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ABSTRACT

We studied the effect of the various types and amounts of training
dataon the quality of the derived vocabulary, and used our findings to
derive an improved ranking of the words, using only 19% of the LM
training data. We then studied the conflicting effects of increased
vocabulary size on the system’s accuracy, and used the result to pick
an optimal vocabulary size. A similar analysis of ngram coverage
yielded a very different outcome, with the best system being the one
based on the most data. A new implementation of the cache language
model was tested which yielded approximately 4% improvement on
a development test. We also studied a phrase grammar for common
acronyms, which had asmall but consistently positive effect, yielding
an approximate gain of 0.2% (absolute) on the evaluation test set. A
change was made in the evaluation of right acoustic contexts for sin-
gle phone words. This yielded a consistent 3% relative improvement
across multiple development tests. A very simple class grammar
was implemented to capture variations in verbalized pronunciation.
It, oo, had a small but consistently positive effect, delivering an
improvement of 0.1% (absolute) on the final evaluation test,

1. Vocabulary Optimization
1.1. OOV curve minimization

Since Out-Of-Vocabulary (QOV) rate directly affects Word Error
Rate, with every OOV word in the test data resulting in at least
one (and often more) recognition errors, we set out to minimize the
expected QOV rate of the test data. More generally, our goal was to
understand how availability of various types and amounts of training
data, from various time periods, affects the quality of the derived
vocabulary !. Given a collection of training data, we sought to create
an ordered word list with the lowest possible OOV curve, such that,
for any desired vocabulary size V, a minimum-OOV-rate vocabulary
could be derived by taking the first V words in that list. Viewed this
way, the problem becomes one of estimating unigram probabilities of
the test distribution, and then ordering the words by these estimates.

In the 1994 ARPA CSR task, The test-set was sampled from 5 differ-
entNorth American Business news sources (DJIS, RNAB, NYT, WP,
LAT), in equal parts, all from the period 6/16/94-7/15/94. Develop-
ment data was similarly drawn from 4/1/94-6/15/94. The training
data consisted of WSJ(87-92, 69M words), DIIS(92-94, 42MW),
AP(88-90, 106MW) and SIM(91, 11MW). See [1] for details.

We started by trying to minimize OOV-rate for the DJIS source, using
the DJIS portion of the LM development set (680K words). We split
the latter in two, using one half in the controlled studies reported

YThe vocabulary thus derived is static. It can serve as the initial vocabu-

lary, to be optionally extended at runtime based on the words encountered in
the test data.
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below and the other half for validation. In all such studies, except
where otherwise noted, the word list was ordered by decreasing
frequency in the appropriate subset of the training data.

We first set out to measure the effect on OOV rate of the seasonality of
the training data, namely the time of year from which it is drawn. For
each month of the year, we created a word list based on some IMW
of training data from that month, using the AP(1988-1990) data. The
DJIS development data was drawn from 4/94, so a seasonal effect
might reduce the OOV rate of training data from this or adjacent
months. As Figure 1 shows, no such effect was found.
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Figure 1: Month from which training data is drawn has no effect on
OOV rates (test data is from April).

Next we measured the correlation of OOV rate with the amount
of training data. Using AP88-90 data, we added training data in
mcrements of SMW, and measured the impact on OOV rate. We
added data in decreased order of recency, so as not to confound the
effect of: the amount of data with that of its recency. Figure 2 shows
our findings. As expected, more training data results in lower OOV

rates. But improvement slows do i 30MW-
o wn considerably after

Next, we studied the effect of recency of the training data. Figure 3
shows OOV rates based on similar amounts of DJIS training data
(t?bout 5MW), but from different time periods. Time indeed makes a
difference, albeit slowly. Over a period of 2 years, the 20KW (60KW)
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Figure 2: More training data results in lower OOV rates, but mostly
up to 30MW-50MW

OOV rate degraded by 5% (15%). Over 4.5 years, it degraded by
11% (24%).
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Figure 3: More recent training data results in lower OOV rates.

The difference that the sourceof the training data canmake is evident
in Figure 4. An OOV curve based on the WSJ90 part of the data
(10MW), is lower than that based on the STM91 part (11MW), even
though the latter is larger and more recent.

