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Abstract

Deep learning techniques have led to major improvements in fields like natural lan-

guage processing, computer vision, and other Euclidean data domains, yet in many do-

mains data are irregular, requiring graphs or manifolds to be explicitly modeled. Such

applications include social networks, sensor feeds, logistics, supply chains, chemistry,

neuroscience, and other biological systems. The extension of deep learning to these non-

Euclidean data is an area of research now called Geometric Deep Learning (GDL). This

thesis focuses on a subfield of GDL, graph neural networks (GNNs) that learn on graph

signals using neural networks. We explore the impact of the data graph structure on

the performance of graph neural networks using real and synthetic data for two graph

learning tasks: node and graph classification.

We start with the formalization of GNNs, and consider two flavors of approaches:

spectral approach typified by graph convolutional networks (GCNs) and spatial ap-

proach typified by topology adaptive graph convolutional networks (TAGCNs). In gen-

eral, TAGCN requires fewer number of layers than GCN, with moderate degrees of the

polynomial filters.

For node classification, not many layers are needed to achieve optimal performance.

Unlike graph classification, graph signal is necessary and important. For some real

datasets, classifying using a simple estimator on the graph signals can outperform

GNNs. For synthetic datasets, Erdős-Rényi and preferential attachment models have

similar test accuracy curves for both GCN and TAGCN with respect to the number of

layers and the degree of the polynomial filters. For smallworld model, TAGCN’s filters

play an important role in achieving the optimal accuracy and accelerating the effect of

over-smoothing.

We also study the training convergence for node classification. We show theoreti-

cally that training loss converges to a global minimum for linearized TAGCN. Despite

the non-convex objectives, training loss for 1-degree H-layer TAGCN, i.e., with degree
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1 polynomial filter and H layers, is guaranteed to converge to global minimum at an

exponential rate, faster with higher number of layers. With K-degree TAGCN, conver-

gence is accelerated with higher degree K of the polynomial filters. We experimentally

validate our theory and show training convergence holds true for both linearized and

nonlinearized TAGCN.

For graph classification, graph structure plays a more important role than the graph

signal. GNNs can often classify graphs using just the graph structures of the different

classes if they are distinct enough. For real datasets, we relate simple network metrics

and signal statistics to the performance of these models. We show for some datasets,

classifiers on number of edges or number of nodes can lead to better or similar perfor-

mance as graph neural networks. For other datasets, signal statistics can perform well.

Based on these observations, we were able to apply simple modifications to GCN and

TAGCN to improve their performance (sumpool and degree-aware TAGCN). For syn-

thetic datasets, Erdős-Rényi and preferential attachment models again have similar test

accuracy curves for both GCN and TAGCN. For smallworld model, more than 1 layer

is needed to achieve good performance if the edge rewiring probability is distinct for

different classes.

We apply the architecture of TAGCN to a COVID-19 case study. We introduce a novel

approach for molecular property prediction by combining two existing GNN methods.

Our model (D-MPNN+TAGCN) consistently outperforms the state-of-the-art baseline

on five coronavirus datasets.
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Chapter 1: Introduction

Deep learning techniques such as convolutional neural networks (CNNs) have had ma-

jor impact on fields like image processing, computer vision, and other Euclidean data

domains, yet in many important domains data are irregular and non-Euclidean, requir-

ing graphs or manifolds to be explicitly modeled. Examples of these contrasting data

structures are shown in Fig. 1.1.

Figure 1.1: Problems in Euclidean data domains, like images and time series (left), have
seen great advances through deep learning. Non-Euclidean data domains (right) require
new deep learning techniques if similar advances are to be achieved.

Conventional deep learning approaches are often limited when data lack Euclidean

structure to exploit. Fig. 1.2 shows the importance of successfully incorporating graph

structure in the CNN architecture. The top plot illustrates that a CNN that takes advan-

tage of the graph structure (termed here graph neural network or GNN) significantly

outperforms a CNN that does not take advantage of the graph structure. The bottom

plot assumes no graph, using only the MLPs to classify. We get similar results if instead

of the Identity we use a random Erdős-Rènyi graph.

In this thesis, we explore the relationship between the data graph structure and the

architecture of GNNs with respect to their performance in two classification tasks: node

1
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Figure 1.2: Comparison of GNN test accuracy on the CORA-ML citation network dataset
using node features and 1) the dataset’s citation network graph, 2) the identity matrix
(training on features only)

and graph classification. In this chapter, we describe some related work in Section 1.1,

including interpretability methods and automated machine learning for graphs. We

then formally define the thesis statement in Section 1.2 and describe our contributions

in Section 1.3. Finally, we present a short overview of the entire thesis in Section 1.4.

1.1 Related Work

In this section, we discuss related works in several fields.

1.1.1 Machine Learning on Graphs

Machine Learning (ML) is a field of inquiry devoted to developing algorithms that can

leverage data to improve performance for some tasks [10]. It is an important subset of

and pathway to artificial intelligence. The goal is for machines to learn how to solve

problems without human intervention. In contrast, in traditional computer program-

ming, algorithms are designed specifically, with every computation spelled out. ML

algorithms hence allows for more flexibility in addressing more advanced problems.

The key feature of these ML algorithms is their capability to leverage large amount

of data and extract useful information relevant to the task at hand [11]. ML algorithms

build a model based on training data, and can make predictions on unknown data. For

them to be successful, they need to operate within a carefully chosen framework, with

right amount of complexity. More complex models will in general fit the training data
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better, but a model that is too complex will run the risk of over-fitting the random effects

in training.

To extract structural information from graphs, machine learning approaches often

rely on summary graph statistics (e.g., degrees or clustering coefficients), kernel func-

tions, or carefully engineered features to measure local neighborhood structures. How-

ever, these approaches are limited because these hand-engineered features are inflexible

(i.e., they cannot adapt during the learning process) and designing these features can

be an expensive process. This then leads to requiring highly-efficient representation

learning methods on non-Euclidean data

1.1.2 Deep Learning

The most popular method and subfield of machine learning is deep learning, which

uses artificial neural networks (ANNs) [12]. ANNs originally attempt to mimic the

human brain, inspired by the information processing and distributed communication

nodes of neurons [13]. Alongside the growing success of these and other brain-inspired

deep learning architectures, researchers have also used deep learning to understand and

model brain activity [14].

Deep learning is called “deep” because of the multiple layers in the network. Popular

neural network architectures in general have many layers. For example, ResNet, which

won ImageNet 2015 challenge, has 152 layers [15]. The main advantage of deeper net-

works is that they can learn features at different levels of abstractions. Intuitively, when

training ResNet on images, the initial layers detect lines and edges, the next level of lay-

ers capture polygons and shapes, the next level recognize even more complex shapes or

collections of shapes like eyes or noses, and finally the highest level layers identify high-

level features like faces. In contrast, wider layers are good at memorizing the features

but not at generalizing (and hence leading to over-fitting).

1.1.3 Geometric Deep Learning

The extension of deep learning to non-Euclidean data is an area of research now called

geometric deep learning [16]. The interest in this field has exploded in the past years,

resulting in numerous successful attempts to apply these methods in a broad spectrum

of problems from biochemistry and brain imaging to social networks and recommender
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systems (see Fig. 1.1). In many of these applications, there is the notion of relationships

and interactions that are naturally occurring.

It is possible to represent these interactions as node features, where each feature rep-

resents a dimension [16]. This would allow the use of traditional deep learning like

MLPs on these data. However, from an optimization perspective, higher dimensional

data leads to an increase in the number of parameters and thus an increase in the dimen-

sion of the space where the optimization problem needs to be solved. From a statistical

perspective, this is known as the curse of dimensionality. Initially, the machine learning

algorithms improve up to a certain number of dimensions, but afterwards, the perfor-

mance drops and levels off. An increasingly amount of data and computational cost are

also necessary to solve the optimization problem. In a nutshell, the representation space

imposed by MLPs become too complex.

Geometric deep learning addresses this issue by considering the data graph as an

inductive bias instead of an additional feature. Essentially, it is a bias that can induce

the model to learn certain patterns by changing the structure of the data. In many of the

applications, the bias is relational. This restricts the representation space while retaining

the flexibility and adaptability of the neural network.

1.1.4 Graph Neural Networks

One of the main algorithms in geometric deep learning is graph neural networks (GNNs).

Just like how CNNs and recurrent neural networks are built for image-type and time-

dependent data, respectively, GNNs are made for graph-based data. Many variants

of GNNs are proposed to pass and aggregate information using the graph structure.

These variants can be categorized into five groups: graph convolutional neural networks

(GCNNs)1, recurrent graph neural networks (RGNNs), graph pooling neural networks

(GPNNs), graph autoencoders (GAEs), and Spatial-temporal Graph Neural Network

(STGNNs). And there are a wide range of tasks these can be used for, including node

classification, graph classification, representation learning, link prediction, anomaly de-

tection, graph generation, community detection, graph embedding, and combinatorial

optimization. This thesis focuses on node and graph classification tasks (see Chapters 4

and 5, respectively).
1Since the acronym “GCN” is used by [17] to means a specific model of graph convolutional neural

networks
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GNN has a strong theoretical foundation derived from graph signal processing.

Graph signal processing (GSP), the generalization of traditional digital signal processing

to graphs [18, 19, 20], can be used to extend CNNs to GNNs (see Section 2.3). We break

down GNNs and analyze their components part by part in Chapter 3.

GNNs have several useful properties: generalization, expressivity, invariance, and

transferability. Below, we summarize these properties. For more details, see [21, 22].

• Generability: GNNs are also among the most general class of neural network

architectures, and CNNs (and hence MLPs) can be interpreted as special cases of

GNNs. Reference [23] finds that GNNs have strong generalization guarantees if

the largest absolute eigenvalue is independent of the graph size.

• Expressivity: For graph classification, GNNs can distinguish between very similar

graphs. Reference [24] shows that GNNs are at most as powerful as the WL graph

isomorphism test. In other words, if this test cannot distinguish between two non-

identical graphs, then GNNs would not be able to either. For a more theoretical

examination, see [25, 26].

• Invariance: There is no pre-fixed ordering of the nodes of a graph. We can permute

the nodes of a graph by a permutation P. This induces a permutation of the graph

signal P X and of the graph structure PAPT). GNNs are permutation equivariant

functions F(X, A) constructed by applying permutation invariant functions over

local neighborhoods.

• Transferability GNNs have strong transferability, i.e., good test performance on

graphs different than those are used in training. Reference [27] shows that the

transference error decreases with graph size and there is a transferability-expressivity

trade-off that can be alleviated by nonlinearities.

1.1.5 Automated Machine Learning for Graphs

The process of automating the tasks of applying machine learning is called automated

machine learning (AutoML). The automation allows non-experts to quickly apply ma-

chine learning models to real-world problems and achieve state-of-the-art results. Ar-

chitectures resulting from NAS have shown to outperform many manual architectures

for object detection [28], image classification [29], hyperparameter optimization, [30],

meta-learning [31], and neural architecture search [32].
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We are interested here in hyperparamter optimization and neural architecture search

for graph-based data. We can already apply AutoML to graphs, e.g., for hyperparameter

optimization, via a grid search or a complete parameter sweep of the models. Our aim

here is to gain a better understanding of how the graph structures can influence the

performance of different hyperparamters and architectures, which can give insights into

improving the performance and speed of AutoML for graphs. For example, for graph

classification, graphs with high diameter may require a larger network (more graph

convolutional layers).

1.1.6 Interpretability in Graph Neural Networks

Interpretability, or understanding the cause of the model’s performance, is an important

focus of AI. The higher the interpretability, the easier it is to understand the decisions or

output accuracy based on the inputs. It is especially important in high-stakes domains

like healthcare and and criminal justice. Many state-of-the-art ML models used today

are black boxes that do not explain their predictions. Despite having the best prediction

accuracy, their lack of transparency had severe consequences. For example, ML models

have found that highly polluted air in Sacramento was safe to breath [33] and denied

parole based on race [34].

There are 2 main classes of methods for interpretability for GNNs: instance-level

methods and model-level methods. Instance-level methods are more popular and iden-

tify the components crucial for the model’s prediction. There are four main subclasses

of instance-level methods and one model-level method:

• Gradients- or features-based methods use the backpropagated gradients or feature

map. For example, class activation mapping [35] takes the final node embedding

to create a weighted activation map for the input that highlights the most crucial

components.

• Perturbation-based methods perturb the input and monitor the change in output.

For example, GNNExplainer [36] uses mutual information between GNN’s pre-

diction and distribution of possible subgraph structures to identify the important

subgraph and node features.

• Decomposition methods decompose the prediction scores (e.g., softmax output)

and propagate the scores back to the input layer. An example is GNN-s layer-wise
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relevance propagation (GNN-LRP) [37] that decomposes the output and follows a

backpropagation procedure to uncover the graph walks that are important for the

prediction.

• Surrogate methods first sample a dataset using local neighborhood sampling, node

feature perturbation, etc. Then fit different surrogate models (such as decision tree).

An example is RelEx [38], which combines surrogate methods and perturbation

methods. It considers N-hop neighboring nodes for random sampling and employs

a GCN model as the surrogate model.

• Model-level methods do not use any specific input configuration. The only ap-

proach, XGNN from [39] trains a graph generator to maximize a target graph pre-

diction. The generated graph patterns serve as explanations for the prediction.

For a complete review of the taxonomy, see [40]. Our approach is closest to the

perturbation-based methods. We are interested in a high-level interpretability using a

data-based approach by generating synthetic data, and measuring the effects on the

performance and the hyperparameters.

1.2 Thesis Statement

This thesis explores the neural network architectural considerations given the graph

topology underlying the data. We focus on two applications: node classification and

graph classification. We measure the performance by test accuracy. For node classifica-

tion, we also use training convergence as a performance metric. For each application,

We consider common real-world benchmarks, and three models of random networks.

We also look into one real-life application: COVID-19 drug discovery.

Thesis Statement: With appropriate architectures and algorithm design, geometric

deep learning methods are capable of providing general solutions to graph-based data.

To achieve high performance, it is important to consider the data graph structure when

designing the neural network architecture.

The guidelines and insight developed in this thesis will enable researchers to take

better advantage of the power of geometric deep learning to solve problems in different

fields where the underlying data structure is a graph. All the codes and data developed

when completing this thesis are publicly available.
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1.3 Contributions

This thesis aims to be a step towards understanding how to build better performing

graph neural network architectures. Towards this end, our major contributions in this

thesis are as follows:

• We present a mathematical framework for graph convolutional neural networks

based on graph signal processing (GSP). We discuss how GSP can be used with

CNNs, leading to GNNs. GSP provides a theoretical framework and intuition

about these operations.

• We review 3 main components of the GNN architecture: graph convolutional lay-

ers, graph pooling layer, and graph aggregation layer. This thesis focuses on the

graph convolutional layer, and, to a lesser degree, on the graph aggregation layer.

• Node classification. We study how the data graph structure affects the GNN ar-

chitecture for the node classification task. In particular:

– Real datasets. We analyze the effects of graph structure on test accuracy for

seven real datasets. We learn that:

* Not many layers are needed to achieve optimal performance. TAGCN

requires fewer number of layers than GCN, even with low degree of the

polynomial filters. Unlike graph classification (studied in Chapter 5), the

graph signal is necessary and important to achieve good classification

results.

* For datasets with higher difference in % of intraclass and interclass edges,

the effect of over-smoothing due to number of layers is smaller.

* Over-smoothing occurs at a slower rate as we increase the degree of poly-

nomial filters for datasets with low average degree.

– Three random models. We analyze the effects on test accuracy of different

TAGCN and GCN designs for 3 graph generation models (Erdős-Rényi, small-

world, and preferential attachment). Our main conclusions include:

* Erdős-Rényi and preferential attachment models have similar test accu-

racy curves for both GCN and TAGCN with respect to the number of

layers and the degree of the polynomial filters. For smallworld model,



CHAPTER 1. INTRODUCTION 9

TAGCN’s filters play an important role in achieving the optimal accuracy

and accelerating the effect of over-smoothing.

* High intraclass edge ratio not only leads GNN to achieve higher accuracy,

but also leads them having greater resistance to over-smoothing with re-

spect to both number of layers and degree of polynomial filters. We ob-

serve that polynomial filters have higher optimal degrees for lower layers

and lower optimal degrees for higher layers.

* Changing the graph signals by increasing the interclass difference between

the means of the graph signal improves the accuracy, while not affecting

the optimal number of layers and the degree of the polynomial filters.

* Increasing the number of nodes for the preferential attachment synthetic

network only lowers the variance of the test accuracy for both architec-

tures if all other graph characteristics remain the same.

• Graph classification. We study how graph structure affects the performance of

GNN architecture for the graph classification task:

– Real datasets. We analyze the effects of graph structure on test accuracy for

11 real datasets. We learn that:

* Datasets with high average degree and low average diameter require less

number of layers to achieve optimal performance. TAGCN tends to per-

form better with higher degrees of the polynomial filters at low number

of layers on datasets with low average degree.

* We relate simple network metrics and signal statistics to the performance

of these models. We show for biological network datasets, classifiers on

number of edges or number of nodes can lead to better or similar per-

formance as graph neural networks. For social network datasets, signal

statistics can perform well. Based on these observations, we were able to

apply simple modifications to GCN and TAGCN to improve their perfor-

mance (sumpool and degree-aware TAGCN).

– Three random models. We analyze the effects on test accuracy of different

TAGCN and GCN design for 3 graph generation models (Erdős-Rényi, small-

world, and preferential attachment). Our main conclusions include:

* Erdős-Rényi and preferential attachment models have similar test accu-

racy curves for both GCN and TAGCN. For smallworld model, more than
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1 layer is needed to achieve good performance if the edge rewiring prob-

ability is distinct for different classes.

* Simple network metrics that capture different interclass graph character-

istics can perform better than GNNs (e.g., clustering coefficient performs

better than TAGCN for capturing the smallworld’s edge rewiring proba-

bility).

* Just like with real datasets, we also show that a simple modification

(degree-aware TAGCN) can greatly improve the performance in capturing

interclass difference in degree. However, another popular variant (graph

attention network) does not perform better than TAGCN on capturing

these graph characteristics.

* We show that while TAGCN can perform well when graph signal and

graph structure have an AND relationship, it fails when they have an

XOR relationship.

• Theoretical analysis: Convergence. We prove that training loss for linearized

TAGCN converge to a global minimum at a linear rate is guaranteed under mild

assumptions. We show how the training can be accelerated with higher order

polynomial filters and more depth. Our experiments confirm that our results on

real datasets are aligned with our theoretical results for linearized TAGCNs, with

and without non-linearity.

• Covid 19 study. We apply the architecture of TAGCN to a COVID-19 case study.

We introduce a novel approach for molecular property prediction by combining

two existing GNN methods. Our model (D-MPNN+TAGCN) consistently outper-

forms state-of-the-art baseline (D-MPNN) on five coronavirus datasets.

1.4 Thesis Overview

We first present preliminaries on graph theory, deep learning, and graph signal pro-

cessing in Chapter 2. We then study in Chapter 3 the GNN architecture by considering

its main blocks, i.e., convolutional layer, pooling layer, and aggregation layer. Next, in

Chapter 4, we apply GNNs to the task of node classification and analyze the perfor-

mance with respect to the graph structure and GNN architecture on real and synthetic

datasets. We consider the analysis for the graph classification task in Chapter 5 where



CHAPTER 1. INTRODUCTION 11

the data graph structure plays a more important role. In Chapter 6, we prove the train-

ing convergence for our main architecture for node classification and validate the theory

experimentally on real datasets. Finally, we apply GNN to a COVID-19 case study in

Chapter 7 and conclude in Chapter 8.



Chapter 2: Preliminaries

In this chapter, we provide background information on graph theory, deep learning,

and graph signal processing that are necessary to understand the data graph structure

and graph neural networks. We start with a brief review of graph theory and network

algorithms (Section 2.1). We then discuss the architecture of CNNs, which is analogous

to GNNs in certain aspects (Section 2.2). Then we end with a primer on graph signal

processing that provides a theoretical framework to design and evaluate GNNs (Section

2.3).

2.1 Preliminaries on Graph Theory

In this section, we review some basic definitions and notations from spectral graph

theory, with a focus on how to extend many of the important mathematical ideas and

intuitions from classical Fourier Analysis to the graph setting. This is foundational to

understand spectral graph filtering and convolution, concepts that are important with

graph neural networks.

2.1.1 Definition and Notations

Graph structure, defined by its adjacency matrix, may differ from problem domain to

problem domain to a far greater extent than image structure in different computer vision

problems. We are interested in analyzing signals defined on a connected graph G =

(V, X, E , A), which consists of a set of nodes V with |V| = N, signal X ∈ RN×C on

the nodes (where C is the number of features on each node), a set of edges E , and an

adjacency matrix A. Aij = 0 unless there is an edge e = (i, j) connecting node i to node j.

The graph is undirected if ∀(i, j) ∈ E | Aij = Aji. For many datasets, the adjacency

matrix is unweighted, i.e., the entries in A are either zero or one.

12
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In some applications, the graph structure is naturally defined. When this is not the

case, there are many alternative ways to define a graph that underlies the data. For

example, there are various distances (Euclidean, Manhttan, Minkowski). One can define

a graph for any data using the distances between each pair of nodes and thresholding.

Alternatively, one can use a k-nearest neighbors graph. Other optimization methods

include causal graph processes [41] and principle network analysis [42] for time-varying

graphs.

2.1.2 Graph Laplacian

Definition 1 (graph Laplacian). The graph Laplacian is defined as L = D − A, where D

is the degree matrix of G, defined as the diagonal matrix (D)ii = ∑i(A)ij = ∑j(A)ij.

Graph Laplacians apply only to undirected graphs, so they are symmetric and pos-

itive semidefinite, with real non-negative eigenvalues λ1, λ2, . . . , λn. Eigenvalues of 0s

appear with multiplicity equal to the number of connected components of the graph.

The eigenvectors are orthogonal but do not necessarily form a unique set. For directed

graphs, either the indegree or the outdegree may be used. Graph Laplacians have been

widely studied within the field of spectral graph theory [20].

Definition 2 (normalized graph Laplacian). For undirected graphs, we can use the nor-

malized graph Laplacian, i.e.,

L̃ = I − D−0.5AD−0.5 = D−0.5(D − A)D−0.5 = D−0.5(L)D−0.5. (2.1)

The eigenvalues λ̃1, λ̃2, . . . , λ̃n of a normalized graph Laplacian for connected, undi-

rected graph G satisfy:

0 ≤ λ̃1 ≤ λ̃2 ≤ λ̃n ≤ 2

with λ̃n = 2 if and only if G is bipartite. Both the regular graph Laplacian and normal-

ized graph Laplacian can be used as a filtering basis for the graph Fourier transform in

GSP and the convolution in graph neural networks when the data graph is undirected.

2.1.3 Graph Statistics and Network Metrics

Graph structure and signal (or feature) have a significant effect on the performance

of GNNs. For example, if the graph feature is the same across all the nodes, node

classification setting would perform as well as random guessing. To quantify the graph
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signal, we consider the signal mean and variance for graph classification, and signal

similarity for node classification. In general, for node classification, GNNs perform

better if the signals between nodes of the same class are similar and distinct for different

classes. Likewise, for graph classification, higher difference in signal means leads to

better classification.

To quantify the graph structure, we consider several graph statistics and network

metrics. We consider number of nodes, number of edges, average degree, clustering

coefficient, and a combination of these. We also consider other network metrics such as

degree centrality, number of triangles, etc. For a full list of the network metrics, see [43].

In general, for node classification, if the clustering coefficient for nodes of similar classes

are high, GNNs perform better. For graph classification, default GNNs are not equipped

to detect differences in number of nodes and edges.

2.2 Preliminaries on Deep Learning

CNNs are particularly effective among deep learning models, in part because of the shift-

invariance of convolutional filters. A simple CNN architecture is shown in Fig. 2.1, and

discussed in further detail in section 3.2. From the figure, the basic building blocks are

convolution, pooling, activation and fully connected layers. In this section, we discuss

each layer in detail, with a particular focus on convolution, pooling, and aggregation

layers. We will show in Chapter 3 how they are different for GNNs.

2.2.1 Convolutional Layer

Convolutional layers are fundamental building blocks of CNNs. They are a linear oper-

ation that filters an input signal. It involves the multiplication of a set of weights with

the input. The resulting dot product is passed to the next layer. It exploits spatially local

correlation by learning through each filter a local connectivity pattern between the input

data. For example, a basic operation of a CNN convolutional kernel is shown in detail in

Fig. 2.1, where a 3 × 3 filter or kernel (red window) slides over the input (X) to generate

the output. Initial layers have a small receptive field and tend to learn the edges and

lines of the image. Each subsequent layer has larger receptive fields (since they take in

as inputs the previous filter outputs that learned local structure), till the last layers for

which the receptive field covers the entire image and can classify it as a whole.
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Figure 2.1: Basic CNN architecture and kernel. A typical CNN consists of several com-
ponent types (e.g., several convolutional + nonlinear activation layers, interleaved with
pooling layers, followed by fully connected layers before prediction). The convolutional
kernel sums the point-wise multiplications of a subset of the signal X with a learned
filter H. This operation is repeated as the filter “slides” across the input. (Note that what
is termed convolution by the deep learning community is actually cross-correlation.)

Another powerful property of convolutional layers is parameter sharing. It relies on

the fact that if a patch is useful at some spatial location, it can also be useful at other

locations. For example, if a filter can detect the left eye, it can also be used to detect the

right eye. Essentially, parameter sharing allows for translational equivariance in CNNs,

which means we can move the subject in the image vertically and/or horizontally with-

out hurting performance. Parameter sharing also allows for a small memory footprint

and computational cost. In constructing a GNN, these properties should ideally also be

preserved.

2.2.2 Pooling Layer

Pooling can be understood as a nonlinear downsampling operation by summarizing the

presence of features in patches. Just like the convolutional layer, the pooling layer uses

a moving filter. Most common pooling methods are average pooling and max pooling,
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which take the mean and the max of a filter, respectively.

The pooling layer reduces the size of the image while preserving the most important

features. The intuition is that the exact location is not needed for classification. Hence,

by reducing the spatial size of the representation, the number of parameters is decreased,

preventing overfitting. The computational efforts in the network are also reduced. Gen-

erally, pooling layers are periodically inserted between successive convolutional layers,

providing another form of translation invariance.

2.2.3 Activation Layer

Activation functions introduce nonlinearity. Without them, the model performs only a

linear combination of the input data, underperforming when the classes are not linearly

separable (e.g., classifying a circle from its background). The most popular activation

function is Rectifying Linear Unit (ReLU):

ReLU(x) = max(0, x). (2.2)

We generally use ReLU, and analyze training convergence with and without it.

2.2.4 Fully Connected Layer

Finally, right before prediction and the final activation layer, inputs are flattened and

passed to fully connected layers/ multilayer perceptron (MLP). These layers are used to

separate the features captured by the previous layers.

2.3 Preliminaries on Graph Signal Processing

Graph signal processing (GSP) extends traditional signal processing operations such as

shifting, Fourier transforms, convolution, and sampling to graphs [18, 20]. GSP defines

these operations for graph data and provides a theoretical framework to design and

evaluate GNNs. In this section, we give a primer on GSP theory, which is useful to

study the GNN architecture and analysis in the next sections.

GSP has been developed to process, from first principles, graph-structured data [18,

20]. GSP can be thought of as a generalization of classical signal processing: whereas

the structure of classical signals is implicit, the structure of non-Euclidean data must

be explicitly represented, which GSP does with the pairwise relationships captured by
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graphs. Because GSP is a generalization of classical signal processing, as developed in

[18], GSP reduces to DSP in the special case of a uniform graph (e.g., the pixels of an

image [44] or indices of a time series).

GSP can perhaps best be intuited by beginning with a generalization of the shift

operation from DSP. (A more thorough introduction to GSP can be found in [18, 20].) A

finite support (or periodic) discrete-time signal x[n] with period N can be represented

by a vector x = [x1, x2, . . . , xN−1, xN]
T. In this representation, to filter x[n] by some finite

impulse response (FIR) filter g, we represent g as a matrix G and simply perform a

matrix multiplication x′ = Gx.

Under appropriate conditions1, any linear, shift-invariant filter, G, can be expressed

as a polynomial of shifts; the shift operator plays a crucial role in DSP. For the periodic

time model and DSP, we can choose the circular shift:

A =



0 0 0 . . . 0 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . 1 0


. (2.3)

For this shift operator A, shift operation on x is:

Ax = A[x1, x2, . . . , xN−1, xN]
T = [xN, x1, . . . , xN−2, xN−1]

T. (2.4)

We can interpret this DSP operation as a graph operation by recasting A as an adja-

cency matrix—a matrix representation of a graph. More precisely, A corresponds to the

adjacency matrix of a directed ring graph G = (V, E), where V is a set of N vertices and

E the set of directed edges connecting each vertex to its next neighbor (with the final

vertex connecting back to the first). The N elements of x are indexed by the N vertices

of V , and each entry Aij is the weight wij of the edge connecting vertex i to j.

This dual role played by the matrix A is at the heart of constructing a linear, shift

invariant GSP, as it allows us to extend the concept of shift to any arbitrary graph [18].

The graph interpretation of equation (2.4) is shown in Fig. 2.2.

We note here that graph shift operators other than A have been proposed [18, 20],

such as the graph Laplacian L = D − A, where D is the degree matrix of G, defined as
1The characteristic and minimal polynomials are the same. We assume the sufficient condition that

the eigenvalues of A are distinct.
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Figure 2.2: A graph signal x residing on a ring graph (top), equivalent to a time series,
and its shifted version Ax (bottom). The color of each node denotes the data that is
indexed by that node. The action of the shift is represented by the shift (by one hop) of
the colored nodes to the right on the right graph.

the diagonal matrix Dii = ∑j Aij. Graph Laplacians apply only to undirected graphs,

but they are symmetric and positive semidefinite. They have been widely studied within

the field of spectral graph theory [20].

