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Abstract

Graph Signal Processing (GSP) extends Discrete Signal Processing (DSP) to data supported

by graphs by redefining traditional DSP concepts like signals, shift, filtering, and Fourier

transform among others. This thesis develops and generalizes standard DSP operations for

GSP in an intuitively pleasing way: 1) new concepts in GSP are often designed as natural

extensions of DSP concepts; 2) GSP is consistent with DSP, i.e., when the underlying graph G

is a directed cyclic graph, GSP becomes DSP; and 3) GSP leads to reinterpretation of well

known DSP results and sheds new light on DSP facts and assumptions that are commonly

taken for granted.

We build a theoretical foundation for GSP, introducing fundamental GSP concepts such as

spectral graph shift, spectral convolution, spectral graph, spectral graph filters, and spectral

delta functions. This leads to a spectral graph signal processing theory (GSPsp) that is the dual

of the vertex based GSP. GSPsp enables us to develop a unified graph signal sampling theory

with GSP vertex and spectral domain dual versions for each of the four standard sampling

steps of subsampling, decimation, upsampling, and interpolation.

To define the graph z-transform, GzT, we introduce the canonical companion model with

its canonical companion shift and canonical companion graph. The companion shift and the

companion graph modifies the structure of the DSP cyclic directed shift by adding appropriate

boundary conditions.

The companion GSP model and GSPsp show that, in GSP, there are two distinct models:

the eigenvector model from current GSP literature and the canonical model we introduce. In

DSP, these two models overlap and are equivalent, obscuring which model should be used

in GSP for particular data processing tasks. We illustrate the significance of this dichotomy

by presenting a GSP uncertainty principle, interpolating GSP filters, and GSP modulation as

natural applications of the canonical companion signal model. In doing so, we show that, while

equivalent in DSP, both models are needed for the complete picture in GSP.
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Chapter 1

Introduction

Discrete signal processing (DSP) has been successful in processing grid-based signals such as

time signals and image signals. In DSP, a sample sn of a real valued time signal s like a

sample of a segment of speech or of audio is indexed by the time instant n at which the sample

occurs. Similarly, the intensity or color sij of an image pixel is indexed by the location (i, j)

of the pixel. Both indices, time n and pixel (i, j), usually take values on regularly spaced one

dimensional (1D) or two dimensional (2D) grids.

In contrast, the samples of graph signals such as the number of taxi pickups at street

intersections of New York City, the voltages in an electrical grid, and demographic data of

people in political blogs are seemingly placed in non-regular, arbitrary locations in space. This

indexing structure is better described by a graph. Graph signal processing (GSP) extends

traditional DSP concepts to analyze graph signals, signals indexed or defined on graphs.

References [1–3] extend several DSP concepts to GSP, including graph shift A, graph filter-

ing, graph Fourier transform (GFT), graph frequency, and graph filter response. In GSP, the

adjacency matrix A becomes the shift operator, and it plays in GSP the same role that the

time shift z−1 plays in DSP. Reference [4] presents an alternative “spectral domain” develop-

ment of GSP that is restricted to data indexed by nodes of undirected graphs. It starts from

spectral decompositions of the data in terms of the eigenfunctions of a variational operator,

the graph Laplacian L. For undirected graphs, L and A have the same eigendecomposition

and, for undirected graphs, the spectral analysis is equivalent for the two approaches.

In [1–3], GSP is developed as a direct, intuitive extension and generalization of DSP. This
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approach to GSP is intuitively pleasing: 1) new concepts in GSP are often designed as natural

extensions of DSP concepts; 2) GSP is consistent with DSP, i.e., when the underlying graph G

is a directed cyclic graph, GSP becomes DSP; and 3) GSP leads to reinterpretation of well

known DSP results and sheds new light on DSP facts and assumptions that are commonly

taken for granted. These points will become apparent in this thesis.

1.1 Review of Literature

The GSP literature is vast, by now covering many topics in processing graph signals. The

approach in [1–3] identifies as basic building block the shift filter A, building on the Algebraic

Signal Processing in [5–9]. The approach in [4] departs from a variational operator, the graph

Laplacian L, motivated by for example earlier work from spectral graph theory [10–12], from

work extending wavelets to data from irregularly placed sensors in sensor networks [13–15],

and from research on sampling graph based data [16, 17]. A comprehensive review covering

both approaches and illustrating many different applications of GSP is [18].

Brief Review of GSP Sampling Literature: In the last decade, there has been a robust

literature on GSP sampling. With a few exceptions, these works assume undirected graphs.

We highlight a few main points and refer to the references and their bibliography for a more

comprehensive review. Most of the work has been concerned with choosing the sampling set

and developing recovery methods that address issues like noise, or aliasing, or robustness to

computational errors, or speed of computation. These are important issues, but are not our

focus. Still, the brief review of GSP sampling literature helps put this thesis in context.

References [19, 20] consider subspaces of bandlimited signals (Paley-Wiener spaces) and

show that signals supported by undirected graphs can be perfectly reconstructed from values

in a sampling set S, termed uniqueness set. Critically sampled graph signals restricted to

undirected k-regular bipartite graphs are considered in [21] that proposes two-channel wavelet

filter banks for perfect reconstruction. General undirected graphs are approximated by a

decomposition in terms of k-regular bipartite graphs. Papers [22–25] consider choosing S for
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stable reconstruction and methods that avoid spectral decompositions of the graph Laplacian.

While the previous references apply to undirected graphs, [26] shows that a necessary and

sufficient condition for perfect reconstruction is for the sampling set to choose K linearly

independent rows from K columns of the inverse graph Fourier transform. The paper shows

that random sampling chooses with high probability for Erdös Rényi graphs a sampling set

from which perfect reconstruction can be achieved. This reference also shows that sampling

preserves first order differences on the sampled nodes. In [27], various sampling schemes are

considered including uniform sampling, experimentally designed sampling, and active sampling.

Random sampling for undirected graphs is also studied in [28] that presents a condition in terms

of the invertibility of a K ×K kernel matrix corresponding to rows and columns selected by a

determinantal point process. Reference [29] derives an uncertainty principle for graph signals

and conditions for recovery of bandlimited signals from a subset of the samples. In [30],

the authors propose a sampling scheme that uses as input observations taken at a single

node and corresponds to sequential applications of the graph-shift operator. Beyond sampling

of bandlimited signals, [31] considers piecewise constant signals on undirected graphs and

[32] smooth signals, with recovery by a Lasso like procedure. Reference [33] reconstructs

time signals from projections on low rank approximation subspaces, with [34] extending it

to undirected graph signals. Reference [35] presents a spectral domain sampling where the

spectrum of the subsampled signal replicates the bandlimited spectrum of the original signal.

But the method in [35] does not respect the traditional concept of sampling, namely, discarding

samples in the vertex domain and reconstructing the original signal from the samples kept.

In fact, the sampled signal in [35] not only keeps all samples of the original signal, but also

distorts them.

Many additional topics have been considered in GSP. A sample of these include: alternative

(unitary, but not local) shift operators [36, 37]; approximating graph signals [38]; extensive

work on sampling of graph signals, e.g., [22,24,26,30,35,39], see the recent review [40]; extend-

ing classical multirate signal processing to graphs [41, 42]; an uncertainty principle for graph
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signals [43]; the study of graph diffusions [44]; graph signal recovery [32]; interpolation and

reconstruction of graph signals [45, 46]; stationarity of graph processes [47]; learning graphs

from data [48–50]; or non-diagonalizable shifts and the graph Fourier transform [51].

1.2 Thesis Contributions

This thesis develops and generalizes standard DSP operations for GSP in a natural and intuitive

way. We summarize the contributions of the thesis:

1. Spectral Graph Signal Processing Theory, GSPsp: We build a theoretical foun-

dation for GSP, introducing new fundamental GSP concepts such as spectral graph shift

M , convolution in the spectral domain, and spectral delta functions. This leads to a

spectral graph signal processing theory (GSPsp) that is the dual of vertex based GSP.

For example, M is the spectral shift acting in the spectral domain rather than shift A

that acts in the vertex domain. Also, linear shift invariant (LSI) filtering in the spectral

domain is with polynomial filters P (M), instead of the vertex domain LSI filters, P (A).

2. Unified GSP Sampling Theory: GSP sampling is usually presented in GSP literature

as either in the vertex (time) or in the spectral (frequency) domain with no clear connec-

tion between the two. In contrast, DSP sampling is interpretable in both domains with

clear connections between the two, e.g., sampling in time with a delta train is equivalent

to convolution in frequency with a different delta train. This thesis is concerned with

what is lacking [40], namely, presenting an unified GSP sampling theory and the anal-

ogy (duality) between vertex and spectral GSP sampling operations, just like for DSP

sampling. Reference [40] identifies the “[I]nterconnection between vertex and spectral

representations of sampling ...” as an open issue worthy of further study. It further asks

how “can these sampling approaches be described in a more unified way beyond a few

known special cases?” stating that “This may lead to a more intuitive understanding of

graph signal sampling.” This thesis deals with this open issue.
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GSPsp enables us to develop an unified graph signal sampling theory with GSP vertex and

spectral domain dual versions for each of the four standard sampling steps of subsampling,

decimation, upsampling, and interpolation, see fig. 1.1. Each step is interpretable in both

Figure 1.1: The sampling and reconstruction steps in this thesis. Each step is considered in both
vertex and spectral domains.

the vertex and spectral domains. We show clear parallels between DSP and GSP sampling

exist, i.e., commonly held DSP sampling facts actually remain true when generalized to

GSP, but with a twist.

We summarize our contributions on GSP sampling.

• GSP sampling—the dualism between vertex and spectral representations of sampling.

Our presentation of graph sampling parallels the traditional sampling of discrete

time signals [52]. This thesis shows for graph sampling i) how it is analogous to

the Shannon-Nyquist and shift-invariant sampling of time signals; and ii) how and

when it deviates given the intrinsic differences between GSP and DSP constructs.

Safeguarding the distinctions, we replicate the dualism between time and frequency

sampling operations in DSP with a similar dualism between GSP sampling opera-

tions in the vertex and the graph spectral domains. For every sampling operation,

we present its vertex domain interpretation and its spectral domain interpretation.

When GSP becomes DSP, we point out which among several alternative choices of

the sampling set leads to the Shannon-Nyquist uniform sampling of time signals.

We detail our contributions to the GSP sampling and reconstruction steps: sub-

sampling, decimation, upsampling, and interpolation.

• Graph subsampling: LSI spectral filtering. Subsampling of a graph signal is multi-
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plication in the vertex domain of the graph signal s by a zero-one graph sampling

signal δspl. To determine the graph spectral domain operation that is dual to multi-

plication of graph signals in the vertex domain, we introduce graph LSI filtering in

the graph spectral domain. Namely, we introduce graph convolution in the spectral

domain by a polynomial spectral filter P (M) using a new graph spectral shift M

that we define. This dualizes multiplication of graph signals in the vertex domain

with graph convolution or graph filtering in the spectral domain. Further, spectral

shift M defines a new spectral graph whose nodes now index the graph Fourier co-

efficients by the graph frequencies. The interesting point is that subsampling by δspl

is in the spectral domain achieved by LSI spectral filtering (by P (M)) just like in

DSP sampling.

• Graph subsampling: Spectral replication. Like in DSP, in GSP we show that the

spectrum of the subsampled signal is a set of (distorted) replicas of the lowpass

spectrum of the original signal, with no aliasing if sampling rate is at least the

“GSP Nyquist” rate.

• Graph decimation. Decimation downsizes the original graph from a graph of order N

to a graph of order K. This is determined by i) the choice of sampling signal (and

sampling set), and ii) by the K nonzero components of the graph spectrum of the

signal. This follows standard procedure, for example [27]. Just like for DSP, this

step expands the spectrum of the decimated graph signal to the full band (which

is now reduced to a smaller number of graph frequencies). But, even though where

the graph spectrum is nonzero is given or assumed, there are several choices for

the sampling signal, and so for the decimated graph. We illustrate why and what

choices lead to the uniform sampling in DSP. In DSP, certain choices preserve the

nature of the graph, i.e., both the original and the decimated graph are cycle graphs

(of different orders), while other choices lead to a decimated graph that is no longer

cyclic. In GSP, this is hardly the case. For general graphs, the decimated and
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original graphs are very different.

• Reconstruction: upsampling. The upsampling with reinsertion of zeros in the deci-

mated graph signal, and the reconstruction of the original Nth-order graph follows

the same steps in GSP and DSP. Like in DSP, it leads to a contracted signal spec-

trum in GSP, i.e., a signal spectrum that is zero in N −K components.

• Reconstruction: interpolation by spectral filtering and ideal LSI (vertex) filtering.

Perfect reconstruction in GSP sampling, assuming no aliasing, is obtained like in

DSP by spectral filtering, but in two distinct steps. First, with a spectral filter Q

that is not necessarily LSI, followed by LSI vertex ideal filtering. When the graph

is cyclic and GSP becomes DSP, the reconstruction filter Q becomes trivially a gain

of K, and the LSI vertex ideal sampling is the Shannon ideal filter with a sinc

function as impulse response (in the vertex domain).

3. GSP Signal Representations: Signal representations play a crucial role in signal pro-

cessing. In DSP, we have the standard representation and the frequency representation.

We develop new GSP signal representations as shifted delta functions in both the vertex

domain and spectral domain using the spectral graph shift M , convolution in the spectral

domain, and spectral delta functions developed in the spectral graph signal processing

theory, GSPsp. Current GSP literature describes graph signals by their standard (node

or vertex) representation s or their spectral representation ŝ, but practically none has

discussed or studied these other graph signal representations.

4. Canonical Companion Model: Using the new GSP signal representations, we in-

troduce a canonical companion model with its canonical companion shift and canonical

companion graph. Any graph G can be converted into its canonical companion graph

that replicates the structure of the cyclic shift and the cyclic (time) graph in DSP, but

with different boundary conditions given by the Cayley-Hamilton Theorem. This is true

even for undirected graphs. We show shifts by A in the vertex domain and shifts by
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M in the spectral domain both become shifts by the canonical companion shift in the

canonical companion model.

5. Graph z-Transform (GzT) and Fast Linear Convolution: The canonical compan-

ion model allows us to define the graph z-transform for the vertex domain. The graph

z-transform provides a symbolic polynomial representation for graph signals. The graph

z-transform reproduces many characteristics of DSP. We develop fast graph convolution

in the vertex domain using the FFT of graph z-transform signals. We also introduce the

dual of the graph z-transform, the spectral graph z-transform, that uses the spectral shift

M in the spectral domain. Unlike the graph z transform, this spectral graph z-transform

only exists in GSP and not DSP.

6. GSP Uncertainty Principle: Previous GSP Uncertainty Principles showed relation-

ships between the spread between s and ŝ, but did not directly show a relationship

between the bandlimitness of ŝ and support of s like [53] did in DSP.

In DSP, since DFT and its inverse are Vandermonde matrices, s and ŝ can be inter-

preted as interpolating polynomials and the Fourier relationship can be interpreted as

polynomial interpolation:

(a) s is the coefficients of the interpolating polynomial that goes through the points

(λi,
√
Nŝi) where λi is the ith eigenvalue of Ac and ŝi is the ith entry of ŝ, i =

0, . . . , N − 1,

(b) ŝ is the coefficients of the interpolating polynomial that goes through the points

(λ∗
i ,
√
Nsi) where λ∗

i is the conjugate of the ith eigenvalue of Ac and si is the ith

entry of s, i = 0, . . . , N − 1.

The DSP Uncertainty Principle in [53] relies on precisely on the DFT and its inverse being

Vandermonde matrices. In GSP, since the GFT and its inverse are not Vandermonde

matrices, the Fourier relationship cannot be interpreted as polynomial interpolation.
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While s and ŝ are related by the GFT (a non-Vandermonde matrix), p and ŝ are related

by a Vandermonde matrix. The canonical signal model allows us to interpret p and

ŝ (similarly, q and s) as polynomial interpolation. DSP properties that rely on the

DFT being a Vandermonde matrix do not generally hold for s and ŝ in GSP, but can

be generalized to p and ŝ. We explore this polynomial interpolation and its applications

through the GSP Uncertainty Principle, GSP Interpolating Filters, and GSP Modulation

and Demodulation.

In this thesis, we present a GSP Uncertainty Principle based on the interpolation of the

graph z-transform p and spectral signal ŝ (similarly, spectral graph z-transform q and

vertex signal s). This GSP Uncertainty Principle directly relates the bandlimitness of

p and ŝ. We use this uncertainty principle to show that when ŝ is bandlimited, we can

reduce and simplify the Vandermonde system required to calculate p.

7. GSP Interpolating Filters: Since p and ŝ are related through polynomial interpo-

lation, we provide a general way to find p using Lagrange interpolation in GSP. This

leads to Lagrange basis polynomial filters in both the vertex and spectral domains, ℓi(A)

and ℓi,sp(M) respectively. We explore the properties of these Lagrange basis polynomial

filters, applying them to both delta functions δ0 and signal s. Using these Lagrange basis

polynomials, we develop all-pass graph filters and narrow-band filters for GSP in both

the vertex and spectral domains.

8. GSP Modulation and Demodulation: We present three GSP multiplexing methods.

In DSP, multiplexing is done by partitioning the signal bandwidth into (non-overlapping)

spectral bands with each band containing one signal. This partitioning can either hap-

pen in the time domain (time division multiplexing) or the frequency domain (frequency

division multiplexing). In this thesis, we present GSP multiplexing for vertex domain

multiplexing, spectral domain multiplexing, and spectral z-transform division multiplex-

ing. To perform the multiplexing, we provide methods for both GSP modulation and

demodulation.
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9. Dual GSP Spaces: DSP and GSP is presented in two domains: the vertex and spectral

domains related through the GFT. In this thesis, we take this simple picture of GSP

and expand it to four GSP domains: the vertex, spectral, z-transform, and spectral z-

transform domains, showing their relationships and interpretations. This provides an

expanded version of DSP.

Parts of this thesis have been published in papers: [54–64].

1.3 Thesis Summary

Chapter 2 reviews basic GSP concepts. Chapter 3 introduces GSPsp including the spectral

graph shift, spectral domain convolution, and graph impulses. Chapter 4 presents dual domain

sampling, GSP sampling that is interpretable in both the vertex and spectral domains. Chapter

5 introduces GSP signal representations using GSPsp and the canonical companion model.

Chapter 6 discusses the graph z-transform and fast graph convolution with the FFT. Chapter 7

presents the GSP Uncertainty Principle. Chapter 8 presents GSP interpolating filters. Chapter

9 presents GSP modulation and demodulation. Chapter 10 concludes the thesis and discusses

future directions.
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Chapter 2

Graph Signal Processing Primer

This chapter briefly reviews GSP following [1–3]. The first section presents DSP using matrices.

The second section reviews GSP basics.

Let G = (V,E) be a graph of order N , i.e., with vertex or node set V of cardinality |V | = N ,

and with edge set E. The graph G is arbitrary, possibly directed, undirected, or mixed with

directed and undirected edges. The graph can be specified by an adjacency matrix A, where

Aij = 1 if there is a directed edge from node j to node i or Aij = 0 otherwise.1

Remark 2.1 (A equivalence class). The adjacency matrix A depends on the ordering of the

nodes of V . Different node orderings are related by permutations P and the corresponding

adjacency matrices are conjugated by P , i.e., P−1AP = P TAP . In other words, adjacency

matrices describing the same graph are an equivalence class under the symmetric group of

permutations. We assume that a representative of this class has been chosen, by fixing the

labeling order of the nodes in V , which becomes now an ordered set, and identify graph G with

adjacency matrix A rather than with the class of adjacency matrices.2

A graph signal s is an (ordered) N -tuple s = (s0, · · · , sN−1) that assigns to each node

n ∈ V , n = 0, · · · , N − 1, the graph sample sn. In other words, graph signal samples sn are

indexed by the nodes n of the graph. In this paper, we consider the graph samples to be

complex valued, sn ∈ C. The graph signal s is then a vector in CN , the N -dimensional vector

space over the complex field C.
1 Computer Science reverses this convention and the adjacency is AT .
2 Graphs that differ by permutations P of V are isomorphic.
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2.1 DSP as GSP

To motivate GSP, we start by casting DSP in the context of GSP, see for example [1, 3].

Consider the N node directed cycle graph G in figure 2.1 with adjacency matrix Ac

Ac =



0 0 . . . 0 1

1 0 . . . 0 0

... 1
. . .

...
...

...
...

. . . . . .
...

0 0 . . . 1 0


. (2.1)

The nodes of the cycle graph G represent the time ticks n and are naturally ordered. The time

Figure 2.1: Directed cycle graph with adjacency matrix Ac.

signal samples sn are indexed by the nodes of G. Matrix Ac is also the matrix representation

of the shift z−1 in DSP (assuming periodic boundary conditions [1, 6, 7]).

Ac



s0

s1

· · ·

sN−1


=



sN−1

s0

· · ·

sN−2


. (2.2)

The eigenvalues (or a normalized version) λk and the eigenvectors vk of the cyclic Ac in (2.1)

are the discrete time frequencies and the discrete time harmonics, spectral components, or
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eigenmodes of time signals

λk = e−j 2π
N

k, , k = 0, · · · , N − 1 (2.3)

vk =
1√
N

[
1 ej

2π
N

k · · · ej
2π
N

k(N−1)
]T

. (2.4)

The Discrete Fourier Transform, DFT, is obtained through the diagonalization of Ac

Ac = DFTHΛ DFT, (2.5)

where

Λ = diag [λ] (2.6)

λ = [λ0 · · ·λN−1]
T =

[
1 e−j 2π

N · · · e−j 2π
N

(N−1)
]T

(2.7)

DFT =
1√
N



1 1 · · · 1

1 e−j 2π
N · · · e−j 2π

N
(N−1)

...
...

...

1 e−j 2π
N

(N−1) · · · e−j 2π
N

(N−1)(N−1)


(2.8)

=
1√
N

[
λ0 · · ·λN−1

]
(2.9)

DFTH = [v0 · · · vN−1] . (2.10)

The matrix Λ in (2.6) is the diagonal matrix of the eigenvalues, i.e., its diagonal entries are

the graph frequencies. Equation (2.7) defines the graph frequency vector λ and equation (2.9)

uses the notation

λk = λ⊙ λ · · · ⊙ λ

to represent k times the Hadamard or entrywise product of the graph frequency vector λ.

By (2.9) and (2.10), in DSP, the powers of the graph frequency vector λ are conjugates of the
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eigenvectors,

1√
N
λk = v∗k (2.11)

and, by (2.10), the columns of the DFTH are the eigenvectors vk of A. The DFT is symmetric,

DFT = DFTT

and unitary,

DFT−1 = DFTH

However, unlike GSP, (2.9) and (2.10) also show the DFT and its inverse are both Van-

dermonde matrices3. So, the columns of DFTH have two equivalent interpretations (shown in

(2.10)): either eigenvectors of Ac, vi, or powers of the conjugate of the eigenvalues of Ac, λ
∗i ,

vi =
1√
N
λ∗i

2.2 GSP Basics

We now let A be the adjacency matrix of an arbitrary (directed or undirected) graph G of N

nodes and s be a graph signal. As observed for DSP and following [1–3], in GSP, A is the shift

operator. It captures the local dependencies of the signal sample sn on the signal samples sm

at the in-vertex neighbors m ∈ ηn of n (given by the nonzero entries of row n of A and where

ηn is the (in)neighborhood of n, i.e., the set of (in)neighbors of n). The eigenvalues λk and

eigenvectors vk of A are the graph frequencies and graph spectral modes. Let graph frequency

vector λ and matrix Λ be defined as before to collect the graph eigenvalues

λ = [λ0, λ1, . . . , λN−1]
T , Λ = diag [λ] . (2.12)

The following assumptions hold even when not stated. On occasion, we state them explic-

3See (2.27) for the definition of a Vandermonde matrix.
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itly.

Assumption 2.1 (Strongly connected graph). The graph G is strongly connected.

Under assumption 2.1, matrix A has no zero column or row.

Assumption 2.2 (Distinct eigenfrequencies). The eigenvalues of A are distinct.

Under assumption 2.2,4 A is diagonalizable and the Graph Fourier Transform (GFT) is

found5 by

A = GFT-1 Λ GFT. (2.13)

IfA is symmetric, which is the case with undirected graphs, GFT is orthogonal
(
GFT−1 = GFTT

)
,

and if A is normal then GFT is unitary
(
GFT−1 = GFTH

)
. For general graphs, A is neither

symmetric nor normal, but the GFT is full rank and invertible.6 The spectral modes are the

columns vk of GFT−1. In GSP, unlike DSP, the columns of GFT−1 can only be interpreted as

the eigenvectors of A, vk, and are not Hadamard powers of the vector of eigenvalues of A.

The graph Fourier transform of graph signal s is

ŝ = GFTs. (2.14)

Remark 2.2 (Fixing the GFT). It is well known [66] that the diagonalization of a matrix is

unique up to reordering of the eigenvalues and normalization of the eigenvectors. Paralleling

remark 2.1, we assume the frequencies have been ordered and the eigenvectors appropriately

normalized, see [67], fixing the GFT and Λ.

4 Distinct eigenvalues are assumed for simplicity. The results can be proved in the more general setting
of A non-derogatory (equal minimum and characteristic polynomials (up to a factor ±1), or, equivalently, the
geometric multiplicity of any eigenvalue to be 1 (single eigenvector)).

5 If assumption 2.2 does not hold, see [51] for further details on the GFT.
6 See [65] for numerically stable diagonalization of A for directed graphs.
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2.2.1 Cayley-Hamilton Theorem

Let the characteristic polynomial of A be

∆(x) = c0 + c1x+ · · ·+ cN−1x
N−1 + xN . (2.15)

By the Cayley-Hamilton Theorem [66,68,69], A satisfies its characteristic polynomial ∆(A) = 0

and so

AN = −c0I − c1A− · · · − cN−1A
N−1, (2.16)

and Ak, k ≥ N , is reduced by modular arithmeticmod∆(A)(·).

2.2.2 Linear Shift Invariant (LSI) Filtering

Under assumption 2.2, LSI filters in the vertex domain are polynomials P (A) in the shift. By

Cayley-Hamilton,7 P (A) is at most of degree N − 1.

The graph Fourier theorem [1] parallels DSP’s theorem (convolution in time is pointwise

multiplication in frequency)

P (A) s
GFT−−→ P (Λ)ŝ, (2.17)

and, in particular, the vertex shift relation

As
GFT−−→ Λŝ. (2.18)

Filtering in the vertex domain. In GSP, linear, shift invariant (LSI) filters are polyno-

7 Under assumption 2.2, the minimal polynomial of A equals ∆(A).
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mials P (A) of the shift A,

P (A) = p0I + p1A+ · · ·+ pN−1A
N−1, (2.19)

and LSI graph filtering is matrix-vector multiplication [1]

t = P (A) · s =
[
p0I + p1A+ · · ·+ pN−1A

N−1
]
· s. (2.20)

Graph frequency response. For graph filter P (A),

P (A) = GFT−1P (Λ)GFT (2.21)

with P (Λ) = diag [P (λ0) , · · · , P (λN−1)] , (2.22)

where P (λn) is P (x) evaluated at the eigenfrequency λn.

The graph frequency response p(λ) of P (A) is

p(λ) = P (Λ) · 1 =

[
P (λ0) · · · P (λN−1)

]T
. (2.23)

Filtering in the frequency domain. Filtering in the spectral domain then becomes:

t̂ = P (Λ) · ŝ = (P (Λ) · 1)⊙ ŝ = p(λ)⊙ ŝ (2.24)

where ⊙ is the Hadamard or pointwise or componentwise product of the frequency response

p(λ) and ŝ.

Equations (2.20) and (2.24) are the equivalent versions of filtering in the vertex and spectral

domains in GSP: graph filtering in the vertex domain multiplies the vector signal s by the

matrix filter P (A). In the spectral domain, it is the product of the diagonal matrix filter P (Λ)

with the graph Fourier transformed ŝ, or, equivalently, it is the pointwise product ⊙ of the

graph frequency response p(λ) with ŝ.
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LSI filter P (A) and its frequency response ĥ. Given a polynomial filter P (A) with

coefficients p = [p0 . . . pN−1]
T , equation (2.23) gives the frequency response p(λ) of P (A). The

next result is the reverse: given a frequency response ĥ, determine the filter Ph(A).

Result 2.1. The filter Ph(A) with frequency response ĥ is

Ph(A) = GFT−1diag
[
ĥ
]
GFT. (2.25)

Proof. By (2.23), ĥ = Ph(Λ) · 1. Then, Ph(Λ) = diag
[
ĥ
]
and the result follows. ■

We refer to Ph(A) as the LSI filter associated with h or ĥ. Result 2.1 gives Ph(A) as a

matrix filter. The next result gives it as a LSI or polynomial filter.

Result 2.2 (LSI filter associated with ĥ). Let the vector of coefficients of Ph(A) be ph =

[p0 · · · pN−1]
T . Then, under assumption 2.2 of distinct eigenvalues, ph is the solution to

V ph = ĥ (2.26)

where V is the Vandermonde matrix of eigenvalues of A:

V =
[
λ0λ1 · · ·λN−1

]
=


1 λ0 · · · λN−1

0

...
...

1 λN−1 · · · λN−1
N−1

 (2.27)

Equation (2.27) uses the notation where λ is the vector of eigenvalues and its powers λn

are the Hadamard products of λ with itself

λ = [1λ0 λ1 . . . λN−1]
T , and λn =

n times︷ ︸︸ ︷
λ⊙ . . .⊙ λ . (2.28)

Proof. The proof follows because Ph(Λ) · 1 = V · p. ■
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For DSP, the Vandermonde, V , is (up to a normalizing factor) the DFT matrix, and (2.26)

shows that in DSP ph is the inverse DFT of ĥ, so ph = h.

2.3 Conclusion

In this chapter, we reviewed GSP literature following [1–3]. Section 2.1 presented DSP using

matrices in the GSP framework. The graph shift in DSP is Ac, the adjacency matrix for the

directed cyclic graph. The Fourier transform is the DFT matrix, which is also a Vandermonde

matrix, found through eigendecomposition of Ac. Convolution in the time domain is the

matrix-vector multiplicatioon of a polynomial of the graph shift, P (Ac), and time signal s.

