
Towards Efficient Point-Cloud Object Detection on
Autonomous Vehicles

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Weijing Shi

B.S., Microelectronics, Fudan University
M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

August 2022

© Weijing Shi, 2022
All Rights Reserved.

To my parents Binghuan Shi and Wenping Lai
and my wife Lailei Feng

Acknowledgements

I am deeply grateful to all the individuals who have contributed to an exciting journey

toward my Ph.D. This dissertation would not have been possible without their help and

support.

First and foremost, I would like to thank my advisor, Prof. Ragunathan (Raj) Rajku-

mar. I am incredibly grateful for meeting and working with Prof. Rajkumar. Working

closely under his guidance has made me a better thinker, engineer and researcher. I am

thankful for the multiple opportunities he provided to work on diverse projects, ranging

from designing computer vision and machine learning algorithms to building the CMU au-

tonomous driving platform. Prof. Rajkumar also gave me multiple opportunities to work

with and mentor several other students, which expanded my horizons and led me to be-

come an independent thinker. Prof. Rajkumar’s guidance and constructive criticism have

also helped me improve my technical writing and presentation skills.

I am grateful to my thesis committee members, Prof. Vijayakumar (Kumar) Bhagavat-

ula, Dr. Gary Overett and Dr. Weiyue Wang, for their time, effort, and input in completing

this dissertation. I want to thank Prof. Bhagavatula for his insights and feedback on vari-

ous aspects of my work. It has been very inspiring interacting with him. I would also like

to express my gratitude to Dr. Overett. Collaborating with him has been a great pleasure

and led me to computer vision studies. His passion and friendly nature are aspects that I

would like to emulate. I would also like to thank Dr. Wang for her guidance during my

internship experiences. Her strong work ethic and innovative problem-solving approaches

have left a lasting impact.

A special thanks to General Motors (GM) for funding a part of my research. In partic-

iv

ular, I wish to thank Eran Kishon in GM Technical Center Israel. Collaborating with him

provided me with an opportunity to solve real-world challenges and significantly broaden

my research perspectives.

An important part of my Ph.D. journey has been being a Real-Time and Multimedia

Systems Lab (RTML) member. Thanks to all the wonderful people of RTML who shared

their time with me: Anand Bhat, Sandeep D’souza, Shunsuke Aoki, Iljoo Baek, Mengwen

He, Peter Jan, Swapnil Das, Shounak Sural and Gregory Su. Also, I would like to thank

Chelsea Mendenhall, Toni Fox and Bridgette Bernagozzi for their kind support on admin-

istrative matters. I am also grateful to John Kozar for his creative mechanical engineering

support.

I am privileged to have had a good group of friends in the course of my student life:

Miao Yu, Tianlong Yu, Youzhi Bao, Chenlei Fang, Qicheng Huang, Zeye Liu, Rongye Shi,

He Xi and Xiaoliang Li. Without these people, I could not have fully enjoyed my time at

CMU.

Lastly, my deepest gratitude goes to my family. I would like to thank my parents,

Binghuan Shi and Wenping Lai. They are always there for me, love and believe in me. I

want to thank my wife, Lailei Feng. She has been a constant source of delight, care and

love. My family has always been there to love and support me, and I dedicate this thesis

to them.

v

Abstract

Autonomous vehicles (AVs) must perceive and understand the 3D environment around

them. Modern autonomous vehicles use a suite of sensors and a set of machine-learning-

based recognition algorithms to try to accomplish this goal. While such a system can

achieve high accuracy, its cost is also prohibitively high for many applications. In this

thesis, we aim to make the perception system of an AV both less expensive and more ac-

curate. We design a multi-pronged approach that addresses challenges ranging from data

representation, sensor configuration and training efficiency to the semantic understanding

of road scenarios. We start with the data presentation of lidar point clouds, a primary input

to many perception systems, and design a novel graph representation of point clouds to

detect objects. Secondly, we study a sensor configuration of sparse lidars and comple-

mentary low-cost cameras. We propose a fusion method to combine video streams with

sparse lidar point clouds to increase the point-cloud object detection accuracy while reduc-

ing the cost. Thirdly, we utilize self-supervised training strategies to use unlabeled data

efficiently and create a set of geometric pretext tasks to pre-train the neural network. Fi-

nally, we study specific challenging real-world scenarios and implement context-specific

solutions to problems raised by the presence of work zones.

Contents

Acknowledgements iii

Abstract v

Contents vi

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Scope of the Thesis . 4

1.2.1 Neural Network for Point Cloud Object Detection 4

1.2.2 Sensor Fusion for Point Cloud Object Detection 6

1.2.3 Reducing Labels for Point Cloud Object Detection 7

1.2.4 Practical Solutions for Real-World Problems 8

1.3 Organization of The Dissertation . 9

vi

CONTENTS vii

2 Related Work 11

2.1 Point Cloud Data Representations . 11

2.1.1 Point Cloud in Grids . 11

2.1.2 Point Cloud in Sets . 12

2.1.3 Point Cloud in Graphs . 13

2.2 Sensor Modalities . 14

2.2.1 Lidar-based 3D Object Detection 14

2.2.2 Monocular 3D Object Detection 15

2.2.3 Lidar-camera Fusion for 3D Object Detection 16

2.3 Self-supervised Learning . 17

2.3.1 Image Domain . 17

2.3.2 Point Cloud Domain . 18

2.4 Work Zone Recognition . 18

2.5 Traffic Gesture Recognition . 19

2.5.1 Traffic Gesture Dataset . 19

2.5.2 Action Recognition . 20

3 Point-Cloud Object Detection 22

3.1 Introduction . 22

3.2 Point-GNN Object Detection . 25

3.2.1 Graph Construction . 25

3.2.2 Graph Neural Network with Auto-Registration 27

3.2.3 Loss . 29

3.2.4 Box Merging and Scoring . 30

CONTENTS viii

3.3 Experiments . 32

3.3.1 Dataset . 32

3.3.2 Implementation Details . 32

3.3.3 Data Augmentation . 34

3.3.4 Results . 34

3.3.5 Ablation Study . 37

3.4 Summary . 43

4 Fusion of Point Cloud and Images 44

4.1 Introduction . 44

4.2 Our Fusion Method . 46

4.2.1 Multiview Point Feature Extraction 47

4.2.2 3D Pooling . 49

4.2.3 Local Object Coordinate Regression 50

4.3 Experimental Evaluation . 53

4.3.1 Dataset . 53

4.3.2 Implementation Details . 53

4.3.3 Results on the nuScenes Dataset 56

4.3.4 Results on the Level 5 Dataset 59

4.3.5 Ablation Study . 61

4.4 Summary . 63

5 Self-Supervised Learning for Object Detection 64

5.1 Introduction . 64

CONTENTS ix

5.2 Our Self-Supervised Learning Method 68

5.2.1 Overall Architecture . 68

5.2.2 Point-based Backbone Network 69

5.2.3 Contrastive Learning . 69

5.2.4 Geometric Prediction Tasks . 70

5.2.5 Predict Observation Angle Difference 71

5.2.6 Predict Relative Scales . 72

5.2.7 Dataset and Training Hyperparameter 73

5.3 Experimental Results . 74

5.3.1 The Effects of Different Pretext Tasks 74

5.3.2 Discussion . 75

5.3.3 The Effects of Training Steps 77

5.4 Summary . 79

6 Challenging Scenarios: Work Zone Detection 80

6.1 Introduction . 80

6.2 Our Work Zone Detection . 83

6.2.1 Work Zone Taxonomy . 83

6.2.2 Problem Formulation . 86

6.2.3 Evaluation Metric . 88

6.2.4 Our Work Zone Detection Pipeline 91

6.3 Implementation . 92

6.3.1 Image-based Work Zone Detection 92

6.3.2 Lidar-based Work Zone Detection 95

CONTENTS x

6.3.3 Fusion-based Work Zone Detection 95

6.4 Experimental Results . 96

6.4.1 Dataset . 96

6.4.2 Results . 97

6.5 Summary . 98

7 Challenging Scenarios: Flagman Recognition 101

7.1 Introduction . 101

7.2 Taxonomy . 103

7.2.1 Semantic Classification . 105

7.2.2 Flagman Appearance . 106

7.2.3 Environmental Context . 106

7.3 Our TGR Dataset . 109

7.4 Architecture . 110

7.4.1 Pose Keypoints . 110

7.4.2 Hand Images . 112

7.4.3 Object Bounding Boxes . 113

7.4.4 Gesture Prediction . 113

7.5 Experimental Results . 114

7.5.1 Settings . 114

7.5.2 Data Augmentation . 116

7.5.3 Results . 116

7.6 Summary . 121

CONTENTS xi

8 Conclusions and Future Work 122

8.1 Conclusions . 122

8.2 Research Contributions . 124

8.3 Future Work . 125

8.3.1 Open Questions for an Effective GNN 125

8.3.2 Graph Optimization . 126

8.3.3 Limitations of Set Functions . 129

8.3.4 Multi-scale Graph Feature . 131

8.3.5 Runtime Acceleration . 132

8.3.6 Open Questions for a Camera-Lidar Fusion 133

8.3.7 Open Questions for Self-supervised Learning 134

8.3.8 Open Questions for Work Zone Recognition 134

8.3.9 Open Questions for Traffic Gesture Recognition 135

Bibliography 138

List of Figures

1.1 We propose a multi-pronged approach to achieve cost-efficient and ac-

curate perception. (a). We first design a novel graph neural network to

detect objects from point clouds effectively. (b). We then extend the sen-

sory input and fuse images from cameras with sparse lidar point clouds

to increase the point-cloud object detection accuracy. (c). Next, we uti-

lize self-supervised training strategies to pre-train the neural network us-

ing unlabeled data. (d). Finally, we study specific challenging work zone

scenarios and implement context-specific solutions. 3

2.1 Three point cloud representations and their common processing methods. 12

3.1 The architecture of Point-GNN. It has three main components: (a) graph

construction from a point cloud, (b) a graph neural network for object

detection, and (c) bounding box merging and scoring. 25

3.2 Qualitative results on the KITTI test dataset using Point-GNN. We show

the predicted 3D bounding box of Cars (green), Pedestrians (red) and Cy-

clists (blue) on both the image and the point cloud. Best viewed in color. . 36

xii

LIST OF FIGURES xiii

3.3 An detailed example from the val. split showing the vertex locations with

added offsets. The blue dot indicates the original position of the vertices.

The orange, purple, and red dots indicate the original position with added

offsets from the first, the second, and the third graph neural network itera-

tions. Best viewed in color. 39

3.4 Examples from the val. split showing the vertex locations with added offsets. 40

4.1 (a). Our method uses a lidar point and the image to estimate the point’s

local coordinates in the object frame. By registering a point’s local co-

ordinates with its world coordinates, we locate the object in the world

coordinates. (b). Our method detects objects with higher mean average

precision (mAP) in sparse point clouds. 45

4.2 The architecture of our proposed approach. First, (a) point features from

multiple image views are extracted and aggregated. Then, (b) a 3D pooling

operation combines spatially close point features. The combined features

are used to predict (c) local coordinates, which are later registered to lidar

coordinates . 47

4.3 The detailed model configuration of the proposed fusion model. 54

4.4 The qualitative comparison of methods on the nuScenes validation dataset

(a single lidar sweep of 32 lines). We visualize images from one camera

and highlight the points in the images. Our method detects objects in

sparse point regions and increases the detection range. 58

4.5 Qualitative results on different lidar densities. The green box indicates the

ground truth. The blue box indicates the predictions. 60

LIST OF FIGURES xiv

5.1 Our self-supervised pretraining improves the object detection performance

for various amounts of labeled data. 65

5.2 The overall architecture of our proposed self-supervised learning. Two

sets of random rotation, translation and scaling parameters transform the

input point cloud into two different views during the unsupervised pre-

training. A contrastive loss pulls the point features from the same point

cloud position close to each other while pushing the features from differ-

ent point positions away from each other. Meanwhile, the point features

from the same point cloud position are concatenated and used to predict

the difference on scales and observation angles. When fine-tuning for ob-

ject detection, the point features are used to predict the object type and the

bounding box to that the point belongs. 67

5.3 Our detection algorithm predicts the object observation angle α , which is

the angle difference between object heading h and the yaw angle of the

ray from the origin to the point β . Note that the two point clouds have

different orientations and origins because of the different transformations

that we apply. 71

5.4 The mean Average Orientation Error (mAOE) of model initialized by ran-

dom weights, pretraining with contrastive loss alone and our combination

of contrastive loss and geometric pretext tasks. The lower, the better. . . 75

5.5 The mean Average Precision of models when fine-tuned with different

numbers of training steps. The higher, the better. 76

LIST OF FIGURES xv

5.6 The mean Average Orientation Error (mAOE) of models when fine-tuned

with different numbers of training steps. The lower, the better. 76

5.7 Qualitative results of object detection using 10% of training data. 78

6.1 Examples of diverse work zones. Different work zones have varied spatial

and temporal scales, and they may not be updated in a map database. . . 82

6.2 A taxonomy of work zones. 84

6.3 An annotation example. The red polygon is the ground truth for a work

zone. The green polygon is the road region. In our evaluation of work zone

detection algorithms, we focus on the overlap between the work zone and

the road region. 87

6.4 WZDetector: a general pipeline for work zone detection. 91

6.5 Architectures of three baseline implementations using images, a point cloud

and a combination of both, respectively. 92

6.6 Qualitative comparison of three implementations using images, a point

cloud and a combination of both, respectively. The green polygons indi-

cate the road region and the red polygons are the ground truth annotations

of work zones. Other colored polygons are the detection results. 99

7.1 An autonomous vehicle needs to make safe decisions and facilitate for-

ward progress in the presence of road construction workers and flagmen. . 103

7.2 A taxonomy of flagman traffic gestures. Red color indicates the attributes

that our dataset covers. 104

7.3 The distributions of video length for each category. 107

LIST OF FIGURES xvi

7.4 Examples from our traffic gestures dataset. 108

7.5 Overall Architecture of our recognition system. We create a dataset with

common traffic gestures in conjunction with props such as flags. We use a

mixture data representation comprise of human skeleton keypoints, hand

images, and object bounding boxes. This mixture representation is pro-

cessed by a neural network to predict the meaning the gesture. 111

7.6 A heatmap model for comparison. Each keypoint heatmap is an image

of a keypoint’s detection score and an object heatmap contains the filled

bounding box of a detected object in a category. 116

7.7 The confusion matrix of prediction on the test dataset. 118

7.8 Test accuracy with varying image brightness. 118

7.9 Test accuracy with varying image hues. 119

7.10 Test accuracy with image rotations. 119

7.11 Qualitative results from the proposed model using keypoints, bounding

boxes and hand images. The first and second rows are examples of correct

predictions. The third row shows some examples of failure cases. 120

List of Tables

3.1 The Average Precision (AP) comparison of 3D object detection on the

KITTI test dataset. 35

3.2 The Average Precision (AP) comparison of Bird’s Eye View (BEV) object

detection on the KITTI test dataset. 35

3.3 Ablation study on the val. split of KITTI data. 37

3.4 Average precision on the KITTI val. split using different numbers of

Point-GNN iterations. 41

3.5 The average running time for one sample in the KITTI validation split.

The inference time is measured on a desktop with Xeon E5-1630 CPU

and GTX 1070 GPU using a Python implementation 42

3.6 Average precision on downsampled KITTI val. split. 42

4.1 The Average Precision (AP) and Average Orientation Error (AOE) com-

parison on nuScenes validation dataset with different numbers of lidar

scanning lines. 57

xvii

LIST OF TABLES xviii

4.2 Average precision on nuScenes test dataset. We test the model accuracy

with ten lidar sweeps, the common practice among the state-of-the-art ap-

proaches. 57

4.3 Average precision on the Lyft Level 5 validation split. 61

4.4 Ablation study on the nuScenes validation dataset. 61

5.1 The Mean Average Precision (mAP) of models trained by different por-

tions of labeled. The results are conducted on the validation set of the

nuScenes dataset. 74

6.1 Experiment results within a distance of 10 meters, 20 meters and 50 meters 97

7.1 Statistics of our TGR dataset . 109

7.2 Experiment results . 117

Chapter 1

Introduction

1.1 Motivation

Autonomous driving has enormous potential to improve transportation safety and effi-

ciency. One vital prerequisite for autonomous driving is the ability to perceive and under-

stand the 3D environment around the vehicle. Modern autonomous vehicles use a suite

of sensors, such as cameras, lidars, radars, and sonars. Those sensors provide input to

machine-learning-based recognition algorithms, which generate environmental structure

information for other safety-critical tasks such as localization and path planning. Amount

these recognition algorithms, 3D object detection is one of the essential tasks for the safety

of autonomous driving.

The goal of 3D object detection is to localize and classify the instances of surrounding

3D objects. Many sensors on the autonomous vehicle can provide input to 3D object

detection. RGB cameras have a relatively low cost but only provide 2D data capturing an

1

1.1. MOTIVATION 2

object’s color and texture. Radars are robust to various weather conditions and provide 3D

object positions with low spatial resolution. Sonars can also sense object distance using

ultra-sound, but their detection range is small and spatial resolution is also low. Unlike

these sensors, lidars measure the precise distances between the vehicle and environmental

objects using laser beams, generating accurate point clouds. The point clouds provide

direct 3D information and have a high spatial resolution. With recent advances in lidar

technology, many autonomous vehicles (AVs) have adopted point-cloud-based perception

systems.

Object detection has been studied extensively by the robotic and computer vision com-

munity for years. Thanks to the progress being made in deep neural networks, point-cloud

3D object detection algorithms have also been improving significantly. However, point-

cloud object detection systems are still far from efficient in practice. In a typical algorithm

pipeline, a neural network consumes many onboard computational and memory resources

due to converting points to dense grids. The neural network also requires increasingly

dense point clouds from expensive hardware and needs extensive annotated data for train-

ing. The overall point-cloud object detection system has a high cost, which poses chal-

lenges to the progress of autonomous driving. The high cost also prevents point-cloud

object detection’s applicability to many practical domains, including consumer vehicles,

warehouses and work zone equipment.

The above challenges motivate us to research methods that make the point-cloud 3D

object detection consume fewer resources and remain accurate. Hence, in this dissertation,

we provide a suite of solutions to enable a cost-efficient and accurate perception system for

autonomous vehicles. As shown in Figure 1.1, we design a multi-pronged approach that

1.1. MOTIVATION 3

Figure 1.1: We propose a multi-pronged approach to achieve cost-efficient and accurate
perception. (a). We first design a novel graph neural network to detect objects from point
clouds effectively. (b). We then extend the sensory input and fuse images from cameras
with sparse lidar point clouds to increase the point-cloud object detection accuracy. (c).
Next, we utilize self-supervised training strategies to pre-train the neural network using
unlabeled data. (d). Finally, we study specific challenging work zone scenarios and im-
plement context-specific solutions.

addresses challenges ranging from data representation, sensor configuration and training

efficiency to practical solutions to understand work zone scenarios.

Our thesis statement is as follows:

Autonomous vehicles can enhance perception accuracy and efficiency by utilizing a

complementary suite of:

• graph-based compact point-cloud representations,

• a sparse fusion of camera images and point clouds,

• geometric-concentrated self-supervised training, and

1.2. SCOPE OF THE THESIS 4

• context-specific designs for challenging but important driving scenarios such as

work zones.

1.2 Scope of the Thesis

We now describe the key problem spaces we address in this dissertation and briefly outline

the direction of the solutions we propose.

1.2.1 Neural Network for Point Cloud Object Detection

The spatially-sparse nature of point clouds is challenging for designing effective algo-

rithms for object recognition. There is a discrepancy between widely-used neural net-

works such as convolutional neural networks (CNNs) and point-cloud data representa-

tions. The convolution operation requires input data to be evenly spaced on a regular grid

such as an image. However, the spatial distribution of 3D points from the lidar is irregu-

lar. This discrepancy requires a conversion from point clouds to grids as a preprocessing

step [1, 2, 3, 4, 5, 6]. Such conversion from an irregular point cloud to a regular grid

induces empty and crowded grid cells. If not appropriately addressed, they may demand

high computational and memory resources. Many practical implementations need custom

optimizations such as sparse convolution [7, 8] and multi-stage methods [9, 6] to save

computational resources.

Alternatively, set-based neural networks [10, 11, 12] allow an unordered set of points

as the input. A few studies use this neural network to extract features from a set of points

without mapping the point cloud to a grid. However, in order to establish hierarchical

1.2. SCOPE OF THE THESIS 5

feature aggregation, they need to sample and group points into sets iteratively. Hence, the

repeated grouping and sampling on a large point cloud becomes computationally costly.

Hybrid approaches [4, 13, 5] often use a grid and a set representation in different stages for

a balance of convolution operations and DeepSet [11] operations. Given a good implemen-

tation, they have shown both promising speed and accuracy. However, hybrid strategies

may still suffer the limitations of both representations. Meanwhile, a novel network archi-

tecture that adapts to the point cloud structure natively without conversion can potentially

avoid these shortcomings.

Graph neural network (GNN) [14] provides the opportunities to design such a novel

network architecture. A GNN operates on a graph by learning the information exchange

functions between vertices. If the points are treated as vertices, they need not be converted

to another structure. In other words, a graph can represent a point cloud natively. Ap-

proaches [15, 16, 17] that use GNN for the semantic segmentation and classification of

small-scale point clouds have shown good accuracy. However, few studies have investi-

gated GNN object detection, especially for large outdoor point clouds.

We propose a GNN architecture that detects 3D objects from point clouds. By using a

novel graph representation, we encode the irregular point cloud directly without mapping

to dense grids. The graph is also constructed once and avoids the repeated conversion

to sets. We name our method, Point-GNN. Our approach achieves good accuracy in the

KITTI [18] benchmark, demonstrating the effectiveness of using GNN as an alternative

point cloud backbone to conventional methods. This backbone can surpass many fusion-

based algorithms and remains relatively robust when the density of a point cloud decreases.

1.2. SCOPE OF THE THESIS 6

1.2.2 Sensor Fusion for Point Cloud Object Detection

Given an effective point cloud neural network, it may still be difficult to infer all object

geometries from lidar points alone. The sparse lidar points may not provide enough dis-

criminative information about the object due to occlusion and limited point density. The

occlusion arises when the laser path from the lidar to an object’s surface is blocked. Fur-

thermore, the density of lidar points is often inversely proportional to the distance between

the vehicle and the object. To overcome these limitations and increase detection ranges,

many lidar-based 3D detection systems use high-definition lidars and temporal point cloud

aggregation [19, 20]. Despite recent advances, a high-definition lidar system is still very

expensive in many application domains, and lidar aggregation suffers from misalignment

due to vehicle motion.

It is desirable to explore alternative approaches to increase object detection accuracy

under the constraint of point cloud density. Recently studies [21, 22] have shown that

cameras, which have a relatively low cost, can provide vital semantic information to the

point cloud and increase the detection accuracy significantly. Such fusion approaches

have demonstrated a cost-efficient way to improve object detection without pursuing an

increasingly high-density and expensive point cloud. However, those methods still heavily

rely on dense point clouds. They use the image features as decorators to the point clouds

and infer the object’s 3D shape in the same way as in point cloud object detection.

Instead, we re-design the object detection method by combining multi-view image

features with Point-GNN features to infer an object’s local 3D structure. We calculate the

object’s position by matching a point’s lidar coordinates and predicted local coordinates.

Our approach utilizes the structure information in the image and reduces the reliance on

1.2. SCOPE OF THE THESIS 7

a point cloud structure. The minimum requirement for detection is only a single lidar

point on the object and the target object’s image. Our experiments with the nuScenes

[20] dataset and Lyft Level5 [23] dataset show a considerable improvement in detection

accuracy on sparse point clouds.