2.3.1 Convolutional Layer

Building naturally upon the graph shift operator A, graph convolution is the matrix

vector multiplication:

G x = g(A)x =
K

∑
k=0

αkAkx (2.5)

where g(A) is the (polynomial) filter of degree K, x is the graph signal, and αk the k-th

filter coefficient. In practice, A is often normalized in some manner to ensure numerical

stability. For example, normalizing the shift by |λmax| where λmax is the eigenvalue of A

with greatest magnitude, or, with an undirected graph, using Ā = D− 1
2 AD− 1

2 in place of

A, where D is the degree matrix of A. These guarantee that the (non-maximal) eigenval-

ues of the adjacency matrix are inside the unit circle, thereby making G computationally

stable.

The linear, shift invariant properties of G carry important implications. If we reorder

the nodes of A, then we get an adjacency matrix Anew = PAPT, where P is a permutation

matrix. This also reorders the graph signal x to become xnew = Px. Using (2.5),

Gnewxnew = g(Anew)xnew =
K

∑
k=0

αkAk
newPx =

K

∑
k=0

αkPAkPTPx = P
K

∑
k=0

αkAkx = P (Gx) .

(2.6)
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Thus, if we reorder the nodes by a permutation matrix P and convolve, we obtain

the original result reordered by the same permutation. This is a desirable property for

learning architectures because reordering the nodes in A should not affect the inference

result.

2.3.2 Spectral Analysis: Graph Fourier Transform

GSP provides a mathematical framework that unifies the vertex and spectral domains of

a graph, much as classical signal processing connects the time and frequency domains

of a time-series.

In DSP, the discrete Fourier transform (DFT) is equivalent to the eigendecomposition

of the directed ring graph adjacency matrix A from (2.3):

A = DFTHΛ DFT. (2.7)

Similarly, in GSP, we define the graph Fourier transform (GFT) by the eigendecom-

position of an arbitrary adjacency matrix A.

A = GFT−1Λ GFT. (2.8)

Given x, the graph spectral representation of the graph signal is x̂ = GFTx.

2.3.3 Pooling Layer

GSP can also be used to extend sampling theory. Assume a N × 1 signal x. We can

sample x by choosing K < N values to keep and zeroing out the rest. This operation can

be represented as x ⊙ δ, where

δi =

1, if xi is chosen

0, if xi is not chosen
(2.9)

and ⊙ is the Hadamard or element wise product of two vectors, |δ|0 = K, where | · |0
stands for the zero pseudonorm given by the number of nonzero components of δ.

If x̂ is bandlimited with bandlimit K, i.e., x̂ contains K nonzero values, then we can

choose a sampling set, represented by its characteristic function δ, such that x is perfectly

recoverable from x ⊙ δ. Reference [45] provides two criteria for choosing δ such that x

is perfectly recoverable from x ⊙ δ, one in the vertex domain and one in the spectral

domain. These criteria both involve choosing linearly independent rows and columns

from parts of the GFT (for vertex) or GFT−1 (for spectral) matrices.
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2.4 Conclusion

To summarize, we provide in this chapter background information for the thesis in 3

parts. First, we review some basic definitions and notations from spectral graph theory,

and present some simple graph statistics and network metrics that will be considered in

future chapters. Then we present the building blocks of convolutional neural networks,

which will be extended to graph neural networks. Finally, we give a primer on graph

signal processing, which serves as the theoretical foundation for GNNs.



Chapter 3: Graph Neural Networks

In this chapter, we study the graph neural network (GNN) architecture by considering its

main blocks. We discuss 2 flavors of the graph convolutional layer: spectral and spatial

(Section 3.2). Then we consider pooling (Section 3.3) and aggregation (Section 3.4) in

detail, highlighting their design intuitions. Content of this chapter is published in [2].

3.1 Introduction

The CNN architecture has been successfully applied to many classification tasks like

image classification and speech recognition. Fig. 2.1 shows the basic architecture of a

CNN. The deep model transforms an input through a sequence of hidden layers. Each

early-stage hidden layer consists of a set of learned filters, like convolution followed by

a nonlinear activation function, or pooling; a filter outputs a feature map that serves

as the input to the subsequent layer. Later hidden layers are typically fully connected

and, finally, a prediction is made at the output layer, using a loss function like cross-

entropy loss. Numerous variants and their improvements have been detailed across the

literature.

A GNN architecture can likewise be constructed from convolutional, pooling, acti-

vation and fully connected layers. Convolutional and pooling layers can be constructed

anew to incorporate graph structure using GSP theory. We describe these layers in this

section and explore GNNs for node and graph classification tasks.

3.2 Graph Convolutional Layer

CNNs, like that shown in Fig. 2.1 in section 2.2, have proven so effective in domains like

computer vision because the convolutional kernel has several powerful properties: 1) it

has a fixed number of parameters, allowing for a comparatively small memory footprint

21
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and computational cost; 2) it operates locally, meaning higher-level, global features can

be composed of lower-level, local features; and 3) it is shift invariant. In constructing

a GNN, such properties should be kept. The basic operation of a CNN convolutional

kernel can be seen in Fig. 3.1.

Figure 3.1: The convolutional kernel sums the point-wise multiplications of a subset
of the signal X with a learned filter H. This operation is repeated as the filter “slides”
across the input. (Note that what is termed convolution by the deep learning community
is actually cross-correlation.)

Broadly speaking, two approaches to GNNs have been pursued, the spectral domain

approach and the vertex domain approach.

Graph convolution was first generalized from CNNs to graph-structured data in the

spectral domain using the graph Laplacian. The spectral approach takes the graph signal

x, multiplies by the GFT to get x̂, convolves in the spectral domain, and then multiplies

by GFT−1 to return to the vertex domain [46]. To avoid the expensive eigendecomposi-

tion of A to find the GFT matrix, [47] used Chebyshev polynomials to approximate the

GFT.

The vertex approach defines convolution in the vertex domain, as given by (2.5).

These approaches are respectively typified by graph convolutional networks (GCNs)

[17] and topology adaptive graph convolutional network (TAGCNs) [48], which we con-

sider below. Other implementations, like GraphSAGE [49] and graph attention networks

(GATs) [50], are deep learning approaches defined in the vertex domain, but their kernels

do not meet the definition of convolution in GSP.

Given a graph signal X(0) ∈ RN×C (where N is the number of nodes, and C the

number of signal dimensions, or channels) and a graph structure A ∈ RN×N, a GCN

graph convolutional layer in general form is [17]:

X(ℓ+1) = σ
(

ÃX(ℓ)W(ℓ)
)

(3.1)
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where Ã = A + IN, W(ℓ) ∈ RC×F the trainable weight matrix, σ the nonlinear activation

function, and F the number of output features. The layer number is given by ℓ, with

ℓ = 0 for the input layer. Adding the identity matrix to A and then normalizing helps

address numerical instabilities and vanishing gradients.

The TAGCN implementation of graph convolution [48] treats the polynomial filter

coefficients as learnable weights. We can write the general form of the TAGCN graph

convolutional layer as:

X(ℓ+1) = σ

(
K

∑
k=0

AkX(ℓ)W(ℓ)
k

)
. (3.2)

Fig. 3.2 shows a TAGCN Polynomial filter of degree 2 for the blue node. Signals at

the red nodes are propagated to the blue one and aggregated (summed), i.e.,

A2X(ℓ)W(ℓ)
2 + AX(ℓ)W(ℓ)

1 + INX(ℓ)W(ℓ)
0 .

As mentioned before in section 2.3.1, we can use the normalized versions of Ã and A in

(3.1), (3.2).

Figure 3.2: Example of a graph convolutional filter of degree 2. (Left) The filter, centered
on the blue vertex, aggregates neighborhood information by multiplying the graph sig-
nal with a polynomial of shifts. For a degree of 2, the graph filter information from first-
and second-order neighbors is used to compute the output value. The polynomial coef-
ficients are learned, similar to the filter coefficients of a CNN. (Right) Like a CNN, the
filter “slides” across the graph from vertex to vertex, and the output is fed to a nonlinear
activation function.

3.2.1 Experiments

To get some intuitions about the performance of GCN and TAGCN, we present some

experimental results. We compare GCNs [17] and TAGCNs [48] for node classification

and graph classification on popular benchmark datasets. See Sections 4.3.2 and 5.3.2 for

the node and graph classification experimental setup, respectively. Table 4.1 lists node
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classification datasets and their data statistics. Tables 5.2 and 5.3 list the biological and

social graph classification datasets and their data statistics.

Table 3.1: Comparison of GNN Variants for Node Classification

CORA-ML CiteSeer PubMed
GCN 78.8 ± 1.7 67.9 ± 1.9 77.3 ± 2.4
TAGCN 80.6 ± 1.6 68.5 ± 1.8 77.6 ± 2.5

Table 3.2: Comparison of GNN Variants for Graph Classification

MUTAG PROTEINS IMDB-B REDDIT-B COLLAB
GCN 74.0 ± 7.3 72.8 ± 1.7 72.8 ± 2.3 88.2 ± 1.8 79.5 ± 2.0
TAGCN 75.1 ± 8.2 72.4 ± 2.9 73.3 ± 5.3 91.6 ± 2.6 81.0 ± 1.1

Tables 3.1 and 3.2 show the performance of several variants of GNNs for node and

graph classification, respectively. In general, TAGCN performs better than GCN for

both classification tasks. However, a GCN filtering operation has complexity O(|E |FC),

whereas the same operation for TAGCN has complexity O(|E |KFC) where K,F,C are

the degree of the polynomial filter, the number of output features, and the number of

channels, respectively. Due to the increased complexity, TAGCN has higher variance,

especially for denser graph structures for graph classification task (since for node clas-

sification, there is just one graph). Empirically, TAGCN achieves higher classification

accuracy as graphs become less sparse, i.e., as average degree increases.

3.2.2 Convolution and GSP

In this section, we relate the graph convolutional layer in GCN [17] and TAGCN [48] to

graph signal processing. From (2.5), each graph convolutional layer can be interpreted

in GSP as:

x′ = σ (g(A)x) (3.3)

where x is the graph signal (input to the layer), x′ the output of the layer, g(A) a poly-

nomial of degree K and σ the nonlinear activation. By (2.8), one convolutional layer

is

g(A)x = GFT−1g(Λ)GFTx = GFT−1g(Λ)x̂ GFT−−→ g(Λ)x̂. (3.4)

If there are L convolutional layers in the architecture, this can be interpreted as a

cascade of L polynomial filters:

gL(A)gL−1(A) . . . g1(A)x. (3.5)
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Using (2.8) yields

gL(A)gL−1(A) . . . g1(A)x = GFT−1gL(Λ)GFT . . . GFT−1g2(Λ)GFT GFT−1g1(Λ)GFTx

= GFT−1gL(Λ)GFT . . . GFT−1g2(Λ)GFT GFT−1g1(Λ)x̂
GFT−−→ gL(Λ) . . . g2(Λ)g1(Λ)x̂ (3.6)

where Λ is the diagonal matrix of eigenvalues. Equation (3.5) is filtering in the vertex

domain by cascading product of A while (3.6) is filtering in the spectral domain by first

taking the GFT and GFT−1. In the time domain, the fast Fourier transform (FFT) reduces

the computation dramatically. Going through the spectral domain requires taking the

GFT, which may be expensive. GFT produces matrices that are dense when compared to

graphs in the vertex domain (which are generally sparse), hence requiring much larger

computational resources

Reference [46] suggested using a filter in the spectral domain. Based on this, we also

consider a spectral domain approach to GCN and TAGCN based on GSP, dual to the

vertex domain approach described above.

Since M, the spectral domain shift, is the graph spectral dual of A, we define the

graph convolutional layer in the spectral domain as:

g(M)x̂ = GFT g(Λ∗)GFT−1x̂ = GFT g(Λ∗)x GFT−1
−−−→ g(Λ∗)x. (3.7)

A cascade of L polynomial filters in the spectral domain is

gL(M)gL−1(M) . . . g1(M)x̂ = GFTgL(Λ
∗)GFT−1 . . . GFTg2(Λ

∗)GFT−1GFTg1(Λ
∗)GFT−1x̂

= GFTgL(Λ
∗)GFT−1 . . . GFTg2(Λ

∗)GFT−1GFTg1(Λ
∗)x

GFT−1
−−−→ gL(Λ

∗) . . . g2(Λ
∗)g1(Λ

∗)x (3.8)

Equations (3.6) and (3.8) provide a GSP interpretation of graph convolutional layers

for both the vertex and spectral domains respectively. We examine many possible con-

volutional layers with a nonlinear activation in both the vertex and spectral domain by

placing the nonlinear activation σ in different locations in (3.6) and (3.8). Table 3.3 con-

tains the accuracy of these convolution kernels for different datasets (see Sections 5.3.1

and 5.3.2 for dataset descriptions and network training, respectively). Without the non-

linearity, these expressions are equivalent theoretically, as shown in (3.6) and (3.8). How-

ever, the placement of the nonlinearity σ can lead to differences in performance. While

the performance of all the proposed convolution kernels are comparable overall, spectral
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Table 3.3: Comparison of Different GSP Convolution Kernels

Convolution Kernel MUTAG PROTEINS IMDB-B COLLAB

GCN

Ax 74.0 ± 7.3 72.8 ± 1.7 72.8 ± 2.3 79.5 ± 2.0
Λ∗x 77.1 ± 8.4 72.5 ± 1.8 71.2 ± 2.2 77.3 ± 1.8
Λx̂ 80.3 ± 13.7 70.7 ± 1.7 70.6 ± 3.2 77.7 ± 0.8
Mx̂ 71.3 ± 8.5 70.5 ± 6.3 63.0 ± 2.2 72.2 ± 1.3
GFT−1σ(Λx̂) 78.8 ± 8.4 69.9 ± 2.7 72.9 ± 2.7 76.1 ± 1.1
σ(GFT−1Λx̂) 79.3 ± 3.2 70.8 ± 1.7 69.9 ± 4.1 77.2 ± 1.0

TAGCN

g(A)x 75.1 ± 8.2 72.4 ± 2.9 73.3 ± 5.3 81.0 ± 1.1
g(Λ∗)x 78.7 ± 5.8 72.8 ± 2.6 72.1 ± 2.1 77.6 ± 1.1
g(Λ)x̂ 74.4 ± 7.9 72.9 ± 1.9 70.2 ± 2.3 77.7 ± 1.8
g(M)x̂ 73.4 ± 4.7 69.9 ± 3.2 72.5 ± 2.2 74.8 ± 1.0
GFT−1σ(g(Λ)x̂) 76.1 ± 12.2 70.3 ± 2.2 72.2 ± 3.1 75.8 ± 1.3
σ(GFT−1g(Λ)x̂) 78.2 ± 6.9 71.7 ± 2.5 70.3 ± 4.2 79.8 ± 0.1

domain approaches using x̂ are better only for the MUTAG dataset when compared to

simply using a polynomial of A, g(A). This may be because the GFT data matrix, x̂, and

the spectral domain do not contain new information for classification.

3.3 Graph Pooling Layer

Pooling in some form is usually desirable in graph classification models for two reasons:

dimensionality reduction and hierarchical learning. Graph pooling algorithms generally

reduce the number of nodes and hence the number of learned parameters of the model.

Some pooling algorithms also enforce hierarchical representation of the data, so the

GNN can learn large-scale and global patterns in the data.

Figure 3.3: Graph pooling accepts a graph signal and produces a new, representative
graph signal indexed by a smaller graph support. Image and caption taken from [2].

More formally, using the notation in Section 3.2, graph pooling yields signal X′ ∈
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RN′×C and adjacency matrix A′ ∈ RN′×N′
, with N′ ≤ N (shown in Fig. 3.3). Pooling

can be understood as a nonlinear downsampling operation. In deep learning, unlike

as normally treated in DSP, recoverability is not a key concern for downsampling, and

unlike graph convolution, which has a GSP definition, graph pooling has not been rig-

orously defined. In CNNs, max pooling is usually used, whereas in GNNs, there is no

consensus how best to pool nodes in a graph. Recent methods of graph pooling include

Sort Pooling (SortPool) [5], Differentiable Pooling (DiffPool) [3], Top-k Pool [6], and Self-

Attention Graph Pooling (SagPool) [4]. See Fig. 3.4 for an overview. For a more in-depth

discussion, see [51].

Figure 3.4: High-level illustrations of proposed graph pooling methods. DiffPool [3] uses
a GNN model to obtain an assignment matrix for clustering the nodes. SagPool [4] uses
a GCNN layer to calculate self-attention as mask for pooling the nodes. In SortPool [5],
GNN layers are followed by a ranking of the nodes to select the top nodes. Top-k Pool
[6] uses a projection vector to select the the top nodes, which form a new graph. Image
and caption taken from [2].

3.4 Graph Aggregation Layer

In conventional CNNs, inputs are generally of the same size and have a fixed ordering.

However, in graph classification problems, many graphs of various sizes are used with

data defined on each graph in an arbitrary node permuted order (e.g., molecular net-

works). The resulting vectors that would serve as input to a fully connected layer vary

in both size and labeling order, making direct comparison difficult.
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The graph aggregation layer, also called the final pooling layer, solves this problem

by collapsing the nodes into a fixed number of features, regardless of input size, for

comparison. In general, this is done using a mean or sum operation over all nodes.

However, several other statistics and approaches can be used. One such heuristic is the

family of graph spectral distances, FGSD [52], which uses just the adjacency matrix to

capture global information about the graph structure by taking harmonic distances for

all nodes.

Another potential approach is to use graph capsules. There are two variants of these:

Graph Capsule Convolutional Neural Network (GCAPs-CNN) and Capsule Graph Neu-

ral Network (CapsGNN). GCAPs-CNN [53] uses a capsule vector that computes higher

order statistics of each graph like 2nd and 3rd moments. CapsGNN [54] extracts node

features first in the form of capsules, then graph features via an attention module by

first concatenating all capsules across nodes.

Figure 3.5: Diagram of global aggregation. Despite having different number of nodes
(top and middle graphs), the aggregation produces vectors of the same size. Despite the
nodes being permuted (middle and bottom graphs), the aggregation returns the same
vector, f (X2, A2) = [1, 4]. Image and caption taken from [2].

Experiments Table 3.4 shows results of different aggregation methods including mean,

variance, max, random selection of a node, FGSD [52], GCAPS-CNN [53], and Caps-

GNN [54]. For all methods considered in the experiments, except FGSD, graph signals

are aggregated either using statistical quantities or attention mechanism. Results from

FGSD indicate that three (MUTAG, PROTEINS, IMDB-B) of the five datasets can be clas-

sified well just using the graph structure. In general, for GNNs, there is no single best

way for aggregating across all the datasets, though certain aggregation methods may be

complementary (e.g., combining mean and variance leads to an increase in accuracy).

Sometimes, more complex techniques of aggregating may overfit the training data, e.g.,

combining mean and max reduces the test accuracy for the IMDB-B dataset. Techniques



CHAPTER 3. GRAPH NEURAL NETWORKS 29

such as capsule based GNNs (e.g., GCAPS-CNN and CapsGNN) further improve per-

formance for the MUTAG and PROTEINS datasets.

Table 3.4: Comparison of Aggregation Methods

MUTAG PROTEINS IMDB-B REDDIT-B COLLAB
TAGCN
(mean)

75.1 ± 8.2 72.4 ± 2.9 73.3 ± 5.3 91.6 ± 2.6 81.0 ± 1.1

TAGCN
(var)

79.3 ± 4.2 73.5 ± 2.9 67.8 ± 2.3 91.8 ± 1.3 78.5 ± 0.9

TAGCN
(max)

76.1 ± 5.5 73.0 ± 2.0 72.3 ± 2.7 90.3 ± 1.3 76.3 ± 2.0

TAGCN
(random)

75.5 ± 1.1 67.1 ± 2.6 73.1 ± 2.8 85.8 ± 1.4 76.0 ± 1.7

TAGCN
(mean+var)

76.1 ± 6.2 72.9 ± 2.4 74.0 ± 4.3 91.5 ± 1.7 79.5 ± 1.3

TAGCN
(mean+max)

74.5 ± 8.3 74.6 ± 2.9 71.6 ± 2.7 90.6 ± 1.7 78.7 ± 2.6

FGSD [52] 92.1 73.4 73.6 86.5 -
GCAPS-
CNN [53]

- 76.4 ± 4.2 71.7 ± 3.4 87.6 ± 2.5 77.7 ± 2.5

CapsGNN
[54]

86.7 ± 6.9 76.3 ± 3.6 73.1 ± 4.8 - 79.6 ± 0.9

3.5 Conclusion

To summarize, this chapter studies the GCNN architecture by considering its main

blocks. We discuss two flavors of the graph convolutional layer: spectral and spatial

(Section 3.2). Then we consider pooling (Section 3.3) and aggregation (Section 3.4) in

detail, highlighting their design intuitions.



Chapter 4: Node Classification

One of the most common tasks in geometric deep learning is node classification where

the algorithm infers the classes of unlabeled nodes in a graph by looking at the labeled

nodes. Some examples include social networks and recommender systems [21]. One

popular node classification benchmark uses citation networks, three of which are vi-

sualized in Fig. 4.1: CORA, CiteSeer, and PubMed [55]. In these graphs, each node

represents a scientific publication, with bag-of-words feature vectors. An undirected

edge is formed between two nodes if one cites the other. Node labels represent different

publication categories. In CORA-ML, for example, the labels represent seven subfields

of machine learning (e.g., computational biology and natural language processing). Ge-

ometric deep learning methods have achieved state-of-the-art over these and many other

node classification problems [56, 21, 22].

In this chapter, we take a closer look as to why they perform well, by analyzing how

data graph structure1 affects the performance of these methods using real and synthetic

datasets. For real datasets, we look at how simple metrics on real datasets can give

clues to the performance of these methods and insights into selecting the appropriate

architectures. The results motivate a more comprehensive investigation using synthetic

datasets where we generate many graphs and analyze several model generation parame-

ters/graph characteristics, e.g., edge creation probability of Erdős-Renỳi network model.

We organize the chapter as follows. We begin with the task definition for node

classification (Section 4.1). Then we provide some background on the issues arising

in node classification that we are addressing (Section 4.2) like over-smoothing (Section

4.2.4). Next, we break our analysis into two parts, using real datasets (Section 4.3), and

synthetic datasets (Section 4.4). Finally, we summarize the results in the conclusions

(Section 4.5).
1We refer to “data graph structure“ as “graph structure,“ and “data graph signal“ as “graph signal“

or “node feature.“

30
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Figure 4.1: Visualization [7] of citation network datasets. Class labels are color-coded.

4.1 Task Definition

In node classification, we infer the classes of unlabeled nodes in a graph using the

graph’s labeled nodes. This is a semi-supervised task where generally only a small

subset of nodes is labeled and used in training. It can be unsupervised if no labeled

nodes are available for training. In this case, learning is achieved entirely through clus-

tering or pooling nodes with similar features. The labels for the nodes can be categorical

valued (binary or multiclass classification), or continuous valued (regression).

We now give a more formal definition following the notation defined in Section 2.1.1.

Given a graph G and labels of a subset of the nodes I ⊆ [N], the task is to predict the

labels of the remaining nodes [N] \ I .

The graph G consists of a set of nodes V with |V| = N, signal X ∈ RN×C0 on the

nodes (where C0 is the number of features on each node), a set of edges E , and an

adjacency matrix A. Aij = 0 unless there is an edge e = (i, j) connecting node i and

node j.

The goal is to learn a neural network function f (X, A) such that the prediction error

between f and the true label Y is small. We use a non-negative real-valued loss function

to model the prediction error:

L( f (X, A), Y). (4.1)

Now we can define the true risk associated with the function f by interpreting data

as independent and identically distributed (i.i.d) random variables:

Rtrue( f ) = EX,A∼P(L( f (X, A), Y)) =
∫

L( f (X, A), Y)dP(X, A, Y) (4.2)
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where P is the true distribution over the inputs. In practice, however, we do not have the

true distribution P, so instead we use the empirical risk by averaging the loss function

on the training set, i.e.,:

Rempirical( f ) =
1

Ntraining
∑

i∈VI

L( f (Xi, Ai), Yi) (4.3)

where VI is the set of nodes available for training, and Ntraining = |VI |.
The principle of choosing the function f ∗ that minimizes this empirical risk is known

as the empirical risk minimization:

f ∗ = argmin
f∈F

Rempirical( f ) (4.4)

where F is a fixed class of functions/neural networks under consideration. For GCNs

and TAGCNs, this refers to the set of weights W⋆ = (W0, W1, . . . , WL) and W⋆ =

(W0
0, . . . W0

K, W1
0, . . . , W1

K, . . . WL
K) respectively, as seen in (3.1) and (3.2), copied here.

For GCN:

X(ℓ+1) = σ
(

ÃX(ℓ)W(ℓ)
)

(3.1)

For TAGCN:

X(ℓ+1) = σ

(
K

∑
k=0

AkX(ℓ)W(ℓ)
k

)
. (3.2)

We denote Ŷ = f (X, A) as the output of the neural network. For node classification,

this can be a 2-layer TAGCN, and the training loss function is:

L(ŶI , YI) (4.5)

where ŶI corresponds to the logits predicted by the neural network during training

(whose argmax corresponds to the predicted graph labels). For multi-class classification,

we use the softmax cross-entropy loss:

L(ŶI , , YI) = − 1
Ntraining

∑
v∈VI

∑
i∈Nc

log(S((Ŷv)i))(Yv)i (4.6)

where NC is the number of classes and (Yv)i is the one-hot encoding of the class of the

true label (all 0 except 1 for each label). The softmax function S(·) used to convert the

logits to probabilities is:

S((Ŷv)i) =
exp((Ŷv)i)

Nc
∑

j=1
exp((Ŷv)j)

. (4.7)
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We use the above metrics during training and validation. For testing, we report

the performance based on the test accuracy (using argmax to select the predicted class

Ŷtesting).

4.2 Issues Considered

In this section, we present the main issues that we address using real and synthetic

datasets.

4.2.1 Impact of the Graph Structure

The primary issue that we are addressing is how the graph structure affects the perfor-

mance of graph neural networks. We study how the performance changes if different

graph structures are used. Our experiments show that, in general, incorporating the

relevant graph structure over a random/identity graph structure into training improves

the performance. In Fig. 1.2 in the introduction, we show that using the neural network

model using graph structure significantly outperforms the same model when the graph

structure is ignored, i.e., trained with the identity matrix.

We also study how node degrees affect the performance of GNNs. In general, nodes

with large degrees have significant impact (since they connect with more nodes):

ImpactVi
=

deg(Vi)

∑v∈V deg(vi)
(4.8)

In our studies, when using real datasets, we examine the relationship between test ac-

curacy and network statistics and metrics. When using synthetic datasets, we investigate

connections between the test accuracy and graph generation parameters, e.g., interclass

and intraclass edge creation probability for Erdős-Rènyi graphs.

4.2.2 Impact of Graph Signal

Although generally not the case, there can be times when the graph signal/feature is

missing, uninformative, or adversarial. An adversarial case is when the features are the

same for some classes, and different for others (so only helpful for some nodes). In cases

where the graph signal or features are missing, PyTorch Geometric [57] uses the degree

of the nodes as features.

We also investigate this using synthetic data by generating various graph signals and

consider them in combination with different graph structures.
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4.2.3 Impact of the Graph Neural Network Architecture

Alongside our above objective, we also study how the architecture of the graph neural

network affects the test performance. We consider two architectures: graph convolution

networks (GCNs) [17] and topology adaptive graph neural networks (TAGCNs) [48]. We

look into hyperparameters like the number of layers for GCN and TAGCN (defined in

3.2). For the latter, we also consider the degree of the polynomial filters.

For both real and synthetic datasets, we study the architecture in conjunction with the

graph structure. We also consider simple variants of these methods that can better cap-

ture some of the real graph characteristics and synthetic graph generation parameters,

hence improving performance.

4.2.4 Over-smoothing

One important issue when applying graph neural networks, especially in node classifica-

tion, is over-smoothing. It arises as a result of trying to increase the expressiveness of the

graph structure by increasing GNN depths. While adding more layers leads to broader

receptive fields of nodes, it may also lead to a model that treats the nodes equally. In

other words, there is a trade-off in expressiveness between having far away nodes that

are able to communicate and having more distinguishable representations of nodes in

different classes. In general, we want smoothing of nodes of the same class but not of

the different classes.

More formally, [58] showed that graph convolution is a form of Laplacian smoothing.

The standard form is:

(I − γD̃−1L̃)X (4.9)

where D̃ = ∑j Ãij, Ã = A + I, and L̃ is the Laplacian D̃ − Ã.

With GCN [17], if we let γ = 1 and replace D̃−1L̃ with D̃−1/2L̃D̃−1/2, we get:

(I − γD̃−1/2L̃D̃−1/2)X (4.10)

= (D̃−1/2ÃD̃−1/2)X (4.11)

If we iteratively apply this convolution and if the graph is connected, the node fea-

tures converge to a steady state.
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Theorem 1. If a graph is connected, then for any x ∈ Rn:

lim
m→∞

(D̃−1/2ÃD̃−1/2)mx = D−1/2θ

where θ ∈ RN×1 is independent of x.

Proof. (Sketch) The eigenvalues of the normalized Laplacian D̃−1/2L̃D̃−1/2 fall between

0 and 2 [59]. The eigenspaces corresponding to eigenvalue of 0 are spanned by D−1/2

[60]. Hence, the eigenvalues of I − D̃−1/2L̃D̃−1/2 fall into (−1, 1] and the eigenspace of

eigenvalue 1 is spanned by D−1/2. Since the absolute value of all eigenvalues is less than

or equal to 1, repeated multiplication converges to a linear combination of eigenvectors

of 1, which is D−1/2. See [58] for the original proof.

