝑟𝜉𝑟 + 1− Δ
2

)︃
𝜆+ 2𝑐𝑑𝑅 = 0 (6.22)

𝜂 +
(︃

2𝛽𝜉𝑙𝜉𝑙 + 1 + Δ
2

)︃
𝜂 + 2𝑐𝑑𝑅 = 0 (6.23)

𝛽
(︁
1 + 𝜉2

𝑟

)︁
𝜆− 𝛼 (𝜆+ 𝜂) = 0 (6.24)

𝛽
(︁
1 + 𝜉2

𝑙

)︁
𝜂 − 𝛼 (𝜆+ 𝜂) = 0 (6.25)
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with initial conditions

At 𝑡 = 𝑇 :

𝜆(𝑇 ) = 0 (6.26)

�̇�(𝑇 ) = 0 (6.27)

𝜂(𝑇 ) = 0 (6.28)

�̇�(𝑇 ) = 0 (6.29)

As a result, we obtain the derivative of 𝐹 w.r.t. 𝛼 as

𝐹𝛼 =
∫︁ 𝑇

0
−
(︁
𝜉𝑟 + 𝜉𝑙

)︁
(𝜆+ 𝜂)𝑑𝑡 (6.30)

The derivatives of 𝐹 w.r.t. 𝛽 and Δ are similarly obtained as

𝐹𝛽 =
∫︁ 𝑇

0

(︁(︁
1 + 𝜉2

𝑟

)︁
𝜉𝑟𝜆+

(︁
1 + 𝜉2

𝑙

)︁
𝜉𝑙𝜂
)︁
𝑑𝑡 (6.31)

𝐹Δ =
∫︁ 𝑇

0
1
2

(︂
𝜉𝑙𝜂 − 𝜉𝑟𝜆

)︂
𝑑𝑡 (6.32)

Having calculated the gradients of 𝐹 w.r.t. the model parameters, we can now apply

gradient-based algorithms to optimize our objective (6.11). For instance, applying

gradient descent, we have

𝛼𝑘+1 = 𝛼𝑘 − 𝜏𝛼𝐹𝛼

𝛽𝑘+1 = 𝛽𝑘 − 𝜏𝛽𝐹𝛽

Δ𝑘+1 = Δ𝑘 − 𝜏Δ𝐹Δ (6.33)

where 𝜏 · is the step-size. The overall algorithm is summarized as follows:

1. Integrate (6.12) and (6.13) with initial conditions (6.14), (6.15), (6.16) and (6.17)

from 0 to 𝑇 , obtaining 𝜉𝑟, 𝜉𝑙, 𝜉𝑟 and 𝜉𝑙.

2. Integrate (6.22), (6.23), (6.24) and (6.25) with the initial conditions (6.26), (6.27),

(6.28) and (6.29) from 𝑇 to 0, obtaining 𝜆, �̇�, 𝜂 and �̇�.

124



3. Update 𝛼, 𝛽 and Δ with (6.33).

6.3.4 Experiments

We show the validity of our proposed ADLES method by using it to estimate the

asymmetric model parameters for clinically acquired pathological speech data. We

show that the estimated parameters can be effectively used to characterize the vocal

disorders represented in our experimental data.

The data set used in our experiments is the FEMH dataset [28]. It has 200 voice

samples of the sustained vowel sound /a:/ obtained from a voice clinic in a tertiary

teaching hospital, including 50 normal voice samples and 150 samples of common

voice disorders. Within the disordered samples, there are 40/60/50 samples for glottis

neoplasm, phonotrauma (including vocal nodules, polyps, and cysts), and unilateral

vocal paralysis, respectively.

Figure 6-6 shows the glottal flows obtained by inverse filtering and those obtained

by the asymmetric model with the parameters estimated by our ADLES method. We

observe consistent matches, showing the accurateness of our estimations. Figure 6-7

shows phase portraits of the right and left vocal folds obtained with our ADLES

method. We observe typical attractor behaviors for different types of pathologies.

Table 6.1 shows the results of deducing voice pathologies by simple thresholding of

parameter ranges. It validates that our ADLES method can accurately estimate model

parameters and phase space behaviors and further use them to classify voice pathologies.

Specifically, the ranges of model parameters in each row of Table 6.1 correspond to

regions in the bifurcation diagram in Figure 6-5. Each region has distinctive attractors

and phase entrainment, representing distinct vocal fold behaviors—thereby indicating

different voice pathologies. By extracting the phase trajectories for the speech signal

and, thereby, the underlying system parameters, the ADLES algorithm can be used

to place the vocal-fold oscillations during phonation on the bifurcation diagram and

thus deduce the underlying pathology.
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(a) (b)

(c) (d)

Figure 6-6: Glottal flows from inverse filtering and our ADLES estimation for (a) normal
speech, (b) neoplasm, (c) phonotrauma, (d) vocal palsy.

Δ 𝛼 Phase Space Behavior Pathology Accuracy
< 0.5 > 0.25 1 limit cycle, 1 : 1 entrain Normal 0.90
∼ 0.6 ∼ 0.35 1 limit cycle, 1 : 1 entrain Neoplasm 0.82
∼ 0.6 ∼ 0.3 2 limit cycles, 1 : 1 entrain Phonotrauma 0.95
∼ 0.85 ∼ 0.4 toroidal, 𝑛 : 𝑚 entrain Vocal Palsy 0.89

Table 6.1: Parameters obtained and pathologies identified through ADLES.

6.4 Uniting Dynamical Systems with Machine Learn-

ing

We have presented a dynamical system approach for modeling physical processes.

Next, we explore ways of uniting dynamical system modeling with machine learning

approaches. We do this in two ways, noting many other possibilities. Firstly, we derive
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(a) (b)

(c) (d)

Figure 6-7: Phase portraits of left and right oscillators from our ADLES estimation
for (a) normal speech–1 limit cycle, (b) neoplasm–1 limit cycle, (c) phonotrauma–2
limit cycles, (d) vocal palsy–limit torus.

features from dynamical systems that can be used by machine and deep learning

models. In the second, we utilize the deep connection between neural models and

dynamical systems.

6.4.1 Deriving Features From Dynamical Systems for Machine

Learning

As a direct extension to our ADLES method that estimates model parameters for

phonation processes, features can be derived from the phonation modeling to aid

machine learning algorithms for specific voice-based detection tasks. In [43], the authors

hypothesize that since COVID-19 would impair the human respiratory system, this,

in turn, would affect the delicate phonation process and manifest in the vibration
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signatures of vocal folds. They use the ADLES method to estimate the asymmetric

vocal folds model parameters and the estimation residual and use the estimated

model parameters as features to other binary classifiers such as logistic regression,

support vector machine, decision tree, and random forest. They achieve 0.8 ROC-

AUC (area under the ROC curve) for discriminating positive COVID-19 cases from

clinically collected data of extended vowel sounds. The authors also discover that

COVID-19 positive individuals display different phase space behaviors as compared to

negative individuals: the phase space trajectories for negative individuals are more

regular, while the trajectories for positive patients are more chaotic, implying a lack

of synchronization and a higher degree of asymmetry in the vibrations of the left

and right vocal folds. Further, authors in [44] use the ADLES-estimated glottal flows

as features to CNN-based two-step attention neural networks. The neural model

detects differences in the estimated and actual glottal flows and predicts two classes

corresponding to COVID-19 positive and negative cases. It achieves 0.9 ROC-AUC on

clinically collected vowel sounds. Another study uses higher-order statistics derived

from parameters and the Lyapunov and Hurst exponents derived from the phase

space trajectories of the asymmetric vocal folds model to detect Amyotrophic Lateral

Sclerosis (ALS) from voice. It achieves high accuracy with normalized ROC-AUC of

0.82 to 0.99 [45].

6.4.2 Neural Models and Dynamical Systems

Identifying dynamical systems with neural models Neural models can be used

for identifying dynamical systems and the underlying physical laws [46]. Neural nets

can approximate ODE solutions with good precision, such as the finite neural element

method proposed in [47]. Neural models infer the physical systems and governing laws

of physics through data-driven approaches. Neural nets are learned from data sampled

in the domain of the physical system, which is more efficient than finite-element

methods due to mesh-free sampling. Neural nets integrated with dynamical systems

can also make physically plausible forecasts [46]. Random processes are linked to

stochastic differential equations and can be combined with neural models to deduce
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system parameters from noisy observations [48]. For nonlinear dynamical systems,

more powerful and advanced deep neural approaches such as convolutional neural nets,

recurrent neural nets, encoder-decoder networks, and reinforcement learning can aid

such inference [48].

Dynamical system perspective for neural modeling On the other hand, dynam-

ical systems also shed light on neural models. Authors in [49] propose a NeuralODE

model, formulated as a continuous-depth deep residual neural net and naturally extends

to modeling continuous-time dynamics. The time-dependent hidden states in residual

networks and recurrent neural nets are discrete and are made continuous by letting

the time step go infinitesimal. This essentially turns the neural nets into an ODE and

the optimization of the neural nets into an ODE initial value problem. The continuous

hidden states can be efficiently evaluated by any ODE solver. Such a neural ODE

model has the advantage of constant memory cost in terms of model depth and can

trade-off precision and efficiency [49]. The adjoint method for differentiating the neural

ODE is connected to our ADLES method.

While adjoint methods are efficient in high-dimensional neural models, discretization

is often sufficient for low-dimensional ODEs. For example, [50] uses the Runge-Kutta

method to discretize ODEs in time and minimize the estimation error via auto-

differentiation. They obtain better performance in forecasting COVID-19 dynamics

than NeuralODE.

Theoretical interpretation of deep neural models with dynamical systems

Well-established theories in dynamical systems can help develop the theoretical frame-

work and analytical tools for deep learning, such as [51, 52]. Particularly, there is a

deep connection between dynamical systems and deep neural nets (DNNs). Dynamical

systems bring differential geometric perspectives into the statistical learning regime,

uniting two seemingly distant realms. With such union, various statistics, probability,

geometry, topology, analysis, and algebra based tools can be employed to establish

theoretical guarantees for deep neural nets in terms of deriving optimal solutions and

129



efficient computational/numerical methods [53, 54]. Since the theories in this realm

are broad and deep, it is unrealistic and beyond our scope to enumerate them. Instead,

we illustrate some facets of the key findings with two examples.