1.2.3 Reducing Labels for Point Cloud Object Detection

Besides the challenges of point cloud’s data representation and sparsity, data labels are an-

other constraining factor for real-world deployment. Deep neural networks learn to detect

objects from a large amount of labeled data. However, such labeled data require extensive

manual annotation, which is costly and time-consuming. In many scenarios, the labeled

data are not available or are prohibitively expensive to gather. Unlabeled driving data,

however, are relatively abundant and inexpensive to collect. Many studies have been car-

ried out on utilizing unlabeled data in the image domain [24, 25, 26] and natural language

processing domain [27]. However, how to apply self-supervised learning for point-cloud

object detection remains an open question.

PointInfoNCE [28] adapts the InfoNCE loss in the contrastive learning for point cloud

and shows that pretraining using such loss can help the indoor point cloud object detection.

However, such loss supervises the neural network to learn invariant features for point cloud

transformations such as rotation. It is unclear whether such features benefit large outdoor

point clouds of autonomous driving.

To reduce the labels needed for training in the autonomous driving domain, we build

upon the prevalent contrastive learning method and propose a set of geometric pretext

tasks to improve the pretraining performance. Our experiments reveal that contrastive

1.2. SCOPE OF THE THESIS 8

loss alone improves the average precision (AP) but negatively impacts the object heading

accuracy. Our geometric pretext tasks benefit both the average precision and heading

accuracy. Therefore, our approach provides a feasible direction to reduce the expensive

labeling of training data.

1.2.4 Practical Solutions for Real-World Problems

In practice, achieving the goal of full autonomy is also impeded by the need to address

several operational challenges. Complex scenarios such as work zones are among such

challenges. An autonomous vehicle needs to make safe decisions and facilitate forward

progress in the presence of road construction and flagmen, demanding more detailed 3D

object recognition such as work zone boundary detection and flagman gesture recognition.

In such challenges, pursuing a high-accuracy object detection may not be the most cost-

efficient method. Instead, these challenging scenarios require practical solutions.

In the scope of autonomous driving, few studies have looked into the task of work

zone detection. Most work zone datasets lack multi-modality sensor configurations, which

is common in a modern autonomous vehicle. Also, the work zone detection problem

does not have appropriate definitions and evaluation methods. There has also been little

discussion on the standard output format of work zone detection algorithms. Therefore, we

formulate the work zone detection problem and define a standard output format suitable

for a multi-modality sensor configuration. We provide work zone annotations and also

baseline implementations for work zone detection.

In a work zone, a flagman may provide temporary traffic control. It’s critical that the

autonomous vehicle understands and follows the correct traffic gestures. As these tempo-

1.3. ORGANIZATION OF THE DISSERTATION 9

rary control may not be updated in a database, the autonomous vehicle needs the ability to

understand the traffic gestures on-the-fly. Point-cloud object detection can recognize and

locate pedestrians. However, the subtle movement of pedestrian gestures is difficult for

sparse point clouds to capture. A lidar system capable of a high-resolution human body

scan from a distance is still prohibitively expensive. Instead of relying completely on point

clouds, the gesture recognition system can use RGB videos for fine-grained recognition

after detecting a pedestrian. Many research on video action recognition uses deep neural

networks [29, 30, 31] to learn from training data. Nevertheless, there are few studies on

traffic gesture recognition due to a lack of traffic gesture datasets. Therefore, we build a

video dataset covering common traffic gestures, including the usage of props. We then

develop an efficient deep network to use a combined data representation of hand images,

pose keypoints, and bounding boxes. Our experiments show that our approach is robust

against the variance of flagmen’s appearance.

Our algorithms for work zone challenges are low-cost yet accurate solutions to the

overall perception system. It also serves as a real-world validation case for our point-cloud

object detection framework.

1.3 Organization of The Dissertation

This thesis is structured as follows.

• In Chapter 2, we review the background and relevant prior work.

• In Chapter 3, we start by seeking a more compact data representation of point clouds

and a powerful neural network architecture to extract features from them. We encode

1.3. ORGANIZATION OF THE DISSERTATION 10

the points in a novel graph representation without converting them to a grid format

and then design a graph neural network for 3D object detection.

• In Chapter 4, we leverage the co-existence of low-cost cameras and lidars to enrich

the information in the point clouds. We estimate local object shapes from images

and then register them to the lidar points, with the registration requiring only a few

points on the object.

• In Chapter 5, we lower the overall system expense by utilizing the relatively abun-

dant and low-cost unlabeled data for training. We adopt self-supervised learning and

propose to combine geometric pretext tasks and contrastive loss for pretraining.

• In Chapter 6 and 7, we validate our approach on a real AV and address the practical

needs in complex real-world driving scenarios such as work zones. Specifically, we

propose efficient methods to recognize work zone boundaries and flagmen gestures.

• Finally, we discuss the remaining questions and future work in Chapter 8.

Chapter 2

Related Work

This chapter presents the background and related work on the following topics: (a) dif-

ferent point cloud data presentations in deep neural networks, (b) multi-modality data for

object detection, (c) Self-supervised learning for point clouds, (d) Work zone recognition

and (e) Flagman gesture recognition.

2.1 Point Cloud Data Representations

Prior work on point cloud data representations can be grouped into three categories, as

shown in Figure 2.1.

2.1.1 Point Cloud in Grids

Many recent studies convert a point cloud to a regular grid to utilize convolutional neural

networks. [2] projects a point cloud to a 2D Bird’s Eye View (BEV) image and uses

11

2.1. POINT CLOUD DATA REPRESENTATIONS 12

Figure 2.1: Three point cloud representations and their common processing methods.

a 2D CNN for object detection. [1] projects a point cloud to both a BEV image and a

Front View (FV) image before applying a 2D CNN on both. Such projection induces a

quantization error due to the limited image resolution. Some approaches keep a point

cloud in 3D coordinates. [3] represents points in 3D voxels and applies 3D convolution

for object detection. When the resolution of the voxels grows, the computation cost of

3D CNN grows cubically, but many voxels are empty due to point sparsity. Optimizations

such as the sparse convolution [8] reduce the computation cost. Converting a point cloud

to a 2D/3D grid suffers from the mismatch between the irregular distribution of points and

the regular structure of the grids.

2.1.2 Point Cloud in Sets

Deep learning techniques on sets such as PointNet [10] and DeepSet [11] show neural

networks can extract features from an unordered set of points directly. In such a method,

each point is processed by a multi-layer perceptron (MLP) to obtain a point feature vector.

Those features are aggregated by an average or max pooling function to form a global fea-

2.1. POINT CLOUD DATA REPRESENTATIONS 13

ture vector of the whole set. PointNet++ [12] further proposes the hierarchical aggregation

of point features and generates local subsets of points by sampling around some keypoints.

The features of those subsets are then again grouped into sets for further feature extraction.

Many 3D object detection approaches take advantage of such neural networks to process

a point cloud without mapping it to a grid. However, the sampling and grouping of points

on a large scale lead to additional computational costs. Most object detection studies only

use the neural network on sets as a part of the pipeline. Frustum-PointNet [9] generates

object proposals from camera images and uses PointNet++ [12] to separate points that be-

long to an object from the background and predict a bounding box. PointRCNN [5] uses

PointNet++ [12] as a backbone network to generate bounding box proposals directly from

a point cloud. Then, it uses a second-stage point network to refine the bounding boxes.

Hybrid approaches such as [3, 8, 4, 13] use PointNet [10] to extract features from local

point sets and place the features on a regular grid for the convolutional operation. Al-

though they reduce the local irregularity of the point cloud to some degree, they still suffer

the mismatch between a regular grid and the overall point cloud structure.

2.1.3 Point Cloud in Graphs

Research on graph neural network [14] seeks to generalize the convolutional neural net-

work to a graph representation. A GNN iteratively updates its vertex features by aggre-

gating features along the edges. Although the aggregation scheme sometimes is similar

to that in deep learning on sets, a GNN allows more complex features to be determined

along the edges. It typically does not need to sample and group vertices repeatedly. In

the computer vision domain, a few approaches represent the point cloud as a graph. [15]

2.2. SENSOR MODALITIES 14

uses a recurrent GNN for the semantic segmentation of RGBD data. [32] partitions a point

cloud to simple geometrical shapes and links them into a graph for semantic segmenta-

tion. [16, 17] look into classifying a point cloud using a GNN. So far, few investigations

have looked into designing a graph neural network for object detection, where an explicit

prediction of the object shape is required.

2.2 Sensor Modalities

This section briefly reviews lidar-based, camera-based and fusion-based 3D object detec-

tion algorithms.

2.2.1 Lidar-based 3D Object Detection

Many state-of-the-art studies use a lidar point cloud as their primary input. They generally

use a neural network as an encoder to extract the structure features from the point cloud and

use those features to recognize the underlying object category and shape. Some popular

choices of encoders are convolutional neural networks [2, 4], PointNet [10], and graph

neural networks [33]. The CNN-based detection algorithms usually convert the point cloud

to an image grid or a 3D voxel grid. PIXOR [2] projects the points to multiple Bird’s

Eye View (BEV) images at different heights and uses a convolutional neural network to

extract features in different image positions. The PointPillars [4] approach discretizes the

points into 2D evenly spaced grids in BEV and encodes each cell’s points. VoxelNet [3]

puts points into voxel cells and uses a 3D convolutional neural network to extract voxel

features. SECOND [8] uses sparse convolution for further improvement. PointNet [10]

2.2. SENSOR MODALITIES 15

extracts features from an unordered point set. Many detection methods [9, 12] first group

the lidar points locally in different spatial areas and then extract the point set’s feature by

PointNet [10]. PointGNN [33] and CasGNN [34] use graph neural networks to encode

the point cloud. They create a neighborhood graph by using points as vertices. The graph

neural network then generates features representing each vertex’s property.

Regardless of the encoder, lidar-based 3D object detections make the basic assumption

that the point cloud is dense enough to extract information about the underlying object

shape. However, the sparse lidar points may not provide enough discriminative infor-

mation about the object due to occlusion and limited point density. The density of lidar

points is often inversely proportional to the distance between the vehicle and the object.

To overcome these limitations and increase detection ranges, HD lidar systems are often

used [19, 18] or temporal aggregation is used to accumulate points from multiple lidar

sweeps. Despite recent advances, a high-definition lidar system is still costly in many ap-

plication domains. Meanwhile, lidar aggregation suffers from misalignment due to vehicle

motion and also induces dependencies on other tasks such as vehicle localization. When

the density of the point cloud decreases, the detection accuracy unfortunately suffers.

2.2.2 Monocular 3D Object Detection

As a 2D image lacks depth information, monocular 3D object detection faces the chal-

lenge of solving an under-constrained inverse problem from 2D to 3D. Many methods

[35, 36, 37, 38] leverage a neural network to learn the priors of object shape from data.

Mono3D [35] uses a neural network to regress the object’s 3D bounding boxes using a

candidate image region as input. Deep3DBox [36] also predicts an object’s dimension

2.2. SENSOR MODALITIES 16

and orientation from the image using a convolutional neural network. It then finds the

object’s distance by matching the 3D box’s image projection with the 2D object bounding

box. M3D-RPN [37] predicts the object position relative to pre-defined anchor boxes and

then refines the orientation by matching the 3D box projection to the 2D box. MonoPSR

[38] further predicts each object pixel’s coordinates from the image and refines the 3D

bounding boxes by minimizing those pixels’ re-projection errors. Recent work [39] and

[40] use the depth-map input to improve the performance of monocular 3D object detec-

tion. However, additional labels and training are necessary for a depth estimation network.

Monocular 3D object detection, in general, is still not as accurate as lidar-based methods.

Nevertheless, they show that we can infer the object category and shapes from the image

using the priors in training data.

2.2.3 Lidar-camera Fusion for 3D Object Detection

Lidars and cameras often co-exist on an autonomous vehicle. Many studies combine both

sensors’ information to achieve a higher object detection accuracy. However, the existing

methods often partially or completely rely on a dense structure of point clouds. MV3D

[1] first generates 3D object proposals from a bird’s eye view map, which is the projected

image of a dense point cloud. Frustum PointNet [9] uses an image to generate frustum

proposals but relies solely on point cloud features for segmentation and box regression.

PointPainting [21] and ImVoteNet [22] associate image segmentation and 2D object de-

tection results with lidar points and then perform point-cloud-based 3D object detection.

PseudoLidar+ [41] uses the point cloud to lift the image to 3D. However, it needs an

external image depth map estimator.

2.3. SELF-SUPERVISED LEARNING 17

2.3 Self-supervised Learning

2.3.1 Image Domain

In self-supervised learning, a neural network is pretrained by pretext tasks. Pretext tasks

create their own supervision without the need for manual annotation. In the image domain,

some common pretext tasks are image reconstruction, geometric transformation recogni-

tion and contrastive learning. In image reconstruction tasks, a part of the original image’s

information, such as color [42, 43], image patch [44] or order [45, 46], is removed and

the neural network is trained to reconstruct the missing information. In geometric trans-

formation recognition tasks, the input image is randomly transformed, (e.g. rotated [47]).

The neural network is then trained to predict the transformation the input image has gone

through. Contrastive learning supervises the neural network to generate similar features

when the input image is augmented. At the same time, it also supervises the neural net-

work to generate different features for different input images. Contrastive learning has

attracted a lot of research interest because of its simplicity and effectiveness. Recent mod-

els such as MoCo [24] and SimCLR[25] have shown that self-supervised pretraining can

be competitive with supervised pretraining in the image classification task.

The performance of the pretraining is related to the alignment between the pretext task

and the fine-tuning task. A mismatch may reduce the gain of the fine-tuning task from

pretraining or even negatively impact the fine-tuning task. Recent studies on image object

detection [48, 49] suggest that self-supervised learning designed for image classification

may not always improve the downstream object detection task. The discriminative data

representation learned for image classification may not work well for localization in object

2.4. WORK ZONE RECOGNITION 18

detection. Therefore, [49] further provide foreground saliency detection as supervision.

2.3.2 Point Cloud Domain

Following the approach in the image domain, self-supervised studies in point cloud de-

sign similar pretext tasks. Similar to solving a Jigsaw [45] in images, [50] converts a

point cloud to a voxel grid and then permutes the voxel order for the neural network to

recover. [51] designs an auto-encoder-decoder task where a parametric GMM generative

model replaces the decoder to reconstruct a point cloud. [52] follows the rotation classi-

fication task [47] for images and randomly rotates the point cloud for the neural network

to recognize. [28] adapts the InfoNCE loss in the contrastive learning for point cloud and

propose PointInfoNCE loss. [28] shows pretraining using PointInfoNCE loss can help the

downstream indoor point cloud object detection. However, PointInfoNCE loss supervises

the neural network to learn discriminative features invariant to point cloud transformations

such as rotation. The learned features are, therefore, prone to loss of geometric informa-

tion critical for accurate object bounding box estimation in autonomous driving.

2.4 Work Zone Recognition

Due to road maintenance and repair, a work zone can appear dynamically and may not

be included in the map database. For driving safety, an autonomous vehicle must detect

the work zone on the fly. However, work zone detection is relatively unexplored due to

a lack of standard definitions and data. Existing work zone detection studies focus on

detecting the presence or absence of a work zone. Their detection results are relatively

2.5. TRAFFIC GESTURE RECOGNITION 19

coarse-grained and do not contain the boundary information of the work zone. [53] de-

tects work zones by classifying work zone images using a convolutional neural network.

[54] detects traffic signs from the vehicle’s camera. It then recognizes work zone signs and

uses them as cues for the start and the end of a work zone road segment. [55] also detects

traffic signs and traffic cones. It uses the detection results as features to estimate the prob-

ability that the vehicle is in a work zone. [56] designs a Bayesian network for construction

site detection. The Bayesian network takes detected traffic objects and vehicle states as

input and predicts a construction site’s probability at different distance bins. None of these

studies [53, 54, 55, 56] infers fine-grained geometric attributes such as work zone areas

and boundaries. However, knowing the work zone geometry is critical for an autonomous

vehicle to navigate safely. [57] studies a more constrained case where temporary lane

markings guide the driving through a work zone. [57] tracks the lanes even if both tem-

porary lane markings and original lane markings exist. Therefore, it allows the vehicle

to follow the lanes in a work zone. However, such an approach relies on lane marking

legislation and cannot handle common work zones with no temporary lane markings.

2.5 Traffic Gesture Recognition

2.5.1 Traffic Gesture Dataset

Although there are many guidelines [58] on common traffic gestures, no strict rules dic-

tate the exact motion that a flagman needs to follow. In practice, a flagman’s action varies

according to one’s body condition and personal style. Moreover, the flagman’s gestures

also change according to the cultural background in vogue. It is important to capture these

2.5. TRAFFIC GESTURE RECOGNITION 20

variations in a dataset so that data-driven methods can learn to recognize these varied and

complex gestures. Such a dataset can also act as a common benchmark where people

can compare different algorithms fairly. However, there are very few existing traffic ges-

ture datasets. Hand gesture datasets such as NVGesture[59] and SHREC’17[60] focus

on close-range hand motion outside the context of traffic control, while generic human

action datasets such as Deepmind Kinetics [61] and UCF101 [62] do not contain traffic

gestures at all. Recently, [63] provides a traffic control gesture dataset where actors wear

IMU-based motion capture suits to generate 3D body poses. The poses utilize only the

hands without considering the use of common props. As the capture suite is generally not

available in practice, it creates a discrepancy between training in the dataset and real-world

encounters. We create a dedicated dataset with video sequences of various traffic gestures,

facilitating a more realistic evaluation for vision-based traffic gesture recognition.

2.5.2 Action Recognition

Traffic gesture recognition is a sub-domain of action recognition. Many studies use deep

learning methods to recognize human actions in videos. Typically, they use neural net-

works to extract a feature map [29, 30] or a human skeleton representation [31] from each

video frame and then process the features via a temporal model to capture the action. For

traffic gesture recognition, previous studies often used a skeleton representation. The work

in [64] detects up-body keypoints and uses hand-crafted rules for classification. Instead,

the study in [63] extracts a skeleton representation using a deep network and then uses a

recurrent neural network and a graph neural network for temporal modeling. However, a

person’s skeleton representation often ignores important subtle information such as finger

2.5. TRAFFIC GESTURE RECOGNITION 21

movements and does not handle signaling with props. A feature map representation of

the input image, on the other hand, contains rich details, but it also includes irrelevant in-

formation prone to overfitting. There is little study on accurate traffic gesture recognition

using other effective data representations.

Chapter 3

Point-Cloud Object Detection

3.1 Introduction

A point cloud that composes a set of points in space is a widely-used format for 3D sen-

sors such as lidars in robotic perception. Detecting objects accurately from a point cloud

is crucial in applications such as autonomous driving. In this chapter, we describe our

approach of using a novel graph as a compact representation of a point cloud and design a

graph neural network named Point-GNN to detect 3D objects.

Convolutional neural networks that detect objects from images rely on the convolution

operation. While the convolution operation is efficient, it requires a regular grid as input.

Unlike an image, a point cloud is typically sparse and not spaced evenly on a regular

grid. Placing a point cloud on a regular grid generates an uneven number of points in

the grid cells. Applying the same convolution operation on such a grid leads to potential

information loss in the crowded cells or wasted computation in the empty cells.

22

3.1. INTRODUCTION 23

Recent breakthroughs in using neural networks [10, 11] allow an unordered set of

points as input. Studies take advantage of this type of neural network to extract point cloud

features without mapping the point cloud to a grid. However, they typically need to sample

and group points iteratively to create a point set representation. The repeated grouping

and sampling on a large point cloud can be computationally costly. Recent 3D detection

approaches [4, 13, 5] often take a hybrid approach to use a grid and a set representation in

different stages. Although they show some promising results, such hybrid strategies may

suffer the shortcomings of both representations.

Our work differs from previous work by designing a Graph Neural Network (GNN) for

object detection. Instead of converting a point cloud to a regular grid, such as an image or

a voxel, we use a novel graph representation to preserve the irregularity of a point cloud.

We encode the point cloud natively in a graph by using the points as the graph vertices.

The edges of the graph connect neighborhood points within a fixed radius, allowing feature

information to flow between neighbors. Such a graph representation adapts to the structure

of a point cloud directly without the need to make it regular. Unlike the techniques that

sample and group the points into sets repeatedly, we construct the graph once. A graph

neural network reuses the graph edges in every layer.

We name our graph neural network for object detection as Point-GNN. It is a single-

stage detection method that uses a point graph as input. Studies [15, 32, 16, 17] have

looked into using graph neural networks for the classification and the semantic segmenta-

tion of a point cloud. However, little research has looked into using a graph neural network

for 3D object detection in a point cloud. Our work demonstrates the feasibility of using a

GNN for highly accurate object detection in a point cloud.

3.1. INTRODUCTION 24

Point-GNN takes the point graph as its input. It extracts features of the point cloud

by iteratively updating vertex features on the same graph. Point-GNN then outputs the

category and bounding boxes of the objects to which each vertex belongs. Point-GNN is

a one-stage detection method that detects multiple objects in a single shot. To reduce the

translation variance in a graph neural network, we introduce an auto-registration mecha-

nism which allows points to align their coordinates based on their features. We further

design a box merging and scoring operation to combine detection results from multiple

vertices accurately.

We evaluate Point-GNN on the KITTI benchmark. On the KITTI benchmark, Point-

GNN achieves competitive accuracy using the point cloud alone and even surpasses sensor

fusion approaches. Our Point-GNN shows the potential of a new type of 3D object detec-

tion approach using graph neural networks, and it can serve as a good baseline for future

research. We conduct an extensive ablation study on the effectiveness of the components

in Point-GNN.

In summary, our contributions are:

• We design a new point-cloud object detection approach using a graph neural net-

work.

• We propose Point-GNN, a graph neural network with an auto-registration mecha-

nism that detects multiple objects in a single shot.

• We achieve competitive 3D object detection accuracy in the KITTI benchmark and

analyze the effectiveness of each component in depth.

3.2. POINT-GNN OBJECT DETECTION 25

Figure 3.1: The architecture of Point-GNN. It has three main components: (a) graph
construction from a point cloud, (b) a graph neural network for object detection, and (c)
bounding box merging and scoring.

3.2 Point-GNN Object Detection

In this section, we describe our approach to detect 3D objects from a point cloud. As

shown in Figure 3.1, the overall architecture of our method contains three components: (a)

graph construction, (b) a GNN of T iterations, and (c) bounding box merging and scoring.

3.2.1 Graph Construction

Formally, we define a point cloud of N points as a set P = {p1, ..., pN}, where pi = (xi,si)

is a point with both 3D coordinates xi ∈ R3 and the state value si ∈ Rk a k-length vector

that represents the point property. The state value si can be the reflected laser intensity or

the features which encode the surrounding objects. Given a point cloud P, we construct a

3.2. POINT-GNN OBJECT DETECTION 26

graph G = (P,E) by using P as the vertices and connecting a point to its neighbors within

a fixed radius r, i.e.

E = {(pi, p j) | ∥xi− x j∥2 < r} (3.1)

The construction of such a graph is the well-known fixed radius near-neighbors search

problem. By using a cell list to find point pairs that are within a given cut-off distance, we

can efficiently solve the problem with a runtime complexity of O(cN) where c is the max

number of neighbors within the radius [65].

In practice, a point cloud commonly comprises tens of thousands of points. Construct-

ing a graph with all the points as vertices imposes a substantial computational burden.