So the result is only a linear combination of the graph structure, resulting in the loss

of discriminative power. Similar results apply to TAGCN, but the effect is not as severe

due to residual connections.

There are many ways to quantify and reduce over-smoothing [61, 62, 63]. The focus

here, instead, is to analyze it in more detail experimentally with respect to not just the

number of layers, but also to other architectural design choices (like order of polynomial

filters) as well as the graph structure. We present results in relation to these elements on

real and synthetic datasets.

4.2.5 Rate of Training Convergence

Another potential issue is the rate of convergence in training. For CORA, a graph with

2485 nodes, the training time per cross-validated fold for a 2-layer GCN and 2-layer

3-Degree TAGCN on a NVIDIA GeForce RTX 2080 Ti using Deep Graph Library is on

average 0.52 seconds and 1.03 seconds, respectively. However, for much larger graphs,

this can be a potential issue in terms of time and computational resources. For example,

if the graphs are dense/complete, the default sparse message passing implementation

for matrix multiplication in most frameworks is not efficient and use more GPU/CPU

memory than dense matrix multiplication (which is in general not efficient for sparse

graphs). Coauthor Physics dataset is too large to be loaded using minimum TAGCN

architecture. On the architecture side, larger neural networks (greater number of layers,

higher degree of the polynomial filter) leads to more training time per epoch (due to

having more weights to train). However, they can accelerate the training by reducing the

convergence rate.
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Theoretical and experimental analysis on how the architecture and the data graph

can affect the convergence rate is discussed in chapter 6. In Chapter 6, Theorems 2,

3, 4 describe the relation between the convergence to global minimum for 1-Layer +

1-ordered TAGCN, 1-Layer + K-ordered TAGCN, and L-Layers + K-ordered TAGCN

(ordered referring to the degree of the polynomial filter).

4.2.6 Evaluation Setup

Another major issue is the evaluation setup. According to [64], using the same

train/validation/test splits and different training procedure (e.g., early stopping crite-

ria) underestimates the generalization errors and precludes a fair comparison of different

architectural design choices. Reference [64] found that GCN [17], the simplest model,

actually performs the best across many node classification datasets when using random

splits and systematic training procedure. For both real and synthetic datasets, we use

random splits and the same training procedure for all GNN architectures and hyperpa-

rameters. For synthetic datasets, we generate 50 random graphs for each set of network

model parameters and average the results.

4.3 Real Data

In this section, we analyze the impact of graph structure on the performance of GNNs for

7 real node classification datasets. We divide the section into 3 parts: datasets description

and their statistics, experimental setup, and results.

4.3.1 Data Description and Statistics

Table 4.1 lists the common node classification benchmarks that we are using and their

data statistics. Table 4.2 shows the network metrics where % of intraclass and % inter-

class edges are the number of intraclass and interclass edges divided by the total number

of edges.

CORA [65], CiteSeer [66], and PubMed [67] are citation network datasets. Nodes

are scientific papers and edges represent citations between papers. Node feature is a

bag-of-words vector. Labels indicate the field of study.

Amazon Computers and Amazon Photos are segments of the Amazon co-purchase

graph [68]. Nodes represent items, and edges represent two items commonly purchased
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Table 4.1: Node Classification Data Statistics [1]

Dataset Nodes Edges Features Classes Label Rate Edge Density
CORA 2485 5069 1433 7 0.0563 0.0016

CiteSeer 2120 3705 3703 6 0.0566 0.0016
PubMed 19717 44324 500 3 0.0030 0.00023

Coauthor CS 18333 163788 6805 15 0.0164 0.00097
Coauthor Physics 34493 247962 8415 5 0.0029 0.00042

Amazon Computer 13381 245778 767 10 0.0149 0.0027
Amazon Photo 7650 288163 745 8 0.0209 0.0098

at the same time. Node feature is bag-of-words vector taken from product reviews. Label

is the category of the item.

Coauthor CS and Coauthor Physics are co-authorship graphs from KDD Cup 2016

challenge2. Nodes are authors and edges represent coauthorship. The feature is the

paper keywords for each author’s papers. Labels represent each author’s most active

fields of study.

Table 4.2: Node Classification Data Metrics [1]

Dataset Average
Degree

% of Intraclass
Edges

% of Interclass
Edges

Difference in %

CORA 2.04 80.41 19.59 60.82
CiteSeer 1.75 73.66 26.34 47.31
PubMed 2.25 80.24 19.76 60.48

Coauthor CS 8.93 80.81 19.19 61.61
Coauthor Physics 7.19 93.14 6.86 86.28

Amazon Computers 18.37 77.72 22.28 55.44
Amazon Photo 37.67 82.72 17.28 65.44

4.3.2 Experimental Setup

Following the standardized experimental setup discussed in Section 4.2.6, we use the

same procedure for all models and data. We use Adam optimizer with learning of 0.001,

and default initialization using (weights initialized using Glorot and biases initialized

with zeros), 10−3 L2 regularization/learning decay, up to 100k epochs with early stop-

ping condition of total validation loss not improving in 50 epochs (so actual training

time is much shorter). We split the data with 100 random train/validation/test splits

and 20 random initializations. We use full-batch training. For the GNNs, we perform
2https://kddcup2016.azurewebsites.net
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extensive grid search for hidden channels (8, 16, 32, 64), number of layers (1-10), and

for TAGCN, degree of the polynomial filters (1-5) unless otherwise specified. Except for

the last layer, we apply a dropout rate of 0.5 between each GNN layer. We use softmax

cross-entropy loss. For each model, we report the test accuracy picked using the lowest

validation loss across all hyperparameters. We use 20 and 30 labeled nodes per class as

the training and validation set respectively with the rest as the test set.

4.3.3 Results

We report the results of several elements mentioned in Section 4.2 on model performance

for 7 real node classification datasets, quantified by test accuracy.

4.3.3.1 Impact of Graph Structure

Since the graph structure is fixed on each dataset, we compare the results to using no

graph structure. The identity matrix case shown in Fig. 1.2 is analogous to ignoring

the graph structure and applying a multilayer perceptron (MLP) to the signals. Table

4.3 shows the test accuracy for GNNs on graphs vs MLPs on graph signals only. In

general, more intraclass edges implies more meaningful graph structure, while more

interclass edges implies less meaningful graph structures. For graphs with high average

degree and high difference in percentage between intraclass and interclass edge, we

expect not just higher accuracy vs using no graph structure, but also more resistance to

over-smoothing (discussed in Section 4.2.4).

As we have a very small sample size (7 samples), we are not able to make any strong

conclusion. However, we have some observations that support our theory. Amazon

Computers and Amazon Photos have a large difference in perctange of intraclass - inter-

class of edges along with very high node degrees. They also have large difference in test

accuracy between using and not using the underlying graph structure.

Simply having a large number of intraclass edges and high average degree does

not necessarily lead to improvement in performance. This may be the result of the

graph signals. The most noticeable example is the Coauthor Physics dataset, which

has a very high difference in percentage of intraclass to interclass, but only minimal

improvement with GNNs over MLPs. We hypothesize that this is because it has much

better features (good performance using just MLPs), so the performance improvement

with graph structure is minimal.
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Although not illustrated here, it may be possible to have graph structures that lead

to worse performance than just the identity. For example, when having a much higher

percentage of interclass edges than intraclass edges. In this case, GNNs learn mostly

from the graph signal and disregard the graph structure by assigning weights for the

non-zero polynomial filters to 0.

Table 4.3: Node Classification Results of Graph (GNNs) vs Without Graph (MLPs)

GCNs TAGCNs MLPs Difference of
GCNs and MLPs

Cora 77.4 +/- 2.4 79.7 +/- 1.5 57.9 +/- 3.5 19.5
Citeseer 69.0 +/- 1.1 67.7 +/- 0.8 59.1 +/- 1.3 9.9
PubMed 76.1 +/- 2.3 77.8 +/- 1.6 71.9+/- 2.2 4.2
Coauthor CS 90 +/- 0.5 91.1 +/- 1.53, 87.0 +/- 1.9 3.0
Coauthor Physics 91.9 +/- 1.0 N/A 3 87.8 +/- 1.5 4.1
Amazon Computers 80.3 +/- 1.1 77.7 +/- 2.7 66.5 +/- 2.8 13.8
Amazon Photo 90.1 +/- 0.8 85.6 +/- 2.4 77.4 +/- 2.2 12.7

4.3.3.2 Impact of Graph Neural Network Architecture

In this section, we analyze two aspects of graph neural network architectures: number

of layers and degree of the polynomial filters.

GCN: Number of Layers Fig. 4.2 shows the results of number of layers vs test accuracy

using GCN for real datasets. The optimal accuracy for all the datasets occurs in the 1st

or 2nd layers. In general, accuracy tends to drop as the number of layers increases due

to over-smoothing (see Section 4.2.4). The accuracy is random when it over-smoothes,

i.e., 1
number of classes , e.g., 33% for PubMed, 14% for Cora, based on the number of classes

(see Table 4.1). The largest drop in accuracy is generally accompanied by large variance,

indicating initializations and data splits have an effect on over-smoothing. For datasets

like PubMed, under some initial conditions, GCN over-smooths, for some others, it does

not. In general, it is more likely to over-smooth if the interclass features of the training

set are similar.

For datasets with high difference in % of intraclass and interclass edges like Coauthor

Physics, the effect of over-smoothing is less. As shown in Fig. 4.2, Amazon Computers is
3Data (graph structure and signal) is too large to be loaded onto the GPU using TAGCN architecture,

and requires neighborhood sampling, which would make comparison unfair. For Coauthor CS dataset,
we only consider polynomial filters up to degree 3. For Coauthor Physics, it requires more than 10 GB
even for a single layer.
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hovering at around 55% accuracy even at 9 and 10 layers (with high variance), whereas

Coauthor Physics has not dropped even at 10 layers. They do eventually over-smooth at

much higher number of layers.

Figure 4.2: GCN: Test accuracy vs number of layers for 7 real datasets. Colored hori-
zontal and vertical lines represent average test accuracy and standard deviation of each
dataset, respectively.

TAGCN: Degree of the Polynomial Filters Fig. 4.3 shows the impact of the degree of

the polynomial filters on these datasets for 1-layer and 2-layers TAGCN4. For 1-layer, the

degree of the polynomial filters does not have a significant effect on citation networks

(Cora, CiteSeer, PubMed) and Coauthor CS dataset. Higher degree has a significant

effect on Amazon Computers and a slight effect on Amazon Photo dataset. Based on

Table 4.2, this might be due to their high average degree. There is significant overfitting

for all the datasets (more than GCN), with training accuracy approaching 100% due to

model complexity despite regularization with higher dropout rates and weight decay
4Coauthor CS’s graph is too large and uses too much memory for 2-layer TAGCN with degrees of the

polynomial filters greater than 3, and cannot be completely loaded onto the GPU. A stochastic TAGCN
that samples nodes for convolution is possible, but the comparison would not be fair.
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due. For 2-layers, degree of the polynomial filters has more impact on the Amazon

Computers and Amazon Photos dataset, with a sudden drop in performance after the

1st degree polynomial filter. Higher degree of the polynomial filters leads to signifi-

cant deterioration in performance (close to random after polynomial filters of degree 5),

indicating significant over-smoothing.

TAGCN: Number of Layers and Degree of the Polynomial Filters Fig 4.4 shows the

results of TAGCN where we observe both the number of layers and the degree of the

polynomial filters for 6 of the datasets5. In general, having small number of layers

regardless of the degree of the polynomial filters results in the highest accuracy for all

datasets. There is no clear result as to the degree of the polynomial filters for different

datasets and number of layers. The variations seem to be small relative to number of

layers. Using degrees of the polynomial filters up to 5 also does not eliminate the effects

of over-smoothing, as accuracy drops significantly to random accuracy at high number of

layers. For Amazon Photos dataset, 5 seems to be the optimal degree of the polynomial

filters for most layers, whereas for Amazon Computers dataset, it seems to be 1.

4.3.3.3 GNN Variants

We consider three GNN variants: degree-aware GCNs (DA-GCNs), degree-aware TAGCNs

(DA-TAGCNs), and graph attention networks (GATs) [50]. DA-GCNs and DA-TAGCNs,

defined formally in Section 5.3.3.3, use a trainable weight for each degree of the node

(for TAGCN, each degree of the polynomial filters). This is effective if the node degrees

of different classes are distinct.

GATs employ self-attention over the node features and define an edge weight based

on its self-attention score (normalized over all its neighbors). This is effective if the

weights of the adjacency matrix are uninformative while the graph signal is informative.

For example, when the weights are randomly generated or all 1’s and when the signals

are distinct for different classes. However, if the signals are not distinct for different

classes, GATs can produce a less effective graph structure (and hence worse results).

Fig. 4.5 shows the results of GCN, DA-GCN, TAGCN, DA-TAGCN, and GAT6. In

general, GCN and TAGCN perform better than DA-GCN and DA-TAGCN, implying

that the degrees of the nodes are not very distinct for different classes. The only notable
5Coauthor Physics’s graph is too large and uses too much memory for even 1-layer TAGCN, and

cannot be completely loaded onto the GPU we have access to.
6Coauthor Physics’ graph is too large and uses too much memory for a fair comparison.
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(a) 1-layer TAGCN

(b) 2-layer TAGCN

Figure 4.3: TAGCN: Test accuracy vs degree of the polynomial filters with 1-2 convolu-
tional layers for 6 real datasets. Colored horizontal and vertical lines represent average
test accuracy and standard deviation of each dataset, respectively.
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(a) Cora (b) Citeseer

(c) PubMed (d) Coauthor CS

(e) Amazon Computers (f) Amazon Photos

Figure 4.4: TAGCN: Test accuracy vs number of layers and degree of the polynomial
filters for 6 real datasets.
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Figure 4.5: GCN and TAGCN vs GNN Variants (DA-GCN, DA-TAGCN, GAT) for 7 real
datasets. Colored bars represent average test accuracy of each architecture. Vertical black
lines on the bars represent standard deviation.

difference is the Coauthor CS dataset, which shows a slightly higher test accuracy with

DA-TAGCN than with TAGCN. It is also one of the few datasets that have high test

accuracy when using only the degree of the node for classification, relative to the number

of label categories (the other is Amazon Computer).

Another surprising finding is that GAT performs worse on all datasets except CORA

and PubMed. This suggests that only CORA and PubMed have graph signals useful

for learning edge weights. Another potential reason is the evaluation setup discussed in

Section 4.2.6 (since [50] and others report higher accuracy using GAT). A closer look at

the results indicate that GAT scores very low for some weight initializations and splits

(around 1
20 of the times).

4.4 Synthetic Data

Compared to real datasets, synthetic datasets allow for a more comprehensive analysis

of the impact of graph structure on the performance of the GNN architecture topology.

This is because 1) with synthetic datasets, we can systematize the graphs and study the

impact of each characteristic of the graph at a time, and 2) we can generate many dataset

samples to draw more reliable conclusions.
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4.4.1 Data Description

We focus on 3 models of graphs that are commonly studied: Erdős-Rényi, smallworld,

and preferential attachment.

4.4.1.1 Erdős-Rényi

G(n, p): n nodes with edge creation probability p. We define an additional parameter r

with p = r ln n
n . We set r > 1 so G(n, p) is almost surely connected. Erdős Rényi networks

have low clustering. They are a popular graph model for generating random graphs.

They have a binomial degree distribution [69]:

P(deg(v) = k) =
(

n − 1
k

)
pk(1 − p)n−1−k. (4.12)

4.4.1.2 Smallworld

Watts–Strogatz model[70]: G(n, κ, p): n nodes with mean degree κ and rewiring probabil-

ity p. Each node is connected to its κ
2 nearest neighbors on each side in a undirected ring

topology. For every node, consider each of the edges to its κ
2 rightmost neighbors, rewire

it to any node with probability p, while avoiding self-loops. Watts–Strogatz graphs gen-

erally have high clusterisation and short path length. These small-world properties are

common in nature (e.g., seismic activity, brain connectivity). The degree of the network

has a Dirac delta distribution [71]:

P(deg(v) = j) =
f (j,κ)

∑
i=0

(
κ/2

i

)
(1 − p)i pκ/2−i (pκ/2)j−κ/2−i

(j − κ/2 − i)!
e−pκ/2. (4.13)

for large n and f (j, κ) = min(j − κ, κ/2).

4.4.1.3 Preferential Attachment

Barabási–Albert model [72]: G(n, m): n nodes are grown by attaching new nodes with

m (edges-to-attach) edges with a preference to nodes with high degree, i.e., the prob-

ability of creating an edge to node i is: pi = ki
∑j kj

where ki is the degree of node i.

Barabási–Albert graph models are motivated by networks that are approximately scale-

free and contain few nodes with high degree (e.g., social networks, citation networks).

The network has a power law degree distribution, for example [73]:
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P(deg(v) = k) =
0.82
k3 . (4.14)

4.4.2 Experimental Setup

We follow similar experimental setup as with the real datasets (See section 4.3.2). For

default graph generation setup, we find parameters that lead to distinguishable results.

Unless mentioned otherwise, we use:

• 2 classes, 0 and 1

• 1000 Nodes, 500 for each class

• 50 random graphs from each set of network model parameters

• Graph signal x is a 1-dimensional feature vector with N(µYi , 1) where Yi is the class

of node i. The class means µ0 and µ1 are taken to be µsignal = ±0.1.

• For Erdős-Rényi, we generate single graph with the following intraclass and inter-

class edge creation probability: pintraclass = 0.07 and pinterclass = 0.03.

• For Watts–Strogatz, we generate 2 separate Watts–Strogatz graphs with the same

mean degree κ1 = κ2 = 50 and assign the nodes of each graph to different classes.

For all edges, we apply an edge rewiring probability with pintraclass = 0.1 to edge

of the same class, and pinterclass = 0.1 to edge of different class.

• For Barabási–Albert, we generate 2 separate Barabási–Albert graphs with the same

edges-to-attach m = 30 (each new node forms m links to existing nodes). Then

we apply an edge rewiring probability with pinterclass = 0.3 to all edges. For each

rewiring, we remove the existing edge, and connect the source node to a node of the

opposite class, prioritizing nodes of higher degree (so keeping the preferential at-

tachment). The priority probability is the same as Barabási–Albert edge connection

probability, but just for a different class, i.e., the probability that the rewired node is

connected is connected to node i of the opposite class is pi =
deg(i)

∑j∈nodes in opposite class deg(j) .
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4.4.3 Results

Here, we report the results of several characteristics on model performance for 3 models

of synthetic graph classification networks, quantified by test accuracy. For the architec-

ture, we focus on the number of layers and the degree of the polynomial filters.

4.4.3.1 General Results

We first discuss general results comparing the 3 network models. Fig 4.6a shows the

results of GCN for different number of layers. Although all networks succumb to over-

smoothing, smallworld seems to be the most resistant, with plateau from layers 4-7,

before a gradual descent to 50% accuracy at layer 10. For all networks, there is high

variance in performance when over-smoothing starts to occur. Accuracies start to drop

due to over-smoothing at layers 4, 7, and 4 for Erdős-Rényi, smallworld, and preferential

attachment, respectively.

Fig. 4.6b, 4.6c, and 4.6d show the results of TAGCN for different number of layers

and degree of the polynomial filters on the 3 models of synthetic graphs. The degree

of the polynomial filters seems to have different effect for different network. For Erdős-

Rényi (Fig. 4.6b), 3 seems to be the optimal degree of polynomial filters (peak occurs at

layer 4, order 3). For smallworld (Fig. 4.6c), the filters play major role in optimizing the

performance and accelerating the effect of over-smoothing for the smallworld dataset,

with significant drop in accuracy only when the sum of the number of layers and the

degree of the polynomial filters is greater than 8 for the 1st 3 layers. For preferential

attachment (Fig. 4.6d), it seems to have little effect vs number of layers.

4.4.3.2 Erdős-Rényi Network Results

Fig. 4.7 and 4.8 show the results of GCN and TAGCN vs number of layers, number of

layers + degree of the polynomial filters, respectively, for different Erdős-Rényi model

generation parameters, which are intraclass edge creation probability pintraclass, interclass

edge creation probability pinterclass, interclass difference in means of graph signals, and

number of nodes.

Impact of Intraclass Edge Creation Probability pintraclass Fig. 4.7a shows the results of

GCN vs number of layers for different intraclass edge creation probability. In general, as

the intraclass edge creation probability increases, the test accuracy improves. When the
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(a) GCN: All 3 models of synthetic graphs.
Colored horizontal and vertical lines repre-
sent average test accuracy and standard de-
viation of each dataset, respectively.

(b) TAGCN: Erdős-Rényi

(c) TAGCN: Smallworld (d) TAGCN: Preferential Attachment

Figure 4.6: General GCN and TAGCN: Test accuracy vs number of layers and/or degree
of the polynomial filters for 3 models of synthetic graphs.
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(a) pintraclass (b) pinterclass

(c) µsignal (d) Number of Nodes

Figure 4.7: GCN: Test accuracy vs number of layers and different Erdős-Rényi model
generation parameters. Subcaption indicates the model generation parameter that is
changed for different colored lines. Colored horizontal and vertical lines represent aver-
age test accuracy and standard deviation, respectively.

intraclass edge creation probability is equal to the interclass edge creation probability,

the network performs close to random since the graph is not useful. This is essentially

using just the graph signal and the intraclass difference in means of graph signals is too

small. At high intraclass edge creation probability, GCNs can achieve 100% accuracy and

they resist better to the over-smoothing effect (accuracy drops slower at higher layers).

Fig. 4.8a, 4.8b, 4.8c show the results of TAGCN vs number of layers and degree of

polynomial filters for 0.07, 0.05, and 0.09 intraclass edge creation probability, respec-

tively. Like GCN, in general, as the intraclass edge creation probability increases, the

test accuracy improves across both layers and degree of polynomial filters. The effect

of the number of layers is similar to GCN, while the degree of polynomial filters seem
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(a) Default (pintraclass = 0.07,
pinterclass = 0.03, µsignal = ±0.1,
Number of Nodes = 1000)

(b) pintraclass = 0.05 (c) pintraclass = 0.09

(d) pinterclass = 0.02 (e) pinterclass = 0.04 (f) µsignal = 0

(g) µsignal = ±0.2 (h) Number of Nodes = 2000 (i) Number of Nodes = 4000

Figure 4.8: TAGCN: Test accuracy vs degree of the polynomial filters, number of layers,
and different Erdős-Rényi model generation parameters. Subcaption indicates the model
generation parameter that is changed from the default setup.
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to have a higher optimal value for lower layers and lower for higher layer, e.g., for the

default (0.07) case for layers 1-10, the optimal degrees of the polynomial filters are 3, 5,

4, 3, 4, 2, 2, 1, 1, 1 .

Impact of Interclass Edge Creation Probability pinterclass Fig. 4.7b shows the results of

GCN vs number of layers for different interclass edge creation probability. In general, as

this probability increases, the accuracy drops, and the network over-smoothes at lower

layer. This effect is opposite of the intraclass edge creation probability.

Fig. 4.8a, 4.8d, 4.8e show the results of TAGCN vs number of layers and degree of

polynomial filters for 0.03, 0.02, and 0.04 interclass edge creation probability, respec-

tively. Like GCN, in general, as the interclass edge creation probability increases, the

test accuracy decreases across both layers and degree of polynomial filters. The effect of

the number of layers is similar to GCN, while higher degree of polynomial filters seem

to produce higher accuracy for lower layers.

Impact of Graph Signal Fig. 4.7c shows the results of GCN vs number of layers for dif-

ferent interclass difference in means of signals. As the difference increases, the accuracy

improves as expected. What is notable is that it has little effect on the optimal number

of layers and the over-smoothing phenomenon, implying that the relative accuracy vs

number of layers is affected more by the graph structure than graph signal.

Fig. 4.8a, 4.8f, 4.8g show the results of TAGCN vs number of layers and degree of

polynomial filters for 0.1, 0.0, and 0.2 interclass difference in means of signals, respec-

tively. Like GCN, in general, as the interclass difference in means of signals increases,

the test accuracy increases across both layers and degree of polynomial filters. It has lit-

tle effect on the optimal number of layers, optimal degree of polynomial filters, and the

over-smoothing phenomenon, implying that the relative accuracy vs number of layers

and degree of polynomial is affected more by the graph structure than graph signal.

Impact of Number of Nodes Fig. 4.7d shows the results of GCN vs number of layers

for different number of nodes. As the number of nodes increases, the accuracy improves.

What is also interesting is that it has little effect on the optimal number of layers and the

over-smoothing phenomenon, implying that the relative accuracy vs number of layers is

not affected by the number of nodes if the other parameters are kept the same.

Fig. 4.8a, 4.8h, 4.8i show the results of TAGCN vs number of layers and degree of

polynomial filters for 1000, 2000, 4000 number of nodes, respectively. Like GCN, in gen-
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eral, as the number of nodes increases, the accuracy improves across both layers and

degree of polynomial filters. It also has little effect on the optimal number of layers, op-

timal degree of polynomial filters, and the over-smoothing phenomenon, implying that

the relative accuracy vs the number of layers and degree of polynomial is not affected

by the number of nodes if the other parameters are kept the same.

4.4.3.3 Smallworld

Fig. 4.9 and 4.10 show the results of GCN and TAGCN vs number of layers, num-

ber of layers + degree of the polynomial filters, respectively, for different smallworld

graph characteristics generated using the Watts–Strogatz model. The graph characteris-

tics are: mean degree, edge rewiring probability (to same class pintraclass, and different

class pinterclass), interclass difference in mean of graph signal, and number of nodes.

Impact of Intraclass Edge Rewiring Probability pintraclass Fig. 4.9a shows the results of

GCN vs number of layers for different intraclass edge rewiring probability. In general, as

the probability increases, the test accuracy increases. This suggests that less small-world-

ness characteristic is better for performance. GCNs excel with more global, long-range

connections over a number of local short-range connections.

Fig. 4.10a, 4.10b, 4.10c show the results of TAGCN vs number of layers and degree of

polynomial filters for 0.1, 0.0, and 0.2 intraclass edge rewiring probability, respectively.

Like GCN, in general, as the intraclass edge rewiring probability increases, the test ac-

curacy improves across both layers and degree of polynomial filters. The effect of the

number of layers is similar to GCN. The filters still counter the effects of over-smoothing,

with increased intraclass edge rewiring probability leading to higher number of layers

before over-smoothing and sharper decline in accuracy when it occurs.

Impact of Interclass Edge Rewiring Probability pinterclass Fig. 4.9b shows the results of

GCN vs number of layers for different interclass edge rewiring probability. In general, as

the probability increases, the test accuracy deteriorates as expected. When it reaches 0.5,

the graph structure is not useful for classification, and the graph signals (µsignal = ±0.1

means) are not sufficiently distinguishable.

Fig. 4.10a, 4.10d, 4.10e show the results of TAGCN vs number of layers and degree

of polynomial filters for 0.1, 0.2, and 0.3 interclass edge rewiring probability, respec-

tively. Like GCN, in general, as the interclass edge rewiring probability increases, the
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(a) pintraclass (b) pinterclass

(c) Mean degree κ (d) Number of nodes

Figure 4.9: GCN: Test accuracy vs number of layers and different smallworld model
generation parameters. Subcaption indicates the model generation parameter that is
changed for different colored lines. Colored horizontal and vertical lines represent aver-
age test accuracy and standard deviation, respectively.

test accuracy decreases across both layers and degree of polynomial filters. The effect

of the number of layers is similar to GCN. The filters no longer counter the effects of

over-smoothing at high probability, with GNN performance behaving closer to that of

Erdős-Rényi as the graph becomes more Erdős-Rényi-like.

Impact of Mean Degree κ Fig. 4.9c shows the results of GCN vs number of layers for

different mean degree of graph. As the degree increases, the accuracy improves slightly

across the first 9 layers, and higher number of layers leads to better performance.

Fig. 4.10a, 4.10f, 4.10g show the results of TAGCN vs number of layers and degree of

polynomial filters for 50, 30, 40 mean degree, respectively. As the mean degree increases,
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(a) Default (pintraclass =
0.1, pinterclass = 0.1,
κ = 50, µsignal = ±0.1,
number of nodes = 1000)

(b) pintraclass = 0.0 (c) pintraclass = 0.2

(d) pinterclass = 0.2 (e) pinterclass = 0.3 (f) κ = 30

(g) κ = 40 (h) number of nodes = 2000 (i) number of nodes = 4000

Figure 4.10: TAGCN: Test accuracy vs number of layers, degree of the polynomail filters,
and different smallworld model generation parameters. Subcaption indicates the model
generation parameter that is changed from the default setup.
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the accuracy increases for different number of layers and degree of polynomial filters.

The optimal number of layers stays about the same, and higher mean degree seems to

lead to more rapid decline in accuracy from the optimum.

Impact of Number of Nodes Fig. 4.9d shows the results of GCN vs number of layers

for different number of nodes. Similar to its effect on Erdős-Rényi, the accuracy increases

as the number of nodes increases, reaching an optimum at around 3 layers. The number

of nodes also has little effect on the optimal number of layers and the over-smoothing

phenomenon, implying that the relative accuracy vs number of layers is not affected by

the number of nodes if the other parameters are kept the same.

Fig. 4.10a, 4.10h, 4.10i show the results of TAGCN vs number of layers and degree

of polynomial filters for 1000, 2000, 4000 number of nodes, respectively. Unlike GCN,

in general, as the number of nodes increases, the accuracy stays about the same. The

number of nodes also has little effect on the optimal number of layers, optimal degree

of polynomial filters, and the over-smoothing phenomenon, implying that the relative

accuracy vs the number of layers and degree of polynomial is not affected by the number

of nodes if the other parameters are kept the same.