As one of the most successful neural net structures, deep residual networks [55] can

be viewed as a flow map (see Section 6.1) on the phase/state space of model states.

When made continuous in time, the deep residual nets become an ODE, similar to

NeuralODE [49]. The training of deep residual nets is the discrete approximation of

the continuous process, and the model output is the output of the dynamical system

with input data as initial conditions [52]. Authors in [56] establish sufficient conditions

for the universal approximation properties of such flow maps. Under mild regularity

constraints or conditions, the flow maps can universally approximate any function

with arbitrary precision defined in ℒ𝑝. The sufficient conditions are general without

assuming specific layer structures.

Further, authors in [57] establish a flow representation of general DNNs, which

formulate a DNN as the flow of an ODE. When discretized, the continuous flow

of the dynamical system becomes the transport map, resulting in a general DNN

architecture. In other words, a DNN is the discretization of an ODE. Consequently,

from the perspective of optimal transport, a DNN optimization process is understood

as finding the optimal transport map between two (source and target) probability

distributions [57]. Such a flow representation framework can interpret various DNNs,

such as residual networks, generative networks, and encoder-decoder networks. For

example, a denoising auto-encoder is essentially the time reversal of a diffusion process—

the backward heat equation. A graph neural net can be seen as a discrete diffusion

process. Moreover, the flow representation provides a coordinate-free formulation of

DNNs and helps reduce over-parameterization [57].

More generally, a DNN aims to discover the topology of the data manifold and

find the optimal transport map between distributions. For the former, tools in the

mathematical area of algebraic topology can help find the topological invariants

under continuous transforms. For the latter, we can extend the flow and transport

map between distributions to Wasserstein spaces. A Wasserstein space is a space of
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probability distributions with Wasserstein geometry—that defines the Riemannian

metric and covariant derivative of distributions. As a result, vector fields and gradient

flows can describe how a distribution evolves in space and time, and the optimal

transport map can be obtained via variational approaches [53, 54]. Namely, the

optimal transport map is the gradient flow of some energy functional (e.g., entropy,

divergence) and reduces to solving the Monge-Ampere differential equation [53, 54].

For instance, a denoising auto-encoder, which corresponds to a backward heat equation,

is a Wasserstein gradient flow that increases the Shannon entropy functional [57].

Such dynamical system approaches give intuitive and theoretical interpretation to

deep learning and foster new models and learning strategies, such as the Monge-Ampere

flow model [58]. We will continue the discussion of machine learning approaches for

solving PDEs in the next chapter.

6.5 Conclusions

This chapter studies the physical process of phonation and the process-specific modeling

of the vocal fold and vocal tract. We present a dynamical system perspective for

physical process modeling and phase space characterization of phonation. We propose

a backward approach for modeling vocal fold dynamics and an efficient algorithm to

solve the inverse problem of estimating model parameters from speech observations.

The oscillatory dynamics of vocal folds provide a tool to analyze different phonation

phenomena, which characterize different types of voice disorders. We propose an ADLES

method to promote accurate and efficient recovery of the parameters of an asymmetric

vocal folds model directly from the speech signal. It allows us to correctly solve the

oscillatory dynamics of the vocal folds for any specific speech signal. More importantly,

the parameters estimated for the model directly allow us to predict voice pathology

by simple analyses such as placement on the system’s bifurcation map. They can

also be potentially used to estimate the physical properties of the speaker’s vocal

folds. Moreover, the ADLES method significantly alleviates the difficulty of obtaining

actual measurements of vocal fold displacements in clinical settings and can thus be a

131



valuable diagnostic aid for identifying different voice pathologies.

Lastly, we extend our process-specific models to deriving features for machine

learning models and discuss the deep connection between deep neural models and

dynamical systems. Dynamical system theories and methods provide valuable and

insightful tools for advancing deep learning theories and applications, and these can,

in turn, be used to improve process-specific modeling strategies.
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Chapter 7

Process-Specific Approaches for

Vocal Tract Modeling

In the previous chapter, we described the process-specific modeling for phonation—i.e.,

specifically for the self-sustained motion of the vocal folds. We proposed a backward

approach to solve the coupled ODE systems and the ADLES method for efficiently

estimating the model parameters and characterizing disordered voices. This chapter

extends the process-specific modeling to the combined vocal fold and vocal tract system

and presents a forward-backward paradigm for solving the corresponding coupled

ODE-PDE systems. In this chapter, we also extend the ADLES method to solve the

inverse problem of estimating vocal fold-tract model parameters from observations

and present an efficient algorithm with numerical solutions.

7.1 Modeling Wave Propagation in the Vocal Tract

The vocal tract can be viewed as a compact, orientable, differentiable manifold 𝑀

embedded in R3. Its boundary 𝜕𝑀 includes the wall of the vocal tract. Consider the

tangent bundle 𝑇𝑀 . Denote the set of all vector fields on 𝑇𝑀 as Γ(𝑇𝑀), which is a

𝐶∞(𝑀)-module [1]. A vector field is a smooth section on 𝑇𝑀 , Γ(𝑇𝑀) ∋𝑋 : 𝑀 → 𝑇𝑀 .

It associates each point 𝑝 ∈𝑀 with a tangent vector 𝑣(𝑝) := 𝑋|𝑝 : 𝐶∞(𝑀) ∼−→ R [1].

Let 𝛾(𝑡) : R ⊇ 𝐼 → 𝑀 be a maximal integral curve [1] through 𝑝 at 𝑡0 which is a

138



Table 7.1: Symbol List

Symbol Description
𝜉0 displacement of left/right vocal fold at rest position from center line
𝜉𝑙,𝑟 displacement of left, right vocal fold from rest position
𝑑 length of vocal fold
𝛼 subglottal pressure coupling coefficient
𝛽 combined mass, damping, spring coefficient
Δ asymmetry coefficient
𝑀 differentiable manifold
𝜕𝑀 boundary of 𝑀
𝑇𝑀 tangent bundle
𝐶∞(𝑀) ring of smooth functions over 𝑀
Γ(𝑇𝑀) the set of vector fields on 𝑀 , a 𝐶∞(𝑀)-module
𝑋 vector field, a smooth section of 𝑇𝑀
𝛾(𝑡) integral curve on 𝑀
Φ flow of 𝑋
𝑝 a point on 𝑀
𝑣(𝑝) = 𝑋|𝑝, tangent vector at 𝑝
𝑣(𝑝, 𝑡) air particle velocity at position 𝑝 and time 𝑡
𝑝(𝑝, 𝑡) acoustic pressure at position 𝑝 and time 𝑡
𝑝(𝑥, 𝑡) average acoustic pressure at position 𝑥 and time 𝑡
𝑢(𝑥, 𝑡) volume velocity at position 𝑥 and time 𝑡
𝑧(𝑥, 𝑡) time reversed volume velocity of 𝑢(𝑥, 𝑡)
𝑓(𝑥, 𝑡) vocal tract characteristic profile
Σ inner surface of vocal tract
𝑅(·) shape function of Σ
𝐴(·) area function of Σ
𝑐 speed of sound
𝑐 air particle velocity at the midpoint of the vocal fold
𝜌 ambient air density
Ω spatial domain of acoustic wave
Γ boundary of Ω
𝐿 length of vocal tract
𝑇 time domain of acoustic wave
𝑡𝑚 maximum of 𝑇
𝑝𝑚 measured acoustic pressure at lip
𝑢𝑚 measured volume velocity at lip
ℒ𝑛 space of 𝑛-th Lebesgue integrable functions
𝒲𝑘,𝑛 Sobolev space of order 𝑘
ℋ nonlinear operator from input 𝑢0 to output 𝑢𝐿
ℱ nonlinear operator from 𝑓 to 𝑢
ℱ* adjoint operator of ℱ
ℒ Lagrangian
𝜆, 𝜂, 𝜇, 𝜈 Lagrangian multipliers
𝐷𝑡 finite difference operator in time
𝑅𝑛 PDE residual at time step 𝑛
𝑣, 𝑤 test functions
𝑎(·, ·), 𝐿(·) variational forms
𝑃𝑘 triangular finite element of order 𝑘
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solution to

𝛾′(𝑡) = 𝑋(𝛾(𝑡))

𝛾(𝑡0) = 𝑝

The curve 𝛾(𝑡) is a one-parameter group. When acting on the Lie group 𝑀 , it gives

the flow Φ : R × 𝑀 → 𝑀 . Φ𝑡(𝑝) = 𝛾(𝑡). The particle velocity at 𝑝 is given by

𝑣(𝑝, 𝑡) := 𝛾′(𝑡) = 𝑣(𝑝) ∘ 𝛾(𝑡). The planar motion of the pressure wave in the vocal

tract is governed by the equations [2]

1
𝜌𝑐2

𝜕𝑝

𝜕𝑡
+ div𝑣 = 0 (7.1)

𝜌
𝜕𝑣

𝜕𝑡
+ grad𝑝 = 0 (7.2)

where 𝑝(𝑝, 𝑡) is the acoustic pressure, div is the divergence operator, grad is the

gradient operator, 𝜌 is the ambient air density, and 𝑐 is the speed of sound. Equation

(7.1) describes the conservation of mass, and (7.2) describes the conservation of

momentum [2]. For notational convenience, we adapt cylindrical coordinates 𝑝 =

(𝑟, 𝜃, 𝑥), where the 𝑥 direction aligns with the central axis of vocal tract. We denote

the inner surface of the vocal tract as Σ, and the shape function of the inner surface

as 𝑟 = 𝑅(𝜃, 𝑥). Then the cross-sectional area of the vocal tract is

𝐴(𝑥) =
∫︁ 2𝜋

0
𝑑𝜃
∫︁ 𝑅(𝜃,𝑥)