The second section presented the graph shift, Fourier transform and convolution for GSP. In

GSP, the graph shift is an arbitrary A. The Fourier transform is the GFT, found through

eigendecomposition of A. Convolution in the vertex domain is a matrix-vector multiplication

of a polynomial of the graph shift, P (A), and graph signal s. The rest of the thesis builds on

this foundation.
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Chapter 3

GSP Spectral Shift and Graph Impulse

This chapter introduces GSPsp, a spectral graph signal processing theory that is the dual of

vertex based GSP. The first section introduces the spectral shift M , the spectral graph Gsp,

LSI spectral filtering, and their properties. The second section introduces GSP graph impulses

in both the vertex and spectral domains.

3.1 GSP Spectral Shift

In this section, we introduce graph convolution or graph filtering in the spectral domain.

In particular, we define linear shift invariant graph filters in the graph spectral domain as

polynomials P (M) of a spectral shiftM (see also [70] for a different definition). The operatorM

shifts the graph spectrum ŝ of a signal s. This section establishes such an M .

We start by recalling the DSP properties of shifting a signal in the time and frequency

domains [52]:

sn−1
F−→ e−j 2π

N
mŝm (3.1)

ej
2π
N

nsn
F−→ ŝm−1. (3.2)

These equations show that shifting in the time domain multiplies the Fourier coefficient ŝm

by the eigenvalue λm = e−j 2π
N

m of the shift A. Likewise, shifting in the frequency domain

multiplies the signal sample sk by λ∗
k = ej

2π
N

k, the complex conjugate of the eigenvalue λk of A.
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Collecting the time samples sn in the vector signal s and the Fourier coefficients ŝm in vector ŝ,

equations (3.1) and (3.2) lead to

A · s F−→ Λ · ŝ (3.3)

Λ∗ · s F−→



ŝN−1

ŝ0
...

ŝ(N−1)−1


= A · ŝ. (3.4)

Equation (3.3) shows that shifting signal s in the vertex (time) domain multiplies ŝ by the

diagonal matrix Λ of the eigenvalues of A. Similarly, equation (3.4) shows that shifting vector ŝ

in the frequency domain multiplies s by Λ∗, the diagonal matrix of the conjugate eigenvalues

of A.

The DFT of the left side of (3.4) is its right-hand side. Inserting DFTH · DFT as below,

get

DFT · Λ∗ ·DFTH︸ ︷︷ ︸
M

·DFT · s︸ ︷︷ ︸
ŝ

=



ŝN−1

ŝ0
...

ŝ(N−1)−1


= A · ŝ. (3.5)

The middle vector in (3.5) is of course the shifted (by one) ŝ and the right-hand side equation

in (3.5) is the same as the right-hand side equation in (3.4). The ‘surprise’ here is that the

left-hand side of (3.5) indicates that the shifted (by one) ŝ is also obtained by multiplying ŝ

by a new ‘spectral shift’ M . We readily recognize that in this case M = A∗ and since A is real

the DSP spectral shift is M = A.

Because it will be important in the sequel, we write together the dual pairs, equation (3.3)

that shifts in time, and the equation that shifts in frequency, resulting from combining equa-
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tion (3.4) and the left-hand side of (3.5):

A · s F−→ Λ · ŝ (3.6)

Λ∗s
F−→M · ŝ. (3.7)

3.1.1 Spectral Shift M

We define the graph spectral shift M in GSP so that (3.6) and (3.7) are preserved and remain

invariant in GSP.

Definition 3.1 (GSP: Spectral shift M [54, 71]). Let the vertex graph shift A be diagonalized

in (2.13), with Λ the diagonal matrix of eigenvalues, and s, ŝ, and y = Λ∗ŝ be given. Then,

the graph spectral shift M is the operator defined by

Λ∗s
F−→M · ŝ. (3.8)

By this definition, the DSP duality (3.6) and (3.7) holds for GSP shifting in the vertex and

spectral graph domains.

The next result gives an explicit expression for M .

Result 3.1 (GSP: Spectral shift M [54, 71]). The shift M is

M = GFT · Λ∗ ·GFT−1. (3.9)

Proof. The proof mimics the steps going from (3.4) to (3.5).

If : Multiply on the left by GFT−1 the right-hand side of (3.8) and insert GFT · GFT−1

between M and ŝ

GFT−1 ·M ·GFT ·GFT−1 · ŝ. (3.10)

Now replacing M in (3.10) by its expression in (3.9), canceling terms, and recognizing that
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GFT−1 · ŝ = s, we get the left-hand side of (3.8) as desired.

Only if : Start from definition 3.1. Multiply the left-hand side of (3.8) by GFT and insert

between Λ∗ and s the product GFT−1·GFT. Get

GFT · Λ∗ ·GFT−1︸ ︷︷ ︸
Q

·GFT · s︸ ︷︷ ︸
ŝ

= M · ŝ (3.11)

Q · ŝ = M · ŝ. (3.12)

Since (3.11) holds for every s, and so for every ŝ, conclude from (3.12) M = Q = GFT · Λ∗ ·

GFT−1, proving the result. ■

Definition 3.1 generalizes M in DSP as presented in (3.5) since the GFT is the DFT in

DSP and the DFT is unitary. While for DSP, M = A, in GSP M may not equal A [54, 71].

The next result addresses when M = A for GSP.

Result 3.2 (GSP: A = M). Let A be real and normal. Then A = M if GFTT = GFT.

Proof. For A normal, real, and GFT symmetric,

A = GFT∗ · Λ ·GFT = A∗ = GFT · Λ∗ ·GFT∗ = M, (3.13)

since GFT−1 = GFTH . This proves the result. ■

Result 3.2 is sufficient for A = M . If in addition the eigenvalues of A are nonzero, then we

get a necessary condition.

Result 3.3 (GSP: A = M). Let A be real, normal, and have nonzero eigenvalues. Then

A = M only if GFTT = GFT.

Proof. Now, M = A = A∗ only if

GFT · Λ∗ ·GFTH = GFTH · Λ ·GFT = GFTT · Λ∗ ·GFT∗ (3.14)
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Multiply the leftmost and rightmost sides of the equation byGFTHon the left and by GFT on

the right:

Λ∗ = GFTH ·GFTT · Λ∗ ·GFT∗ ·GFT. (3.15)

For all the eigenvalues nonzero, this holds only if

GFTH ·GFTT = I = GFT∗ ·GFT. (3.16)

Taking the transpose on the left, since IT = I, get

GFT ·GFT∗ = I = GFT∗ ·GFT, (3.17)

which is true only if GFT−1 = GFT∗. Since the inverse is unique, GFTH = GFT∗, implying

GFTT = GFT. ■

We define LSI filtering in the spectral domain.

Product of signals and LSI spectral filtering. LSI polynomial spectral filtering in the

spectral domain is matrix-vector multiplication of a polynomial filter P (M)

P (M) = p0I + p1M + · · ·+ pN−1M
N−1, (3.18)

with vector ŝ

t̂ = P (M) · ŝ =
[
p0I + p1M + · · ·+ pN−1M

N−1
]
· ŝ. (3.19)

Vertex domain product–spectral convolution. Consider the duality between product

and convolution.
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Result 3.4 (Vertex domain product–spectral convolution).

p (λ∗)⊙ s = P (Λ∗) · s F−→ P (M) · ŝ. (3.20)

The proof of result 3.4 follows from the eigendecomposition of P (M) given in (3.9) in result

3.1.

Graph ‘vertex’ response. In analogy to the frequency response of a LSI filter P (A) given

in (2.23), we let the “vertex response” of the filter P (M) to be p (λ∗) defined in (3.20).

LSI filter Ps(M) and its vertex response s. Similarly to result 2.1 and result 2.2,

we determine LSI filter Ps(M) from “vertex response” s. Let the coefficients of Ps(M) be

ps = [p0 . . . pN−1]
T .

Result 3.5 (Matrix Ps(M)). The LSI filter Ps(M) with vertex response s is

Ps(M) = GFTdiag [s] GFT−1. (3.21)

Proof. The result follows from realizing that Ps (Λ
∗) = GFT−1Ps(M)GFT = diag [s]. ■

Result 3.6 (LSI spectral filter with vertex response s). Under assumption 2.2, the vector ps

of coefficients of the LSI spectral filter Ps(M) with vertex response s is

V∗ · ps = s. (3.22)

where the Vandermonde matrix V is given in (2.27).

Spectral convolution. To interpret steps in sampling in the spectral domain, we define

convolution of two spectral signals. Let ⃝∗ represent (circular) convolution. The next result

tells us how to compute convolution.

Result 3.7 (Spectral convolution of two signals). Consider spectral signals ŝ and t̂ and their
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corresponding LSI filters Ps(M) and Pt(M), where M is the spectral shift. Then

û = ŝ⃝∗ t̂ = Ps(M) · t̂ = Pt(M) · ŝ (3.23)

û = ŝ⃝∗ t̂ = Ps(M)Pt(M) · δ̂flatsp,0 (3.24)

û = ŝ⃝∗ t̂
F←− u = s⊙ t (3.25)

where we define the spectral domain impulse δ̂flatsp,0
F←→ δflatsp,0 = 1√

N
1, to be flat (constant) in the

vertex domain (See next Section 3.2 for a detailed discussion on impulse functions).

Equation (3.23) shows spectral convolution of ŝ and t̂ as filtering of ŝ (or t̂) with LSI filter

Pt(M) (or Ps(M)), while (3.24) shows spectral convolution of the two signals as the impulse

response of the LSI filter Ps(M)Pt(M). Equation (3.25) shows spectral convolution in the

spectral domain as pointwise multiplication in the vertex domain.

3.1.2 Vertex Shift A and Graph Spectral Shift M : Equivariance

For graph G = (V,E), adjacency A is defined up to a relabelling of the vertices by a permuta-

tion Π1. Denote a quantity with respect to a new relabeling by (·)′. Then

A′ = Π1 · A · ΠT
1 (3.26)

s′ = Π1 · s. (3.27)

To see how Π1 affects the graph spectral shift M , we first consider how Π1 impacts the GFT

and Λ.

Eigendecomposing A′, from (2.13), get two forms

A′ = Π1 ·GFT−1 · ΠH
2 · Π2 · Λ · ΠH

2 · Π2 ·GFT · ΠT
1 (3.28)

= Π1 ·GFT−1 · Λ ·GFT · ΠT
1 . (3.29)
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where Π2 is unitary. These lead to two alternatives

GFT′ = Π2 ·GFT · ΠT
1 (3.30)

GFT′′ = GFT · ΠT
1 , (3.31)

with Λ given by either one of the two:

Λ′ = Π2 · Λ · ΠH
2 (3.32)

Λ′′ = Λ. (3.33)

In (3.32), Π2 must be a permutation matrix to keep Λ′ diagonal with the same eigenvalues

as Λ. For each of the two definitions of the GFT, the graph Fourier transform ŝ of s after

relabeling with Π1

ŝ′ = GFT′ · s′ = Π2 ·GFT · ΠT
1 · Π1 · s = Π2 · ŝ (3.34)

ŝ′′ = GFT′′ · s′ = GFT · ΠT
1 · Π1 · s = ŝ. (3.35)

The first definition permutes the graph Fourier transform ŝ by Π2. The second leaves ŝ invari-

ant. The question is which GFT should be adopted: (3.30) or (3.31).

To resolve this, we look at a simple DSP example. Consider, for example, N = 3, s =

[s0 s1 s2]
T , and a circular shift of the nodes to get s′ = [s2 s0 s1]

T . If we use GFT′′ and Λ′′ = Λ

from (3.31) and (3.33),

Λ∗ ·Π1 ·s=


1

e−j 2π
3

e−j 2π
3
2

·

s2

s0

s1

=


s2

e−j 2π
3 s0

e−j 2π
3
2s1

. (3.36)

In (3.36), the time samples are multiplied by the wrong phase shift, for example, time sample

s2 is multiplied by 1 instead of e−j 2π
3
2. We now consider computing (3.2), using s′ from (3.27),
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GFT′ from (3.30) and Λ′ from (3.32). We get

Π2 ·Λ∗ ·ΠT
2 ·Π1 ·s=


e−j 2π

3
2

1

e−j 2π
3

·

s2

s0

s1

=

e−j 2π

3
2s2

s0

e−j 2π
3 s1


T

. (3.37)

For the right hand side in (3.37) to be the correct shifts as shown, ΠT
2Π1 needs to cancel and

Π2 = Π1. We conclude that, after relabeling the vertices of the graph by Π1, the GFT should

be given by (3.30) and not by (3.31), with Π1 = Π2. The eigenvalue matrix Λ should also then

be permuted as in (3.32), with Π1 = Π2. Also, when Π1 = Π2 = I, we obtain A′ = A and the

original eigendecomposition of A.

We can now determine how relabeling nodes impacts M .

Result 3.8 (Equivariance to permutation). When nodes of G are permuted by Π, shifts A

and M are conjugated

A′ = Π · A · ΠT and M ′ = Π ·M · ΠT . (3.38)

Proof. The equivariance of A to permutation was already proven in [1]. We now consider the

equivariance of M .

From definition 3.1, the action of M on ŝ is the vector y = Λ∗ ·s in the vertex domain. This

spectral shifting property multiplies the vertex domain component sn of s by the conjugate of

the graph frequency λn. If we reshuffle the labeling of the nodes by Π, then Λ∗ is conjugated

by Π, i.e., Λ∗ is given by (3.32), in order to preserve the spectral shifting property. This forces

the graph Fourier transform GFT to also be conjugated by Π as given by (3.30). Similarly, we

can conclude that GFT−1 is conjugated by Π. Putting these together leads to the equivariance

of M to permutation Π as asserted by the result. ■

Result 3.8 is pleasing, it shows that A and M are impacted similarly: both are equivariant

to Π.
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Remark 3.1 (Scrambling vertex and spectral domains). In DSP, time and frequencies are

usually implicitly ordered. This is so natural that DSP seldom explicitly discusses the indexing

of the time samples or the indexing of the Fourier coefficients: the signal (s0, s1, · · · , sN−1)

is an ordered N-tuple, exactly like (ŝ0, ŝ1, · · · , ŝN−1) is an ordered N-tuple. So, it may seem

strange that in GSP one needs to share the ordering adopted for the vertices of the graph and/or

for the graph frequencies. But actually this should not surprise us. Even in DSP, there are

applications where it is useful to permute signal samples either in time or frequency. One such

early technique for securing voice communication used scrambling [72, 73]. In simple terms,

speech samples are scrambled to change their order. At the receiver, a descrambling block is

required to reorder the speech samples. Other secure communications use scrambling in the

frequency domain, or in other transform domains. This is to illustrate that although time

signals and their spectra are naturally ordered by the time and frequency indices, reordering or

permuting the samples in time or frequency have found applications in DSP. The important

point is that scrambling requires then a descrambling block. In other words, the transmitter

and receiver have a way to share their labeling scheme of the signal samples or of the spectral

samples. Likewise, in GSP, different researchers working with the same graph need to share

their node labeling to make sense of the graph signal. Likewise, if they share the graph spectrum,

they must also share their labeling of graph frequencies to know the GFT−1 that inverts the

spectrum1.

3.1.3 GSPsp: Dual Graph Signal Processing

The shifts A and M play twin or dual roles; just as GSP is built from A, we build a dual GSPsp

from M .

Data and spectral graphs. As adjacency matrices, A and M define graphs: shift A deter-

mines the (data) graph G whose node n indexes the data sample sn, while the spectral shift M

1Note that the graph and values defined on the graph do not depend on indexing. These entities exist
independently of the indexing. It is only when researchers use matrices (e.g., the adjacency matrix) to represent
the graph and vectors (e.g., the graph signal) to represent graph values that they need to choose an indexing.
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defines a new graph, the spectral graph Gsp = (Vsp, Esp), whose node m (the graph frequency

λm, m = 0 · · ·N − 1) indexes the graph Fourier coefficient ŝm of the data. As shown at the

beginning of this section 3.1, in DSP, G and Gsp are cycle graphs—the time samples are in-

dexed by the time ticks (vertices of G), the spectral coefficients are indexed by the frequencies

(vertices of Gsp).

GFTsp: Spectral GFT. Since M is diagonalized in (3.9),

GFTsp = GFT−1. (3.39)

The spectral GFTsp of the spectral graph signal ŝ is

̂̂s = GFTsp · ŝ = GFT−1 · ŝ = s. (3.40)

LSI (linear shift invariant) spectral filters : Since M is diagonalizable, LSI spectral filters

Psp (M) are polynomials2, see equation (3.18) and result 3.4.

Example 3.1 (Star graph). Consider A for the undirected star graph

A =

 0 1N−1

1TN−1 0(N−1)(N−1)

 (3.41)

Its eigenvalues are ±
√
N − 1 with multiplicity 1 and 0 with algebraic and geometric multiplic-

ities N − 2. The GFT

GFT =
1√

N − 1



√
N−1√

2
−

√
N−1√

2
0 . . . 0

− 1√
2

1√
2

1 . . . 1

− 1√
2

1√
2

e
−j 2π

N−1 . . . e
−j

2π(N−2)
N−1

...
...

...
. . .

...

− 1√
2

1√
2

e
−j

2π(N−2)
N−1 . . . e

−j
2π(N−2)2

N−1

 (3.42)

GFTsp = GFT−1 = GFTH (3.43)

2In the sequel, we will usually ignore the subindexing sp.
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This GFT diagonalizes A. To develop it, note that the characteristic polynomial of A is ∆(λ) =

λN−2 (λ− (N − 1))2 and that the eigenvectors of A are the same as A2. Matrix A2 is block

diagonal, with a scalar minor N − 1 and a matrix minor 1N−1 · 1TN−1. The latter is circulant

and diagonalized by DFTN−1. The spectral shift3 for the star graph follows, shown for N = 5

in Figure 3.1:

M =
1√

N − 1



N
2

 1

−1

[1 −1]−I2 − 1√
2

 1

1

⊗1TN−2

− 1√
2

[
1 1

]
⊗1N−2 −1N−2 · 1TN−2


(3.44)

Figure 3.1: Star graph: Shifts A and M for N = 5.

3.2 Graph Impulse

When studying graph signal representations, we need the concept of graph delta or graph

impulse. In DSP, the impulse in the time domain and its Fourier transform are

δt,0 = e0,
F−→ δ̂t,0 = DFT δt,0 =

1√
N
1, (3.45)

3Since the ordering of the nodes is specified, the GFT and the spectral shift M are fixed.
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where 1 is the vector of ones and e0 = [1, 0, . . . , 0]T . In DSP, the time impulse δt,0 is impulsive

in the vertex domain (nonzero only at 0) and flat in the frequency domain. Further, the delayed

time impulses

δt,n = An
c δt,n = en

are centered at n and impulsive. Likewise, in DSP, the impulse in the frequency domain δ̂f,0 is

impulsive now in frequency and flat in time. In other words, in DSP, the definition of impulse

in time and frequency are symmetric—the time and frequency impulses are impulsive at t = 0

and at f = 0, respectively.

In GSP, in general, we either get impulsivity in one domain or flatness in the other, but not

both. We have then two possible definitions for the vertex impulse and two possible definitions

for the spectral impulse. We choose to preserve flatness and define delta graph signals that are

flat in one domain in this thesis (See Appendix 11.1 for a discussion on impulsive delta graph

signals). We discuss next how to define 1) graph impulse signal in the vertex domain as the

inverse GFT of a flat signal in the spectral domain; and 2) graph impulse signal in the spectral

domain as the GFT of a flat signal in the vertex domain.

3.2.1 Vertex Graph Impulse

In the vertex domain, define the vertex impulse or delta δ0 as the inverse GFT of a flat graph

spectrum

δ0
F−→ δ̂0 =

1√
N
1 =⇒ δ0 =

∆ GFT−1

[
1√
N
1

]
. (3.46)

The shifted replicas of the vertex graph impulse δ0 are

δn = Anδ0
F−→ δ̂n = Λn 1√

N
1 =

1√
N
λn. (3.47)

In GSP, the δn’s, delayed δ0 by An, are not impulsive.

Theorem 3.1. (Synthesis of signal s using the vertex graph impulse) Under assumption 2.2
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of unique eigenvalues, any signal s can be written as a matrix vector product, P (A)δ0.

Proof. Take the GFT of P (A)δ0.

P (A)δ0
GFT−−→ GFT P (A)δ0 = P (Λ)δ̂0 = P (Λ)

1√
N
1 =

1√
N
P (λ)⊙ 1 =

1√
N
P (λ).

We need to find the polynomial that satisfies

1√
N
P (λ) = GFTs = ŝ.

Absorb the 1√
N

into P (λ). Let the coefficients of the polynomial be p. Then, p is the solution

to the system

Vp = ŝ

where V is the Vandermonde matrix in (2.27). Under assumption 2.2 of unique eigenvalues, V

is invertible and thus, p always exists. Thus, every signal s can be written as a matrix vector

product,

s = P (A)δ0.

■

3.2.2 Spectral Graph Impulse

We now consider the spectral graph impulse δ̂sp,0 in the spectral domain. We define it as the

GFT of a flat signal in the vertex domain

δsp,0 =
1√
N
1

F−→ δ̂sp,0 =⇒ δ̂sp,0 =
∆ GFT

[
1√
N
1

]
. (3.48)
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The shifts of δ̂sp,0 in the spectral domain are obtained with the spectral shift M . Replicat-

ing (3.47), get

δsp,n = Λ∗n 1√
N
1 =

1√
N
λ∗n F−→ δ̂sp,n = Mnδ̂sp,0. (3.49)

Theorem 3.2. (Synthesis of signal ŝ using the spectral graph impulse) Under assumption 2.2

of unique eigenvalues, any signal ŝ can be written as a matrix vector product, ŝ = P (M)δ̂sp,0.

Proof. This is a dual proof to the proof ot theorem 3.1. Take the GFT−1 of P (M)δ̂sp,0.

P (M)δ̂sp,0
GFT−1

−−−−→ GFT−1 P (M)δ̂sp,0 = P (Λ∗)δ̂0 = P (Λ∗)
1√
N
1 =

1√
N
P (λ∗)⊙ 1 =

1√
N
P (λ∗).

We need to find the polynomial that satisfies

1√
N
P (λ∗) = GFT−1ŝ = s.

Absorb the 1√
N

into P (λ∗). Let the coefficients of the polynomial be q. q is the solution to the

system

V∗q = s

where V is the Vandermonde matrix in (2.27). Under assumption 2.2 of unique eigenvalues, V∗

is invertible and thus, q always exists. Thus, every signal ŝ can be written as a matrix vector

product,

ŝ = P (M)δ̂sp,0.

■

Remark 3.2 (Notation on vertex and spectral quantities). When referring to quantities using

the shift A or the vertex impulse δ0 we will often not qualify them with the word “vertex.” In

contrast, we will consistently qualify by “spectral” quantities related to the spectral shift M or

the spectral impulse δsp,n using the subscript ‘sp’ as a reminder.
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Remark 3.3 (Vertex and spectral impulses). We emphasize that we have two graph impulses,

the vertex impulse δ0 (that is flat in the spectral domain, see (3.46)) and the spectral impulse

δsp,n (that is flat in the vertex domain, see (3.48)). In general, in GSP, neither is actually

“impulsive” in either domain.

3.3 Conclusion

In this chapter, we presented a spectral graph signal processing theory, GSPsp, the dual of

vertex based GSP. Using the DSP properties of shifting a signal in frequency domain, we

defined a spectral shift M = GFT Λ∗ GFT−1, dual to the vertex shift A. From there, we

developed convolution in the spectral domain as the matrix-vector multiplication between a

polynomial of the spectral shift, P (M), and the spectral graph signal ŝ. In the second section,

we introduced GSP graph impulses in both the vertex and spectral domain. In DSP, delta

functions are impulsive in one domain and flat in the other. In GSP, delta functions are either

impulsive in one domain or flat in the other, but not both. In this thesis, we define delta

functions in vertex domain as flat in the spectral domain. Simialrly, spectral delta functions

are flat in the vertex domain.
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Chapter 4

Dual Domain GSP Sampling

This chapter presents a unified graph signal sampling theory with GSP vertex and spectral

domain dual interpretations. Recently, [40] reviews comprehensively the existing methods for

graph sampling. According to [40], “two definitions [of graph sampling] can be possible · · · ”

and current theories are either in the vertex or in the graph spectral domain, with no simple

analogy between them. This stands in contrast with the dualism between time and frequency

domain approaches to DSP. This chapter deals with this open issue.

Figure 4.1: The sampling and reconstruction steps in this thesis. Each step is considered in both
vertex and spectral domains.

We assume that the sampling set S is given. In DSP, this is similar to assuming a particular

sampling scheme, say, uniform sampling (keeping every Kth sample). In DSP, the following

duality holds: 1) subsampling in the frequency domain is linear shift invariant filtering leading

to spectral replication, and 2) reconstruction is by ideal lowpass filtering. Likewise, extending

the DSP sampling framework to GSP sampling in a natural way, we show similar dualism:

1) GSP subsampling in the vertex domain is LSI filtering in the spectral domain, leading to

spectral replication, and 2) when is GSP reconstruction achieved by LSI filtering. To develop

this, we use the spectral shift M , the spectral graph Gsp, spectral GSP filtering, and other

concepts from Chapter 3, and we show which choices among alternatives in GSP replicate
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Shannon-Nyquist sampling in DSP.

4.1 GSP Sampling: Subsampling and Decimation

In DSP, sampling of bandlimited signals s include: 1) Subsampling that zeroes samples of s

(e.g., every other sample) to get a subsampled signal sδ; 2) decimating or downsampling that

discards zeroed samples in sδ to get the decimated signal sd; and 3) reconstruction that 3.i) up-

samples sd by reinserting the zeros discarded to get back the upsampled signal sδ, and 3.ii) in-

terpolates by ideal lowpass filtering sδ to get1 sr = s. All these steps have interpretations in

both time and frequency.

Likewise, we consider the equivalent sequence of steps in GSP sampling—subsampling, dec-

imation, and reconstruction—and develop for each step dual interpretations in the vertex and

graph spectral domains. To achieve these dual interpretations, we use GSPsp from Chapter 3.

Further, we show explicitly which choices among alternatives have to be made in GSP sampling

to obtain DSP sampling when the graph is the cyclic graph. These choices are implicit and

taken for granted in DSP. We provide further insights and interpretations into DSP.

In this and the next section, A is the adjacency matrix of a N node arbitrary graph. Let

∥ŝ∥0 be the ℓ0 pseudo-norm, i.e., the number of nonzero entries of ŝ. Let s be bandlimited

with bandwidth K, i.e., ∥ŝ∥0 ≤ K, K ≤ N . For ease of notation, we assume the last N −K

entries of ŝ are zero, i.e., ŝ = [ŝTK ŝTN−K ]
T , where ŝN−K = 0,2 and that K divides N , K|N .

This section considers first the sampling set in subsection 4.1.1, subsampling in subsec-

tion 4.1.2, and decimation in subsection 4.1.3. In all these sections, we provide vertex and

spectral domain GSP interpretations that parallel DSP.

1 If sampling below the Nyquist rate, sr in 3.ii) is an aliased version of s.
2 In actuality, the zero entries can occur anywhere in ŝ. In this case, we are assuming that we reorder ŝ

such that its last N −K entries are 0.

38



4.1.1 Sampling Set S

We refer to section 1.1 that reviews the significant work in defining the sampling set S. In

our context, with K|N and finite graphs, the sampling set S [19,23,74] is the minimum set of

vertices indexing the signal samples that enables perfect reconstruction of bandlimited signals

from the corresponding decimated signal sd.

Choice of sampling set S: We assume that the graph signal s is lowpass and bandlimited

to K and K|N . To fix notation, we briefly describe one method to determine the sampling

set S, or its characteristic graph signal δ(spl), a vector of zeros and ones. When s is bandlimited,

knowing s at the vertices in S allows for perfect reconstruction of s. This is the decimated or

downsampled version sd of s.

Result 4.1 (Sampling set). With the notation and assumptions above, let graph G = (V,E),

|V | = N whose nodes index bandlimited graph signals s with bandwidth K, K|N . Then,

there is a sampling set S with cardinality K and indicator signal δ(spl) such that s is perfectly

reconstructed from its samples indexed by vertices in S.

Proof. The proof can be found in [19, 20]. In this chapter, we consider one method of finding

a sampling set and comment on its nonuniqueness.

We start with the Fourier relation between the signal s and its graph Fourier transform ŝ

and block partition rowwise the GFT matrix as indicated below:

GFT s = ŝ =⇒

 GFTK

GFTN−K

 s =

 ŝK

ŝN−K

 (4.1)

with the top K rows of the GFT in GFTK : K×N and the bottom N −K rows in GFTN−K :

(N −K)×N . Given that GFT is full rank, GFTK and GFTN−K are full rank.

Taking ŝN−K = 0 in (4.1), we get

GFTN−Ks = ŝN−K = 0. (4.2)
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Solving (4.2) determines N − K components of s (so called pivot variables) in terms of the

other K components (so called free variables). There are many alternative possible sets of

N −K pivots and K free variables, i.e., this split is not unique. There are also different ways

to determine these sets. We illustrate with Gauss Elimination (GE) as just one method.

GE determines N −K linearly independent rows and columns of GFTN−K , reducing it to

row echelon form:

GFTN−Ks = ŝN−K
GE−−→ E ·GFTN−KΠ

T
col · Πcols = 0. (4.3)

In (4.3), E represents the row operations that reduce the GFTN−K to row echelon form. Matrix

E : (N −K)× (N −K) is the product of elementary matrices and so it is full rank. Partition

the row echelon form of GFTN−K as

E ·GFTN−KΠ
T
col = [B11B12] , (4.4)

with B11 : (N−K)×(N−K) upper triangular with ones on the diagonal, and B12 : (N−K)×K.

The matrix Πcol is a permutation representing possible column swapping.