4.4.3.4 Preferential Attachment

Fig. 4.11 and 4.12 show the results of GCN and TAGCN vs number of layers, number

of layers + degree of the polynomial filters, respectively, for different preferential at-

tachment graph characteristics generated using the Barabási-Albert model. The graph

characteristics are: edge rewiring probability (to different class pinterclass), edges-to-attach

m, interclass difference in mean of graph signal, and number of nodes.

Impact of Interclass Edge Rewiring Probability pinterclass Fig. 4.11a shows the results

of GCN vs number of layers for different interclass edge rewiring probability. In general,

as this probability increases, the accuracy drops, and the network over-smoothes at lower

layer. The effect is very similar to the interclass edge creation probability of Erdős-Rényi

(see Fig. 4.7b).

Fig. 4.12a, 4.12b, 4.12c show the results of TAGCN vs number of layers and degree of

polynomial filters for 0.3, 0.25, and 0.35 interclass edge rewiring probability, respectively.

Like GCN, in general, as the probability increases, the test accuracy decreases across both

layers and degree of polynomial filters. The effect is again very similar to the interclass
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(a) pinterclass (b) Edges-to-attach m

(c) µsignal (d) Number of nodes

Figure 4.11: GCN: Test accuracy vs number of layers and different preferential attach-
ment model generation parameters. Subcaption indicates the model generation param-
eter that is changed for different colored lines. Colored horizontal and vertical lines
represent average test accuracy and standard deviation, respectively.

edge creation probability of Erdős-Rényi (see Fig. 4.8d). Higher degree of the polynomial

filters seems to produce higher accuracy for lower layers, and lower accuracy for higher

layers.

Impact of Edges-to-attach m Fig. 4.11b shows the results of GCN vs number of layers

for different edges-to-attach m. As the number of edges-to-attach increases, the accuracy

improves as expected. It has little effect on the optimal number of layers and the over-

smoothing phenomenon, implying that the relative accuracy vs number of layers is not

affected by this parameter.

Fig. 4.12a, 4.12d, 4.12e show the results of TAGCN vs number of layers and degree of
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(a) Default (pinterclass =
0.3, edges-to- attach
m = 30, µsignal = ±0.1,
Number of nodes = 2000)

(b) pinterclass = 0.25 (c) pinterclass = 0.35

(d) edges-to-attach m = 20 (e) m = 40 (f) µsignal = 0

(g) µsignal = ±0.2 (h) Number of nodes = 2000 (i) Number of nodes = 4000

Figure 4.12: TAGCN: Test accuracy vs number of layers, degree of the polynomail filters,
and different preferential attachment model generation parameters. Subcaption indi-
cates the model generation parameter that is changed from the default setup.
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polynomial filters for 30, 20, and 40 edges-to-attach, respectively. Like GCN, in general,

as the number increases, the test accuracy increases across both layers and degree of

polynomial filters.

Impact of Graph Signal The behavior relative to the interclass difference between

graph signals is similar to that of Erdős-Renỳi. Fig. 4.11c shows the results of GCN vs

number of layers for different interclass difference in means of signals. As the difference

increases, the accuracy improves as expected. Fig. 4.12a, 4.12f, 4.12g show the results of

TAGCN vs number of layers and degree of polynomial filters for 0.1, 0.0, and 0.2 inter-

class difference in means of signals, respectively. Like GCN, in general, as the interclass

difference in means of signals increases, the test accuracy increases across both layers

and degree of polynomial filters. It has little effect on the optimal number of layers, op-

timal degree of polynomial filters, and the over-smoothing phenomenon, implying that

the relative accuracy vs number of layers and degree of polynomial is affected more by

the graph structure than graph signal.

Impact of Number of Nodes Fig. 4.11d shows the results of GCN vs number of layers

for different number of nodes. As the number of nodes increases, the accuracy remains

unchanged (whereas for Erdős-Renỳi, it increases, and plateau at 100%).

Fig. 4.12a, 4.12h, 4.12i show the results of TAGCN vs number of layers and degree

of polynomial filters for 1000, 2000, 4000 number of nodes, respectively. Like GCN,

in general, as the number of nodes increases, the accuracy remains similar across both

layers and degree of polynomial filters. It also has little effect on the optimal number

of layers, optimal degree of polynomial filters, and the over-smoothing phenomenon,

implying that the accuracy vs the number of layers and degree of polynomial is not

affected by the number of nodes if the other parameters are kept the same.

4.4.3.5 GNN Variants

We consider two GNN variants: degree-aware TAGCNs (DA-TAGCNs), and graph atten-

tion networks (GATs) [50]. See Section 4.3.3.3 for their descriptions. Fig. 4.13 shows their

results on the 3 models of synthetic datasets. DA-TAGCNs perform worse or similar to

TAGCN for all datasets. This is because in general, there is no significant differences in

number of intraclass edges for nodes of different classes. GAT performs similarly for

different intraclass edge creation probability for Erdős-Rényi datasets while consistently
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(a) Erdős-Rényi Intraclass Edge Creation
Probability pintraclass

(b) Smallworld mean degree κ

(c) Preferential Attachment Edges-to-attach
m

Figure 4.13: TAGCN vs GNN Variants (DA-TAGCN vs GAT) for 3 synthetic graph gen-
eration models. Subcaption indicates the model generation parameter plotted on the
x-axis. Colored bars represent average test accuracy of each architecture. Vertical black
lines on the bars represent standard deviation.

perform better for different mean degree of smallworld models and different edges-to-

attach for preferential attachment models. This is also expected since the edge weights

were originally one, and hence can be improved using the signals.

4.5 Conclusions

In conclusion, we have shown how the graph structure affects the performance of GNNs

for the node classification task on real and synthetic data. In general, for the two main

GNN architectures that we studied (GCN and TAGCN), not many layers are needed

to achieve optimal performance (compared with computer vision and natural language

processing). TAGCN requires fewer number of layers than GCN, with low degree of
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the polynomial filters. Unlike graph classification, studied in Chapter 5, graph signal is

necessary and important. For some datasets, classifying using a simple estimator on the

graph signals can outperform GNNs. For synthetic datasets, both GCNs and TAGCN

perform similarly on Erdős-Rényi and preferential attachment graphs with respect to

the number of layers. For smallworld graphs, TAGCN filters play an important role in

achieving the optimal accuracy and accelerating the effect of over-smoothing.

For real datasets, node classification significantly improved when the graph is taken

into consideration. We relate simple metrics on real datasets to the performance of these

models. We show, for datasets with higher difference in % of intraclass and interclass

edges like Coauthor Physics, the effect of over-smoothing due to number of layers is

smaller. We also show that over-smoothing occurs slower vs the degree of polynomial

filters for datasets with low average degree. Since the node degrees are in general com-

mon among different classes, DA-GCN and DA-TAGCN do not perform better than

GCN and TAGCN, respectively. Graph attention network only performs well on two

datasets, suggesting that only those two have graph signals useful for learning edge

weights.

For synthetic datasets, we relate the performance to different graph characteristics.

We find that, in general, high intraclass edge ratio not only leads GNN achieving higher

accuracy, but also leads to them resisting over-smoothing more for both number of layers

and degree of polynomial filters (which has higher optimal values for lower layers, and

lower optimal values for higher layers). Changing the graph signals by increasing the

interclass difference between the means of the graph signal improves the accuracy while

not affecting the optimal number of layers and degree of polynomial filters. For both

architectures, increasing the number of nodes for Erdős-Rényi and preferential attach-

ment models improves the test accuracy but for preferential attachment it only lowers

the variance of the test accuracy if all other graph characteristics remain the same. Just

like for real datasets, DA-TAGCN performs worse than TAGCN. GAT in general per-

forms better because the graph signals are distinct between classes and the edge weights

are the same.



Chapter 5: Graph Classification

Graph classification is a task in geometric deep learning with many practical appli-

cations. In graph classification, we infer graph-level properties or classes of unlabeled

graphs, given a set of labeled graphs with graph structures and signals. This is analogous

to the image classification task studied in computer vision. For example, in MUTAG (see

Fig. 5.1), molecules are graphs defined according to the chemical bonds between atoms

and the task is to predict whether a molecule is mutagenic or not. Geometric deep

learning methods have achieved state-of-the-art over this and many graph classification

problems [74, 21, 22].

In this chapter, we take a closer look as to why they perform well, by analyzing how

data graph structure1 affects the performance of these methods using real and synthetic

datasets. For real datasets, we look at how simple metrics on real datasets can give

clues to the performance of these methods and insights into selecting the appropriate

1We refer to “data graph structure“ as “graph structure,“ and “data graph signal“ as “graph signal“
or “node feature.“

Figure 5.1: MUTAG dataset [1]: 188 graphs, 2 classes.

61
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architectures. The results motivate a more comprehensive investigation using synthetic

datasets where we generate many graphs and analyze several model generation param-

eters/graph characteristics, e.g., edges-to-attach of preferential attachment model.

We organize the chapter as follows. We begin with the task definition for graph classi-

fication (Section 5.1). Next, we provide some background on some of the issues in graph

classification that we are addressing (Section 5.2), like limit on the expressive power of

GNNs (Section 5.2.4) and impact of GNN architecture (Section 5.2.3). Then we break

our analysis into two parts. First, we study how simple metrics on real datasets can

give clues to the performance of these methods and insights into selecting the appropri-

ate deep model architectures (Section 5.3). The results motivate a more comprehensive

investigation using synthetic datasets with many different data structures (Section 5.4).

Finally, we summarize the results in the conclusions (Section 5.5).

5.1 Task Definition

In graph classification, we try to discriminate between graphs of different classes. This is

generally a supervised task where a subset of graphs are labeled and used in training. It

can be unsupervised by not using any label and by learning entirely through clustering

graph features/statistics. The labels for the graphs can be categorical valued (binary or

multiclass classification), or continuous valued (regression).

We now give a more formal definition following the notation defined in Section 2.1.1.

We consider the supervised learning setting with the following observations in the forms

of graphs Gs = (G1,G2, . . . ,GN), and labels Ys = (Y1, Y2, . . . , YN). We are given a subset

of labels for training {Yi | i ∈ Dtraining}, and the task is to predict the rest {Yi | i ∈
Dtesting}, where Dtraining and Dtesting correspond to the train and test sets, respectively.

Each graph Gi consists of a set of nodes Vi with |Vi| = Ni, signal Xi ∈ RNi×C0 on

the nodes (where C0 is the number of features on each node), a set of edges Ei, and an

adjacency matrix Ai. [Ai]jk = 0 unless there is an edge e = (j, k) connecting node j and

node k.

Given a neural network function f (Xi, Ai), we use a non-negative real-valued loss

function to model the prediction error of each sample:

L( f (Xi, Ai), Yi) (5.1)
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Now we can define the true risk associated with the function f by interpreting data as

independent and identically distributed (i.i.d) random variables:

Rtrue( f ) = EX,A∼P(L( f (X, A), Y)) =
∫

L( f (X, A), Y)dP(X, A, Y) (5.2)

where P is the true distribution over the inputs. In practice, however, we do not have the

true distribution P, so instead we use the empirical risk by averaging the loss function

on the training set, i.e.,:

Rempirical( f ) =
1

Ntraining
∑

i∈Dtraining

L( f (Xi, Ai), Yi). (5.3)

where Ntraining = |Dtraining|. The concept of choosing the function f ∗ that minimizes this

empirical risk is the empirical risk minimization:

f ∗ = argmin
f∈F

Rempirical( f ) (5.4)

where F is a fixed class of functions/neural networks under consideration. For GCNs

and TAGCNs, this refers to the set of weights W⋆ = (W0, W1, . . . , WL) and W⋆ =

(W0
0, . . . W0

K, W1
0, . . . , W1

K, . . . WL
K) respectively, as seen in (3.1) and (3.2), copied here.

For GCN:

X(ℓ+1) = σ
(

ÃX(ℓ)W(ℓ)
)

, (3.1)

and for TAGCN:

X(ℓ+1) = σ

(
K

∑
k=0

AkX(ℓ)W(ℓ)
k

)
. (3.2)

We denote Ŷ = f (X, A) as the output of the neural network. For graph classification,

this can be for example a 2-layer TAGCN, followed by 2 a few MLPs and aggregation

layer (see Section 3.4). The training loss function is thus:

L(Ŷi, , Yi) (5.5)

where Ŷi corresponds to the logits predicted by the neural network during training

(which argmax corresponds to the predicted graph labels). For multi-class classification,

we use softmax cross-entropy loss shown:

L(Ŷi, , Yi) = − ∑
i∈Nc

log(S(Ŷi))(Yv)i (5.6)
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where NC is the number of classes and (Yv)i is the one-hot encoding of the class of the

true label (all 0 except for 1 for each label). The softmax function S(·) used to convert

the logits to probabilities is shown in (4.7), copied here:

S((Ŷv)i) =
exp((Ŷv)i)

Nc
∑

j=1
exp((Ŷv)j)

. (4.7)

We use the above metrics during training and validation. For testing, we report

the performance based on the test accuracy (using argmax to select the predicted class

Ŷtesting).

5.2 Issues Considered

In this section, we present the main issues for the graph classification task that we con-

sider using real and synthetic datasets.

5.2.1 Impact of Graph Structure

Just like node classification, the primary challenge that we are addressing is how the

data graph structure affects the performance of graph neural networks. Unlike node

classification, we are considering multiple graph structures of different classes.

For real datasets, we compare the test accuracy of classification using graph NNs

vs using simpler machine learning algorithms on network statistics and metrics. For

synthetic datasets, we investigate when the graph structures are distinct between classes,

based on the graph generation parameters, e.g., edge creation probability for different

classes for Erdős-Rènyi graphs.

5.2.2 Impact of Graph Signal

Graph signals play a very important role. There are cases when just using the simple

statistics like average and variance on the signals is enough for good classification per-

formance. Signals can also work against the graph structure, by being indistinguishable

between classes or by being opposite in an XOR fashion as shown in Table 5.1.
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Table 5.1: XOR Case of Graph Signal vs Graph Structure

Graph Structure Type A Graph Structure Type B
Signal Type A Class 0 Class 1
Signal Type B Class 1 Class 0

5.2.3 Impact of Graph Neural Network Architecture

Alongside our above objective, we also study how the GNN architecture affects its per-

formance. We consider two methods: graph convolution networks (GCNs) [17] and

topology adaptive graph neural networks (TAGCNs) [48]. We look into hyperparame-

ters like the number of layers for GCN and TAGCN (defined in 3.2). For the latter, we

also look into the degree of the polynomial filters.

For both real and synthetic datasets, we study the architecture in conjunction with the

graph structure. We also consider simple variants of these methods that can better cap-

ture some of the real graph characteristics and synthetic graph generation parameters,

hence improving performance.

5.2.4 Limit on the Expressive Power of GNNs

While performing well on many datasets including citation networks [48] and NYC taxi

pickup data [75], GNNs have been theoretically shown to fail on certain types of graph

structures and signals [76], described below.

Consider two graphs with adjacency matrices A1, A2 respectively. Let the graph

signals be X1 and X2 respectively. Polynomial filter TAGCN fails when P(A1)X1 =

P(A2)X2 (where P is a polynomial filter), but A1 and A2 are not isomorphic, i.e., A1 ̸=
PA2P−1 for any permutation matrix P. For example, consider the graphs in Fig. 5.2 [76].

Figure 5.2: Two non-isomorphic graphs where A1 ̸= A2. The graph signal is X1 = X2 =
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]T, where the number 6 represents the element Carbon at each node
of the graph.
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In the graphs in Fig. 5.2, the graphs are not isomorphic, A1 ̸= PA2P−1, but every

node is connected to the same valued neighbors. The two chemicals shown, Decalin

and Bicyclopentyl, are represented by graphs where the nodes are the Carbon atoms

and the edges are the chemical bonds between the atoms. The graph signal is X1 =

X2 = [6, 6, . . . , 6]T where the number 6 represents the element Carbon at each node in

the graph2. Because of this, since Ax is a weighted sum of the neighbors of each node,

A1X1 = A2X2 = [18, 18, 12, 12, 12, 12, 12, 12, 12, 12]T (5.7)

In addition, P(A1)X1 = P(A2)X2. Thus, σ(P(A1)X1) = σ(P(A2)X2). Because of this,

TAGCN (and GCN) convolution produces the same output and thus it cannot distin-

guish between A1 and A2.

This phenomenon can occur in chemical datasets such as MUTAG [1]. Many chemi-

cals have a similar structure and contain the same elements and, thus, are more likely to

fail with GNNs [76].

These failure cases can be tied to the Weisfeiler-Lehman (WL) test of isomorphism

on graphs [77]. Reference [24] shows that GNNs are at most as powerful as the WL

graph isomorphism test. In other words, if this test cannot distinguish between two

nonidentical graphs, then GNNs would not be able to distinguish between them. For a

more theoretical examination, see also [25, 26].

There are several ways to improve the expressive power of GNNs and to deal with

these peculiar cases. We propose a solution using a spectral domain shift M based on

concepts from GSP (see Section 2.3). This solves the problem of GNNs failing when

applied to certain graph inputs [78].

As described in [78], using the example in Fig. 5.2, we use (3.7) to obtain the M1 and

M2, the spectral graph shifts corresponding to A1 and A2, respectively. These are shown

in Fig. 5.3.

In general, this is not an issue for real datasets, as almost all the datasets that we

encounter do not have non-isomorphic but similar graphs and signals like the ones

shown in Fig. 5.2.

Using 1-degree polynomial filter, P(M) = M, we obtain

M1X̂1 =

[6.7, 0.8,−13.1,−3.4,−3, 1.7,−12.8,−7, 17.9,−4.3]T

2In this paper, we consider X1 = X2 = [6, 6, . . . , 6]T . In general, any vector X1 = X2 = [a, a, . . . , a]T ,
a ∈ C would also fail.
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Figure 5.3: M1 and M2, the spectral graph shifts corresponding to A1 and A2 from
Fig. 5.2, respectively. Each node is labeled with the values of X̂1 and X̂2, the GFT of
X1 = X2 = [6, 6, . . . , 6]T (values of carbon). The colors represent the edge weights of each
edge in the graph.

M2X̂2 =

[−3.2,−0.7,−0.6, 10.5, 0.8, 9.9,−10, 13.6, 16.4,−4.3]T

Thus, M1X̂1 ̸= M2X̂2 and the spectral domain convolutional layer will produce different

outputs.

5.3 Real Data

In this section, we analyze the impact of graph structure on the performance of GNNs

for 11 real graph classification datasets. We divide this section into 3 parts: datasets

description and their statistics, experimental setup, and results.

5.3.1 Data Description and Statistics

For real datasets, we study common graph classification benchmarks in biology and

social networks. Their data statistics and network metrics are shown in tables 5.2 and
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5.3. For averages, we take the mean across all the graphs. For diameter, we consider

disjoint components separately and average them before averaging across all the graphs.

Table 5.2: Biological Networks Data Statistics [1]

Dataset Size Classes Avg. Nodes Avg. Degree Avg. Diameter
MUTAG 188 2 17.9 2.2 8.2
ENZYMES 600 6 32.6 3.9 10.7
PROTEINS 1113 2 35.9 3.7 11.3
DD 1178 2 273.3 5.0 19.7
AIDS 2000 2 15.4 2.0 7.1
NCI1 4110 2 29.9 2.2 12.5

Table 5.3: Social Networks Data Statistics [1]

Dataset Size Classes Avg. Nodes Avg. Degree Avg. Diameter
IMDB-Binary 1000 2 19.7 8.9 1.9
Reddit-Binary 2000 2 233.4 2.3 6.8
COLLAB 5000 3 72.6 36.7 1.9
Github_stargazers 12725 2 90.5 3.1 5.8
Twitch_egos 127094 2 29.7 5.4 2.0

5.3.1.1 Biological Network Data Descriptions

We describe the biological network data. Typically, each sample is a chemical, repre-

sented by a graph.

MUTAG [79] is a graph classification dataset where each graph is a molecule. Each

node is an item, and the graph for each data point is formed according to the bonds

between atoms. The task is to predict whether the molecule is mutagenic.

ENZYMES [80], PROTEINS [81], and DD [77] are graph classification datasets where

each graph is a protein molecule. For ENZYMES and PROTEINS, nodes represent sec-

ondary structure elements (alpha helix, the beta-sheet, and the turn), and edges connect

nodes that are along an amino acid sequence. For DD, each node represents individual

amino acids, and edges are formed based on their spatial distance. The task is to predict

whether the protein is an enzyme.

AIDS [82] is a graph classification dataset where each graph represents a compound.

Each node is an atom, and edges represent chemical bonds. The task is to evaluate

evidence of anti-HIV activity.
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NCl1 [83] is a graph classification dataset where each graph is a chemical compound.

Each node is an atom, and edges represent chemical bonds. The task is to predict the

anti-cancer potential of each molecule.

5.3.1.2 Social Network Data Descriptions

We describe the social network datasets.

IMDB-Binary [84] is a graph classification dataset where each graph is an ego-network.

Each node represents an actor/actress, and the edges are formed between those who ap-

peared together in a movie. The task is to determine whether a graph comes from

romance or action genre.

Reddit-Binary [84] is a graph classification dataset where each graph is a Reddit

discussion thread/post. Each node represents a user from the online community. The

edges are formed when one user comments on the other. The task is to predict which

post of the online community this graph comes from.

COLLAB [84] is a graph classification dataset where each graph is a collaboration

network. Each node represents a researcher in a certain field and collaboration between

researchers form the edges. The task is to predict whether a graph belongs to one of

three specific fields.

Github_stargazers [85] is a graph classification dataset where each graph represents

a social network of GitHub users. Nodes are users and edges are their follower rela-

tionship. The task is to predict whether a graph belongs to web or machine learning

developers.

Twitch_egos [85] is a graph classification dataset where each graph is a ego-net of

Twitch users. Nodes are users and edges are friendships. The task is to predict whether

the ego user plays a single or multiple-player games. Players who play a single game

usually have a more dense ego-net.

5.3.2 Experimental Setup

For the neural network training, we perform stratified 10-fold cross-validation and report

the final test accuracy optimized over all hyperparameters. The hyperparameters are the

number of graph convolutional layers, the number of channels in each layer, dropout

rates, and (for TAGCN) the degree of the polynomial filter. We use cross-entropy loss

and ADAM optimizer with a starting learning rate of 0.01. Experiments are performed

in PyTorch using the PyTorch Geometric Library [57] and the Deep Graph Library [86].
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For the classifiers on data metrics (clustering coefficient, average degree, signal mean),

we find the metrics for each sample/graph and use it as a feature for classification. Sig-

nal means is using the average across signal as the feature for each graph. # nodes and

# of edges are using the number of nodes and number of edges, respectively. Clustering

coefficient and average degree are taken for each graph. Combined is combining all of

the metrics into a feature vector. We also use 10-fold cross-validation here with linear

support vector machine, logistic regression (for single feature), and SGD Classifier (for

twitch-egos there are more than 100,000 samples), all from scikit-learn library [87].

5.3.3 Results

Here, we report the results on 11 real graph classification datasets, quantified by test

accuracy. We start with general GNN vs metrics results with a few simple GNN mod-

ifications inspired by the metrics results. We then focus more in-depth on the GNN

architecture, i.e., number of layers, and order of polynomials.

5.3.3.1 Graph Neural Networks vs Metrics Results

Fig. 5.4 and 5.5 show the results of classifiers of different metrics (on graphs and/or sig-

nals) vs TAGCN for biological and social networks datasets, respectively. For some bio-

logical and social network datasets, classifiers based on simple network metrics/signal

statistics lead to better or similar performance as TAGCN. For example, for MUTAG

dataset, using the signal mean or number of edges in each graph as a feature with lin-

ear discriminant analysis outperforms the traditional neural network approach. For DD

and AIDS datasets, either the number of nodes or the number of edges achieves better

performance than TAGCN. For MUTAG, PROTEINS, and AIDS datasets, signal mean

achieves good results. For IMDB-Binary and COLLAB, average degree performs well

although not as good as GNN approaches. For ENZYMES, NCI1, Github stargazers and

Twitch Egos datasets, GNN approaches have much better performance.

For signal, we have also looked into signal variance and higher order moments. For

graphs, we have also looked into centrality, connectivity, and other metrics. We did not

find better results than the metrics shown here.
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(a) MUTAG (b) ENZYMES (c) PROTEINS

(d) DD (e) AIDS (f) NCI1

Figure 5.4: Data metrics vs GNN (TAGCN) for biological networks. Blue bars represent
average test accuracy of each metric/architecture. Vertical black lines on the bars repre-
sent standard deviation.

5.3.3.2 GNN Variant: Sumpooling

Fig. 5.4 and 5.5 show that for some datasets, using simple classifiers on the signal mean

and number of nodes can perform well. For MUTAG and AIDS datasets, the simple

classifiers outperform even default TAGCN. To better capture this using TAGCN, we

modify the aggregation layer (Section 3.4) to use a sum pool instead of the default mean

pool. Sumpool adds up the signal and hence would yield higher outputs for graphs

with more nodes and higher signals.

As shown in Fig. 5.6, we see that in general if the simple classifers on signal mean

and/or number of nodes perform well, sumpool TAGCN performs better than mean-

pool TAGCN. Some notable examples are MUTAG, DD, and AIDS datasets, which have

significant improvements using sumpooling over meanpooling. For AIDS dataset, the
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(a) IMDB-Binary (b) Reddit-Binary (c) COLLAB

(d) Github Stargazers (e) Twitch Egos

Figure 5.5: Data metrics vs GNN (TAGCN) for social networks. Blue bars represent av-
erage test accuracy of each metric/architecture. Vertical black lines on the bars represent
standard deviation.

resulting improvement is close to 100% test accuracy as using either the signal means or

the number of nodes to classify leads to 100% in accuracy. Surprisingly, default imple-

mentation of TAGCN (using meanpool) perform poorer than these simple metrics.

On the other hand, when using the simple classifiers on signal mean and/or number

of nodes perform poorly, sumpool either does not lead to significant gain in test accuracy

or perform a bit worse. This is seen in most of the social networks, where using signal

mean and number of nodes have worse results than default TAGCN. For both IMDB-

Binary and Reddit-Binary, there is a slight deterioration in performance.

In summary, sumpool is one simple variant that should be considered for GNN im-

plementations before considering more complex models (that can capture the same in-

formation), especially if classifiers on the signals and/or number of nodes perform well.
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(a) Biological networks

(b) Social networks

Figure 5.6: TAGCN (meanpool) vs TAGCN variant (sumpool) and data metrics for 5
real datasets. Colored bars represent average test accuracy of each metric/architecture.
Vertical black lines on the bars represent standard deviation.
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5.3.3.3 GNN Variant: Degree-aware GNN

Fig. 5.4 and 5.5 show that for some datasets, using simple classifiers on the num-

ber of edges and average degree can perform well, sometimes close to or better than

GCN/TAGCN. To better capture this using GCN, we introduce 2 new variants called

degree-aware GCN (DA-GCN) and degree-aware TAGCN (DA-TAGCN), modified from

GCN (3.1), and TAGCN (3.2), respectively. Essentially, we add a learnable weight for

each message-passing step that corresponds to the outdegree of each node. For GCN,

the convolution becomes:

X(ℓ+1) = σ
(

ÃV(ℓ)X(ℓ)W(ℓ)
)

. (5.8)

where V(ℓ) = diag(v(ℓ)1 , · · · , v(ℓ)N ) and v(ℓ)i is the learnable weight corresponding to the

degree of node i at layer ℓ (shared weight for all nodes of the same degree in the same

layer). Similarly, for TAGCN, we have shared weights for each degree of the polynomial

filters:

X(ℓ+1) = σ

(
K

∑
k=0

AkV(ℓ)
k X(ℓ)W(ℓ)

k

)
(5.9)

where V(ℓ)
k = diag(v(ℓ)k,1 , · · · , v(ℓ)k,N) and v(ℓ)k,i is the learnable weight corresponding to the

degree of node i at layer ℓ and degree k (shared weight for all nodes of the same degree

in the same layer and degree of the polynomial filters). For both GCN and TAGCN,

these weights are initialized as 1’s (so they have little effect on the loss and accuracy for

the initial epochs of the training).

In Fig. 5.7, we show that using the DA-GCN and DA-TAGCN outperforms GCN and

TAGCN when the number of edges and/or average degree is important for classification

e.g., for MUTAG and PROTEINS datasets. On the other hand, when average degree is

not as important, e.g., for DD, AIDS, and Reddit-Binary datasets, the performance using

DA-GCN and DA-TAGCN drops. This is true especially for Reddit-Binary, where the

performance drops significantly by 8% and 17% using DA-GCN and DA-TAGCN over

GCN and TAGCN, respectively.

There is an anomaly in the results, for IMDB-Binary, simple classifiers using aver-

age degree performs well, but not DA-GCN and DA-TAGCN compared to GCN and

TAGCN. A closer analysis tells us that this is because while IMDB-Binary dataset has

similar average degrees between classes, but it has different degree distribution between

classes.
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In summary, DA-GCN and DA-TAGCN are two simple variants that can be con-

sidered for GNN implementations before considering more complex models (that can

capture the same information), especially if classifiers on the average degree performs

well. The amount of extra computation is small as the number of weights required is the

highest degree in the dataset, or that number times the degree of polynomial filters for

GCN and TAGCN, respectively.

5.3.3.4 GNN Variant: Graph Attention Networks

We also consider graph attention network (GAT) [50], one of the popular GNN variants

that use self-attention to learn edge weights (see Section 4.3.3.3 for a short description).

As shown in Fig. 5.8, GAT performs similar to TAGCN for all datasets (but better than

GCN on some), as some might not expect with the additional complexity involving

attention.

5.3.3.5 Impact of Graph Neural Network Architecture

We look into two aspects of graph neural network architectures: number of layers and

degree of the polynomial filters.