0
𝑟𝑑𝑟 (7.3)

the average acoustic pressure is

𝑝(𝑥, 𝑡) = 1
𝐴(𝑥)

∫︁ 2𝜋

0
𝑑𝜃
∫︁ 𝑅(𝜃,𝑥)

0
𝑝𝑟𝑑𝑟 (7.4)

and the volume velocity is

𝑢(𝑥, 𝑡) =
∫︁ 2𝜋

0
𝑑𝜃
∫︁ 𝑅(𝜃,𝑥)

0
𝑣𝑥𝑟𝑑𝑟 (7.5)
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where 𝑣𝑥 is the 𝑥 component of 𝑣. Integrating (7.1) over the volume of vocal tract

bounded by cross sections at 𝑥0 and 𝑥 gives

0 =
∫︁
𝑀

1
𝜌𝑐2

𝜕𝑝

𝜕𝑡
+ div𝑣 (7.6)

=
∫︁ 𝑥

𝑥0

[︃∫︁ 2𝜋

0
𝑑𝜃
∫︁ 𝑅

0

1
𝜌𝑐2

𝜕𝑝

𝜕𝑡
𝑟𝑑𝑟

]︃
𝑑𝑥′ +

∫︁
𝑀

div𝑣 (7.7)

= 1
𝜌𝑐2

∫︁ 𝑥

𝑥0
𝐴(𝑥′)𝜕𝑝(𝑥

′, 𝑡)
𝜕𝑡

𝑑𝑥′ +
∫︁∫︁

Σ
𝑛𝑣𝑑𝜎 + 𝑢(𝑥, 𝑡)− 𝑢(𝑥0, 𝑡) (7.8)

where from (7.7) to (7.8) we substitute into (7.4), (7.5) and apply Stokes’ theorem [2,

3]; 𝑛𝑣 is the component of 𝑣 normal and outward to the inner surface Σ. The element

of area 𝑑𝜎 is given by [2, 3]

𝑑𝜎 = 𝑆(𝜃, 𝑥)𝑑𝜃𝑑𝑥 (7.9)

where 𝑆𝑑𝜃𝑑𝑥 is a top 2-form on Σ [1]. Substituting (7.9) into (7.8) and differentiating

w.r.t. 𝑥 yields
𝐴(𝑥)
𝜌𝑐2

𝜕𝑝

𝜕𝑡
+ 𝜕𝑢

𝜕𝑥
+
∫︁ 2𝜋

0
𝑛𝑣(𝜃, 𝑥, 𝑡)𝑆(𝜃, 𝑥)𝑑𝜃 = 0 (7.10)

Following similar steps, integrating the 𝑥 component of (7.2) over the cross section at

𝑥 yields

𝜌
𝜕𝑢

𝜕𝑡
+ 𝐴(𝑥)𝜕𝑝

𝜕𝑥
+
∫︁ 2𝜋

0
(𝑝(𝑥, 𝑡)− 𝑝𝑤(𝜃, 𝑥, 𝑡)) 𝜕

𝜕𝑥

(︂1
2𝑅

2
)︂
𝑑𝜃 = 0 (7.11)

where 𝑝𝑤 is the pressure acting on the wall of the vocal tract.

7.1.1 Integrated Vocal Tract Model

To simplify our problem, we combine the wave equations (7.10) and (7.11) into a single

vocal tract model. Differentiating (7.10) w.r.t 𝑥 and (7.11) w.r.t. 𝑡, and cancelling out
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the pressure term gives

𝜕2𝑢

𝜕𝑡2
= 𝑐2𝜕

2𝑢

𝜕𝑥2 + 1
𝜌

𝜕𝐴

𝜕𝑥

𝜕𝑝

𝜕𝑡
− 1
𝜌
𝜕𝑡

∫︁ 2𝜋

0
(𝑝(𝑥, 𝑡)− 𝑝𝑤(𝜃, 𝑥, 𝑡)) 𝜕

𝜕𝑥

(︂1
2𝑅

2
)︂
𝑑𝜃

+ 𝑐2𝜕𝑥

∫︁ 2𝜋

0
𝑛𝑣(𝜃, 𝑥, 𝑡)𝑆(𝜃, 𝑥)𝑑𝜃 (7.12)

= 𝑐2𝜕
2𝑢

𝜕𝑥2 + 𝑓(𝑥, 𝑡) (7.13)

where the vocal tract profile is absorbed into a single term 𝑓(𝑥, 𝑡). It represents the

characteristics of the vocal tract, i.e., the effect of the nonuniform yielding wall on the

acoustic flow dynamics, which needs to be estimated by our algorithm.

7.2 Parameter Estimation for Vocal Fold-Tract Model

7.2.1 Problem Formulation

We now formulate the problem of estimating the parameters of the combined vocal

fold-tract model from speech measurements. Let Ω × 𝑇 be the domain of volume

velocity 𝑢, where Ω is the spatial domain, and 𝑇 is the time domain. In the one-

dimensional case, Ω = [0, 𝐿] where 𝐿 is the length of vocal tract, and 𝑇 = [0, 𝑡𝑚],

where 𝑡𝑚 is the maximum of 𝑇 . Given a measured acoustic pressure 𝑝𝑚(𝑡) at the lip,

the corresponding volume velocity is given by [4]

𝑢𝑚(𝑡) = 𝐴(𝐿)
𝜌𝑐

𝑝𝑚(𝑡) (7.14)

where 𝐴(𝐿) is the opening area at the lip, 𝑐 is the speed of sound, and 𝜌 is the ambient

air density. Denote 𝑢0(𝑡) := 𝑢(0, 𝑡), 𝑢𝐿(𝑡) := 𝑢(𝐿, 𝑡). The glottal flow 𝑢0(𝑡) can be

derived from the vocal folds displacement model (6.3) by

𝑢0(𝑡) = 𝑐𝑑(2𝜉0 + 𝜉𝑙(𝑡) + 𝜉𝑟(𝑡)) (7.15)

where 𝜉0 is the half glottal width at rest, 𝑑 is the length of the vocal fold, and 𝑐 is the

air particle velocity at the midpoint of the vocal fold (see Figure 6-4). Let ℋ be the
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nonlinear operator representing acoustic wave propagation from the glottis to the lip.

We have the forward propagation process as

ℋ : ℒ2(Ω× 𝑇 )× ℒ2(Γ× 𝑇 )→ ℒ2(Γ× 𝑇 )

(𝑓, 𝑢0) ↦→ 𝑢𝐿 (7.16)

where 𝑓 is the vocal tract profile in (7.13), and Γ = 𝜕Ω is the boundary. We can

split Γ into two parts: Γ = Γ0
⋃︀Γ1, and Γ0

⋂︀Γ𝐿 = ∅ corresponding to 𝑥 = 0 and

𝑥 = 𝐿. However, we disregard the difference to simplify our derivation. Note that

in the one-dimensional case, 𝑢(𝑡) and 𝑢𝐿(𝑡) are only functions of 𝑡. However, more

generally, they are functions of both 𝑥 on the boundary Γ and 𝑡. We define two

nonlinear operators as

ℋ𝑓 : ℒ2(Γ× 𝑇 )→ ℒ2(Γ× 𝑇 )

𝑢0 ↦→ 𝑢𝐿 (7.17)

ℱ := ℋ𝑢0 : ℒ2(Ω× 𝑇 )→ ℒ2(Γ× 𝑇 )

𝑓 ↦→ 𝑢𝐿 (7.18)

Note that both ℋ𝑓 and ℱ are bounded. Our objective is to minimize the difference

between the measured volume velocity 𝑢𝑚 and the predicted volume velocity 𝑢𝐿 near
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the lip, subject to the constraints

min
∫︁ 𝑇

0
(ℋ𝑓 (𝑢0(𝑡))− 𝑢𝑚(𝑡))2 𝑑𝑡 (7.19)

⇔ min
∫︁ 𝑇

0

(︃
ℋ𝑓 (𝑐𝑑(2𝜉0 + 𝜉𝑙(𝑡) + 𝜉𝑟(𝑡)))−

𝐴(𝐿)
𝜌𝑐

𝑝𝑚(𝑡)
)︃2

𝑑𝑡 (7.20)

subject to 𝜉𝑟 + 𝛽(1 + 𝜉2
𝑟 )𝜉𝑟 + 𝜉𝑟 −

Δ
2 𝜉𝑟 = 𝛼(𝜉𝑟 + 𝜉𝑙) (7.21)

𝜉𝑙 + 𝛽(1 + 𝜉2
𝑙 )𝜉𝑙 + 𝜉𝑙 + Δ

2 𝜉𝑙 = 𝛼(𝜉𝑟 + 𝜉𝑙) (7.22)

(I.C.1) 𝜉𝑟(0) = 𝐶𝑟 (7.23)

(I.C.2) 𝜉𝑙(0) = 𝐶𝑙 (7.24)

(I.C.3) 𝜉𝑟(0) = 0 (7.25)

(I.C.4) 𝜉𝑙(0) = 0 (7.26)

(7.27)

where (7.21) and (7.22) represent the asymmetric vocal folds displacement model (6.3),

I.C. stands for initial condition, and 𝐶s are constants. Next, we derive an efficient

strategy to estimate the parameters 𝛼, 𝛽, and Δ such that (7.20) is minimized.
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7.2.2 Solving Vocal Tract Model via Forward-Backward Method

In order to solve the parameter estimation problem (7.27), first, we need to estimate

the vocal tract profile 𝑓 in ℋ𝑓 and (7.13). Specifically, we need to solve

𝜕2𝑢(𝑥, 𝑡)
𝜕𝑡2

= 𝑐2𝜕
2𝑢(𝑥, 𝑡)
𝜕𝑥2 + 𝑓(𝑥, 𝑡) (7.28)

subject to

(B.C.1) 𝑢(0, 𝑡) = 𝑢𝑔(𝑡) (7.29)

(B.C.2) 𝑢(𝐿, 𝑡) = 𝑢𝑚(𝑡) (7.30)

(B.C.3) 𝜕𝑢

𝜕𝑛Γ
= 0 (7.31)

(I.C.1) 𝑢(𝑥, 0) = 0 (7.32)

(I.C.2) 𝜕𝑢(𝑥, 0)
𝜕𝑡

= 0 (7.33)

(7.34)

where B.C. stands for boundary condition, 𝑢𝑔 and 𝑢𝑚 are volume velocity at the glottis

and lip, respectively, and 𝑛Γ is the outward unit normal to the boundary Γ. We now

derive the solution to (7.34). In order to estimate 𝑓 ∈ ℒ2(Ω× 𝑇 ), we take an iterative

approach, i.e.