Let

Πcols =

 sN−K

sK

 . (4.5)

Replacing (4.4) in (4.3) and using the partitioning of Πcols in (4.5), equation (4.3) becomes:

[B11B12]

 sN−K

sK

 = 0. (4.6)
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Since B11 is invertible, (4.6) leads to

sN−K = −B−1
11 ·B12 · sK . (4.7)

This determines sN−K from sK . The vector sN−K collects the N − K pivot entries and sK

collects the K free variables. This shows that, given the free variables sK , we recover:

Πcols =

 −B−1
11 ·B12

IK

 sK . (4.8)

With S the set of indices of the free variables sK (|S| = K) and δ(spl) its indicator signal, the

result follows. ■

Remark 4.1 (S not unique). Applying GE to (4.2), we can permute rows and columns of

GFTN−K, leading to different choices of pivots and free variables. Hence, S and δ(spl) are not

unique. Regardless of the choice for S, |S| =
∥∥δ(spl)∥∥

0
= K equals the number of degrees of

freedom in (4.2) and the bandwidth of s.

Result 4.2 (S and δ(spl)). Under the set-up of result 4.1, given the sampling set S, the sampling

signal δ(spl) is unique and the signal samples indexed by S uniquely determine s.

This result is of course tautologic since δ(spl) is the characteristic signal of S and (4.8)

shows how to recover s from sK . We make it explicit for easy future reference that the degrees

of freedom are in choosing S. Once chosen, the sampling signal is fixed and s is uniquely

determined.

4.1.2 GSP Subsampling by LSI Filtering

This section shows that GSP and DSP subsampling have equivalent vertex and spectral domain

dual interpretations.

Assume a sampling set S and its sampling graph signal δ(spl) have been chosen. In DSP,

uniform ideal subsampling s in the vertex domain is multiplication of s by a train of pulses
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δ(spl). In the spectral domain, it is convolution (or LSI filtering) by a periodic train of pulses.

We now discuss subsampling in GSP.

Let G = (V,E), with shift A and spectral shift M . Let sδ be the subsampled graph signal

obtained from s. Its K nonzero entries are the entries indexed by vertices in S.

Result 4.3 (GSP subsampling as LSI filter). Under assumption 2.2, GSP subsampling in the

spectral domain is LSI filtering

sδ = δ(spl) ⊙ s
F−→ Pδ(spl)(M) · ŝ = ŝδ (4.9)

Proof. Subsampling is pointwise multiplication

sδ = δ(spl) ⊙ s (4.10)

in the vertex domain, which is the left-hand side of (4.9).

To show it is LSI filtering in the spectral domain, we need to show that the GFT of sδ is

obtained by polynomial filtering ŝ. By result 3.7 and equation (3.25), pointwise multiplication

of δ(spl) and s in the vertex domain is convolution in the graph spectral domain. By (3.23), the

convolution is filtering ŝ with the LSI polynomial filter Pδ(spl)(M). We only need to show that,

given the sampling signal δ(spl), Pδ(spl)(M) is well defined.

By result 3.5 and equation (3.21), Pδ(spl)(M) is given by

Pδ(spl)(M) = GFTdiag
[
δ(spl)

]
GFT−1, (4.11)

with coefficients pδ(spl) given by equation (3.22):

V∗ · pδ(spl) = δ(spl). (4.12)

By assumption 2.2 of distinct eigenvalues, the Vandermonde matrix V is full rank and (4.12)
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has a unique solution:

pδ(spl) = V∗−1δ(spl) (4.13)

Hence, pδ(spl) and Pδ(spl)(M) are well defined, proving the result. ■

In DSP, it is well known that the spectrum of the subsampled signal sδ is the nonzero

spectrum ŝK of s replicated N − K times. In other words, in the spectral domain DSP

subsampling is convolution with a train of equispaced spectral pulses. We now wish to show

that the graph spectrum ŝδ of the subsampled signal sδ = δ(spl)⊙s is given by (possibly filtered)

copies of the nonzero spectrum of s, i.e., ŝK . At first sight, this is not obvious. In fact, the

spectral domain LSI filter Pδ(spl)(M) with coefficients pδ(spl) = [p0 p1 · · · pN−1]
T given by (4.12)

is

Pδ(spl)(M) = p0I + p1M + · · ·+ pN−1M
N−1. (4.14)

Then,

ŝδ =
(
p0I + p1M + · · ·+ pN−1M

N−1
) ŝK

0N−K

 . (4.15)

This shows ŝδ is a superposition of replicas of ŝK , which could overlap. We show this is not

the case, if the bandlimited graph signal is sampled at graph Nyquist rate K.

Result 4.4 (Replication: GSP spectrum of subsampled sδ). The spectrum ŝδ of the subsam-

pled sδ corresponds to N
K

(filtered, possibly distorted) copies of the nonzero spectrum ŝK of s.

Sampling at the “graph” Nyquist rate K, aliasing does not occur.

We start with preliminary notation before the proof. Assume the sampling set S has

been chosen with given sampling graph signal δ(spl). Without loss of generality, to make the
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presentation easier, assume reordering the vertices of the graph by permutation Π so that

δ(spl) =
[
1TK0

T
N−K

]T
. (4.16)

Permutation Π conjugates A, GFT, and GFT−1. We will ignore Π. Partition GFT, GFT−1,

and Pδ(spl)(M):

GFT =

[
GFTK GFTN−K

]
(4.17)

=

 GFTKK GFTK(N−K)

GFT(N−K)K GFT(N−K)(N−K)

 (4.18)

GFT−1 =

[
GFT−1

K GFT−1
N−K

]
(4.19)

=

 GFT−1
KK GFT−1

K(N−K)

GFT−1
(N−K)K GFT−1

(N−K)(N−K)

 (4.20)

Pδ(spl)(M) =

[
Pδ(spl)(M)K Pδ(spl)(M)N−K

]
. (4.21)

In (4.17), (4.19), and (4.21), the partitions are columnwise, not rowwise as in (4.1) and the

left blocks are N ×K and the right blocks N × (N −K). In (4.18) and (4.20), the subindices

give the dimensions of each subblock of GFT and GFT−1. E.g., GFTKK is the top left K ×K

subblock of the GFT.

Proof. Recall the filter P (M)δ(spl) given by (4.11). Using (4.17) and (4.19) in (4.11), get

Pδ(spl)(M) =

[
GFTK GFTN−K

]
diag[δ(spl)]︷ ︸︸ ︷ IK

0N−K

[ GFT−1
K GFT−1

N−K

]
(4.22)

=

[
GFTKGFT−1

KK GFTKGFT−1
K(N−K)

]
. (4.23)

Now, using the bandlimitedness of ŝ and δ(spl) as in (4.16) in equation (4.9) of result 4.3, we

44



get

δ(spl) ⊙ s =

sK
0

 F−→ Pδ(spl)(M) · ŝ = GFTKGFT−1
KK ŝK . (4.24)

Taking the GFT of the left-hand side of (4.24), we get

ŝδ = GFT

sK
0

 = Pδ(spl)(M) · ŝ (4.25)

= GFTKGFT−1
KK ŝK (4.26)

=



[GFTK ]0K GFT−1
KK

· · ·

[GFTK ]iK GFT−1
KK

· · ·

[GFTK ](N
K
−1)K GFT−1

KK


ŝK , (4.27)

where we partitioned the N × K matrix GFTK into N
K

blocks [GFTK ]iK , i = 0, . . . , N
K
− 1,

where block [GFTK ]iK collects the K rows iK, iN
K

+ 1, . . . , (i + 1)K − 1. Then (4.27) shows

that ŝδ has N
K

copies [GFTK ]iK GFT−1
KK ŝK as we wanted to show. Since each of the N

K
blocks

of ŝδ is a (filtered) replica of ŝK obtained by multiplying it with a K × K matrix block, no

aliasing occurs. ■

Result 4.3 and equation (4.9), as well as result 4.4 and equation (4.27), show that, just like

for DSP, GSP graph subsampling has the dual interpretation of 1) pointwise multiplication

(modulation) δ(spl) ⊙ s in the vertex domain; and 2) LSI filtering in the spectral frequency

domain. But further and very interestingly 3) result 4.4 and equation (4.27) show the spectrum

replication effect, with the spectrum of the sampled signal ŝδ given by N
K

(filtered, possibly

distorted) copies of the nonzero spectrum ŝK of s. We note that we have assumed that we are

sampling at rate K with no aliasing.
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Although we have N
K

(filtered, possibly distorted) copies of ŝK , we are not guaranteed that

any of the blocks GFTiK , i = 0, . . . , N
K
− 1 is full rank. This question will be taken care of

when we consider decimation in section 4.1.3.

The next Theorem shows that P (M) in result 4.3 is the replicating filter equivalent to a

train of frequency deltas when the GSP graph G is the directed cycle graph of DSP.

Theorem 4.1 (DSP P (M)). Let: G be a directed cycle graph of N nodes; s a lowpass signal

with cutoff frequency K; IK the K ×K identity matrix. Sampling with period N
K
,3

Pδ(spl)(M) =
K

N



IK IK . . . IK

IK IK . . . IK
...

...
. . .

...

IK IK . . . IK


. (4.28)

A proof of Theorem 4.1 can be found in the DSP literature [75]. Equation (4.11) using

GFT = DFT and δ(spl) as the uniform sampling also yields Pδ(spl)(M).

From Theorem 4.1, we see that uniformly sampling in DSP produces a P (M) that replicates

exactly the band ŝ. The spectrum of ŝδ shows exact replications of ŝK in DSP. For GSP and

arbitrary graphs, by result 4.4 and equation (4.27), ŝδ is also multiple replicated copies of ŝK ,

but the replicas may be distorted.

We may ask for which other graphs, besides the cycle graph, is the replicating filter LSI

leading to ŝδ to be N
K

exact replicas of ŝK . We provide two classes of graphs that, with specific

choices of δ(spl), also lead to exact replicating filters that are LSI filters, i.e., polynomials in M .

Let Prepl be the replicating LSI filter in Theorem 4.1.

Example 4.1 (Circulant graphs). Interpret Prepl as a circulant matrix. Its eigendecomposition

is

Prepl = DFTdiag
[
δ(spl)

]
DFT−1, (4.29)

3This samples uniformly every N
K , keeping K samples and zeroing N

K − 1 samples in between.
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where δ(spl) is uniformly sampling every N
K

values.

Consider that the graph is also given by circulant adjacency matrices but now with distinct

eigenvalues. The graph Fourier transform is again GFT = DFT. Then, pre- and post-

multiplying Prepl in (4.29) by GFT−1 and GFT

GFT−1PreplGFT = diag(δ(spl)), (4.30)

which is diagonal. The replicating filter Prepl can then be written as a polynomial of M and is

thus, LSI.

We illustrate with the specific graph in figure 4.2. Its adjacency matrix A is circulant.

In this example, every node of the graph is connected to its next node, its fourth next node

and its sixth next node. By result 3.2, A = Ac + A4
c + A6

c = DFTHΛDFT = M where

Ac is the adjacency matrix of the 8 × 8 directed cyclic graph in (2.1), Λ = diag(λ), λ =

[3,−.29+, 29j,−j,−1.7− 1.7j, 1,−1.7, 1.7j, j,−.29,−.29j]T .

Figure 4.2: Circulant Matrix: sampled nodes for replicating filter are red. Blue edges connect
nodes with next nodes. Orange edges connect nodes with fourth next nodes. Black edges
connect nodes with sixth next nodes.

LetK = 4. Then, we compute δ(spl). As in equation (4.30): diag
(
δ(spl)

)
= DFTHPrepl(M)DFT =

[1, 0, 1, 0, 1, 0, 1, 0]T .

We now compute the coefficients prepl of Prepl(M) as a polynomial in M . Using (4.13) yields

Prepl(M) = −.01I8 − .08M − .1M2 + .18M3 + .88M4 + .21M5 − .03M6 − .05M7.
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Example 4.2 (Kronecker Product). Write Prepl as

Prepl = [11T ]N
K
⊗ IK (4.31)

where ⊗ is the Kronecker product and [11T ]N
K

is a N
K
× N

K
matrix of all 1s. This yields the

eigendecomposition

Prepl =
(
DFTN

K
⊗ VK

)
diag

(
[ITK , 0

T
N−K ]

T
) (

DFT−1
N
K

⊗ V −1
K

)
, (4.32)

where VK is any invertible matrix.

Consider graphs with adjacency matrix A = AN
K
⊗B with unique eigenvalues where AN

K
is

the N
K

node cycle graph and B is any K node graph. The GFT of this graph is DFTN
K
⊗ VK

where VK is the GFT of B. So:

GFT−1PreplGFT = diag(δ(spl)) = diag
(
[ITK , 0

T
N−K ]

T
)

(4.33)

is diagonal. The replicating filter Prepl can be written as a polynomial of M and is thus, LSI.

We illustrate this example with the graph in figure 4.3 with adjacency matrix, A = A4 ⊗B

Figure 4.3: Kronecker Product Graphs. Red nodes are the sampled nodes for the replicating
filter.

where A4 is the four node cycle graph and B = [b0 b1 b2] with b0 = [0 1 0]T , b1 = [1 1 1]T , and
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b2 = [1 0 0]T . The eigendecompositions of B and A are

B = GFT−1
B ΛBGFTB

ΛB = diag(λB), λB = [1.893,−.419 + .606j,−.419− .606j]T

GFT−1
B =


−.594 .676 .676

−.707 −.402− .172j −.402 + .172j

−.384 .119 + .581j .119− .581j


A = GFT−1

A ΛAGFTA,GFTA = DFT4 ⊗GFTB

ΛA = diag
[
λT
B,−jλT

B,−λT
B, jλ

T
B

]
.

Then,

M = (DFT4 ⊗GFTB) Λ
∗
A

(
DFTH

4 ⊗GFT−1
B

)
.

Let Prepl(M) be the replicating filter in Theorem 4.1 with K = 3. We have

diag
(
δ(spl)

)
= GFT−1

A Prepl(M)GFTA = [1, 1, 1, 0, 0, . . . , 0]T .

We compute LSI Prepl(M). Using (4.13), obtain

Prepl(M) = .25I12 − .5M + .31M2 + .46M3 − 1.38M5

+ 2.13M6 − .75M7 + .13M9 − .19M10 + .06M11.

4.1.3 Decimation

This section shows that vertex and spectral GSP decimation parallel DSP decimation. In DSP,

decimation keeps the K sampled values and removes the N − K zeros from the subsampled

signal sδ. The N node cycle graph shrinks to the K node cycle graph with the K ×K DFT
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in (2.8). The signal spectrum “stretches” in frequency. Likewise, in GSP, the decimated signal

sd is the downsampled signal that keeps the K sampled values and removes the N −K zeros.

While the DSP “decimated” graph is the K node cycle graph, the GSP “decimated” graph Ad

is not as straightforward. We consider here the “decimated” signal sd, confirm the stretching

of its graph spectrum ŝd, and present the “decimated” GFTd and the “decimated” graph Ad.

Result 4.5 (Decimated sd and GFTd). Let bandlimited ŝ =
[
ŝTK 0TN−k

]T
and δ(spl) as in (4.16).

Then,

sd = sK , ŝd = ŝK , and GFTd = GFTKK , (4.34)

where GFTKK is the top left K ×K subblock of the GFT (see equation (4.18)) and GFTd is

the “decimated” GFT, the GFT of the “decimated” graph Ad.

Proof. From (4.24), we have

sδ =

sK
0

 = GFT−1GFTKGFT−1
KK ŝK . (4.35)

But

GFT−1GFTK =

 IKK

0(N−K)K

 , (4.36)

since multiplication of the first K rows of GFT−1 by GFTK gives IKK and the last N − K

rows of GFT−1 are orthogonal to the columns in GFTK . Substituting (4.36) in (4.35), get

sd = sK = GFT−1
KK ŝK . (4.37)

Finally, we prove that GFT−1
KK is full rank and hence invertible. This follows because, by choice

of the sampling set S (and sampling graph signal), by result 4.2, or equation (4.8), sK uniquely
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determines signal s. By uniqueness of the GFT, ŝ =
[
ŝTK 0TN−k

]T
is uniquely determined from

s and hence from sK . This also determines ŝK uniquely from sK . Since (4.37) is a K × K

linear relation between sK and ŝK , we conclude that GFT−1
KK is full rank and thus invertible.

Since sd = sK and GFTd = GFTKK , we also get from (4.37) that ŝd = ŝK . The proof is

complete. ■

Consider graph Gd with adjacency Ad indexing sd.

Result 4.6 (Decimated graph Ad). Let bandlimited ŝ =
[
ŝTK 0TN−k

]T
and the sampling signal

δ(spl) as in (4.16), and GFTd = GFTKK. Then the decimated graph Ad is

Ad = GFT−1
d · Λd ·GFTd = GFT−1

KK · Λd ·GFTKK (4.38)

where Λd = diag [λ0 . . . λK−1].

Proof. We first determine the eigenvalues of the decimated graph. From (3.22), the signal s is

a linear combination of the powers of the vector λ∗ =
[
λ∗
0 λ

∗
1 . . . λ

∗
N−1

]T
s = p01 + p1λ

∗ + . . .+ pN−1λ
∗(N−1). (4.39)

Then, the sampled signal is

δ(spl) ⊙ s = δ(spl) ⊙
(
p01 + p1λ

∗ + . . .+ pN−1λ
∗(N−1)

)
(4.40)

= p0
(
δ(spl) ⊙ 1

)
+ . . .+ pN−1

(
δ(spl) ⊙ λ∗(N−1)

)
. (4.41)

In (4.41), powers of vector λn of eigenvalues are sampled by δ(spl), zeroing outN−K eigenvalues.

Let λd be the vector of non zeroed K eigenvalues (same ordering). They are the eigenvalues

of Ad. Then Ad follows as in (4.38). ■

Remark 4.2 (Sampling eigenvalues). When sampling s using δ(spl), the eigenvalues are sampled

the same way. The chosen eigenvalues do not depend on which components of ŝ are zero, only
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on the choice of the sampling set.

We finally consider the stretched spectrum of sd.

Result 4.7 (GSP: Stretching). Given the set-up of the previous result, with s bandlimited,

ŝ =
[
ŝTK 0TN−K

]T
, the spectrum of the decimated signal sd is stretched over the full range of

frequencies of the decimated graph Ad.

Proof. By result 4.6, we see that the spectrum of the decimated signal sd is ŝd = ŝK , and it

occupies the full band Λd of eigenvalues of the decimated graph Ad. ■

Note that Λd is a subset of eigenvalues of A, so stretching has the same interpretation in

both DSP and GSP.

The next example illustrates how to derive the DSP vertex (time) and frequency interpre-

tations for sd when the graph is the time directed cycle graph.

Example 4.3 (DSP Example). Sample uniformly s defined on cycle graph with adjacency A,

taking every N
K

samples. Let decimated signal be sd = sK and ŝ =
[
ŝTK , 0

T
]T
.

The eigenvalues of A are λk = e−j 2π
N

k. Sampling uniformly produces λd,r = e−j 2π
N (N

K )r =

e−j 2π
K

r, r = 0, 1, . . . , K−1. These are the eigenvalues of the K node cycle graph CK illustrating

the need to sample uniformly. Not sampling uniformly does not choose the eigenvalues of CK.

Finally, the decimated graph is Ad = DFT−1
d · Λd · DFTd, the K node cycle graph CK where

DFTd is the K ×K DFT in (2.8).

This shows again for DSP that the spectrum of the subsampled signal sδ is N
K

replicas of

the low pass spectrum ŝK. Using (4.37) and Theorem 4.1

Pδ(spl)(M)ŝ = GFTKsK =


DFTd

...

DFTd

 sK =


ŝK
...

ŝK

 , (4.42)

52



Remark 4.3 (DSP: Stretching). The original signal is at N frequencies 2πl/N , l = 0, 1, . . . , N−

1, while the decimated signal is at K frequencies, 2πl/K, l = 0, 1, . . . , K − 1. This “stretches”

the signal spectrum to fill the 2π range.

4.2 GSP Sampling: Upsampling and Interpolation

We assume the same set-up as described in the introduction to section 4.1. We start in

subsection 4.2.1 with upsampling. Then in subsection 4.2.2 we address the conditions of when

does a given sampling signal δ(spl) lead to perfect reconstruction, and finally in subsection 4.2.3

we explore GSP interpolation as filtering.

4.2.1 Reconstruction: Upsampling

Upsampling in DSP reintroduces the zeros into the K × 1 signal, sd, producing the sampled

N × 1, sδ. The K node cycle graph becomes the N node cycle graph. We emphasize that in

DSP we know: 1) the larger and decimated graphs (N and K node cycle graphs) and their

adjacency matrices A and Ad; 2) the positions of the zeros when adding the zeros back into

sd; 3) the eigenvalues of A and Ad; and 4) the DFTN and DFTK .

In GSP, to upsample, we also need to know 1) both the original and downsampled graphs G

and Gd and their adjacency matrices A and Ad; 2) the positions of the zeros when adding the

zeros back into sd; 3) Λ and Λd; and 4) GFT and GFTd. Then, upsampling starts with padding

zeros to sd to produce sδ in the vertex domain. In the spectral domain, we obtain P (M)ŝ.

Now, ŝ no longer extends over the frequency range of A since it is bandlimited.

4.2.2 Reconstruction: Perfect Reconstruction

Let s
F←→ ŝ. Assume s has bandwidth K, i.e., ∥ŝ∥0 ≤ K, and that after possible permutation

ŝ =
[
ŝTK ŝTN−K

]T
with ŝN−K = 0. By result 4.2 there is a sampling set S with characteristic

function δ(spl) such that perfect reconstruction is possible from the samples sd in S, i.e., s = sr,
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with sr reconstructed from sd, for example, using (4.8).

Now we address a different question for s bandlimited with bandwidth= K. Let the sam-

pling signal δ(spl) have
∥∥δ(spl)∥∥ = K. The question is when does δ(spl) lead to perfect recon-

struction of s. In other words, when can we recover s from sd = sK where sK is obtained by

discarding the zeros of the subsampled sδ = δ(spl) ⊙ s.

Let δ(spl) =
[
1TK 0TN−K

]T
and recall Pδ(spl)(M) in (4.21). Let Pδ(spl)(M)K be its first K

columns in its partition (4.23).

Result 4.8 (Rank of Pδ(spl)(M)K ). Then

rank [Pδ(spl)(M)K ] = rank
(
GFTKGFT−1

KK

)
= K (4.43)

iff the K ×K square matrix GFT−1
KK is invertible.

Proof. Only if :

We have rank (GFTK) = K and rank (Pδ(spl)(M)K) ≤ min
(
rank (GFTK) , rank

(
GFT−1

KK

))
.

Then, if GFT−1
KK not invertible, its rank < K, and rank (Pδ(spl)(M)K) < K.

If : If rank
(
GFT−1

KK

)
= K =⇒ rank (Pδ(spl)(M)K) = rank (GFTK) = K. ■

Result 4.9 (Perfect reconstruction sampling condition). Without loss of generality, let δ(spl) =[
1TK 0TN−K

]T
. Assume ŝN−K = 0. The signal s can be perfectly reconstructed from sd = sK iff

rank
(
GFT−1

KK

)
= K.

Proof. With s lowpass,

δ(spl) ⊙ s = δ(spl) ⊙

 sK

sN−K

 =

 sK

0N−K

 (4.44)

= GFT−1Pδ(spl)(M)K ŝK (4.45)

= GFT−1GFTKGFT−1
KK ŝK (4.46)

=

 GFT−1
KK

0N−K

 ŝK . (4.47)
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Given sd = sK , ŝK is determined from (4.47) iff GFT−1
KK is invertible, from which s is perfectly

reconstructed. ■

This result seems repetitive when contrasted with result 4.5 and equation (4.37). The

difference is that in result 4.5 and equation (4.37) we assume that δ(spl) corresponds to a

sampling set S for which we know we can reconstruct perfectly s from sd, while here we are

given a δ(spl) and have to find conditions for perfect reconstruction of s from sd.

Result 4.9 provides how to reconstruct in the spectral domain, shown in result 4.10.

Result 4.10 (Reconstruction in spectral domain). Under result 4.9 assumptions, let bandlim-

ited s with bandwidth K be decimated to sd = sK. Then s is reconstructed by

ŝK =
[
GFT−1

(KK)

]−1

sK =⇒ s = GFT−1

 ŝK

0N−K

 . (4.48)

The proof follows from result 4.9 and (4.47).

Partitioning GFT−1 as in (4.20), get from result 4.10

s =

 IK

GFT−1
(N−K)K

[
GFT−1

(KK)

]−1

 sK . (4.49)

This shows it is possible to recover s from sd = sK . But, like for DSP and Shannon recon-

struction, it is important to find equivalent filtering interpretations for reconstruction, in both

the vertex and the spectral domains. The next subsection explores this.

4.2.3 Reconstruction: Interpolation as Filtering

Result 4.10 shows one way to reconstruct s from sd = sK . In DSP, Shannon’s Sampling

Theorem reconstructs the signal by ideal lowpass filtering the upsampled signal. Likewise,

we consider a GSP filtering approach to reconstruct s from the upsampled sδ. This parallels

section 4.1.2, where downsampling is by LSI spectral filtering, see (4.9), result 4.3. We show
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that reconstruction from an upsampled signal can be achieved by spectral domain filtering,

but, in contrast with section 4.1.2, the reconstruction filter is not in general LSI.

Result 4.11 (Reconstruction by filtering). Let s be bandlimited with bandwidth K, ŝ =[
ŝTK 0TN−K

]T
. Let δ(spl) =

[
1TK0

T
N−K

]T
be the sampling signal for a sampling set S, and s

be decimated to sd = sK by δ(spl). Then reconstruct s by filtering upsampled sδ as follows:

s = Pδ(spl)(A) · F · sδ
F−→

 1K

0N−K

⊙Q · ŝδ (4.50)

where

Q =

 QKK QK(N−K)

Q(N−K)N

, F = GFT−1 ·Q ·GFT (4.51)

Q · Pδ(spl)(M) =

 IKK BK(N−K)

B(N−K)N

(4.52)

P (A) = GFT−1
[
IKK

0(N−K)(N−K)

]
GFT (4.53)

where BK(N−K) and B(N−K)N are non prescribed.

We interpret the result before proving it. The left side of (4.50) reconstructs s by filtering

in the vertex domain the upsampled sδ. The right-hand side, reconstructs ŝ by filtering in the

spectral domain the upsampled ŝδ. Equation (4.50) gives GSP reconstruction in the spectral

domain as filtering with filter Q followed by lowpass LSI ideal filtering (Hadamard product

with
[
1TK 0TN−K

]T
). In the vertex domain (left side of (4.50)), we have first the non LSI filtering

by F , followed by the ideal lowpass LSI filter P (A), whose frequency response is
[
1TK 0TN−K

]T
.

In DSP, as we will show below, Q and F are trivial filters, and reconstruction is limited to

ideal lowpass P (A) (impulse response is the discrete sinc) with flat frequency response over the

signal band. In (4.50), the reconstruction filter Q is not necessarily LSI, i.e., not necessarily
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polynomial in the spectral shift M . Certain blocks like Q(N−K)N are not constrained.

Its equivalent in the vertex domain is filter F that again is not, in general, LSI, i.e., not

polynomial in A. On the other hand,

 1K

0N−K

 is an ideal lowpass LSI filter whose vertex

equivalent is the LSI polynomial filter P (A).

Proof. By result 3.5 and (3.21) and graph signal δ(spl)

Pδ(spl)(M) = GFTdiag
[
δ(spl)

]
GFT−1. (4.54)

Since
∥∥δ(spl)∥∥

0
= K, rank (Pδ(spl)) = K. From (4.9), result 4.3,

Pδ(spl)(M)

 ŝK

0N−K

 = ŝδ. (4.55)

Gauss Jordan elimination (GJ-E) determines a Q such that Pδ(spl)(M) is in reduced row echelon

form. After GJ-E, (4.55) becomes

Q · Pδ(spl)(M)

 ŝK

0N−K

 = Q · ŝδ =⇒

 IKK P̃K(N−K)

0(N−K)N

 ŝK

0N−K

 =

 ŝδK

0N−K

 (4.56)

from which ŝK = ŝδK . The ideal lowpass filter

[
1TK 0TN−K

]T
still recovers

[
ŝTK 0TN−K

]T
whose GFT−1 reconstructs s.

The left-hand side in (4.50) follows since spectral filtering by Q is in the vertex domain

filtering by F given in (4.51), and ideal lowpass filtering in the spectral domain is in the vertex

domain LSI filtering by P (A) given in (4.53). ■

Remark 4.4. 1) The Q obtained by GJ-E in the proof of result 4.11 is not unique, and there are

other methods to design a spectral filter Q such that Q ·Pδ(spl)(M) has the block form in (4.52).

2) If there is column swapping in GJ-E, then one needs to account for a permutation Π.
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3) In the block form of (4.52), only the IKK block matters, since the zero block in the lowpass

signal ŝ multiplies P̃K(N−K) and the ideal lowpass filter filters out P̃(N−K)N . This provides

degrees of freedom in designing spectral filter Q. 4) By row and column permutation, we can

rearrange Pδ(spl) so that its block Pδ(spl)(M)KK is invertible. Then,

Q =

 [Pδ(spl)(M)KK ]
−1 0K(N−K)

Q(N−K)N

(4.57)

can be used, with Q(N−K)N designed to possibly achieve other design considerations. 5) Re-

sult 4.11 reconstructs s by filtering from its decimated sd and upsampled sδ versions, paral-

leling the DSP uniform sampling reconstruction by ideal lowpass filtering. In general Q is not

LSI, i.e., a polynomial in M . Given the degrees of freedom in Q, one can in some cases find

a LSI version of Q, in which case reconstruction in GSP is, like in DSP, achieved by LSI

filtering, see next example.

Example 4.4. Consider the five node star graph in Example 3.1 with bandlimited (K = 2)

s = [−2 3 3 3 3]T , ŝ = [1 2 0 0 0]T . Let δ(spl) = [1 1 0 0 0]T . By (4.55),

Pδ(spl)(M) =
1

4
M2 =

 B11 B12

BT
12 B22

 (4.58)

B11 =

 .625 −.375

−.375 .675

 , B12 = .177


1T3

1T3

 , B22 = .25I3. (4.59)

Since B11 is invertible, a possible filter is Q = blockdiag [Q11, 4I3], with Q11 = [q1 q2], q1 =

[2.5 1.5]T and q2 = [1.5 2.5]T . This Q is LSI, Q = 4I5 − .75M − .375M2.