Next, we accumulated DJIS data starting from the most recent
"chunk’ (DJIS94) and going backwards in time. Given the inher-
ent tradeoff between the amount of data and its recency and source,
we hypothesized a U-shape OOV curve, which was indeed achieved
as can be seen in Figure 5 (the last datapoint is based on the entire
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Figure 4: The source of the training data makes a big difference in
OOV rates.

227TMW NAB training corpus). The peak was achieved at about
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Figure 5: Best OOV rates are achieved with only 19% of the training
data!

40MW. 1t is interesting that the best overall coverage was obtained
using only 19% of the available training data!

If recent data is more useful, can we benefit from emphasizing it?
Several such attempts failed. The only one that was mildly success-
ful was based on a “leaky capacitor” model of word probabilities.
Discounting the word counts by 1% every week reduced the OOV
rate very slightly for vocabulary sizes in the range 20KW-50KW,
but not at the 60KW level.

In an attempt to further lower the OOV curve, we constructed a



*profile’ for each word, consisting of its token counts broken down
by week of occurrence. We then browsed the profiles of words
that were OOVs with regards to our best 60KW vocabulary. We
were hoping to find some patterns that will allow us to predict such
words in advance and assign them a better position in the word list.
Unfortunately, no such patterns emerged. The vast majority of 0. 0)
words had a very mundane profile: 1-2 token occurrences in each of
several sporadic weeks — nothing that can predict their upcoming
occurrence. This finding, combined with the fact that 90%-95%
of the OOV words are proper nouns or their possessives, leads us to
conclude that at the current rate of training data accumulation further
reduction of the OOV curve is unlikely.

In running similar tests on the other four test-set sources (RNAB,
NYT, LAT, WP), we found their qualitative behavior identical to that
of the DJIS data, allowing us to use one optimized word list for all
sources.

1.2. Vocabulary size optimization

Increasing the vocabulary of a speech recognition system has two
conflicting effects. On one hand, it reduces the OOV rate, thereby
helping to recover OOV related recognition errors. On the otherhand,
the added lexical entries increase the average acoustic confusability
of words, resulting in new recognition errors.

To quantify these two effects, we ran two controlled experiments on
the CSR 1994 acoustic development test set. In the first, we compared
two systems that differed only in their lexicon. The first system had
a lexicon of 58K words. The second was based on the top 20K words
of the 58K lexicon, supplemented with all the test set words that were
in the 58K lexicon. Thus the two lexicons had identical coverage
of the test set, but very different overall sizes. The 58KW system
resulted in 0.6 points higher WER. We interpreted the difference as
resulting solely from the increased acoustic confusability. Assuming
that acoustic confusability grows roughly linearly with vocabulary
size, we arrived at a slope of +0.16 WER points per 10KW increasein
the vocabulary. Alternatively, assuming that acoustic confusability
grows logarithmically with vocabulary size, we arrived at a slope of
+0.39 WER points per doubling of the vocabulary size.

In the second experiment, we again compared two systems differing
only in their lexicon. One system used the 58K lexicon; the other
used the same 20K lexicon as above (unsupplemented), and had a
1.79% higher OOV rate. Thus, this time the lexicons differed in
both size and test-set coverage. The 20KW system had a 1.55 points
higher WER. Factoring in the 0.6 points WER reduction due to the
reduced confusability, we corrected the effective difference 10 2.15
WER points. Assuming that OOV-related errors are linear with the
OOV rate, we arrived at a slope of 1.2 WER points per OOV-point,
or an average of 1.2 word recognition errors per OOV word?.

As we increase vocabulary size, OOV rate decreases at an ever slower
rate. For any OOV curve, there is a point at which the savings due
to reduced OOV rate are exactly offset by the additional errors due
to acoustic confusability. That point is the optimal vocabulary size
Figure 6 combines the slopes estimated above to arrive at a pro-.
jected WER as a function of vocabulary size, for this particular task
Assuming acoustic confusability grows linearly, optimal vocabular):
size is about 66K words. But the slope is very mild in the range
55KW-80KW. Assuming acoustic confusability grows logarithmi-

2This result agrees with similar numbers reported by [2] and [3).
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cally, optimal vocabulary size is in the range 80KW-110KW, but the

slope is very mild starting at 70KW.
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Figure 6: Projected WER based on estimated slopes for OOV errors
and acoustic confusabilty. Increasing the vocabulary beyond 64KW
is likely to yield negligible improvement at best.