GCN: Number of Layers In general, GCN achieves optimal accuracy in less than 8

layers. Based on the data statistics in Tab. 5.2 and 5.3, it seems that datasets with high

average degree and low average diameter require less number of layers to achieve opti-

mal performance. Fig. 5.9 shows graph classification performance results versus number

of graph convolutional layers for GCN for 11 selected real world datasets. In general,

social datasets have lower average diameter than biological datasets. For social datasets,

GCN performs optimally or close to optimal (within 1% of optimal) at 1-3 number of

layers for these datasets. For the biological datasets, GCN perform optimally between

2-7 number of layers. The most noticeable social dataset is COLLAB, which has a high

average degree, and GCN performs optimally at 1 layer. The most noticeable biological

dataset is MUTAG, which has low average degree, and GCN performs optimally at 7

layers (it has similar accuracy at 3 layers, but the variance at 7 layers is lower).

We also see the effect of over-smoothing for GCN (see Section 4.2.4). For some biolog-

ical datasets (Enzymes DD, NCI1), we see a significant drop in accuracy for layers 7-10.

These datasets tend to have higher average diameter. Out of the the 5 social datasets,

Reddit-Binary is the only one that experiences a significant drop in accuracy at the 10th
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(a) Biological networks

(b) Social networks

Figure 5.7: GCN and TAGCN vs GCN TAGCN variants (DA-GCN and DA-TAGCN)
and data metrics for 5 real datasets. Colored bars represent average test accuracy of each
metric/architecture. Vertical black lines on the bars represent standard deviation.

layer. It also incidentally has the highest average diameter and lowest average degree

among the social datasets.

There are some exceptions to this. For example, Proteins dataset, which has higher

average diameter than ENZYMES dataset, does not see a significant drop in accuracy

even at the 10th layer for GCN. This might be due in part to the graph signal. We will
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(a) Biological networks

(b) Social networks

Figure 5.8: GCN and TAGCN vs GNN variant (GAT) for 5 real datasets. Colored bars
represent average test accuracy of each architecture. Vertical black lines on the bars
represent standard deviation.

investigate these trends further using synthetic datasets.

For 3 social datasets (IMDB-Binary, Twitch_egos, and Github_stargazers), GCN per-

forms close to the optimal accuracy even at 10 layers. This is because the over-smoothed

signals of the distinguishable graphs are far apart, so more convolutional layers do not

converge them.
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(a) Biological networks (b) Social networks

Figure 5.9: GCN: Test accuracy vs number of layers for 12 real datasets. Colored hori-
zontal and vertical lines represent average test accuracy and standard deviation of each
dataset, respectively.

TAGCN: Number of Layers and Degree of the Polynomial Filters Fig. 5.10 and 5.11

show graph classification performance results versus number of graph convolutional

layers for TAGCN for biological and social datasets, respectively. TAGCN uses polyno-

mial filters up to degree 3. TAGCN is more general than GCN and reduces to GCN by

taking the degree of the polynomial filter P(A) to be K = 1 and removing the resid-

ual connection. In general, we see similar trend as GCN in accuracy with respect to

the number of layers. For all datasets, IMDB-Binary, Reddit-Binary, Twitch_egos, and

Github_stargazers, the accuracy drops at higher number of layers. Reddit-Binary’s accu-

racy drops slower vs number of layers with TAGCN compared to GCN.

There is no clear result as to the optimal degree of the polynomial filters for different

datasets and number of layers. Like GCN, the variations seem to be small relative to

number of layers for some datasets (Github Stargazers and Twitch Egos). For some

datasets (e.g., NCI1 and IMDB-Binary), TAGCN performs better with lower degree of the

polynomial filters at higher layers. And for some datasets with low average degree (e.g.,

AIDS, Reddit-Binary), TAGCN performs better with higher degrees of the polynomial

filters at lower layers.
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(a) MUTAG (b) ENZYMES (c) Proteins

(d) DD (e) AIDS (f) NCI1

Figure 5.10: TAGCN: Test accuracy vs number of layers and degree of the polynomial
filters for 6 real biological datasets.

5.4 Synthetic Data

Compared to real datasets, synthetic datasets allow for a more comprehensive analysis

of the impact of graph structure on the performance of the GNN architecture topology.

Just like for graph classification datasets, this is because 1) with synthetic datasets, we

can systematize the graphs and study the impact of each characteristic of the graph at a

time, and 2) we can generate many dataset samples to draw more reliable conclusions.



CHAPTER 5. GRAPH CLASSIFICATION 80

(a) IMDB-Binary (b) Reddit-Binary (c) COLLAB

(d) Github Stargazers (e) Twitch Egos

Figure 5.11: TAGCN: Test accuracy vs number of layers and degree of the polynomial
filters for 5 real social datasets.

5.4.1 Data Description

We focus on 3 types of graphs that are commonly studied: Erdős-Rényi, smallworld, and

preferential attachment. See section 4.4.1 for full descriptions.

5.4.2 Experimental Setup

We follow the same experimental setup as that for real datasets (see Section 5.3.2). For

default graph generation setup, we find parameters that lead to distinguishable results.

Unless mentioned otherwise, we use:

• 2 classes, 0 and 1
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• 1000 graphs, each with 100-500 nodes (randomly chosen)

• Graph signal x is a 1-Dimensional feature vector with N(µYi , 1) where Yi is the class

of graph i. The class means µ0 and µ1 are taken to be µsignal = 0.

• For Erdős-Rényi, we generate graphs with following edge creation probability pi =

rYi
log Ni

Ni
where Ni is the number of nodes for sample graph i, r0 = 3 for class 0 and

r1 = 3.8 for class 1 .

• For Watts–Strogatz, we generate graphs with the same mean degree κ1 = κ2 = 20

and rewiring probability pYi of 0.3 for class 0 and 0.2 for class 1.

• For Barabási–Albert, we generate graphs with edges-to-attach m0 = 10 for graphs

of class 0 and m1 = 12 for graphs of class 1.

5.4.3 Results

We report the results of several characteristics on model performance for 3 types of

synthetic graph classification networks, quantified by test accuracy. For the architecture,

we focus on the number of layers and the degree of the polynomial filters.

5.4.3.1 General Results

We first discuss general results comparing the 3 network models. Fig 5.12a shows the

results of GCN for different number of layers. Both Erdős-Rényi and preferential at-

tachment networks perform well with 1-3 layers while smallworld’s accuracy becomes

relevant only at 2 layers (it performs randomly with a single layer). All networks eventu-

ally succumb to over-smoothing, with smallworld having the sharpest drop in accuracy

starting at layer 3 and dropping to random at layer 5 followed by preferential attachment

at layer 4 before dropping to random at layer 6. Erdős-Rényi’s drop is more gradual from

layer 4 to layer 9.

Other subfigures of Fig. 5.12 show the results of TAGCN for different number of

layers and degree of the polynomial filters. The degree of the polynomial filters has

different effect for different network models. For Erdős-Rényi (Fig. 5.12b), higher degrees

are slightly preferable for layers 1-3, while lower degrees are preferable for layers 5-6.

For smallworld (Fig. 5.12c), the filters play a major role in the first 4 layers (for layer

1, accuracies are 0.5, 0.79, 0.89, 0.89, 0.89 for degrees of the polynomial filters from 1

to 5). For preferential attachment (Fig. 5.12d), the plot are similar to Erdős-Rényi’s but
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(a) GCN: All 3 models of synthetic graphs.
Colored horizontal and vertical lines repre-
sent average test accuracy and standard de-
viation of each model, respectively.

(b) TAGCN: Erdős-Rényi

(c) TAGCN: Smallworld (d) TAGCN: Preferential Attachment

Figure 5.12: General GCN and TAGCN: Test accuracy vs number of layers and/or degree
of the polynomial filters for 3 models of synthetic graphs.

less smooth: higher degree of the polynomial filters is helpful again for layers 1-3, while

lower degree is better for layers 4-5.

5.4.3.2 Erdős-Rényi Network Results

Fig. 5.13 and 5.14 show the results of GCN and TAGCN vs number of layers, number

of layers + degree of the polynomial filters, respectively for different Erdős-Rényi graph
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(a) r1 (coefficient of class 1 edge creation prob-
ability)

(b) µsignal

(c) Number of nodes

Figure 5.13: GCN: Test accuracy vs number of layers and different Erdős-Rényi model
generation parameters. Subcaption indicates the model generation parameter that is
changed for different colored lines. Colored horizontal and vertical lines represent aver-
age test accuracy and standard deviation, respectively.

characteristics. The graph characteristics are: edge creation probability p, graph signal,

and number of nodes.

Impact of Edge Creation Probability Fig. 5.13a shows the results of GCN vs number

of layers for different coefficient of class 1 edge creation probability r1 (with r0 fixed at

3). For each graph pi = rYi
log Ni

Ni
where Ni and Yi are the number of nodes, and the

class of graph sample i (see Section 5.4.2 for the experimental setup). In general, as this

coefficient increases, the test accuracy improves. The number of layers where it plateaus

near optimal accuracy increases as well (with r1 of 4 and 4.2 having high accuracy for
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(a) Default (coefficients for
edge creation probabilities:
r0 = 3, r1 = 3.8, mean of
signals, µsignal = 0, number of
nodes=100-500)

(b) r1 = 3.6 (c) r1 = 4.0

(d) µsignal = ±0.025 (e) µsignal = ±0.05 (f) Number of nodes=500-1000

Figure 5.14: TAGCN: Test accuracy vs degree of the polynomial filters, number of layers,
and different Erdős-Rényi model generation parameters. Subcaption indicates the model
generation parameter that is changed from the default setup.
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the first 5 layers and r1 or 3.4 starting to drop in accuracy at the 3rd layer).

Fig. 5.14b, 5.14a, 5.14c show the results of TAGCN vs number of layers and degree

of polynomial filters for 3.6, 3.8, and 4.0 coefficients of class 1 edge creation probabil-

ity r1, respectively. Like GCN, in general, as this coefficient (and hence edge creation

probability) increases, the test accuracy improves across both layers and degree of poly-

nomial filters. The effect of the number of layers is similar to GCN, while the degree

of polynomial filters seem to have a higher optimal value for lower layers and lower for

higher layer, e.g., for the default (r1 = 3.8) case for layers 1-6, the optimal degrees of the

polynomial filters are 5, 3, 3, 2, 1, 2.

Impact of Graph Signals Fig. 5.13b shows the results of GCN vs number of layers

for different class means of signals. As the mean increases, the accuracy improves as

expected. When it reaches a critical value between 0.01 and 0.025, the test accuracy

smoothes out and the GCN is able to resist the over-smoothing effect for the first 10

layers. Further increases in the mean simply lead to higher accuracy.

Fig. 5.14a, 5.14e show the results of TAGCN vs number of layers and degree of poly-

nomial filters for ±0, ±0.025, and ±0.05 class means of signals, respectively. Like GCN,

in general, as the difference in means of signals increases, the test accuracy increases

across both layers and degree of polynomial filters. Similar to the default case, we still

see higher degree of polynomials are better at lower layers and vice versa for higher

layers. For example, for µsignal = ±0.025, the optimal degrees of the polynomial filters

for layers 1-10 is: 5,5,3,5,4,4,1,1,1,3.

At higher signals, the plots flatten out and there is little difference in terms of both

the number of layers up to 10 and degree of the polynomial filters up to 5. The shape

looks similarly to the 3D surface plots of Github_stargazers and Twitch_egos in Fig. 5.11.

We suspect that the signals for these two datasets are probably more distinct than other

datasets between graphs. However, since they are not 100% accuracy, they are not split

cleanly between classes, i.e., if there are 2 classes, then there is perhaps 2 binomdal

distributions, with a 70% chance of class 0 and 30% of class 1 for the first bimodal and

vice versa for the second bimodal.

Impact of Number of Nodes Fig. 5.13c shows the results of GCN vs number of layers

for different number of nodes. As the number of nodes increases, the accuracy improves.

The accuracy for all values of the number of nodes reaches maximum within the first 3
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layers, then drop to random. There is a large variance when accuracy starts dropping

after the initial layers.

Fig. 5.14a, 5.14f show the results of TAGCN vs number of layers and degree of poly-

nomial filters for 100-500, 500-1000 number of nodes, respectively. Like GCN, in general,

as the number of nodes increases, the accuracy improves across both layers and degree

of polynomial filters.

5.4.3.3 Smallworld Network Results

Fig. 5.15 and 5.16 show the results of GCN and TAGCN vs number of layers, number

of layers + degree of the polynomial filters, respectively for different smallworld graph

characteristics. The graph characteristics are: rewiring probability p, mean degree k,

graph signal, and number of nodes.

Impact of Edge Rewiring Probability p1 Fig. 5.15a shows the results of GCN vs num-

ber of layers for different class 1 edge rewiring probability p1. As the probability gets

further away from class 0 (p0 = 0.3), the accuracy increases. GCN performs better with

decreased probability over increased probability, in terms of both accuracy and over-

smoothing. The shapes of the curves are related to the increase in accuracy vs p0, with

increase in resistance to over-smoothing as the p1 differs more from p0.

Fig. 5.16a, 5.16b, 5.16c show the results of TAGCN vs number of layers and degree

of polynomial filters for 0.2, 0.4, 0.6 class 1 edge rewiring probability p1, respectively.

Like GCN, in general, as the probability differs more from p0 = 0.3, the test accuracy

increases across both layers and degree of polynomial filters. In all cases, for the initial

layers, TAGCN performs very poorly when the degree of polynomial filters is 1 and

performs better when the degree is higher.

Impact of Mean Degree κ Fig. 5.15b shows the results of GCN vs number of layers for

different class 1 mean degree κ1 while fixing the edge rewiring probability p1 = p0 = 0.3.

Since GCN performs well even at 1 layer, this shows that it is the difference in edge

rewiring probability that leads to the drop at first layer (and not difference in mean

degree). This suggests that Reddit-Binary dataset, which also requires at least 2 layers

to perform well, may have smallworld characteristics with and different edge rewiring

probability for different classes.
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(a) p1 (b) κ1, with p1 = p0 = 0.3

(c) µsignal (d) Number of nodes

Figure 5.15: GCN: Test accuracy vs number of layers and different smallworld model
generation parameters. Subcaption indicates the model generation parameter that is
changed for different colored lines. Colored horizontal and vertical lines represent aver-
age test accuracy and standard deviation, respectively.

As the mean gets further away from class 0 (κ0 = 20), the accuracy increases. GCN

performs better with decreased mean over increased mean, in terms of both accuracy

and over-smoothing, suggesting that less small-worldness property is easier to differen-

tiate. Surprisingly, regardless of the mean (as long |κ1 − κ0| > 5), the initial 3 layers are

reasonably stable in terms of accuracy (initial 5 layers for all except κ1 = 25).

Fig. 5.16b and 5.16c show the results of TAGCN vs number of layers and degree of

polynomial filters for 15 and 25 class 1 mean degree κ1, respectively (while fixing the

edge rewiring probability p1 = p0 = 0.3). TAGCN on κ1 = 15 is better than κ1 = 25

(when κ0 = 20), suggesting also that less small-worldness property is more distinguish-

able by TAGCN. For lower κ1 = 15, TAGCN performs well with degree of polynomial
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(a) Default (edge rewiring
probabilities p0 = 0.3, p1 =
0.2, mean degrees κ0 = κ1 =
20, µsignal = 0, number of
nodes = 100-500)

(b) p1 = 0.4 (c) p1 = 0.6

(d) κ1 = 15,p1 = 0.3 (e) κ1 = 25,p1 = 0.3 (f) κ1 = 25, p1 = 0.2

(g) µsignal = 0.025 (h) number of nodes=500-1000 (i) number of nodes=500-1000,
, p1 = 0.3, κ1 = 25

Figure 5.16: TAGCN: Test accuracy vs number of layers, degree of the polynomail filters,
and different smallworld model generation parameters. Subcaption indicates the model
generation parameter that is changed from the default setup.
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filters of 1 for the initial layers (where as for the κ1 = 25 and default case, 1 is not good).

Impact of Graph Signal Fig. 5.15c shows the results of GCN vs number of layers for

different class means of signals. As the mean increases, the accuracy improves as ex-

pected. When it reaches a critical value between 0 and 0.025, the test accuracy smoothes

out and the GCN is able to resist the over-smoothing effect for the first 10 layers. Further

increases in the mean simply lead to higher accuracy.

Fig. 5.16a, 5.16g show the results of TAGCN vs number of layers and degree of poly-

nomial filters for ±0 and ±0.025 class means of signals, respectively. Like GCN, in

general, as the difference in means of signals increases, the test accuracy increases across

both layers and degree of polynomial filters. Just like the default case, we still see higher

degree of polynomials are better at lower layers and vice versa for higher layers.

Impact of Number of Nodes Fig. 5.15d shows the results of GCN vs number of layers

for different number of nodes. As the number of nodes increases, the accuracy improves.

For all number of nodes, GCN does not perform well with just 1 layer (GCN needs 2

layers to differentiate rewiring probability).

Fig. 5.16h shows the results of TAGCN vs number of layers and degree of polynomial

filters for 500-1000 number of nodes. Like GCN, as the number of nodes increases, the

accuracy improves across both layers and degree of polynomial filters. The surface plot

is similar to the default 100-500 number of nodes case with lower performance for 1

degree of the polynomial filters.

Fig. 5.16i shows the results of TAGCN vs number of layers and degree of polynomial

filters for 500-1000 number of nodes with same rewiring probability p1 = p0 = 0.3 but

different mean degree κ1 = 25. Unlike the previous case, we see that TAGCN performs

better for 1 degree of the polynomial filters. This suggests that to detect difference in

edge rewiring probability using TAGCN, it is best to have at least 2 layers.

5.4.3.4 Preferential Attachment Network Results

Fig. 5.17 and 5.18 show the results of GCN and TAGCN vs number of layers, number

of layers + degree of the polynomial filters, respectively for different preferential at-

tachment graph characteristics. The graph characteristics are: edges-to-attach m, graph

signal, and number of nodes.
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(a) Edges-to-attach m1 (b) µsignal

(c) Number of nodes

Figure 5.17: GCN: Test accuracy vs number of layers and different preferential attach-
ment model generation parameters. Subcaption indicates the model generation param-
eter that is changed for different colored lines. Colored horizontal and vertical lines
represent average test accuracy and standard deviation, respectively.

Impact of Edges-to-attach m Fig. 5.17a shows the results of GCN vs number of layers

for different class 1 edges-to-attach m1. As m1 increases, accuracy improves. The plot

seems similar to Erdős-Rényi class edge creation probability r1 (see Fig. 5.13a). Being

preferentially attached has little effect.

Fig. 5.18b, 5.18a, and 5.18c show the results of TAGCN vs number of layers and

degree of polynomial filters for 11, 12, 13 edges-to-attach m1, respectively. Just like GCN,

TAGCN performs better as m1 increases. At m1 = 13, the surface plot looks similar to

TAGCN for Erdős-Rényi (see Fig. 5.14c).
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(a) Default (edges-to-attach
m0 = 10 and m1 = 12,
µsignal = 0, number of nodes =
100-500)

(b) m1 = 11 (c) m1 = 13

(d) µsignal = ±0.025 (e) µsignal = ±0.05 (f) Number of nodes = 500

Figure 5.18: TAGCN: Test accuracy vs number of layers, degree of the polynomail filters,
and different preferential attachment model generation parameters. Subcaption indi-
cates the model generation parameter that is changed from the default setup.

Impact of Graph Signals Fig. 5.17b shows the results of GCN vs number of layers

different class means of signals. As the mean increases, accuracy improves. The plot is

similar to signal plot of Erdős-Rényi (see Fig. 5.13b).

Fig. 5.18a, 5.18d, and 5.18e show the results of TAGCN vs number of layers and de-

gree of polynomial filters for ±0, ±0.025, and ±0.05 class means of signals, respectively.

Like GCN, in general, as the difference in means of signals increases, the test accuracy

increases across both layers and degree of polynomial filters. Again, these are similar to

TAGCN plots for ±0.025, and ±0.05 for Erdős-Rényi (see Fig. 5.14d, and 5.14e).

Impact of Number of Nodes Fig. 5.17c shows the results of GCN vs number of layers

for different number of nodes. As the number of nodes increases, the accuracy improves.
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Just like Erdős-Rényi (see Fig. 5.13c), the accuracy for all number of nodes reaches max-

imum within the first 3 layers, then drop to random. There is significant of variance

when accuracy starts dropping after the initial layers. Unlike Erdős-Rényi, the drop in

accuracy seems to be sharper with high variance.

Fig. 5.18a, 5.18f show the results of TAGCN vs number of layers and degree of poly-

nomial filters for 100-500, 500-1000 number of nodes, respectively. Like GCN, in general,

as the number of nodes increases, the accuracy improves across both layers and degree

of polynomial filters. The plots again look similar to TAGCN for number of nodes plots

of Erdős-Rényi (see Fig. 5.14f), but smoother.

5.4.3.5 GNN Variants: GAT and DA-TAGCN

Fig. 5.19 shows graph attention network (GAT) and degree-aware TAGCN (DA-TAGCN)

compared to TAGCN for 3 types of synthetic datasets vs. differences in model generation

parameters that change the average degree, e.g., for smallworld, it is the mean degree κ.

In general, for all plots, DA-TAGCN performs the best (or one of of the best) as

it has weights that train on the degree of the nodes. TAGCN performs similarly to

GAT for Erdős-Rényi and preferential attachment graphs (Fig. 5.19a, 5.19c. Fig. 5.19b

shows that for smallworld, TAGCN performs better than GCN. This shows that degree

of polynomial filters is reasonable at capturing the difference in degree for smallworld

graphs. On the other hand, GAT learns the edge weights using the graph signals that

are not distinguishable (all have means of 0).

5.4.3.6 Metrics vs GNN

Fig. 5.20 shows the results of classifiers based on network metrics or signal statistics vs

GNN (TAGCN). Since we generate the class labels synthetically, it is simple to reverse

engineer using the generated graphs A or the signals X to find the optimal classifiers,

which are either network metrics or signal statistics. In general, these classifiers based

on data metrics can outperform TAGCN since TAGCN does not directly capture this

information. Instead information is usually not captured at any stage or lost at the ag-

gregation stage (which is required to generate the same length feature vectors to compare

graphs of different sizes and orders).

Fig. 5.20a shows the results of classifiers with class differences generated using dif-

ferent r of Erdős Rényi models. As class 1’s edge creation probability r1 approaches class

0’s r0, all models approach random accuracy (50%). As expected, both TAGCN and av-
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(a) Erdős-Rényi class 1 edge creation prob-
ability r1 (class 0’s r0 is fixed at 3)

(b) Smallworld class 1 mean degree κ1 (class
0’s κ0 is fixed at 20)

(c) Preferential attachment class 1 edges-to-
attach m1 (class 0’s m0 is fixed at 10)

Figure 5.19: TAGCN vs TAGCN Variants (DA-TAGCN) for 3 synthetic graph generation
models. Subcaption indicates the model generation parameter plotted on the x-axis.
Colored bars represent average test accuracy of each architecture. Vertical black lines on
the bars represent standard deviation.

erage degree are worse than the reverse engineered r1 (calculated using average degree

divided by ln N). However, the neural network is able to perform quite well when the

difference in ratio is large enough.

Fig. 5.20b shows the results of classifiers with class labels defined using different

rewiring probability p for smallworld models. In this case, using either the average

degree or reversed engineered r fail (random accuracy of 50%), as they are the same for

all graphs. Clustering cofficient (and some other graph clustering metrics like number

of triangles) leads to better performance than TAGCN when the rewiring probabilities

between classes are close, and similarly when they are different.

Fig. 5.20c shows the results of classifiers with class labels defined using different

edges-to-attach of m1 of preferential attachment models. TAGCN performs slightly bet-
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(a) Erdős Rényi: Class 0’s r is fixed at 2. (b) Smallworld: Class 0’s edge
rewiring probability p is fixed at 0.2.

(c) Preferential Attachment: Class 0’s edges-to-
attach m is fixed at 30.

(d) Erdős Rényi: Signal mean.

Figure 5.20: TAGCN vs network metrics for 3 synthetic graph generation models. Col-
ored bars represent average test accuracy of each metric/architecture. Vertical black lines
on the bars represent standard deviation.

ter than average degree when the differences between the two classes’ edges-to-attach

are large, and worse when the differences are small. Clustering coefficient fails here.

Fig. 5.20d shows the results of classifiers with class labels defined using difference in

signal means with Erdős Rényi models. TAGCN performs similar to using just average

signal as the feature regardless of the difference in signal means. Max aggregation

(selecting the maximum node value after several convolutions) is better than default

mean aggregation.

AND and XOR We consider cases when the graph signals and graph structures are

complementary and contrasting. Contrasting case (XOR) is shown in Table 5.1, comple-

mentary case (AND) is when graph structure type B and graph signal type B is changed

to class 1 in the same table. We apply the default Erdős-Rényi setup for class 0 and
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Figure 5.21: TAGCN vs metrics for AND & XOR cases. Colored bars represent average
test accuracy of each metric/architecture. Vertical black lines on the bars represent stan-
dard deviation.

class 1.

Figure 5.21 shows the results of using the simple metrics vs TAGCN for these 2 cases.

Using a simple classifier (linear-SVC) with just the average signal or the average degree

performs random, and using both performs close to 100%. TAGCN performs well for

the AND case and poorly for the XOR case. Default graph convolutions cannot separate

the XOR. There are many simple (and complicated) solutions to this. For example,

we can simply include the metrics as inputs alongside the output of TAGCN (using

ensemble learning). A more complicated approach would be to combine a sumpool

TAGCN (defined in Section 5.3.3.2) and DA-TAGCN (defined in Section 5.3.3.3) before

linear layer (one network is ideal for capturing the difference in signal means and the

other is ideal for capturing the difference in degree).

Fig. 5.22 shows TAGCN performance for different graph structures and graph signals.

As shown in Fig. 5.22a, for the AND case, as class 1 and class 0 become more different

in terms of either the signal or the graph, the performance improves. As shown in

Fig. 5.22b, for the XOR case, there seems to be an optimal signal mean for both graph

structures (around 0.25). Below and above that the performance drops to random.

5.5 Conclusions

In conclusion, we have shown how the graph structure affects the performance of GNNs

for the graph classification task on real and synthetic data. In general, for the two main



CHAPTER 5. GRAPH CLASSIFICATION 96

(a) AND (b) XOR

Figure 5.22: TAGCN AND and XOR cases vs different different Erdős-Rényi model
generation parameters. Colored bars represent average test accuracy of edge creation
probability for class 1 r1 (r0 = 3.0), and x-axis is difference in signal mean. Vertical black
lines on the bars represent standard deviation.

GNN architectures that we studied (GCN and TAGCN), not many layers are needed

to achieve optimal performance (compared with computer vision and natural language

processing). TAGCN requires fewer number of layers than GCN, with moderate de-

gree of the polynomial filters. Unlike with node classification, graph structure plays a

more important role than the graph signal. GNNs can often classify graphs using just

the graph structures of the different classes if they are distinct enough. For synthetic

datasets, Erdős-Rényi and preferential attachment models have similar test accuracy

curves for both GCN and TAGCN. For smallworld model, more than 1 layer is needed

to achieve good performance if the edge rewiring probability is distinct for different

classes. GNNs are also not ideal for capturing certain network parameters (compared to

simple network metrics).

For real datasets, we relate simple network metrics and signal statistics on real

datasets to the performance of these models. We show for biological and social net-

work datasets, classifiers on number of edges, number of nodes, or signal means can

lead to better or similar performance as graph neural networks. Based on these observa-

tions, we were able to apply simple modifications to GCN and TAGCN to improve their

performance (sumpool and degree-aware TAGCN).

For real datasets, we also look into the impact of the GNN architecture on its perfor-

mance. In general, datasets with high average degree and low average diameter require

less number of layers to achieve optimal performance. Over-smoothing also occurs for
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graph classification. It happens at lower number of layers if the graphs have high aver-

age diameter though there are some exceptions, depending on the graph signal. TAGCN

tends to perform better with higher degrees of the polynomial filters at low number of

layers on datasets with low average degree.

For synthetic datasets, we relate the performance to different graph characteristics

and GNN architecture. In general, there is no significant difference between increasing

class 1 average degree (while keeping class 0 fixed) using Erdős-Rényi’s edge creation

probability vs preferential attachment’s edges-to-attach. Both GCN and TAGCN respond

similarly to both of these graph characteristics. For smallworld, we find that it is the

interclass difference in edge rewiring probability that leads to the drop in accuracy at

layer 1. If they are the same for both classes, then GCN and TAGCN performs well at

just 1 layer. This suggests that Reddit-Binary dataset, which also requires at least 2 layers

to perform well, may have smallworld characteristics with a high interclass difference in

edge rewiring probability.

We also find that simple network metrics that capture different interclass graph char-

acteristics can perform better than GNN (e.g., clustering coefficient performs better than

TAGCN for capturing the smallworld’s edge rewiring probability). This suggests that

GNNs are not optimal for capturing Erdős-Rényi’s edge creation probability. Just like

real datasets, we also show that simple modification (degree-aware TAGCN) can im-

prove the performance by capturing interclass difference in degree. However, another

popular variant (graph attention network) does not perform better than TAGCN on cap-

turing these graph characteristics. Finally, we show that while TAGCN can perform well

when graph signal and graph structure have an AND relationship, it fails when they

have an XOR relationship.



Chapter 6: Node Classification Training

Convergence

The most common algorithm for training a neural network model is gradient-based

optimization using backpropagation. Graph neural networks (GNNs) are no different.

However, unlike linear and convolutional layers, the optimization of graph convolutional

layers is less studied. Theoretically, given the non-convexity of GNN, it is still an open

question under what conditions will training loss converges to global minimum. This

motivates the question we address here: what properties of the TAGCN architecture and

data graph affect the speed of convergence in training.