Therefore, we use a voxel downsampled point cloud P̂ for the graph construction. It must

be noted that the voxels here are only used to reduce the density of a point cloud and they

are not used as the representation of the point cloud. We still use a graph to present the

downsampled point cloud. To preserve the information within the original point cloud, we

encode the dense point cloud in the initial state value si of the vertex. More specifically, we

search the raw points within a r0 radius of each vertex and use the neural network on sets

to extract their features. We follow [4, 3] and embed the lidar reflection intensity and the

relative coordinates using an MLP and then aggregate them by the Max function. We use

the resulting features as the initial state value of the vertex. After the graph construction,

we process the graph with a GNN, as shown in Figure 3.1b.

3.2. POINT-GNN OBJECT DETECTION 27

3.2.2 Graph Neural Network with Auto-Registration

A typical graph neural network refines the vertex features by aggregating features along

the edges. In the (t +1)th iteration, it updates each vertex feature in the form:

vt+1
i = gt(ρ({et

i j | (i, j) ∈ E}),vt
i)

et
i j = f t(vt

i,v
t
j)

(3.2)

where et and vt are the edge and vertex features from the tth iteration. A function f t(.)

computes the edge feature between two vertices. ρ(.) is a set function which aggregates

the edge features for each vertex. gt(.) takes the aggregated edge features to update the

vertex features. The graph neural network then outputs the vertex features or repeats the

process in the next iteration.

In the case of object detection, we design the GNN to refine a vertex’s state to include

information about the object where the vertex belongs. Towards this goal, we re-write

Equation 3.2 to refine a vertex’s state using its neighbors’ states:

st+1
i = gt(ρ({ f t(x j− xi,st

j) | (i, j) ∈ E}),st
i) (3.3)

Note that we use the relative coordinates of the neighbors as input to f t(.) for the edge fea-

ture extraction. The relative coordinates induce translation invariance against the global

shift of the point cloud. However, it is still sensitive to translation within the neighborhood

area. When a small translation is added to a vertex, the local structure of its neighbors

remains similar. But the relative coordinates of the neighbors are all changed, which in-

creases the input variance to f t(.). To reduce the translation variance, we propose aligning

3.2. POINT-GNN OBJECT DETECTION 28

neighbors’ coordinates by their structural features instead of the center vertex coordinates.

Because the center vertex already contains some structural features from the previous it-

eration, we can use it to predict an alignment offset, and propose an auto-registration

mechanism:

∆xi
t = ht(st

i)

st+1
i = gt(ρ({ f (x j− xi +∆xi

t ,st
j)},st

i)

(3.4)

∆xt
i is the coordination offset for the vertices to register their coordinates. ht(.) calculates

the offset using the center vertex state value from the previous iteration. By setting ht(.) to

output zero, the GNN can disable the offset if necessary. In that case, the GNN returns to

Equation 3.3. We analyze the effectiveness of this auto-registration mechanism in Section

3.3.

As shown in Figure 3.1b, we model f t(.), gt(.) and ht(.) using multi-layer percep-

trons (MLP) and add a residual connection in gt(.). We choose ρ(.) to be Max for its

robustness[10]. A single iteration in the proposed graph network is then given by:

∆xi
t = MLPt

h(s
t
i)

et
i j = MLPt

f ([x j− xi +∆xi
t ,st

j])

st+1
i = MLPt

g(Max({ei j |(i, j) ∈ E}))+ st
i

(3.5)

where [,] represents the concatenation operation.

Every iteration t uses a different set of MLPt , which is not shared among iterations.

After T iterations of the graph neural network, we use the vertex state value to predict both

3.2. POINT-GNN OBJECT DETECTION 29

the category and the bounding box of the object where the vertex belongs. A classification

branch MLPcls computes a multi-class probability. Finally, a localization branch MLPloc

computes a bounding box for each class.

3.2.3 Loss

For the object category, the classification branch computes a multi-class probability distri-

bution {pc1, ..., pcM} for each vertex. M is the total number of object classes, including the

Background class. If a vertex is within a bounding box of an object, we assign the object

class to the vertex. If a vertex is outside any bounding boxes, we assign the background

class to it. We use the average cross-entropy loss as the classification loss.

lcls =−
1
N

N

∑
i=1

M

∑
j=1

yi
c j

log(pi
c j
) (3.6)

where pi
c and yi

c are the predicted probability and the one-hot class label for the i-th vertex,

respectively.

For the object bounding box, we predict it in the 7 degree-of-freedom format b =

(x,y,z, l,h,w,θ), where (x,y,z) represent the center position of the bounding box, (l,h,w)

represent the box length, height and width respectively, and θ is the yaw angle. We encode

the bounding box with the vertex coordinates (xv,yv,zv) as follows:

δx =
x− xv

lm
, δy =

y− yv

hm
, δz =

z− zv

wm

δl = log(
l

lm
), δh = log(

h
hm

), δw = log(
w

wm
)

δθ =
θ −θ0

θm

(3.7)

3.2. POINT-GNN OBJECT DETECTION 30

where lm,hm,wm,θ0,θm are constant scale factors.

The localization branch predicts the encoded bounding box δb =(δx,δy,δz,δl,δh,δw,δθ)

for each class. If a vertex is within a bounding box, we compute the Huber loss [66] be-

tween the ground truth and our prediction. If a vertex is outside any bounding boxes or it

belongs to a class that we do not need to localize, we set its localization loss as zero. We

then average the localization loss of all the vertices:

lloc =
1
N

N

∑
i=1

1(vi ∈ binterest) ∑
δ∈δbi

lhuber(δ −δ
gt) (3.8)

To prevent over-fitting, we add L1 regularization to each MLP. The total loss is then:

ltotal = αlcls +β lloc + γlreg (3.9)

where α , β and γ are constant weights to balance each loss.

3.2.4 Box Merging and Scoring

As multiple vertices can be on the same object, the neural network can output multiple

bounding boxes of the same object. It is necessary to merge these bounding boxes into one

and also assign a confidence score. Non-maximum suppression (NMS) has been widely

used for this purpose. The common practice is to select the box with the highest classifi-

cation score and suppress the other overlapping boxes. However, the classification score

does not always reflect the localization quality. Notably, a partially occluded object can

have a strong clue indicating the type of the object but lacks enough shape information.

The standard NMS can pick an inaccurate bounding box base on the classification score

3.2. POINT-GNN OBJECT DETECTION 31

Algorithm 1: NMS with Box Merging and Scoring
Input: B = {b1, ...,bn}, D = {d1, ...,dn}, Th
B is the set of detected bounding boxes.
D is the corresponding set of detection scores.
Th is an overlapping threshold value.
Green color marks the main modifications.

1 M ← {}, Z ← {}
2 while B ̸= empty do
3 i←argmax D
4 L ← {}
5 for b j in B do
6 if iou(bi,b j)> Th then
7 L←L ∪b j
8 B←B−b j, D←D−d j

9 end
10 end
11 m← median(L)
12 o← occlusion(m)
13 z← (o+1)∑bk∈L IoU(m,bk)dk

14 M←M ∪m, Z←Z ∪ z
15 end
16 return M , Z

alone.

To improve localization accuracy, we propose to calculate the merged box by consid-

ering the entire overlapped box cluster. More specifically, we consider the median position

and size of the overlapped bounding boxes. We also compute the confidence score as the

sum of the classification scores weighted by the Intersection-of-Union (IoU) factor and an

occlusion factor. The occlusion factor represents the occupied volume ratio. Given a box

bi, let li, wi, hi be its length, width and height, and let vl
i , vw

i , vh
i be the unit vectors that

indicate their directions respectively. x j are the coordinates of point p j. The occlusion

3.3. EXPERIMENTS 32

factor oi is then:

oi =
1

liwihi
∏

v∈{vl
i ,v

w
i ,v

h
i }

max
p j∈bi

(vT x j)− min
p j∈bi

(vT x j) (3.10)

We modify standard NMS as shown in Algorithm 1. It returns the merged bounding

boxes M and their confidence score Z . We will study its effectiveness in Section 3.3.

3.3 Experiments

3.3.1 Dataset

We evaluate our design using the widely used KITTI object detection benchmark [67].

The KITTI dataset contains 7481 training samples and 7518 testing samples. Each sample

provides both the point cloud and the camera image. We only use the point cloud in our

approach. Since the dataset only annotates objects that are visible within the image, we

process the point cloud only within the field of view of the image. The KITTI benchmark

evaluates the average precision (AP) of three types of objects: Car, Pedestrian and Cyclist.

Due to the scale difference, we follow the common practice [4, 3, 8, 13] and train one

network for the Car and another network for the Pedestrian and Cyclist. For training, we

remove samples that do not contain objects of interest.

3.3.2 Implementation Details

We use three iterations (T = 3) in our graph neural network. During training, we limit the

maximum number of input edges per vertex to 256. During inference, we use all the input

edges. All GNN layers perform auto-registration using a two-layer MLPh of units (64,3).

3.3. EXPERIMENTS 33

The MLPcls is of size (64,#(classes)). For each class, MLPloc is of size (64,64,7).

Car: We set (lm,hm,wm) to the median size of Car bounding boxes (3.88m,1.5m,1.63m).

We treat a side-view car with θ ∈ [−π/4,π/4] and a front-view car θ ∈ [π/4,3π/4] as two

different classes. Therefore, we set θ0 = 0 and θ0 = π/2 respectively. The scale θm is set

as π/2. Together with the Background class and DoNotCare class, 4 classes are predicted.

We construct the graph with r = 4m and r0 = 1m. We set P̂ as a downsampled point cloud

by a voxel size of 0.8 meters in training and 0.4 meters in inference. MLPf and MLPg, are

both of sizes (300,300). For the initial vertex state, we use an MLP of (32,64,128,300)

for embedding raw points and another MLP of (300,300) after the Max aggregation. We

set Th = 0.01 in NMS.

Pedestrian and Cyclist. Again, we set (lm,hm,wm) to the median bounding box size. We

set (0.88m,1.77m,0.65m) for Pedestrian and (1.76m,1.75m,0.6m) for Cyclist. Similar to

what we did with the Car class, we treat front-view and side-view objects as two different

classes. Together with the Background class and the DoNotCare class, 6 classes are pre-

dicted. We build the graph using r = 1.6m, and downsample the point cloud by a voxel

size of 0.4 meters in training and 0.2 meters in inference. MLPf and MLPg are both of

sizes (256,256). For the vertex state initialization, we set r0 = 0.4m. We use a an MLP of

(32,64,128,256,512) for embedding and an MLP of (256,256) to process the aggregated

feature. We set Th = 0.2 in NMS.

We train the proposed GNN end-to-end with a batch size of 4. The loss weights are

α = 0.1, β = 10, γ = 5e−7. We use stochastic gradient descent (SGD) with a stair-case

learning-rate decay. For Car, we use an initial learning rate of 0.125 and a decay rate of

0.1 every 400K steps. We trained the network for 1400K steps. For Pedestrian and Cyclist,

3.3. EXPERIMENTS 34

we use a learning rate of 0.32 and a decay rate of 0.25 every 400K steps. We trained it for

1000K steps.

3.3.3 Data Augmentation

To prevent overfitting, we perform data augmentation on the training data. Unlike many

approaches [8, 4, 5, 13] that use sophisticated techniques to create new ground truth boxes,

we choose a simple scheme of global rotation, global flipping, box translation and vertex

jitter. During training, we randomly rotate the point cloud by yaw ∆θ ∼N (0,π/8) and

then flip the x-axis by a probability of 0.5. After that, each box and points within 110% size

of the box randomly shift by (∆x∼N (0,3),∆y = 0,∆z∼N (0,3)). We use a 10% larger

box to select the points to prevent cutting the object. During the translation, we check and

avoid collisions among boxes, or between background points and boxes. During graph

construction, we use a random voxel downsample to induce vertex jitter.

3.3.4 Results

We have submitted our results to the KITTI 3D object detection benchmark and the Bird’s

Eye View (BEV) object detection benchmark. In Table 3.1 and Table 3.2, we compare our

results with the existing literature. The KITTI dataset evaluates the Average Precision (AP)

on three difficulty levels: Easy, Moderate, and Hard. Our approach achieves the leading

results in the Car detection of Easy and Moderate levels and also the Cyclist detection

of Moderate and Hard levels. Remarkably, on the Easy level BEV Car detection, we

surpass the previous state-of-the-art approach by 3.45. Also, we outperform fusion-based

algorithms in all categories except for Pedestrian detection. In Figure 3.2, we provide

3.3. EXPERIMENTS 35

Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
UberATG-ContFuse[68] Lidar + Image 82.54 66.22 64.04 N/A N/A N/A N/A N/A N/A

AVOD-FPN[69] Lidar + Image 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61
F-PointNet[9] Lidar + Image 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39

UberATG-MMF[70] Lidar + Image 86.81 76.75 68.41 N/A N/A N/A N/A N/A N/A
VoxelNet[3] Lidar 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11
SECOND[8] Lidar 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 53.85

PointPillars[4] Lidar 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
PointRCNN[5] Lidar 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59

STD[13] Lidar 86.61 77.63 76.06 53.08 44.24 41.97 78.89 62.53 55.77
Our Point-GNN Lidar 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

Table 3.1: The Average Precision (AP) comparison of 3D object detection on the KITTI
test dataset.

Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
UberATG-ContFuse[68] Lidar + Image 88.81 85.83 77.33 N/A N/A N/A N/A N/A N/A

AVOD-FPN[69] Lidar + Image 88.53 83.79 77.9 58.75 51.05 47.54 68.06 57.48 50.77
F-PointNet[9] Lidar + Image 88.70 84 .00 75.33 58.09 50.22 47.20 75.38 61.96 54.68

UberATG-MMF[70] Lidar + Image 89.49 87.47 79.10 N/A N/A N/A N/A N/A N/A
VoxelNet[3] Lidar 89.60 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49
SECOND[8] Lidar 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

PointPillars[4] Lidar 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.00
STD[13] Lidar 89.66 87.76 86.89 60.99 51.39 45.89 81.04 65.32 57.85

Our Point-GNN Lidar 93.11 89.17 83.9 55.36 47.07 44.61 81.17 67.28 59.67

Table 3.2: The Average Precision (AP) comparison of Bird’s Eye View (BEV) object
detection on the KITTI test dataset.

qualitative detection results on all categories. The results on both the camera image and

the point cloud can be visualized. It must be noted that our approach uses only the point

cloud data. The camera images are purely used for visual inspection since the test dataset

does not provide ground truth labels. As shown in Figure 3.2, our approach still detects

Pedestrian reasonably well despite not achieving the top score. One likely reason why

Pedestrian detection is not as good as that for Car and Cyclist is that the vertices are not

dense enough to achieve more accurate bounding boxes.

3.3. EXPERIMENTS 36

Figure 3.2: Qualitative results on the KITTI test dataset using Point-GNN. We show the
predicted 3D bounding box of Cars (green), Pedestrians (red) and Cyclists (blue) on both
the image and the point cloud. Best viewed in color.

3.3. EXPERIMENTS 37

Box Box Auto BEV AP (Car) 3D AP (Car)
Merge Score Reg. Easy Moderate Hard Easy Moderate Hard

1 - - - 89.11 87.14 86.18 85.46 76.80 74.89
2 - - ✓ 89.03 87.43 86.39 85.58 76.98 75.69
3 ✓ - ✓ 89.33 87.83 86.63 86.59 77.49 76.35
4 - ✓ ✓ 89.60 88.02 86.97 87.40 77.90 76.75
5 ✓ ✓ - 90.03 88.27 87.12 88.16 78.40 77.49
6 ✓ ✓ ✓ 89.82 88.31 87.16 87.89 78.34 77.38

Table 3.3: Ablation study on the val. split of KITTI data.

3.3.5 Ablation Study

For the ablation study, we follow the standard practice [4, 13, 71] and split the training

samples into a training split of 3712 samples and a validation split of 3769 samples. We

use the training split to train the network and evaluate its accuracy on the validation split.

We follow the same protocol and assess the accuracy by AP1. Unless explicitly modified

for a controlled experiment, the network configuration and training parameters are the

same as those in the previous section. We focus on the detection of Car because of its

dominant presence in the dataset.

Box merging and scoring. In Table 3.3, we compare the object detection accuracy with

and without box merging and scoring. For the test without box merging, we modify line 11

in Algorithm 1. Instead of taking the median bounding box, we directly take the bounding

box with the highest classification score as in standard NMS. For the test without box

scoring, we modify lines 12 and 13 in Algorithm 1 to set the highest classification score

as the box score. For the test without box merging or scoring, we modify lines 11, 12,

and 13, which essentially leads to standard NMS. Row 2 of Table 3.3 shows a baseline

1The ablation study uses the KITTI 11-recall-position AP.

3.3. EXPERIMENTS 38

implementation that uses standard NMS with the auto-registration mechanism. As shown

in Row 3 and Row 4 of Table 3.3, both box merging and box scoring outperform the

baseline. When combined, as shown in Row 6 of the table, they further outperform the

individual accuracy in every category. Similarly, when not using auto-registration, box

merging and box scoring (Row 5) also achieve higher accuracy than standard NMS (Row

1). These results demonstrate the effectiveness of the box scoring and merging.

Auto-registration mechanism. Table 3.3 also shows the accuracy improvement from

the auto-registration mechanism. As shown in Row 2, by using auto-registration alone,

we also surpass the baseline without auto-registration (Row 1) in every category of 3D

detection and the moderate and hard categories of BEV detection. The performance in

the easy category of BEV detection decreases slightly but remains close. Combining the

auto-registration mechanism with box merging and scoring (Row 6), we achieve higher

accuracy than using the auto-registration alone (Row 2). However, the combination of

all three modules (Row 6) does not outperform box merging and score (Row 5). We hy-

pothesize that the regularization likely needs to be tuned after adding the auto-registration

branch.

We further investigate the auto-registration mechanism by visualizing the offset ∆x in

Equation 3.4. We extract ∆x from different GNN iterations and add them to the vertex

position. Figure 3.3 shows vertices that output detection results and their positions with

added offsets. More examples are shown in Figure 3.4. We observe that the vertex po-

sitions with added offsets move towards the center of vehicles. We see such behaviors

regardless of the original vertex position. In other words, when the GNN gets deeper, the

relative coordinates of the neighbor vertices depend less on the center vertex position but

3.3. EXPERIMENTS 39

Figure 3.3: An detailed example from the val. split showing the vertex locations with
added offsets. The blue dot indicates the original position of the vertices. The orange,
purple, and red dots indicate the original position with added offsets from the first, the
second, and the third graph neural network iterations. Best viewed in color.

more on the property of the point cloud. The offset ∆x cancels the translation of the center

vertex, and thus reduces the sensitivity to the vertex translation. These qualitative results

demonstrate that Equation 3.4 helps to reduce the translation variance of vertex positions.

Point-GNN iterations. Our Point-GNN refines the vertex states iteratively. In Table 3.4,

we study the impact of the number of iterations on the detection accuracy. We train Point-

GNNs with T = 1, T = 2, and compare them with T = 3, which is the configuration

in Section 3.3.4. Additionally, we train a detector using the initial vertex state directly

without any Point-GNN iteration. As shown in Table 3.4, the initial vertex state alone

achieves the lowest accuracy since it only has a small receptive field around the vertex.

Without Point-GNN iterations, the local information cannot flow along the graph edges,

and therefore its receptive field cannot expand. Even with a single Point-GNN iteration

T = 1, the accuracy improves significantly. T = 2 has higher accuracy than T = 3, which

3.3. EXPERIMENTS 40

Figure 3.4: Examples from the val. split showing the vertex locations with added offsets.

3.3. EXPERIMENTS 41

Number of BEV AP (Car) 3D AP (Car)
iterations Easy Moderate Hard Easy Moderate Hard

T = 0 87.24 77.39 75.84 73.90 64.42 59.91
T = 1 89.83 87.67 86.30 88.00 77.89 76.14
T = 2 90.00 88.37 87.22 88.34 78.51 77.67
T = 3 89.82 88.31 87.16 87.89 78.34 77.38

Table 3.4: Average precision on the KITTI val. split using different numbers of Point-
GNN iterations.

is likely due to the training difficulty when the neural network goes deeper.

Running-time analysis. The speed of the detection algorithm is important for real-time

applications such as autonomous driving. However, multiple factors affect the running

time, including algorithm architecture, code optimization and hardware resource. Further-

more, optimizing the implementation is not the focus of this work. However, a breakdown

of the current inference time helps with future optimization. Our implementation is writ-

ten in Python and uses Tensorflow 1.15 for GPU computation. We measure the inference

time on a desktop with Xeon E5-1630 CPU and GTX 1070 GPU. The average processing

time for one sample in the validation split is 643ms. Reading the dataset and running the

calibration takes 11.0% time (70ms). Creating the graph representation consumes 18.9%

time (121ms). The inference of the GNN takes 56.4% time (363ms). Box merging and

scoring take 13.1% time (84ms). We also measure the running time for models with and

without auto-registration or box merging and scoring. Table 3.5 shows the results. The

running time results indicate that both auto-registration and box merging and score do not

largely increase the running time. See our code for implementation details.

Robustness on Lidar sparsity. The KITTI dataset collects point cloud data using a 64-

scanning-line lidar. Such a high-density lidar usually leads to a high cost. Therefore, it

https://github.com/WeijingShi/Point-GNN

3.3. EXPERIMENTS 42

Box Merging
and Scoring

Auto
Registration

Running Time
Read
Input

Graph
Construction GNN

Box
Decoding

NMS Total

- - 48 ms 123 ms 361 ms 4 ms 48 ms 584 ms
- ✓ 48 ms 123 ms 362 ms 4 ms 50 ms 587 ms
✓ - 71 ms 125 ms 362 ms 4 ms 83 ms 645 ms
✓ ✓ 70 ms 121 ms 363 ms 5 ms 84 ms 643 ms

Table 3.5: The average running time for one sample in the KITTI validation split. The
inference time is measured on a desktop with Xeon E5-1630 CPU and GTX 1070 GPU
using a Python implementation

Number of BEV AP (Car) 3D AP (Car)
scanning lines Easy Moderate Hard Easy Moderate Hard

64 89.82 88.31 87.16 87.89 78.34 77.38
32 89.62 79.84 78.77 85.31 69.02 67.68
16 86.56 61.69 60.57 66.67 50.23 48.29
8 49.72 34.05 32.88 26.88 21.00 19.53

Table 3.6: Average precision on downsampled KITTI val. split.

is of interest to investigate the object detection performance in a less dense point cloud.

To mimic a lidar system with fewer scanning lines, we downsample the scanning lines in

the KITTI validation dataset. Because KITTI gives the point cloud without the scanning

line information, we use k-means to cluster the elevation angles of points into 64 clusters,

where each cluster represents a lidar scanning line. We then downsample the point cloud

to 32, 16, 8 scanning lines by skipping scanning lines in between. Our test results on

the downsampled KITTI validation split are shown in Table 3.6. The accuracy for the

moderate and hard levels drops fast with downsampled data, while the detection for the

easy level data maintains a reasonable accuracy until it is downsampled to 8 scanning lines.

This is because that the easy-level objects are mostly close to the lidar, and thus have a

dense point cloud even if the number of scanning lines drops.

3.4. SUMMARY 43

3.4 Summary

In this chapter, we have presented a graph neural network, named Point-GNN, to detect

3D objects from a graph representation of the point cloud. By using a novel graph rep-

resentation, we encode the irregular point cloud compactly without mapping the sparse

point cloud to dense grids. Point-GNN also reuses graph edges to aggregate features and

avoids sampling or grouping repeatedly. Our Point-GNN achieves good accuracy in both

the 3D and Bird’s Eye View object detection of the KITTI benchmark, demonstrating its

effectiveness as a point cloud backbone for object detection. It can even surpass many

fusion-based algorithms and remains relatively robust when the density of a point cloud

decreases. In the next chapter, we aim to increase object detection accuracy under the con-

straint of point cloud density. We describe our fusion method which combines the inputs

from cameras with our Point-GNN.