𝑓𝑘+1 = 𝑓𝑘 + 𝜏𝛿𝑓𝑘 (7.35)

where 𝛿𝑓𝑘 ∈ ℒ2(Ω× 𝑇 ) is a small variation, and 𝜏 is a step size. Taking the Taylor

expansion of ℱ (7.18) at 𝑓𝑘 gives

ℱ(𝑓𝑘 + 𝛿𝑓𝑘) = ℱ(𝑓𝑘) + ℱ ′(𝑓𝑘)𝛿𝑓𝑘 +𝑂
(︁
(𝛿𝑓𝑘)2

)︁
(7.36)

where ℱ ′ is the Fréchet derivative [5]. Omitting higher order terms, we obtain

ℱ ′(𝑓𝑘)𝛿𝑓𝑘 = ℱ(𝑓𝑘 + 𝛿𝑓𝑘)−ℱ(𝑓𝑘) (7.37)
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where ℱ ′(𝑓) is a nonlinear operator

ℱ ′(𝑓) : ℒ2(Ω× 𝑇 )→ ℒ2(Γ× 𝑇 )

𝛿𝑓 ↦→ 𝛿𝑢𝐿 (7.38)

Correspondingly, the adjoint operator [5, 6, 7] is

ℱ ′(𝑓)* : ℒ2(Γ× 𝑇 )→ ℒ2(Ω× 𝑇 )

𝛿𝑢𝐿 ↦→ 𝛿𝑓 (7.39)

We would like ℱ(𝑓𝑘 + 𝛿𝑓𝑘) = 𝑢𝑘𝐿 + 𝛿𝑢𝑘𝐿
𝑘→∞−−−→ 𝑢𝑚. This is equivalent to solving

min ‖𝛿𝑓𝑘‖2
2

subject to ℱ ′(𝑓𝑘)𝛿𝑓𝑘 = 𝑢𝑚 −ℱ(𝑓𝑘) (7.40)

It is simple to obtain the solution to (7.40)

𝛿𝑓𝑘 = −ℱ ′(𝑓𝑘)*
[︁
ℱ ′(𝑓𝑘)ℱ ′(𝑓𝑘)*

]︁−1 (︁
ℱ(𝑓𝑘)− 𝑢𝑚

)︁
(7.41)

where ℱ ′(𝑓𝑘)* is the adjoint operator. It is difficult to compute ℱ ′(𝑓𝑘)ℱ ′(𝑓𝑘)*. By

positive-definiteness, we approximate it by 𝛾𝐼 where 𝐼 is the identity matrix. We

denote the estimation residual as

𝑟𝑘 := 𝑢𝑚 −ℱ(𝑓𝑘) (7.42)

We now have

𝛿𝑓𝑘 = 1
𝛾
ℱ ′(𝑓𝑘)*𝑟𝑘 (7.43)

Now consider the wave equation (7.28). Let 𝑢+ 𝛿𝑢 be a solution with variation 𝑓 + 𝛿𝑓 .

Substitution into (7.28) yields

𝜕2(𝑢+ 𝛿𝑢)
𝜕𝑡2

= 𝑐2𝜕
2(𝑢+ 𝛿𝑢)
𝜕𝑥2 + 𝑓 + 𝛿𝑓 (7.44)
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Subtracting (7.28) yields

𝜕2𝛿𝑢

𝜕𝑡2
= 𝑐2𝜕

2𝛿𝑢

𝜕𝑥2 + 𝛿𝑓 (7.45)

subject to

(B.C.1) 𝜕𝛿𝑢

𝜕𝑛Γ
= 0 (7.46)

(I.C.1) 𝛿𝑢(𝑥, 0) = 0 (7.47)

(I.C.2) 𝜕𝛿𝑢(𝑥, 0)
𝜕𝑡

= 0 (7.48)

(7.49)

Next, we use a time-reversal technique [2] and backpropagate the difference (7.42) into

the vocal tract, which gives

𝜕2𝑧

𝜕𝑡2
= 𝑐2 𝜕

2𝑧

𝜕𝑥2 + 𝑓(𝑥, 𝑡) (7.50)

subject to

(B.C.1) 𝜕𝑧

𝜕𝑛Γ
= 𝑟 (7.51)

(I.C.1) 𝑧(𝑥, 𝑡𝑚) = 0 (7.52)

(I.C.2) 𝜕𝑧(𝑥, 𝑡𝑚)
𝜕𝑡

= 0 (7.53)

(7.54)
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where 𝑧 is the time reversal of 𝑢. It follows [8] that

⟨𝛿𝑓, 𝑧⟩Ω×𝑇 =
∫︁ 𝑡𝑚

0

∫︁
Ω
𝛿𝑓𝑧𝑑𝑥𝑑𝑡 (7.55)

=
∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝛿𝑢

𝜕𝑡2
− 𝑐2𝜕

2𝛿𝑢

𝜕𝑥2

)︃
𝑧𝑑𝑥𝑑𝑡 (7.56)

=
∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝛿𝑢

𝜕𝑡2
− 𝑐2𝜕

2𝛿𝑢

𝜕𝑥2

)︃
𝑧𝑑𝑥𝑑𝑡−

∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝑧

𝜕𝑡2
− 𝑐2 𝜕

2𝑧

𝜕𝑥2 − 𝑓
)︃
𝛿𝑢𝑑𝑥𝑑𝑡

(7.57)

=
∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝛿𝑢

𝜕𝑡2
𝑧 − 𝜕2𝑧

𝜕𝑡2
𝛿𝑢

)︃
𝑑𝑥𝑑𝑡− 𝑐2

∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝛿𝑢

𝜕𝑥2 𝑧 −
𝜕2𝑧

𝜕𝑥2 𝛿𝑢

)︃
𝑑𝑥𝑑𝑡

+
∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.58)

=
∫︁

Ω

(︃
𝜕𝛿𝑢

𝜕𝑡
𝑧 − 𝜕𝑧

𝜕𝑡
𝛿𝑢

)︃⃒⃒⃒⃒
⃒⃒
𝑡𝑚

0

𝑑𝑥𝑑𝑡− 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝛿𝑢

𝜕𝑥2 𝑧 −
𝜕2𝑧

𝜕𝑥2 𝛿𝑢

)︃
𝑑𝑥𝑑𝑡

+
∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.59)

= −𝑐2
∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝜕2𝛿𝑢

𝜕𝑥2 𝑧 −
𝜕2𝑧

𝜕𝑥2 𝛿𝑢

)︃
𝑑𝑥𝑑𝑡+

∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.60)

= −𝑐2
∫︁ 𝑡𝑚

0

∫︁
Ω

(︃
𝑧𝑑
𝜕𝛿𝑢

𝜕𝑥
− 𝛿𝑢𝑑𝜕𝑧

𝜕𝑥

)︃
𝑑𝑡+

∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.61)

= −𝑐2
∫︁ 𝑡𝑚

0

(︃∫︁
Γ
𝑧
𝜕𝛿𝑢

𝜕𝑛Γ
𝑑𝑠−

∫︁
Ω

𝜕𝛿𝑢

𝜕𝑥

𝜕𝑧

𝜕𝑥
𝑑𝑥−

∫︁
Γ
𝛿𝑢

𝜕𝑧

𝜕𝑛Γ
𝑑𝑠+

∫︁
Ω

𝜕𝛿𝑢

𝜕𝑥

𝜕𝑧

𝜕𝑥
𝑑𝑥

)︃
𝑑𝑡

+
∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.62)

= 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Γ
𝛿𝑢

𝜕𝑧

𝜕𝑛Γ
𝑑𝑠𝑑𝑡+

∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.63)

= 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Γ
𝛿𝑢𝑟𝑑𝑠𝑑𝑡+

∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.64)

= 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Γ
ℱ ′(𝑓)𝛿𝑓𝑟𝑑𝑠𝑑𝑡+

∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.65)

= 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Ω
𝛿𝑓ℱ ′(𝑓)*𝑟𝑑𝑥𝑑𝑡+

∫︁ 𝑡𝑚

0

∫︁
Ω
𝑓𝛿𝑢𝑑𝑥𝑑𝑡 (7.66)

= 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Ω
𝛿𝑓ℱ ′(𝑓)*𝑟𝑑𝑥𝑑𝑡−

∫︁ 𝑡𝑚

0

∫︁
Ω
𝛿𝑓𝑢𝑑𝑥𝑑𝑡 (7.67)

= 𝑐2
∫︁ 𝑡𝑚

0

∫︁
Ω
𝛿𝑓 (ℱ ′(𝑓)*𝑟 − 𝑢) 𝑑𝑥𝑑𝑡 (7.68)

wherein from (7.55) to (7.57) we substitute into (7.45) and (7.50); from (7.57) to

(7.60) we apply initial conditions (7.47), (7.48), (7.52) and (7.53); from (7.60) to
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(7.62) we integrate by parts; from (7.62) to (7.63) we apply boundary condition (7.46);

from (7.63) to (7.64) we use boundary condition (7.51); from (7.64) to (7.65) we use

definition (7.38); from (7.65) to (7.66) we use definition (7.39) and the duality property

⟨ℱ ′(𝑓)𝛿𝑓, 𝑟⟩Γ×𝑇 = ⟨𝛿𝑓,ℱ ′(𝑓)*𝑟⟩Ω×𝑇

from (7.66) to (7.67) we assume the second-order variation is small, i.e.