The ideal lowpass filter
[
1T2 0T3

]
is in the vertex domain P (A) = 1

4
A2.

Reconstruction: Signal s is reconstructed from sδ and ŝδ in the vertex and spectral domains,
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both by LSI filtering:

1

4
A2︸︷︷︸

l.p.f.
P (A)
in

vertex



1

4

4

4

4


︸︷︷︸
F=Q

in vertex

⊙

δ(spl)︷︸︸︷

1

1

0

0

0


⊙

s︷ ︸︸ ︷

−2

3

3

3

3


︸ ︷︷ ︸

sδ

F−→



1

1

0

0

0


︸︷︷︸
l.p.f.

⊙

Q︷ ︸︸ ︷(
4I − .75M − .375M2

) P (M)︷ ︸︸ ︷(
M2

4

)

ŝ︷︸︸︷

1

2

0

0

0


︸ ︷︷ ︸

ŝδ

(4.60)

4.2.4 DSP from GSP: Nyquist-Shannon Sampling

To illustrate the impact of different GSP choices, we consider a simple example when G is the

cycle graph and with DSP Nyquist-Shannon sampling. Let N = 4, signal s with four values,

bandlimited with K = 2, and sampled uniformly. A is the directed cycle graph of 4 nodes. As

shown in section 3.1, A = M . Also, in DSP, since the eigenvalues are all unique, multiplication

in one domain is filtering in the other with a polynomial filter, either P(A) or P(M).

Nyquist-Shannon sampling is illustrated by:

P(A)︸ ︷︷ ︸
sinc

sδ︷ ︸︸ ︷

1

0

1

0


⊙

︸ ︷︷ ︸
δ(spl)



s0

s1

s2

s3


︸ ︷︷ ︸

s

F−→



2

2

0

0


⊙

︸ ︷︷ ︸
l.p.f.

ŝs︷ ︸︸ ︷
1

2

I2 I2

I2 I2


︸ ︷︷ ︸

P(M)



ŝ0

ŝ1

0

0


︸ ︷︷ ︸

ŝ

(4.61)

where I2 is the 2− dimensional identity. Colors indicate same operation in both domains.

We show how Nyquist-Shannon recovery derives from GSP sampling. Let Q2 be the upper
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half of Q. The condition on filter Q is for its upper half to satisfy

Q2P(M)2 = Q2
1

2

I2
I2

 = I2 (4.62)

where filters are indexed by their dimension. We consider three different GSP choices for Q2

that satisfy (4.62).

1. Q2 = 2

[
I2 0

]
. We can fill in the bottom N −K rows of Q to produce a Q that is LSI:4

Q = 2blockdiag [I2, I2] = 2I4. This Q is equivalent to multiplying sδ by 2[1, 1, 1, 1]T in

the time domain. Thus, Q yields the following recovery:

P(A)︸ ︷︷ ︸
sinc



2

0

2

0


⊙

︸ ︷︷ ︸
Qin time

sδ︷ ︸︸ ︷

1

0

1

0


︸︷︷︸
δ(spl)

⊙



s0

s1

s2

s3


︸ ︷︷ ︸

s

F−→



1

1

0

0


︸︷︷︸
l.p.f.

⊙ 2I4︸︷︷︸
Q

ŝδ︷ ︸︸ ︷
1

2

I2 I2

I2 I2


︸ ︷︷ ︸

P(M)



ŝ0

ŝ1

0

0


︸ ︷︷ ︸

ŝ

(4.63)

By moving the factor of 2 in (4.63) from Q to the low-pass filter, and similarly moving

the factor of 2 from Q in time into the sinc, we achieve the traditional Nyquist-Shannon

sampling recovery in (4.61). Equation (4.61) is a simplified version of (4.63), removing

the filter Q since it is the identity.

2. Q2 =

[
I2 I2

]
. Choose the remainingN−K rows ofQ to produce LSI filterQ = 1·1T⊗I2,

a matrix with four I2 blocks. This Q is equivalent to multiplying sδ by [2, 0, 2, 0]T = 2δ(spl)

4An LSI filter in the time domain is P (A) and in the frequency domain is P (M). Since A is the directed
cycle graph adjacency matrix and M = A, all LSI filters in DSP are circulant matrices.
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in the time domain.

P(A)︸ ︷︷ ︸
sinc



2

0

2

0


⊙

︸ ︷︷ ︸
Qin time

sδ︷ ︸︸ ︷

1

0

1

0


︸︷︷︸
δ(spl)

⊙



s0

s1

s2

s3


︸ ︷︷ ︸

s

F−→



1

1

0

0


︸︷︷︸
l.p.f.

⊙

I2 I2

I2 I2


︸ ︷︷ ︸

Q

ŝδ︷ ︸︸ ︷
1

2

I2 I2

I2 I2


︸ ︷︷ ︸

P(M)



ŝ0

ŝ1

0

0


︸ ︷︷ ︸

ŝ

(4.64)

Since QP (M) = 2P (M), move the factor of 2 from Q in time into the sinc and move the

2 in 2P (M) into the low-pass filter in (4.64). By doing so, achieve traditional Nyquist-

Shannon sampling recovery in (4.61). Equation (4.61) is a simplified version of (4.64) by

replacing QP (M) with 2P (M).

3. Q2 = 2

1 0 0 0

0 0 0 1

. Now Q cannot be LSI since the main diagonal must be constant.

Filter Q is equivalent to multiplying by a filter DFT−1QDFT in the time domain.Since

Q is not LSI, the time domain filter is not diagonal and not pointwise multiplication.

P(A)︸ ︷︷ ︸
sinc

DFT−1QDFT︸ ︷︷ ︸
Q in time

⊙

sδ︷ ︸︸ ︷

1

0

1

0


⊙

︸ ︷︷ ︸
δ



s0

s1

s2

s3


︸ ︷︷ ︸

s

F−→



1

1

0

0


⊙

︸ ︷︷ ︸
l.p.f.

Q

x̂δ︷ ︸︸ ︷
1

2

I2 I2

I2 I2


︸ ︷︷ ︸

P(M)



ŝ0

ŝ1

0

0


︸ ︷︷ ︸

ŝ

(4.65)

This example looked at three different possibilities for Q2. The first two choices for the upper

part of Q, Q2, lead to LSI Q and equation (4.61) leads to Nyquist-Shannon recovery. The third

Q2 does not lead to an LSI filter, but can be used to recover the signal.

All Q2 use some values of ŝδ to recover the signal. The first Q2 uses the first and second

values. The second Q2 uses all four values. The third Q2 uses the first and fourth values. This
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is shown in figure 4.4. Also, one might consider using the pseudoinverse of P (M)2 as in [34].

Figure 4.4: Values used by Q2 to recover: values shown for each Q2.

The pseudoinverse of P (M)2 in (4.62) is the second Q2 considered above. It does indeed solve

(4.62), but it is only one of possible choices as illustrated by the theory above.

In DSP Nyquist-Shannon Sampling, Q can be chosen as N
K
IN . The upper block of Q is

QK = IK followed by 0K matrices, scaled by N
K
, as shown in (4.63). This factor can be merged

into the lowpass filter and Q removed because it is the identity matrix. Thus, Nyquist-Shannon

sampling recovery is a special, simplified case, where the Q is the identity and is removed.

However, the example shows that GSP allows for other upper blocks of Q, QK , including non-

LSI ones that recover s and that are not considered by traditional Nyquist-Shannon sampling.

4.2.5 Connection to Frequency Domain Sampling in [34,35]

The frequency domain sampling proposed in [34, 35] does not correspond to the traditional

concept of sampling as we explain now using our spectral filtering approach. In [35], let

U∗
0 be the GFT for the original undirected graph and U1 be GFT−1 for the sampled graph.

Bandlimited graph signal s with band K is sampled in the frequency domain by:

f = U1Q1U
∗
0 s, with Q1 =

[
IN/K IN/K . . . IN/K

]
(4.66)
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where f is the sampled signal. Matrix Q1 produces f whose GFT spectrum is replicated like in

DSP Nyquist-Shannon sampling. Matrix Q1 is a decimated version of filter Q =
[
QT

1 · · ·QT
1

]T
withK×K blocks. Filtering with Q in the frequency domain multiplies by GFT−1QGFT in the

vertex domain. Since Q is circular, real, and symmetric Q = DFTH ·Λ∗ ·DFT = DFT·Λ·DFTH .

This is equivalent to multiplying in the vertex domain by Q̃ = GFT−1 ·DFT ·Λ ·DFTH ·GFT.

In general GFT−1 ̸= DFT∗ and GFT−1 · DFT ̸= I. So, Q̃ is not diagonal, and it cannot

subsample in the vertex domain (keep some and discard other signal values). Because of this,

filtering in the spectral domain with the approach in [35] requires knowledge and distorts all

of the signal’ samples in the vertex domain. This is different from recoverability in traditional

sampling where only a decimated signal is used.

4.3 Conclusion

The literature on graph sampling is quite robust. Several approaches address the design of

the sampling set S and develop alternative recovery methods. Some are developed in the

vertex domain, others in the spectral domain. But the vertex and spectral domain sampling

methods are not related lacking the dualism in DSP sampling. This chapter used the graph

spectral shift M , the spectral graph signal processing theory (GSPsp), and the spectral delta

functions introduced in Chapter 3 to present a unifying theory for GSP sampling showing

the analogy and dualism between the vertex and spectral domain versions of all standard

sampling steps. We show that GSP vertex subsampling is LSI filtering in the spectral domain

with polynomials P (M), decimation replicates the spectrum of the decimated signal, and

interpolation is achieved by filtering operations in both vertex and spectral domains. Examples

illustrate the impact of choices that can be made in GSP and show how GSP sampling becomes

DSP sampling when the graph is the directed cycle time graph.
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Chapter 5

Signal Representations and Companion Canon-

ical Model

Chapter 3 introduced a spectral graph theory (GSPsp) including a spectral shiftM and spectral

delta functions. This chapter uses these to introduce new GSP signal representations as shifted

delta functions in both the vertex domain (δn = Anδ0, n = 0, 1, . . . , N−1) and spectral domain

(δ̂n,sp = Mnδsp,0, n = 0, 1, . . . , N−1). These new GSP signal representations lead to a canonical

graph signal model defined by a canonical graph and a canonical shift, the companion graph

and the companion shift. These are canonical because, under standard conditions, we show

that any graph signal processing (GSP) model can be transformed into the canonical model.

Current GSP literature describes graph signals by their standard (node or vertex) represen-

tation s or their spectral representation ŝ, but practically none has discussed or studied other

graph signal representations or the issues related to signal representations that we pursue here.

5.1 Vertex and Fourier Signal Representations

At an abstract level, graph signals are vectors in an N dimensional graph signal vector space

V over field F. Amplifying, attenuating, adding, filtering, or processing signals is simplified

by first expressing them as linear combinations of N basic signals. As a prelude to the novel

representations in the next sections, here, we discuss first in subsection 5.1.1 a generic represen-

tation, and then in subsections 5.1.2 and 5.1.3 consider the vertex and spectral representations,

respectively.
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The vertex signal s and the graph spectrum ŝ, are two ways of describing the same graph

signal but with respect to two different bases, the vertex standard Euclidean basis and the

graph Fourier basis. Each of these signal descriptions has its own advantages. The vertex

basis is the natural one, since the data is often collected at each node. The graph Fourier basis

decomposes the signal model space into invariant subspaces (for diagonalizable shifts, these are

the N one-dimensional eigenvector spaces) and signals aligned with these invariant subspaces

are invariant to linear graph filtering.

5.1.1 Graph Signal Representations

In the N -dimensional signal vector space V over the field F, let BU = {u0, · · · , uN−1} be a

basis. Recall that the basis vectors {un}0≤n≤N−1 are all nonzero and linearly independent.

Mathematically, for any s ∈ V:

s = (sU)0 u0 + · · ·+ (sU)N−1 uN−1 (5.1)

= [u0 · · ·uN−1]︸ ︷︷ ︸
U


(sU)0
...

(sU)N−1


︸ ︷︷ ︸

sU

. (5.2)

Remark 5.1 (V ≈ CN). We assume the field F = C, so, sU ∈ CN . By (5.1), V is isomorphic

to CN . In the sequel, we use this isomorphism and assume the signal space is the N-dimensional

vector space CN over the field C.

Remark 5.2 (Ordered basis). For sU to be well defined, the basis BU is ordered. If we reorder

the basis by a permutation P , the coordinate vector sU is itself reshuffled by P :

sPU = P sU . (5.3)

By equation (5.2), processing signals is equivalent to computing using their coordinate
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vectors sU . Because of its significance, this coordinatization of signals receives a special desig-

nation.

Definition 5.1 (Representation). The representation of s with respect to the ordered basis

BU is its coordinate vector sU . The nth component (sU)n of sU is the coefficient of the basis

vector un in the linear combination (5.1).

Choosing a signal representation corresponds to choosing a basis BU . There are infinitely

many, with some particularly useful. DSP is essentially built around two representations (see

section 2.1), discussed in the following sections 5.1.2 and 5.1.3 for GSP. For GSP, we consider

six representations and discuss their specific advantages in the following sections in Chapter 5

and in Chapter 6.

5.1.2 Vertex, Standard, or Euclidean Representation

The graph signal s is an indexed collection of samples s = {sn}n∈V , one at each vertex of the

graph. The vertex graph signal representation is the natural one where the nth-component

of the coordinate vector is the graph sample sn at indexing vertex n ∈ V of the graph. This

representation corresponds to the standard or Euclidean ordered basis BE = {e0, · · · , eN−1}.

Clearly, {en ̸= 0}0≤n≤N−1 are linearly independent. For easy reference, we formally present the

vertex or Euclidean representation.

Definition 5.2 (Vertex, standard, or Euclidean representation). The vertex, standard, or

Euclidean representation of graph signal s ∈ V ≈ CN is the coordinate vector of s with respect

to the standard basis BE.

s = s0e0 + · · ·+ sN−1eN−1 (5.4)

= [e0 · · · eN−1]︸ ︷︷ ︸
IN


s0
...

sN−1

 =


s0
...

sN−1

 = sE. (5.5)
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Component n of the coordinate vector sE corresponds to n ∈ V and to en ∈ BE. Ordering

BE, orders nodes and sE is well defined. Because the matrix with columns en is the identity,

we usually omit the subindex E and use the same symbol, e.g., s, for the graph signal s and

its vertex representation sE.

Reordering BE or the vertices permutes sE as in (5.3). In DSP, time is ordered and this

issue is taken for granted. In GSP, to process signals, the ordering should be fixed and shared.

5.1.3 Graph Fourier Representation

Fourier analysis, frequency components, bandlimited, low pass come naturally from the spectral

or Fourier transform domain description ŝ of the signal s. This can also be interpreted as a

representation of s where the Fourier basis is:

BFourier = {v0, · · · , vN−1} , (5.6)

where the eigenvectors vn of A are spectral modes and the columns of GFT−1. We order the

Fourier basis BFourier, ordering the spectral components vk and the graph frequencies λk. The

graph Fourier representation is formally presented next, again, for easy reference.

Definition 5.3 (Graph Fourier representation). The graph Fourier representation of s is its

graph spectrum ŝ.

s = ŝ0v0 + · · ·+ ŝN−1vN−1 (5.7)

=

[
v0 · · · vN−1

]
︸ ︷︷ ︸

GFT−1


ŝ0

· · ·

ŝN−1


︸ ︷︷ ︸

ŝ

(5.8)
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5.2 Vertex Impulsive Representation

In this section, we consider several representations for the graph signal: 1) as a linear combi-

nation of graph vertex impulses; 2) as the impulse response of a graph filter; 3) as the inverse

GFT of a linear combination of powers of the eigenvalues.

5.2.1 Vertex Impulsive Representation

Consider the (ordered) set of the graph vertex impulse and its delayed replicas in (3.46)

and (3.47):

Bimp = {δ0, δ1, · · · , δN−1} =
{
Iδ0, Aδ0, · · · , AN−1δ0

}
. (5.9)

To prove Bimp is a basis, introduce the vertex impulsive matrix Dimp with columns the vectors

in Bimp:

Dimp =∆ [δ0 δ1 · · · δN−1] =
[
A0δ0Aδ0 · · · AN−1δ0

]
. (5.10)

We relate Dimp to a Vandermonde matrix V .

Result 5.1 (Vertex impulsive and Vandermonde matrices).

Dimp
F−→ 1√

N
V , (5.11)

where V is the Vandermonde matrix

V=
[
λ0 · · · λN−1

]
=



1 λ0 λ2
0 · · · λN−1

0

1 λ1 λ2
1 · · · λN−1

1

...
...

...
. . .

...

1 λN−1 λ2
N−1 · · · λN−1

N−1


. (5.12)
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Proof. This result follows by using (3.47) for δn in Dimp. ■

Result 5.2 (Full rank of vertex impulsive matrix). Under assumption 2.2, Dimp is full rank.

Proof. By result 5.1 and equation (5.11), Dimp is the GFT−1 of the Vandermonde matrix V .

Under assumption 2.2, V is full rank [66,68,69]. Hence, Dimp is full rank. ■

Result 5.3 (Vertex impulsive basis). Under assumption 2.2, Bimp is a basis—the vertex im-

pulsive basis.

Proof. The vectors in Bimp are the columns of Dimp, which by result 5.2 is full rank. Hence,

Bimp is a basis. ■

Definition 5.4 (Vertex impulsive representation p). The vertex impulsive representation of

graph signal s is its coordinate vector p with respect to basis Bimp:

s = p0δ0 + p1δ1 + · · ·+ pN−1δN−1 (5.13)

=

[
δ0 δ1 · · · δN−1

]
︸ ︷︷ ︸

Dimp


p0

· · ·

pN−1


︸ ︷︷ ︸

p

(5.14)

Computing p. To find the coordinate vector p of s with respect to Bimp, in general, we

solve the linear system (5.14). In practice, a sparse approximation may suffice by minimizing

∥Dimpp− s∥22 + ∥p∥1.

5.2.2 Polynomial Transform Filter

Next, we interpret the vertex impulsive representation p as the coefficients of a linear shift

invariant (LSI) graph filter.
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Result 5.4 (s as impulse response of p(A)). Let assumption 2.2 hold. Then the graph signal s

is the impulse response

s = p(A)δ0 (5.15)

of the LSI polynomial filter

p(A) = p0I + p1A+ · · ·+ pN−1A
N−1 (5.16)

iff the vector of coefficients pcoef of p(A) is the vertex impulsive representation p in (5.14):

pcoef =

[
p0 p1 · · · pN−1

]T
= p. (5.17)

Proof. The impulse response of the LSI p(A) is

s = p(A)δ0 (5.18)

=
[
p0I + p1A+ · · ·+ pN−1A

N−1
]
δ0 (5.19)

= p0Iδ0 + p1Aδ0 + · · ·+ pN−1A
N−1δ0 (5.20)

=

[
δ0 δ1 · · · δN−1

]
︸ ︷︷ ︸

Dimp

pcoef. (5.21)

Under assumption 2.2, the impulse response of p(A) is the graph signal s iff pcoef in (5.21)

equals p in (5.14). ■

Definition 5.5 (Polynomial transform filter). The LSI polynomial filter p(A) in (5.16) is the

polynomial transform filter of s.

The polynomial transform filter p(A) in (5.16) is in powers of A. We provide an alternative

description.

Result 5.5 (Graph signal s and p(A)). Given s
F←→ ŝ, its LSI polynomial transform filter p(A)
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is alternatively given by

p(A) = GFT−1diag
[√

Nŝ
]
GFT (5.22)

Proof. From s given as impulse response of p(A) in (5.19), using the diagonalization of p(A),

it successively follows

p(A)δ0 = GFT−1 · p (Λ) ·GFT ·GFT−1 · 1√
N
1 = s (5.23)

=⇒p (Λ)
1√
N
1 = ŝ =⇒ 1√

N
p (Λ) = diag [ŝ] (5.24)

=⇒p(A) = GFT−1diag
[√

Nŝ
]
GFT, (5.25)

where we used the definition of δ0 = GFT−1 · 1√
N
1. ■

5.2.3 Spectrum Vertex Impulse Representation

Take the GFT of both sides of (5.13). Using result 5.1 and equation (3.47), obtain the repre-

sentation of ŝ with respect to

Bλ =

{
1√
N
1,

1√
N
λ, · · · , 1√

N
λN−1

}
. (5.26)

The set Bλ is a basis. In fact, its vectors, apart the scaling factor 1√
N
, are the columns of the

Vandermonde matrix V , and V is full rank under assumption 2.2.

Definition 5.6 (Spectrum vertex impulsive representation). The spectrum vertex impulsive
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representation of ŝ = GFT s is the coordinate vector p with respect to basis Bλ.

ŝ = p0δ̂0 + p1δ̂1 + · · ·+ pN−1δ̂N−1 (5.27)

=

[
1√
N
λ0 1√

N
λ · · · 1√

N
λN−1

]
︸ ︷︷ ︸

1√
N
V


p0

· · ·

pN−1


︸ ︷︷ ︸

p

(5.28)

The spectrum vertex impulsive representation for ŝ has the same coordinate vector p as the

vertex impulsive representation for s. It is the basis that is different. Now, it is the frequency

vector λ and its powers that are the basis vectors for this representation of ŝ.

From (5.28), take the GFT−1 of both sides to obtain s.

s = GFT−1


[

1√
N
λ0 1√

N
λ · · · 1√

N
λN−1

]
︸ ︷︷ ︸

1√
N
V


p0

· · ·

pN−1


︸ ︷︷ ︸

p


(5.29)

Equations (5.13) and (5.29) both provide expressions for s using p. The difference is (5.13)

is a signal representation of s using p and shifted delta functions as the basis and (5.29) is the

inverse GFT of a signal representation for ŝ using p and the powers of the eigenvalues as the

basis.

5.3 Spectral Impulsive Representation

In Chapter 3, we introduced GSPsp, the dual of GSP, starting from the spectral domain instead

of the vertex domain. Section 5.2 presents the representation of graph signals with respect to

the basis Bimp whose basis vectors are the vertex impulse δ0 and its delayed replicas defined

in section 3.2.1. In this section, we dualize the vertex impulsive representation from previous
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section 5.2, using spectral shift M and the spectral delta functions (δ̂sp,0) instead of vertex shift

A and δ0. We consider several representations for the spectral graph signal, ŝ: 1) as a linear

combination of graph spectral impulses; 2) as the impulse response of a spectral graph filter;

3) as the GFT of a linear combination of the conjugate powers of the eigenvalues.

5.3.1 Spectral Impulsive Representation

This section considers the representation of graph signal ŝ with respect to δ̂sp,0 and its delayed

replicas. Consider the set of δ̂sp,0 and its spectral shifts:

B̂sp,imp =
{
δ̂sp,0, δ̂sp,1, · · · , δ̂sp,N−1

}
(5.30)

=
{
M0δ̂sp,0,Mδ̂sp,0, · · · ,MN−1δ̂sp,0

}
. (5.31)

Collect the vectors in Bsp,imp in the spectral impulse matrix1

Dsp,imp =

[
δsp,0 δsp,1 · · · δsp,N−1

]
. (5.32)

The set B̂sp,imp is a basis, because its vectors are the GFT of the vectors of the basis Bsp,imp.

Definition 5.7 (Spectral impulsive representation). The spectral impulsive representation of

ŝ = GFT s is the coordinate vector q with respect to basis B̂sp,imp.

ŝ = q0δ̂sp,0 + q1δ̂sp,1 + · · ·+ qN−1δ̂sp,N−1 (5.33)

=

[
δ̂sp,0 δ̂sp,1 · · · δ̂sp,N−1

]
︸ ︷︷ ︸

D̂sp,imp


q0

· · ·

qN−1


︸ ︷︷ ︸

q

(5.34)

1 Note that the columns of Dsp,imp are flat, not impulsive.
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5.3.2 Spectral Polynomial Transform Filter

We proceed to obtain results similar to sections 5.2.2 for q. We start by associating with

it a linear shift invariant (LSI) spectral polynomial transfer filter q(M), now in the spectral

shift M .

Result 5.6 (ŝ as impulse response of q(M)). Let assumption 2.2 hold. Then ŝ is the impulse

response of LSI filter q(M)

ŝ = q(M)δ̂sp,0 (5.35)

q(M) = q0I + q1M + · · ·+ qN−1M
N−1, (5.36)

iff the vector of coefficients qcoef of q(M) is the spectral impulsive representation q in (5.34):

qcoef =

[
q0 q1 · · · qN−1

]T
= q. (5.37)

Filter q(M) is the spectral polynomial transform filter.

Note that equation (5.43) can be rewritten as

s = q (Λ∗) δsp,0 =
(
q0I + q1Λ

∗ + · · ·+ qN−1 (Λ
∗)N−1

) 1√
N
1. (5.38)

In other words, (5.38) interprets the original signal s as the impulse response of the diagonal

filter q (Λ∗). From this, the next result follows.

Result 5.7 (Graph signal ŝ and q(M)). The LSI polynomial transform filter q(M) is alterna-

tively given by

q(M) = GFTdiag
[√

Ns
]
GFT−1 (5.39)

Results 5.6 and 5.7 parallel results 5.4 and 5.5.
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5.3.3 Spectrum Spectral Impulse Representation

Consider the set of δsp,0 and its spectral shifts:

Bsp,imp = {δsp,0, δsp,1, · · · , δsp,N−1} . (5.40)

Result 5.8 (Dsp,imp and V∗).

Dsp,imp =
1√
N
V∗ =

1√
N

[
1 λ∗ · · · λ∗N−1

]
. (5.41)

Proof. Result follows from equation (3.49). ■

Equation (5.41) shows that the vectors of the set Bsp,imp are, apart a scaling, the columns

of V∗.

Result 5.9 (Spectral impulse basis Bsp,imp). Under assumption 2.2, Bsp,imp is a basis.

Proof. By assumption 2.2, V∗ is full rank. ■

Definition 5.8 (Spectrum spectral impulse representation). The spectral impulsive represen-

tation of graph signal s is its coordinate vector qsp,imp with respect to basis Bsp,imp:

s = q0δsp,0 + q1δsp,1 + · · ·+ qN−1δsp,N−1 (5.42)

= Dsp,imp



q0

q1

· · ·

qN−1


︸ ︷︷ ︸

q

=
1√
N
V∗q (5.43)

The spectral impulsive representation for ŝ has the same coordinate vector q as the spectral

impulsive representation for s (see (5.34) and (5.43)). It is the basis that is different. Now,
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it is the spectral impulse δ̂sp,0 and its powers that are the basis vectors for this representation

of ŝ.

Taking the GFT of both sides of (5.43) yields

ŝ = GFT

(
1√
N
V∗q

)
(5.44)

Equations (5.33) and (5.44) both provide expressions for ŝ using q. The difference is (5.33)

is a signal representation of ŝ using q and shifted spectral delta functions as the basis and

(5.44) is the GFT of a signal representation for s using q and the powers of the eigenvalues as

the basis.

Result 5.10 (Relation between p and q).

q = (V∗)−1 GFT−1 V p and p = V−1 GFT V∗ q. (5.45)

Proof. It follows from (5.28) and (5.34), using (5.41) in result 5.8. ■

Remark 5.3. A note on notation: p are the coefficients of p(A) and q are the coefficients of

q(M). The thesis uses p(·) as a polynomial with coefficients p. Similarly, the thesis uses q(·)

as a polynomial with coefficients q. For example, p(x), p(A) have the same coefficients p, but

p(x) is in terms of x and p(A) is in terms of A. The conversion between p(·) and p (similarly

with q(·) and q) is used frequently in the thesis and is not explicitly stated each time.

Also, unless otherwise specified, the signal p is related to s through (5.13) and the signal

q is related to ŝ through (5.33). This conversion also is used frequently and is not explicitly

stated.
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5.4 Companion Model—a Canonical GSP Model

In DSP, the DSP cyclic shift A in (2.1) acts on graph signal s as given in (2.2). Decompose

the cyclic shift as

Ac =



0 0 . . . 0 0

1 0 . . . 0 0

... 1
. . .

...
...

...
...

. . . . . .
...

0 0 . . . 1 0


︸ ︷︷ ︸

Ac,line shift

+



0 0 . . . 0 1

0 0 . . . 0 0

... 0
. . .

...
...

...
...

. . . . . .
...

0 0 . . . 0 0


︸ ︷︷ ︸

Ac,periodic bc

. (5.46)

Then the shifted time signal As is delayed (moved downwards) by the line shift (left block

in (5.46)) and the signal extension sN is determined by the periodic boundary condition (right

block in (5.46)) [6–8] that wraps around the time signal so that sample sN−1 reappears as the

first component of As.

In this section, we look for a GSP signal model where the graph shift acts in similar fashion

to (5.46). We accomplish it with the impulsive GSP signal representation. The resulting GSP

model leads to the companion shift and the companion graph. These are canonical shift and

canonical graph representations to which, under assumptions 2.1 and 2.2, every other generic

GSP model can be reduced to.

5.4.1 Canonical Companion Shift

To obtain the representation of A with respect to Bimp, we apply the shift to each vector

δn ∈ Bimp. Get

Aδ0 = δ1, · · · , Aδn = An+1δ0 = δn+1, · · · , AδN−2 = δN−1. (5.47)
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We need a “signal extension” or “boundary condition” for

AδN−1 = ANδ0. (5.48)

This boundary condition is embedded in the matrix A and is obtained by reducing it by

Cayley-Hamilton Theorem. Applying then this theorem through equation (2.16),

AδN−1 = −c0Iδ0 − c1Aδ0 − c2A
2δ0 − · · · − cN−1A

N−1δ0. (5.49)

The boundary condition in (5.49) for AδN−1 is a linear combination of the basis vectors Aδn ∈

Bimp. The coefficients of the linear combination are the negative of the coefficients cn of the

characteristic polynomial ∆A(x) of A given in (2.15).