Chapter 4

Fusion of Point Cloud and Images

4.1 Introduction

Many autonomous vehicles have lidars as primary sensors, which provide precise point

clouds. Lidar-based 3D detection algorithms expect a point cloud to contain the geometric

characteristics of objects. Therefore, they benefit from high point density. However, ac-

quiring a dense point cloud is not trivial. It either requires a high-resolution lidar system or

the temporal aggregation of multiple lidar sweeps. A high-resolution lidar system is still

too expensive in many application domains including consumer vehicles, warehouses and

work zone equipment. Also, lidar aggregation suffers from registration errors due to ve-

hicle movement and increases latencies. Even within a dense point cloud, a sparse region

still inevitably exists due to sensing distance and occlusions. Therefore, it is desirable to

explore alternative approaches to increase object detection accuracy under the constraint

of point cloud density.

44

4.1. INTRODUCTION 45

Figure 4.1: (a). Our method uses a lidar point and the image to estimate the point’s local
coordinates in the object frame. By registering a point’s local coordinates with its world
coordinates, we locate the object in the world coordinates. (b). Our method detects objects
with higher mean average precision (mAP) in sparse point clouds.

In this chapter, we describe our method to boost object detection accuracy on a sparse

point cloud using cameras as a complementary source. Unlike lidars, cameras generate

images with dense pixel value at a relatively low cost. In addition, an RGB image contains

rich color and texture information, which is of great value to inferring object structure.

However, as an image does not contain direct depth measurement, monocular 3D object

detection often has difficulty recovering the object’s position. Previous sensor fusion meth-

ods combine image features and point cloud features to achieve higher detection accuracy.

For instance, [21, 22] add image semantic labels to the point cloud, [1, 9] combine object

proposals from both the camera and the lidar, and [41] utilizes depth estimation from im-

ages. While achieving remarkable results, those methods still rely on dense point clouds.

Meanwhile, how to use an image jointly with a sparse point cloud to achieve high detection

accuracy remains an open question. Our approach addresses this question explicitly.

As shown in Figure 4.1, we leverage image features to infer an object’s local 3D struc-

4.2. OUR FUSION METHOD 46

ture. We project a lidar point to the images and use a neural network to aggregate image

features from multiple cameras. The neural network predicts every point’s local 3D coor-

dinates in the object frame. By matching a point’s lidar coordinates and predicted local

coordinates, we calculate the object’s position. Our minimum requirement for detection is

only a single lidar point on the object and the target object’s image. We use a 3D pooling

method to combine neighbor point features (if neighbors exist) and refine the detection

results. Our experiment with the large nuScenes [20] dataset and the Lyft Level5 [23]

dataset show that the proposed method largely improves the detection accuracy on sparse

point cloud regions.

In summary, our contributions are:

• We propose a pipeline to extract the local geometry of an object from images which

considers the placement of multiple cameras on the AV.

• We design a registration method for matching an object’s local geometry with lidar

points to estimate the object’s global coordinates.

• We provide extensive experiments on both nuScenes and Level5 datasets, demon-

strating the effectiveness of our method on sparse point clouds.

4.2 Our Fusion Method

As illustrated in Figure 4.2, our 3D detection framework takes images from multiple cam-

eras and a sparse point cloud as input. We use a convolutional neural network to extract im-

age features from the camera images and re-project the image features to the lidar points.

4.2. OUR FUSION METHOD 47

Figure 4.2: The architecture of our proposed approach. First, (a) point features from
multiple image views are extracted and aggregated. Then, (b) a 3D pooling operation
combines spatially close point features. The combined features are used to predict (c)
local coordinates, which are later registered to lidar coordinates

We aggregate the image features from different camera views and pool the features from

neighborhood points. The pooled features predict each lidar point’s coordinates in its local

object coordinate system, and the transformation between the local and lidar coordinates

gives the detected object’s location and orientation. We describe the details below.

4.2.1 Multiview Point Feature Extraction

We first extract image features by a convolutional neural network backbone. Given K

synchronized images {I0, I1, ..., IK−1} from different cameras on the vehicle, a weight-

sharing CNN computes a feature map F for each image:

Fk =CNN(Ik) (4.1)

4.2. OUR FUSION METHOD 48

Given a point cloud {pi = (xi,yi,zi)}N , we gather each point’s image feature vector from

the feature maps within which the point is visible:

Fk
pi
= Fk[uk

pi
,vk

pi
] (4.2)

where, (uk
pi
,vk

pi
) is pi’s projected position in the feature map Fk. Note that pi can be visible

in multiple cameras and it can have multiple image features.

In general, camera centers do not align. Therefore, each camera image observes the

3D points from slightly different viewing angles. To capture these variations, we add the

viewing angle Θ as a part of the point’s image features. We calculate Θ with regard to

the ray from the vehicle center to the point, as shown in Figure 4.2(a). Given the vehicle

center position (ex,ey), camera center position (ck
x,c

k
y) and the point (xi,yi), we compute

pi’s viewing angle Θk
pi

from camera k as follows:

Θ
k
pi
= atan2(ve

i ×vk
i ,v

e
i ·v

k
i) (4.3)

where,

ve
i = [xi− ex,yi− ey] (4.4)

vk
i = [xi− ck

x,yi− ck
y] (4.5)

Due to the misalignment between the lidar center and camera center, artifacts may

exist where occluded lidar points are still visible in the image. A point’s image feature

vector may encode the foreground image instead of the actual object behind it. Also,

4.2. OUR FUSION METHOD 49

multiple lidar points may project to the same image area. To mitigate errors caused by

such ambiguity between points and image features, we compute the distance dk
pi

between

point pi and the kth camera center. Intuitively, this distance acts as a query within the

network to fetch different spatial features. As will be shown in Section 4.3.5, the distance

value improves the detection accuracy significantly.

Overall, the feature vector for pi from camera k is as follows:

yk
pi
= [dk

pi
,Θk

pi
,Fk

pi
] (4.6)

We then combine the feature vectors from multiple cameras by aggregation:

ypi = max({MLP(yk
pi
)}) (4.7)

4.2.2 3D Pooling

The aggregated point feature ypi only uses the images and a single lidar point. Since ypi

does not rely on any other points in the point cloud, ypi is robust when the point cloud is

sparse. However, ypi by itself does not contain potential geometric information from the

point cloud, which does affect the detection accuracy. To utilize the point cloud structure,

we adapt a 3D pooling module to combine the point cloud features within a local radius r.

The pooling module predicts a residue in the point feature:

δypi = max
||pi−p j||22<r

({MLP([yp j , p j− pi +MLP(ypi)])}) (4.8)

y′pi
= ypi +δypi (4.9)

4.2. OUR FUSION METHOD 50

If the point cloud contains points from a different time instant due to temporal aggregation,

the images and those points are asynchronous. The asynchronous points do not have cor-

responding image features. Therefore, we treat them differently in the 3D pooling module.

We pool those points’ timestamps t and lidar intensities instead of image features:

yt
pi
= max
||pi−p j||22<r

({MLP([t j− ti,a j, p j− pi])}) (4.10)

We then concatenate the yt
pi

to the point image features:

y′pi
= [ypi +δypi,y

t
pi
] (4.11)

Note that both the pooling of the neighborhood point image features and asynchronous

points allow the neighborhood to be empty. Therefore, the pooling module works naturally

with a sparse point cloud.

4.2.3 Local Object Coordinate Regression

Given the point feature y′pi
, we aim to predict pi’s category and its coordinates within

the local object frame. We first use a classification header to predict the point’s category.

Similar to the MultiBin [36] approach, we also split each object category into multiple

bins based on the angle α between the object orientation and the ray from a point to the

vehicle center. These bins do not overlap, and we enforce a categorical classification for

the bins. We use independent classification headers for different object categories. As a

lidar point can belong to multiple classes, we use multi-label classification across different

classes. For instance, a point on a driver belongs to both the person and vehicle.

4.2. OUR FUSION METHOD 51

Besides the classification header, we use a localization header to predict the object’s

dimensions [l,w,h] and, more importantly, the point’s coordinates within the local object

coordinate system [xc,yc,zc]. As illustrated in Figure 4.2(c), the local object coordinates

are defined relative to the object center and are invariant to the translation and rotation

of the object. Our prediction of the local coordinates avoids solving the object’s location

directly from the monocular image. The localization header also predicts the observation

angle α .

The local object coordinate frame and the global coordinate frame are connected by a

rigid transformation, which comprises a rotation R and a translation t. Locating an object’s

position is equivalent to finding R and t. For each lidar point pi = (xi,yi,zi) of an object,

the network predicts its observation angle α and local coordinate q = (xc,yc,zc). A direct

solution from the network prediction is given by:

t = p−Rq (4.12)

R =


cos(β +α) −sin(β +α) 0

sin(β +α) cos(β +α) 0

0 0 1

 (4.13)

β = arctan(yi,xi) (4.14)

Loss Definition. For a total number of C classes and Ki bins for class i, the classi-

fication header generates probabilities (s(0,0), ...,s(0,K0)), ...,(s(C−1,0), ...,s(C−1,K0)), where,

(s(i,0), ...,s(i,Ki)) are the categorical probabilities for each bin in class i and s(i,0) is the prob-

ability for the negative. We use softmax to generate (s(i,0), ...,s(i,Ki)), and the classification

4.2. OUR FUSION METHOD 52

loss Lc for N lidar points is defined as:

Lc =−
1
C

1
N

N−1

∑
j=0

C−1

∑
i=0

Ki

∑
k=0

y j
(i,k) log(s j

(i,k)) (4.15)

where, y(i,k) is the one-hot label for class i.

The localization header predicts the encoded form of the object dimension [l,w,h], the

object local coordinates [xc,yc,zc], and the observation angle θ̂ :

x′c = xc/tl y′c = yc/tw z′c = zc/th (4.16)

l′ = log(l/tl) w′ = log(w/tw) h′ = log(h/th)

θ̂
′ = log(θ̂/tθ)

tl, tw, th, tθ are scaling constants. For M points that belong to an object of interest, the

localization loss Lloc is defined as:

Lloc =
1
M

M−1

∑
i=0

SmoothL1(bi,bi
gt) (4.17)

where, b = [x′c,y
′
c,z
′
c, l
′,w′,h′, θ̂] and bgt is the ground truth.

To prevent overfitting, we also add L1 regularization on the headers. The overall loss

is a weighted combination with constant λ1 and λ2:

L = Lcls +λ1Lloc +λ2Lreg (4.18)

4.3. EXPERIMENTAL EVALUATION 53

4.3 Experimental Evaluation

4.3.1 Dataset

We evaluate our 3D object detection using the large-scale autonomous driving datasets

nuScenes [20] and the Lyft Level 5 [23]. Both the nuScenes and the Level 5 datasets

include six camera views covering the vehicle’s entire surroundings, while other popular

datasets such as the KITTI [18] and the Waymo Open [19] datasets contain only partial

camera coverage. The nuScenses and the Level 5 datasets also register their point clouds

globally, which enable direct experiments with temporal point cloud aggregations and are

appropriate for use in our evaluations.

4.3.2 Implementation Details

We pre-process the images using a homography transformation to rotate the cameras to

align all cameras. Images are then warped to a cylindrical view using the same focal

length. We use random image flipping, color jittering, and region cutout as the image aug-

mentation method. We also randomly jitter the autonomous vehicle’s center coordinates.

To balance the distribution of objects at different distances, we assign a weight to each

lidar point such that the sum of the point weights on each object of the same category is

the same.

Figure 4.3 shows the detailed network architecture. We group images of six cameras

and feed them to a Resnet-FPN network. The network comprises a ResNet-50 [72] back-

bone and additionally upsampling layers to construct a feature pyramid network [73]. Each

upsampling layer is a 2× nearest-neighbor interpolation followed by a single convolutional

4.3. EXPERIMENTAL EVALUATION 54

Figure 4.3: The detailed model configuration of the proposed fusion model.

4.3. EXPERIMENTAL EVALUATION 55

layer and a residual connection. We take the feature level with the highest resolution as

output, which is 1
4 of the input size and have a depth of 256. As the input image size is

1024×512, the output image feature map size is 256×128.

We project the input point cloud to the image feature maps and filter out points that are

outside the images. We then gather the image feature vector at each point’s corresponding

position, resulting in an image feature vector of 256 for each point. We concatenate the

image feature vector with the corresponding point’s distance to the camera center and the

relative yaw angle as in Equation 4.3. The concatenated feature vector has a length of

258. An MLP of [258, 258] units process the concatenated feature vector. We then re-

project the results to each lidar point. If a lidar point is visible in multiple images, i.e., it

has multiple image feature vectors from multiple cameras, we aggregate multiple image

vectors by taking their maximum.

As the aggregated point features alone do not take advantage of point cloud geomet-

rics, we pool the aggregated point features within a radius of 4 meters. To reduce the

computational cost, we first select a set of keypoints by downsampling the point cloud us-

ing a voxel size of 0.5 meters. Next, we search a 4-meter radius around each keypoint for

neighborhood points. We only use a maximum of 16 neighborhood points and randomly

drop points if there are more neighbors. The neighbors’ point features are concatenated

with their relative position to the keypoints and fed to another MLP of [258, 258], fol-

lowed by a maximum aggregation. The aggregated features are added to the keypoint’s

point feature, following Equation 4.8. Optional features from temporally aggregated lidar

points can be further concatenated to the keypoint’s point feature as shown in Equation

4.10.

4.3. EXPERIMENTAL EVALUATION 56

The feature vector of the keypoints is then processed by the classification headers and

localization headers. For each object category, the classification header is an MLP of [128,

128, K] units, where K is the number of orientation bins of that category. The localization

header is an MLP of [128, 128, 7] for each bin. Note that the localization header regresses

a fine-grain orientation within each bin. The nuScenes dataset has ten object categories

for 3D object detection. As mentioned in Chapter 4.2.3, we split the object of the same

category into multiple bins using the object’s orientation. We split all objects into four bins

θ ∈ [0, π

2), [
π

2 ,π), [π,
3π

2), and [3π

2 ,2π), except two categories, barriers and traffic cones.

For barriers we only predict the orientation in [0, π

2), [
π

2 ,π) because it is symmetric. For

traffic cones, we do not predict their orientation and set θ = 0.

We trained the model end to end with a batch size of 2 using the Adam Optimizer [74]

with γ1 = 0.9 and γ2 = 0.999. We use cosine learning rate decay with 8K warmup steps.

The initial learning rate is 10−4, and it decays to 0 in 256K iterations. For all models except

the model with aggregated lidar points, we train for 256K steps. Our implementation uses

Python and the Tensorflow 2.0 library. Each training takes around three days on a PC

with two 1080Ti GPUs. We reduced the training steps to 200K for the model with lidar

aggregation because of the increased computational cost.

4.3.3 Results on the nuScenes Dataset

We trained our model on the nuScenes training set and tested it with different numbers of

lidar scanning lines on the validation set. Table 4.1 and Figure 4.1 present the results. A

single sweep of lidar in nuScenes contains 32 lines. For experiments with 8 and 16 lidar

scanning lines, we skip lidar scan lines appropriately. For experiments with more than 32

4.3. EXPERIMENTAL EVALUATION 57

Scan Lines # Sweeps Method mAP ↑ car truck bus trailer cons. ped. moto. bicycle cone barrier mAOE↓

320 10

PointPillars [4] 44.6 81.1 50.0 63.4 35.2 11.8 72.2 29.1 6.3 47.0 49.9 0.32
CBGS [75] 50.6 81.5 51.6 66.7 37.4 14.6 77.8 41.7 17.6 57.2 59.3 0.27
CP-PP [76] 50.2 84.0 53.5 64.3 31.9 12.3 78.9 43.9 18.2 54.8 60.3 0.39
CP-VN [76] 57.1 85.2 56.3 67.0 35.6 16.3 84.7 56.7 35.8 67.2 65.9 0.31

Ours 52.6 80.3 45.3 61.0 23.1 16.6 77.1 57.0 42.1 68.5 55.0 0.45

256 8

PointPillars [4] 43.5 80.5 49.7 62.4 34.4 10.8 71.3 27.3 4.6 45.4 48.7 0.32
CBGS [75] 50.2 81.6 51.3 67.0 37.3 13.9 77.5 42.4 15.8 56.8 58.7 0.27
CP-PP [76] 49.4 83.5 52.5 63.8 31.7 11.4 78.0 42.0 16.8 54.3 59.7 0.40
CP-VN[76] 56.1 84.7 55.6 66.3 34.6 15.6 84.1 53.8 33.8 66.6 65.6 0.32

Ours 52.6 80.3 45.3 60.7 23.1 16.7 77.1 56.7 42.6 68.6 55.3 0.45

128 4

PointPillars [4] 39.3 76.8 44.8 59.1 31.7 7.2 60.8 24.9 1.3 40.9 45.2 0.38
CBGS [75] 46.57 79.3 47.9 64.6 35.1 10.6 72.8 37.2 10.1 52.7 55.5 0.31
CP-PP [76] 44.8 80.4 48.5 60.2 29.9 7.4 71.0 34.7 8.0 50.2 57.6 0.44
CP-VN [76] 51.7 82.2 52.1 63.4 33.5 10.9 80.4 44.9 21.9 63.4 63.9 0.36

Ours 52.3 80.0 45.2 61.2 23.4 16.9 75.9 55.5 41.8 68.2 54.9 0.4768

64 2

PointPillars [4] 34.9 72.5 39.8 54.9 27.5 3.7 51.2 19.5 0.1 35.9 43.5 0.51
CBGS [75] 41.7 75.6 43.3 60.4 29.3 6.0 64.6 28.8 4.4 46.5 51.9 0.41
CP-PP [76] 40.5 76.9 43.5 56.2 27.1 4.7 63.7 29.9 3.3 44.0 55.3 0.55
CP-VN [76] 47.2 78.6 47.3 59.9 29.2 6.9 75.3 39.9 15.3 58.2 60.9 0.47

Ours 52.0 79.6 44.9 61.2 23.4 16.4 74.7 54.7 41.6 68.9 55.0 0.51

32 1

PointPillars [4] 30.5 68.3 35.1 50.5 22.6 2.3 42.4 13.9 0.0 30.5 39.5 0.63
CBGS [75] 35.1 70.5 38.2 55.0 20.8 2.8 55.6 19.9 1.3 38.9 48.0 0.53
CP-PP [76] 35.6 72.9 37.3 51.8 21.10 2.2 56.7 23.0 0.7 37.9 52.2 0.62
CP-VN [76] 41.6 74.7 41.9 53.4 24.2 3.7 69.4 31.1 8.8 51.7 57.6 0.55

Ours 51.7 79.1 44.7 61.3 23.2 16.5 74.4 53.5 41.1 68.3 54.9 0.54

16 1

PointPillars [4] 18.2 48.4 20.4 34.2 10.7 0.4 23.3 2.4 0.0 19.2 23.1 0.72
CBGS [75] 18.6 48.9 20.0 31.0 5.5 0.2 26.3 5.5 0.0 21.3 27.4 0.63
CP-PP [76] 22.0 52.9 21.9 34.1 10.2 0.5 33.3 4.9 0.0 24.9 37.3 0.72
CP-VN [76] 23.6 53.3 24.4 31.4 7.5 0.2 40.0 8.2 0.7 32.6 37.2 0.63

Ours 44.0 63.0 39.2 55.5 21.40 13.8 62.7 45.7 30.5 59.9 48.6 0.55

8 1

PointPillars [4] 6.4 22.9 6.9 11.3 0.4 0.0 5.2 0.0 0.0 7.9 9.0 0.83
CBGS [75] 5.2 21.0 5.0 10.7 0.0 0.0 2.3 0.0 0.0 6.5 6.4 0.91
CP-PP [76] 7.7 25.9 6.6 9.9 1.0 0.0 8.1 0.0 0.0 10.3 14.7 0.85
CP-VN [76] 7.2 25.0 7.1 9.6 0.0 0.0 8.5 0.0 0.0 11.6 10.2 0.84

Ours 28.7 42.3 28.1 33.9 11.7 9.9 44.3 23.0 15.7 40.3 31.7 0.62

Table 4.1: The Average Precision (AP) and Average Orientation Error (AOE) comparison
on nuScenes validation dataset with different numbers of lidar scanning lines.

Modality mAP
PointPillars[4] Lidar 40.1
PointPainting [21] Lidar+Images 46.4
CenterPoint[76] Lidar 58.0
MonoDis[77] Images 30.4
Ours Lidar+Images 50.8

Table 4.2: Average precision on nuScenes test dataset. We test the model accuracy with
ten lidar sweeps, the common practice among the state-of-the-art approaches.

4.3. EXPERIMENTAL EVALUATION 58

Figure 4.4: The qualitative comparison of methods on the nuScenes validation dataset (a
single lidar sweep of 32 lines). We visualize images from one camera and highlight the
points in the images. Our method detects objects in sparse point regions and increases the
detection range.

4.3. EXPERIMENTAL EVALUATION 59

lines, we use the official devkit of nuScenes to aggregate multiple lidar sweeps over time.

In Table 4.1, we compare the nuScenes mean Average Precision (mAP) and Average Ori-

entation Error (AOE) with state-of-the-art methods. Our method leads in accuracy with a

large margin in the case of a single lidar sweep (8 lines, 16 lines and 32 lines), demon-

strating that our method achieves our stated goal. In the case of multiple lidar sweeps, our

method remains comparable to the others, despite a relatively simple structure to utilize

point cloud features. We also report the accuracy on the test dataset in Table 4.2. As the

nuScenes test server forbids frequency upload, we only test the model accuracy with ten

lidar sweeps, the common practice among the state-of-the-art approaches. We emphasize

that our focus is on the performance of a sparse point cloud. Figure 4.4 shows the qual-

itative comparison of different methods using a single lidar sweep (32 scan lines). Our

method detects objects from more sparse point cloud regions and increases the detection

range. In Figure 4.5, we show more qualitative results of our model on different point

cloud sparsity.

4.3.4 Results on the Level 5 Dataset

We trained our model on the Level 5 training split and evaluated the model on the valida-

tion split [78]. The Level 5 dataset is collected using two different sensor configurations.

Around 80% of the samples contain point clouds from a 40-beam lidar and camera images

of resolution 1224× 1024. The remaining samples contain point clouds from a 64-beam

lidar and camera images of 1920× 1080. To remove the discrepancy, we remove the 64-

beam samples in both our training split and validation split. Unlike the nuScenes dataset,

the Level 5 dataset does not provide lidar scan line indices. Therefore, we use a clustering

4.3. EXPERIMENTAL EVALUATION 60

Figure 4.5: Qualitative results on different lidar densities. The green box indicates the
ground truth. The blue box indicates the predictions.

4.3. EXPERIMENTAL EVALUATION 61

Car mAP@0.5IoU
40 scan lines 20 scan lines

PointPillars [4] 76.3 68.6
Ours 79.1 69.6

Table 4.3: Average precision on the Lyft Level 5 validation split.

Distance Multiview Image Feature Pooling Temporal point Pooling mAP
34.0

✓ 43.5
✓ ✓ 43.8
✓ ✓ ✓ 51.69
✓ ✓ ✓ ✓ 52.6

Table 4.4: Ablation study on the nuScenes validation dataset.

algorithm to assign scan line indices. We then simulate a more sparse 20-beam lidar by

skipping lidar scan lines. Also, the Level 5 dataset is unbalanced with the majority of

annotations being cars. Therefore, we focus on the mean average precision (mAP) of cars.

The results are shown in Table 4.3. Our method achieves 3% and 1% more mAPs than the

PointPillar baseline when using a single lidar sweep of 40 scan lines and 20 scan lines,

respectively.

4.3.5 Ablation Study

In this section, we study the effect of each component in the proposed algorithm using

only the nuScenes dataset due to its broader attributes. Table 4.4 shows the overall results.