We theoretically show that training loss converges to the global minimum for lin-

earized TAGCN of any number of layers and degree of the polynomial filters. In general,

convergence is faster with more depth and higher degree. The experiments confirm that

our theoretical results hold for real datasets, with and without nonlinearity. To be clear,

faster training convergence does not imply better test accuracy. As we have shown in

Chapter 4, test accuracy drops significantly when the neural network architecture is too

large due to over-smoothing.

There are several related works in this area. The first set of related works are on

theoretical analysis of linearized neural networks, in terms of their loss landscape [88,

89], global convergence [90, 91], and neural tangent kernel [92]. The second set of related

work are on learning dynamics of GNNs, including graph neural tangent kernel [93,

94], and stability analysis [95]. Our work most closely follow [96, 97, 98]. Reference

[96] proves global convergence for one-layer GNN, [97] studies GNN optimization with

skip connections and greater depth, and specialized initialization, and [98] analyzes the

convergence of one-layer GNNs with ReLU nonlinearity.

We organize the chapter as follows. We start by formally defining the problem of

training convergence in Section 6.1. We then lay out the theory for different cases in

98
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Section 6.2, before diving into the full proof for the 3 cases: H-layer 1-degree, 1-layer K-

degree, and H-layer K-degree in Sections 6.2.1, 6.2.2, and 6.2.3, respectively. We validate

the results experimentally in Section 6.3. Finally, we summarize the results in Section 6.4.

6.1 Problem Definition

Following the same notations as Section 4.1, we are given a graph G and labels of a

subset of the nodes I ⊆ [N], the task is to predict the labels of the remaining nodes

[N] \ I . The graph G consists of a set of nodes V with |V| = N, signal X ∈ RN×C on

the nodes (where C is the number of features on each node), a set of edges E , and an

adjacency matrix A. Aij = 0 unless there is an edge e = (i, j) connecting node i and node

j.

The goal is to learn a neural network function f (X, A) such that the prediction error

between f and the true label Y is small. We use a non-negative real-valued loss function

to model the prediction error:

L( f (X, A), Y). (6.1)

For GNNs, the function is a set of convolutional layers. For TAGCN, each convolu-

tional layer is:

X(ℓ+1) = σ

(
K

∑
k=0

AkX(ℓ)W(ℓ)
k

)
, (3.2)

where W(ℓ)
k ∈ RCℓ×Cℓ+1 , X(ℓ) ∈ RN×Cℓ , and the input signal X = X(0). We prove training

convergence when there is no nonlinearity σ. Then for TAGCN, each convolutional layer

is:

X(ℓ+1) =
K

∑
k=0

AkX(ℓ)W(ℓ)
k , (6.2)

We start with the case when there is no polynomial filter and there are no residual

connections:

X(ℓ+1) = AkX(ℓ)W(ℓ)
k . (6.3)

The neural network function is then:

f (X, A, W, B) = X(H)B (6.4)

where B ∈ RCH×Cy is the weight matrix for converting to Cy, the number of output

channels of Y (for multi-label classification). We can absorb B into W, but for this case
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we include it to make the derivation clearer. The global minimum loss, for which we

want the network to converges to is:

Definition 3. (Global minimum) L∗ is the global minimum value of GNN f

L∗ = inf
W,B

L( f (X, A, W, B), Y), (6.5)

where, for node classification, the loss is over all the nodes in training.

The goal is to prove the convergence:

lim
t→∞

L(Wt, Bt)− L∗ = 0, (6.6)

and to study the rate of convergence in terms of the number of layers and degrees of the

polynomial filters.

6.2 Convergence Theory

In this section, we present the main results on the global convergence for TAGCN for

node classification. We follow previous related work on this topic [97, 99, 100] and

extend them to the TAGCN architecture. We divide the proof into these steps: 1) H-layer,

1-degree, 2) 1-layer, K-degree, 3) H-layer K-degree, where layer refers to the number of

convolutions, and degree refers to the order of the polynomial filters.

In the first case, we consider linearized TAGCN with no residual connection (as

shown in (6.3)), so it functions similarly to GCN.

Theorem 2. Let f be an H-layer linear 1-degree TAGCN and loss

L(Ŷ, Y) = ∥Ŷ − Y∥2
F (6.7)

where Ŷ, Y ∈ RN×Cy . Then, for any time step T > 0,

L(WT)− L∗
H ≤ (L(W0)− L∗

H)e
−4λ

(H)
T σ2

min((A
HX)∗I )T, (6.8)

where ∗I selects the nodes in training, σmin(·) is the smallest singular value, and

λ
(H)
T := inf

t∈[0,T]
λmin(Wt

(0)Wt
(1) · · ·Wt

(H−1)(Wt
(0)Wt

(1) · · ·Wt
(H−1))⊤)

where λmin selects the smallest eigenvalue.
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As T approaches infinity, the exponent approaches 0, and hence the loss approaches

the global minimum. This is guaranteed if σ2
min((A

HX)∗I) > 0 and λ
(H)
T > 0. The first

term depends on the data graph signal and structure, and it is true for popular bench-

mark datasets. The second term is guaranteed under a good initialization, i.e., if the

weights are initialized satisfying this condition (since the loss decreases monotonically).

See Section 6.2.1 for the complete proof.

Next we consider the case of 1-layer K-degree TAGCN.

Theorem 3. Let f be a 1-layer K-degree linear TAGCN and loss

L(Ŷ, Y) = ∥Ŷ − Y∥2
F (6.9)

where Ŷ, Y ∈ RN×Cy . Let

GK := [X, (AX), . . . , (AKX)]⊤ ∈ R(K+1)C0 × N. (6.10)

Then for any time step T > 0,

L(WT, BT)− L∗
H ≤ (L(W0, B0)− L∗

H)e
−4σ2

min((GK)∗I )T (6.11)

As T approaches infinity, the exponent approaches 0, and hence the loss approaches

the global minimum. This is guaranteed if σ2
min((GK)∗I) > 0. This again is true for

popular benchmark datasets. Note that good initialization is not required here. See

Section 6.2.2 for the complete proof.

Finally, we consider multilayer multidegree case. A H-layer K-degree is the same as

1-layer, HK-degree, since there is no nonlinearity.

Theorem 4. Let f be an H-layer K-degree linear TAGCN and loss L(Ŷ, Y) = ∥Ŷ − Y∥2
F where

Ŷ, Y ∈ RN×Cy . Let

GKH := [X, (AX), . . . , (AKHX)]⊤ ∈ R(KH+1)C0 × N. (6.12)

Then for any time step T > 0,

L(WT, BT)− L∗
H ≤ (L(W0, B0)− L∗

H)e
−4σ2

min((GKH)∗I )T (6.13)

As T approaches infinity, the exponent approaches 0 at a faster rate, and hence the

loss approaches the global minimum. This is guaranteed if σ2
min((GKH)∗I) > 0. See

Section 6.2.3 for the complete proof.
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6.2.1 H-Layer, 1-Degree Convergence Proof

In this section, we prove Theorem 2, the training convergence of H-layer, 1-degree

TAGCN. We first compute the gradients of the loss with respect to the parameter ∇W(ℓ)L(W)

in Section 6.2.1.1. Using these relations, we then analyze the dynamics induced in

W(0)W(1) · · ·W(H−1) in Section 6.2.1.2, and the dynamics induced in the loss value L(W)

in Section 6.2.1.3. Finally, we complete the proof using square loss in Section 6.2.1.4.

Despite lack of non-linear activations σ, the loss L( f (X, A, W, B) for TAGCNs (and

GCNs) is non-convex. To find the global convergence, we analyze the learning process

via gradient flow, i.e., by taking infinitesimal steps during gradient descent. In each t

step, the network weights evolve as:

Wt+1 = Wt − α∇Wxt L (6.14)

So, the change in W with respect to t is:

d
dt

Wt = − ∂L
∂W

(Wt), (6.15)

And similarly for Bt

6.2.1.1 Derivation of ∇BL(B, W) and ∇W(ℓ)L(B, W)

We relate the gradients ∇W(ℓ)L to the gradient ∇(H)L, which we define as

∇(H)L(B, W) := ((AHX)∗I)⊤
∂L(B, W)

∂Ŷ
∈ RC0×Cy . (6.16)

Using the relation between (∇BL,∇W(ℓ)L) and ∇(H)L, we analyze the dynamics in-

duced in the space of W(1)W(2) · · ·W(ℓ) and the space of the loss value L(B, W) in Sec-

tion 6.2.1.2, and Section 6.2.1.3, respectively. Finally, we complete the proof with square

loss in Section 6.2.1.4.

We first prove the relationship of the gradients between ∇BL and ∇W(ℓ)L vs ∇(H)L

in the following lemma:

Lemma 1. Let f be an H-layer linear TAGCN. Then for any (B, W),

∇BL(B, W) = (W(0)W(1) · · ·W(H−1))⊤∇(H)L(B, W) ∈ RCH×Cy , (6.17)

and

∇W(ℓ)L(B, W) = (W(0)W(1) · · ·W(ℓ−2)W(ℓ−1))⊤ (6.18)

∇(H)L(B, W)(W(ℓ+1) · · ·W(H−1)B)⊤ ∈ RCl×Cl+1 . (6.19)
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Proof of Lemma 1. From (6.4) and (6.3), we have:

Ŷ = f (X, A, W, B)∗I = (X(H)B)∗I

and

X(ℓ) = AX(ℓ−1)W(ℓ−1),

(ignoring the nonlinearity and the residual connection). We derive ∂ vec[Ŷ]
∂ vec[B] ∈ RCy N×CyCH :

∂ vec[Ŷ]
∂ vec[B]

=
∂

∂ vec[B]
vec[(X(H))∗IB]

=
∂

∂ vec[B]
[ICy ⊗ (X(H))∗I ] vec[B]

= [ICy ⊗ (X(H))∗I ] ∈ RCy N×CyCy (6.20)

With this, we derive the formula for ∇BL(B, W) ∈ RCH×Cy :

∂L(B, W)

∂ vec[B]
=

∂L(B, W)

∂ vec[Ŷ]
∂ vec[Ŷ]
∂ vec[B]

=
∂L(B, W)

∂ vec[Ŷ]
[ICy ⊗ (X(H))∗I ]

Thus,

∇vec[B]L(B, W) =

(
∂L(B, W)

∂ vec[B]

)⊤

= [ICy ⊗ (X(H))⊤∗I ]

(
∂L(B, W)

∂ vec[Ŷ]

)⊤

= [ICy ⊗ (X(H))⊤∗I ] vec
[

∂L(B, W)

∂Ŷ

]
= vec

[
(X(H))⊤∗I

∂L(B, W)

∂Ŷ

]
∈ RCHCY .

Therefore,

∇BL(B, W) = (X(H))⊤∗I
∂L(B, W)

∂Ŷ
∈ RCH×CY . (6.21)

Next, we derive ∂ vec[Ŷ]
∂ vec[W(ℓ)]

∈ RCy N×ClCl+1 :

∂ vec[Ŷ]
∂ vec[W(ℓ)]

=
∂ vec[(X(H))∗IB]

∂ vec[W(ℓ)]

=
∂

∂ vec[W(ℓ)]
[B⊤ ⊗ IN] vec[(X(H))∗I ]]
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= [B⊤ ⊗ IN]
∂ vec[(X(H))∗I ]]

∂ vec[W(ℓ)]

= [B⊤ ⊗ IN]
∂ vec[(X(H))∗I ]

∂ vec[X(ℓ+1)]

∂ vec[X(ℓ+1)]

∂ vec[W(ℓ)]

= [B⊤ ⊗ IN]
∂ vec[(X(H))∗I ]

∂ vec[X(ℓ+1)]

∂ vec[AX(ℓ)W(ℓ)]

∂ vec[W(ℓ)]

= [B⊤ ⊗ IN]
∂ vec[(X(H))∗I ]

∂ vec[X(ℓ+1)]

∂[ICl ⊗ AX(ℓ)] vec[W(ℓ)]

∂ vec[W(ℓ)]

= [B⊤ ⊗ IN]
∂ vec[(X(H))∗I ]

∂ vec[X(ℓ+1)]
[ICl ⊗ AX(ℓ)] (6.22)

From (6.3), we have:

X(ℓ) = AX(ℓ−1)W(ℓ−1) (6.23)

so

vec[(X(H))∗I ] = vec[A∗IX(H−1)W(H−1)] = (W(H−1)⊤ ⊗ A∗I) vec[X(H−1)] (6.24)

and

vec[(X(ℓ))] = vec[AX(ℓ−1)W(ℓ−1)] = (W(ℓ−1)⊤ ⊗ A) vec[X(ℓ−1)]. (6.25)

By recursively applying (6.25), we get

vec[(X(H))∗I ] = (W(H−1)⊤ ⊗ A∗I)(W(H−2)⊤ ⊗ A) · · · (W(ℓ+1)⊤ ⊗ A) vec[X(ℓ+1)]

= (W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ (AH−l−1)∗I) vec[X(ℓ+1)].

Hence,

∂ vec[(X(H))∗I ]

∂ vec[X(ℓ+1)]
= W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ (AH−l−1)∗I (6.26)

Combining (6.22) and (6.26) gives:

∂ vec[Ŷ]
∂ vec[W(ℓ)]

= [B⊤ ⊗ IN]
∂ vec[(X(H))∗I ]

∂ vec[X(ℓ+1)]
[ICl ⊗ AX(ℓ)]

= [B⊤ ⊗ IN][W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ (AH−l−1)∗I ][ICl ⊗ AX(ℓ)]

= B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ (AH−l)∗IX(ℓ) ∈ RCy N×ClCl+1 . (6.27)

With this, we derive the formula of ∇W(ℓ)L(B, W) ∈ RCl×Cl+1 :
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∂L(B, W)

∂ vec[W(ℓ)]
=

∂L(B, W)

∂ vec[Ŷ]
∂ vec[Ŷ]

∂ vec[W(ℓ)]
=

∂L(B, W)

∂ vec[Ŷ]
[B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤⊗ (AH−l)∗IX(ℓ)].

Thus, with ∂L(B,W)

∂Ŷ
∈ RN×Cy ,

∇vec[W(ℓ)]L(B, W) = [B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ (AH−l)∗IX(ℓ)]⊤
(

∂L(B, W)

∂ vec[Ŷ]

)⊤

= [(B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤)⊤ ⊗ X(ℓ)⊤(AH−l)⊤∗I ]

(
∂L(B, W)

∂ vec[Ŷ]

)⊤

= [(B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤)⊤ ⊗ X(ℓ)⊤(AH−l)⊤∗I ] vec
[

∂L(B, W)

∂Ŷ

]
= vec

[
X(ℓ)⊤(AH−l)⊤∗I

∂L(B, W)

∂Ŷ
B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤

]
∈ RClCl+1

= vec
[
((AH−l)∗IX(ℓ))⊤

∂L(B, W)

∂Ŷ
B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤

]
∈ RClCl+1

Therefore,

∇W(ℓ)L(B, W) = ((AH−l)∗IX(ℓ))⊤
∂L(B, W)

∂Ŷ
B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤ ∈ RCl×Cl+1 . (6.28)

Now, we can prove the statements of this lemma with the following notation:

∇(ℓ)L(B, W) := (AlX)⊤∗I
∂L(B, W)

∂Ŷ
∈ RC0×Cy . (6.29)

Plugging this into (6.21):

∇BL(B, W) = (X(H))⊤∗I
∂L(B, W)

∂Ŷ

= (A∗IX(H−1)W(H−1))⊤
∂L(B, W)

∂Ŷ

= (AH
∗IXW(0) · · ·W(H−1))⊤

∂L(B, W)

∂Ŷ

= (W(0) · · ·W(H−1))⊤((AH)∗IX)⊤
∂L(B, W)

∂Ŷ
= (W(0) · · ·W(H−1))⊤∇(H)L(B, W)

Using (6.29) along with (6.28):
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∇W(ℓ)L(B, W) = (AH−l
∗I X(ℓ))⊤

∂L(B, W)

∂Ŷ
B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤

= (AH−l+l
∗I XW(0) · · ·W(ℓ−1))⊤

∂L(B, W)

∂Ŷ
B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤

= (W(0) · · ·W(ℓ−2)W(ℓ−1))⊤(AH
∗IX)⊤

∂L(B, W)

∂Ŷ
B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤

= (W(0) · · ·W(ℓ−2)W(ℓ−1))⊤∇(H)L(B, W)B⊤W(H−1)⊤ · · ·W(ℓ+1)⊤

= (W(0) · · ·W(ℓ−2)W(ℓ−1))⊤∇(H)L(B, W)(W(ℓ+1) · · ·W(H−1)B)⊤

6.2.1.2 Dynamics Induced in the Space of W(0)W(2) · · ·W(ℓ)B

The discrete cases of gradient descent:

W(ℓ)′ = W(ℓ) − α∇W(ℓ)L(B, W)

B′ = B − α∇BL(B, W)

The iterative application of the dynamics:

W(0)′ · · ·W(ℓ)′B′ = (W(0)− α∇W(0)L(B, W)) · · · (W(ℓ)− α∇W(ℓ)L(B, W))(B− α∇BL(B, W))

For ease of notation, we define:

Z(H) := W(0) · · ·W(H−1)B

and

Z(H)′ := W(0)′ · · ·W(H−1)′B′

So,

Z(H)′ = W(0)′ · · ·W(ℓ)′B′

= (W(0) − α∇W(0)L(B, W)) · · · (W(H−1) − α∇W(H−1)L(B, W))(B − α∇BL(B, W))

Expanding the multiplication, we get:

Z(H)′ = Z(H) − αW(0)W(1) · · ·W(H−1)∇BL(B, W)
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− α
H−1

∑
i=0

W(0) · · ·W(i−1)∇W(i)L(B, W))W(i+1) · · ·W(H−1)B + O(α2)

Vectorizing both sides:

vec[Z(H)′]− vec[Z(H)]

= −α vec[W(0)W(1) · · ·W(H−1)∇BL(B, W)]

− α
H−1

∑
i=0

vec[W(0)W(1) · · ·W(i−1)∇W(i)L(B, W)W(i+1) · · ·W(H−1)B]

+ O(α2)

Now we can plug in (6.17) and (6.18) from Lemma 1 for ∇BL(B, W) and ∇W(ℓ)L(B, W),

respectively. For the first term we get:

vec[W(0)W(1) · · ·W(H−1)∇BL(B, W)]

= vec[W(0)W(1) · · ·W(H−1)(W(0)W(1) · · ·W(H−1))⊤∇(H)L(B, W)]

= [ICy ⊗ W(0)W(1) · · ·W(H−1)(W(0)W(1) · · ·W(H−1))⊤] vec[∇(H)L(B, W)],

and for the 2nd term:

H−1

∑
i=0

vec[W(0)W(1) · · ·W(i−1)∇W(i)L(B, W)W(i+1) · · ·W(H−1)B]

=
H−1

∑
i=0

vec[W(0)W(1) · · ·W(i−1)(W(0)W(1) · · ·W(i−2)W(i−1))⊤∇(H)L(B, W)

(W(i+1) · · ·W(H−1)B)⊤W(i+1) · · ·W(H−1)B]

=
H−1

∑
i=0

[B⊤(W(i+1) · · ·W(H−1))⊤(W(i+1) · · ·W(H−1)B)

⊗ W(0)W(1) · · ·W(i−1)(W(0)W(1) · · ·W(i−2)W(i−1))⊤] vec
[
∇(H)L(B, W)

]
.

Combining the two:

vec[Z(H)′]− vec[Z(H)]

= −α[ICy ⊗ W(0)W(1) · · ·W(H−1)(W(0)W(1) · · ·W(H−1)B)⊤] vec[∇(H)L(B, W)]

− α
H−1

∑
i=0

[B⊤(W(i+1) · · ·W(H−1))⊤(W(i+1) · · ·W(H−1))B

⊗ W(0)W(1) · · ·W(i−1)(W(0)W(1) · · ·W(i−2)W(i−1))⊤] vec
[
∇(H)L(B, W)

]
+ O(α2)
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Hence, the induced dynamics of vec[Z(H)] is

d
dt

vec[Z(H)] = −F(H) vec[∇(H)L(B, W)]−
(

H−1

∑
i=0

J⊤(i,H) J(i,H)

)
vec

[
∇(H)L(B, W)

]
,

where

F(H) = [ICy ⊗ W(0)W(1) · · ·W(H−1)(W(0)W(1) · · ·W(H−1))⊤],

and

J(i,H) = [W(i+1) · · ·W(H−1)B ⊗ (W(0)W(1) · · ·W(i−2)W(i−1))⊤].

6.2.1.3 Dynamics Induced in the Space of Loss L(B, W)

Next, we analyze the dynamics induced in the space of the loss L(B, W) using the dy-

namic of Z(H) derived in the previous section.

d
dt

L(B, W) =
d
dt

L0(Z(H))

=
∂L0(Z(H))

∂ vec[Z(H)]

d vec[Z(H)]

dt
,

where

L0(Z(H)) = L( f0(X, Z(H))∗I , Y), f0(X, Z(H)) = AHXZ(H), and Z(H) = W(0) · · ·W(H−1)B.

Since

f0(X, Z(H)) = f (X, B, W) = Ŷ

and

L0(Z(H)) = L(B, W),

we have(
∂L0(Z(H))

∂ vec[Z(H)]

)⊤

=

(
∂L(B, W)

∂ vec[Ŷ]
∂ vec[Ŷ]

∂ vec[Z(H)]

)⊤

=

(
∂L(B, W)

∂ vec[Ŷ]
∂ vec[AHXZ(H)]

∂ vec[Z(H)]

)⊤

=

(
∂L(B, W)

∂ vec[Ŷ]

(
∂

∂ vec[Z(H)]
[ICy ⊗ AHX∗I ] vec[Z(H)]

))⊤

= [ICy ⊗ (AHX∗I)
⊤] vec

[
∂L(B, W)

∂Ŷ

]
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= vec[(AHX)⊤∗I
∂L(B, W)

∂Ŷ
]

= vec[∇(H)L(B, W)]

Combining these,

d
dt

L(B, W)

=
∂L0(Z(H))

∂ vec[Z(H)]

d vec[Z(H)]

dt

= vec[∇(H)L(B, W)]⊤
d vec[Z(H)]

dt
= − vec[∇(H)L(B, W)]⊤F(H) vec[∇(H)L(B, W)]

−
H−1

∑
i=0

vec[∇(H)L(B, W)]⊤ J⊤(i,H) J(i,H) vec
[
∇(H)L(B, W)

]
= − vec[∇(H)L(B, W)]⊤F(H) vec[∇(H)L(B, W)]−

H−1

∑
i=0

∥J(i,H) vec
[
∇(H)L(B, W)

]
∥2

2

Hence,

d
dt

L(B, W) = − vec[∇(H)L(B, W)]⊤F(H) vec[∇(H)L(B, W)] (6.30)

−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
(6.31)

F(H) is real symmetric and positive semidefinite since it is the Kronecker of the identity

and W(0:H−1)W(0:H−1)⊤, so

d
dt

L(B, W) ≤ −λmin(F(H))∥ vec[∇(H)L(B, W)]∥2
2 −

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
.

With λB,W = λmin(F(H)),

d
dt

L(B, W) ≤ −λB,W∥ vec[∇(H)L(B, W)]∥2
2 −

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
(6.32)

6.2.1.4 Completing the Proof of Theorem 2 with Square Loss

Now we complete the proof of theorem 2 with squared loss. It is possible to carry out

the proof with other losses, but the derivation is more tedious. So,

L(B, W) = L( f (X, B, W)∗I , Y) = ∥ f (X, B, W)∗I − Y∥2
F
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with Ŷ = f (X, B, W)∗I , we have

∂L(B, W)

∂Ŷ
=

∂

∂Ŷ
∥Ŷ − Y∥2

F = 2(Ŷ − Y) ∈ RN×Cy ,

and

vec[∇(H)L(B, W)] = vec
[
(AHX∗I)

⊤ ∂L(B, W)

∂Ŷ

]
= 2 vec

[
(AHX∗I)

⊤(Ŷ − Y)
]

= 2[ICy ⊗ (AHX∗I)
⊤] vec[Ŷ − Y].

Hence,

∥ vec[∇(H)L(B, W)]∥2
2 = 4 vec[Ŷ − Y]⊤[ICy ⊗ (AHX∗I)(AHX∗I)

⊤] vec[Ŷ − Y] (6.33)

Plugging in (6.33) into (6.32),

d
dt

L(B, W) ≤ −λB,W∥ vec[∇(H)L(B, W)]∥2
2 −

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

= −4λB,W vec[Ŷ − Y]⊤[ICy ⊗ (AHX∗I)(AHX∗I)
⊤] vec[Ŷ − Y]

−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

= −4λB,W vec[Ŷ − Y]⊤
[

ICy ⊗ GHG⊤
H

]
vec[Ŷ − Y] (6.34)

−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
(6.35)

where GH := (AH)X∗I ∈ RN×C0

Here we apply orthogonal decomposition by projecting vec[Ŷ − Y] onto the column

space of ICy ⊗ GH ∈ RCy N×CyC0 with

PICy⊗GH ∈ RCy N×Cy N.

So the decomposition is

vec[Ŷ − Y] = v + v⊥,

where

v = PICy⊗GH vec[Ŷ − Y],

and

v⊥ = (ICy N − PICy⊗GH) vec[Ŷ − Y].
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Hence, plugging into the first term of (6.35):

vec[Ŷ − Y]⊤
[

ICy ⊗ GHG⊤
H

]
vec[Ŷ − Y]

= (v + v⊥)⊤
[

ICy ⊗ GH

] [
ICy ⊗ G⊤

H

]
(v + v⊥)

= v⊤
[

ICy ⊗ GH

] [
ICy ⊗ G⊤

H

]
v

≥ σ2
min(GH)∥PICy⊗GH vec[Ŷ − Y]∥2

2

= σ2
min(GH)∥PICy⊗GH vec[Ŷ]− PICy⊗GH vec[Y]∥2

2

= σ2
min(GH)∥ vec[Ŷ]− PICy⊗GH vec[Y]± vec[Y]∥2

2

= σ2
min(GH)∥ vec[Ŷ]− vec[Y] + (ICy N − PICy⊗GH) vec[Y]∥2

2

≥ σ2
min(GH)(∥ vec[Ŷ − Y]∥2 − ∥(ICy N − PG⊤

H⊗ICy
) vec[Y]∥2)

2

≥ σ2
min(GH)(∥ vec[Ŷ − Y]∥2

2 − ∥(ICy N − PG⊤
H⊗ICy

) vec[Y]∥2
2),

where we use the property that the singular values of the Kronecker product
[

ICy ⊗ GH

]
are products of the singular values of ICy and GH . Since

L(B, W) = ∥ vec[Ŷ − Y]∥2
2

and

L∗
H = ∥(ICy N − PICy⊗GH) vec[Y]∥2

2,

vec[Ŷ − Y]⊤
[

ICy ⊗ GHG⊤
H

]
vec[Ŷ − Y] ≥ σ2

min(GH)(L(B, W)− L∗
H).

Therefore,

d
dt

L(B, W) ≤ −4λB,W vec[Ŷ − Y]⊤
[

ICy ⊗ GHG⊤
H

]
vec[Ŷ − Y]−

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

≤ −4λB,Wσ2
min(GH)(L(B, W)− L∗

H)−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

Since L∗
H is the global minimum, d

dt L∗
H = 0,

d
dt
(L(B, W)− L∗

H) ≤ −4λB,Wσ2
min(GH)(L(B, W)− L∗

H)−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

Let L = L(B, W)− L∗
H,

dL
dt

≤ −4λB,Wσ2
min(GH)L −

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
(6.36)
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Both terms are always non-negative, so this derivative is always positive or zero. The

starting loss will always be higher than the global minimum L ≥ 0. If the loss reaches

the global minimum, then the derivative will be 0. Hence we label t̄ as the point where

it reaches the global minimum. Then within [0, t̄] , equation (6.36) implies that

1
L

dL
dt

≤ −4λB,Wσ2
min(GH)−

1
L

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

Taking integral over time,

∫ T

0

1
L

dL
dt

dt ≤ −
∫ T

0
4λB,Wσ2

min(GH)dt −
∫ T

0

1
L

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
dt

Applying the substitution rule,∫ T

0

1
L

dL
dt

dt =
∫ LT

L0

1
L

dL = log(LT)− log(L0), (6.37)

where

L0 = L(W0, B0)− L∗ (6.38)

and

LbT = L(WT, BT)− L∗
H. (6.39)

Hence,

log(LT)− log(L0) ≤ −4σ2
min(GH)

∫ T

0
λB,Wdt −

∫ T

0

1
L

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
dt

which implies that

LT ≤ elog(L0)−4σ2
min(GH)

∫ T
0 λB,Wdt−

∫ T
0

1
L ∑H−1

i=0 ∥J(i,H) vec[∇(H)L(B,W)]∥2
2
dt

= L0e−4σ2
min(GH)

∫ T
0 λB,Wdt−

∫ T
0

1
L ∑H−1

i=0 ∥J(i,H) vec[∇(H)L(B,W)]∥2
2
dt

Plugging L = L(B, W)− L∗
H back in, we get

L(WT, BT)− L∗
H ≤ (L(W0, B0)− L∗

H) (6.40)

e
−4σ2

min(GH)
∫ T

0 λWt ,Bt dt−
∫ T

0
1

L(Wt ,Bt)−L∗H
∑H−1

i=0 ∥J(i,H) vec[∇(H)L(Wt,Bt)]∥2
2
dt

. (6.41)

Using again the property of the Kronecker product,

λmin([(B(H),t . . . B(1),t)
⊤B(H),t · · ·B(1),t ⊗ ICy ]) = λmin((B(H),t . . . B(1),t)

⊤B(H),t · · ·B(1),t),
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that implies that

λ
(H)
T = inf

t∈[0,T]
λWt,Bt .