⟨𝑓 + 𝛿𝑓, 𝑢+ 𝛿𝑢⟩ = ⟨𝑓, 𝑢⟩+ ⟨𝑓, 𝛿𝑢⟩+ ⟨𝛿𝑓, 𝑢⟩+ ⟨𝛿𝑓, 𝛿𝑢⟩ ≈ ⟨𝑓, 𝑢⟩

(or 𝛿(𝑓𝑢) = 𝛿(𝑓)𝑢+ 𝑓𝛿(𝑢) ≈ 0.) By the arbitrariness of 𝛿𝑓 , it follows that

𝑧 = 𝑐2(ℱ ′(𝑓)*𝑟 − 𝑢)

and hence

ℱ ′(𝑓)*𝑟 = 𝑧

𝑐2 + 𝑢 (7.69)

Substitution into (7.43) and (7.35) yields

𝑓𝑘+1 = 𝑓𝑘 + 𝜏

𝛾

(︃
𝑧𝑘

𝑐2 + 𝑢𝑘
)︃

(7.70)

Hence, we obtain an iterative forward-backward approach for solving the vocal tract

profile 𝑓 .

7.2.3 Estimating Model Parameters via Adjoint Least Squares

Method

Now, we derive the solution to the parameter estimation problem in (7.27), using the

adjoint least squares method proposed in Section 6.3.3. Denote the estimation error as

𝑓(𝜉𝑙, 𝜉𝑟;𝜗) =
(︃
ℋ𝑓 (𝑐𝑑(2𝜉0 + 𝜉𝑙(𝑡) + 𝜉𝑟(𝑡)))−

𝐴(𝐿)
𝜌𝑐

𝑝𝑚(𝑡)
)︃2
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and

𝐹 (𝜉𝑙, 𝜉𝑟;𝜗) =
∫︁ 𝑡𝑚

0
𝑓(𝜉𝑙, 𝜉𝑟;𝜗)𝑑𝑡

where 𝜗 = [𝛼, 𝛽,Δ] are the parameters in the vocal folds model (6.3). We would like

to obtain the update rules for the model parameters 𝛼, 𝛽, and Δ, i.e.

𝛼𝑘+1 = 𝛼𝑘 − 𝜏𝛼𝐹𝛼𝑘 (7.71)

𝛽𝑘+1 = 𝛽𝑘 − 𝜏𝛽𝐹𝛽𝑘 (7.72)

Δ𝑘+1 = Δ𝑘 − 𝜏Δ𝐹Δ𝑘 (7.73)

(7.74)

where the partial derivatives 𝐹· := 𝜕·𝐹 ≡ 𝜕𝐹
𝜕· and 𝜏 · is the step size. We define the

Lagrangian

ℒ(𝜗) =
∫︁ 𝑡𝑚

0

[︃
𝑓 + 𝜆

(︃
𝜉𝑟 + 𝛽(1 + 𝜉2

𝑟 )𝜉𝑟 + 𝜉𝑟 −
Δ
2 𝜉𝑟 − 𝛼(𝜉𝑟 + 𝜉𝑙)

)︃

+ 𝜂

(︃
𝜉𝑙 + 𝛽(1 + 𝜉2

𝑙 )𝜉𝑙 + 𝜉𝑙 + Δ
2 𝜉𝑙 − 𝛼(𝜉𝑟 + 𝜉𝑙)

)︃]︃
𝑑𝑡

+ 𝜇𝑙(𝜉𝑙(0)− 𝐶𝑙) + 𝜇𝑟(𝜉𝑟(0)− 𝐶𝑟) + 𝜈𝑙𝜉𝑙(0) + 𝜈𝑟𝜉𝑟(0) (7.75)

where 𝜆, 𝜂, 𝜇 and 𝜈 are multipliers. Taking the derivative of the Lagrangian w.r.t. the

model parameter 𝛼 yields

ℒ𝛼 =
∫︁ 𝑡𝑚

0

[︂
2𝑐𝑑ℋ′

𝑓

⃒⃒⃒⃒
𝑢0

(𝜕𝛼𝜉𝑙 + 𝜕𝛼𝜉𝑟)

+ 𝜆

(︃
𝜕𝛼𝜉𝑟 + 2𝛽𝜉𝑟𝜉𝑟𝜕𝛼𝜉𝑟 + 𝛽(1 + 𝜉2

𝑟 )𝜕𝛼𝜉𝑟 + 𝜕𝛼𝜉𝑟 −
Δ
2 𝜕𝛼𝜉𝑟 − 𝛼(𝜕𝛼𝜉𝑟 + 𝜕𝛼𝜉𝑙)− (𝜉𝑟 + 𝜉𝑟)

)︃

+ 𝜂

(︃
𝜕𝛼𝜉𝑙 + 2𝛽𝜉𝑙𝜉𝑙𝜕𝛼𝜉𝑙 + 𝛽(1 + 𝜉2

𝑙 )𝜕𝛼𝜉𝑙 + 𝜕𝛼𝜉𝑙 + Δ
2 𝜕𝛼𝜉𝑙 − 𝛼(𝜕𝛼𝜉𝑟 + 𝜕𝛼𝜉𝑙)− (𝜉𝑟 + 𝜉𝑟)

)︃]︃
𝑑𝑡

+ 𝜇𝑙𝜕𝛼𝜉𝑙(0) + 𝜇𝑟𝜕𝛼𝜉𝑟(0) + 𝜈𝑙𝜕𝛼𝜉𝑙(0) + 𝜈𝑟𝜕𝛼𝜉𝑟(0) (7.76)

Integrating the term 𝜆𝜕𝛼𝜉𝑟 by parts twice gives

∫︁ 𝑡𝑚

0
𝜆𝜕𝛼𝜉𝑟𝑑𝑡 =

∫︁ 𝑡𝑚

0
𝜕𝛼𝜉𝑟�̈�𝑑𝑡− 𝜕𝛼𝜉𝑟�̇�

⃒⃒⃒𝑡𝑚
0

+ 𝜕𝛼𝜉𝑟𝜆
⃒⃒⃒𝑡𝑚
0

(7.77)
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Define the estimation residual 𝑅 := ℋ𝑓 (𝑢0)− 𝐴(𝐿)
𝜌𝑐
𝑝𝑚(𝑡). Applying the same to 𝜂𝜕𝛼𝜉𝑙,

substitution into (7.76) and subsequent simplification yields

ℒ𝛼 =
∫︁ 𝑡𝑚

0

[︂(︃
�̈�+

(︃
2𝛽𝜉𝑟𝜉𝑟 + 1− Δ

2

)︃
𝜆+ 2𝑐𝑑𝑅ℋ′

𝑓

⃒⃒⃒⃒
𝑢0

)︃
𝜕𝛼𝜉𝑟

+
(︃
𝜂 +

(︃
2𝛽𝜉𝑙𝜉𝑙 + 1 + Δ

2

)︃
𝜆+ 2𝑐𝑑𝑅ℋ′

𝑓

⃒⃒⃒⃒
𝑢0

)︃
𝜕𝛼𝜉𝑙

+
(︁
𝛽(1 + 𝜉2

𝑟 )𝜆− 𝛼(𝜆+ 𝜂)
)︁
𝜕𝛼𝜉𝑟 +

(︁
(𝛽(1 + 𝜉2

𝑙 )𝜂 − 𝛼(𝜆+ 𝜂)
)︁
𝜕𝛼𝜉𝑙 − (𝜉𝑟 + 𝜉𝑙)(𝜆+ 𝜂)

]︂
𝑑𝑡

+ (𝜇𝑟 + �̇�)𝜕𝛼𝜉𝑟(0)− �̇�𝜕𝛼𝜉𝑟(𝑇 ) + (𝜈𝑟 − 𝜆)𝜕𝛼𝜉𝑟(0) + 𝜆𝜕𝛼𝜉𝑟(𝑇 )

+ (𝜇𝑙 + �̇�)𝜕𝛼𝜉𝑙(0)− �̇�𝜕𝛼𝜉𝑙(𝑇 ) + (𝜈𝑙 − 𝜂)𝜕𝛼𝜉𝑙(0) + 𝜂𝜕𝛼𝜉𝑙(𝑇 ) (7.78)

where the term ℋ′
𝑓 |𝑢0 ≈ 𝑢𝐿/𝑢0 by linearization. Since the partial derivatives of the

displacement 𝜉 w.r.t. the model parameter 𝛼 is difficult to compute, we cancel out the

related terms by setting

For 0 < 𝑡 < 𝑡𝑚 :

�̈�+
(︃

2𝛽𝜉𝑟𝜉𝑟 + 1− Δ
2

)︃
𝜆+ 2𝑐𝑑𝑅ℋ′

𝑓

⃒⃒⃒⃒
𝑢0

= 0 (7.79)

𝜂 +
(︃

2𝛽𝜉𝑙𝜉𝑙 + 1 + Δ
2

)︃
𝜂 + 2𝑐𝑑𝑅ℋ′

𝑓

⃒⃒⃒⃒
𝑢0

= 0 (7.80)

𝛽(1 + 𝜉2
𝑟 )𝜆− 𝛼(𝜆+ 𝜂) = 0 (7.81)

𝛽(1 + 𝜉2
𝑙 )𝜂 − 𝛼(𝜆+ 𝜂) = 0 (7.82)

(7.83)
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with initial conditions

At 𝑡 = 𝑡𝑚 :

𝜆(𝑡𝑚) = 0 (7.84)

�̇�(𝑡𝑚) = 0 (7.85)

𝜂(𝑡𝑚) = 0 (7.86)

�̇�(𝑡𝑚) = 0 (7.87)

(7.88)

Consequently, we obtain the derivative of 𝐹 w.r.t. 𝛼

𝐹𝛼 =
∫︁ 𝑡𝑚

0
−(𝜉𝑟 + 𝜉𝑙)(𝜆+ 𝜂)𝑑𝑡 (7.89)

Similarly, we obtain the derivatives of 𝐹 w.r.t. 𝛽 and Δ

𝐹𝛽 =
∫︁ 𝑡𝑚

0

(︁
(1 + 𝜉2

𝑟 )𝜉𝑟𝜆+ (1 + 𝜉2
𝑙 )𝜉𝑙𝜂

)︁
𝑑𝑡 (7.90)

𝐹Δ =
∫︁ 𝑡𝑚

0

1
2 (𝜉𝑙𝜂 − 𝜉𝑟𝜆) 𝑑𝑡 (7.91)

7.2.4 Parameter Estimation Algorithm

The algorithm for solving the parameter estimation problem (7.27) is outlined below.