Note though that our estimates are not very accurate. Furthermore,
we do not know which of the two assumption is more correct, al-
Ehough it isreasonable to assume that the true answer lies somewhere
in between them. We can only conclude that, for this task and with
our current recognition system, increasing the vocabulary beyond
the 64KW point is likely to yield negligible improvement at best.

1.3. Lexical coverage: summary

From.the studies reported above we conclude that, at least in this
domain:

Lexical coverage is strongly affected by the amount of training

data used to construct the lexicon, but the effect attenuates
around 30MW-50MW.

Month from which the data is drawn is insignificant.

?ource of the data (SJM vs. AP vs. WSJ vs. DIJIS) is very
important.

Recency is also important: over 2 years there is a 5%-15%

deg.radation in OOV rate. Over 4.5 years, a 119%-24% degra-
dation..

Best lexical coverage of the CSR development test distribution
is achieved with only the DJIS data (4/92-3/94, 42MW), with
mild emphasis of recency within that period. Note that only
19% of the available training data is being used.

With an optimized 60KW lexicon, the occurrence profile of

the remaining OOV words i o i
is very unremarkable, leaving little
hope for further improvement. hitd

Every OOV word results on average in some 1.2 word recog-
nition errors,



¢ As the vocabulary grows, increased acoustic confusability is a
non-negligible source of recognition errors. Since OOV rate
declines at a slowing rate, there is a point of optimal vocab-
ulary size. For this task and our current system, that point is
in the range SSKW-80KW (assuming acoustic confusability
grows linearly) or SOKW-110KW (assuming it grows logarith-
mically).

Given the last conclusion, and the limit of 64K pronunciations in our
current implementation of the decoder, we settled on a vocabulary of
some 59,000 words. These resulted in 64,500 pronunciations. The
OOV rate of the 1994 eval test set with regard to this vocabulary
was 0.5% (42/8186), compared to 2.4% (194/8186) relative to the
official 20KW vocabulary used in the C1 run, Using the slope of
1.2 WER points for every point in OOV rate reduction, we arrive
at an estimated WER reduction of 2.2% on the eval set due 1o the
expanded and optimized vocabulary.

The extent of reduction in OOV rate due to word-order optimization
depends on the vocabulary size. The larger the vocabulary, the
smaller the difference, since QOV rates themselves decline rapidly.
With our vocabulary of S9KW, the reduction in OOV rate over the
baseline (a simple top-frequency list based on the entire training
corpus) was moderate {12%). But more importantly, the OOV studies
revealed the dependenceof lexical coverage on various aspects of the
training data. This will help us determine how much (and what kind
of) data we need in order to get sufficient coverage in other tasks.
Moreover, the same technique can be used to study (and subsequently
optimize) coverage of bigrams and trigrams. See Section 2 for the
beginning of such an investigation.

1.4. Lexical coverage: analysis

In North American Business English (as defined by the 1994 NAB
corpus), the least frequent among the most frequent 60K words
have a frequency of about 1:7M. In optimizing a 60KW vocabulary
we are thus trying to distinguish words with frequency of 1:7M
from those that are slightly less frequent. To differentiate somewhat
reliably between a 1: 7MW word and, say, a 1:8MW word, we need
to observe them enough times for the difference in their counts to
be statistically reliable, i.e. we must have at least 100MW-200MW
of training data. Fortunately, for constructing a decent vocabulary,
it is enough that most such words are ranked correcly. For this,
50MW-100MW might be sufficient (since the expected difference
between the counts will be 1-2). This agrees with the empirical
results reported above, according to which the OOQYV curve improves
rapidly as more training data is used up to SOMW, and then continues
to improve more slowly beyond that point.

To optimize the vocabulary for coverage of a specific time period,
we must use training data from that period, or as close to it as
possible. But for, say, 70MW of training data, at the DJIS wire
feed data rate, we need 4 years, during which the language shifts
considerably, and 60KW OOV-rate degrades by some 22% (see study
of recency above). Thus we are inherently unable to fully optimize
the vocabulary.