Since the 2nd term of the exponential is always greater than 0, i.e.,∫ T

0

1
L(Wt, Bt)− L∗

H

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(Wt, Bt)]
∥∥∥2

2
dt ≥ 0

we get

L(WT, BT)− L∗
H ≤ (L(W0, B0)− L∗

H)

e
−4λ

(H)
T σ2

min(GH)T−
∫ T

0
1

L(Wt ,Bt)−L∗H
∑H−1

i=0 ∥J(i,H) vec[∇(H)L(Wt,Bt)]∥2
2
dt

≤ (L(W0, B0)− L∗
H)e

−4λ
(H)
T σ2

min(GH)T

= (L(W0, B0)− L∗
H)e

−4λ
(H)
T σ2

min(A
HX∗I )T

Here, we arrive at Theorem 2 and the proof is complete.

6.2.2 1-Layer, K-Degree Convergence Proof

In this section, we prove Theorem 3, the training convergence of 1-layer, K-degree

TAGCN. This follows closely from the previous section. For the sake of completeness,

we include all the details. Just like the previous section, we first compute the gradients

of the loss with respect to the parameter ∇W(ℓ)L(W) in Section 6.2.2.1. Using these rela-

tions, we then analyze the dynamics induced in W(ℓ) in Section 6.2.2.2, and the dynamics

induced in the loss value L(W) in Section 6.2.2.3. Finally, we complete the proof using

square loss in Section 6.2.2.4.

6.2.2.1 Derivation of ∇W(ℓ)L(W)

We first prove the relationship of the gradients ∇BL, ∇Wj L and ∇(H)L in the following

lemma:

Lemma 2. Let f be an 1-layer K-degree linear TAGCN. Then for any (W),

∇Wj L(W) = ∇jL(W) (6.42)

where

∇jL(W) := (AjX)⊤∗I
∂L(W)

∂Ŷ
∈ RC0×Cy (6.43)
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Proof of Lemma 2. From (6.2), we have

X(H) =
K

∑
k=0

AkX(0)Wk

(ignoring the nonlinearity). For simplicity, we use Wk = Wk
(0) since there is only one

layer. We also remove B weights, so

Ŷ = f (X, A, W)∗I = (X(H))∗I . (6.44)

We derive ∇Wj L(W), starting with ∂ vec[Ŷ]
∂ vec[Wj]

∈ RCy N×ClCl+1 :

∂ vec[Ŷ]
∂ vec[Wj]

=
∂ vec[(X(H))∗I ]

∂ vec[Wj]

=
∂ vec[(X(H))∗I ]]

∂ vec[Wj]

=
∂ vec[∑K

k=0 AkX(0)Wk]

∂ vec[Wj]

=
∂[ICy ⊗ AjX(0)] vec[Wj]

∂ vec[Wj]

= [ICy ⊗ AjX(0)] (6.45)

Hence, the formula of ∇Wj L(W) ∈ RC0×Cy :

∂L(W)

∂ vec[Wj]
=

∂L(W)

∂ vec[Ŷ]
∂ vec[Ŷ]

∂ vec[Wj]
=

∂L(W)

∂ vec[Ŷ]
[ICy ⊗ AjX(0)]

Thus, with ∂L(W)

∂Ŷ
∈ RN×Cy ,

∇vec[Wj]
L(W) = vec[(AjX)⊤

∂L(W)

∂Ŷ
] ∈ RC0Cy

Therefore,

∇Wj L(W) = (AjX)⊤
∂L(W)

∂Ŷ
∈ RC0×Cy . (6.46)

Now, we can prove the statements of this lemma with the (6.43):

∇Wj L(W) = vec[(AjX)⊤
∂L(W)

∂Ŷ
]

= ∇jL(W)

Using Lemma 2, we prove Theorem 3.
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6.2.2.2 Dynamics Induced in the Space of W(ℓ)

Similar to the previous section, the dynamics are as follows:

W′
j = W′

j − α∇Wj L(W)

Vectorizing both sides:

vec[W′
j]− vec[Wj] = −α∇Wj L(W)

= −α vec[∇jL(W)]

using Lemma 2 for ∇Wj L(W).

Hence, the induced dynamics of vec[Wj] is simply

d
dt

vec[Wj] = − vec[∇jL(W)]

6.2.2.3 Dynamics Induced in the Space of Loss L(W)

Next, we analyze the dynamics induced in the space of the loss L(W) using the dynamic

of Wj derived in the previous section. Let

L(W) := L( f (X, W), Y)

where L is the square loss function (to be analyzed later). Using chain rule,

d
dt

L(W) =
d
dt

L0(W0, . . . , WK)

=
K

∑
k=0

∂L0(W0, . . . , WK)

∂ vec[Wk]

d vec[Wk]

dt
,

where

L0(W0, . . . , WK) = L( f0(X, W), Y), f0(X, W) =
K

∑
k=0

AkXWk, and Wk = Wk

Since

f0(X) = f (X, W) = Ŷ

and L0(W0, . . . , WK) = L(W), we have

(
∂L0(W0, . . . , WK)

∂ vec[Wk]

)⊤
=

(
∂L(W, B)
∂ vec[Ŷ]

∂ vec[Ŷ]
∂ vec[Wk]

)⊤
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=

(
∂L(W)

∂ vec[Ŷ]

(
∂

∂ vec[Wk]
vec[

K

∑
k=0

AkXWk]

))⊤

=

(
∂L(W)

∂ vec[Ŷ]

(
∂

∂ vec[Wk]

K

∑
k=0

[ICy ⊗ (AkX)] vec[Wk]

))⊤

=

(
∂L(W)

∂ vec[Ŷ]
[ICy ⊗ (AkX)]

)⊤

= [ICy ⊗ (AkX)⊤] vec
[

∂L(W)

∂Ŷ

]
= vec

[
(AkX)⊤

∂L(W)

∂Ŷ

]
= vec[∇kL(W)]

Combining these,

d
dt

L(W) =
K

∑
k=0

∂L0(W0, . . . , WK)

∂ vec[Wk]

d vec[Wk]

dt

=
K

∑
k=0

vec[∇kL(W)]⊤
d vec[Wk]

dt

= −
K

∑
k=0

vec[∇kL(W)]⊤ vec[∇kL(W)] (6.47)

6.2.2.4 Completing the Proof of Theorem 3 with Square Loss

Given that

L(W, B) = ℓ( f (X, W), Y) = ∥ f (X, W)− Y∥2
F

with Ŷ = f (X, W), we have

∂L(W)

∂Ŷ
=

∂

∂Ŷ
∥Ŷ − Y∥2

F = 2(Ŷ − Y) ∈ RN×Cy ,

and hence

vec[∇(k)L(W)] = vec
[
(AkX)⊤∗I

∂L(W)

∂Ŷ

]
= 2 vec

[
(AkX)⊤∗I(Ŷ − Y)

]
= 2[ICy ⊗ (AkX)⊤∗I ] vec[Ŷ − Y].

Therefore,

∥ vec[∇(l)L(W)]∥2
2 = 4 vec[Ŷ − Y]⊤[ICy ⊗ (AkX)∗I(AkX)⊤∗I ] vec[Ŷ − Y]. (6.48)
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Now, we can plug in (6.47)

d
dt

L(W) = −
K

∑
k=0

vec[∇kL(W)]⊤ vec[∇kL(W)]

= −
K

∑
k=0

4 vec[Ŷ − Y]⊤[ICy ⊗ (AkX)∗I(AkX)⊤∗I ] vec[Ŷ − Y]

= −4 vec[Ŷ − Y]⊤
(

K

∑
k=0

ICy ⊗ (AkX)∗I(AkX)⊤∗I

)
vec[Ŷ − Y]

= −4 vec[Ŷ − Y]⊤
(

ICy ⊗
K

∑
k=0

(AkX)∗I(AkX)⊤∗I

)
vec[Ŷ − Y]

= −4λB,W vec[Ŷ − Y]⊤
(

ICy ⊗ GKG⊤
K

)
vec[Ŷ − Y]

where

GKG⊤
K =


X∗I

(AX)∗I
...

(AKX)∗I




X∗I

(AX)∗I
...

(AKX)∗I


⊤

=
H

∑
l=0

(AkX)∗I(AkX)⊤∗I

Here we apply orthogonal decomposition by projecting vec[Ŷ − Y] onto the column

space of

ICy ⊗ GK ∈ RCy N×(K+1)CyC0 .

So

PICy⊗GH ∈ RCy N×Cy N,

and the decomposition is

vec[Ŷ − Y] = v + v⊥,

where

v = PICy⊗GK vec[Ŷ − Y]

and

v⊥ = (ICy N − PICy⊗GK) vec[Ŷ − Y].

Then,

vec[Ŷ − Y]⊤
[

ICy ⊗ GKG⊤
K

]
vec[Ŷ − Y] = (v + v⊥)⊤

[
ICy ⊗ GK

] [
ICy ⊗ G⊤

K

]
(v + v⊥)
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= v⊤
[

ICy ⊗ GK

] [
ICy ⊗ G⊤

K

]
v

≥ σ2
min(GK)∥PICy⊗GK vec[Ŷ − Y]∥2

2

= σ2
min(GK)∥PICy⊗GK vec[Ŷ]− PICy⊗GK vec[Y]∥2

2

= σ2
min(GK)∥ vec[Ŷ]− PICy⊗GK vec[Y]± vec[Y]∥2

2

= σ2
min(GK)∥ vec[Ŷ]− vec[Y] + (ICy N − PICy⊗GK) vec[Y]∥2

2

≥ σ2
min(GK)(∥ vec[Ŷ − Y]∥2 − ∥(ICy N − PG⊤

K ⊗ICy
) vec[Y]∥2)

2

≥ σ2
min(GK)(∥ vec[Ŷ − Y]∥2

2 − ∥(ICy N − PG⊤
K ⊗ICy

) vec[Y]∥2
2,

where we again use the property that the singular values of the Kronecker product[
ICy ⊗ GK

]
are products of the singular values of ICy and GK .

Since

L(W) = ∥ vec[Ŷ − Y]∥2
2

and

L∗
H = ∥(ICy N − PICy⊗GK) vec[Y]∥2

2

, then

vec[Ŷ − Y]⊤
[

ICy ⊗ GKG⊤
K

]
vec[Ŷ − Y] ≥ σ2

min(GK)(L(B, W)− L∗
H).

Therefore,

d
dt

L(W) ≤ −4 vec[Ŷ − Y]⊤
[

ICy ⊗ GKG⊤
K

]
vec[Ŷ − Y]

≤ −4σ2
min(GK)(L(B, W)− L∗

H)

Since L∗
H is the global minimum, d

dt L∗
H = 0,

d
dt
(L(B, W)− L∗

H) ≤ −4σ2
min(GK)(L(B, W)− L∗

H)

Let L = L(B, W)− L∗
H,

dL
dt

≤ −4σ2
min(GK)L (6.49)

Since this is always non-negative, so this derivative is always non-positive. The starting

loss will always be higher than the global minimum L ≥ 0. If the loss reaches the global

minimum, then the derivative will be 0. Hence we label t̄ as the point where it reaches

the global minimum. Then within [0, t̄] , equation (6.49) implies that
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1
L

dL
dt

≤ −4σ2
min(GK)

Taking integral over time,∫ T

0

1
L

dL
dt

dt ≤ −
∫ T

0
4σ2

min(GK)dt = −σ2
min(GK)T

Applying the substitution rule,∫ T

0

1
L

dL
dt

dt =
∫ LT

L0

1
L

dL = log(LT)− log(L0),

where

L0 = L(W0, B0)− L∗

and

LT = L(WT, BT)− L∗
H.

Hence,

log(LT)− log(L0) ≤ −4σ2
min(GK)T

which implies that

LT ≤ elog(L0)−4σ2
min(GK)T

= L0e−4σ2
min(GK)T

Plugging L = L(B, W)− L∗
H back in, we get

L(WT, BT)− L∗
H ≤ (L(W0, B0)− L∗

H)e
−4σ2

min(GK)T (6.50)

Here, we arrive at Theorem 3 and the proof is complete.

6.2.3 H-Layer, K-Degree Convergence Proof

We show that with variable substitution, we can reduce H-layer K-degree TAGCN to

1-layer, HK-degree (since there is no nonlinearity), and it is also guaranteed to converge

like the previous case with HK-degree. However, the actual convergence rate may be

different due to different initializations.

From (6.2), we have X(ℓ) = ∑K
k=0 AkX(ℓ−1)Wk

(ℓ−1). We start with the 2-layer case:
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X(2) =
K

∑
k1=0

Ak1X(1)Wk1
(1)

Plugging in X(1) = ∑K
k0=0 Ak0X(0)Wk0

(0) gives:

X(2) =
K

∑
k1=0

Ak1 [
K

∑
k0=0

Ak0X(0)Wk0
(0)]Wk1

(1)

K

∑
k1=0

K

∑
k0=0

Ak0+k1X(0)Wk0
(0)Wk1

(1)

And X(3) is:

X(3) =
K

∑
k2=0

Ak2X(2)Wk2
(2)

=
K

∑
k2=0

Ak2
K

∑
k1=0

K

∑
k0=0

Ak0+k1X(0)Wk0
(0)Wk1

(1)Wk2
(2)

=
K

∑
k2=0

K

∑
k1=0

K

∑
k0=0

Ak0+k1+k2X(0)Wk0
(0)Wk1

(1)Wk2
(2)

By recursively building up, we get:

XH =
K

∑
kH−1=0

K

∑
kH−2=0

· · ·
K

∑
k0=0

Ak0+k1+k2+···+kH−1X(0)Wk0
(0)Wk1

(1)Wk2
(2) · · ·WkH−1

(H−1)

This is the same as 1-Layer KH-degree case if we combine the coefficients of the same

polynomial. For 1-Layer KH:

X(H) =
KH

∑
i=0

AiX(0)Wi
(1 layer),

so,

W0
(1 layer) = W0

(0)W0
(1) · · ·W0

(H−1),

and in general,

Wi
(1 layer) = ∑

k0,k1,··· ,kH−1∈Sk|∑H−1
j=0 kj=i

Wk1
(1)Wk2

(2) · · ·WkH−1
(H−1)

where Sk = (0, 1, · · · , K)
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Hence, following similar derivation, the results are similar to (6.50) in the previous

section, i.e.,

L(WT, BT)− L∗
H ≤ (L(W0, B0)− L∗

H)e
−4σ2

min(GK)T, (6.50)

but with

GKG⊤
K =


X

AX
...

AKHX


⊤ 

X

AX
...

AKHX

 =
H

∑
l=0

(AkX)∗I(AkX)⊤∗I .

6.3 Experimental Analysis

We experimentally validate our results on real datasets, using linearized TAGCN, by

showing that its train loss decreases monotonically over time to a global minimum,

which is 0 in most cases. Higher number of layers and degree of the polynomial filters

accelerate learning. We then show that the loss also converges for nonlinearized TAGCN.

6.3.1 Data Descriptions

We study the training convergence of 6 real node classification benchmark datasets

(CORA, CiteSeer, PubMed, Amazon Computers, Coauthor Physics, and Coauthor CS).

See Section 4.3.1 for their descriptions.

6.3.2 Experimental Setup

We follow a similar experimental setup as described in Section 4.3.2. For the linearized

case, we decrease the learning rate of ADAM to 0.0001, remove weight decay, and remove

the stopping condition. Hence, we train for 10,000 epochs, when previously, we have

applied early stopping condition if the validation loss is not improving. We apply 32

hidden channels, and consider 1-10 number of layers and 1-10 degree of the polynomial

filters.

6.3.3 Results

Fig. 6.1 and 6.2 shows the results of train loss for 10,000 epochs for H-layer, 1-degree

GCN, and 2-Layer K-degree TAGCN. In general, the train loss decreases monotonically
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over time at a log-linear rate.

In Fig. 6.1, for Amazon Computer and Coauthor Physics, we see spikes in train-

ing losses. They are a consequence of exploding gradients from model instability (the

weights grow exponentially). Approaches to fixing this include gradient clipping and

weight regularization (which we have for Chapter 4, but removed here). For Amazon

Computers, the spikes start occurring at layer 4 (for layer 1-3, there are no spikes).

6.3.3.1 Number of Layers

In Section 6.2.1.3, we showed that the convergence rate for H-layer, 1-degree is:

d
dt

L(B, W) = − vec[∇(H)L(B, W)]⊤F(H) vec[∇(H)L(B, W)] (6.30)

−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
. (6.51)

The second term ∑H−1
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
is a summation over positive terms

and it increases as H the number of layers increase, thereby accelerating the learning.

Fig. 6.1 validates this. Increasing the number of layers accelerates the convergence espe-

cially at the earlier epochs.

6.3.3.2 Degree of The Polynomial Filters

In Section 6.2.2.3, we showed that the convergence rate for 1-layer, K-degree is:

d
dt

L(W) = −
K

∑
k=0

vec[∇kL(W)]⊤ vec[∇kL(W)] (6.47)

Again, this is a summation over positive terms and it increases as the degree of the

polynomial filters K increase. The convergence rate is faster with higher number of

layers vs higher degree of polynomial filters, e.g., TAGCN converges faster with 4 layers

+ 2 degrees compared to 2 layers + 4 degrees.

Fig. 6.2 validates this. Increasing the degree of polynomial filters accelerates the con-

vergence. There seems to be no spikes at higher degree compared with higher number of

layers. Residual connections allow weights to be updated directly from the loss (instead

of propagating through higher degree).
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(a) CORA (b) CiteSeer

(c) PubMed (d) Coauthor Physics

(e) Amazon Computer (f) Coauthor CS

Figure 6.1: TAGCN: Train loss vs epoch for different number of layers

6.3.3.3 Nonlinearity

Fig. 6.3 shows TAGCN results with and without ReLU nonlinearity. In general, the

results are similar, with training losses also converge to 0 with nonlinearity, albeit at a

slower rate. This is due in part to difference in the default initialization.

6.4 Conclusion

In conclusion, we show theoretically that training loss converges to a global minimum for

linearized TAGCN. We first find the gradient of the loss with respect to the weights, then
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(a) CORA - 2 layers (b) CORA -4 layers

(c) CiteSeer - 2 layers (d) CiteSeer -4 layers

(e) PubMed - 2 layers (f) PubMed -4 layers

(g) Amazon Computer - 2 layers (h) Coauthor CS -2 layers

Figure 6.2: TAGCN: Train loss vs epoch for different degree of the polynomial filters

the dynamics induced with the weights and induced with the loss, finally we complete

the proof assuming squared loss. Despite the non-convex objectives, training loss for 1-

degree H-layer TAGCN, i.e., with degree 1 polynomial filter and H layers, is guaranteed

to converge to global minimum at an exponential rate, faster with higher number of

layers. With K-degree TAGCN, convergence is accelerated with higher degree K of the
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(a) CORA (b) CiteSeer (c) PubMed

(d) Amazon Computer (e) Coauthor CS

Figure 6.3: TAGCN with ReLU: Train loss vs epoch for different 2 layers + 2 degrees of
polynomial filters

polynomial filters.

We experimentally validate our theory and show training convergence holds true in

general for some real benchmark datasets. We plot the loss in log-linear graphs and show

that increasing number of layers and degrees of the polynomial filters leads to decrease

in loss. We also show that this training loss also converges with ReLU nonlinearity at a

slower rate.



Chapter 7: COVID-19 Drug Discovery

The scientific community has united to combat the growing COVID-19 pandemic. Ac-

cording to [101], by 2020, there were more than 200 vaccines in development, 15 have

begun large-scale (phase 3) clinical trials, and 2 have shown to be 95% effective (Pfizer

and Moderna). Given the urgency of the situation, vaccine development and approval

has been accelerated from the general timeline of 10-15 years [102] to under a year. Part

of this acceleration is made possible due to the development of artificial intelligence (AI).

The first step of this process is drug discovery, whereby scientists typically spend

2-5 years to identify vaccine candidates [102]. Instead of testing most drugs in vitro

in the lab, scientists are able to leverage computational methods to screen potential

drugs in silico, saving significant time and physical resources, as there can be millions of

compounds to test. In the last decade, scientists have found machine learning models

to be a good predictor of potential drug candidates found experimentally. It has been

shown that using deep learning, given enough data, can result in superior performance

for antibiotic drug discovery [8]. For extensive reviews of AI applied to drug discovery,

see [103, 104].

The scope of this chapter is one type of deep learning models, namely graph neural

networks (GNNs), applied to COVID-19 drug discovery. This application is well studied,

and we follow closely the approaches described in [8, 105]. In Section 7.1, we give

a cursory summary of the drug-target interaction framework and the deep learning

approach based on GNNs. Then we describe our specific approach combining topology

adaptive graph neural networks (TAGCN [48]) and message-passing neural network

in Section 7.3. We discuss five COVID-19 related datasets and experimental setup in

Section 7.4. We present the results and analysis in Section 7.5. Finally, we conclude in

Section 7.6. Content of this chapter is published in [106].

126
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7.1 Background and Related Work

We divide the background into 3 parts: drug candidate discovery framework, drug-

target interaction framework, and graph neural networks.

7.1.1 Drug Candidate Discovery Framework

Fig. 7.1 depicts the pipeline for drug candidate discovery using deep learning. Accord-

ing to [107], there is a large chemical space of at least 1063 drug-like molecules just by

combining up to 30 carbon, nitrogen, oxygen, and sulfur atoms in different arrange-

ments. Yet, the drugs that have made it into the clinic is a highly-selective fraction of

that.

Many diseases are caused by protein binding or protein malfunction. For example,

the virus of COVID, SARS-CoV-2 infects cells via spike protein binding to ACE2 protein

surface receptors [108]. In general, these are what the drugs target. Pfizer-BioNTech

and Moderna COVID-19 vaccines contain mRNA that give instructions to cells in our

body on how to make a protein to trigger an immune response (which will prevent us

from getting sick with COVID-19 in the future). Finding the right molecule is the job

of the drug hunters / big pharmaceutical firms. To start, they need to find a “hit,”

i.e., a molecule that is effective before improving it through more experimentation and

undergoing clinical trials.

The number of screening compounds is growing. Merck KGaA, one of the leading

pharmaceutical firms, has Merck Accessible Inventory (MASSIV), a chemical space of

1020 molecules [109]. To navigate this ever-growing complexity, researchers have en-

coded the properties and applied deep learning to predict and design antibiotics and

vaccines.

7.1.2 Drug-target Interaction Framework

One of the most important steps of drug discovery is predicting drug-target interactions

(DTI). It characterizes the binding of chemical compounds to the protein targets. Among

several, drug screening and drug repurposing are the two main tasks. Drug screening

identifies ligand molecules that can bind to specific proteins, whereas drug repurposing

finds new therapeutic uses of existing and available drugs. Traditionally, this is done
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Figure 7.1: Machine learning in drug discovery. Image taken from [8].

experimentally in the lab. Nowadays, researchers generally use computational methods

as a supplement, saving significant cost and time.

Deep learning has demonstrated superior performance than traditional computa-

tional methods [9]. In addition to classic chemical fingerprint drug encoders like Morgan

and RDKit, there are many deep learning-based drug encoders that can be categorized

into autoencoder, convolutional neural networks, recurrent neural networks, transform-

ers, and GNNs. Fig. 7.2 shows the DTI framework from DeepPurpose [9]. On the left

side, we have the encoder of the molecule, and, on the right side, we have the encoder

for the protein receptor. The output of the encoder is feed into a decoder that produces

a binding score or interaction probability.

7.1.3 Graph Neural Networks

Within deep learning, graph neural networks (GNNs) have shown promising results

for drug discovery applications [110, 111]. They are motivated in part by convolutional

neural networks (CNNs) and recurrent neural networks (RNNs), which, as discussed

in previous chapters, have yielded significant improvements in computer vision, natural

language processing, and other Euclidean domains. Unlike CNNs and RNNs, GNNs are

able to extract features via the graph structure or data topology, defined by its adjacency
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Figure 7.2: Drug-target interaction framework. Image from [9].

matrix. For a more in-depth review of GNNs, see Section 3.1 and [2].

7.2 Problem Definition

We cast the task of drug discovery as a graph classification task, just like it is defined in

Section 5.1. The molecules can be represented as graphs Gs = (G1,G2, . . . ,GN), and labels

Ys = (Y1, Y2, . . . , YN). We are given a subset of labels for training {Yi | i ∈ Dtraining}, and

the task is to predict the rest {Yi | i ∈ Dtesting}, where Dtraining and Dtesting correspond

to the train and test sets, respectively.

Each graph Gi consists of a set of atoms/nodes Vi with |Vi| = Ni, signal Xi ∈
RNi×C0 on the nodes (where C0 is the number of features on each node), a set of atomic

bonds/edges Ei, and an adjacency matrix Ai. [Ai]jk = 0 unless there is an bond/edge

e = (j, k) connecting node j and node k.
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7.3 Methods

In this section, we describe our approach combining two GNN convolution methods for

drug discovery: topology adaptive graph neural networks and message-passing neural

network. We also describe our methods dealing with class imbalances, extra features,

and different losses.

7.3.1 Topology Adaptive Graph Convolutional Neural Networks

We focus on the convolutional layer of the GNN architecture. The topology adaptive

graph convolution network (TAGCN) implementation of graph convolution [48] uses

the polynomial filter coefficients as learnable weights. We recall from (3.2), the general

form of the TAGCN graph convolutional layer is:

X(ℓ+1) = σ

(
K

∑
k=0

AkX(ℓ)W(ℓ)
k

)
. (3.2)

where K is the degree of the graph polynomial filter and a hyperparameter of the model.

TAGCN allows learning of more complex functions with deeper models. See Fig. 3.2 for

an example of graph convolutional filter of degree 2.

7.3.2 Message Passing Neural Networks

Message passing neural networks (MPNNs) are a generalization of GNNs, first formu-

lated by [112]. Following the same definition given above, we define hhhl
i ∈ RC to be the

state of node i at t-th time step and hhh0
i ∈ RC to be the initialized state (from splitting X(0)

by nodes).

One GNN layer can be expressed using message passing neural network:

mmmℓ+1
i→j = f ℓα(hhh

ℓ
i , hhhℓj , Aij) (propagation) (7.1)

hhhℓ+1
j = f ℓβ({mmmℓ+1

i→j |i ∈ Nj}, hhhℓj ) (aggregation) (7.2)

where ℓ is the time step (or layer number in GNN); f ℓα and f ℓβ are parametrized functions

like neural networks; mmmℓ+1
i→j is the propagated information from node i to node j. For

example, f ℓα can be a MLP followed by a nonlinear activation, and mmmℓ+1
i is the aggregated

information with Ni representing all the incoming neighbors of node i:
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Figure 7.3: Propagation and aggregation steps.

mmmℓ+1
i = ∑

j∈Ni

mmmℓ+1
j→i (7.3)

To update the hidden state at ℓ + 1 for each node, we can also use a MLP or a

recurrent neural network like a GRU or LSTM for fβ:

hhhℓ+1
i = fβ(mmmℓ+1

i , hhhℓi ) (7.4)

After L time steps/layers, we get the final states hhhLi and predict the graph label using

a readout function R (which can also be MLPs):

ŷ = R({hhhLi | ∀i ∈ V}) (7.5)

Then apply a loss function like cross entropy loss CE(ŷ, y). See fig. 7.3 for a visual-

ization of this process.

This method is essentially the same as convolution in GNN. By breaking it down into

propagation and aggregation, additional functions and parameters can be easily written

out at each step. For example, in our study, we incorporate graph-level RDKit features

into the atoms, and consider different edge types.
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7.3.3 Topological adaptive message passing neural networks

Our approach is applying TAGCN to MPNN to get topology adaptive message passing

neural network. Instead of summing just the direct neighbors in (7.3), we aggregate

nodes up to a degree K hops away (including 0 hop) and apply the nonlinear activation

after the summation. For example, for K = 2, we have

mmmℓ+1
i = ∑

j∈Ni

(w2mmmℓ+1
j→i + w1 ∑

r∈Nj

mmmℓ+1
r→j) + w0mmmℓ

i (7.6)

MPNN generalization enables us to consider more variants such as passing messages

on the nodes.

7.3.4 Class Imbalance Solutions

For drug discovery, there is severe class imbalance, i.e., the number of hits is gener-

ally a small proportion of the number of no hits. This is expected especially for novel

proteins/virus. As a result, we consider several solutions.

First, it is common practice to use a different performance metric called the area

under the receiver operating characteristic curve (ROC-AUC). ROC is a plot of false

positives (1- specificity) vs true positives (sensitivity), plotted using different decision

thresholds on the score produced by the classifier. An example is shown in Fig. 7.4.

AUC is the area under the curve for false positive rate between 0 and 1 (which is 0.897

here).

For the loss functions, we consider several alternatives. First, we consider weighted

loss function, modified from (5.6) for the binary classification (yi is either 0 or 1):

L(ŷi, , yi) = w1yilog(S(ŷi)) + w0(1 − yi)log(1 − S(ŷi)) (7.7)

where S(·) is the softmax function, w0 and w1 are the assigned weights of each class. We

start with w0 = 1, and w1 = N0
N1

where N0 and N1 are the number of samples in class 0

and class 1, respectively.

We also experiment with another loss function called Matthews correlation coefficient

[113], which [114] has shown to be more reliable in scenarios with class imbalance.

Besides false positives (FP) and true positives (TP), it also considers true negatives (TN)

and false negatives (FN). The metric is as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN
(7.8)
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Figure 7.4: An example of receiver operating characteristic (ROC) curve.

For the actual loss function, we multiply each term by its probability, e.g., true positives

and false negatives are ŷi × yi and (1 − ŷi)× (1 − yi), respectively. A small ϵ is added to

each term for numeric stability.

7.4 Experiments

In this section, we describe the datasets and the experimental setup.