1. Integrate (7.21) and (7.22) with initial conditions (7.23), (7.24), (7.25) and (7.26)

from 0 to 𝑡𝑚, obtaining 𝜉𝑘𝑟 , 𝜉𝑘𝑙 , 𝜉𝑘𝑟 and 𝜉𝑘𝑙 .

2. Solve the forward propagation model (7.34) for 𝑢𝑘𝐿, ℋ′
𝑓

⃒⃒⃒⃒
𝑢𝑘

0

.

3. Calculate the estimation difference 𝑟𝑘 using (7.42).

4. Solve the backward propagation model (7.54) for 𝑧𝑘.

5. Update 𝑓𝑘 using (7.70).
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6. Integrate (7.79), (7.80), (7.81) and (7.82) with initial conditions (7.84), (7.85),

(7.86) and (7.87) from 𝑡𝑚 to 0, obtaining 𝜆𝑘, �̇�𝑘, 𝜂𝑘 and �̇�𝑘.

7. Update 𝛼, 𝛽 and Δ with (7.74).

We adopt the simple gradient descent method. However, other gradient-based opti-

mization approaches, such as the conjugate gradient method, can also be used.

7.2.5 Numerical Solution for Wave Propagation

Now what remains for us to do is to solve the acoustic wave propagation problems

(7.34) and (7.54). We derive a finite element solution for them.

Variational Formulation

First, for the time-dependent system of PDEs, we discretize it along time 𝑡 with the

backward Euler method [9], yielding a sequence of differential equations. We split the

time domain 𝑇 into 𝑁 uniform length intervals Δ𝑡. For time step 𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1,

applying the backward Euler method to the left side of (7.28) gives

[︁
𝐷𝑡𝐷

−
𝑡 𝑢
]︁𝑛

:= 𝐷𝑡𝐷
−
𝑡

(︃
𝜕2𝑢

𝜕𝑡2

)︃
= 𝑢𝑛 − 2𝑢𝑛−1 + 𝑢𝑛−2

Δ𝑡2 (7.92)

where 𝐷𝑡𝐷
𝑛
𝑡 is a finite difference operator w.r.t. time at time step 𝑛 [9, 10]. Substitution

into (7.28) yields

[︃
𝐷𝑡𝐷

−
𝑡 𝑢 = 𝑐2𝜕

2𝑢

𝜕𝑥2 + 𝑓

]︃𝑛
(7.93)

⇔ 𝑢𝑛 = Δ𝑡2𝑐2𝜕
2𝑢𝑛

𝜕𝑥2 + Δ𝑡2𝑓𝑛 + 2𝑢𝑛−1 − 𝑢𝑛−2 (7.94)

Next, define the residual at time step 𝑛 as

𝑅𝑛 = 𝑢𝑛 −Δ𝑡2𝑐2𝜕
2𝑢𝑛

𝜕𝑥2 + Δ𝑡2𝑓𝑛 + 2𝑢𝑛−1 − 𝑢𝑛−2 (7.95)
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Applying Galerkin’s method [9, 11] gives

⟨𝑅𝑛, 𝑣⟩𝑊𝑘,2 = 0 (7.96)

where 𝑣 ∈ 𝒲𝑘,2 (𝒲𝑘,2 is the Sobolev space of functions with bounded 𝐿2 norm and

𝑘-th order weak derivatives) is a qualified test function. Galerkin’s method orthogonally

projects the residual to the function space 𝒲𝑘,2. Expanding (7.96) yields

∫︁
Ω
𝑢𝑛𝑣𝑑𝑥−Δ𝑡2𝑐2

∫︁
Ω

𝜕2𝑢𝑛

𝜕𝑥2 𝑣𝑑𝑥 =
∫︁

Ω

(︁
Δ𝑡2𝑓𝑛 + 2𝑢𝑛−1 − 𝑢𝑛−2

)︁
𝑣𝑑𝑥 (7.97)

Integration by parts for the second-order term in (7.97) gives

∫︁
Ω

𝜕2𝑢𝑛

𝜕𝑥2 𝑣𝑑𝑥 = −
∫︁

Ω

𝜕𝑢𝑛

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝑑𝑥+

∫︁
Γ

𝜕𝑢𝑛

𝜕𝑛Γ
𝑑𝑠 (7.98)

where 𝑛Γ is the outward normal unit vector of the boundary Γ, and 𝑑𝑠 is the 1-form [1]

on Γ. For problem (7.34), applying the boundary condition (7.31) and substitution

(7.98) back into (7.97) yields the variational problem

∫︁
Ω
𝑢𝑛𝑣𝑑𝑥+ Δ𝑡2𝑐2

∫︁
Ω

𝜕𝑢𝑛

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝑑𝑥 =

∫︁
Ω

(︁
Δ𝑡2𝑓𝑛 + 2𝑢𝑛−1 − 𝑢𝑛−2

)︁
𝑣𝑑𝑥 (7.99)

For problem (7.54), applying the boundary condition (7.51) and substitution (7.98)

back into (7.97) yields a similar variational problem

∫︁
Ω
𝑧𝑛𝑤𝑑𝑥+Δ𝑡2𝑐2

∫︁
Ω

𝜕𝑧𝑛

𝜕𝑥

𝜕𝑤

𝜕𝑥
𝑑𝑥 =

∫︁
Ω

(︁
Δ𝑡2𝑓𝑛 + 2𝑧𝑛−1 − 𝑧𝑛−2

)︁
𝑤𝑑𝑥+

∫︁
Γ
𝑟𝑛𝑤𝑑𝑠 (7.100)

We can split the variational problem (7.99) into two parts

𝑎(𝑢, 𝑣) =
∫︁

Ω
𝑢𝑣𝑑𝑥+ Δ𝑡2𝑐2

∫︁
Ω

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝑑𝑥 (7.101)

𝐿(𝑣) =
∫︁

Ω

(︁
Δ𝑡2𝑓𝑛 + 2𝑢𝑛−1 − 𝑢𝑛−2

)︁
𝑣𝑑𝑥 (7.102)

(7.103)
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where we have interchanged the unknown 𝑢𝑛 with 𝑢. (7.101) is the bilinear form, and

(7.102) is the linear form [9]. Our original problems (7.34) and (7.54) then reduce to

solving

𝑎(𝑢, 𝑣) = 𝐿(𝑣) (7.104)

for each time step. By the Lax-Milgram Lemma [10], solving (7.104) is equivalent to

solving the functional minimization problem

𝐹 (𝑢) = arg min
𝑣∈𝒱

1
2𝑎(𝑣, 𝑣)− 𝐿(𝑣)

By calculus of variations and taking the variation of the functional gives (7.104), hence

the name variational form [9, 10].

Finite Element Approximation

For each time step, we solve (7.104) with the finite element method. We discretize the

domain Ω with a mesh of uniformly spaced triangular cells. We take the 𝑃2 elements as

the basis function space, which contains piece-wise, second-order Lagrange polynomials

defined over a cell. Each basis function has a degree-of-freedom (DoF) of 6 over a

two-dimensional cell [9, 12]. Each element is associated with a coordinate map that

transforms local coordinates to global coordinates and a DoF map that maps local

DoF to global DoF [9, 12]. Each cell is essentially a simplex and can be continuously

transformed into the physical domain.

Existence of Unique Solution The solution to the variational problem (7.104)

exists and is unique [12].

Approximation Error The Galerkin’s method gives the solution 𝑢𝑒 with error

bounded by 𝒪(ℎ3‖𝐷2𝑢𝑒‖𝒲3,2), where ℎ is the cell size and 𝐷 is the bounded derivative

operator [10, 12].

Assume a solution 𝑢 = 𝐵+ 𝑐𝑗𝜓𝑗 (using Einstein summation convention) with basis

𝜓𝑗 ∈ 𝑃2 and coefficients 𝑐𝑗. The function 𝐵(𝑥) incorporates the boundary condition
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and, as an example, can take the form

𝐵(𝑥) = 𝑢𝑔 + (𝑢𝑚 − 𝑢𝑔)
𝑥𝑝

𝐿𝑝
, 𝑝 > 0 (7.105)

We also project 𝐵(𝑥) over the basis functions 𝑃2 and express it as 𝐵(𝑥) = 𝑏𝑗𝜓𝑗. As

a result, we obtain an unified expression 𝑢 = 𝑈 𝑗𝜓𝑗 with 𝑈 𝑗 incorporating 𝑏𝑗 and 𝑐𝑗.