Unless described otherwise, the training configurations for all the models in the ablation

study are the same.

Distance as a feature. Row 1 of Table 4.4 shows a baseline implementation that uses

the image features from a single camera to classify lidar points and regress the local co-

4.3. EXPERIMENTAL EVALUATION 62

ordinates. Row 2 of Table 4.4 shows the detection accuracy of a model that uses both the

image features and the distance between the point and the camera. The distance feature

significantly improves the detection accuracy. Intuitively, the image features contain infor-

mation about the object’s scale and can be used to predict the distance range of the object.

By comparing the input distance, the network can learn to classify the occluded points as

negatives.

Multiview features. In Row 3 of Table 4.4, we show the detection accuracy by combin-

ing image features from multiple cameras. Compared to Row 2, which randomly picks

image features from one camera, combining multiple images has a small improvement in

accuracy. We hypothesize that the overlapped camera fields of view allow most of the

objects to be fully observed already. Therefore the multi-view improvement is not very

significant.

3D pooling Row 4 and Row5 of Table 4.4 shows the effectiveness of 3D pooling. In Row

4, we test the model accuracy with a single lidar sweep. As all the points are from the same

timestamp, this test removes the impact of pooling features from asynchronous points and

only shows the improvement from pooling points with image features using Equation 4.8.

In Row 5, we test the model with ten lidar sweeps. The improvement from Row 5 to Row

4 shows that our proposed algorithm can also utilize dense point cloud features 1.

1When a point cloud is denser, complex point cloud backbones can be used to better utilize the point
structures

4.4. SUMMARY 63

4.4 Summary

In this chapter, we described our camera-lidar fusion method to boost object detection

on a point cloud. Our proposed method can utilize a point cloud with low point density,

which can be obtained from relatively inexpensive lidars. This, in turn, will enable broader

use of lidar in cost-sensitive application domains such as consumer vehicles, warehouse

robots and work zones. Our method estimates a lidar point’s local object coordinates using

multi-view image features and locates the object by registering local object coordinates to

lidar coordinates. Our experiments with the nuScenes and the Level 5 datasets showed that

our proposed method achieves leading performance when combining lidars with low-cost

cameras. In the next chapter, we start to tackle another perspective of overall system cost

by reducing the amount of labeled data for training.

Chapter 5

Self-Supervised Learning for Object

Detection

5.1 Introduction

Modern perception systems often utilize neural networks and tackle complicated driv-

ing scenarios in a data-driven manner. It often utilizes a large amount of labeled data

for training. However, such labeled data require manual annotation, which is costly and

time-consuming. In many scenarios, the labeled data are not available or are prohibitively

expensive to gather, bringing challenges to autonomous driving development. Unlabeled

driving data, however, are relatively abundant and low-cost, attracting many research in-

terests.

Many studies have been done on utilizing unlabeled data. Recently, self-supervised

learning has achieved promising results in natural language processing [27] and image

64

5.1. INTRODUCTION 65

Figure 5.1: Our self-supervised pretraining improves the object detection performance for
various amounts of labeled data.

classification [24, 25, 26]. One common paradigm of self-supervised learning is unsuper-

vised pretraining followed by supervised fine-tuning. During the unsupervised pretraining

phase, a neural network is trained by pretext tasks using a large amount of unlabeled data.

These pretext tasks create their own supervision without manual annotations and allow

the neural network to learn proper data representation. After unsupervised pretraining, the

neural network is fine-tuned for downstream tasks using a small amount of labeled data.

In the point cloud domain, many studies follow the self-supervised learning approaches

for image classification. Pretext tasks such as point cloud assembling [50], orientation es-

timation [52], and contrastive learning [28] have been used to improve point cloud classi-

fication and segmentation. However, few studies have explored outdoor point cloud object

detection, a crucial component of autonomous driving. Moreover, recent findings [49, 48]

in the image domain show that 2D object detection may not benefit from self-supervised

5.2. OUR SELF-SUPERVISED LEARNING METHOD 66

pretraining designed for classification. Therefore, it remains an open question regarding

how self-supervised learning can be effectively utilized for point cloud object detection.

In this chapter, we investigate self-supervised learning for outdoor 3D object detection.

We build upon the prevalent contrastive learning method and propose a set of geometric

pretext tasks to improve the pretraining performance. We then conduct experiments in

the nuScenes autonomous driving dataset with various amounts of labeled data. Our ex-

periments reveal three insights: (1) pretraining with contrastive loss alone improves the

average precision (AP) but negatively impacts the object heading accuracy, (2) combining

contrastive and geometric pretext tasks benefits both the average precision and heading

accuracy, and (3) the improvement by self-supervised pretraining remains even with an

increased amount of labeled data and training steps.

In summary, our contributions are:

• We evaluate the prevalent contrastive loss and reveal its limitation on heading accu-

racy in point cloud 3D object detection.

• We propose a combination of geometric pretext tasks and contrastive loss to improve

self-supervised learning for point cloud object detection.

• We conduct extensive experiments for different pretraining methods using various

amounts of labeled data from the nuScenes autonomous driving dataset.

5.2. OUR SELF-SUPERVISED LEARNING METHOD 67

Figure 5.2: The overall architecture of our proposed self-supervised learning. Two sets of
random rotation, translation and scaling parameters transform the input point cloud into
two different views during the unsupervised pretraining. A contrastive loss pulls the point
features from the same point cloud position close to each other while pushing the features
from different point positions away from each other. Meanwhile, the point features from
the same point cloud position are concatenated and used to predict the difference on scales
and observation angles. When fine-tuning for object detection, the point features are used
to predict the object type and the bounding box to that the point belongs.

5.2. OUR SELF-SUPERVISED LEARNING METHOD 68

5.2 Our Self-Supervised Learning Method

5.2.1 Overall Architecture

Figure 5.2 shows the overall structure of our self-supervised pretraining. We randomly

sample two sets of transformation parameters during the unsupervised pretraining phase,

including random rotation around the height axis, random translation, and random scaling.

We use these two sets of transformation parameters to augment the input point cloud and

create two transformed point clouds. A point-based neural network backbone encodes

the point features for each transformed point cloud. We then apply a contrastive loss

which pulls together the features of the same point in two transformed point clouds while

pushing apart the features of different points. Such contrastive loss supervises the neural

network to learn discriminative features that are invariant to transformations. However,

the point features must still capture the point cloud geometries to generate accurate 3D

bounding boxes. Therefore, we also add two pretext tasks: observation angle difference

recognition and relative scaling recognition. As discussed later in the experiments, these

two pretext tasks can further benefit the object detection task and avoid degrading box

heading accuracy caused by contrastive loss.

After the unsupervised pretraining phase, we fine-tune the backbone neural network

for object detection. We use the extracted point features to classify the object category and

bounding box that each point belongs to. Overlapping bounding boxes are removed by

standard non-maximum suppression.

5.2. OUR SELF-SUPERVISED LEARNING METHOD 69

5.2.2 Point-based Backbone Network

We use a lightweight point-based backbone network similar to PointGNN [33]. The net-

work first samples a set of keypoints by voxel downsampling and aggregates each key-

point’s neighborhood points following a PointNet-like [10] structure. Given a keypoint pi,

its aggregated feature vector ypi is computed as follows:

ypi = max
||pi−p j||22<r

({ f ([t j− ti,a j,Rpi(p j− pi)])}) (5.1)

where p j is a lidar point within a distance radius r of pi, a j is the laser reflection intensity

of p j, t j and ti are the timestamps for p j and pi respectively, Rpi is a rotation matrix that

removes the yaw angle of pi, and f (.) is an MLP layer.

The features of keypoints are then iteratively refined by a residue function. In the tth

iteration, the features are computed as follows:

yt+1
pi

= yt
pi
+δyt+1

pi
(5.2)

δyt+1
pi

= max
||pi−p j||22<r‘

({ f t([yt
p j
,Rpi(p j− pi +gt(yt

pi
))])}) (5.3)

where p j is also a keypoint, yt
p j

is p j’s features computed in the previous iterations, and

gt(.) is another MLP layer to compute a coordinate residue.

5.2.3 Contrastive Learning

Contrastive learning aims to pull together the features of the same point in the different

transformed point clouds and push apart the features of different points. Such a learning

5.2. OUR SELF-SUPERVISED LEARNING METHOD 70

goal enables the network to extract robust discriminative features invariant to transforma-

tions. Contrastive learning on point cloud [28] shows promising results for point cloud

classification and segmentation. We use the PointInfoNCE loss proposed in PointContrast

[28]:

Lc =−Σi log
exp(y1

pi
· y2

pi
/τ)

Σi ̸= j exp(y1
pi
· y2

p j
/τ)

(5.4)

where y1
pi

and y2
pi

are point features extracted from two transformed point clouds and τ is

a temperature constant.

5.2.4 Geometric Prediction Tasks

The PointInfoNCE loss supervises the network to learn features invariant to transforma-

tions such as point cloud rotation and scaling. Ideally, the neural network should output

the same feature vectors regardless of point cloud transformations. In other words, the ge-

ometric information such as point cloud rotation and scale may diminish from the features.

However, one of the critical tasks for an object detection algorithm is to locate the object

and generate accurate bounding boxes for use in path planning. The neural network must

keep the geometric attributes of the point cloud to generate the correct bounding boxes.

For example, the features from the neural network need to contain point cloud rotation

information so that the bounding box heading can be correctly computed. Therefore, we

propose a set of geometric prediction tasks to pretrain the network jointly with the con-

trastive loss.

5.2. OUR SELF-SUPERVISED LEARNING METHOD 71

Figure 5.3: Our detection algorithm predicts the object observation angle α , which is the
angle difference between object heading h and the yaw angle of the ray from the origin to
the point β . Note that the two point clouds have different orientations and origins because
of the different transformations that we apply.

5.2.5 Predict Observation Angle Difference

As shown in Figure 5.3, our object detection algorithm predicts the observation angle for

the object heading. We define the observation angle as the yaw angle difference between

the object heading h and the ray connecting the origin (the lidar center when no random

translation) and a lidar point β :

α = h−β (5.5)

In the unsupervised setting, we do not know the object heading h. Thus, we cannot get

an observation angle to supervise the network directly. However, we can compute the

difference between observation angles in two of the transformed point clouds:

∆α = (h1−β1)− (h2−β2) = (h1−h2)− (β1−β2) (5.6)

5.2. OUR SELF-SUPERVISED LEARNING METHOD 72

where h1− h2 equals the difference of two random rotations we apply to the point cloud

and (β1−β2) can be computed using transformed point coordinates. Therefore, ∆α can

be computed without labels.

We then add a header for the network and supervise it to recognize the observation

angle difference. We concatenate the feature vectors of the same point in two transformed

point clouds and then apply a symmetric loss function for this pretext task:

Lr = Huber(MLPr([y1
pi
,y2

pi
]),∆αpi) + Huber(MLPr([y2

pi
,y1

pi
]),−∆αpi) (5.7)

5.2.6 Predict Relative Scales

The ideal bounding boxes fit tightly to the object contour and adapt their sizes to the ob-

ject’s point cloud. Similar to the observation angle difference prediction, we can compute

the relative scales between two transformed point clouds without knowing the actual ob-

ject dimensions. Given object dimensions dims and two random scaling factors s1 and s2,

the relative object scale in two transformed point clouds are:

∆s =
s1dims
s2dims

=
s1

s2
(5.8)

Therefore, we also concatenate feature vectors of the same point in two transformed

point clouds and add a header for scale prediction. We define a loss function for this

pretext task as:

Ls = Huber(MLPs([y1
pi
,y2

pi
]), log(

s1

s2
)) + Huber(MLPs([y2

pi
,y1

pi
]), log(

s2

s1
)) (5.9)

5.2. OUR SELF-SUPERVISED LEARNING METHOD 73

The total loss function of the network in pretraining is then:

L = Lc +Lr +Ls +Lreg (5.10)

where Lreg is the network’s regularization loss.

5.2.7 Dataset and Training Hyperparameter

We use the nuScenes [20] autonomous driving dataset in our experiments. The nuScenes

dataset contains sensor data from different driving scenes. Each scene contains a sequence

of samples. In total, the nuScenes dataset provides a train split of 28130 samples from

700 scenes and a val split of 6019 samples from 150 scenes. Each sample contains records

from a suite of sensors, including a 32-line lidar, radar, IMU, and six cameras. For our

point cloud recognition experiments, we focus on the lidar data.

To study the impact of self-supervised learning with different amounts of labeled

data, we create a series of random splits which contains [35,70,175,350] scenes from

the train split. They correspond to [5%,10%,25%,50%] of the total train scenes and

have [1413,2817,7029,14047] samples, respectively. In our self-supervised representa-

tion learning, we treat all the samples in train as unlabeled data for training. For the

downstream 3D object detection task, we use one of the splits as the labeled data to train

the network. We then use the completely labeled val split for evaluations.

For all the neural network training in our experiments, we use the Adam [74] optimizer

and cosine learning rate decay with a warmup [79] of 8K steps. We use an initial learning

rate of 10−3 for all the training. For the unsupervised pretraining, we use 1M training

5.3. EXPERIMENTAL RESULTS 74

Labels Method car truck bus trailer cons. ped. moto. bicycle cone barrier
Train from scratch 0.6475 0.2012 0.2465 0.1282 0.0324 0.5772 0.121 0.0029 0.2171 0.2757

Pretrained by PointConstrast 0.6407 0.201 0.267 0.0961 0.0189 0.6498 0.1664 0.0175 0.256 0.272210 %
Ours 0.6547 0.2127 0.284 0.1274 0.0308 0.651 0.1501 0.0067 0.2386 0.2851

Train from scratch 0.6684 0.2225 0.3462 0.1349 0.0625 0.5898 0.2458 0.015 0.3097 0.3002
Pretrained by PointConstrast 0.6733 0.2305 0.357 0.1441 0.0613 0.6889 0.2781 0.0209 0.3377 0.307825 %

Ours 0.6847 0.2663 0.3815 0.1624 0.0648 0.7026 0.2917 0.0591 0.336 0.2966
Train from scratch 0.6822 0.2389 0.3365 0.1687 0.0581 0.6409 0.2283 0.0462 0.3058 0.309

Pretrained by PointConstrast 0.6746 0.2367 0.3618 0.1576 0.0673 0.7173 0.2824 0.0585 0.3749 0.330750 %
Ours 0.6886 0.2738 0.3726 0.1781 0.0751 0.7231 0.2839 0.0832 0.3875 0.3292

Train from scratch 0.6846 0.2457 0.3681 0.16 0.0839 0.6518 0.2305 0.042 0.3607 0.3028
Pretrained by PointConstrast 0.6789 0.2451 0.3966 0.1495 0.0838 0.7162 0.278 0.0712 0.4016 0.3109100%

Ours 0.6934 0.2791 0.3782 0.179 0.0852 0.732 0.3031 0.0976 0.4037 0.3178

Table 5.1: The Mean Average Precision (mAP) of models trained by different portions of
labeled. The results are conducted on the validation set of the nuScenes dataset.

steps. For the fine-tuning, we use 32K training steps unless we explicitly change them for

controlled experiments. To improve training stability, we apply a gradient clip [80] when

the total gradient norm exceeds 1.0. We use a batch size of 2 for all training.

5.3 Experimental Results

5.3.1 The Effects of Different Pretext Tasks

We conduct experiments on object detection with various amounts of training labels. We

compare training performance from scratch, pretraining using contrastive loss and pre-

training with a combination of contrastive loss and geometric pretext tasks. Figure 5.1

shows the mean Average Precision (mAP) (the higher, the better), and Figure 5.4 shows

the mean Average Orientation Error (mAOE) for the object heading estimation, where

lower the value, better the performance. Figure 5.7 shows the qualitative results of object

detection that are fine-tuned by 10% of training data from different pretraining methods.

In Table 5.1, we show the test results (mAP) for each object type. The results are con-

5.3. EXPERIMENTAL RESULTS 75

Figure 5.4: The mean Average Orientation Error (mAOE) of model initialized by random
weights, pretraining with contrastive loss alone and our combination of contrastive loss
and geometric pretext tasks. The lower, the better.

ducted using the nuScenes validation split. In general, it can be observed that our pre-

training method achieves better accuracy than training from scratch and pretraining using

contrastive loss.

5.3.2 Discussion

Pretraining benefits average precision. As can be observed in Figure 5.1, both pretrain-

ing with contrastive loss and our proposed tasks help the detection algorithm to achieve a

higher mAP than training from scratch. The benefits remain when we increase the amount

of labeled training data.

Pretraining with contrastive loss alone may hurt bounding box orientation esti-

mation. Although pretraining with contrastive loss helps with general average precision,

5.3. EXPERIMENTAL RESULTS 76

Figure 5.5: The mean Average Precision of models when fine-tuned with different numbers
of training steps. The higher, the better.

Figure 5.6: The mean Average Orientation Error (mAOE) of models when fine-tuned with
different numbers of training steps. The lower, the better.

5.3. EXPERIMENTAL RESULTS 77

it hurts the bounding box orientation estimation. Figure 5.4 shows that when pretraining

with contrastive loss alone, the heading error can be larger than that of trained from scratch.

The transformation invariant features that contrastive loss learned may miss essential geo-

metric cues. These invariant features may be less sensitive to the object orientation change.

For autonomous driving, where object localization accuracy is critical, pretraining using

contrastive loss alone is hence not a good strategy.

Our proposed pretraining method benefits both average precision and heading

estimation. Our proposed combination of contrastive loss and geometric tasks achieves

higher average precision and lower orientation errors than contrastive-only pretraining and

training from scratch. Noticeably, our pretext tasks of predicting observation angle and

relative scale overcome the degradation of object heading estimation by contrastive loss.

5.3.3 The Effects of Training Steps

To study the effects of pretraining with different training steps, we perform fine-tuning

with 2× (64K) and 4× (128K) steps using 10% of the labeled data. The results are shown

in Figure 5.5 and 5.6. We can observe that, with more training steps, the performance of

object detection generally increases. Our proposed pretraining method achieves similar

mAP as the contrastive learning method when we run 4× training steps. However, our

gain on object orientation estimation remains significant in both 2× and 4× training steps.

5.3. EXPERIMENTAL RESULTS 78

Figure 5.7: Qualitative results of object detection using 10% of training data.

5.4. SUMMARY 79

5.4 Summary

In this chapter, we studied the problem of utilizing unlabeled data to improve point cloud

object detection for use in autonomous vehicles. We used the realistic nuScenes au-

tonomous driving dataset to conduct experiments on self-supervised learning methods.

The prevalent contrastive loss for object detection from a point cloud has core limitations.

We proposed a combination of contrastive loss and a set of geometric recognition tasks,

which prevents the performance degradation of contrastive loss. Our experiments using

various amounts of labeled data and training steps showed that our proposed method can

utilize unlabeled data to improve the mean average precision and object heading estima-

tion in object detection. Our results demonstrate the potential to use relatively abundant

and cheap unlabeled data to improve the perception system for autonomous driving while

keeping the overall system cost relatively low. In the next chapter, we look at important

real-world driving scenarios and describe efficient solutions to address perception chal-

lenges in work zones.

Chapter 6

Challenging Scenarios: Work Zone

Detection

6.1 Introduction

Autonomous vehicles have enormous potential to improve transportation efficiency and

driving safety. One fundamental task of an autonomous vehicle is to understand the driv-

able area around it. An autonomous vehicle commonly has access to a map database

that contains road geometries and lane information. However, road maintenance and re-

pair needs often create work zones which the map database may not record accurately in

advance. Such a work zone can occur quickly due to emergencies and can also change

dynamically as road work proceeds. Therefore, an autonomous vehicle cannot solely rely

on a map database, and it needs to detect work zones in real-time. In this chapter, we

describe our solutions to detect work zones.

80

6.1. INTRODUCTION 81

Many studies [55, 53, 56] focus on detecting the presence of a work zone without

inferring its fine-grained contour. The awareness of a work zone enables the vehicle to

warn drivers of dangerous driving conditions. However, for a vehicle to navigate through

the work zone fully autonomously, the work zone boundary information is indispensable.

Detection of a work zone boundary, however, is non-trivial. The boundary often com-

prises loosely-placed items such as traffic cones, barrels, channelizers, barriers and traffic

signs. These items can be sparse and may not form a tight enclosure of the work zone.

If agnostic to the work zone, a drivable area detection algorithm may find a pathway in

the space between these items, leading to a dangerous route into the work zone. It is,

therefore, important for a detection algorithm to couple the recognized work zone with its

boundaries.

The task of work zone detection is relatively unexplored. One challenge is the lack of

proper data. Conventional driving datasets [53] are mainly based on camera videos without

capturing the multi-modality sensor configuration in a modern autonomous vehicle. Also,

these datasets lack the ground truth geometries of captured work zones, leading to insuffi-

cient evaluation. Recently, many additional autonomous driving datasets [20, 19, 18] have

been released. Yet, they too do not provide annotations for work zones. Another chal-

lenge of studying the work zone detection problem is the lack of appropriate definitions

and evaluation methods. There has also been little discussion on the algorithm’s output

format.

In this chapter, we first formulate the work zone detection problem from a practical

perspective. We define a standard output format that is suitable for a multi-modality sensor

configuration. We then provide work zone annotations for the autonomous driving dataset

6.1. INTRODUCTION 82

Figure 6.1: Examples of diverse work zones. Different work zones have varied spatial and
temporal scales, and they may not be updated in a map database.

6.2. OUR WORK ZONE DETECTION 83

nuScenes [20], enabling a realistic evaluation. Next, we propose a detection pipeline and

baseline implementations using images, a lidar point cloud and their fusion.

In summary, our contributions are:

• We propose a definition of the work zone detection problem and suggest practical

evaluation metrics.

• We add a set of work zone annotations to the popular autonomous driving dataset,

nuScenes.

• We propose a work zone detection pipeline using multi-modality sensor configura-

tions and three baselines using images, a lidar point cloud and their fusion.

6.2 Our Work Zone Detection

In this section, we first provide a taxonomy on the different aspects of a work zone. We

then formulate the work zone detection problem, which takes into consideration multi-

modality sensor configurations. Finally, we propose a set of metrics to evaluate the perfor-

mance of a work zone detection algorithm.

6.2.1 Work Zone Taxonomy

A work zone is an area that is temporarily closed for regular vehicular traffic due to road-

work. For direct use by an autonomous vehicle, as shown in Figure 6.2, we categorize a

work zone by its information source, its semantics and its environmental attributes. Typ-

ically, a work zone’s information comes from the vehicle’s onboard perception or from

6.2. OUR WORK ZONE DETECTION 84

Figure 6.2: A taxonomy of work zones.

6.2. OUR WORK ZONE DETECTION 85

prior knowledge. Prior knowledge is the information known about a work zone before

a vehicle encounters it. As most modern autonomous vehicles have access to a map

database, they may be able to query work zone information from the map. The map

may record the work zone information, especially when a work zone lasts for an extended

period. Another source for the prior knowledge of a work zone is the vehicle’s connection

to other vehicles (V2V) or the infrastructure (V2I). These connections can transmit work

zone information in real time. However, there is no guarantee that the prior knowledge

exists or is correct. If a work zone appears on short notice or has changed recently, the

prior knowledge can be misleading. Therefore, the vehicle’s onboard perception needs to

correct any mistakes and detect the work zone without any priors.

A work zone has varied semantic implications to traffic. First, a work zone changes

the original drivable area. Depending on the area that a work zone occupies, traffic can

go through the same lanes alongside the work zone, traverse the adjacent lanes, or even

share or borrow lanes in the opposite driving direction. In the extreme case where a work

zone occupies the entire road, a temporary lane via a road shoulder or a detour to another

road may be needed. Secondly, a work zone may also impose additional restrictions on

permitted vehicles based on physical dimensions and speeds. For instance, a work zone

may have a potentially reduced speed limit. An autonomous vehicle must recognize a

work zone’s semantics and intelligently plan its driving path. Although the behavior and

path planning in a work zone are also challenging and critical, the accurate detection of a

work zone serves as an essential prerequisite and is the focus of this chapter.