We can further generalize the last observation. Viewing language
as a non-stationary stochastic source, and generalizing the word
probabilities to any time-dependent linguistic phenomenon (eg.. a
rise in the probability of an ngram above its static level), we arrive
at the following principle:
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One can never determine accurately both the
extent and the time frame of a linguistic phe-
nomenon.

There is an inherent tradeoff between the accuracy of an estimate
and the time period it is based on. More precisely, it is not the time
period but the amount of training data that is the limiting factor. But
since there is only a limited amount of data from each time period,
the two are related by a constant.

Thus if a phenomenon is both transient and rare, we are inherently
incapable of detecting it. Note that rare phenomena are not neces-
sarily unimportant, since there may be many of them. Estimating
an event as having Probability 107 rather than 1075 can have a
devastating effect on the log-probability, and hence recognition, of a
sentence. Yet such events are commonly modelled in most existing
language models and commonly encountered in test data.

The amount of LM training data available until recently was small
enough that the benefit from acquiring more data dominated over
the disadvantage due to language shift. But with the larger amounts
of data made available recently, this is changing. With the 1994
NAB corpus of 227M words, we have already found that better
vocabularies are constructed by using only a fifth of the available
data. As will be seen in the next section, similar results do not yet
apply to ngram lists. But with several billion words of training data,
we believe they will. Language modeling is close to the point where
the time-honored maxim “there’s no data like more data” no longer
holds.

2. Ngram Coverage and Language Model
Size

In a recent work ([4]) we found that recognition errors are much
more likely to occur within trigrams and (especially) bigrams which
have not been observed in the training data. In these cases, the
language model typically relies on lower order statistics. If the
bigram is missing, predictions are made based on unigram statistics,
which are notoriously unreliable. Thus increased ngram coverage
may translate directly into improved recognition accuracy.

But increased ngram coverage usually comes at the cost of increased
memory requirements. To study the tradeoffs involved, we compared
several systems on the 1994 development test. All systems used a
58KW vocabulary (different than the optimized vocabulary reported
in Section 1) and conventional trigram backoff language models.
The models differed in the amount of data they were trained on,
and in their bigram and trigram cutoffs. Table 1 summarizes our
results, in decreasing order of Word Error Rate’. 194" refers to the
entire official 1994 NAB training corpus (227MW). -m-n’ means
that bigrams occurring m or fewer times and trigrams occurring n or
fewer time were excluded. The "coverage’ columns reports the rate
at which the backoff language model relied on its trigram, bigram,
and unigram components to produce scores for the transcripts (1.4%
of the words were OOVs).

A few observations:

o Given the same training data, adding bigrams or trigrams (by
lowering their respective cutoffs) improves both perplexity and

3The last WER result is approximate, since it involves corrections to
account for other system components.



system # of M) coverage(%) PP | WER
2 3g(3g 28 Ig

wsj93-0-0 3 75157 31 114197

194-1-2 6 10]63 29 6.8 | 156 | 147
wsj91-94-0-1 6 559 32 73] 163 | 1455
wsj87-94-0-1 9 8563 29 6.4 | 153 | 1435
194-0-2 14 10]63 30 52153} 143
194-1-1 6 18[67 25 6.8 [ 152 1425
194-0-1 14 18 | 67 27 521 150 ] 14.1°

Table 1: Ngram coverage, perplexity and Word Error Rate for
LM:s based on various amounts of data and different ngram cutoffs.
“There’s no data like more data” still holds.

recognition. Interestingly, 't94-0-2’ and 't94-1-1" performed
similarly, even though one had 8M more bigrams while the
other had 8M more trigrams.

o In the case of lexical coverage, older and less relevant training
data actually hurt performance. But with ngram coverage,
this does not seem to be the case. Our hypothesis is that this
difference is due to the much lower frequency of the ngrams
(as compared to the least frequent words in the vocabulary).
See discussion in Section 1.4. The largest system (t94-0-1°)
performed best on the dev data, and was consequently used in
our evaluaton system.

It is hard to draw further conclusions from comparing models based
on different training sets. For example, 'wsj91-94-0-1" has fewer
trigrams, worse test-set ngram coverage and worse test-set perplexity
than "t94-1-2’, and yet it performed better. Perhaps the differences in
WER are not large enough to be significant. Clearly, more carefully
controlled studies are called for.