Similarly, we have 𝑓𝑛 = 𝐹 𝑗
𝑛𝜓𝑗, 𝑢𝑛−1 = 𝑈 𝑗

𝑛−1𝜓𝑗, 𝑢𝑛−2 = 𝑈 𝑗
𝑛−2𝜓𝑗. Set the test function

as 𝑣 = 𝜓𝑖. Substitution into (7.101) and (7.102) yields

𝑎(𝑢, 𝑣) =
∫︁

Ω
𝑈 𝑗𝜓𝑗𝜓𝑖𝑑𝑥+ Δ𝑡2𝑐2

∫︁
Ω
𝑈 𝑗𝜓′

𝑗𝜓
′
𝑖𝑑𝑥

=
(︂∫︁

Ω
𝜓𝑖𝜓𝑗𝑑𝑥+ Δ𝑡2𝑐2

∫︁
Ω
𝜓′
𝑖𝜓

′
𝑗𝑑𝑥

)︂
𝑈 𝑗 (7.106)

𝐿(𝑣) =
∫︁

Ω

(︁
Δ𝑡2𝐹 𝑗

𝑛𝜓𝑗 + 2𝑈 𝑗
𝑛−1𝜓𝑗 − 𝑈

𝑗
𝑛−2𝜓𝑗

)︁
𝜓𝑖𝑑𝑥

= Δ𝑡2
(︂∫︁

Ω
𝜓𝑖𝜓𝑗𝑑𝑥

)︂
𝐹 𝑗
𝑛 + 2

(︂∫︁
Ω
𝜓𝑖𝜓𝑗𝑑𝑥

)︂
𝑈 𝑗
𝑛−1 −

(︂∫︁
Ω
𝜓𝑖𝜓𝑗𝑑𝑥

)︂
𝑈 𝑗
𝑛−2 (7.107)

Setting 𝑀𝑖,𝑗 =
∫︀

Ω 𝜓𝑖𝜓𝑗𝑑𝑥, 𝐾𝑖,𝑗 =
∫︀

Ω 𝜓
′
𝑖𝜓

′
𝑗𝑑𝑥 and collecting (7.106) and (7.107) into

matrix-vector form, we obtain

𝐴𝑈 = 𝑏 (7.108)

where 𝐴 = 𝑀 + Δ𝑡2𝑐2𝐾, and 𝑏 = Δ𝑡2𝑀𝐹 𝑛 + 2𝑀𝑈𝑛−1 −𝑀𝑈𝑛−2. Hence, we reduce

problem (7.104) into solving the linear system (7.108). Furthermore, the matrices 𝑀

(known as the mass matrix) and𝐾 (known as the stiffness matrix) can be pre-calculated

for efficiency.

7.2.6 Experiments

To show the validity of the proposed parameter estimation approach for the vocal

fold-tract model, we continue with the experiments explained in the last chapter—

estimating model parameters from clinically collected speech data and classifying voice

pathologies. All experimental settings are the same as those presented in the last

chapter. First, we obtain the same parameter estimation and pathology classification

results as in Table 6.1. This shows that the ADLES method can accurately estimate
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Glottal Flow MAE Parameter MAE
B-ADLES FB-ADLES 𝛼 Δ

Normal 0.021 0.022 0.042 0.049
Neoplasm 0.028 0.036 0.055 0.058

Phonotrauma 0.043 0.051 0.083 0.079
Vocal palsy 0.059 0.065 0.102 0.119

All 0.040 0.045 0.074 0.078

Table 7.2: Estimation error by backward and forward-backward approach.

model parameters. We can deduce voice pathologies by thresholding parameter ranges.

Each parameter setting corresponds to a region in the bifurcation diagram (Figure 6-5)

with characteristic phase space patterns, representing distinct vocal fold motions and

thereby indicating different voice pathologies. Further, we compare the estimation

precision in the proposed backward approach (previous chapter) and the forward-

backward approach (this chapter). Table 7.2 shows the mean absolute error (MAE)

of calculating glottal flows and parameters for four voice types (normal, neoplasm,

phonotrauma, vocal palsy) obtained by the backward ADLES (B-ADLES) and forward-

backward ADLES (FB-ADLES) procedures. The glottal flows obtained by inverse

filtering the speech signals are treated as ground truths. Since there is no ground

truth for the model parameters, we treat the parameters obtained by the backward

ADLES (previous chapter) as ground truth. These results suggest that our forward-

backward algorithm can effectively recover the vocal tract profile, glottal flow, and

model parameters.

7.3 Neural Approaches for Solving PDEs

The finite element method is known for its efficiency, stability, and precision guarantee

and is well-suited for solving large-scale PDE problems. Many well-established solvers

exist in it, such as FEniCS [13], COMSOL [14], Ansys [15]. However, machine and deep

learning advances also introduce practical approaches for solving PDEs. Compared to

FEM approaches, neural networks are well-suited for solving PDEs due to their ability
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to approximate highly nonlinear functions mesh-free, expressive power from over-

parameterization, effective learning through large data and stochastic optimization,

and efficient computation with hardware and software acceleration [16]. Neural nets

are particularly attractive for high-dimensional PDEs, whereas conventional methods

suffer from the curse of dimensionality [16, 17]. Neural nets with dynamical system

constraints can better capture the underlying dynamics and make more physically

plausible forecasts [18].

Physics-informed neural networks (PINNs) solve PDEs by using neural nets to

approximate the PDE solution and minimize the estimation error (residual) at initial

and boundary conditions and selected interior points [19]. The loss (error) functional can

take strong or weak residual forms and other forms with constraints or regularization

(e.g., boundary conditions, symmetries) [18, 20]. It differentiates the approximated

solution in space and time to minimize the residual. PINNs have the advantage of

dealing with strongly nonlinear systems and requiring a small amount of data [16].

The neural nets can be simple multi-layer perceptrons. PINNs work in continuous

and discrete time regimes. They have demonstrated success in many fields, such as

mechanics, fluid dynamics, and stochastic differential equations [16]. For instance, [21]

proposed physics-constrained deep feedforward networks to solve the Navier–Stokes

equations. It incorporates the governing PDEs into the loss while enforcing initial and

boundary conditions, enabling training without simulated data.

Besides nonlinearity, another challenge in solving PDEs is high dimensionality: the

solution complexity increases combinatorially as the degree-of-freedom increases [22].

A classic example is the Kolmogorov equation arising from stochastic processes in

finance and stochastic optimal control problems [23]. Neural networks break the curse

of dimensionality by approximating the solution with significantly reduced complexity.

In the case of linear backward Kolmogorov PDEs, the complexity (the number of

parameters) of the neural network solution increases at most polynomially with

dimension [24]. The Feynman-Kac theorem states that the solution to the backward

Kolmogorov equation is the conditional expectation of a stochastic process, which

in turn is the solution of a stochastic differential equation (SDE) [25, 26]. Due to
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the link between PDE and SDE, data can be generated to train the neural network

solution by sampling the stochastic process as it evolves over time [22]. Both the

estimation error and variance of the neural net solution decrease as the number of

samples increases [16]. Similar neural nets and training approaches can be applied,

as in PINNs. The Feynman-Kac formula also extends to general linear parabolic

equations [27]. For solving variational problems, the admissible function class can

be parameterized by neural nets, and the integrals in the energy functional can be

evaluated by sampling [28].

Besides (deep) feedforward networks, more advanced network structures can be

applied, such as convolutional neural nets, recurrent neural nets, autoregressive neural

nets, and encoder-decoder networks [29, 30, 31, 32]. Having proven successful in natural

language processing and computer vision, deep transformer-based architectures [33]

may also be effective in solving PDEs. Dynamical systems also inspire some physics-

guided network architectures, such as Turbulent-Flow Net [34] and the message-passing

PDE solver with graph neural networks [29]. Particularly, the deep-rooted symmetry in

physics leads to neural network designs with embedded invariance or equivariance [18].

However, neural approaches generally lack tools for systematic error analysis and

deriving theoretical guarantees. Future work can be further focused on improving

the precision of physics-guided neural PDE solvers and analyzing their theoretical

properties.

7.4 Conclusions

This chapter extends the previous chapter by integrating the vocal tract into the

phonation modeling dynamics. We present a forward-backward paradigm for effectively

solving the coupled ODE-PDE system of the vocal fold-tract model. We also extend

the ADLES method to solve the inverse problem of estimating the vocal fold-tract

model parameters from observations and present an efficient numerical solution. An

empirical study validates the proposed approach’s utility in characterizing phonation

dynamics and deducing voice pathologies. We also discuss important deep learning
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approaches for solving PDEs. Future work can explore the integration of our approach

with neural approaches.
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Chapter 8

Summary, Discussion, and Future

Work

This chapter concludes this thesis by comparing the modeling approaches presented in

previous chapters in a unified testing framework. Further, it summarizes and discusses

the key results of this thesis and suggests some promising future directions that can

be explored.

8.1 Comparing Models in a Unified Framework

We present a unified framework to compare the target-, data-, and process-specific

models presented in the previous chapters. We select the task of age prediction

from voice, which is a continuous-valued regression task. The specific task and data

description is given in Section 3.2.3, Chapter 3. We have acquired the results for

target-specific models from the following sources: Neural Regression Trees (NRT)

in Section 3.2.3, Chapter 3, Hierarchical Routing Mixture of Experts (HRME) in

Section 4.3.3, Chapter 4, and the results for data-specifc models from the sources:

Class-Dependent Adversarial Latent Structure Matching (CALM) in Section 5.3.3,

Chapter 5.

The process-specific phonation model—asymmetric vocal folds model and the Ad-

joint Least Squares (ADLES) parameter estimation method described in Section 6.3.3,
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Chapter 6—is designed for classification tasks (voice pathology classification), and

they do not produce fine-grained categories. To utilize the physical model for a re-

gression task and predict the speaker’s height, we adopt the approach proposed in [1]

and [2]—deriving features from the phonation model and using them as input to a

neural regression model. Specifically, for each speech signal in the Fisher dataset [3],

we extract the /i/ vowels using a state-of-the-art automatic speech recognition system.

The vowel /i/ carries more distinctive information than other vowels [1, 2]. These

extracted sounds are segmented into 100 ms chunks, corresponding to 800 samples

each, and segments less than 100 ms are discarded. We use the ADLES method for

each segment to estimate the asymmetric vocal folds model parameters 𝛼 and Δ

and produce the estimated glottal flows (see Chapter 6). We compute the difference

between the predicted and actual glottal flows (from inverse filtering) and obtain nor-

malized difference vectors of fixed lengths. Each difference vector is concatenated with

the estimated model parameters and the estimation residual, forming an augmented

feature vector. These feature vectors are fed into a three-layer feedforward network to

predict the speaker’s age.