Work zones have different durations. Although many work zones exist for a relatively

long period and can be perceived as stationary by vehicles, some road work creates a

6.2. OUR WORK ZONE DETECTION 86

moving work zone. For example, when construction workers are stripping or repainting the

lane markers, they often move the work zone along as they progress. Similarly, other road

activities like street cleaning and tree trimming may also create a moving work zone. In

general, a moving work zone has a more demanding requirement on work zone detection

than a stationary one. An autonomous vehicle also needs to be aware of a work zone’s

moving speed and plan its path safely.

A work zone may also bring different attributes to the driving environment. Specifi-

cally, a work zone may bring a new set of objects onto the road, such as flagmen, workers

and construction equipment. An autonomous vehicle needs to be aware of these objects

and understand the work zone-related behaviors. For example, workers may enter or exit

a work zone on a highway. Meanwhile, the work zone may also cause hazardous driving

conditions, for example, water and oil spills. Sometimes, accidents or construction activ-

ities may leave debris on the road or cause dust which limits visibility. Recognizing all

work-zone-related hazards is out of the current scope of our work, and we only focus on

detecting the work zone in this chapter.

6.2.2 Problem Formulation

We define the work zone detection task as finding polygonal representations of work zones

in the vehicle’s Bird’s Eye View (BEV) plane. This representation is useful for multiple

reasons. First, a polygon is a compact format to approximate any closed contour of the

work zone and it is directly applicable to any existing path-planning algorithms that nav-

igate around polygonal obstacles. In general, a work zone can be presented by a single

polygon. In the case of multiple disjoint work zones, multiple polygons are needed. Sec-

6.2. OUR WORK ZONE DETECTION 87

Figure 6.3: An annotation example. The red polygon is the ground truth for a work zone.
The green polygon is the road region. In our evaluation of work zone detection algorithms,
we focus on the overlap between the work zone and the road region.

6.2. OUR WORK ZONE DETECTION 88

ondly, the BEV coordinates are agnostic to the sensor configurations and enable compari-

son between algorithms with different modalities. Formally, we define the expected output

of the detection algorithm as a list of polygons where each polygon is a sequence of points:

Det = [P0,P1, ...] (6.1)

P = [p0, p1, ..., pn−1, pn] (6.2)

where, pi = (xi,yi) is a point on the BEV plane and p0 ≡ pn. For any i and j, the line

segment (pi, pi+1) does not intersect with the line segment (p j, p j+1). We define the BEV

plane as a 2D plane parallel to the flat ground, centered at the position of the autonomous

vehicle. The input to the detection algorithm depends on the sensor configuration and it

can be from a single sensor, multiple sensors, or sensor types.

6.2.3 Evaluation Metric

The ideal detection result of a work zone should be a polygon that encloses the entire

work zone area. However, for autonomous driving purposes, we pay more attention to

the drivable area. As shown in Figure 6.3, we annotate both the work zone region and

the road region. The goal of our evaluation metrics is to estimate the work zone detection

accuracy within only the road region. The road region also comprises polygons, and we

take the intersection between the road region and the detection results (or ground truth

annotations) before evaluation. We propose three types of metrics for evaluation: IoU,

Recall and Precision and maxDist.

Intersection over Union at a Distance (IoU@d). IoU measures the overlap between two

6.2. OUR WORK ZONE DETECTION 89

regions. Given two regions SA and SB, their IoU is calculated as:

IoU(SA,SB) =
|SA∩SB|
|SA∪SB|

(6.3)

where |.| represents the area of the region. For two completely overlapping regions, the

IoU score is 1. For two completely disjoint regions, the IoU score is 0. The IoU is a

measure of the alignment between the detected region and the ground truth. However,

it does not directly consider the distance factor. For autonomous driving, the detection

accuracy at different distances has varied impacts on driving safety. First, a long detection

range allows sufficient time and space for safe motion planning. Secondly, detection errors

within a short range may be catastrophic. To evaluate the work zone detection accuracy at

different distances, we measure the IoU at multiple distance thresholds. Given a distance

threshold dth, we draw a circle Sr of radius dth in the BEV plane around the vehicle center.

We then calculate the IoU score between the detected work zone Sdet and ground truth Sgt

as follows:

IoU@dth(Sdet ,Sgt) =
|(Sdet ∩Sgt)∩Sr|
|(Sdet ∪Sgt)∩Sr|

(6.4)

We use a set of thresholds dth = {10m,20m,50m} in our experiments 1. When there is no

work zone area within the distance threshold, the IoU is invalid. We take the average of

valid IoU values as the final score.

Recall and Precision. The IoU score measures the overlap between the detection and

its ground truth. However, it does not directly reflect whether an algorithm detects the

work zone or not. Also, when there is no work zone area, the IoU does not reflect any

1On highways, larger distances will be necessary.

6.2. OUR WORK ZONE DETECTION 90

false positive detections. To measure the detection rate and detection accuracy, we use

the well-known metrics of recall and precision. We first associate the detected work zone

regions and ground truth annotations by their IoU. If the IoU between a detected work

zone polygon and a ground truth polygon reaches (say) 0.1, we consider that the ground

truth work zone has been detected. If a work zone polygon does not match any ground

truth polygons, we consider this detection to be false. We compute the recall as the ratio

between the number of detected work zones DT and the number of total ground truth work

zones DGt . Similarly, we compute the detection precision as the ratio between the number

of correctly detected work zones DT and the number of work zones the algorithm outputs

including the false detections DF .

Recall =
DT

DGt
(6.5)

Precision =
DT

DT +DF
(6.6)

Note that the recall metric is valid only when the ground truth work zone exists. Similarly,

precision is valid only when the algorithm generates detections. We filter out all the other

invalid cases and take the average value of valid recall and precision values.

Maximum Detection Distance (maxDist). For safety, we also want to know the maxi-

mum distance at which an algorithm detects a work zone. We record the detection results

when the vehicle drives around the same work zone and compute the distance between

the detected work zone and the vehicle. After completing a driving sequence, we take the

maximum detection distance as the maxDist value for this sequence. We then take the

average value of maxDist across all testing sequences.

6.2. OUR WORK ZONE DETECTION 91

Figure 6.4: WZDetector: a general pipeline for work zone detection.

6.2.4 Our Work Zone Detection Pipeline

We design a general pipeline for work zone detection that allows inputs from different

sensing modalities. As shown in Figure 6.4, our proposed work zone detection pipeline

consists of three stages: a work zone keypoints detection module, a coordinate lifting

module and a contour discovery module. A work zone is morphable without a fixed shape,

raising challenges to detecting many work zone in a straightforward manner. However,

some features that characterize a work zone remain invariant. For example, work zone

objects such as traffic cones, barrels, channelizers, poles or barriers are present in most

work zones. The first step of our pipeline is to find some keypoints from those common

objects that indicate the existence of a work zone. The keypoints detection module outputs

the keypoint position in the sensor domain that may not be directly usable by the motion

planner. Therefore, the coordinate lifting module converts the keypoints from the sensor

domain to the vehicle’s BEV plane, regardless of the sensor modality. Finally, the contour

discovery module infers a work zone area and finds its contour using the keypoints in the

BEV plane. Our baseline implementations use three different sensor modalities to detect

keypoints and lift them to the BEV plane. Once the keypoints are in the BEV plane, we

use the same contour discovery module to generate the work zone polygons.

6.3. IMPLEMENTATION 92

a. Image-based Work Zone Detection

b. Lidar-based Work Zone Detection

c. Fusion-based Work Zone Detection

(1) Image keypoint detection (2) Homography transformation

(1) Lidar keypoint detection (2) Projection

(1) Lifted-2D detection

Lidar detections

(2) Merge with lidar detection

d. Contour Discovery

Keypoints

Boundary
points

Convex hull

Figure 6.5: Architectures of three baseline implementations using images, a point cloud
and a combination of both, respectively.

6.3 Implementation

Cameras and lidars are primary sensors in an autonomous vehicle. This section describes

our three baseline implementations using camera images, a lidar point cloud, and a com-

bination of them.

6.3.1 Image-based Work Zone Detection

Image-based work zone detection uses only RGB cameras. As shown in Figure6.5a(1), we

first detect work zone objects from all the available camera images. We trained a neural

6.3. IMPLEMENTATION 93

network model, EfficientDet-D0[81], to detect traffic cones (including barrels and poles)

and barriers. The network uses the 512×512 input images and reaches 0.33 mAP on the

nuScenes validation set. We trained the network from a checkpoint that is pre-trained in

the MS-COCO dataset [82] using the nuScenes training set. The training lasts for 200K

steps with a batch size of 16. After object detection, we select the bottom middle of each

bounding box as the keypoint and lift its coordinates from the image frame to the vehicle’s

BEV plane.

We use the classic homography transformation to project the image plane to the BEV

plane which is also known as Inverse Perspective Mapping [83]. Although deep-learning-

based BEV generation has made remarkable progress, IPM is still widely used and serves

as a classic baseline. Assuming that the local road surface is relatively flat and it approxi-

mates the BEV plane, we can convert an image point (ux,uy) on the road to its coordinates

in the BEV plane (x,y) as follows:

[x,y,1]T = h−1[ux,uy,1]T (6.7)

h = k[rcam(0)T ,rcam(1)T ,−tT
camtcam] (6.8)

where, rcam and tcam are the camera rotation matrix and translation vector respectively in

the BEV frame. We use the homography transformation to project the keypoints from all

available cameras to the BEV plane as shown in Figure6.5a(2).

We then find the work zone area by clustering the keypoints and find the work zone

contour. We first run a density-based clustering algorithm DBSCAN [84] to separate key-

points into point groups {G0, ...,Gk−1}, where each group represents a work zone region. A

6.3. IMPLEMENTATION 94

Algorithm 2: Work Zone Contour Generation
Input: S = {p0, ..., pn−1}, rp, rb, R
S is a detected keypoint set of size n.
rp is a density threshold to cluster keypoints.
rb is a distance threshold to search road boundaries.
R is a set of polygons representing the road map.

1 D ← {} {G0, ...,Gk−1} ← DBSCAN(S , rp)
2 for Gi in {G0, ...,Gk−1} do
3 Zi← {}
4 for p j in Gi do
5 Zi←Zi∪ p j
6 if p j in R then
7 n j ← nearest(p j, R.boundary)
8 d ← |p j−n j|22
9 if d > rb then

10 Zi←Zi∪n j
11 end
12 end
13 end
14 P ← convex hull(Zi)
15 D←D ∪P

16 end
17 return D

work zone may not be entirely observable from the vehicle’s perspective and the detected

keypoints may only form a partial boundary for the work zone. We close the boundary

by searching for the nearest point on the road boundary to a keypoint and add it to the

keypoint group G if its distance to the keypoint is less than a threshold rb. We then use the

convex hull that covers the entire keypoint group and outputs the polygon contour of the

convex hull. Algorithm 2 shows the detailed flow.

6.3. IMPLEMENTATION 95

6.3.2 Lidar-based Work Zone Detection

Unlike the image-based approach, the lidar-based approach directly works on a 3D point

cloud from the lidar, allowing object detection in the 3D domain. We use the state-of-

the-art lidar object detection algorithm, CenterPoint [76], to detect traffic objects. The

detection model is trained on the nuScenes training set and reaches 0.57 mAP in the vali-

dation set using ten lidar sweeps. We take the center positions of the detected traffic objects

as the keypoints. Because these keypoints are in 3D coordinates already, we project them

to the vehicle’s BEV plane directly. We generate the work zone contour using the same

method as in Algorithm 2.

6.3.3 Fusion-based Work Zone Detection

The lidar-based work zone detection approach relies on the point cloud. However, the point

cloud is naturally sparse in regions far from the autonomous vehicle. When the point cloud

is sparse, the lidar object detection algorithm’s accuracy decreases significantly, limiting

the work zone detection range. An image, on the contrary, is dense by nature. An image-

based object detector may therefore be able to find tiny objects that are far away from

the camera. However, as the image lacks depth information, the lifting from the image’s

coordinates to 3D is error-prone. Therefore, the work zone contour may not match the

ground truth. Our fusion approach, therefore, aims to take advantage of both camera and

lidar sensors. Here, we describe our implementation that combines camera images and a

lidar point cloud to increase the work zone detection range while preserving the detection

accuracy.

We now lift the 2D detections from image to 3D using a point cloud instead of the

6.4. EXPERIMENTAL RESULTS 96

homography transformation in Section 6.3.1. As shown in Figure 6.5(c), we project a

point cloud to the image and select the points that lay in the bounding boxes of the detected

objects. Based on the assumption that the points within a bounding box are likely to be on

the object, we use these points to infer the object’s 3D coordinates. We take the median

position of the lidar points within a bounding box as a keypoint from the object. Unlike

the lidar-based detection algorithm, we can find a keypoint with a single lidar point on

the object and thus increase the detection range. We name these detections as lifted-2D

detections. The lifted-2D detections also induce noisy keypoints as the lidar points within

a bounding box may not be on the object. For example, the lidar points can be from

the background of the object. To take advantage of high-accuracy lidar object detection

in the near-range, we set a distance threshold dth to select lidar detections and lifted-2D

detections. We use only the lidar detection algorithm to detect accurate keypoints within a

distance less than dth = 20m. In the region beyond dth, we combine the lifted-2D detections

with the lidar detections. In this way, our fusion approach preserves lidar-based work zone

detection accuracy while significantly increasing the detection range. Finally, we generate

the work zone contour using the same method as in Algorithm 2.

6.4 Experimental Results

6.4.1 Dataset

We use the nuScenes [20] autonomous driving dataset to evaluate our implementations.

The nuScenes dataset contains synchronized camera and lidar sensing data in different

driving scenarios. The dataset’s annotation, however, lacks work zone information. We

6.4. EXPERIMENTAL RESULTS 97

Range Method mIoU Recall Precison maxDist

10m
Image 0.50 80.72% 73.46% 8.12
Lidar 0.65 86.06% 86.16% 8.37
Fusion 0.64 86.06% 86.03% 8.37

20m
Image 0.46 80.24% 72.62% 16.17
Lidar 0.58 83.43% 86.86% 16.19
Fusion 0.58 85.26% 85.53% 16.96

50m
Image 0.30 60.93% 53.44% 27.63
Lidar 0.31 59.10% 77.64% 22.57
Fusion 0.36 64.66% 70.26% 26.96

Table 6.1: Experiment results within a distance of 10 meters, 20 meters and 50 meters

provide annotations to the nuScenes dataset for work zone regions to study and evaluate

work zone detection algorithms. We identified 757 work zone samples from 19 driving

sequences in the nuScenes validation and test set. We manually annotated both the work

zone area and the road area using polygons.

6.4.2 Results

We test the baseline implementations described in the previous section. We compare the

IoU, recall, precision, and the maxDist in three distance ranges: 10 meters, 20 meters and

50 meters. The results are listed in Table 6.1.

All of our three methods perform well at short distances. Within 10 and 20 meters,

the lidar-based method outperforms the image-based method in all metrics. However, in

the range of 50 meters, the image-based method achieves a higher maxDist score, which

means the image-based method can find a work zone at a longer distance although its

detected boundary is not accurate on average.

Figure 6.6 shows the qualitative comparison of our three sensing modalities. The green

6.5. SUMMARY 98

polygons indicate the road region and the red polygons are the ground truth annotations

of work zones. Other colors indicate distinctly detected work zones. The cycle points

are detected keypoints and the square points are the nearest road boundary points. The

lines are the polygon contours of detected work zones. We assign a uniform color for the

keypoints and contours that belong to the same work zone.

The fusion-based approach combines the image keypoints with the lidar keypoints.

In the distance range of 10 and 20 meters, the fusion-based detection achieves similar

accuracy as the lidar detections. However, in the evaluation at a range of 50 meters, the

fusion results have better IoU than lidar results, indicating a better match between the

detected contour and the ground truth. Also, the fusion-based method has a longer maxDist

which is close to the image-based method. These results show that a multi-modality fusion

method can take advantage of individual sensors and surpass any single-modality methods.

6.5 Summary

In this chapter, we studied the problem of work zone detection for use in autonomous

vehicles. We provided a taxonomy of work zones and formulated the goal of work zone

detection to provide a set of polygonal representations of the work zone area within the

vehicle’s Bird’s Eye View. We also proposed a set of evaluation metrics, including IoU,

Recall and Precision, and maxDist. To evaluate the performance of work zone detec-

tion, we annotated the popular autonomous driving dataset, nuScenes. Furthermore, we

designed a general work zone detection pipeline and evaluated three implementations us-

ing images, a point cloud and a combination of both. Our experimental results show that

6.5. SUMMARY 99

Figure 6.6: Qualitative comparison of three implementations using images, a point cloud
and a combination of both, respectively. The green polygons indicate the road region and
the red polygons are the ground truth annotations of work zones. Other colored polygons
are the detection results.

6.5. SUMMARY 100

the image-based approach has the largest detection range while the lidar-based approach

has the best detection accuracy. The fusion-based approach takes advantage of both and

achieves a balanced detection range and accuracy. Our results serve as good baselines for

further study. So far, we detect a work zone as a static area. In practice, a work zone can

be more complex where flagmen may provide temporal traffic control. In the next chapter,

we discuss our solution for flagman recognition.

Chapter 7

Challenging Scenarios: Flagman

Recognition

7.1 Introduction

For an autonomous vehicle to navigate safely, it must follow the rules of the road and abide

by traffic control signals. These control signals are typically from road infrastructure such

as traffic lights and lane markers. However, in the presence of a work zone, a flagman

may provide temporary traffic control instead. A flagman uses hand gestures, often in

conjunction with a prop such as a sign paddle, to guide vehicles safely through the zone.

A work zone can also occur on short notice due to traffic emergencies or road maintenance,

making it difficult for a map database to be updated on time. Therefore, an autonomous

vehicle needs to recognize these traffic gestures on-the-fly.

Understanding traffic gestures is a challenging task for computers. Although a point-

101

7.1. INTRODUCTION 102

cloud object detection system can generally detect pedestrians, it is challenging to recog-

nize the gestures using point clouds. The point clouds are sparse and may not capture the

subtle movement of the human body. Instead of utilizing an expensive lidar system capable

of a high-resolution scan of the human body from a distance, a gesture recognition system

can use low-cost cameras for fine-grained recognition after receiving the general position

of a pedestrian. However, it is still challenging to recognize gestures from camera videos.

A flagman might wear different uniforms according to the weather condition. When a

good samaritan acts as a flagman, one may not wear a uniform at all. Besides clothing,

flagmen naturally have different body sizes and skin colors. As there is no strict standard,

traffic gestures are often flexible, and flagmen have their individual styles. Sometimes,

these actions can be as subtle as finger movements, or in rarer cases emulate dance moves.

Moreover, a flagman commonly uses props together with body poses. For example,

a flagman may carry a reflective sign paddle or a light stick to make the signal more

noticeable at night. Therefore, the recognition system must perceive a large variety of

human body poses and their interactions with miscellaneous objects. Furthermore, the

recognition system must run in real-time with computationally constrained resources on

the vehicle.

Many studies on traffic gesture recognition capture the body pose using wearable mo-

tion sensors such as an IMU [63]. Such a capture system is not available for all flagmen

and is not realistic in typical driving scenarios. Alternatively, a camera has a low cost and

is available in most autonomous vehicles. Recent research on video action recognition

uses deep neural networks [29, 30, 31] to learn from training data. Yet, there are only a

few video datasets[63, 85] for traffic gesture recognition, which contain relatively simple

7.2. TAXONOMY 103

Figure 7.1: An autonomous vehicle needs to make safe decisions and facilitate forward
progress in the presence of road construction workers and flagmen.

traffic control poses and lack the use of props.

In this chapter, we first provide a taxonomy that categorizes traffic gestures based on

the flagman’s appearance, signal semantics, and environmental condition. We then build

a video dataset covering common traffic gestures, including the usage of props. After

manual annotation on the video frames, we develop an efficient deep network to use a

combined data representation of hand images, pose keypoints and bounding boxes. Our

experiments show that this mixture of representations effectively captures the meaning of

gesture signals while remaining robust against the variance of flagmen’s appearance. We

also provide an extensive ablation study on the impact of each component.

7.2 Taxonomy

The large variety of human gestures represents significant complexity. This section catego-

rizes traffic gestures according to their semantics, flagman appearance and environmental

7.2. TAXONOMY 104

Figure 7.2: A taxonomy of flagman traffic gestures. Red color indicates the attributes that
our dataset covers.

7.2. TAXONOMY 105

context, as shown in Figure 7.2.

7.2.1 Semantic Classification

Traffic gestures are used to provide instructions to vehicles traversing the work zone. We

categorize gestures as non-directional and directional, depending on whether they offer

instructions to a vehicle’s moving direction. Non-directional gestures control the vehi-

cle’s moving state. Common examples are the Stop and Slow Down gestures. The Stop

gesture requires the vehicle to stop, while the Slow Down gesture instructs the vehicle to

move slowly. Directional gestures, in contrast, guide the vehicle’s route. For example,

when a road is closed temporarily, a flagman usually points to the direction in which the

vehicle should Turn. However, the vehicle should not take the direction literally since the

indicated absolute direction may be approximate. In that case, the vehicle may need to

incorporate map and drivable region information to choose the safe route. Other than the

Turn signal, Forward is also a common directional gesture that indicates the vehicle to

move towards the flagman’s direction. The directional gesture can be a complex sequence

when it conveys a route to a specific destination, such as an empty spot in a parking lot.

Both non-directional and directional gestures override the traffic guidance from exist-

ing infrastructure such as lane markers and sometimes even traffic lights. A flagman may

give a Stop signal even if the traffic light is green. One may also indicate a direction, fol-

lowing which the vehicle needs to go off-road to bypass the work zone. An autonomous

vehicle must make the correct interpretation and combine both the map and traffic gesture

recognition for its operation.

7.2. TAXONOMY 106

7.2.2 Flagman Appearance

Typically, the entity that makes the traffic gestures is a human. However, mechanical

flagmen have started to appear as well. Some resemble a human beings, while others are

akin to a portable barrier gate operator. As there is no universal standard for the design of

a mechanical flagman, detecting one is complicated. Mechanical flagmen are out of our

current scope of work, and we focus on human flagmen.

The common variances on the flagman are the clothing, biometrics and the use of

props. For their own safety, most flagmen or traffic police wear uniforms typically made

of reflective material. However, in the case of a good samaritan acting as a flagman, he/she

may not have a uniform at all. The uniform or the lack of one may impact the visibility of

gestures as well as the motion range. A flagman’s biometrics also contribute to the changes

in gestures. As different persons have different body sizes and styles, the exact position of

each body part may differ during sign motion. Different skin colors also induce potential

changes in camera images.

Moreover, a flagman often uses dedicated props such as sign paddles, flags, light sticks

and flashlights. Those props are indispensable components of the gestures and should be

considered. Therefore, the desired recognition algorithm also needs to detect these props

and body poses regardless of the clothing and biometrics.

7.2.3 Environmental Context

The gesture semantics and flagman appearances are closely related to the environmental

conditions. The flagman’s motion is more visible on a bright and clear day. In difficult

viewing conditions such as bad weather and low light, the camera system might not detect

7.3. OUR TGR DATASET 107

Figure 7.3: The distributions of video length for each category.

or recognize the flagman. The existence of other vehicles is another important environ-

mental factor for gesture recognition. When there are multiple vehicles, the autonomous

vehicle must determine whether the flagman is signaling to it or some other vehicles or

pedestrians. This requirement is particularly challenging when vehicles merge from mul-

tiple lanes. The desired recognition system must take cues from a flagman’s standing

position and other vehicles’ locations to determine the intended recipients of gestures.