Putting together the N equations (5.47)-(5.48) and using the boundary condition (5.49),

A

[
δ0 δ1 · · · δN−1

]
=

[
δ1 δ2 · · · δN

]
(5.50)

=

[
δ0 δ1 · · · δN−1

]


0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1
. . . 0 −c2

...
...

. . . . . .
...

0 0 · · · 1 −cN−1


︸ ︷︷ ︸

Ccomp

. (5.51)

Equation (5.51) shows that the representation of the shift with respect to Bimp is the companion

matrix Ccomp. It is the companion matrix [66,68,69] of the characteristic polynomial ∆A(x) of
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the graph shift A. We refer to Ccomp as the companion shift. We can rewrite it as:

Ccomp=



0 0 · · · 0 1

1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . . . . .
...

0 0 · · · 1 0


︸ ︷︷ ︸

Ac

+



−1− c0

−c1

· · ·

−cN−1


[0 0 · · · 0 1]

︸ ︷︷ ︸
rank 1

. (5.52)

Equation (5.52) gives Ccomp as the sum of a unitary matrix, the DSP cyclic shift Ac, plus a

rank one matrix. On the other hand, we may decompose Ccomp as:

Ccomp =



0 0 · · · 0 0

1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . . . . .
...

0 0 · · · 1 0


︸ ︷︷ ︸

Cline shift

+



0 0 · · · 0 −c0
0 0 · · · 0 −c1
0 0 · · · 0 −c2
...

...
. . . . . .

...

0 0 · · · 0 −cN−1


︸ ︷︷ ︸

Clinear bc

. (5.53)

Equation (5.53) resolves Ccomp as a ‘line shift’ Cline shift corrected by a ‘boundary condition’

Clinear bc. It replicates the structure of the DSP cyclic shift given in (5.46). Like Ac,line shift

in (5.46), Cline shift moves the graph signal downwards, while Clinear bc retains the coefficients

{−cn}0≤n≤N−1 of the boundary condition. This is a more general boundary condition than for

the cyclic shift, since for Ac,periodic bc all cn = 0, except c0 = −1, see (5.46). This agrees with

the characteristic polynomial of the DSP cyclic shift of for which ∆Ac (x) = xN − 1.

Since Ccomp is determined by the characteristic polynomial ∆A(x), it only depends on the

graph frequencies or eigenvalues of A, not on the spectral modes or eigenvectors of A. And

this shows that, under diagonalization of A, we can associate to arbitrary adjacency matrices

a canonical weighted adjacency matrix, its companion shift.
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Result 5.11 (Diagonalization of Ccomp). Under assumption 2.2, Ccomp is diagonalized by the

Vandermonde matrix

Ccomp = V−1Λ V . (5.54)

Proof. This is a well known result. It can be verified by direct substitution that
[
1λi · · · λN−1

i

]
is a left eigenvector of Ccomp for eigenvalue λi, from which the result follows. ■

Companion graph Fourier transform. Given (5.54), the Vandermonde matrix V is the graph

Fourier transform for signals in impulsive representation, replicating the DSP result where the

DFT is the Vandermonde matrix of the eigenfrequencies (apart a normalizing factor), see (2.8).

This shows that the impulsive representation replicates for GSP another dimension of DSP.

In fact, just like for DSP, the eigenvalues (frequencies) provide the whole picture, since the

companion graph Fourier transform is defined by the frequency vectors λ and its powers.

Next, we associate a weighted companion graph Gcomp to Ccomp. Both of these, Gcomp and

Ccomp, are canonical graph representations connected with any GSP graph.

5.4.2 Canonical Companion Graph

The companion matrix Ccomp defines the (weighted) companion graph Gcomp = (Vcomp, Ecomp)

displayed in figure 5.1. Under assumption 2.2, any directed or undirected signal graph G has

a corresponding weighted companion graph.

Figure 5.1: Companion graph. Unlabelled edges have weight 1. Other edges labeled by their
weights.
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The structure of the companion graph in figure 5.1 extends the structure of the DSP cyclic

graph in figure 2.1. The DSP cyclic graph follows form the companion graph of figure 5.1 by

taking c0 = −1 and eliminating the self-loop and all the remaining backward pointing edges.

The companion graph Gcomp has a canonical structure: 1) its node set Vcomp has N nodes,

node n is associated with basis vector δn ∈ Bimp (or power An). In other words, these nodes

are not the nodes of the original graph G associated with A; 2) it is directed; 3) the edge set

Ecomp combines a directed path graph with possibly a self-loop at node N − 1 and up to N − 1

directed backward edges pointing from node N − 1 to the previous nodes; 4) these directed

edges are weighted by the negative of the coefficient cn of ∆A(x); 5) iff c0 ̸= 0, the companion

graph is strongly connected. This is the case if zero is not an eigenvalue of A.

5.4.3 Example

Figure 5.2 shows on top a “directed” ladder graph with 12 nodes and below it the corresponding

canonical graph. The characteristic polynomial of the adjacency matrix of a ladder graph like

shown in the figure but with 2k nodes is

∆A(x) = −1− x2 − x4 − x8 − · · · − x2(k−2) + x2k. (5.55)

The polynomial ∆A(x) explains why the edge weights of the companion graph of the directed

ladder graph are all ones (the coefficients of ∆A(x) are cn ≡ −1). The eigenfrequencies of this

directed ladder graph are illustrated for k=4, 6, 8, 10, 12, and 14 nodes in figure 5.3. They

distribute close to the unit circle.

As another example, consider the undirected N node path. Its characteristic polynomial is

the 3-term recursion

∆N(x) = x∆N−1(x)−∆N−2(x), ∆0(x) = 1,∆1(x) =
x

2
. (5.56)

This gives ∆N(x) = U
(
x
2

)
where U(x) is the Chebyshev polynomial of the second kind [76].
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129854

Figure 5.2: Directed ladder graph and its companion graph.
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-1.0
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Figure 5.3: Eigenfrequencies of directed ladder graphs with 4 (red), 6 (green), 8 (blue), 10
(brown), 12 (black), and 14 (orange) nodes.

For example, for N = 8

∆8(x) = x8 − 7x6 + 15x4 − 10x2 + 1 (5.57)

The path and its companion graph are in figure 5.4.
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Figure 5.4: Path graph and its canonical companion graph.

5.4.4 Spectral Companion Model: Canonical Companion Matrix

and Graph

We now consider the dual to the vertex companion model developed in the previous section

5.4.1, the spectral compnaion model. Following GSPsp, we start from the spectral domain and

develop the spectral companion model using spectral shift M .

To obtain the representation of M with respect to B̂sp,imp, we apply the shift to each vector

δ̂sp,n ∈ B̂sp,imp. Get

Mδ̂sp,0 = δ̂sp,1, · · · ,Mδ̂sp,n = Mn+1δ̂sp,0 = δ̂sp,n+1, · · · ,Mδ̂sp,N-2 = δ̂sp,N-1. (5.58)

We use a similar “signal extension” or “boundary condition” as (5.48):

Mδ̂sp,N-1 = MN δ̂sp,0 (5.59)

This boundary condition is embedded in the matrix M and is obtained by reducing it by

Cayley-Hamilton Theorem. Applying then this theorem through equation (2.16),

Mδ̂sp,N-1 = −c0Iδ̂sp,0 − c1Mδ̂sp,0 − c2M
2δ̂sp,0 − · · · − cN−1M

N−1δ̂sp,0. (5.60)

The boundary condition in (5.60) for Mδ̂sp,N-1 is a linear combination of the basis vectors
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Mδ̂sp,n ∈ B̂sp,imp. The coefficients of the linear combination are the negative of the coefficients

cn of the characteristic polynomial ∆M(x) of M given in (2.15).

Putting together the N equations (5.58)-(5.59) and using the boundary condition (5.60),

M

[
δ̂sp,0 δ̂sp,1 · · · δ̂sp,N-1

]
=

[
δ̂sp,1 δ̂sp,2 · · · δ̂sp,N

]
(5.61)

=

[
δ̂sp,0 δ̂sp,1 · · · δ̂sp,N-1

]


0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1
. . . 0 −c2

...
...

. . . . . .
...

0 0 · · · 1 −cN−1


︸ ︷︷ ︸

Ccomp

.

(5.62)

Equation (5.62) shows that the representation of the shift with respect to B̂sp,imp is the com-

panion matrix Ccomp. It is the companion matrix [66, 68, 69] of the characteristic polynomial

∆M(x) of the graph shift M .

Since A and M are co-spectral (share the same spectrum), their characteristic polynomials

∆A(λ) and ∆M(λ) are equal. This means that we can associate with the spectral impulse

representation the same companion matrix Ccomp and the same companion graph Gcomp as in

sections 5.4.1, equation (5.51), and 5.4.2, respectively.

5.5 Conclusion

This chapter introduces six signal representations and the canonical companion model. The six

representations are the vertex, Fourier, vertex impulsive, spectrum vertex impulsive, spectral

impulsive, and spectrum spectral impulsive representations. The vertex, vertex impulsive,

and spectrum spectral impulsive are all signal representations for vertex domain signal s with

different bases. The Fourier, spectral impulsive, and spectrum vertex impulsive are all signal
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representations for spectral domain signal ŝ (dual to the signal representations for s) with

different bases. These signal representations lead to the canonical companion model defined

by a canonical graph and canonical shift, the companion graph and the companion shift. The

companion shift can be viewed as the path graph with a boundary condition, determined by

the Cayley-Hamilton Theorem. Shifting in the vertex domain by A or shifting in the spectral

domain by M are both equivalent to shifting by Ccomp in the canonical companion model.
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Chapter 6

The Graph z-Transform (GzT)

In Chapter 5, we introduced several signal representations and the canonical companion signal

model. In this chapter, we introduce the graph z-transform (GzT); and through the GzT

provide a symbolic polynomial representation for graph signals. We show the graph z-transform

and its dual, the spectral graph z-transform, and their properties. We show that using the

graph z-transform can lead to a fast graph convolution using the FFT.

6.1 Vertex and Spectral Graph z-transforms

6.1.1 Graph z-transform (GzT)

The powers of the shift A of the polynomial transform filter p(A) in (5.16) represent the GSP

equivalent of the powers of the DSP shift z−1. This motivates the following definition.

Definition 6.1 (Graph z-transform (GzT)). The GzT is

GzT = D−1
imp =

[
δ0 δ1 · · · δN−1

]−1

. (6.1)

In diagram form, the GzT of s and its reconstruction are:

s
GzT−−−−−→ p = GzT s

GzT−1

−−−−−→ s (6.2)
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Result 6.1 (GzT−1 and V). The GzT−1 and V are GFT pairs:

GzT−1 GFT−−→ 1√
N
V = GFT ·GzT−1. (6.3)

Proof. This follows from result 5.1 and definition 6.1. ■

GzT maps vertex signals s into z-transformed signals p.

The GzT of s is the polynomial coefficient vector p in (5.17) that defines p(A) in (5.16).

To simplify notation, we introduce a symbolic polynomial representation p(x).

Definition 6.2 (Graph z-transform representation p(x)). The graph z-transform representa-

tion of graph signal s is its coordinate vector p with respect to the monomial basis Bmonomial ={
1, x, · · · , xN−1

}
:

GzT s = p(x) = p0 + p1 x+ p2 x
2 + · · ·+ pN−1 x

N−1 (6.4)

=

[
1 x x2 · · · xN−1

]
p. (6.5)

Result 6.2. (Shifting in vertex domain and graph z-transform) The z-transform of shifted

signal As is the shifted signal Ccomp p.

As
GzT−−→ Ccomp p (6.6)

Proof. From (5.19),

s =
[
p0I + p1A+ · · ·+ pN−1A

N−1
]
δ0.

Shifting by s using A yields

As =
[
p0A+ p1A

2 + · · ·+ pN−2A
N−1 + pN−1A

N
]
δ0.

We apply the boundary condition from (5.49) to AN and simplify.
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As =
([
p0A+ p1A

2 + · · ·+ pN−2A
N−1
]
+ pN−1

[
−c0I − c1A− c2A

2 − · · · − cN−1A
N−1
])

δ0.

Taking the z-transform of both sides yields Ccomp p. ■

Remark 6.1 (Various meanings for p). We have multiple interpretations for p: 1) as coordinate

vector of s with respect to basis Bimp in (5.14); 2) determining the polynomial transform filter

p(A) in (5.17); 3) as GzT of s in (6.2); and 4) defining p(x) in (6.5). We take advantage of

these several understandings in the different sections and chapters.

Remark 6.2. (Connection between z-transform and Fourier transform). The graph z-transform

of s is p(x). From (5.28),
√
Nŝ = Vp. Since V is a Vandermonde matrix of λ, p(λ) =

√
Nŝ.

This means, plugging in λ into p(x) yields
√
Nŝ, the GFT of s scaled by

√
N . This is also true

in DSP. Taking the z-transform of s and plugging in the roots of unity in DSP yields
√
Nŝ,

the DFT of s.

Result 6.3. (Permutation invariance of z-transform) Let A = GFT−1ΛGFT be an adjacency

matrix. Let s be the graph signal on A.

Let A′ = Π1 A ΠT
1 = Π1 GFT−1 ΠT

2 Π2 Λ ΠT
2 Π2 GFT ΠT

1 be the adjacency matrix with a

relabelling of the vertices of A by permutation Π1 and a reordering of the eigenpairs by Π2. Let

s′ = Π1s be the graph signal on A′.

Then, under assumption 2.2 of unique eigenvalues, s and s′ have the same z-transform,

p(x).

Proof. By (5.28),

p = V−1
√
Nŝ.

We need to show that p′ = p.
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We group the terms in A′:

A′ =
(
Π1 GFT−1 ΠT

2

)︸ ︷︷ ︸
GFT′−1

(
Π2 Λ ΠT

2

)︸ ︷︷ ︸
Λ′

(
Π2 GFT ΠT

1

)︸ ︷︷ ︸
GFT’

.

Taking the GFT’ of s′ yields:

ŝ′ = Π2 GFT ΠT
1 s

′ = Π2 GFT ΠT
1Π1s = Π2ŝ.

Note that the reordering of the vertices Π1 has no effect on ŝ′ and the reordering of the

eigenpairs Π2 has only reordered the entries of ŝ (due to the eigenvectors in basis BFourier being

reordered).

The Vandermonde matrix of A′ is formed using the reordered eigenvalues Λ′. So,

V ′ = Π2V .

Note this is a reordering of the rows of the Vandermonde because the eigenvalues were re-

ordered. Observe that the rows of the Vandermonde and the entries of ŝ were reordered the

same way. Because of assumption 2.2 of unique eigenvalues, there is no ambiguity from repeated

eigenvalues.

So,

V ′ p′ =
√
N ŝ′

and

p′ = V−1 ΠT
2

√
N Π2 ŝ = V−1

√
N ŝ = p.

Thus, s and s′ have the same z-transform. ■

Remark 6.3. In GSP, two researchers may use different vertex orderings and may have a

different ordering of the eigenpairs, e.g., A and A′. This leads to their graph signals s and s′

(and ŝ and ŝ′) being off by a permutation, making it difficult to directly compare. Result 6.3
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shows that the z-transform is permutation-invariant. This means that the two researchers can

take their graph signals (s and s′) and instead of direct comparison, compare their z-transforms

(p and p′). If p = p′, then the s and s′ are permutations of the same signal. Also, given p,

each researcher can plug in their shift p(A)δ0 and p(A′)δ′0 to obtain the graph signal s and s′

respectively. This allows researchers to share the signal p instead of s or s′ and convert it

back to the vertex domain to re-obtain the signals for their (permuted) graphs without knowing

permutation Π1 or Π2.

6.1.2 Spectral Graph z-transform

Like p(A) in (5.16) led us to the GzT, we associate with q(M) a spectral graph z-transform

(ĜzTsp). This is the dual of the graph z-transform, the graph z-transform in GSPsp. We state

the definition and corresponding results (without proof) that parallel those in section 6.1.1.

Definition 6.3 (Spectral graph z-transform (ĜzTsp)). Define

ĜzTsp = D̂−1
sp,imp =

[
δ̂sp,0 δ̂sp,1 · · · δ̂sp,N−1

]−1

. (6.7)

Result 6.4 (Fourier pairs ĜzT
−1

sp and V∗).

1√
N
V∗ GFT−−→ ĜzT

−1

sp = GFT
1√
N
V∗. (6.8)

Proof. From (5.43), Dsp,imp = 1√
N
V∗, so, by definition 6.3

ĜzT
−1

sp = D̂sp,imp = GFT Dsp,imp = GFT
1√
N
V∗. (6.9)

■
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ĜzTsp maps ŝ into spectral z-transformed signals q:

ŝ
ĜzTsp−−−−−−→ q = ĜzTsp ŝ

ĜzTsp
−1

−−−−−−→ ŝ (6.10)

The ĜzTsp of ŝ is the polynomial coefficient vector q in (5.34) that defines q(M) in (5.36)

in result 5.6. To simplify notation, we use also a symbolic polynomial representation q(x) with

coefficients given by q = ĜzTsp s

ĜzTsp ŝ ≈ q(x) =

[
1 x x2 · · · xN−1

]
q (6.11)

= q0 + q1 x+ q2 x
2 + · · ·+ qN−1 x

N−1. (6.12)

The polynomial q(x) expresses the ĜzTsp of ŝ in terms of the monomial basis Bmonomial ={
1, x, · · · , xN−1

}
.

Result 6.5. (Shifting in spectral domain and graph z-transform) The spectral graph z-transform

of shifted signal M ŝ is the shifted signal Ccomp q. This is the dual of result 6.2.

M ŝ
ĜzTsp−−−→ Ccomp q (6.13)

Proof. From (5.35),

ŝ =
[
q0I + q1M + · · ·+ qN−1M

N−1
]
δ̂sp,0.

Shifting by ŝ using M yields

Mŝ =
[
q0M + q1M

2 + · · ·+ qN−2M
N−1 + qN−1M

N
]
δ̂sp,0.

We apply the boundary condition from (5.60) to MN and simplify.

Mŝ =
([
q0M + q1M

2 + · · ·+ qN−2M
N−1
]
+ qN−1

[
−c0I − c1M − c2M

2 − · · · − cN−1M
N−1
])

δ0.
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Taking the spectral graph z-transform of both sides yields Ccomp q. ■

Remark 6.4. (Spectral z-transform in DSP) The spectral z-transform is rarely mentioned

or considered in DSP. Usually, in DSP, we start with a signal s in time and consider its z-

transform p(z−1), writing s as a linear combination of time shifts. The spectral z-transform

starts with a frequency signal ŝ and considers its z-transform q(z−1), writing ŝ as a linear

combination of frequency shifts. It is the dual of the z-transform. Similar to how s is the

coefficients of p(z−1), ŝ is the coefficients of q(z−1).

6.2 Fast Graph Convolution with the FFT

Filtering in the vertex domain is defined in [1] as the product of matrix graph filter F with

graph vector signal s. If the filter is linear shift invariant, it is a polynomial filter p(A). We

now consider convolution of two graph signals.

Definition 6.4 (Convolution of vertex domain graph signals). The (vertex domain) convolu-

tion of graph signals s and t is

t⃝∗ s = Pt(A) · Ps(A)δ0, (6.14)

where Ps(A) and Pt(A) are the LSI polynomial transform filters for s and t.

Definition 6.4 and equation (6.14) define convolution of graph signals s and t as the impulse

response of the serial concatenation of the polynomial transform filters Ps(A) of s and Pt(A)

of t. Figure 6.1 illustrates this convolution. Since polynomial filters commute, the convolution

Figure 6.1: Convolution of graphs signals s and t.

in (6.14) commutes. The next result provides alternative ways of computing the convolution.
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Result 6.6 (Vertex convolution). Consider graph signals s and t and their polynomial trans-

form filters Ps(A) and Pt(A). Then

t⃝∗ s = Pt(A) · s = Ps(A) · t (6.15)

s⃝∗ t
F−1

←−−
√
N t̂⊙ ŝ (6.16)

Proof. Equation (6.15) follows from result 5.4 and equation (5.15).

Equation (6.16) follows by taking the GFT of both sides of (6.14) and using the diagonal-

ization of the transform filters in (5.22). ■

Equation (6.15) interprets convolution of s and t as filtering the graph signal s by a filter

whose impulse response is t. In the spectral domain, equation (6.16) shows that convolution

of the two signals is in the spectral domain the pointwise multiplication of the GFTs of the

signals. This replicates the graph Fourier filtering theorem (see equation (27) in [1]).

6.2.1 Convolution of Graph Signals with the FFT

Equation (6.16) shows that, as in DSP, we can compute convolution by finding the two GFTs ŝ

and t̂ of the two signals, then pointwise multiplying these, and finally taking the inverse GFT of

the pointwise product. Even though this replicates the DSP result, GFTs and inverse GFTs are

matrix vector products that are order N2, not fast operations. We show that in “companion

space,” i.e., working with the impulsive representations, the GzT of graph signals or their

polynomial representation, and the polynomial transform filters of the signals, graph vertex

convolution can be obtained by FFT.

Fast convolution. Consider the z-transform representations s(x), t(x), and u(x) of s, t, and

u = s⃝∗ t.

Result 6.7 (GSP convolution and linear convolution). We have

u(x) = (s(x) · t(x)) mod∆A(x) (6.17)
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where ∆A(x) is the characteristic polynomial of A, and u = s⃝∗ t is the vector of coefficients

of u(x).

Proof. The product of polynomials (in x or in A) is the polynomial whose coefficients are the

linear convolution of the sequences of coefficients of the polynomials. Powers larger than N−1

are reduced by Cayley-Hamilton achieved by mod∆A(x) reduction. ■

Remark 6.5. In DSP, An = An mod N . This is the wrap-around effect, or “time-aliasing” in

DSP. In DSP, the coefficient of the power of N is added to the coefficient of the power of N

mod N=0, the coefficient of N +1 is added to the power of N +1 mod N=1, and so on. For

a generic graph in GSP, there is also “vertex-aliasing,” but it is not one-to-one like in DSP.

The coefficient of the power of N (and higher powers) is scaled differently and added to lower

powers from 0 to N − 1 as per Cayley-Hamilton.

Result 6.7 and equation (6.17) are a fast convolution of the two graph signals when given

their z-transforms. The linear convolution of the sequences of coefficients of Ps(A) and Pt(A)

is computed by fast Fourier transform (FFT). The mod reduction is computed by (fast)

polynomial division, O(N) operations [77]. Result 6.7 is very pleasing. It evaluates GSP LSI

convolution using the FFT, an intrinsically DSP algorithm.

Remark 6.6. An interesting question is when are linear and circular (vertex) convolution

equivalent in GSP. From (6.17), we see that, in GSP, if the degree of the product polynomial

s(x)t(x) is not greater than N − 1, then u(x) = (s(x) · t(x)) mod∆A(x) = s(x) · t(x). Linear

and circular convolution are equivalent and the reduction by mod ∆A(x) produces no effect.

This is the same condition for when linear and circular convolution are equivalent in DSP. In

practice, one may want to pad with zeros either or both of s(x) and t(x) to get faster processing.

An example of the convolution of graph signals using both polynomial filtering (figure 6.1)

and the FFT for an expanded version (100 nodes) of the directed ladder graph in figure 5.2

is shown in figure 6.2. The steps in the figure illustrate several signal representations and

transforms. On top, we compute the convolution by equation (6.14) in definition 6.4. From
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Figure 6.2: Example of circular convolution of s and t using both polynomial filtering (above)
and the FFT (below) for the 100 node directed ladder graph in figure 5.2. Both methods
produce the same result.

left to right, we start with the vertex impulse δ0 (obtained by GFT−1 of a flat impulse in the

spectral domain), going through the polynomial transform filters Ps(A) and Pt(A) to get t⃝∗ s.

At the bottom, we illustrate the fast convolution in equation (6.17). We compute the GzT

of s and t to obtain pimps and pimpt . These are linearly convolved and reduced by mod ∆A(x)

to obtain pimpu . A final GzT−1 gets the circular convolution s⃝∗ t.

The polynomial coefficient vectors for signals s and t are: 1) the first 25 entries of pimps

are 1 and the remaining 75 entries are 0; and 2) the entries of pimpt were chosen as a triangle

signal, with the first half going from 1
50

to 1 with a step of 1
50

and then the remaining to

back down to 1
50

with a step of − 1
50
. Comparing the two plots on the right of figure 6.2), we

conclude that different methods lead to the same result for s⃝∗ t, with a maximum pointwise

magnitude difference (due to roundoff errors) between them of 0.15 (with convolution result

values of order 1011).
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6.3 Conclusion

In this chapter, we present the graph z-transform (GzT) and the spectral graph z-transform.

Using the graph z-transform, we provide a symbolic polynomial representation for graph sig-

nals. We show when plugging in the graph frequencies λ into the graph z-transform polynomial,

similar to the z-transform in DSP, we obtain a scaled version of the GFT of s,
√
Nŝ. We also

show the graph z-transform is permutation invariant. Using the graph z-transform, we provide

an algorithm for fast graph convolution with the FFT.
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Chapter 7

GSP Uncertainty Principle

In this chapter, we present a GSP Uncertainty Principle based on the interpolation of the

graph z-transform p and spectral signal ŝ (similarly, spectral graph z-transform q and vertex

signal s). This GSP Uncertainty Principle directly relates the bandlimitness of p and ŝ, unlike

current GSP uncertainty principles which relate the spread of s and ŝ. We use this uncertainty

principle to show that when ŝ is bandlimited, we can reduce and simplify the Vandermonde

system required to calculate p.

7.1 Brief Literature Review

We briefly review literature on the uncertainty principle in GSP. The literature on the uncer-

tainty principle in GSP [78, 79] draws inspiration from the time spread and frequency spread

of a continuous time signal x(t) and its Fourier transform X(f) to define a notion of spread

for graph signals. In continuous time, the time spread is

∆2
t =

∫∞
−∞(t− t0)

2 |x(t)|2 dt∫∞
−∞ |x(t)|2dt

, t0 =

∫∞
−∞ t |x(t)|2 dt∫∞
−∞ |x(t)|2dt

(7.1)

The frequency spread is

∆2
f =

∫∞
−∞(f − f0)

2 |X(f)|2 df∫∞
−∞ |X(f)|2df

, f0 =

∫∞
−∞ f |X(f)|2 df∫∞
−∞ |X(f)|2df

(7.2)
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Using these two definitions of spread yields the famous uncertainty principle,

∆2
t∆

2
f ≥

1

(4π)2
(7.3)

.

From there, [78] defines graph spread and spectral spread (similar to time and frequency

spread above). In particular, they define graph spread about a vertex u0 and signal x as

∆2
g,u0

(x) =
1

||x||2
xTP 2

u0
x (7.4)

where Pu0 = diag {d(u0, v1), d(u0, v2), . . . , d(u0, vN)}, the distance between u0 and the nodes vi

of the graph and d is a distance matrix, e.g., geodesic distance. They define spectral spread as

∆2
s(x) =

1

||x||2
N∑

n=1

λn|x̂n|2 (7.5)

Using these two quantities, they discuss the tradeoff between ∆2
g,u0

(x) and ∆2
s(x).

Reference [79] uses a new definition of vertex and spectral spread to avoid potential short-

comings of choosing a distance metric d to define spread like [78] in (7.4). Instead of using a

distance metric, [79] define vertex spread (α2) and spectral spread (β2) for a signal x as

α2 =
||Dx||22
||x||22

, β2 =
||Bx||22
||x||22

, (7.6)

where Dx samples in the vertex domain and Bx is the vertex domain filter corresponding to

sampling in the spectral domain. Using these quantities, [79] explores an uncertainty principle

and feasibility region for all possible α and β.

In both [78,79], uncertainty principles and feasibility regions are explored in the context of

vertex and spectral spread. These works do not directly relate the bandlimit of signals like s,

ŝ, p, q, but instead relate the energy and spread of signals. In [79], they give a sufficient, but

not necessary condition for the existance of a perfectly localized signal s (i.e., ||s||0 = |S| for a
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vertex subset S, ||ŝ||0 = |F| for a frequency subsect F where || · ||0 is the ℓ0 pseudo-norm) in

both the vertex and spectral domains:

|S|+ |F| > N (7.7)

where N is the number of nodes in the graph.

Reference [53] establishes the DSP inequality

Nt ·Nw ≥ N (7.8)

where Nt is the number of non-zero entries in the time signal s, Nw is the number of non-zero

entries in the corresponding frequency signal ŝ and N is the length of the signal. The argument

presented in [53] directly relies on the DFT being a Vandermonde matrix. Since the GFT is

not a Vandermonde matrix, it is difficult to use a similar argument to relate s and ŝ. However,

ŝ and p (as well as s and q) are related by a Vandermonde matrix. This enables us to develop

a GSP Uncertainty Principle (relating these quantities), drawing inspiration from [53].

In this chapter, we assume the eigenvalues of A are unique (assumption 2.2).

7.2 Uncertainty Principle for Spectral and Vertex Im-

pulsive Signal Representations

In this section, we develop an uncertainty principle relating the bandlimits of the spectral

signal, ŝ and vertex impulsive signal, p. We begin by defining bandlimits for each signal, then

discuss constraints of each signal if the other is bandlimited. Lastly, we present the uncertainty

principle.
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7.2.1 Definitions

A common consideration in signal processing are signals that are bandlimited in the spectral

(frequency) domain.

Definition 7.1. (Spectral Bandlimitedness) A signal ŝ is Nŝ-bandlimited in the spectral

domain if ŝ contains exactly N −Nŝ zeros.

Without loss of generality, we assume the N −Nŝ zeros in ŝ are the last N −Nŝ entries.1

We also assume that ŝ is not the zero vector, i.e., all zeros.

We will focus on ŝ that are (Nŝ)-bandlimited:

ŝ =

 ŝNŝ

0N−Nŝ

 (7.9)

We now define bandlimited p.

Definition 7.2. (Polynomial Bandlimitedness of p) A signal p is Np-bandlimited if p con-

tains exactly N −Np zeros that are the bottom entries of p.