Table 8.1 shows the results for age estimation obtained by the three modeling

categories. Our target-specific model HRME-MLP achieves the best performance. Al-

though not directly modeled for predicting age, the data-specific approach CALM-MLP

and process-specific approach ADLES-MLP also yield reasonably good performance,

suggesting the features extracted from our CALM framework and phonation modeling

process (i.e., the ADLES framework) are expressive enough and useful for various

downstream target-specific tasks. Notably, the phonation behaviors are controlled by

the articulation configurations of the speaker, which in turn are influenced by the

speaker’s physical and other profiling parameters (such as age). Hence, by recovering

the phonation model parameters and the underlying physical dynamics, our ADLES

framework is well-positioned to produce discriminative features for characterizing and

profiling speakers.
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Table 8.1: Age Estimation Results

Category Method Male Female
MAE RMSE MAE RMSE

Target-specific

SVR 9.22 12.03 8.75 11.35
MLP 9.06 11.91 8.21 10.75
NRT 7.20 9.02 6.81 8.53
HRME-MLP 6.91 8.74 6.40 8.07

Data-specific CALM-MLP 7.28 9.64 7.25 9.58
Process-specific ADLES-MLP 8.46 11.05 7.96 10.21

Figure 8-1: Diagram of the three model categories for VFAH.

8.2 Summary and Discussion

We conclude this thesis work with the same diagram shown at the beginning (Figure 8-

1). This thesis extensively studies the modeling approaches for voice-based forensic

analysis of humans (VFAH). VFAH aims to derive information from a person’s voice

to estimate or deduce the profile parameters of the speaker in a language-agnostic

manner. Such profile parameters include physical traits (e.g., height, weight, facial

skeletal contour), physiological traits (e.g., heart rate, blood pressure), psychological

traits (e.g., mood, emotion, stress, mental disease), medical traits (e.g., disease, illness),

demographic traits (e.g., age, gender, ethnicity, nationality, religion), sociological traits
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(e.g., education, occupation, social status), and other bio-parametric or bio-descriptive

traits. This thesis uses a subset of these profiling tasks as examples and focuses on

them to highlight the strengths and weaknesses of different modeling approaches in this

context. The chosen tasks are important ones, such as speaker identification, age and

height estimation, gender and dialect classification, and voice disorder characterization.

However, the methodologies and understanding developed in this thesis and the thesis’s

scope naturally extend to many other profiling tasks.

As mentioned above, this thesis studies a broad spectrum of voice processing

and computational modeling methodologies, technologies, and tools for VFAH. We

specifically investigate three broad modeling categories: (1) target-specific models, (2)

data-specific models, and (3) process-specific models. We build theoretical formulations

and practical algorithms and validate them with relevant, systematically conducted

experiments.

Target-Specific Models Target-specific models have a specific analysis target of

interest, aiming to derive information from the human voice and to make decisions

about the analysis target. We develop feature representations for human voices that

capture the most target-descriptive information and supervised machine and deep

learning models to learn from these features and predict the target. We show that both

strategies are effective and can be combined to give optimal results. Target-specific

modeling has historically been the most widely used approach for such tasks.

Specifically, in the target-specific modeling context, we explore and analyze the

potential of using breath sounds during inhalation for identifying speakers [4]. Intra-

speech breath sounds carry unique information about the configurations of the various

structures and geometry of the vocal tract, from the lungs and trachea to the larynx and

oral and nasal cavities. These physical configurations are influenced by the speaker’s

profile parameters. Hence, intervocalic breath sounds embed characteristic signatures

of the speaker. Further, breath sounds (especially intervocalic breath sounds) are

ubiquitous, measurable, and invariant under disguise and impersonation, as they are

usually not under the speaker’s voluntary control and are extremely difficult to modify
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consistently. This allows us to exploit the intervocalic breaths to reveal information

about the speaker’s identity. We present a constant-Q feature representation that

effectively manifests the speaker-discriminatory resonance patterns of breath sounds

and a CNN-LSTM framework that combines representation learning, speaker modeling,

and decision making into a single pipeline.

We also study target-specific models for two challenging VFAH tasks: age and

height estimation from voice. We bypass the difficulties of direct modeling approaches

and recast the regression problem into a regression-via-classification (RvC) framework

and present neural regression trees (NRT) [5] for such tasks. NRT adopts a divide-and-

conquer strategy and develops a hierarchical partitioning policy to find the optimal

discretization of the target variable based on each split’s local optimality. In addition,

NRT also optimizes the local features at each node to be more discriminative. We

present an algorithm with a triviality loss to optimize partition boundaries, node

classifiers and features jointly.

We extend the NRT model to deal with complicated data distributions and present

a new modeling approach: the hierarchical routing mixture of experts (HRME) [6].

Addressing the difficulty of partitioning and routing data in conventional approaches

and the sub-optimality of NRT, HRME introduces a novel gating mechanism that

jointly partitions the input-output space based on the natural separability of the

multimodal data and routes the data to simple regression models for reliable predictions.

Furthermore, we formulate a probabilistic framework for HRME and construct an

effective recursive Expectation-Maximization (EM) algorithm to jointly optimize the

input-output partition, tree structure, and expert models.

Data-Specific Models Data-specific models aim to discover, extract, represent,

and exploit the most intrinsic information in the human voice. They are not tied to a

specific analysis target, but the derived feature representations are readily applicable

to various profiling tasks. Such models are generative—they model the underlying data

distribution and can generate samples from it. Generative models allow us to distill

intrinsic data representations—latent features—from within their latent space. However,
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the utility of these latent features is limited by their high dimensionality, inseparability,

and unidentifiability. Addressing these issues, we present a class-dependent adversarial

latent structure matching (CALM) framework. CALM automatically discovers low-

dimensional latent features that are disentangled and geometrically separable. They

disambiguate the influences of different profiling parameters on voice. Further, the

separable latent space constructed by CALM is class-dependent, resulting in naturally

clustered latent features directly usable for classification and regression tasks. In

addition, CALM imposes an algebraic structure to the latent space that enables

sampling and interpolation within/across classes. Such algebraic operations can be

semantically interpreted to understand how the sample space continuously changes

with the latent space. Consequently, CALM provides an effective tool for discovering

and analyzing the relationship between latent features and the corresponding profile

parameters.

Process-Specific Models Process-specific models are physical models that repre-

sent a specific physical process mathematically. These models describe the observed

data through dynamical systems comprising ordinary or partial differential equations

(ODEs/PDEs) with constraints. At the same time, the observation space is further

dictated by the dynamics in the underlying phase space. This thesis studies one physi-

cal process of particular interest—the phonation process. Phonation is the process of

producing voiced sounds. It involves a complex and delicate interplay of the physi-

cal articulatory instrument, aerodynamic forces across the glottis, and the cognitive

and mental processes that influence voice production. By developing process-specific

models, we can characterize such processes and reveal many fundamental traits of the

speaker in a language-agnostic manner. Particularly, we present the asymmetric vocal

folds model for phonation and the ADLES algorithm to accurately and efficiently

recover the model parameters and solve the oscillatory dynamics of vocal folds [7]. The

ADLES framework studies the dynamical system’s behaviors through its phase space

characteristics, such as stability and bifurcation. Such characterization provides a tool

to analyze different phonation phenomena and physiological aspects of the human
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voice. One example of the utility of this method is that we can deduce different voice

abnormalities by the simple placement of entrainment behavior on the bifurcation

map. We can also derive features from the dynamical system for various target-specific

profiling tasks. Further, we extend the vocal folds model by incorporating the vocal

tract and present a forward-backward paradigm for solving coupled ODE-PDE systems.

We also extend the ADLES method to solve the inverse problem of estimating vocal

fold-tract model parameters from observations.

Each of the three model categories has its strengths and weaknesses, and models

from one category often cross the fluid boundary and aid the other. Together, they

promote robust feature representations and effective modeling and algorithmic ap-

proaches that demonstrate success in various VFAH tasks. These models also give us

valuable perspectives and insights into the forensic analysis of human voices.

8.3 Future Work

In target-specific modeling, we can explore the ability of other phonemes besides

breath sounds to identify speakers and predict other profile traits. We can evaluate

other feature representations and modeling choices, especially those robust to adverse

conditions such as noise and disguise.

In data-specific modeling, we can further analyze the latent space’s geometric,

topological, and algebraic structures. We can improve the stability of the adversarial

learning approach and explore other ways of imposing finer-grained latent structures.

These latent structures can provide a direction for more interpretable representation

learning. We can also try to improve the generalization and adaptability of latent

features to downstream tasks.

In process-specific modeling, we can explore the utility of other physical models of

voice production and other physical processes pertaining to VFAH. We can also improve

the precision, stability, and efficiency of the estimation algorithms and numerical

solutions and provide theoretical guarantees.

Another direction of suggested research is characterizing the phase space from
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algebraic perspectives. The phase space characterization presented in this thesis is

based on phase space trajectories (a topological perspective), which are local and

volatile. We can find a global and more stable characterization of the phase space

from an algebraic perspective. Algebraic invariants represent one of many feasible

approaches. An algebraic invariant is an algebraic structure that is invariant under

topological transforms, i.e., continuous deformations. Hence, we recast the study of

the topological structures of the phase to the study of its algebraic constructs, such

as homotopy groups and homology/cohomology groups, which are easier to classify.

Such an algebraic approach can provide a systematic and refined deconstruction of the

phase space. More generally, from a category theory perspective, algebraic invariants

are functors—they describe not only homeomorphic topological spaces but also the

morphisms (maps) between them. For example, algebraic invariants can characterize

the homeomorphisms between phase spaces (e.g., evolution maps, poincaré maps) and

reveal large-scale structures and global properties (e.g., existence and structure of

orbits).

Lastly, as discussed in Chapter 6 and 7, we explore and build upon the deep

connection between dynamical systems and deep neural models. On the one hand,

we can study deep learning approaches for solving and analyzing dynamical systems.

On the other hand, we can draw insights from the study of dynamical systems in

interdisciplinary settings, connecting areas such as physics, nonlinear analysis, geometry,

topological manifolds, algebra, and optimal control. Thus, we can explore the integration

of dynamical systems and deep neural models, borrow from the well-established theories

and tools in these fields to analyze and interpret the behaviors of deep neural models

(such as studying the phase space structures of deep neural nets), and gain valuable

insights and guidance to advance deep learning theories and applications in the context

of human profiling from voice.
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