7.3. OUR TGR DATASET 108

Figure 7.4: Examples from our traffic gestures dataset.

7.3. OUR TGR DATASET 109

Category Attribute Videos Frames
Neutral - 74 7682

Stop

No object 93 12486
Paddle 178 45871
Flag 79 22755

Paddle and flag 43 16244

Slow
No object 45 8309

Paddle 47 11737
Paddle and flag 42 13190

Forward No object 143 16725

Turn left
No object 111 21042

Flag 29 8094

Turn right
No object 108 20048

Flag 27 6961

Table 7.1: Statistics of our TGR dataset

7.3 Our TGR Dataset

To train and evaluate a recognition algorithm, we build a traffic gesture dataset that con-

tains frequent traffic gestures. Our dataset contains video sequences from the view of the

vehicle. The videos are recorded inside a studio with bright lighting and a green screen

in the background. Actors with different ethnicities, races, gender and body sizes perform

six categories of gestures: Stop, Slow, Forward, Turn Left, Turn Right, and also non-traffic

Neutral. Each category comprises gestures using only hands and gestures using a sign

paddle or a flag. All videos are recorded using a webcam that connects to a Raspberry Pi.

The videos are 1080p in raw form. We center the video frames around the stage and crop

the image to remove the background outside the green screen. After post-processing, all

videos have a resolution of 800×800 pixels and a frame rate of 30 fps. We also instruct

the actors on the type of gestures to perform and act naturally according to their personal

7.4. ARCHITECTURE 110

preferences to keep our dataset diverse. Table 7.1 shows the number of videos and frames

for each category, and Figure 7.4 shows examples from the dataset.

The dataset has 1019 videos in total, divided into a training set of 830 videos and a test

set of 189 videos. The actors in the test set are different from the actors in the training set

to avoid overfitting. Each video clip contains one continuous traffic gesture. To achieve

low latency, we annotate the start of the action at the first frame from which the gesture is

recognizable. Similarly, we annotate the end frame as soon as the gesture stops. The video

clips have diverse lengths, and their distributions are shown in Figure 7.3.

7.4 Architecture

To address the challenge of diverse flagman appearances and the use of props, we develop

a deep-learning-based framework using an efficient representation of traffic gestures. It

comprises pose keypoints, hand images and bounding boxes of props. We extract features

from this representation and use a Long Short-Term Memory ([86]) network for temporal

modeling, as shown in Figure 7.5. In this section, we describe each component in detail.

7.4.1 Pose Keypoints

An image contains rich information on the appearance of the flagman and the surround-

ings. However, extracting the image features relevant to traffic gestures itself is non-trivial.

Direct feature extraction using convolutional neural networks (CNN) may contain unnec-

essary image information and is prone to overfitting. The network often needs a large

amount of training data to improve its generalization, which is expensive to collect and

7.4. ARCHITECTURE 111

Figure 7.5: Overall Architecture of our recognition system. We create a dataset with
common traffic gestures in conjunction with props such as flags. We use a mixture data
representation comprise of human skeleton keypoints, hand images, and object bounding
boxes. This mixture representation is processed by a neural network to predict the meaning
the gesture.

7.4. ARCHITECTURE 112

annotate. Instead, we reduce the irrelevant information by extracting keypoints to repre-

sent the human pose. We center the coordinates of keypoints and concatenate them into a

pose feature vector:

fpose = [x1− xc,y1− yc,s1, ...] (7.1)

where, (xi,yi) are the coordinates of ith keypoint, si is its detection score, and (xc,yc) is the

skeleton center point. In practice, we choose the neck keypoint as the center point.

7.4.2 Hand Images

The keypoints capture the body pose and aggressively remove the flagman’s exterior ap-

pearance. However, the keypoint representation also ignores the hand pose and finger

movements, which carry valuable gesture information. For instance, the front of the palm

often indicates a Stop or a Slow signal, while the back of the palm often appears in a

Forward gesture. Moreover, finger movements are common when a flagman indicates a

direction. To capture the hand’s cues, we crop the hand images and use a light-weight

CNN to encode the hand. We use the wrist keypoint (xw,yw) and the elbow keypoint

(xe,ye) to locate the hand position (xh,yh):

(xh,yh) = ((1+α)xw−αxe),(1+α)yw−αye)) (7.2)

where, α is a constant ratio between the length of the palm and the forearm. We empiri-

cally set α to 0.4.

After locating the hand image regions, two weight-sharing CNNs encode the left-hand

7.4. ARCHITECTURE 113

image Ile f t and right-hand image Iright into hand-feature vectors:

(fle f t , fright) = (CNN(Ile f t),CNN(Iright)) (7.3)

If the wrist or elbow keypoint is missing or the hand position is out of camera view, we

create an empty image as the hand image.

7.4.3 Object Bounding Boxes

We also use a real-time object detection algorithm to detect common flagman props such

as a stop sign paddle, a slow sign paddle, or a flag. We concatenate the detection results

into an object feature vector.

fob ject = [x1
min,y

1
min,x

1
max,y

1
max,s

1, ...] (7.4)

where, [xi
min,y

i
min,x

i
max,y

i
max] is the bounding box coordinates of ith object category and si

is the detection score. Similar to the keypoints, box coordinates are also centered with

regard to the skeleton center point. If no object is detected for an object category, we use

zeros as the bounding box coordinates and detection score.

7.4.4 Gesture Prediction

Finally, we concatenate the feature vectors of the pose keypoints, the hand images and the

object bounding boxes to form the complete feature representation.

fgesture = [fpose, fle f t , fright , fob ject] (7.5)

7.5. EXPERIMENTAL RESULTS 114

We pass fgesture to an LSTM to model the temporal motion. An MLP takes the LSTM

output and predicts the probability Pt
m for the mth gesture category at time t. We use cross-

entropy as the loss function. The overall loss value is given by:

Loss =
1
M

1
T

Σ
M,T
m=1,t=1(−lt log(Pt

m))+Lreg (7.6)

where, T is the length of the sliding window and Lreg is the regularization loss on network

weights.

7.5 Experimental Results

In this section, we conduct experiments on our recognition framework and study the effect

of each of its components.

7.5.1 Settings

For keypoint detection, we use the OpenPose [87] toolbox. It detects 25 keypoints in total

and generates a fpose of length 75. We use MobileNet-SSD[88] to detect three types of

objects: a stop sign paddle, a slow sign paddle or a flag. Following Equation 7.4, fob ject

has a length of 15. We then pass the concatenation of fpose and fob ject to an MLP of (256,

256, 256) units to compute a joint feature fpose+ob ject .

The dimension of hand-image regions is 40% of the height between the neck and hip

keypoints. We further resize the hand images to 32×32 pixels. We then use MobileNet[88]

to extract fle f t and fright from the hand images. Afterward, we concatenate fle f t , fright , and

fpose+ob ject . We pass the concatenation to another MLP of (512, 512) units for fusion. An

7.5. EXPERIMENTAL RESULTS 115

LSTM of 256 units processes the fused features. An MLP classification header of (256,

256, 6) takes the LSTM output and predicts the gesture category. We use a batch size of

16 and a sliding time window of T = 50 frames. The states of LSTM pass across batches.

We train the networks using SGD with a momentum of 0.9. The initial learning rate is

10−4 and decreases to 10−5 after 192 epochs. In total, this keypoint model is trained with

200 epochs on the training set.

For comparison, we also train two additional models using the image and the keypoint

heatmaps as input, respectively. The image model uses MobileNet as the backbone net-

work to extract image features from a raw input image of [224, 224, 3] and pass the feature

vector to the LSTM. Similar to the keypoint model, we also align images from different

frames of the same video in the neck keypoints. The image model consumes more GPU

memory than the keypoints model. Therefore, the image model is trained with a reduced

batch size of 2. Other training configurations are the same as the keypoint model.

The heatmap model uses keypoint heatmaps instead of keypoint coordinates as input.

The same OpenPose model generates the heatmaps. But, unlike the keypoint coordinates,

each heatmap is an image of a keypoint’s detection score, as shown in Figure 7.6. We add

three extra heatmaps for the object detection. Again, the heatmaps from different frames of

the same video are aligned in the neck keypoints. The heatmap model also uses MobileNet

as the backbone network. However, the network input layer is modified to accept an input

size [224, 224, 28]. Similar to the image model, the heatmap model uses a batch size of 2.

Other training configurations are the same as the keypoint model.

7.5. EXPERIMENTAL RESULTS 116

Figure 7.6: A heatmap model for comparison. Each keypoint heatmap is an image of a
keypoint’s detection score and an object heatmap contains the filled bounding box of a
detected object in a category.

7.5.2 Data Augmentation

We apply the same set of data augmentation methods to all models. We randomly flip the

image’s x-axis and rescale the image in a range of [90%, 110%]. We also randomly adjust

the image brightness, contrast, saturation and hue. Note that images from the same video

clip share identical augmentations.

7.5.3 Results

We compare the prediction accuracy, recall, precision, and F1-score of different mod-

els. The main experiment results are shown in Table 7.2. The accuracy is the rate for each

frame’s prediction to match the ground truth annotation. The recall, precision and F1-score

are averaged across all categories. As can be observed, the proposed representation using

7.5. EXPERIMENTAL RESULTS 117

Table 7.2: Experiment results

Hand Image LSTM Accuracy Recall Precision F1-score

Image
× 79.89% 70.05% 76.01% 0.7184
× × 84.97% 75.85% 82.63% 0.7829

Heatmap
80.13% 71.02% 77.48% 0.7305

× 85.62% 79.51% 83.06% 0.8061

Keypoints Only
66.42% 48.09% 45.98% 0.4625

× 69.75% 56.45% 66.43% 0.5439

Keypoints + Bounding Boxes

76.93% 66.46% 74.63% 0.6849
× 81.23% 72.26% 77.58% 0.7381

× 82.01% 74.86% 79.17% 0.7657
× × 89.42% 85.83% 87.22% 0.8620

keypoints, bounding boxes and hand images achieves the highest metrics. It surpasses the

accuracy of the image model and the heatmap model by more than 4% in the accuracy.

Figure 7.7 shows the confusion matrix of prediction. In Table 7.2, we also compare the

effect of using the LSTM. It can be observed that using the LSTM consistently improves

the prediction accuracy, regardless of the input representations. Figure 7.11 shows qual-

itative results for the model that combines keypoints, bounding boxes and hand images.

Our model performs well in most cases. Some common failures are caused by the am-

biguity between turning and forward gestures, blurred hand motions and incorrect object

detection.

We test the end-to-end running speed of our proposed model on a desktop with an E5-

1630 CPU and a GTX 1070 GPU. The proposed model using keypoints, bounding boxes

and hand images achieves an average speed of 11.89 frames per second on the validation

dataset.

We also compare the robustness of different models by testing their accuracy on varied

image brightness, colors and rotations. Figures 7.8, 7.9 and 7.10 show the results. To test

the impact of brightness, we change the test image’s absolute pixel value by−40%,−20%,

7.5. EXPERIMENTAL RESULTS 118

Figure 7.7: The confusion matrix of prediction on the test dataset.

Figure 7.8: Test accuracy with varying image brightness.

7.5. EXPERIMENTAL RESULTS 119

Figure 7.9: Test accuracy with varying image hues.

Figure 7.10: Test accuracy with image rotations.

7.5. EXPERIMENTAL RESULTS 120

Figure 7.11: Qualitative results from the proposed model using keypoints, bounding boxes
and hand images. The first and second rows are examples of correct predictions. The third
row shows some examples of failure cases.

7.6. SUMMARY 121

20% and 40%. For color variation, we extract the Hue value of the test image and adjust

it by −10%, −5%, 5% and 10%. Finally, we rotate the test images −10, −5, 5 and 10

degrees clockwise around their image centers. As shown in Figures 7.8, 7.9 and 7.10,

the proposed model using keypoints, bounding boxes and hand images achieves higher

accuracy than the basic image model and the heatmap model across all input variations,

demonstrating the robustness of our proposed method.

7.6 Summary

In this chapter, we studied the challenging problem of flagman gesture recognition. We

presented a taxonomy of challenges related to varied flagman traffic gestures. We built a

dataset that covers a range of common flagman gestures, including the use of props. We

then proposed a recognition technique that uses keypoints, hand images, and object bound-

ing boxes to represent gestures. Our experiments show that our proposed representation

achieves a higher detection accuracy than approaches using raw images or heatmaps. Our

method is a feasible downstream solution to recognize gestures after object detection.

Chapter 8

Conclusions and Future Work

In this chapter, we present our conclusions, summarize our research contributions and

discuss future work.

8.1 Conclusions

This thesis targets a cost-efficient and accurate perception system for autonomous vehicles.

We presented multiple methods to accomplish the goal. We first designed a graph neural

network named Point-GNN to detect 3D objects from a compact graph representation of

the point cloud. We encode the irregular point cloud directly without densifying them in a

grid, unlike conventional methods. Our Point-GNN uses graph edges to aggregate features

directly between points. Its competitive accuracy in the KITTI benchmark’s 3D and Bird’s

Eye View object detection demonstrates its effectiveness as a point cloud backbone for

object detection.

Secondly, we leveraged the co-existence of low-cost cameras to boost object detec-

122

8.1. CONCLUSIONS 123

tion accuracy on a point cloud. We use multi-view image features to estimate a lidar

point’s local object coordinates and register them to lidar coordinates. Experiments using

the nuScenes and Level 5 dataset showed that our fusion method achieves leading perfor-

mance when combining lidars with low-cost cameras. It will enable broader use of lidar in

cost-sensitive application domains such as consumer vehicles, warehouse robots and work

zones.

Thirdly, we reduce the overall system expense by using abundant unlabeled data for

training. Our self-supervised learning method combines geometric pretext tasks and con-

trastive loss for pretraining. Results on the nuScenes dataset demonstrated that we can

leverage cheap unlabeled data to improve detection accuracy.

Finally, we proposed solutions for challenges in complex real-world driving scenarios

such as work zones. We provided a taxonomy of work zones and formulated the goal

of work zone detection. We also proposed a set of evaluation metrics and annotated the

popular autonomous driving dataset, nuScenes. Our experimental results showed that our

fusion-based approach utilizes both modalities and achieves a balanced detection range

and accuracy. We then designed a gesture recognition system for more complex scenarios

where a flagman is present. We also presented a taxonomy of challenges related to flagman

traffic gestures and built a dataset that covers a range of common flagman gestures. Our

recognition algorithm uses keypoints, hand images, and object bounding boxes to achieve

a higher detection accuracy than approaches using raw images or heatmaps.

Together, our graph-based point-cloud neural network, a fusion of camera images and

a sparse point cloud, a self-supervised training method, and solutions for work zones en-

hance perception accuracy and cost-efficiency in AVs.

8.2. RESEARCH CONTRIBUTIONS 124

8.2 Research Contributions

As a part of this dissertation, we made the following contributions:

1. Graph-based compact point-cloud [33].

(a) A point-cloud object detection pipeline using a graph representation.

(b) A graph neural network (GNN) that is capable of accurate object detection.

2. A sparse fusion of camera images and point clouds [89].

(a) A fusion method that utilizes multi-camera images to boost object detection

using a sparse point cloud.

3. Geometry-centric self-supervised training [90].

(a) Evaluation of the prevalent contrastive loss and its limitation in point cloud 3D

object detection.

(b) A pretraining method that combines geometric pretext tasks and contrastive

loss to improve self-supervised learning for point cloud object detection.

4. Context-specific approaches for work zones [91, 92].

(a) A definition of the work zone detection problem and practical evaluation met-

rics.

(b) A set of work zone annotations to the autonomous driving dataset.

(c) A work zone detection pipeline using multi-modality sensor configurations.

8.3. FUTURE WORK 125

(d) A taxonomy that categorizes traffic gestures based on the flagman’s appear-

ance,signal semantics, and environmental conditions.

(e) A video dataset covering common traffic gestures, including the usage of props.

(f) An deep network to recognize gestures using a combined data representation

of hand images, pose keypoints and bounding boxes.

(g) A detection and recognition pipeline utilizing both point-cloud object detection

and camera-based gestures recognition.

8.3 Future Work

8.3.1 Open Questions for an Effective GNN

Graph neural network provides an elegant way to introduce inductive bias into a deep

learning model. Relational assumptions [93] can be built into a graph structure that en-

ables a neural network to reason on top of them. Moreover, relational reasoning is the

core of many robotic perception topics such as object structure understanding, multi-agent

Interactions, coordinates association, etc. Therefore, a graph neural network has an enor-

mous potential to be a powerful tool to address many challenges in robotics. One tip of

the iceberg discussed in this thesis is to use a graph to encode point cloud structure and

detection objects. There are many benefits of our approach. For one thing, a graph directly

connects relevant points and omits the computation wasted on unmeasured space. A new

sensor modality can also be included by adding new edges in the graph model. However,

our current Point-GNN approach has its limitation on running speed, and many state-of-

8.3. FUTURE WORK 126

the-art approaches still prefer convolutional neural networks. This section discusses the

core question: how can a GNN model be more effective?

8.3.2 Graph Optimization

A graph neural network operates on a graph. In Point-GNN, we use a neighborhood graph

that connects the lidar points within a distance radius. The neighborhood graph encodes

our assumption that points from the same object should be spatially close to each other and

reasoned together. Although the assumption is simple and generally correct, the resulting

graph is not simple in terms of edges. The number of edges significantly increases when

the density of points increases. As the graph neural network generates features for each

edge, the computational and memory cost increases proportionally to the number of edges.

To keep the neural network light-weighted, the graph needs to be optimized. Some options

are k-nearest neighborhood graph, distance radius reduction, graph trimming, and metric-

based dynamic graph.

K-nearest neighborhood graph. A straightforward alternative to the radius-neighborhood

graph is the K-nearest neighborhood graph which connects a point to K nearest neigh-

bors instead of all the neighbors within a radius. A K-nearest neighborhood graph of N

points contains at most kN edges, and thus the computational complexity of edge features

is O(N). This linear scaling of the number of points is desirable. However, a K-nearest

neighborhood graph depends on the point cloud density. The average length graph edge is

short in the point cloud region, where the high point density is. While in the point cloud

region, where the points are sparse, the average length of the graph edge is long. Given

a m-hop neighbor on the graph, its physical distance highly depends on the point cloud

8.3. FUTURE WORK 127

density. For instance, after the same number of graph iterations, a point far away from

the lidar may receive features from meters away. In contrast, an object near the lidar only

receives features from centimeters away. This mismatch in the distance requires signifi-

cantly more graph neural network iterations so that every point can have information from

enough physical distance regions. Moreover, it also requires the network to have a good

mechanism not to forget local features after many iterations.

Distance radius scaling. In a radius neighborhood graph, the number of neighbors de-

creases when the distance radius decrease. Therefore, another way to reduce the total

number of edges is to reduce the distance radius. Assume a total of N points that are uni-

formly distributed in 3D space with a volume of V , the average number of points within

a radius r is O(N
V r3). The total number of edges in the radius neighborhood graph is then

O(N2

V r3). If we scale r as cN
1
3 , we can also achieve O(N) linear scaling. Unfortunately, if

the r is too small, we get a disjoined graph in the region where the points are sparse. One

possible solution is to combine the radius neighborhood graph with K-nearest neighbor-

hood graph.

Graph edge trimming. We could also build a radius neighborhood graph with a large

radius to ensure graph connectivity first and then trim the unnecessary edges. We can

set a maximum number of edges per point in the simplest form and drop the edges when

they max out. This technique is already implemented in Point-GNN’s training phase. The

limitation is that the dropping process is random. The challenge of designing a better

trimming policy is that it is difficult to determine which edges are important. An edge

can be vital to pass features in some graph neural network iterations while remaining

redundant for other iterations. Although data-driven methods such as [94, 95] can evolve

8.3. FUTURE WORK 128

the graph structure to achieve better task-specific accuracy, they require time-consuming

optimization steps. Also, these methods need to be modified to reduce the number of

graph edges while keeping reasonable detection accuracy. However, it is still an open

question on how to accumulate the optimization step. A possible direction is to perform

incremental optimization when processing a temporal sequence of point clouds. Because

a point cloud may not change considerably in a short period, the optimization can reuse

the graph from previous timestamps to reduce the computational cost. The KITTI [18]

dataset only provides independent point cloud samples, and it is not a good dataset to test

such a method. However, recent large datasets such as nuScenes [20] and Waymo Open

[19] provide sequential point cloud records, which enable new opportunities.

Dynamic Graph. Different from a graph constructed statically from the initial point

cloud, a dynamic graph constructs itself on the fly. A dynamic graph can be potentially

more cost-effective by utilizing deep neural network features. DGCNN [17] shows that

a KNN graph can be constructed using point features in each graph neural network itera-

tion. Similarly, IDGL [95] also propose to update the graph iteratively by mixing it with

a neighborhood graph from feature space. These studies have shown promising improve-

ment in task accuracy. However, they do not focus on reducing the number of graph edges.

Moreover, some dynamic construction process involves the calculation of pair-wise fea-

ture distance, which has the complexity of O(n2). If not designed properly, the overhead

of computing a new graph may overweight the reduction in graph edges. A potential ap-

proach is to constrain the dynamic changes to a subset of the graph. In the subset, the

number of points can be reduced to m, and the complexity of pair-wise matching can be

controlled to O(m2). Similarly, the dynamic changes can also be limited to the local graph

8.3. FUTURE WORK 129

area.

8.3.3 Limitations of Set Functions

The core of a graph neural network is the aggregation of features from connected vertices.

The aggregation is a Set function that takes a permutation-invariant set of vertices as in-

put and maps their value to an output. It is challenging to find a set function manually

that maps the input set to the desired output, such as semantic labels. Fortunately, deep

learning on Set allows approximation of desired set function using neural networks in a

data-driven manner. However, the open question is how complex a neural network should

be to aggregate the features well. In other words, It is still unclear what is a cost-efficient

way to aggregate features on a graph.

Compared to the wide range of applications using deep learning on set, the theoreti-

cal studies are limited [11, 10, 96]. Some pioneering studies provide some insights into

designing an effective GNN.

Sum Decomposition. DeepSet [11] provides a decomposition of set functions via sum-

mation:

f (X) = ρ(∑
x∈X

Θ(x)) (8.1)

where X = x1, . . . ,xn is a set. DeepSet proposes to use neural networks to approximate

ρ(.) and Θ(.). It also proves that when x is countable, any permutation-invariant function

f () can be decomposed using Θ(.) ∈R. This indicates we can compute just one real num-

ber feature value per element in the countable set and sum them to get any permutation-

invariant set output. However, the universal approximation theorem of neural networks is

8.3. FUTURE WORK 130

based on a continuous domain instead of a countable domain.

The authors of [96] prove that for a set of size ≤ M, all continuous permutation-

invariant functions can be represented if and only if Θ(.) ∈ RK and K ≥M. This means

we need at least a real number feature vector of size M for each element in the set in order

to get any set output in the continuous domain. And the feature extraction function Θ(.)

can be approximated by a neural network under the universal approximation theorem. The

output length of the neural network should be at least M.

Note that the proof in [96] only indicates the existence of Θ(.), and it does not guar-

antee we can find a good approximation of Θ(.) during training. Also, when the edge

features are less than M-dim, we may still get good enough aggregation results.

Max Decomposition. A similar approach is also proposed in PointNet [10], which replace

the sum operation with max:

f (X) = ρ(max
x∈X

Θ(x)) (8.2)

The authors of [96] also showed that for a set of size N and Θ(.) ∈ RK,K < N, some

continuous permutation invariant function f (X) can not be max-decomposed. This is con-

sistent with sum-decomposition and indicates the hidden dimension K needs to increase

when the size of a set increases.