Definition 7.2 is slightly different than definition 7.1. A Nŝ-bandlimited ŝ can have the zeros

anywhere in ŝ and must have exactly N − Nŝ zeros. On the other hand, a Np-bandlimited p

must have exactly N −Np zeros at the end of the signal p with a nonzero value at the Np entry

of p, but may have zeros in the first Np − 1 entries of p.

Remark 7.1. The reason for this distinction is that the ordering of p has mathematical and

graph significance. Given a signal s = p(A)δ0, p is the polynomial coefficients of p(A) with

entry, pi, being the coefficient of Ai. Definition 7.2 is equivalent to p(A) is a polynomial of

degree Np− 1. It only states pNp ̸= 0 and pi = 0 for i > Np. It does not say anything about the

first Np − 1 indices of p. Limiting the degree of the polynomial to Np − 1 also means that the

1This is a notational convenience. This is not a necessary condition. The eigenvalues and eigenvectors of A
can be permuted so that this is true.
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filter only considers powers of the adjacency matrix up to Np−1, representing up to Np−1-hop

neighbors of nodes in the graph. This is a desirable property because we want to consider local

neighborhoods of nodes when filtering. If Np is close to N , then the filter considers the non-local

nodes (close to N − 1 hop neighbors) in A for every node.

7.2.2 Tradeoff between Bandlimited Signals in Spectral and Vertex

Impulsive Representations

We begin by assuming ŝ is Nŝ-bandlimited as given in (7.9). From (5.28),

ŝ = Vp (7.10)

Since V is a Vandermonde matrix of the eigenvalues λ, (7.10) is equivalent to interpolating

N points2, (λi, ŝi), using a N − 1 degree polynomial with (ordered) polynomial coefficients, p.

Let p(x) be the interpolating polynomial.

Result 7.1. If ŝ is Nŝ-bandlimited, p(x) has at least degree N −Nŝ.

Proof. Since ŝ is Nŝ-bandlimited, it contains N−Nŝ zeros by definition 7.1. From (7.10), we are

interpolating with N points that include the N−Nŝ points, (λi, 0) for i = Nŝ, . . . , N−1. These

λi are N − Nŝ roots of polynomial p(x). Since there are Nŝ other points (i = 0, . . . , Nŝ − 1),

we only know that there are at least N −Nŝ roots. Since p(x) has at least N −Nŝ roots, p(x)

has at least degree N −Nŝ. ■

Corollary 7.1. If ŝ is Nŝ-bandlimited, p is at least (N −Nŝ + 1)-bandlimited.

Proof. The proof follows from the previous result. If p(x) has degree N−Nŝ, then pN−Nŝ+1 ̸= 0

and pK = 0 for K > N−Nŝ+1. So, p is (N−Nŝ+1)-bandlimited and has Nŝ−1 trailing zeros.

Since p(x) has at least degree N − Nŝ, by result 7.1, p is at least (N − Nŝ + 1)-bandlimited,

i.e., p can only contain at most Nŝ − 1 trailing zeros. ■

2By assumption 2.2, the points are unique because the eigenvalues are unique.
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Corollary 7.1 suggests a tradeoff between the bandlimitedness of ŝ and p. As Nŝ increases,

the number of zeros in ŝ decreases. This increases the band of ŝ, but decreases the minimum

degree of p(x) (potentially, less roots). This decreases the lower bound on the bandlimitedness

of p.

Similarly, if Nŝ decreases, the number of zeros in ŝ increases. This decreases the band of ŝ,

but increases the minimum degree of p(x) (guaranteed more roots). This increases the lower

bound on the bandlimitedness of p.

An interesting question is if p is bandlimited what does that say about ŝ? The next result

addresses this.

Result 7.2. If p is Np-bandlimited, then ŝ has at most N − Np zero entries, and is at least

(N −Np + 1)-bandlimited.

Proof. Since p is Np-bandlimited, p(x) is a Np − 1 degree polynomial with exactly Np − 1

zeros. The only way to get zeros in ŝ is if the eigenvalues, λ, of A contain the roots of p(x).

Since there are exactly Np − 1 roots and no repeated eigenvalues (assumption 2.2), there are

maximally Np − 1 roots in the interpolation points. If the eigenvalues of A and the roots of

p(x) do not coincide, then there will be no zeros in ŝ. Thus, there are at most Np − 1 zeros

and using Definition 7.1, ŝ is at least (N −Np + 1)-bandlimited. ■

Corollary 7.1 and Result 7.2 yield the Uncertainty Principle.

Result 7.3. (GSP Uncertainty Principle: ŝ, p) Let Nŝ be the bandlimit of ŝ. Let Np be the

bandlimit of p in Definition 7.2. Then,

Nŝ +Np ≥ N + 1 (7.11)

A visual representation of the feasibility region Uncertainty Principle for N = 10 is in Fig.

7.1.

An example of when the above bound is tight is when ŝ = δ̂0 = 1√
N
1 as defined in (3.46).

In this case, p = V−1ŝ = 1√
N
e0 = [ 1√

N
, 0, . . . , 0]T . This is because the first column of V is 1,
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Figure 7.1: The feasibility region for the GSP uncertainty principle in result 7.3 for N = 10.
Red dots represent infeasible regions and blue dots represent feasible regions.

the vector of all 1s. The bandlimit of ŝ is Nŝ = N . The bandlimit of the corresponding p is 1.

So, in this case, Nŝ +Np = N + 1.

The above results and corollary hold in GSP. We now briefly consider the Uncertainty

Principle in DSP. In DSP, we have p = s. This means the interpolating polynomial p(x)

coefficients is the same as the time signal s. We can rewrite result 7.3 using this fact.

Result 7.4. (DSP Uncertainty Principle: s, ŝ) Let Nŝ be the bandlimit of ŝ (L = Nŝ in

Definition 7.1). Let Ns be the bandlimit of s (L = Ns in Definition 7.2). Then,

Ns +Nŝ ≥ N + 1 (7.12)

These results in DSP suggest the classical relationship / tradeoff between time and fre-

quency in DSP. Namely, that signals that are “wide” in one domain are typically “narrow” in

the other. For example, take N = 4, Nŝ = 3 in DSP. The above result says if Nŝ = 3 then
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s ŝ

[−j, 1, 0, 0]T [1− j,−2j,−1− j, 0]T

[−2j, 2− j, 1, 0]T [3− 3j,−2− 4j,−1− j, 0]T

[1.5, .5j, .5,−.5j]T [1, 1, 1, 0]T

Table 7.1: s and corresponding ŝ. For ŝ with exactly 1 zero, s can have 0, 1, 2 trailing zeros.

Ns ≥ 2, so s has at most 2 trailing zeros. Also, if s has 3 trailing zeros (Ns = 1), then ŝ has 4

nonzero values (Nŝ = 4).

7.3 Bandlimited Signal ŝ: Reducing the Vandermonde

System

In this section, we consider a bandlimited ŝ and show how this can reduce the linear system

in (7.10) when converting from ŝ to p using (7.10). Let ŝ be a Nŝ-bandlimited signal given in

(7.9). Let K = N −Nŝ be the number of zeros.

From (7.10), we are interpolating N points, (λi,
√
Nŝi). using a N − 1 degree polynomial

with (ordered) polynomial coefficients, p.3 Let p(x) be the interpolating polynomial.

Since ŝ contains K zeros, we are interpolating with N points that include K roots. Thus,

we can break the interpolating polynomial p(x) into two parts:

p(x) = r(x)e(x) (7.13)

where r(x) is the K degree polynomial with the K roots at λi for i = N − K, . . . , N − 1

corresponding to the points (λi,
√
Nŝi = 0) and leading coefficient 1 and e(x) is a polynomial

of at most degree N −K − 1.

3An alternative interpolation is to interpolate the points (λi, ŝi). Then, scale the interpolating polynomial
by
√
N . This will produce the same p.
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Since r(x) has K roots at λi, we can determine r(x).

r(x) =
N−1∏

i=N−K

(x− λi) (7.14)

An alternative way is to take the characteristic polynomial ∆A(x) of A and divide by the

polynomial with leading coefficient 1 and roots λi, i = 0, 1, . . . , N −K − 1.

r(x) =
∆A(x)∏N−K−1

i=0 (x− λi)
(7.15)

This is because ∆A(x) has N roots, λi. By dividing by the polynomial in (7.15), we obtain

a polynomial with the K roots.

From (7.13), (7.14), we obtain:

p(x) = r(x)e(x) = e(x)
N−1∏

i=N−K

(x− λi) (7.16)

To find e(x), we must use the remaining N−K points, (λi,
√
Nŝi) for i = 0, . . . , N−K−1.

Since we know r(x), we can divide each
√
Nŝi by r (λi)

4, producing N −K points,
(
λi,

√
Nŝi

r(λi)

)
,

i = 0, . . . , N −K − 1. We know that e(x) must go through these points, so we can interpolate

these points to obtain e(x).

Interpolation of e(x) can be done using a Vandermonde matrix. Let λs be a vector of the

first λ values, λs = [λ0, λ1, . . . , λN−K−1]
T . Let e be the coefficient vector of e(x) with e0 being

the coefficient of the constant term, e1 being the coefficient of the x term, etc. Let Vs be the

N −K × N −K Vandermonde matrix of λs, Vs =
[
λ0
s, λ

1
s, . . . , λ

N−K−1
s

]
. Let d be the vector

of
√
Nŝi

r(λi)
, d =

[√
Nŝ0

r(λ0)
,
√
Nŝ1

r(λ1)
, . . . ,

√
NŝN−K−1

r(λN−K−1)

]T
. Then,

d = Vse (7.17)

and e = V −1
s d. Using the coefficients e, we can determine e(x).

4Note that since the roots of r(x) are λi, i = N −K, . . . , N −1 by (7.14), r (λi) ̸= 0 for i = 0, . . . , N −K−1.
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Result 7.5. e(x) has degree 0 to N −K − 1 and p(x) has degree K to N − 1.

Proof. We know e(x) must go through the N −K points,
(
λi,

√
Nŝi

r(λi)

)
, i = 0, . . . , N −K − 1.

Observe that
√
Nŝi

r(λi)
̸= 0 because otherwise, ŝi = 0, making λi a root of r(x). So,

√
Nŝi

r(λi)
are not

roots of e(x). In general, interpolating N − K points of e(x) yields a polynomial of degree

N −K − 1. However, the points could also be interpolated of a polynomial of lesser degree,

e.g., a constant polynomial would fit the points if all
√
Nŝi

r(λi)
were equal. Thus, e(x) has degree

0 to N −K − 1. Since r(x) is degree K and p(x) = r(x)e(x), p(x) has degree K to N − 1. ■

Remark 7.2. From result 7.5, we see that e(x) controls how many trailing zeros p has. If e(x)

is constant, then there are N −K − 1 trailing zeros in p. If e(x) has degree N −K − 1, then

there are no trailing zeros in p. So, r(x) establishes the minimum degree of p(x) and maximum

number of trailing zeros in p. While e(x) determines the exact number of trailing zeros. Result

7.5 supports result 7.1.

Remark 7.3. (Simpler Way to find p using (7.10) for ŝ bandlimited signals)

Normally, to find p, we would have to solve (7.10). This involves solving a linear system

with N unknowns. However, if ŝ is bandlimited, then we can simplify the calculation. We

can find r(x) from (7.14) using the K roots. Then, interpolate the N − K points (λi,
√
Nŝi

r(λi)
),

i = 0, . . . , N − K − 1 to find e(x). This can be done by solving a system with a smaller

N −K ×N −K matrix (see (7.17)). From there, p(x) = r(x)e(x).

We provide the algorithm block below.

Algorithm 1: Find p using (7.10) for (N −K)-bandlimited ŝ

1 Given: Eigenvalue vector λ, (N −K)-bandlimited ŝ from (7.9).

2 Produce N points from λ and ŝ: (λi,
√
Nŝi) (i = 0, . . . , N −K − 1, N −K non-roots),

(λi, ŝi = 0) (i = N −K, . . . , N − 1, K roots)
3 Using the K roots, find r(x) using (7.14) or (7.15). From N −K non-roots, form

N −K points,
(
λi,

√
Nŝi

r(λi)

)
, i = 0, . . . , N −K − 1.

4 Using (7.17), find e. Using e, find e(x).
5 Multiply r(x) and e(x) to find p(x).
6 Take the coefficients from p(x) to find p.
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This algorithm shows that we can reduce the size of the linear system from N × N to

N −K×N −K if ŝ is (N −K)-bandlimited. For K large and close to N (ŝ contains K zeros),

this results in solving a significantly smaller linear system. Note that r(x) can be calculated

using linear convolution and FFTs. p(x) can be calculated from r(x) and e(x) using linear

convolution and FFTs.

7.3.1 Producing a Bandlimited Signal ŝ with Zeros in Specific Lo-

cations

So far, we have discussed how to convert from a bandlimited ŝ to p. In this section, we discuss

an algorithm on how to produce a bandlimited signal ŝ with zeros in specific entries. Without

loss of generality, assume we want zeros in the last K entries of ŝ. Thus, the polynomial p(x)

has roots at λi, i = N −K, . . . , N − 1. Using these roots and (7.14), we can find r(x). r(x)

guarantees the zeros in the specified locations.

Now, we can choose an arbitrary e(x) polynomial of maximum degree N − 1 −K. Some

design considerations are if we want additional zeros in ŝ at other locations besides the last K

entries and what we want the bandlimit, Np to be. If we want additional zeros in ŝ at other

locations, we must choose e(x) so it has roots at the λi corresponding to those locations. If

we want to fix Np, we must choose e(x) to be degree Np − 1 − K, following the Uncertainty

Principle in result 7.3.

Once we choose e(x), we can use (7.13) to find p(x), whose coefficients gives p. From there,

we use (7.10) to find the ŝ with the zeros in specific locations.

7.3.2 DSP Example

We continue the example in Table 7.1 where N = 4, K = 2 in DSP. We provide r(x), e(x) and

p(x) as well as the e(x) interpolating points in Table 7.2. Note that λ = [1,−j,−1, j]T in DSP.

For all three cases, r(x) = x − j, a root at x = j. However, depending on ŝ, we obtain
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s ŝ e(x) p(x)

[−2j, 2, 0, 0]T [1− j,−2j,−1− j, 0]T 1 2x− 2j

[−4j, 4− 2j, 2, 0]T [3− 3j,−2− 4j,−1− j, 0]T x+ 2 2x2 + (4− 2j)x− 4j

[3, j, 1,−j]T [2, 2, 2, 0]T −.5jx2 + x+ 1.5j −jx3 + x2 + jx+ 3

Table 7.2: s and corresponding ŝ, r(x),e(x), e(x) interpolation points, p(x). For ŝ with exactly
1 zero, s can have 0, 1, 2 trailing zeros. In each case, r(x) = x− j.

different e(x) with different degrees. The degree of the p(x) is 1, 2, 3, corresponding to the

degree of e(x) being 0, 1, 2 respectively.

7.3.3 GSP Example

We show an example of the specific calculations applying Algorithm 1 to a 10-node Erdös-Rényi

graph.

Consider the 10-node directed Erdös-Rényi graph (formed using probability 0.25), shown

in figure 7.2, with adjacency matrix:

A =



0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 1 0 1

0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 0 1 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 1

0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 1 0



(7.18)

Its eigenvalues are λ = [2.39,−.61+1.7j,−.61−1.7j, .38+ .64j, .38− .64j,−.54+ .2j,−.54−

.2j,−.42 + .72j,−.42 − .72j, 0]T ]. A plot of the eigenvalues and the unit circle are shown in

figure 7.3.
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Figure 7.2: Erdös-Rényi graph for N = 10 with probability 0.25

Figure 7.3: The eigenvalues of the 10-node Erdös-Rényi graph, plotted with the unit circle (in
blue).

Consider ŝ = 1√
10
[0, 0, 0, 0, 0, 0, 0, 7.09 + 8.22j, 7.09 − 8.22j, 1.75]T , a 3-bandlimited signal.

We want to find p and s using Algorithm 1. The roots of r(x) are 2.39,−.61 + 1.7j,−.61 −

1.7j, .38 + .64j, .38 − .64j,−.54 + .2j,−.54 − .2j, so r(x) is a polynomial of degree 7. Using

(7.14), r(x) = x7 − .83x6 + .01x5 − 7.43x4 − 2.82x3 − .55x2 − 2.61x− 1.46.

Using (7.17) with λs = [−.42 + .72j,−.42 − .72j, 0]T and r(λs) = [−.42 − 4.35j,−.42 +

4.35j,−1.46]T yields:


1 −.42 + .72j −.34− .6j

1 −.42− .72j −.34 + .6j

1 0 0

 e =


7.1+8.22j
−.42−4.35j

7.09−8.22j
−.42+4.35j

1.75
−1.46

 (7.19)
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So, e = [−1.2, 2, 0]T and e(x) = 2x− 1.2.

Thus, p(x) = e(x)r(x) = 2x8−2.86x7+1.01x6−14.87x5+3.28x4+2.29x3−4.55x2+.21x+1.75

and p = [1.75, .21,−4.55, 2.29, 3.28,−14.87, 1.01,−2.86, 2, 0]T

We observe that V p = ŝ = 1√
10
[0, 0, 0, 0, 0, 0, 0, 7.09 + 8.22j, 7.09 − 8.22j, 1.75]T . Also, we

observe that the example obeys the Uncertainty Principle in Result 7.3 with Nŝ = 3, Np = 9

and Nŝ + Np = 12 > 11 = N + 1. Note that this result does not depend on the GFT

and eigenvectors, only on the eigenvalues. Only when we calculate s does it depend on the

GFT and eigenvectors: Using p as the coefficients of p(A) and calculating s = p(A)δ0 yields

s = [.98,−4.54, 1.98, 10.02, 2.95, .87,−7.16, 4.89, 1.93,−6.6]T This is equal to s = GFT−1ŝ.

r(x) and p(x) are plotted in figure 7.4 with the two real coordinates at (2.4, 0), (0, 1.75).

r(x) and p(x) both go through the root at 2.4, but only p(x) goes through the point (0, 1.75)

because it is not a root.

Figure 7.4: p(x), r(x) for the example, along with the two real coordinates at (2.4, 0), (0, 1.75).
p(x) interpolates and goes through both points, but r(x) only goes through (2.4, 0) because it
is a root.
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7.4 Uncertainty Principle for Standard and Spectral Im-

pulsive Signal Representations

In this section, we dualize the results of the previous section to develop an uncertainty principle

relating the bandlimits of the standard signal, s, and spectral impulsive signal, q. We proceed

in a similar fashion as the last section by defining bandlimit for s and q, discussing constraints

of each signal if the other is bandlimited. Then, we present the uncertainty principle.

7.4.1 Definitions

Definition 7.3. (Finite Support of s) A signal s is Ns-supported in the vertex domain if s

contains exactly N −Ns zeros.

This definition is the dual of definition 7.3. Without loss of generality, we can assume the

N − Ns zeros in s are the last N − Ns entries of s.5 We also assume that s is not the zero

vector, i.e., all zeros.

We will focus on s that are (Ns)-supported:

s =

 sNs

0N−Ns

 (7.20)

We now define bandlimited q in a similar way to definition 7.2.

Definition 7.4. (Polynomial bandlimitedness of q) A signal q is Nq-bandlimited if q contains

exactly N −Nq zeros at the bottom of q.

5Like with ŝ, this is a notational convenience. This is not a necessary condition. The vertices of A can be
reordered so that this is true.
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7.4.2 Tradeoff between Reduced Supported Signals in Vertex and

Bandlimited Spectral Impulsive Representations

This section parallels section 7.2.2 except it relates s and q instead of ŝ and p. We begin by

assuming s is Ns-supported as given in (7.20). From (5.33),

s = V∗q (7.21)

Since V∗ is a Vandermonde matrix of the eigenvalues λ, (7.21) is equivalent to interpolating

N points, (λ∗
i , si), using a N − 1 degree polynomial with (ordered) polynomial coefficients, q.

Let q(x) be the interpolating polynomial. Note that the coefficients of q(x) are the entries of

q.

Result 7.6. If s is Ns-supported, q(x) has at least degree N −Ns.

Proof. This is a similar argument to result 7.1. Since s is Ns-supported, it contains N − Ns

zeros by definition 7.3. From (7.21), we are interpolating with N points that include the N−Ns

points, (λ∗
i , 0) for i = Ns, . . . , N − 1. These λ∗

i are N − Ns roots of polynomial q(x). Since

there are Ns other points (i = 0, . . . , Ns − 1), we only know that there are at least N − Ns

roots. Since p(x) has at least N −Ns roots, p(x) has at least degree N −Ns. ■

Corollary 7.2. If s is Ns-supported, q is at least (N −Ns + 1)-bandlimited.

Proof. The proof follows from result 7.6. If q(x) has degree N − Ns, then qN−Ns+1 ̸= 0 and

qK = 0 for K > N −Ns + 1. So, q is (N −Ns + 1)-bandlimited and has Ns − 1 trailing zeros.

Since q(x) has at least degree N−Nŝ, by result 7.6, then q is at least (N−Ns+1)-bandlimited,

i.e., q can only contain at most Ns − 1 trailing zeros. ■

Corollary 7.2 suggests a tradeoff between the reduced support of s and bandlimitedness of

q. As Ns increases, the number of zeros in s decreases. This increases the support of s, but

decreases the minimum degree of q(x) (potentially, less roots). This decreases the lower bound

on the bandlimitedness of q.
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Similarly, if Ns decreases, the number of zeros in s increases. This decreases the support

of s, but increases the minimum degree of q(x) (guaranteed more roots). This increases the

lower bound on the bandlimitedness of q.

An interesting question is if q is bandlimited, what does that say about s. The next result

addresses this.

Result 7.7. If q is Nq-bandlimited, then s has at most N − Nq zero entries and is at least

(N −Nq + 1)-supporteed.

Proof. Since q is Nq-bandlimited, q(x) is a Nq−1 degree polynomial with exactly Nq−1 zeros.

The only way to get zeros in s is if the eigenvalues, λ∗, of A contain the roots of q(x). Since

there are exactly Nq − 1 roots and no repeated eigenvalues, there are maximally Nq − 1 roots

in the interpolation points. If the eigenvalues of A and the roots of q(x) do not coincide, then

there will be no zeros in ŝ. Thus, there are at most Nq − 1 zeros and using Definition 7.3, s is

at least (N −Nq + 1)-supported. ■

Corollary 7.2 and Result 7.7 yield the Uncertainty Principle.

Result 7.8. (GSP Uncertainty Principle: s, q) Let Ns be the support of s (L = Ns in Definition

7.3). Let Np be the bandlimit of q (L = Nq in Definition 7.4). Then,

Ns +Nq ≥ N + 1 (7.22)

The above bound is tight when s = δsp,0 = 1√
N
1 as defined in (3.48). In this case, q =

V∗−1s = 1√
N
e0 = [ 1√

N
, 0, . . . , 0]T . This is because the first column of V∗ is 1, the vector of all

1s. The support of s is Ns = N . The bandlimit of the corresponding q is 1. So, in this case,

Ns +Nq = N + 1.

In DSP, we have q = ŝ. This means the interpolating polynomial q(x) coefficients is the

same as the frequency signal ŝ. We can rewrite result 7.8 using this fact.
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Result 7.9. (DSP Uncertainty Principle v2: s, ŝ) Let Ns be the support of s (L = Ns in

Definition 7.3). Let Nŝ be the bandlimit of ŝ (L = Nŝ in Definition 7.4).Then,

Ns +Nŝ ≥ N + 1 (7.23)

This result may seem the same as Result 7.4. However, there is a key difference. In result

7.8, we assume s has Ns non-zero entries and ŝ contains N − Nŝ trailing zeros. In 7.3, we

assume s has N −Ns trailing zeros and ŝ contains Nŝ non-zero entries.

Remark 7.4. (Comparison with Uncertainty Principle in [53]) The DSP Uncertainty Principle

in [53] considers signals with a certain number of zeros and non-zeros in any location. The

results rely on the DFT matrix being both a Vandermonde matrix in terms of its rows and

its columns. In GSP, p and ŝ are related using only a Vandermonde matrix in terms of its

columns, not its rows. So, in GSP, we assume the zeros of p or q are at the end and cannot

assume they are anywhere. Because of this, applying our GSP Uncertainty Principle to DSP

(Results 7.4 and 7.9) yields a different Uncertainty Principle than [53] (see fig. 7.5). This is

because we assume either s or ŝ has zeros at the end of the signal while [53] does not, producing

a tighter bound than [53].

We stated that if ŝ contains 1 zero, then s has at most 2 trailing zeros in DSP. We can find

signals for ŝ with exactly one zero where s has 0, 1, 2 trailing zeros (see Table 7.1). But what

determines whether s has 0, 1 or 2 trailing zeros? This is addressed in general for GSP in the

next section 7.3.

7.4.3 Reduced Support s: Reducing the Vandermonde System

This section presents the dual of Algorithm 1 in GSPsp, starting with a reduced support

vertex domain signal s (instead of ŝ) and finding the spectral z-domain signal, q (instead of p).

Equation (7.21) is the dual of (7.10). Since V∗ is a Vandermonde matrix of the eigenvalues λ∗,

(7.21) is equivalent to interpolating N points, (λ∗
i ,
√
Nsi), using a N − 1 degree polynomial
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Figure 7.5: The feasibility region for the DSP uncertainty principle in result 7.3 for N = 10.
Red dots represent infeasible regions and blue dots represent feasible regions. The green line
represents the boundary using the DSP Uncertainty Principle in the literature.

with (ordered) polynomial coefficients, q. Let the interpolating polynomial be q(x).

Let s be a Ns-bandlimited signal in (7.20). Let K = N −Ns be the number of zeros in s.

We split q(x) into the product of r(x) and e(x):

q(x) = r(x)e(x)

where r(x) is the K degree polynomial with the K roots at λ∗
i for i = N − K, . . . , N − 1

corresponding to the points (λ∗
i ,
√
Nŝi = 0) and leading coefficient 1 and e(x) is a polynomial

of at most degree N −K − 1.

Since r(x) has K roots at λi, we can determine r(x).

r(x) =
N−1∏

i=N−K

(x− λ∗
i ) (7.24)
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An alternative way is to take the characteristic polynomial ∆M(x) of M and divide by the

polynomial with leading coefficient 1 and roots λ∗
i , i = 0, 1, . . . , N −K − 1.

r(x) =
∆M(x)∏N−K−1

i=0 (x− λ∗
i )

(7.25)

Interpolation of e(x) can be done using a Vandermonde matrix. Let λ∗
s be a vector of the

conjugate of the first λ values, λ∗
s =

[
λ∗
0, λ

∗
1, . . . , λ

∗
N−K−1

]T
. Let e be the coefficient vector of

e(x) with e0 being the coefficient of the constant term, e1 being the coefficient of the x term,

etc. Let V ∗
s be the N −K ×N −K Vandermonde matrix of λ∗

s, V
∗
s =

[
λ∗
s
0, λ∗

s
1, . . . , λ∗

s
N−K−1

]
.

Let d be the vector of
√
Nsi

r(λ∗
i )
, d =

[√
Ns0

r(λ∗
0)
,
√
Ns1

r(λ∗
1)
, . . . ,

√
NsN−K−1

r(λ∗
N−K−1)

]T
. Then,

d = V ∗
s e (7.26)

and e = V ∗
s
−1d. Using the coefficients e, we can determine e(x).

Algorithm 1 can also be used to find q for a bandlimited s by replacing p with q, ŝ for s,

λi with λ∗
i and p(x) with q(x).

Algorithm 2: Find q using (7.21) for (N −K)-bandlimited s

1 Given: Eigenvalue vector λ∗, (N −K)-bandlimited s from (7.20).
2 Produce N points from λ∗ and s:

3 (λ∗
i ,
√
Nsi) (i = 0, . . . , N −K − 1, N −K non-roots), (λ∗

i , si = 0)
(i = N −K, . . . , N − 1, K roots)

4 Using the K roots, find r(x) using (7.24) or (7.25). From N −K non-roots, form

N −K points,

(
λ∗
i ,

√
Nsi

r(λ∗
i )

)
, i = 0, . . . , N −K − 1.

5 Using (7.26), find e. Using e, find e(x).
6 Multiply r(x) and e(x) to find q(x).
7 Take the coefficients from q(x) to find q.
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7.5 Conclusion

In this chapter, we provided a GSP Uncertainty Principle for p and ŝ, as well as its dual, a

GSP Uncertainty Principle for q and s. Previous GSP uncertainty principles relate the spread

of vertex domain signal s and spectral domain signal ŝ. Unlike previous GSP uncertainty

principles, we directly relate the bandlimitedness of p and bandlimitedness of ŝ. We show a

tradeoff between the bandlimits of p and ŝ. As the number of non-zeros in ŝ increases, the

lower bound on the bandlimitedness of p also decreases. Similarly, if the number of non-zeros

in ŝ decreases, the lower bound on the bandlimitedness of p increases. Using these uncertainty

principles, we give algorithms for reducing the Vandermonde system for finding p and q when

ŝ is bandlimited or when s has reduced support respectively.
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Chapter 8

GSP Interpolating Filters

This chapter performs Lagrange interpolation using Lagrange basis polynomials in GSP to find

p, given ŝ. Then, we explore properties of Lagrange basis polynomial filters. These are the

Lagrange basis polynomials evaluated using the graph shift A and spectral graph shift M .

8.1 Finding p: Lagrange Interpolation in GSP

In this section, we derive a general method for finding p given ŝ that avoids solving the linear

system in (7.10). This general method is based on Algorithm 1 presented in the last section.

We then show this method yields an interesting relationship between the eigenvalues and

eigenvectors of A.

Consider the unit vector ei, a vector with a 1 in the ith position and 0s elsewhere. We want

to find the p(x) corresponding to ŝ = 1√
N
ei. From (7.10), we observe this is interpolation with

the N − 1 points (λj, 0), j ̸= i and the point
(
λi,

1√
N

)
. Following Algorithm 1, obtain:

r(x) =
N−1∏

j=0,j ̸=i

(x− λj) (8.1)

e = V −1
s d = [1]−1

[
1

r(λi)

]
=

1

r(λi)
=

1∏N−1
j=0,j ̸=i (λi − λj)

(8.2)

e(x) =
1∏N−1

j=0,j ̸=i (λi − λj)
(8.3)

p(x) =
r(x)

r(λi)
=

∏N−1
j=0,j ̸=i (x− λj)∏N−1
j=0,j ̸=i (λi − λj)

(8.4)
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where e(x) is degree 0 (constant), r(x) and p(x) are degree N. For each unit vector, ei, i =

0, . . . , N − 1, we obtain a different interpolating polynomial, defined below.