7.4.1 Datasets

As shown in table 7.1, we consider five COVID-19 related datasets, with total indicating

the number of molecules and hits indicating whether it is effective in some way (e.g.,

inhibiting of SARS-CoV 3CL protease, which is the main enzyme found in the coron-

avirus).

Mpro Xchem [115] is a list of chemical fragments or blocks of chemical structures

taken from 5 fragment libraries. The fragments are screened for 3CL protease binding

using XChem crystallography.

Amu SARS dataset [116] is a list of FDA-approved compounds screened against

SARS-CoV-2 in vitro. The hits represent potential inhibitors of SARS-CoV-2 replication.
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Ellinger [117] is a list of compounds screened against SARS-CoV-2 in vitro using

a large scale drug repurposing collection, including 3488 that had undergone clinical

investigations (e.g., phases 1-3).

Broad SARS [118] is a list of compounds screened against SARS-CoV 3CL protease

experimentally from Drug Repurposing Hub at Broad Institute. SARS-CoV is also a

coronavirus with similar symptoms. It led to a pandemic in 2003 that was more severe

in terms of mortality rate, but less transmissible.

AID1706 SARS [119] is a much longer list of compounds screened against SARS-CoV

in-vitro via fluorescence, containing 41 hits from Broad SARS.

The features on the atoms include atomic number, number of bonds, chirality, formal

charge, number of hydrogen atoms, hybridization (sp, sp2, etc.), aromaticity, and atomic

mass. The features on the edges are bond type (single, double,etc.), whether bond is

conjugated, whether bond is part of a chemical ring, and stereo. All features are one-hot

encodings except for atomic mass.

Table 7.1: COVID-19 Related Datasets

Name Total Hits
Mpro Xchem 880 78
Amu SARS 1,484 88

Ellinger 5,632 67
Broad SARS 5,671 41

AID1706 SARS 290,767 446

7.4.2 Experimental Setup

In our experiments, we use the state-of-the-art Directed-MPNN (D-MPNN) model from

[105] as baseline. Like TAGCN, directed means the adjacency matrix is not symmetric.

We use the same initial featurization as D-MPNN. We perform 5-fold cross-validation

using scaffold split and evaluate our results using common benchmark area under the

receiver operating characteristic curve (ROC-AUC). We compare results with and with-

out the recommended graph-level features RDKit. To address class imbalance, we ap-

ply weighted cross-entropy loss function and Matthews correlation coefficient (see Sec-

tion 7.3.4). We consider several hyperparameters such as number of layers (convolution

and linear), number of channels, degree of the graph polynomial filter, and dropout

rates. We perform hyperparameter optimization via Bayesian Optimization using the

Hyperopt package [120].
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Figure 7.5: Simple classifier on most common atoms for different datasets. Blue bars
represent average test AUCs. Vertical black lines on the bars represent standard devia-
tions.

We also consider one simple metric, by classifying using different number of the

7 most common atoms. For each graph, we create a feature vector consisting of the

number of carbon, hydrogen, oxygen, nitrogen, sulfur, chloride, and fluoride atoms.

Then we apply logistic regression, linear support vector machine, and SGD Classifier

(for AID1706, as there are more than 100,000 samples), all from scikit-learn library [87].

7.5 Results

Fig. 7.5 shows the results on the simple classifier on the most common atoms. There is a

spectrum of results. For Broad SARS, we can achieve 97% AUC, and for all others AUC

around or below 75%.

Fig. 7.6 shows the optimized results of D-MPNN+TAGCN vs state-of-the-art D -

MPNN for five COVID-related datasets, quantified by test AUC. In general, we observe

that D-MPNN+TAGCN yields better performance than D-MPNN for all datasets, re-

gardless of whether extra feature (RDKit) is applied. RDKit improves the performance

for all except the Amu SARS dataset, and leads to higher variance for all except the

Mpro XChem dataset (since extra features were used).
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A comparison between Fig. 7.6 and Fig. 7.5 suggests that if the classifier on the met-

ric (number of common atoms) performs well, D-MPNN+TAGCN and D-MPNN both

perform well with/without RDKit. For example, for Broad SARS, the metric achieves

0.97 AUC while GNN approaches achieve near 1 AUC.

Fig. 7.7 shows the test AUC for D-MPNN+TAGCN with/without sumpool. It leads

to slight improvement for the MPro XChem dataset only.

We look into two hyperparameters of graph neural network architectures: number of

layers and degree of the polynomial filters.

Fig. 7.8 shows the test AUC of D-MPNN vs number of layers. In general, optimal

AUC occurs within the first 5 layers. There is no significant change as the number of

layers increases for all datasets, suggesting that the D-MPNN do not over-smooth on the

dataesets.

Fig. 7.9 shows the test AUC of D-MPNN+TAGCN vs number of layers and the de-

gree of polynomial filters. In general, for the initial degrees, the AUC with respect to the

number of layers is similar to that of D-MPNN. As the degree of polynomial increases, at

higher number of layers, over-smoothing occurs. The initial test AUC shapes of Ellinger

and Mpro XChem are more similar than Amu Sars. Their test AUCs do not start drop-

ping till around polynomial filters of degree 6 and 5 layers, while for Mpro XChem, the

relative drop in AUC is much sooner at around polynomial of degree 4 and 4 layers. For

Broad SARS, test AUC is near 1 till after 9 layers and polynomial of degree 9

7.6 Conclusions

In this chapter, we have introduced a novel approach for molecular property predic-

tion by combining two existing GNN methods. We performed experiments comparing

this approach to the state-of-the-art D-MPNN baseline. Our model (D-MPNN+TAGCN)

consistently outperforms this baseline on five coronavirus datasets, implying that these

methods may aid in COVID-19 drug discovery.

We also performed an analysis of the architectures. Using just D-MPNN, there is

no significant difference with respect to just changing the number of the layers. With

D-MPNN+TAGCN, as the degree of the polynomial filters increases, test AUC decreases

with Amu SARS having a relatively steeper decline, suggesting that these molecules

have smallworld characteristics with a difference in edge rewiring probability between

classes.
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Figure 7.6: D-MPNN+TAGCN vs D-MPNN for COVID related datasets. Blue and orange
bars represent average test AUCs. Vertical black lines on the bars represent standard
deviations.

Figure 7.7: D-MPNN+TAGCN vs D-MPNN for COVID related datasets with sumpool-
ing. Blue and orange bars represent average test AUCs. Vertical black lines on the bars
represent standard deviations.
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Figure 7.8: D-MPNN: Test AUC vs number of layers for different COVID-related
datasets. Colored horizontal and vertical lines represent average test AUCs and stan-
dard deviations, respectively.
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(a) Mpro XChem (b) Amu SARS

(c) Ellinger (d) Broad SARS

Figure 7.9: D-MPNN+TAGCN: Test AUC vs number of layers and degree of the polyno-
mial filters for different COVID-related datasets



Chapter 8: Conclusions

This thesis aims to be a step towards understanding geometric deep learning, the appli-

cation of deep learning to non-Euclidean domains. Towards this end, we have shown

that the data graph structure has an important effect on the performance of graph neu-

ral networks for node and graph classification tasks. We believe that by considering the

graph structure, researchers can design more suitable architectures with better perfor-

mance.

We start with the formalization of a geometric deep learning algorithm called graph

neural networks (GNNs) in Chapter 3. We organize its architecture into convolutional

layer, aggregation layer, and pooling layer. The chapter relates the graph convolutional

layer to graph signal processing, and considers two flavors of approaches: spectral ap-

proach typified by graph convolutional networks (GCNs) and spatial approach typified

by topology adaptive graph convolutional networks (TAGCNs). In general, TAGCN

requires fewer number of layers than GCN, with moderate degrees of the polynomial

filters.

In Chapter 4, we apply GNNs to the task of node classification. In general, for the

two main GNN architectures that we studied (GCN and TAGCN), not many layers are

needed to achieve optimal performance (compared with computer vision and natural

language processing). TAGCN requires fewer number of layers than GCN, with low

degree of the polynomial filters. Unlike graph classification (studied in Chapter 5),

graph signal is necessary and important. For some real datasets, classifying using a

simple estimator on the graph signals can outperform GNNs. For synthetic datasets,

Erdős-Rényi and preferential attachment models have similar test accuracy curves for

both GCN and TAGCN with respect to the number of layers and the degree of the

polynomial filters. For smallworld model, TAGCN’s filters play an important role in

achieving the optimal accuracy and accelerating the effect of over-smoothing.

For real datasets, accuracy is significantly improved when the graph is taken into

140
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consideration. We relate simple metrics on real datasets to the performance of these

models. We show, for datasets with higher difference in % of intraclass and interclass

edges, the effect of over-smoothing due to number of layers is smaller. We also show

that over-smoothing occurs slower vs the degree of polynomial filters for datasets with

low average degree. For synthetic datasets, we relate the performance to different graph

characteristics. We find that, in general, high intraclass edge ratio not only leads GNN

achieving higher accuracy, but also leads to them resisting over-smoothing more for both

number of layers and degree of polynomial filters (which has higher optimal values for

lower layers, and lower optimal values for higher layers). Changing the graph signals

by increasing the interclass difference between the means of the graph signal improves

the accuracy while not affecting the optimal number of layers and degree of polynomial

filters. Increasing the number of nodes for the preferential attachment model only lowers

the variance of the test accuracy for both architectures if all other graph characteristics

remain the same.

In Chapter 5, we apply GNNs to the task of graph classification. Unlike with node

classification, graph structure plays a more important role than the graph signal. GNNs

can often classify graphs using just the graph structures of the different classes if they are

distinct enough. For real datasets, we relate simple network metrics and signal statistics

to the performance of these models. We show for biological network datasets, classifiers

on number of edges or number of nodes can lead to better or similar performance as

graph neural networks. For social network datasets, signal statistics can perform well.

Based on these observations, we were able to apply simple modifications to GCN and

TAGCN to improve their performance (sumpool and degree-aware TAGCN).

For real datasets, we also look into the impact of the GNN architecture on its perfor-

mance. In general, datasets with high average degree and low average diameter require

less number of layers to achieve optimal performance. Over-smoothing also occurs for

graph classification. It happens at lower number of layers if the graphs have high aver-

age diameter though there are some exceptions, depending on the graph signal. TAGCN

tends to perform better with higher degrees of the polynomial filters at low number of

layers on datasets with low average degree.

For synthetic datasets, Erdős-Rényi and preferential attachment models again have

similar test accuracy curves for both GCN and TAGCN. For smallworld model, more

than 1 layer is needed to achieve good performance if the edge rewiring probability

is distinct for different classes. We also find that simple network metrics that capture
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different interclass graph characteristics can perform better than GNN (e.g., clustering

coefficient performs better than TAGCN for capturing the smallworld’s edge rewiring

probability). This suggests that GNNs are not optimal for capturing Erdős-Rényi’s edge

creation probability.

Just like real datasets, we also show that simple modification (degree-aware TAGCN)

can greatly improve the performance in capturing interclass difference in degree. How-

ever, another popular variant (graph attention network) does not perform better than

TAGCN on capturing these graph characteristics. Finally, we show that while TAGCN

can perform well when graph signal and graph structure have an AND relationship, it

fails when they have an XOR relationship.

We then study the training convergence for node classification in Chapter 6. Follow-

ing previous works on gradient dynamics [96, 97, 98], we show theoretically that training

loss converges to a global minimum for linearized TAGCN. We first find the gradient of

the loss with respect to the weights, then the dynamics induced with the weights and

induced with the loss, finally we complete the proof assuming squared loss. Despite the

non-convex objectives, training loss for 1-Degree H-Layer TAGCN, i.e., with degree 1

polynomial filter and H layers, is guaranteed to converge to global minimum at an ex-

ponential rate, faster with higher number of layers. With K-Degree TAGCN, convergence

is accelerated with higher degree K of the polynomial filters.

We experimentally validate our theory and show training convergence holds true in

general for some real benchmark datasets. We plot the loss in log-linear graphs and

show that increasing the number of layers and degrees of the polynomial filters leads

to decrease in loss. We also show that this training loss also converges with ReLU

nonlinearity at a slower rate.

Finally, we apply the architecture of TAGCN to a COVID-19 case study in Chapter 7.

We introduce a novel approach for molecular property prediction by combining two

existing GNN methods. Our model (D-MPNN+TAGCN) consistently outperforms the

D-MPNN state-of-the-art baseline on five coronavirus datasets. This is likely because

with TAGCN the model not only passes residual connections from previous layers but

also considers different neighborhood ranges for each nonlinearity for better structure-

aware representation. We also perform an analysis of the architectures. Using just D-

MPNN, there is no significant difference with respect to just changing the number of

layers. With D-MPNN+TAGCN, as the degree of the polynomial filters increases, test

AUC decreases with Amu SARS having a relatively steeper decline, suggesting that these
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molecules have smallworld characteristics with a difference in edge rewiring probability

between classes.

In the course of this thesis, we published [2, 45, 51, 75, 78, 106] that report our results.

8.1 Future Directions

It is still an open question how the data graph structure affects GNN performance. In

this thesis, we only consider two of the many possible graph-related tasks with three

main GNN architectures. There are several interesting future directions and we group

them into five categories: GNN architecture, graph-related tasks, explanation methods,

GSP connection, and training convergence.

8.1.1 GNN Architecture

This thesis applies three graph convolutional models that represent three common types

of graph convolution models: GCN typifies spectral-based models, TAGCN typifies

spatial-based models, and graph attention network typifies attention-based models. Within

the spatial-based model, we consider a more general propagation based model (message

passing neural network) in Chapter 7, and a spectral domain convolution in Chapter 3.

There are many other convolution models that can be applied. For example, graph

isomorphic network (GIN) [24] passes the residual connection to 1 plus a trainable pa-

rameter ϵ in addition to neighborhood aggregation. This theoretically guarantees to

be most expressive among the class of GNNs. However, [121] reports GIN performing

worse than both GCN and GAT for the citation datasets (CORA, CiteSeer, PubMed).

Another interesting model is Gaussian mixture model (GMM), which normalizes the

neighborhood aggregation with a learnable Gaussian kernel (the mean vector and co-

variance matrix are trainable parameters). It would be interesting to see if GIN and

GMM have similar behavior as GCN in regard to the number of layers, and if they can

capture certain graph statistics with/without modifications.

Besides the convolutional layer, there are many variants of pooling and aggregation

layers. Reference [51] shows that graph pooling improves graph classification accuracy

on some benchmark datasets. We find that graph pooling performs better when com-

bined with TAGCN vs GCN. Reference [45] links pooling to sampling methods in graph

signal processing for both the vertex domain and the spectral domain. Pooling makes it

possible for the model to learn hierarchically and to accelerate the training process.
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8.1.2 Graph-related Tasks

Node classification and graph classification are just two of the many graph-related tasks

that GNNs/machine learning can be applied for. Some other tasks of interest include

link prediction, graph embedding, graph sampling/generation, community detection,

outlier detection, graph matching, graph clustering, point cloud classification, and graph

question answering. GNNs have also been applied to natural language processing and

computer vision. At the base of all these methods is graph convolution, typified by GCN

and TAGCN. To solve these tasks, researchers have developed many geometric deep

learning architectures that are extensions of these, such as graph autoencoders, recurrent

graph neural networks, and spatial-temporal graph neural networks (e.g., [122]). For

future work, it would be interesting to study how the graph structures play a role for

these tasks.

8.1.3 Explanation Methods

We have discussed several interpretability methods for GNNs in Section 1.1.6 of the in-

troduction of this thesis. They are used mostly for subgraph detection task, whereas here

we are trying to detect the global characteristics in graph classification and individual

node classes for node classification. One future direction is to apply these methods for

the proposed methods and the synthetic graphs.

8.1.4 GSP Connection

In Chapter 2, we show how graph signal processing (GSP) can be extended to convo-

lutional neural networks components to get graph convolutional neural networks based

on our work in [2]. GSP can also be used to tackle research directions for GNNs, in-

cluding model depth, over-smoothing [123], scalability, heterogenity, dynamicity, and

interpretability (see [21, 22] for more details).

8.1.5 Training Convergence

In Chapter 6, we prove the training convergence for TAGCN for node classification and

validate it experimentally on real datasets. We outline a sketch of the proof for graph

classification in Appendix A. Directions for future work include completing this proof,

and proving this with non-linear models and other loss functions.
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Appendix A: Graph Classification Train-

ing Convergence

We also consider the task training convergence for graph classification. The main dif-

ference is the requirement of the aggregation layer that complicates the derivation (See

Section 3.4). More specifically, the orthogonal projection of the aggregated output on

ICy ⊗ AHX does not simplify to Ŷ (as shown for node classification in Section 6.2.1.4).

We provide a sketch of required steps here, and leave the complete proof for future work.

The chapter is separated into two parts. We start by formally defining the problem of

training convergence in Section A.1. Then we discuss 2 approaches for the convergence

for H-layer, 1-degree TAGCN in Section A.2.

A.1 Problem Definition

Following the same notations as Section 5.1, we consider the supervised learning setting

with the following observations in the forms of graphs Gs = (G1,G2, . . . ,GN), and labels

Ys = (Y1, Y2, . . . , YN). We are given a subset of labels for training {Yi | i ∈ Dtraining}, and

the task is to predict the rest {Yi | i ∈ Dtesting}, where Dtraining and Dtesting correspond

to the train and test sets, respectively.

Each graph Gi consists of a set of nodes Vi with |Vi| = Ni, signal Xi ∈ RNi×C0 on

the nodes (where C0 is the number of features on each node), a set of edges Ei, and an

adjacency matrix Ai. [Ai]jk = 0 unless there is an edge e = (j, k) connecting node j and

node k. Generally, the number of features is the same for all graphs.

Given a neural network function f (Xi, Ai), we use a non-negative real-valued loss

function to model the prediction error of each sample:

L( f (Xi, Ai), Yi) (A.1)

161
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For GNNs, the function is a set of convolutional layers. For TAGCN, each convolu-

tional layer is:

X(ℓ+1) = σ

(
K

∑
k=0

AkX(ℓ)W(ℓ)
k

)
, (3.2)

where W(ℓ)
k ∈ RCℓ×Cℓ+1 , X(ℓ) ∈ RN×Cℓ , and the input signal X = X(0). For training

convergence, we prove cases without nonlinearity σ:

X(ℓ+1) =
K

∑
k=0

AkX(ℓ)W(ℓ)
k , (6.2)

and starting with the case of no polynomial and no residual connections:

x(ℓ+1) = AkX(ℓ)W(ℓ)
k . (6.3)

After graph convolutions, we apply the aggregation so that graphs of different sizes and

orders are comparable. We choose the mean as it is the most popular aggregation that

performs well:

f (X, A, W, B) =
1
N

N

∑
j=1

X(H)
j B, (A.2)

where j represents iterates through row index of X, so f (X, A, W, B) ∈ RCY with B ∈
RCH×CY .

Definition 4. (Global minimum) L∗ is the global minimum value of GNN f

L∗ = inf
W,B

L( f (X, A, W, B), Y), (A.3)

where for graph classification, the loss is over all the graphs in training.

The goal is to study the convergence

∥ lim
t→∞

L(Wt, Bt)− L∗∥

and to analyze the rate of convergence in terms of number of layers and degrees of the

polynomial filters.

A.2 Convergence Theory

In this section, we sketch out the steps for global convergence for TAGCN for graph

classification. Similar to node classification, we follow previous related work on this
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topic [97, 99, 100] and extend them to the TAGCN architecture. We only consider H-

layer 1-degree case.

We consider two approaches in Section A.2.1 and Section A.2.2, respectively. For our

first approach, we assume that the graphs all have the same size and order, and we apply

a weight matrix that convert the output of the graph convolutions to the same dimen-

sion of Y for classification. For our second approach, we incorporate the aggregation

into the loss function, allowing us to reuse the first 3 steps of the derivation for node

classification.

A.2.1 Approach # 1: Graphs with Same Size and Order

For this approach, we assume all the graphs have the same size and that the order is

significant. By order, we mean that indexing of X (and hence A) is fixed. This allows

us to apply a linear layer to convert the number of nodes to the number of labels in Y.

Instead of (A.2), we have simply,

f (X, A, W, B) = BX(H) (A.4)

From (6.3), we have X(ℓ) = AX(ℓ−1)W(ℓ−1) (ignoring the non-linearity and the resid-

ual connection). Combining these equations, we derive ∂ vec[Ŷ]
∂ vec[B] ∈ RCy N×CyCH :

∂ vec[Ŷ]
∂ vec[B]

=
∂

∂ vec[B]
vec[BX(H)]

(A.5)

=
∂

∂ vec[B]
[X(H)⊤ ⊗ ICy ] vec[B]

= [X(H)⊤ ⊗ ICy ] ∈ R1Cy×NCy (A.6)

With this, we derive the formula for ∇BL(B, W) ∈ RCH×Cy :

∂L(B, W)

∂ vec[B]
=

∂L(B, W)

∂ vec[Ŷ]
∂ vec[Ŷ]
∂ vec[B]

=
∂L(B, W)

∂ vec[Ŷ]
[X(H)⊤ ⊗ ICy ]

Thus,

∇vec[B]L(B, W) =

(
∂L(B, W)

∂ vec[B]

)⊤

= [X(H)⊤ ⊗ ICy ]
⊤
(

∂L(B, W)

∂ vec[Ŷ]

)⊤
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= [X(H) ⊗ ICy ] vec
[

∂L(B, W)

∂Ŷ

]
= vec

[
∂L(B, W)

∂Ŷ
X(H)⊤

]
∈ RCYCN .

Therefore,

∇BL(B, W) =
∂L(B, W)

∂Ŷ
X(H)⊤ ∈ RCY×N. (A.7)

Next, we derive ∂ vec[Ŷ]
∂ vec[W(ℓ)]

∈ RCy N×ClCl+1 :

∂ vec[Ŷ]
∂ vec[W(ℓ)]

=
∂ vec[BX(H)]

∂ vec[W(ℓ)]

=
∂

∂ vec[W(ℓ)]
[ICH ⊗ B] vec[(X(H))]]

= [ICH ⊗ B]
∂ vec[(X(H))]]

∂ vec[W(ℓ)]

= [ICH ⊗ B]
∂ vec[(X(H))]

∂ vec[X(ℓ+1)]

∂ vec[X(ℓ+1)]

∂ vec[W(ℓ)]

= [ICH ⊗ B]
∂ vec[(X(H))]

∂ vec[X(ℓ+1)]

∂ vec[AX(ℓ)W(ℓ)]

∂ vec[W(ℓ)]

= [ICH ⊗ B]
∂ vec[(X(H))]

∂ vec[X(ℓ+1)]

∂[ICl ⊗ AX(ℓ)] vec[W(ℓ)]

∂ vec[W(ℓ)]

= [ICH ⊗ B]
∂ vec[(X(H))]

∂ vec[X(ℓ+1)]
[ICl ⊗ AX(ℓ)] (A.8)

From (6.3), we have X(ℓ) = AX(ℓ−1)W(ℓ−1), so

vec[(X(H))] = vec[AX(H−1)W(H−1)] = (W(H−1)⊤ ⊗ A) vec[X(H−1)] (A.9)

and

vec[(X(ℓ))] = vec[AX(ℓ−1)W(ℓ−1)] = (W(ℓ−1)⊤ ⊗ A) vec[X(ℓ−1)]. (A.10)

By recursively applying (A.10), we get

vec[(X(H))] = (W(H−1)⊤ ⊗ A)(W(H−2)⊤ ⊗ A) · · · (W(ℓ+1)⊤ ⊗ A) vec[X(ℓ+1)]

= (W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ AH−l−1) vec[X(ℓ+1)].
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Hence,

∂ vec[(X(H))]

∂ vec[X(ℓ+1)]
= W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ AH−l−1 (A.11)

Combining (A.8) and (A.11) gives:

∂ vec[Ŷ]
∂ vec[W(ℓ)]

= [ICH ⊗ B]
∂ vec[(X(H))]

∂ vec[X(ℓ+1)]
[ICl ⊗ AX(ℓ)]

= [ICH ⊗ B][W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ AH−l−1][ICl ⊗ AX(ℓ)]

= W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ BAH−lX(ℓ) ∈ RCy×ClCl+1 . (A.12)

With this, we derive the formula of ∇W(ℓ)L(B, W) ∈ RCl×Cl+1 :

∂L(B, W)

∂ vec[W(ℓ)]
=

∂L(B, W)

∂ vec[Ŷ]
∂ vec[Ŷ]

∂ vec[W(ℓ)]
=

∂L(B, W)

∂ vec[Ŷ]
[W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ BAH−lX(ℓ)].

Thus,

∇vec[W(ℓ)]L(B, W) = [W(H−1)⊤ · · ·W(ℓ+1)⊤ ⊗ BAH−lX(ℓ)]⊤
(

∂L(B, W)

∂ vec[Ŷ]

)⊤

= [(W(H−1)⊤ · · ·W(ℓ+1)⊤)⊤ ⊗ [BAH−lX(ℓ)]⊤]

(
∂L(B, W)

∂ vec[Ŷ]

)⊤

= [(W(H−1)⊤ · · ·W(ℓ+1)⊤)⊤ ⊗ X(ℓ)⊤AH−l⊤B⊤]

(
∂L(B, W)

∂ vec[Ŷ]

)⊤

= vec
[

X(ℓ)⊤(AH−l)⊤B⊤ ∂L(B, W)

∂Ŷ
W(H−1)⊤ · · ·W(ℓ+1)⊤

]
∈ RClCl+1

= vec
[
(BAH−lX(ℓ))⊤

∂L(B, W)

∂Ŷ
W(H−1)⊤ · · ·W(ℓ+1)⊤

]
∈ RClCl+1

Therefore,

∇W(ℓ)L(B, W) = (BAH−lX(ℓ))⊤
∂L(B, W)

∂Ŷ
W(H−1)⊤ · · ·W(ℓ+1)⊤ ∈ RCl×Cl+1 . (A.13)

Expanding (A.7):

∇BL(B, W) =
∂L(B, W)

∂Ŷ
X(H)⊤

=
∂L(B, W)

∂Ŷ
(AX(H−1)W(H−1))⊤
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=
∂L(B, W)

∂Ŷ
(AHXW(0) · · ·W(H−1))⊤

=
∂L(B, W)

∂Ŷ
(W(0) · · ·W(H−1))⊤(AHX)⊤

Expanding (A.13):

∇W(ℓ)L(B, W) = (BAH−lX(ℓ))⊤
∂L(B, W)

∂Ŷ
W(H−1)⊤ · · ·W(ℓ+1)⊤

= (BAH−l+lXW(0) · · ·W(ℓ−1))⊤
∂L(B, W)

∂Ŷ
W(H−1)⊤ · · ·W(ℓ+1)⊤

= (W(0) · · ·W(ℓ−2)W(ℓ−1))⊤(BAHX)⊤
∂L(B, W)

∂Ŷ
W(H−1)⊤ · · ·W(ℓ+1)⊤

The next step is to consider the dynamics induced in the space of W(0)W(1)W(2) · · ·W(ℓ)

as well as B. They need to be considered separately as B is on the left hand side, while

the W’s are on right hand side.

A.2.2 Approach #2: Modification of Squared Loss

In this section, we consider the sum aggregation in (A.2) and incorporate it into the

loss. This allows us to use the same initial steps as node classification described in Sec-

tion 6.2.1, but without the selection of nodes (∗I). More specifically, they are 1) compute

the gradients of the loss with respect to the parameter ∇W(ℓ)L(W) in Section 6.2.1.1, 2)

analyze the dynamics induced in W(0)W(1) · · ·W(H−1) in Section 6.2.1.2, and 3) analyze

the dynamics induced in the loss value L(W) in Section 6.2.1.3. The last step (proof with

square loss) is sketched below.

We complete the proof by aggregating the nodes and using squared loss. With Ŷ =

f (X, B, W), L( f (X, B, W)Y) = ∥ 1
N (∑N

i=1 Ŷi)− Y∥2
F where Ŷi ∈ R1×Cy corresponds to the

value of node i (row i). So we have:

∂L(B, W)

∂Ŷi
=

∂

∂Ŷi
∥ 1

N
(

N

∑
j=1

Ŷj)− Y∥2
F = 2[

1
N
(

N

∑
j=1

Ŷj)− Y]
1
N

=
2

N2 (
N

∑
j=1

Ŷj)−
2Y
N

∈ R1×Cy ,

hence,

∂L(B, W)

∂Ŷ
=


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N

 ∈ RN×Cy ,
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With these, the rest of the steps can follow similar to Section 6.2.1.4.

vec[∇(H)L(B, W)] = vec
[
(AHX)⊤

∂L(B, W)

∂Ŷ

]
= 2 vec

(AHX)⊤


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N





= 2[ICy ⊗ (AHX)⊤] vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N

 .

Hence,

∥ vec[∇(H)L(B, W)]∥2
2 = 4 vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X


⊤

[ICy ⊗ (AHX)(AHX)⊤] (A.14)

vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X

 (A.15)

Plugging in (A.14) into (6.32),

d
dt

L(B, W) ≤ −λB,W∥ vec[∇(H)L(B, W)]∥2
2 −

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

= −4λB,W vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X


⊤

[ICy ⊗ (AHX)(AHX)⊤]

vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X

−
H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2
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= −4λB,W vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X


⊤

[
ICy ⊗ GHG⊤

H

]
vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X


−

H−1

∑
i=0

∥∥∥J(i,H) vec[∇(H)L(B, W)]
∥∥∥2

2

where GH := (AH)X.

In order to simplify this, we need to project

vec


2

N2 (∑
N
j=1 Ŷj)− 2Y

N
2

N2 (∑
N
j=1 Ŷj)− 2Y

N
...

2
N2 (∑

N
j=1 Ŷj)− 2Y

N X


onto

PICy⊗GH ∈ RCy N×Cy N.

This projection does not work out nicely as the summation is no longer a multiple of

G = AHX.
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