When the hidden dimension K is small, PointNet [10] showed that the output value

of max(.) function relies on a set of critical points in the set. Other points in the set do

not contribute to the output value. This may provide additional robustness. In our pre-

liminary experiments of Point-GNN, we observe that max-decomposition often achieves

better results than sum-decomposition.

Attention Mechanism. Similar to sum-decomposition, the attention mechanism com-

8.3. FUTURE WORK 131

putes a weighted sum.

f (X) = ρ(∑
x∈X

att(x)Θ(x)) (8.3)

where att(x) is the attention weights:

att(x) ∈ [0,1]

∑
x∈X

att(x) = 1
(8.4)

att(.) adjusts the weights of each input element. In [97], att(.) is computed as the normal-

ized inner-product between the source vertex’ feature vector and the destination vertex’s

feature vector. Although there is a lack of theoretical discussion, the representation power

of the attention mechanism has been demonstrated in the recent development of trans-

formers [98, 99]. It will be an interesting topic to use the attention mechanism as the

aggregation function in Point-GNN instead of the current max-decomposition method.

8.3.4 Multi-scale Graph Feature

To detect objects of different scales, point cloud features of different scales are neces-

sary. In a GNN, the receptive field of vertices increases with the number of GNN itera-

tions. With more GNN iterations, a vertex can receive information from further away from

neighbors via edges. Generally, point cloud features of large-scale need more GNN iter-

ations than small-scale ones. A large object may need more GNN iterations, while a few

GNN iterations may be sufficient for small objects. In the current Point-GNN, we handle

the different sizes of objects construction multiple graphs using different radius values.

8.3. FUTURE WORK 132

For large objects such as cars, we set a 4−meter radius to connect points. For smaller

objects such as pedestrians and cyclists, we set a radius to 1.6meters. There is no shared

computation between two graphs, leading to double the computational cost. For a more

cost-effective solution, we can compute features of different scales in the same graph.

In CNN-based object detection, sequential convolution layers of different spatial reso-

lutions fuse and handle objects of different sizes [100, 73]. We can follow the same trend

and construct a sequence of graphs that have different lengths of edges. Additional edges

can be added between the vertices of different graphs to share their features. This architec-

ture can potentially reduce the overall inference time for the detection of multi-size objects

and also be beneficial to other tasks such as semantic segmentation [101], which requires

multi-scale features.

8.3.5 Runtime Acceleration

Multiple factors affect the execution time of GNNs, including the neural network architec-

ture, code optimizations, and computing hardware. We have discussed possible directions

to improve the neural network architecture in the previous sections. However, there are

also challenges to the acceleration of GNNs in the current computing environment. The

most notable difference between a CNN and a GNN is that the GNN has a more irregular

computational and memory pattern. In a CNN, the convolution operations take a fixed size

of the input region and perform the same number of matrix multiplications. These matrix

multiplications can be executed in parallel and have similar finishing times. However, ver-

tices in a GNN have irregular connections to a varied number of vertices in varied memory

locations. Different vertices need to aggregate different numbers of edge features, making

8.3. FUTURE WORK 133

them difficult to finish simultaneously. It is possible to make the computation pattern more

regular by padding dummy edges so that every vertex has the same maximum number of

edges. However, these dummy edges increase the overall computational cost. In our Point-

GNN implementation, we use a scatter-gather method to scatter vertices features to each

edge first and then gather the computed edge features back to the vertices. Although our

approach does not need the computation for dummy edges, it still has an irregular memory

pattern, and the gathering for maximum value is not optimized to use GPUs. We plan

to use GPU implementation for a parallel gathering of maximum values and reduce the

memory footprint by placing edges sharing the same vertices closer in memory for future

optimization.

8.3.6 Open Questions for a Camera-Lidar Fusion

Calibration Error. Sensor calibration is the prerequisite of sensor fusion. The calibra-

tion process computes parameters regard to the sensing process and adjusts the data as

necessary. There are two types of parameters: intrinsic and extrinsic parameters. The in-

trinsic parameters are the internal parameters belong each sensor. They can typically be

parameters that each sensor can be individually calibrated. The extrinsic parameters are

the position of each sensor. In the fusion of camera-lidar, the errors of both intrinsic and

extrinsic parameters can induce a mismatch between the point clouds and image pixels. In

other words, the projected point clouds in the image panel may not overlap with the actual

objects. It is an open question of how to design a fusion algorithm that is robust to such

misalignment between point clouds and images. One potential solution is also to apply

machine learning techniques to learn and fine-tune the calibration errors on-the-fly.

8.3. FUTURE WORK 134

Occlusion. Even with a perfect calibration between lidars and cameras, there are still

challenges if the centers of lidars and cameras are not alignment. Due to the misalignment

between the lidar center and camera center, some lidar points are occluded by the image’s

forefront object. The lidar points may be at places that a camera can not observe. If we

project the lidar points to the image plane using the camera-lidar calibration, the points

look like they are from the forefront object.s Adding each point’s depth as an input feature

to the network reduces the error caused by such occlusion.

8.3.7 Open Questions for Self-supervised Learning

The goal of self-supervised training is to utilize unlabeled data. The pretraining perfor-

mance is related to the alignment between the pretext task and the fine-tuning task. If the

pretraining task is not well-aligned with the perception task of interest, the results cannot

be beneficial or even damaging to the final performance. As argued in [48], a pretraining

of a different task may limit the final task accuracy in the end. Our experiments found that

some geometrical prediction tasks can benefit from pretraining. However, given enough

training time, the benefits from pretraining also decrease. Although searching for the right

pretext task for point cloud perception is still of great interest, it may not be the best ap-

proach. Alternative methods such as self-training, semi-supervised learning, or even a

strong augmentation policy may also achieve good results.

8.3.8 Open Questions for Work Zone Recognition

Non-convex Boundary Detection. Our work zone boundary detection baselines utilize a

convex hull algorithm to generate a convex frontier of work zones. Although the algorithm

8.3. FUTURE WORK 135

is simple and fast, a convex contour may not approximate the real boundary well. For

fine-grained curve recognition, we may need more general line representations such as

polylines or B-splines. Similar to that in the field of lane detection or pose recognition, we

can predict lines using deep neural networks. For example, we may predict a vector field

that connects the points on the work zone boundary.

Detection without Traffic Objects. A work zone is usually morphable and surrounded

by traffic objects such as traffic cones and barrels. Our baseline algorithms take advantage

of this feature for boundary recognition. However, in the case of a temporal work zone

without traffic objects, for example, a crash site, our baselines may not work. In theory,

we can utilize image segmentation methods and learn the boundary from the data. Never-

theless, the enormous possibilities of work zones are difficult to be fully captured. It is an

open question on how to detect work zones with limited data.

8.3.9 Open Questions for Traffic Gesture Recognition

Realistic Dataset. Our flagmen’s gestures dataset facilitates the study of traffic gesture

recognition. However, our gesture dataset only covers a relatively small portion of the

complex real-world gestures. It has three notable limitations. Firstly, the gestures are

recorded from a static position in front of the flagmen. However, a real flagman may stay

off the road for safety. Therefore, the vehicle may observe the gesture sideway. The vehicle

also moves, which changes the observational angle and size consistently. The motion of

vehicles may also induce artifacts such as motion blurs, which our static motion dataset

does not capture. Secondly, the gestures are recorded with an indoor green screen instead

of a real-world street view. Although this is a desired feature to insert virtual background

8.3. FUTURE WORK 136

and enable data augmentation, it may miss realistic outdoor details such as natural lighting.

The results from the validation set may not fully reflect that of real-world tests. Thirdly, our

current flagman gesture dataset only contains a single flagman. We assume that only one

flagman can perform traffic gestures. This assumption limits our dataset for application

to more complex scenarios where multiple agents are guiding the traffic. To build a more

realistic dataset than our current one, we need to set up data collection in an outdoor test

ground, ideally on real streets. The camera needs to be mounted on a moving platform.

Furthermore, multiple flagmen may be present. Such data collection is challenging from

both a cost and a safety perspective. Alternatively, we can leverage the advance in 3D

simulation tools to build virtual flagmen and street views. How to make the simulation

videos identical to street recordings is still actively being researched.

Recognition Distance. The prerequisite of gesture recognition is the observation and

detection of human bodies. When a flagman is far away from the vehicle’s camera, the

person’s image may be very small. The fast and accurate detection of tiny objects has been

an active research area. In general, detecting tiny objects requires high-resolution cameras

and much computational power to search through the images. The recognition of subtle

gestures such as finger moving requires detecting even smaller objects. Other than brute

force, a possible solution is to use thermal cameras for fast human detection and then zoom

in using RGB cameras.

Multi-instruction to Multi-vehicle (MI2MV) Problem. It is common for a flagman to

have different signals to different vehicles. For example, a flagman may allow vehicles in

one lane to proceed while keeping the other vehicles stopped. This Multi-instruction to

Multi-vehicle (MI2MV) problem adds one new dimension to the traffic gesture recognition

8.3. FUTURE WORK 137

problem: the vehicle needs to know whether it is the recipient of one or more instructions

while recognizing instructions. MI2MV is a challenging problem where the vehicle needs

to consider the road map and the existence of other vehicles. These complex scenarios are

difficult to collect from the real world. It is also yet unclear how to automatically generate

simulated data.

Bibliography

[1] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection network

for autonomous driving. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6526–6534, July 2017.

[2] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection from point

clouds. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 7652–7660, June 2018.

[3] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d

object detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, June 2018.

[4] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar

Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[5] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal

generation and detection from point cloud. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019.

138

BIBLIOGRAPHY 139

[6] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed, Alex Bewley, Xiao

Zhang, Cristian Sminchisescu, and Dragomir Anguelov. Rsn: Range sparse net for

efficient, accurate lidar 3d object detection. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 5725–5734,

June 2021.

[7] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic

segmentation with submanifold sparse convolutional networks. CVPR, 2018.

[8] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional de-

tection. Sensors, 18(10), 2018.

[9] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frustum pointnets for 3d object

detection from rgb-d data. In 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 918–927, June 2018.

[10] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet: Deep learning on

point sets for 3d classification and segmentation. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 77–85, July 2017.

[11] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R

Salakhutdinov, and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 30, pages 3391–3401. Curran

Associates, Inc., 2017.

BIBLIOGRAPHY 140

[12] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413,

2017.

[13] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std: Sparse-to-

dense 3d object detector for point cloud. In The IEEE International Conference on

Computer Vision (ICCV), October 2019.

[14] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. arXiv e-prints,

page arXiv:1901.00596, Jan 2019.

[15] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun. 3d graph neural networks for

rgbd semantic segmentation. In 2017 IEEE International Conference on Computer

Vision (ICCV), pages 5209–5218, Oct 2017.

[16] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, and Yiannis An-

dreopoulos. Graph-based object classification for neuromorphic vision sensing. In

The IEEE International Conference on Computer Vision (ICCV), October 2019.

[17] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and

Justin M. Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans-

actions on Graphics (TOG), 2019.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

BIBLIOGRAPHY 141

[19] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Pat-

naik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Va-

sudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,

Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng

Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving:

Waymo open dataset, 2019.

[20] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Li-

ong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Bei-

jbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint

arXiv:1903.11027, 2019.

[21] Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Beijbom. Pointpainting:

Sequential fusion for 3d object detection. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[22] Charles R. Qi, Xinlei Chen, Or Litany, and Leonidas J. Guibas. Imvotenet: Boosting

3d object detection in point clouds with image votes. In IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), June 2020.

[23] Level 5 dataset https://level-5.global/data/, Jul 2021.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2020.

BIBLIOGRAPHY 142

[25] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geof-

frey E Hinton. Big self-supervised models are strong semi-supervised learners. In

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances

in Neural Information Processing Systems, volume 33, pages 22243–22255. Curran

Associates, Inc., 2020.

[26] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai,

Lu Yuan, and Jianfeng Gao. Efficient self-supervised vision transformers for repre-

sentation learning. arXiv preprint arXiv:2106.09785, 2021.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-

training of deep bidirectional transformers for language understanding. In Jill

Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,

USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Asso-

ciation for Computational Linguistics, 2019.

[28] Saining Xie, Jiatao Gu, Demi Guo, R. Charles Qi, J. Leonidas Guibas, and

Or Litany. Pointcontrast: Unsupervised pre-training for 3d point cloud understand-

ing. european conference on computer vision, pages 574–591, 2020.

[29] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,

K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual

recognition and description. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 39(4):677–691, 2017.

BIBLIOGRAPHY 143

[30] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns retrace the history

of 2d cnns and imagenet? In 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 6546–6555, 2018.

[31] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional

networks for skeleton-based action recognition. In Sheila A. McIlraith and Kil-

ian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on

Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial In-

telligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Ar-

tificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,

pages 7444–7452. AAAI Press, 2018.

[32] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmen-

tation with superpoint graphs. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[33] Weijing Shi and Ragunathan (Raj) Rajkumar. Point-gnn: Graph neural network for

3d object detection in a point cloud. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2020.

[34] Ao Luo, Xin Li, Fan Yang, Zhicheng Jiao, Hong Cheng, and Siwei Lyu. Cascade

graph neural networks for rgb-d salient object detection. In In 16th European Con-

ference on Computer Vision (ECCV), 2020.

[35] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3d

object detection for autonomous driving. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2147–2156, 2016.

BIBLIOGRAPHY 144

[36] A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká. 3d bounding box estimation

using deep learning and geometry. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5632–5640, 2017.

[37] Garrick Brazil and Xiaoming Liu. M3d-rpn: Monocular 3d region proposal net-

work for object detection. In Proceedings of the IEEE International Conference on

Computer Vision, Seoul, South Korea, 2019.

[38] Jason Ku, Alex D. Pon, and Steven L. Waslander. Monocular 3d object detec-

tion leveraging accurate proposals and shape reconstruction. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June

2019.

[39] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell,

and Kilian Weinberger. Pseudo-lidar from visual depth estimation: Bridging the

gap in 3d object detection for autonomous driving. In CVPR, 2019.

[40] Mingyu Ding, Yuqi Huo, Hongwei Yi, Zhe Wang, Jianping Shi, Zhiwu Lu, and Ping

Luo. Learning depth-guided convolutions for monocular 3d object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pages 11672–11681, 2020.

[41] Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Har-

iharan, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar++: Accurate depth

for 3d object detection in autonomous driving. In ICLR, 2020.

BIBLIOGRAPHY 145

[42] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In

ECCV, 2016.

[43] Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-brain autoencoders: Unsu-

pervised learning by cross-channel prediction. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 645–654, 2017.

[44] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A.

Efros. Context encoders: Feature learning by inpainting. 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2536–2544, 2016.

[45] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations

by solving jigsaw puzzles. In ECCV, 2016.

[46] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual repre-

sentation learning by context prediction. 2015 IEEE International Conference on

Computer Vision (ICCV), pages 1422–1430, 2015.

[47] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation

learning by predicting image rotations. CoRR, abs/1803.07728, 2018.

[48] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus

Cubuk, and Quoc Le. Rethinking pre-training and self-training. In Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,

editors, Advances in Neural Information Processing Systems 33: Annual Confer-

ence on Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual, 2020.

BIBLIOGRAPHY 146

[49] Nanxuan Zhao, Zhirong Wu, Rynson W.H. Lau, and Stephen Lin. Distilling local-

ization for self-supervised representation learning. Proceedings of the AAAI Con-

ference on Artificial Intelligence, 35(12):10990–10998, May 2021.

[50] Jonathan Sauder and Bjarne Sievers. Self-supervised deep learning on point clouds

by reconstructing space. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc., 2019.

[51] Benjamin Eckart, Wentao Yuan, Chao Liu, and Jan Kautz. Self-supervised learning

on 3d point clouds by learning discrete generative models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

8248–8257, June 2021.

[52] Omid Poursaeed, Tianxing Jiang, Han Qiao, Nayun Xu, and Vladimir Kim. Self-

supervised learning of point clouds via orientation estimation. pages 1018–1028,

11 2020.

[53] F. Abodo, R. Rittmuller, B. Sumner, and A. Berthaume. Detecting work zones in

shrp 2 nds videos using deep learning based computer vision. In 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA), pages

679–686, 2018.

[54] Y. Seo, J. Lee, W. Zhang, and D. Wettergreen. Recognition of highway workzones

for reliable autonomous driving. IEEE Transactions on Intelligent Transportation

Systems, 16(2):708–718, 2015.

BIBLIOGRAPHY 147

[55] B. Mathibela, M. A. Osborne, I. Posner, and P. Newman. Can priors be trusted?

learning to anticipate roadworks. In 2012 15th International IEEE Conference on

Intelligent Transportation Systems, pages 927–932, 2012.

[56] P. Kunz and M. Schreier. Automated detection of construction sites on motorways.

In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1378–1385, 2017.

[57] R. Graf, A. Wimmer, and K. C. J. Dietmayer. Probabilistic estimation of temporary

lanes at road work zones. In 2012 15th International IEEE Conference on Intelligent

Transportation Systems, pages 716–721, 2012.

[58] Surabhi Gupta, Maria Vasardani, and Stephan Winter. Conventionalized gestures

for the interaction of people in traffic with autonomous vehicles. In Proceedings of

the 9th ACM SIGSPATIAL International Workshop on Computational Transporta-

tion Science, IWCTS ’16, page 55–60, New York, NY, USA, 2016. Association for

Computing Machinery.

[59] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz. Online detection

and classification of dynamic hand gestures with recurrent 3d convolutional neural

networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4207–4215, 2016.

[60] Quentin De Smedt, Hazem Wannous, Jean-Philippe Vandeborre, Joris Guerry,

Bertrand Le Saux, and David Filliat. SHREC’17 Track: 3D Hand Gesture Recog-

nition Using a Depth and Skeletal Dataset. In I. Pratikakis, F. Dupont, and M. Ovs-

janikov, editors, 3DOR - 10th Eurographics Workshop on 3D Object Retrieval,

pages 1–6, Lyon, France, April 2017.

BIBLIOGRAPHY 148

[61] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra

Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa

Suleyman, and Andrew Zisserman. The Kinetics Human Action Video Dataset.

arXiv e-prints, page arXiv:1705.06950, May 2017.

[62] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A Dataset

of 101 Human Actions Classes From Videos in The Wild. arXiv e-prints, page

arXiv:1212.0402, December 2012.

[63] Julian Wiederer, Arij Bouazizi, Ulrich Kressel, and Vasileios Belagiannis. Traffic

control gesture recognition for autonomous vehicles. In 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS)October 25-29, 2020,

Las Vegas, NV, USA (Virtual), 2020.

[64] F. Guo, Z. Cai, and J. Tang. Chinese traffic police gesture recognition in complex

scene. In 2011IEEE 10th International Conference on Trust, Security and Privacy

in Computing and Communications, pages 1505–1511, 2011.

[65] Jon L. Bentley, Donald F. Stanat, and E.Hollins Williams. The complexity of finding

fixed-radius near neighbors. Information Processing Letters, 6(6):209 – 212, 1977.

[66] Peter J. Huber. Robust estimation of a location parameter. Ann. Math. Statist.,

35(1):73–101, 03 1964.

[67] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

BIBLIOGRAPHY 149

[68] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fu-

sion for multi-sensor 3d object detection. In The European Conference on Computer

Vision (ECCV), September 2018.

[69] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander. Joint 3d proposal

generation and object detection from view aggregation. In 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 1–8, Oct 2018.

[70] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task multi-

sensor fusion for 3d object detection. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2019.

[71] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. In The IEEE

International Conference on Computer Vision (ICCV), October 2019.

[72] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2016.

[73] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyra-

mid networks for object detection. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 936–944, 2017.

[74] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

BIBLIOGRAPHY 150

[75] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-

balanced Grouping and Sampling for Point Cloud 3D Object Detection. arXiv e-

prints, page arXiv:1908.09492, Aug 2019.

[76] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-based 3d object detec-

tion and tracking. arXiv:2006.11275, 2020.

[77] A. Simonelli, S. Rota Bulo, L. Porzi, M. Lopez Antequera, and P. Kontschieder.

Disentangling monocular 3d object detection: From single to multi-class recogni-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,

2020.

[78] MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation

platform for general 3D object detection. https://github.com/

open-mmlab/mmdetection3d, 2020.

[79] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm

restarts. In 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-

Review.net, 2017.

[80] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In Proceedings of the 30th International Conference

on International Conference on Machine Learning - Volume 28, ICML’13, page

III–1310–III–1318. JMLR.org, 2013.

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

BIBLIOGRAPHY 151

[81] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detec-

tion. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 10778–10787, 2020.

[82] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects

in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,

editors, Computer Vision – ECCV 2014, pages 740–755, Cham, 2014. Springer

International Publishing.

[83] Hanspeter Mallot, Heinrich Bülthoff, J.J. Little, and S Bohrer. Inverse perspective

mapping simplifies optical flow computation and obstacle detection. Biological

cybernetics, 64:177–85, 02 1991.

[84] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proceed-

ings of the Second International Conference on Knowledge Discovery and Data

Mining, KDD’96, page 226–231. AAAI Press, 1996.

[85] Chunyong Ma, Yu Zhang, Anni Wang, Yuan Wang, and Ge Chen. Traffic command

gesture recognition for virtual urban scenes based on a spatiotemporal convolution

neural network. ISPRS International Journal of Geo-Information, 7(1):37, 2018.

[86] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 9(8):1735–1780, November 1997.

BIBLIOGRAPHY 152

[87] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Real-

time multi-person 2d pose estimation using part affinity fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019.

[88] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Con-

volutional Neural Networks for Mobile Vision Applications. arXiv e-prints, page

arXiv:1704.04861, April 2017.

[89] Weijing Shi and Ragunathan Raj Rajkumar. Boosting sparse point cloud object

detection via image fusion. In 2021 IEEE Third International Conference on Cog-

nitive Machine Intelligence (CogMI), pages 214–220, 2021.

[90] Weijing Shi and Ragunathan Raj Rajkumar. Self-supervised pretraining for point

cloud object detection in autonomous driving. In 2022 IEEE International Intelli-

gent Transportation Systems Conference (ITSC), 2022.

[91] Weijing Shi and Ragunathan Raj Rajkumar. Work zone detection for autonomous

vehicles. In 2021 IEEE International Intelligent Transportation Systems Conference

(ITSC), pages 1585–1591, 2021.

[92] Weijing Shi, Ragunathan Rajkumar, and Eran Kishon. Opportunities and challenges

for flagman recognition in autonomous vehicles. In 2021 IEEE Intelligent Vehicles

Symposium (IV), pages 1470–1477, 2021.

[93] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

BIBLIOGRAPHY 153

Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andy Ballard, Justin

Gilmer, George E. Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victo-

ria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,

Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive

biases, deep learning, and graph networks. arXiv, 2018.

[94] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning dis-

crete structures for graph neural networks. In Proceedings of the 36th International

Conference on Machine Learning, 2019.

[95] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for

graph neural networks: Better and robust node embeddings. Advances in Neural

Information Processing Systems, 33, 2020.

[96] Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A.

Osborne. On the limitations of representing functions on sets. In Kamalika Chaud-

huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-

ference on Machine Learning, volume 97 of Proceedings of Machine Learning Re-

search, pages 6487–6494. PMLR, 09–15 Jun 2019.

[97] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph Attention Networks. International Conference on

Learning Representations, 2018.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

BIBLIOGRAPHY 154

In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-

ume 30. Curran Associates, Inc., 2017.

[99] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth

16x16 words: Transformers for image recognition at scale. ICLR, 2021.

[100] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In

Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision –

ECCV 2016, pages 21–37, Cham, 2016. Springer International Publishing.

[101] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834—848, April 2018.