Definition 8.1. Let ℓi(x) be the interpolating polynomial for the unit vector 1√
N
ei, i = 0, . . . , N−

1. Let the N interpolating polynomials, ℓi(x), i = 0, . . . , N − 1, be the Lagrange basis poly-

nomials. From (8.4),

ℓi(x) =

∏N−1
j=0,j ̸=i (x− λj)∏N−1
j=0,j ̸=i (λi − λj)

, i = 0, . . . , N − 1 (8.5)

Result 8.1. The Lagrange basis polynomials, ℓi(x) form a basis for p(x) with coefficients
√
Nŝi.

Proof. Rewrite ŝ using the standard basis:

ŝ =
N−1∑
i=0

ŝiei =
N−1∑
i=0

√
Nŝi

1√
N
ei

. Using (7.10), obtain:

p = V−1ŝ = V−1

(
N−1∑
i=0

√
Nŝi

1√
N
ei

)
=

N−1∑
i=0

√
Nŝi

(
V−1 1√

N
ei

)

V−1 1√
N
ei is the polynomial interpolation of the unit vector 1√

N
ei with λj, j = 0, . . . , N − 1.

From (8.4), we know the interpolating polynomial for this is the Lagrange basis polynomial,

ℓi(x). So,

p =
N−1∑
i=0

√
Nŝiℓi

Thus,

p(x) =
N−1∑
i=0

√
Nŝiℓi(x) =

N−1∑
i=0

√
Nŝi

∏N−1
j=0,j ̸=i (x− λj)∏N−1
j=0,j ̸=i (λi − λj)

(8.6)

■

Equation (8.6) provides a general way to solve the system in (7.10) through interpolation.

Remark 8.1. Equation (8.6) is an example of Lagrange interpolation, a well-known method
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for finding s given ŝ in DSP. In GSP, one cannot use (Lagrange) interpolation to find s given

ŝ. However, (8.6) shows that Lagrange interpolation can be used to find p given ŝ in GSP.

We verify that p(x) in (8.6) is the interpolating polynomial of points
(
λj,
√
Nŝj

)
, j =

0, . . . , N − 1. For each Lagrange basis polynomial,

ℓi(λj) =


1 if i = j

0 if i ̸= j

(8.7)

When i = j, the numerator and denominator are the same, so ℓi(λj) = 1. When i ̸= j,

the numerator of ℓi(λj) contains x − λj = λj − λj = 0. So, ℓi(λj) = 0. Using (8.6), p(λj) =∑N−1
i=0

√
Nŝiℓi(λj) =

√
Nŝj, j = 0, . . . , N − 1. So, p(x) is the interpolating polynomial of(

λj,
√
Nŝj

)
.

Remark 8.2. (Signal representations for p(x)) We present two different signal representations

of p(x). There is the standard basis: using the powers of x as the basis and p as the coeffi-

cients. Equation (8.6) gives a second signal representation of p(x): using the Lagrange basis

polynomials and
√
Nŝ as the coefficients.

p(x) =
N−1∑
i=0

pix
i =

N−1∑
i=0

√
Nℓi(x)ŝi (8.8)

Result 8.2. Let s be an eigenvector of A, s = vi. Then, p(x) =
√
Nℓi(x).

Proof. The result follows from (8.4). Since ŝ = GFT s = ei, p(x) =
√
Nℓi(x). ■

Result 8.2 establishes the relationship between the Lagrange polynomials and the eigen-

vectors of A in the vertex domain. Equation (8.7) shows that the Lagrange polynomials are

a set of polynomials (R → R) that become impulse (delta) functions (1 at a single frequency

and 0 otherwise) when evaluated at the graph frequencies, λi. This is consistent with DSP,

where the polynomial is the z-transform and the Fourier transform is found by evaluating the
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polynomial at the graph frequencies (roots of unity in DSP) to produce ŝ. We explore ℓi(x) in

DSP next.

Remark 8.3. In DSP, s = p. So, the coefficients of ℓi(x) are equal to the signal s. Result 8.2

gives that s = vi when p(x) =
√
Nℓi(x). So, s = p = vi and the coefficients of

√
Nℓi(x) are

equal to the values of vi.

8.2 Lagrange Basis Polynomial Filters ℓi(A)

In the previous section, we introduced Lagrange basis polynomials, ℓi(x), to solve (7.10).

Polynomial p(x) has the same polynomial coefficients as P (A), the LSI polynomial filter in the

vertex domain. In this section, we explore the significance and properties of Lagrange basis

polynomials of A, M and Ccomp. These are LSI GSP filters in the vertex domain, spectral

domain and vertex impulsive domains respectively.

We find ℓi(A) using (8.5).

ℓi(A) =

∏N−1
j=0,j ̸=i (A− λjI)∏N−1
j=0,j ̸=i (λi − λj)

, i = 0, . . . , N − 1 (8.9)

In GSP,

P (A)δ0 = s.

Since P (A) contains a weighted sum of Lagrange basis polynomials of A (see (8.6)), we consider

the effect of ℓi(A) on δ0 in result 8.3.

Result 8.3. Applying the ℓi(A) filter to the delta function δ0 yields the corresponding eigen-

vector for all i = 0, . . . , N − 1:

ℓi(A)δ0 =
1√
N
vi (8.10)

Proof. By 3.46,

δ0 =
1√
N

N−1∑
k=0

vk.
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By linearity,

ℓi(A)δ0 =
1√
N

N−1∑
k=0

ℓi(A)vk =
N−1∑
k=0

1√
N

∏N−1
j=0,j ̸=i (A− λjI)∏N−1
j=0,j ̸=i (λi − λj)

vk.

Since vk is an eigenvector,

(A− λjI)vk = (λk − λj)vk

for all j, k = 0, . . . , N − 1. So, we can rewrite ℓi(A)δ0 as

N−1∑
k=0

1√
N

∏N−1
j=0,j ̸=i (λk − λj)∏N−1
j=0,j ̸=i (λi − λj)

vk

Consider two cases:

1) If k = i, then

1√
N

∏N−1
j=0,j ̸=i (λk − λj)∏N−1
j=0,j ̸=i (λi − λj)

vk = 1 · vk = vi.

2) If k ̸= i, then the numerator of

1√
N

∏N−1
j=0,j ̸=i (λk − λj)∏N−1
j=0,j ̸=i (λi − λj)

vk

contains

λj − λj = 0.

So, the product is

0 · vk = 0.

Thus, the term in the summation is only non-zero when k = i. So,

ℓi(A)δ0 =
1√
N
vi

for all i = 0, . . . , N − 1. ■

125



A simple corollary of result 8.3 is

ℓi(A)ŝiδ0 =
1√
N
ŝivi,

obtained since ℓi(A) is LSI. Next, we generalize result 8.3 to any signal s.

Result 8.4.

ℓi(A)s = ŝivi

Proof. Rewrite s as weighted sum of eigenvectors:

s =
N−1∑
k=0

ŝkvk.

So,

ℓi(A)s =
N−1∑
k=0

ŝkℓi(A)vk

Following a similar argument as the proof of result 8.3,

ℓi(A)vk = 0

when k ̸= i. When k = i,

ℓi(A)vk = vi

Thus,

ℓi(A)s = ŝivi

■

Result 8.4 shows that applying filter ℓi(A) to any signal s extracts the eigenvector vi com-

ponent of s (with the same scaling ŝ).
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Result 8.5.
N−1∑
i=0

ℓi(A)s = s.

Proof. From result 8.4,

ℓi(A)s = ŝivi.

So,
N−1∑
i=0

ℓi(A)s =
N−1∑
i=0

ŝivi = s.

■

Result 8.5 shows that we can re-obtain s by summing ℓi(A)s together. This is intuitively

pleasing because each filter extracts the vi component of s and then the summation puts the

components back together to form s.

Corollary 8.1. (All-pass graph filter)

N−1∑
i=0

ℓi(A) = I.

Proof. This is a well known fact of Lagrange basis polynomials. It can be seen from result 8.5:

N−1∑
i=0

ℓi(A)s =

(
N−1∑
i=0

ℓi(A)

)
s = s.

■

Corollary 8.1 shows the effect of applying the combined filter
∑N−1

i=0 ℓi(A) on signal s. It is

equivalent to applying the identity (all-pass) filter. This is shown in fig. 8.1.

ℓi(A) is a CN → CN mapping of signal s ∈ CN to the line kvi, k ∈ C. They are a set

of narrow-band filters (tuned to spectral component vi), each extracting a single eigenvector

(spectral) component vi.

Result 8.6. We list some general properties of ℓi(A):
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Figure 8.1: Block diagram applying the all-pass graph filter in Corollary 8.1 to s. Each
Lagrange polynomial filter ℓi(A) extracts weighted eigenvector of A, ŝivi. These are then
summed together to reobtain s.

1) ℓi(A) is a polynomial of A with degree N − 1.

2) ℓi(A)s = projvis.

3) ℓi(A) has rank 1.1

Property 2 says that ℓi(A)s is generally, an oblique projection of s onto the eigenvector

vi because the eigenvectors are not orthogonal. If A is symmetric (such as with undirected

graphs), then the eigenvectors of A are orthogonal and ℓi(A)s is an orthogonal projection.

Remark 8.4. We explore ℓi(Ac) in DSP. By property 1 of result 8.6, ℓi(Ac) is a polynomial

of Ac, so it is a circulant matrix in DSP. By result 8.3, ℓi(Ac)δ0 =
1√
N
vi. However, δ0 = e0 =

[1, 0, . . . , 0]T . So, the first column of ℓi(Ac) is 1√
N
vi. Since the matrix is circulant, we obtain

the entire matrix ℓi(Ac) from the first column. ℓi(A) is a circulant matrix whose first column

is the eigenvector vi: ℓi(Ac) =
1√
N

[
vi Acvi A

2
cvi . . . A

N−1
c vi

]
.

1This is due to property 2. The matrix projects a vector s onto a space with dimension 1, spanned by vi
vector. So, it has rank 1.
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8.3 Finding q: Lagrange Interpolation in GSPsp

This section presents a general method for finding q using Lagrange interpolation. We obtain

the dual results of previous section 8.1 in GSPsp, using s and q instead of ŝ and p.

Consider the unit vector ei, a vector with a 1 in the ith position and 0s elsewhere. We want

to find the q(x) corresponding to s = 1√
N
ei. From (7.21), we observe this is interpolation with

the N − 1 points (λ∗
j , 0), j ̸= i and the point

(
λ∗
i ,

1√
N

)
. Following Algorithm 2, obtain:

r(x) =
N−1∏

j=0,j ̸=i

(
x− λ∗

j

)
(8.11)

e = V ∗
s
−1d = [1]−1

[
1

r(λi)

]
=

1

r(λi)
=

1∏N−1
j=0,j ̸=i

(
λ∗
i − λ∗

j

) (8.12)

e(x) =
1∏N−1

j=0,j ̸=i

(
λ∗
i − λ∗

j

) (8.13)

p(x) =
r(x)

r(λ∗
i )

=

∏N−1
j=0,j ̸=i

(
x− λ∗

j

)∏N−1
j=0,j ̸=i

(
λ∗
i − λ∗

j

) (8.14)

where e(x) is degree 0 (constant), r(x) and p(x) are degree N. For each unit vector, ei, i =

0, . . . , N − 1, we obtain a different interpolating polynomial, defined below.

Definition 8.2. Let ℓi,sp(x) be the interpolating polynomial for the unit vector 1√
N
ei, i =

0, . . . , N − 1. The N interpolating polynomials, ℓi,sp(x), i = 0, . . . , N − 1, be the spectral

Lagrange basis polynomials. From (8.4),

ℓi,sp(x) =

∏N−1
j=0,j ̸=i

(
x− λ∗

j

)∏N−1
j=0,j ̸=i

(
λ∗
i − λ∗

j

) , i = 0, . . . , N − 1 (8.15)

Result 8.7. The spectral Lagrange basis polynomials, ℓi,sp(x) form a basis for q(x) with coef-

ficients
√
Nsi.
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Proof. Rewrite s using the standard basis:

s =
N−1∑
i=0

siei =
N−1∑
i=0

√
Nsi

1√
N
ei

Using (7.21), obtain:

q = V∗−1s = V∗−1

(
N−1∑
i=0

√
Nsi

1√
N
ei

)
=

N−1∑
i=0

√
Nsi

(
V∗−1 1√

N
ei

)

V∗−1 1√
N
ei is the polynomial interpolation of the unit vector 1√

N
ei with λ∗

j , j = 0, . . . , N −

1. From (8.4), we know the interpolating polynomial for this is the spectral Lagrange basis

polynomial, ℓi,sp(x). So,

q =
N−1∑
i=0

√
Nsiℓi,sp

Thus,

q(x) =
N−1∑
i=0

√
Nsiℓi,sp(x) =

N−1∑
i=0

√
Nsi

∏N−1
j=0,j ̸=i

(
x− λ∗

j

)∏N−1
j=0,j ̸=i

(
λ∗
i − λ∗

j

) (8.16)

■

Equation (8.16) provides a general way to solve the system in (7.21) through interpolation.

Remark 8.5. Equation (8.6) is an example of Lagrange interpolation, a well-known method

for finding ŝ given s in DSP. In GSP, one cannot use (Lagrange) interpolation to find ŝ given

s. However, (8.16) shows that Lagrange interpolation can be used to find q given s in GSP.

Remark 8.6. (Signal representations for q(x)) We present two different signal representations

of q(x). There is the standard basis: using the powers of x as the basis and q as the coeffi-

cients. Equation (8.6) gives a second signal representation of q(x): using the Lagrange basis

polynomials and
√
Ns as the coefficients.

q(x) =
N−1∑
i=0

qix
i =

N−1∑
i=0

√
Nℓi,sp(x)si (8.17)
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In GSPsp, the GFT matrix plays the role that GFT−1 plays in GSP. Let the columns of the

GFT be ui. Similar to how the columns of the GFT−1 are the eigenvectors of A, the columns

of the GFT are the eigenvectors of M .

GFT = [u0, u1, u2, . . . , uN−1] (8.18)

Result 8.8. Let ŝ be an eigenvector of M , ŝ = ui. Then, q(x) =
√
Nℓi,sp(x).

Proof. The result follows from (8.14). Since s = GFT−1 ŝ = ei, q(x) =
√
Nℓi,sp(x). ■

Result 8.8 establishes the relationship between the spectral Lagrange polynomials and the

eigenvectors of M in the spectral domain. The spectral Lagrange polynomials are a set of

polynomials (R → R) that become impulse (delta) functions (1 at a single frequency and 0

otherwise) when evaluated at the graph frequencies, λ∗
i . We explore ℓi,sp(x) in DSP next.

Remark 8.7. In DSP, ŝ = q. So, the coefficients of ℓi,sp(x) are equal to the signal ŝ. Result

8.8 gives that ŝ = ui when q(x) =
√
Nℓi,sp(x). So, ŝ = q = ui and the coefficients of

√
Nℓi,sp(x)

are equal to the values of ui.

8.4 Lagrange Basis Polynomial Filters ℓi,sp(M)

In this section, we obtain the dual results of section 8.2 (without proof), working with ℓi,sp(M)

and ŝ instead of ℓi(A) and s. We obtain similar properties for the spectral Lagrange basis

polynomial filters, ℓi,sp(M), in GSPsp.

We use the spectral Lagrange basis polynomials in (8.15).

ℓi,sp(M) =

∏N−1
j=0,j ̸=i

(
M − λ∗

jI
)∏N−1

j=0,j ̸=i

(
λ∗
i − λ∗

j

) , i = 0, . . . , N − 1 (8.19)

Result 8.9. Applying the ℓi,sp(M) filter to the spectral delta function δ̂sp,0 yields the corre-
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sponding eigenvector for all i = 0, . . . , N − 1:

ℓi,sp(M)δ̂sp,0 =
1√
N
ui (8.20)

with ui given in (8.18).

A simple corollary of result 8.9 is

ℓi,sp(M)siδ̂sp,0 =
1√
N
siui.

Result 8.10.

ℓi,sp(M)ŝ = siui.

Result 8.11.
N−1∑
i=0

ℓi,sp(M)ŝ = ŝ.

Proof. From result 8.10,

ℓi,sp(M)ŝ = siui.

So,
N−1∑
i=0

ℓi,sp(M)ŝ =
N−1∑
i=0

siui = ŝ.

■

Result 8.11 shows that we can re-obtain ŝ by summing ℓi,sp(M)ŝ together. This is intuitively

pleasing because each filter extracts the vi component of s and then the summation puts the

components back together to form ŝ.

Corollary 8.2. (All-pass spectral graph filter)

N−1∑
i=0

ℓi,sp(M) = I.

Proof. This is a well known fact of Lagrange basis polynomials. It can be seen from result
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8.11:
N−1∑
i=0

ℓi(A)s =

(
N−1∑
i=0

ℓi,sp(M)

)
ŝ = ŝ.

■

Corollary 8.2 shows the effect of applying the combined filter
∑N−1

i=0 ℓi,sp(M) on signal ŝ. It

is equivalent to applying the identity (all-pass) filter. This is shown in fig. 8.2.

Figure 8.2: Block diagram applying the all-pass graph filter in Corollary 8.2 to ŝ. Each
Lagrange polynomial filter ℓi,sp(M) extracts weighted eigenvector of M , siui. These are then
summed together to reobtain ŝ.

ℓi,sp(M) is a CN → CN mapping of signal s ∈ CN to the line kui, k ∈ C. They are a

set of narrow-band filters (tuned to vertex component ui), each extracting a single eigenvector

(vertex) component ui.

Result 8.12. We list some general properties of ℓi,sp(M):

1) ℓi,sp(M) is a polynomial of M with degree N − 1.

2) ℓi,sp(M)ŝ = projui
ŝ.

3) ℓi,sp(M) has rank 1.

8.5 Conclusion

This chapter performs Lagrange interpolation on the points (λi,
√
Nŝi) to find p given ŝ. In

doing so, we show that the Lagrange basis polynomials, ℓi(x), form a basis for p with coefficients
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√
Nŝi. Then, we explore Lagrange basis polynomial filters, ℓi(A). We show various properties

of ℓi(A). They are a set of narrow-band filters (tuned to spectral component vi), each extracting

a single eigenvector vi. Summing the polynomial filters together yields an all-pass filter. We

also show the dual by substituting p with q and ŝ with s. We perform Lagrange interpolation

to find q given s. We obtain similar results for the spectral Lagrange basis polynomial filters,

ℓi,sp(M).
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Chapter 9

GSP Modulation and Demodulation

Multiplexing is the process of combining D signals, s(1), s(2), . . . , s(D) into a single signal, r.

This signal is then sent to a receiver that demodulates and recovers the original D signals,

s(1), s(2), . . . , s(D) from the received signal r.1 In DSP, multiplexing is done by partitioning the

signal bandwidth intoD (non-overlapping) spectral bands with each band containing one signal

s(d), d = 1, . . . , D. This partitioning can either happen in the time domain (time division mul-

tiplexing) or the frequency domain (frequency division multiplexing). This chapter develops

GSP modulation and demodulation by exploring GSP multiplexing: vertex division multi-

plexing, spectral division multiplexing, and spectral z-transform division multiplexing. Vertex

domain multiplexing is done by partitioning the vertex domain using sampling, described in

Chapter 4. Spectral division multiplexing is done by partitioning the graph spectral domain.

Spectral z-transform division multiplexing is done by partitioning the spectral z-transform

domain, described in section 6.1.2.

In this chapter, we assume the signals s(1), s(2), . . . , s(D) are K-bandlimited where the last

N −K entries of ŝ are 0.2

ŝ(i) =

 ŝ
(i)
K

0N−K

 (9.1)

We assume DK ≤ N , i.e., the D K-bandlimited signals all fit in the bandwidth of r, N .

1On notation: s
(d)
i , d = 1, . . . , D, k = 0, 1, . . . , N−1 refers to the ith entry of the dth signal being modulated.

The number of signals is D. Each signal is dimension N × 1.
2This is a notational convenience. This is not a necessary condition. The eigenvalues and eigenvectors of A

can be permuted so that this is true.
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9.1 Vertex Division Multiplexing

This section considers vertex (time) division multiplexing in DSP and GSP, which partitions

the vertex (time) domain.

9.1.1 Time Division Multiplexing

In DSP, time division multiplexing is done by sampling each of the D signals s(1), s(2), . . . , s(D)

and summing them together to form r.

r =
N∑
d=1

(
δs(d) ⊙ s(d)

)
(9.2)

where δs(d) is a zero-one sampling signal for s(d). Since the signals areK-bandlimited, ||δs(d) ||0 =

K.

To demodulate, each of the sampled signals δs(d)⊙ s(d) is obtained from r. Using a low-pass

filter, the original signals s(d) are recovered from their sampled signals, δs(d) ⊙ s(d).

9.1.2 Vertex Division Multiplexing

This method is similar to time division multiplexing. We partition the N nodes of A into D

disjoint sets of K nodes. Each set of K nodes must be a sampling set S described in section

4.1.1. Let the sampling set associated with signal s(d) be Sd.

We do vertex division multiplexing by sampling each by sampling each of the D signals

s(1), s(2), . . . , s(D) using δSd
and summing them together to form r.

r =
N∑
d=1

(
δSd
⊙ s(d)

)
(9.3)

where δSd
is a zero-one sampling signal for s(d) using sampling set Sd.

To demodulate s(d), we pointwise multiply r by δSd
. Since the sampling sets are disjoint,
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this yields:

δSd
⊙ r = δSd

⊙

(
N∑
d=1

(
δSd
⊙ s(d)

))
= δSd

⊙ s(d) (9.4)

To obtain s(d) from δSd
⊙ s(d), we use the sampling interpolation methods described in 4.2.

Remark 9.1. The dual of vertex division multiplexing is sampling ŝ in the spectral domain

instead of s in the vertex domain. Instead of dividing the nodes N of A into K groups, we

partition the N nodes of M into K groups. Demodulation is done in a similar fashion; inverting

a small block of the GFT instead of the GFT−1 to recover the signal. While this does partition

the spectral bandwidth, we do not consider this the spectral division multiplexing described in

the next section 9.2 , but rather the dual of vertex division multiplexing.

9.2 Spectral Division Multiplexing

This section considers spectral (frequency) division multiplexing in DSP and GSP, which par-

titions the spectral (frequency) domain.

9.2.1 Frequency Division Multiplexing

In DSP, given K-bandlimited signals s(1)[n], s(2)[n], . . . , s(D)[n], Frequency Division Multiplex-

ing is done by multiplying each signal s(d)[n] by a different complex exponential e−
2π
N

j(d−1)Kn, d =

0, . . . , D − 1 and then summing the products to form r.

r[n] =
N∑
d=1

s(d)[n]e−
2π
N

j(d−1)Kn (9.5)

Each complex exponential e−
2π
N

j(d−1)Kn shifts the band of s(d)[n] into a separate, non-

overlapping part of r̂.

To recover s(d)[n] from r, multiply r by e
2π
N

j(d−1)Kn. This shifts the band ŝ
(d)
K back to the

original band in the frequency domain. A low pass filter with bandwidth K is then applied in

the frequency domain to recover s(d)[n].
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r̂ =



ŝ
(1)
K

ŝ
(2)
K

...

ŝ
(D)
K


Multiply r[n] by e

2π
N

j(d−1)Kn

−−−−−−−−−−−−−−−−→



ŝ
(d)
K

ŝ
(d+1) modD
K

...

ŝ
(d−1) modD
K


l.p.f in frequency−−−−−−−−−→

 ŝ
(d)
K

0N−K

 = ŝ(d) (9.6)

Remark 9.2. An alternative to multiplying r[n] by e
2π
N

j(d−1)Kn is to multiply by e−
2π
N

j(N−(d−1)K)n.

This will shift the signal r̂[m] in the spectral domain N−(d−1)K times, producing the original

signal as in (9.6) due to M = Ac, the directed cyclic graph.

9.2.2 Three Equivalent Interpretations

The multiplication operation of e−
2π
N

j(d−1)Kn in (9.5) can be interpreted in DSP three different,

but equivalent ways.

1. Multiplication of r[n] by the complex exponential, e−
2π
N

j(d−1)Kn

2. Pointwise multiplication of r[n] = [r[0], r[1], . . . , r[N − 1]]T by an eigenvector of A

From (2.10), multiplying s(d)[n] by e−
2π
N

j(d−1)Kn is equivalent to v(d−1)K ⊙ s(d)[n].

3. Pointwise multiplication by a power of the vector of eigenvalues of A

From (2.11), multiplying s(d)[n] by the complex exponential e−
2π
N

j(d−1)Kn is equivalent to

the pointwise multiplication of λ∗(N−(d−1)K) ⊙ s(d)[n].

9.2.3 Spectral Division Multiplexing - Choosing an Interpretation

In Section 9.2.2, there were three interpretations of frequency division multiplexing, equivalent

in DSP, but not equivalent in GSP. We explore these three interpretations as potential ways

for modulation in GSP.

Case 1: This applies directly the DSP modulation process to GSP. We multiply by the
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complex exponential, e−
2π
N

jkin. From (3.21),

P (M) = GFT diag(e−
2π
N

j(d−1)Kn) GFT−1

P (M) is only a power of M (a spectral shift) when

GFT = DFT

This does not generalize well to an arbitrary graph.

Case 2: This generalizes modulation in GSP as multiplying by an eigenvector vi of A.

From (3.21),

P (M) = GFT diag(vi) GFT−1

Consider the kth column of P (M), denoted P (M)k.

P (M)k = GFT diag(vi) GFT−1
k

where GFT−1
k is the kth column of the GFT−1. The kth column of the GFT−1 is the kth

eigenvector of A, vk.

Thus,

P (M)k = GFT diag(vi) vk = GFT (vi ⊙ vk) = v̂i ∗ v̂k = ei ∗ ek = GFT diag(vi) GFT−1ek

The kth column of P (M) is the GFT of the pointwise product of eigenvector vi and vk. In

general, this means that, to form all the columns of P (M), vi will be multiplied by every

eigenvector of A. In GSP, the multiplication of any two eigenvectors is not another eigenvector

in general. It has no interpretable meaning for an arbitrary graph. Thus, multiplication by an

eigenvector does not generalize well to an arbitrary graph.

Case 3: We generalize modulation in GSP as multiplying by a power of the vector of
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eigenvalues, i.e., λ∗k. From (3.21),

P (M) = GFT diag(λ∗k) GFT−1 = GFT Λ∗k GFT−1 = Mk

Thus,

λ∗k ⊙ s
F−→Mkŝ.

In this case, we see multiplication by a power of the vector of eigenvalues of A yields a power

of the spectral shift M in the spectral domain. This generalizes well for an arbitrary graph in

GSP.

Thus, we interpret modulation in GSP in case 3, multiplying signals s(1), s(2), . . . , s(D) by

λ∗(d−1)K and then summing the products to obtain r.

GSP Spectral Division Multiplexing (based on DSP (9.5)):

r =
N∑
d=1

(
λ∗(d−1)K ⊙ s(d)

)
(9.7)

r̂ =
N∑
d=1

M (d−1)K ŝ(d) (9.8)

In order to be able to perform spectral division multiplexing demodulation, r̂ must contain

each band of ŝ(d) with no aliasing between them (similar to how r̂ in (9.6) contains each band

ŝ(d) with no overlap). To ensure this, each product

M (d−1)K ŝ(d)

must widen the band of ŝ(d) by K values more than the previous product’s band. In other

words, ordering the bandwidth of each product from least to greatest must be the sequence

K, 2K, . . . , dK in order to be able to recover each signal s(d).

This is difficult to guarantee for an arbitrary graph, so instead of multiplying by λ∗(d−1)K ,

we multiply each signal by a polynomial of λ∗, qd (λ
∗), instead of λ∗(d−1)K .
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GSP Spectral Division Multiplexing: (Generalized)

r =
N∑
d=1

(
qd (λ

∗)⊙ s(d)
)

(9.9)

r̂ =
N∑
d=1

qd(M)ŝ(d) (9.10)

9.2.4 GSP Spectral Division Multiplexing - Demodulation

This section illustrates demodulation of r in (9.9).

Assumption 9.1 (Choice of qd (λ
∗)). The polynomial qd (λ

∗) is chosen for each signal ŝ(d) such

that the bandwidth of qd(M)ŝ(d) is increased to dK. In other words, ordering the bandwidth of

each product from least to greatest is the sequence K, 2K, . . . , dK.

Assumption 9.1 allows for the demodulation of signals s(d) from r in (9.9).

We show demodulation for GSP Spectral Division Multiplexing for two signals ŝ(1) and ŝ(2).

This process can be generalized to any number of signals. Without loss of generality, suppose

that P1(M)ŝ(1) produces a K bandlimited signal and P2(M)ŝ(2) produces a 2K bandlimited

signal.

r̂ = q1(M)ŝ(1) + q2(M)x̂2 = q1(M)

ŝ(1)K

0

+ q2(M)

ŝ(2)K

0

 = q1(M)K ŝ
(1)
K + q2(M)K ŝ

(2)
K (9.11)

where qi(M)K are the first K columns of qi(M). We partition the vectors into the first K rows

and the next K rows (with subscript 1 for the first K rows and subscript 2 for the next K
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rows).3

r̂K1

r̂K2

 =

q1(M)K1ŝ
(1)
K

0

+

q2(M)K1ŝ
(2)
K

q2(M)K2ŝ
(2)
K

 =

q1(M)K1ŝ
(1)
K + q2(M)K1ŝ

(2)
K

q2(M)K2ŝ
(2)
K

 (9.12)

From the bottom K rows of (9.12), we obtain r̂K2 = q2(M)K2ŝ
(2)
K . We can solve this for

ŝ
(2)
K .

ŝ
(2)
K = (q2(M)K2)

−1r̂K2 (9.13)

Knowing ŝ
(2)
K and using the top K rows of (9.12), we can solve for ŝ

(1)
K .

ŝ
(1)
K = (q1(M)K1)

−1
(
r̂K1 − q2(M)K1ŝ

(2)
K

)
(9.14)

Using ŝ
(1)
K and ŝ

(2)
K , we can pad 0s and take the GFT−1 to recover the original signal, ŝ(1) and

ŝ(2).

We make the following assumption:

Assumption 9.2 (Invertibility of blocks of qi(M)). qi(M)Ki is invertible, i.e., the K × K

block of qi(M) formed using the first K columns of qi(M) and the ith set of K rows of qi(M)

is invertible.

This allows for the demodulation of ŝ
(1)
K and ŝ

(2)
K in (9.13) and (9.14).

Remark 9.3. Assumptions 9.1 and 9.2 must be satisfied for spectral division multiplexing.

Finding a set of qi(M) that satisfies the assumptions is specific to the spectral graph M .

9.3 Spectral z-transform Division Multiplexing

In DSP, the spectral z-transform domain and frequency domain are the same with ŝ = q.

So, in DSP, spectral z-transform division multiplexing is the same as the frequency division

3For ease of notation, we write only the first 2K rows. The other values are not written. They can be
included, but are not directly used in the calculation.
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multiplexing in section 9.2.1.

9.3.1 Spectral z-transform Division Multiplexing

Since spectral z-transform division multiplexing is the same as the frequency division multi-

plexing in DSP, we use the same equations for spectral z-transform division multiplexing as

we do for spectral division multiplexing ((9.7) and (9.8)).

Instead of assuming the signals s(d) are K-bandlimited in the spectral domain (shown in

(9.1)), we assume the signals are K-bandlimited in the spectral z-transform domain.

q(d) =

 q
(d)
K

0N−K

 (9.15)

where q(i) is the spectral z transform of s(d).

In DSP, since ŝ = q, (9.1) and (9.15) are equivalent, both assuming that the signals are

K-bandlimited in the spectral domain.

GSP Spectral z-transform Division Multiplexing (based on DSP (9.5)):

r =
N∑
d=1

(
λ∗(d−1)K ⊙ s(d)

)
(9.16)

qr =
N∑
d=1

C(d−1)K
comp q(d) (9.17)

where qr is the spectral z-transform of r.

From (5.53), Ccomp is a path graph with a boundary condition. Since (d − 1)K < N ,

d = 1, . . . , D, and q(d) is K-bandlimited, shifting by C
(d−1)K
comp will shift the signal down the path

graph (d− 1)K steps and the boundary condition will not be used.
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Thus,

qr =



q
(1)
K

q
(2)
K

...

q
(D)
K


This is the same form as r̂ in frequency division multiplexing in DSP in (9.6).

9.3.2 Spectral z-Transform Division Multiplexing - Demodulation

In order to recover s(d) from r, we use a similar process as demodulation in frequency domain

multiplexing in DSP (given by (9.6)). We first bandpass filter in the spectral z-domain to

isolate the desired q
(d)
K . Then, we multiply by λ∗−(d−1)K in the vertex domain to shift q

(d)
K back

to the first K entries.4

qr =



q
(1)
K

q
(2)
K

...

q
(D)
K


b.p.f in spectral z-transform−−−−−−−−−−−−−−−→



0K
...

0K

q
(d)
K

0K
...

0K



Multiply by λ∗−(d−1)K in vertex domain−−−−−−−−−−−−−−−−−−−−−−−→

 q
(d)
K

0N−K

 = q(d)

(9.18)

Taking the inverse spectral z-transform of q(d) yields s(d).

Remark 9.4. Remark 9.2, (9.6), and (9.18) are all valid choices for demodulation of frequency

domain multiplexing in DSP. However, only (9.18) works in GSP. This shows that when de-

signing GSP algorithms based on DSP, one must make a choice. Certain DSP methods rely

on DSP-specific properties that are not generally true in GSP. For example, remark 9.2 and

4We assume that the eigenvalues of A are not 0.
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(9.6) both rely on the DSP directed cyclic shift Ac, which has boundary condition AN = I,

which is not true in GSP. Choosing these methods will not generalize well to GSP. The method

presented in (9.18) works in GSP because it does not rely on DSP-specific properties.

9.4 Conclusion

This chapter explores GSP multiplexing by developing GSP modulation and demodulation.

DSP multiplexing is done by partitioning signal bandwidth into D spectral bands with each

band containing one of the signals to be combined. In DSP, this partitioning can happen in

either the time or frequency domain. We develop GSP multiplexing in three different ways:

1) vertex division multiplexing: by partitioning the vertex domain, 2) spectral division multi-

plexing: by partitioning the spectral domain, and 3) spectral z-transform division multiplexing:

by partitioning the spectral z-transform domain. For modulation and demodulation, there are

many equivalent interpretations in DSP, obscuring which interpretation to use for GSP mod-

ulation. In this chapter, we show which interpretations to use for GSP modulation, applying

it to spectral division multiplexing and spectral z-transform division multiplexing.
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Chapter 10

Conclusion

10.1 Summary of the Thesis

In this thesis, we presented new GSP theory and concepts including:

1. Spectral graph signal processing theory, GSPsp, including spectral shiftM , spectral graph

Gsp, spectral delta functions, and convolution in the spectral domain.

2. New signal representations including the vertex impulsive (p) and spectral impulsive

representations (q)

3. The canonical companion model with the canonical companion shift and canonical com-

panion graph.

4. The graph z-transform and fast graph convolution using the FFT.

We summarize concepts 1-4 by comparing the structure, Fourier transform, filtering, and

impulse (delta) functions for GSP, DSP, and the canonical companion model in section 10.1.1.

We then applied this theory to develop novel GSP applications:

1. Dual Domain Sampling with interpretations in both the vertex and spectral domains for

the four sampling steps: subsampling, decimation, upsampling, interpolation.

2. GSP Uncertainty Principle, providing a way to reduce the Vandermonde system used to

calculate p if the signal ŝ is bandlimited
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3. GSP Lagrange Interpolation with all-pass and narrowband Lagrange basis polynomial

filters

4. GSP Modulation and Demodulation with vertex division, spectral division, and spectral

z-transform division multiplexing.

5. Expansion of the simple picture of GSP with two domains (vertex and spectral) to four

domains (vertex, spectral, z-transform, and spectral z-transform), providing an expanded

view of DSP.

10.1.1 GSP and Canonical Companion Model: An Expanded View

of DSP

In this section, we briefly compare GSP, DSP, and the Canonical Companion Model using

results from Chapters 2 through 6. We focus on four aspects: structure, Fourier transform,

filtering, and impulse (delta) functions.

1) GSP:

Structure: In GSP, G is an arbitrary graph.

Fourier transform: The Graph Fourier transform (GFT) is found using the eigendecom-

position of A. s is written as a linear combination of the eigenvectors of A, vi, using ŝ as the

weights.

Filtering: Filters in the vertex domain are polynomials of the adjacency matrix A: p(A).

p(A) is at most degree N − 1 with powers greater than N − 1 being reduced by the Cayley-

Hamilton Theorem.

Filters in the spectral domain are polynomials of the spectral shift M , q(M).

M = GFT Λ∗ GFT−1 (10.1)

where Λ∗ is the complex conjugate of the values in Similar to p(A), q(M) is at most degree

N − 1 with powers greater than N − 1 being reduced by the Cayley Hamilton Theorem.
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Impulse (Delta) Functions: In GSP, the vertex domain graph impulse, δ0 is wide and

flat (all 1s) in the spectral domain.

A vertex domain signal s can be written as a filtering of δ0 by a polynomial of A.

s = p(A)δ0 =
N−1∑
i=0

piA
iδ0 (10.2)

Assumption 2.2 guarantees that every signal s can be written in this form.

Similarly, the spectral domain graph impulse δ̂sp,0 is wide and flat (all 1s) in the vertex

domain.

δsp,0 =
1√
N
1

F−→ δ̂sp,0 = GFT

(
1√
N
1

)
(10.3)

A spectral domain signal ŝ can be written as a filtering of δ̂sp,0 by a polynomial of M .

ŝ = q(M)δ̂sp,0 =
N−1∑
i=0

qiM
iδ̂sp,0 (10.4)

Assumption 2.2 guarantees that every signal ŝ can be written in this form.

In GSP, the vertex domain graph impulse is not generally narrow or impulsive in the vertex

domain. Similarly, the spectral domain graph impulse is not generally narrow or impulsive in

the spectral domain.

2) GSP Consistency with DSP:

GSP theory as we present is consistent with existing DSP theory, reducing to DSP when

a directed cycle graph is used. When restricting the underlying graph G to the directed cycle

graph, Ac, we recover DSP from GSP. Doing this, we also show what holds in DSP that does

not hold in GSP. For example:

Structure: The GSP generic graph G is, in DSP, the N node directed cycle graph with

adjacency matrix Ac, shown in Figure 2.1. The cycle graph represents periodic time values

with each node representing a time value at 0, . . . , N − 1.

Fourier transform: Similar to GSP, the DFT is also found through the eigendecompo-
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sition of Ac. The DFT is unitary (DFT−1 = DFTH). Like in GSP, the DFTH is the matrix

whose columns are the eigenvectors of Ac (see (2.9)). However, unlike GSP, (2.9) and (2.10)

also show the DFT and its inverse are both Vandermonde matrices. So, the columns of DFTH

have two equivalent interpretations (shown in (2.10)): either eigenvectors of Ac, vi or powers

of the conjugate of the eigenvalues λ∗i . In GSP, the columns can only be interpreted as the

eigenvectors, not vectors of powers of eigenvalues.

Spectral Shift M : The spectral shift M in GSP is M = A in DSP. So, in DSP, linear

shift invariant filters in the time and frequency domain are both polynomials of the adjacency

matrix A, p(A) and q(A) respectively. In GSP, since A ̸= M , this is not the same and we have

p(A) for vertex domain filtering and q(M) for spectral domain filtering.

Impulse (Delta) Functions: In DSP, the time domain and frequency domain impulses

can be defined the same way as in GSP. Similar to GSP, the Fourier transform of the time

domain impulse, δ̂0 is wide and flat in the frequency domain. However, unlike GSP, the time

domain impulse, δ0 is narrow and impulsive.

δ0 = e0,
F−→ δ̂0 =

1√
N
1, (10.5)

where e0 is the standard unit vector with 1 in the first entry and 1 is the vector of ones. The

frequency domain impulse is wide and flat in the time domain (like in GSP), but it is narrow

and impulsive in the frequency domain (unlike GSP).

δsp,0 =
1√
N
1

F−→ δ̂sp,0 = e0 (10.6)

A time domain signal s can be written as

s = p(A)δ0

in DSP. Since

δ0 = e0
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in DSP, the coefficients of p(A) are equal to s,

p(A) = sN−1A
N−1 + . . .+ s1A+ s0I

where si is the ith entry of s.

Similarly, a frequency domain signal ŝ can be written as

ŝ = q(A)δsp,0

in DSP. Since

δ̂sp,0 = e0

in DSP, the coefficients of q(A) are equal to ŝ,

p(A) = ŝN−1A
N−1 + . . .+ ŝ1A+ ŝ0I

where ŝi is the ith entry of ŝ.

3) Canonical Companion Model:

The companion canonical model has properties that are hold in DSP, but not generally true

in GSP. We discuss the structure, Fourier transform, filtering and impulse (delta) functions for

the companion canonical model.

Structure: The graph G for the companion signal model is the N node path graph with

a boundary condition. The adjacency matrix is a companion matrix Ccomp. This replicates

exactly the structure of the DSP (time) graph, this with the appropiate (time) cycle boundary

conddition that holds in DSP. In fact, the cycle graph in DSP, Ac, is a specific case of Ccomp

where c0 = −1 and ci ̸=0 = 0. The companion matrix represents the shift z−1 with arbitrary

boundary conditions in Algebraic Signal Processing [6, 7].

Fourier Transform: p is the vector of coefficients of p(A), p = [p0, . . . , pN−1]
T . p is related

to ŝ by a Vandermonde matrix.
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ŝ =
1√
N
Vp (10.7)

where V is the Vandermonde matrix produced using the eigenvalues of A and λ.

By assumption 2.2, V is invertible. In DSP, V = DFT and s = p.

Similarly, q is the vector of coefficients of q(M), q = [q0, . . . , qN−1]
T .

s = V∗q (10.8)

where V is the Vandermonde from (5.12). In DSP, V∗ = DFT−1 and ŝ = q.

In DSP, the DFT−1 is both the matrix whose columns are eigenvectors and a Vandermonde

matrix. In GSP, the GFT−1 is a matrix whose columns are eigenvectors, but it is not a

Vandermonde matrix. Here, ŝ and p (and s and q) are related by a Vandermonde matrix,

which is not directly related to the eigenvectors. So, the companion signal model captures the

Vandermonde properties in DSP, while GSP captures the eigenvector properties in DSP.

Filtering: In the companion signal model, filtering in the vertex domain p(A) in GSP

becomes p(Ccomp). Similarly, filtering in the spectral domain q(M) in GSP becomes q(Ccomp).

In GSP, we need two shifts, A and M , to filter in the vertex and spectral domain. In DSP,

we only need one shift A, since A = M to filter in the time and frequency domain. With the

companion signal model, like DSP, we only need one shift Ccomp to filter in both domains.

Impulse (Delta) Functions: Let

ŝ = δ̂0 =
1√
N
1.

Since the first column of V is all 1s, p = e0. Similarly, let

s = δsp,0 =
1√
N
1.

Since the first column of V∗ is all 1s, q = e0.
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Property GSP DSP CSM

Structure A Ac Ccomp

FT columns vi both vi, λ
k λk

Filtering (Vertex) p(A) p(Ac) p(Ccomp)

Filtering (Spectral) q(M) q(Ac) q(Ccomp)

δ0 GFT−1
(

1√
N
1
)

e0 e0

δ̂0
1√
N
1 1√

N
1 1√

N
1

δsp,0
1√
N
1 1√

N
1 1√

N
1

δ̂sp,0 GFT
(

1√
N
1
)

e0 e0

Table 10.1: Comparison of the properties in GSP, DSP, and the Canonical Signal Model (CSM)

The relationship between ŝ = δ̂0 and p = e0 is the same as DSP. Similarly, the relationship

between s = δsp,0 and q = e0 is also the same as DSP.

This shows that with the companion model, GSP impulse (delta) functions in one domain

are flat and wide in the other domain (like in DSP). They are only narrow and impulsive as a

consequence of the Vandermonde matrix. This is why we see the narrow and impulsive delta

in DSP and the canonical signal model, but not in GSP (which uses the eigenvectors instead

of the Vandermonde matrix).

4) Summary:

In this section, we explored the structure, Fourier transform, filtering and delta functions in

GSP, DSP and the canonical signal model. GSP uses a GFT that is based on the eigenvectors

of A. The canonical signal model uses a Vandermonde matrix that uses the eigenvalues of A.

The DFT is both a Vandermonde matrix of eigenvalues and contains the eigenvectors of A. As

a result, certain properties taken for granted in DSP are true in either GSP or the canonical

signal model, but not both. Table 10.1 summarizes this section and the properties.

10.2 Contributions of the Thesis

We summarize the contributions of the thesis:
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1. The expanded GSP picture: GSPsp, GSP Canonical Model, Signal Represen-

tations, and z-transforms: In Chapter 3, 5, 6, we expanded the current GSP theory

by introducing and discussing GSPsp, the GSP Canonical Model, new signal representa-

tions, and z-transforms. This provides the full GSP picture, allowing for interpretations

of operations in both the vertex and spectral domains, as well as the graph z-transform

and spectral z-transform domains.

We summarize these in figure 10.1 that illustrates the corresponding signal domains and

Figure 10.1: Graph signal domains and the transformations between them. For each domain,
both the signal and shift are given.

the transforms relating them, summarizing the main results from these chapters. At

the bottom, we have the standard Euclidean vertex domain signals s with its shift A
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and the spectral domain signals ŝ with its shift M . The relation between these two

domains is the GFT and its inverse GFT−1. At the intermediate level, we have the

two z-transform domains corresponding to the two impulsive representations, the vertex

impulsive z-transformed signals p and the spectral impulsive z-transformed signals q.

The graph z-transform GzT obtains p from s, while ĜzTsp obtains q from ŝ. These two

z-transformed signal domains reflect a number of interesting and surprising facts. Their

shift is the same, the companion matrix Ccomp, to which we associate a “companion

graph” Gcomp, see figure 5.1. In these domains, the graph eigenvalues {λn}0≤n≤N−1

contain all needed information, since the eigenvectors derive from the graph frequency

vector λ and its powers. At the top, we indicate that the Vandermonde matrix V and

its conjugate relate the z-transformed signal domains back to the spectral and vertex

domains.

With DSP, the picture is much simpler. Although not usually presented this way [52,80],

by reinterpreting the above GSP representations in DSP, we cast four common DSP

signal representations as vector coordinatizations of the signal s ∈ CN with respect to

choices of basis B in CN .

(a) Standard: BE = {e0, e1, . . . , eN−1} is the standard or Euclidean basis and the signal

representation is the vector of signal samples s = [e0, e1, . . . , eN−1]sB1 = INsB1 =

sB1 .

(b) Impulsive: Bimp = {δ0, δ1, . . . , δN−1} is the basis of the impulse and its delayed repli-

cas. Since in this case,Dimp = IN , the signal representation is s = [δ0, δ1, · · · , δN−1]p =

INp, and p = s.

(c) Spectral: BFourier = {v0, v1, . . . , vN−1} is the basis of the eigenmodes or harmonics

and the signal representation is the Fourier transform of the signal s = [v0, v1, . . . , vN−1]ŝ =

DFTH ŝ.

(d) Spectral impulsive:Bsp,imp=
1√
N

{
λ∗0 , λ∗1 , · · · , λ∗N−1

}
. In this case, Dsp,imp = DFTH ,
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and the signal representation is s = 1√
N

[
λ∗0 , λ∗1 , · · · , λ∗N−1

]
q = DFTHq, and

q = ŝ.

In DSP, the above four signal representations reduce to two distinct ones, see figure 10.2

that illustrates this for a N = 4 signal. Since δn = en, n = 0, · · · , N − 1, the standard

Figure 10.2: DSP Signal Representations: s = [1, 2, 3, 4]T , ŝ = [5,−1 + j,−1,−1 − j]T . The
standard representation and impulsive representations coincide. The Fourier and spectral
impulsive representations also coincide.

and impulsive bases and corresponding signal representations coincide, BE = Bimp and

sE = p = s. Similarly, since vn = 1√
N
λ∗n , the Fourier and spectral impulsive bases and

corresponding signal representations coincide, BFourier = Bsp,imp and ŝ = q = DFT s.

So, in DSP, the standard and impulsive representations can be used interchangeably as the

time domain signal, s, and, similarly, the eigenvalue and spectral representations can be

used interchangeably as the frequency domain signal, ŝ. Also, in DSP, A = M = Ccomp

[54, 71]. In DSP, the directed cyclic shift is already a companion matrix. Thus, the

canonical companion model in DSP reduces to DSP. In contrast, GSP does not start

with a companion matrix for the graph, so we have differences between GSP and the

canonical companion model.

Having this in mind, figure 10.1 is much simpler with DSP as illustrated in figure 10.3.
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Figure 10.3: Figure 10.1 for DSP. The three colored regions all have the same signals and shift.
In DSP, A = M . The three colored regions are all identical to each other in DSP.

2. Two Distinct GSP Models: The companion GSP model and GSPsp show that there

are two distinct models in GSP: the eigenvector model from current GSP literature and

the canonical model that we introduce that only uses the eigenvalues. In DSP, (pointwise)

powers of a vector of the eigenvalues and the eigenvectors are the same, so, these two

models overlap and are equivalent, obscuring which model should be used in GSP for

particular data processing tasks. Many DSP concepts can be explained in either model,

using either the powers of the vector of eigenvalues or the eigenvectors, which can be

used interchangeably in DSP. This does not hold in GSP, where the eigenvectors are not

powers of the vector of eigenvalues.
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The canonical graph signal model has nice properties: 1) new concepts are natural,

intuitive extensions of existing DSP concepts, 2) it is consistent with existing DSP theory

when applied to a cycle graph (s = p and ŝ = q in DSP), 3) it reveals many choices and

assumptions taken for granted in DSP, and 4) since s and ŝ are related to p and q in

GSP, results in the canonical graph signal model can lead to new results with s and ŝ in

GSP.

We illustrate the significance of this dichotomy in GSP by presenting a GSP uncertainty

principle, interpolating GSP filters, and GSP modulation as natural applications of the

canonical companion signal model. We show that, while equivalent in DSP, both models

are essential for the complete picture in GSP.

3. Dualized operations in GSP for GSPsp: In this thesis, we dualized GSP operations

to the spectral domain. Instead of starting with a vertex domain signal s and shift A, we

start with a spectral domain signal ŝ and spectral shiftM . From there, we develop GSPsp.

We dualized everything in this thesis to GSPsp: spectral graph shift, spectral graph,

spectral delta functions, spectral convolution, spectral impulsive signal representations,

sampling in the spectral domain, spectral z-transform, spectral Uncertainty Principle,

spectral Lagrange interpolating polynomial filters, and spectral domain multiplexing.

4. Dualized GSP Sampling: Using GSPsp, we provide interpretations for the four stan-

dard sampling steps: subsampling, decimation, upsampling, interpolation, in both the

vertex and spectral domains.

5. Graph z-Transform (GzT) and Fast Graph Convolution: We present the graph

z-transform and its dual, the spectral graph z-transform. The graph z-transform pro-

vides a symbolic polynomial representation for graph signals and reproduces many DSP

characteristics. We present an algorithm for fast vertex domain convolution using the

FFT of graph z-transform signals.

6. GSP Uncertainty Principle: We present a GSP Uncertainty Principle relating the z-
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transform p and spectral signal ŝ. We also present its dual, replacing p with the spectral

z-transform q and ŝ with vertex signal s. Using these, we can reduce the Vandermonde

system if ŝ is bandlimited (or s has reduced support).

7. Lagrange Interpolation in GSP: We present Lagrange basis polynomial filters and

their properties. We find that the filters individually are narrow-band GSP filters, and

the sum of the filters is an all-pass GSP filter.

8. GSP Modulation and Demodulation: We explore three interpretations of GSP mod-

ulation, equivalent in DSP. Using modulation, we present three methods for GSP multi-

plexing: vertex division, spectral division, and spectral z-transform multiplexing. These

three methods differ by what domain they partition the signal bandwidth. Vertex division

multiplexing partitions the vertex domain. Spectral division multiplexing partitions the

spectral domain. Spectral z-transform multiplexing partitions the spectral z-transform

domain.

10.3 Future Directions

In the future, we want to explore applications of the graph z-transform and canonical model

on real world datasets. We also want to use dual domain sampling, GSP uncertainty principle,

and GSP modulation on real world applications and problems. Using the theory developed in

this thesis, we want to extend other important DSP concepts such as filter design, short term

Fourier transform, and source detection to GSP and GSPsp.

We want to explore relationships between this theory and graph convolutional neural net-

works (GCNNs). We want to be able to interpret GCNN operations in GSP. A first step is [64].

Also, we want to design new algorithms for GCNNs based on this GSP theory. For example,

some preliminary work [61,63] involves replacing the GCNN vertex domain convolution using

A with spectral domain convolution using spectral shift M .

For spectral division multiplexing, we want to explore algorithms for finding qd(λ
∗) that
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satisfy assumption 9.1, allowing for the demodulation of signals in GSP spectral division mul-

tiplexing. Lastly, since the graph z-transform p and ŝ (similarly, q and s) are related by the

Vandermonde matrix, we want to explore fast stable methods of solving the Vandermonde

system for large graphs.
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graphs: Variation minimization,” IEEE Transactions on Signal Processing, vol. 63, no. 17,

pp. 4609–4624, 2015.

[33] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. USA: Cambridge University

Press, 1st ed., 2015.

[34] Y. Tanaka and Y. Eldar, “Generalized sampling on graphs with subspace and smoothness

priors,” IEEE Tr. on Signal Proc., vol. 68, 2020.

[35] Y. Tanaka, “Spectral domain sampling of graph signals,” IEEE Transactions on Signal

Processing, vol. 66, no. 14, pp. 3752–3767, 2018.
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Chapter 11

Appendicies

11.1 Impulsive Graph Impulses

We briefly consider impulsive graph impulses in both the vertex and spectral domains. These

are impulsive in one domain and not necessarily flat in the other. We show bases using shifted

impulsive graph impulses in both the vertex and spectral domains are complete. So, they can

be used as bases for graph signal representations of s and ŝ respectively (see section 5.1.1).

11.1.1 Impulsive in Vertex Domain: δimp
0

We define δimp
0 to be impulsive in the vertex domain. We take its GFT to get δ̂imp

0 .

δimp
0 = e0

F−→ δ̂imp
0 = GFT · e0 =

1√
N
y0 (11.1)

The GFT of the impulse δimp
0 is the first column y0 of the GFT (in general, not flat), giving y0

special significance.

Consider the signal representation of graph signal s with respect to the basis formed using

the shifted δimp
0 ,

Bδimp =
{
δimp
n

}
.
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Result 11.1 (Shifts δimp
n ). With δimp

0 = e0, the following holds:

δimp
n = a

(n)
0

F−→ δ̂imp
n =

1√
N
y0 ⊙ λn = Y0 · λn (11.2)

Bδimp =
{
δimp
0 , δimp

1 , · · · , δimp
N−1

}
=
{
a
(0)
0 , a

(1)
0 , · · · , a(N−1)

0

}
(11.3)

Dimp =

[
a
(0)
0 a

(1)
0 · · · a(N−1)

0

]
F−→ D̂imp = Y0V (11.4)

where a
(n)
0 is column 0 of An, in general, not impulsive,

Y0 =
1√
N
diag [y0]

and V is the Vandermonde matrix in (2.27).

Proof. To show (11.2), start with the GFT of the shifted impulse and then take the inverse

GFT to get

δ̂imp
n = ̂An · δimp

0 = Λn · 1√
N
y0 =

1√
N
y0 ⊙ λn = Y0 · λn (11.5)

δimp
n = a

(n)
0 = GFT−1

(
1√
N
y0 ⊙ λn

)
= GFT−1 (Y0 · λn) (11.6)

Using δimp
n and its GFT from (11.2), (11.4) follows. ■

We state the following assumption.

Assumption 11.1 (Nonzero entries of first column y0 of GFT). The entries of y0 are nonzero.

Clearly, this assumption holds in DSP where y0 = 1N .

Result 11.2 (CompleteBδimp). Under assumptions 2.2 and 11.1, Dimp is invertible and impulse

basis Bδimp ={δimp
n } complete.

This follows because under assumption 2.2, the Vandermonde matrix V is invertible, and

under assumption 11.1, Y0 is invertible, so D̂imp and Dimp are invertible and Bδimp is complete.
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11.1.2 Impulsive in Spectral Domain: δ̂imp
sp,0

We consider δ̂imp
sp,0, impulsive in the spectral domain and not necessarily flat in the vertex domain.

This is the dual of the impulsive in vertex domain delta signal δimp
0 .

δ̂imp
sp,0 = e0

F←→ δimp
sp,0 =

1√
N
y0 (11.7)

where y0 is the first column of GFT−1 and δimp
sp,0 is not flat. Consider the signal representation

of graph signal ŝ with respect to the basis formed using the shifted δ̂imp
sp,0,

Bδ̂imp
sp

=
{
δ̂imp
sp,n

}
.

Result 11.3. The shifts in the spectral domain of δ̂imp
sp,0 are

δ̂imp
sp,n=Mn ·δ̂imp

sp,0=m
(n)
0

F−1

−−→ δimp
sp,0=

1√
N
y0 ⊙ λ∗n=Y0 ·λ∗n (11.8)

Bδ̂imp =
{
δ̂imp
sp,0, δ̂

imp
sp,1, · · · , δ̂

imp
sp,N−1

}
=
{
m

(0)
0 ,m

(1)
0 , · · · ,m(N−1)

0

}
(11.9)

Ĉ imp =

[
m

(0)
0 m

(1)
0 · · · m(N−1)

0

]
F−1

−−→ C imp = Y0V∗ (11.10)

where m
(n)
0 is column 0 of Mn,

Y0 =
1√
N
diag [y0] ,

and V is the Vandermonde matrix in (2.27).

In general, δ̂imp
sp,n are not impulsive. To prove result 11.3 and equation (11.8), note that the

lhs follows from the impulsive definition of δ̂imp
sp,n. The rhs follows as

δimp
sp,0 = M̂n ·δ̂imp

sp,n = Λ∗n · 1√
N
y0 =

1√
N
y0 ⊙ λ∗n = Y0 ·λ∗n (11.11)

We state the following assumption.
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Assumption 11.2 (Nonzero entries of first column y0 of GFT−1). The entries of y0 are

nonzero.

Clearly, this assumption holds in DSP where y0 = 1N .

Result 11.4 (Complete Bδ̂imp
sp

). Under assumptions 2.2 and 11.2, Ĉ imp is invertible and impulse

basis Bδ̂imp
sp

=
{
δ̂imp
sp,n

}
complete.

This follows because under assumption 2.2, the Vandermonde matrix V∗ is invertible, and

under assumption 11.2, Y0 is invertible, so C imp and Ĉ imp are invertible and Bδ̂imp
sp

is complete.

11.1.3 Conclusion

Impulsive delta signals in both the vertex and spectral domain and bases, Bδimp and Bδ̂imp
sp

, rely

on column 0 of An and Mn respectfully. This is not ideal. One needs to choose at which node

where the impulse occurs (i.e., at which node the 1 in e0 occurs). In DSP, this is intuitive,

the impulse for δ0 and δ̂sp,0 occurs at t = 0 and f = 0 respectfully. However, in GSP, with an

arbitrary graph, the choice is not intuitive as there is no given or natural ordering of the nodes.

This makes using impulsive delta signals less ideal than using the flat delta signals, described

in previous sections 3.2.1 and 3.2.2.
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