3. Pronunciations for Expanded Vocabulary

To generate pronunciations for the new larger lexicon of our system,
we used multiple dictionary sources. The pronunciations for the
vocabulary words were derived from these multiple sources in order
of the reliability of the dictionaries in question:

1. The initial (and most reliable) pronunciations came from the
subset of words found in the 20k dictionary we'd been building
by hand for use in the 1994 hub test - approximately 75% of
these were words we had used in previous years.

2. Words not in this dictionary were then sought in the CMU 100k
word dictionary, which is our publicly distributed dictionary *.
Since this dictionary uses a different phoneset, the lookup hits
were mapped by rule into the SPHINX phoneset.

3. Words still not found were then looked up in the UCLA/SHOUP
dictionary and the pronunciations from that phoneset converted
by rule into the SPHINX phoneset,

4, Remaining words without pronunciations were approached us-
ing Mitalk, ORATOR and DECTALK software [5] [6]. When-
ever two of the three synthesis programs agreed on a pronunci-

ation, it was included. Appropriate phone set conversions were
done by rule.

5. Using a sel of sumxes (‘As'l' “‘S“, ‘G"" lls‘slv) m a[tempt was
made to find the morphological roots of the remaining words

4Please contact weide@cs.cmu.edu for information.
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in one of the first three dictionaries. The words were looked up
after the suffixes were added/removed and if the modified word
was found, the appropriate pronunciation was used. (Only a
few hundred words were derived in this manner.)

6. All remaining pronunciations were taken from the ORATOR
pronunciation results. (Most of these remaining words were

proper names.)

The thousand (1000) most frequent words in the vocabulary were
verified by hand, as were the ORATOR-only words. Spot checks
were made on the other pronunciations.

4. Cache Language Model

The static language model was linearly interpolated with a selective
unigram cache and a conditional bigram cache, identical to those
described in Rosenfeld’s Ph.D. thesis[7]. Only words with unigram
probabilities below 0.001 were included in the unigram cache, whose
weight was proportional to its size but saturated at 0.04. The bigram
cache had a weight of 0.09 when active, O otherwise. Unlike last
year’s S1 system, the caches were used in the forward (first) pass of
the search algorithm in addition to the (third) A* pass [8].

language model | male | female
dev baseline | 16.6% | 11.9% |
with cache LM | 16.0% | 11.9% |

Table 2: The effect of unigram and bigram cache language model.
Word error rates are on the Nov 1994 CSRNAB development test
set using 10K decision-tree based senones with known gender, The
baseline language model is on & non-optimized test vocabulary of
58K words. The language model training data for the baseline lan-
guage model is all of the standardly available data.

The development baseline for testing the contribution of this version
of the cache language model was a language model trained on the
t94’ data (see Section 2) with trigram and bigram cutoffs both set at
one. The language model was built using the 58K word test vocab-
ulary (also discussed in Section 2). Our standard semi-continuous
10K decision-tree bases senones with known gender were used for

the acoustic models. We tested on the 1994 CSRNAB development
test set.

As shown in Table 2, an improvement of approximately 4% was

obtained for the male speakers. No change was observed for the
females.

5. Acronyms as Phrases

.\‘Ne mtrod’uced phrase grammars to represent acronyms such as

N.AS.A” and “GATT". A list of acronyms was automati-
cally derived from the language mode! training data by searching
for sequences of individual letters. The frequencies of the resulting
acronym phrases were counted and plotted. (The language data we
used 1o calculate the frequencies was the DJIS data from 1991-94.)
A distinct knee in the curve was visible (see Figure 7). We selected
a cutoff well beyond it, at a frequency of 200. As a result, we in-
cluded a total of 247 actonyms. The default pronunciation for each
acronym was defined as the concatenation of its component letter
pronunciations. A small subset of the acronyms were given altenate



pronunciations - “G.A.T.T.", for example, was given an altenate
“gat” (thymes with “cat”), as well as its original, “jee ay tee tee”.
We tokenized the acronyms in all of the DJIS training data.
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Figure 7: Frequency curve of automatically derived acronyms in the
DIIS language training data, 1991-94. The frequency values for the
first 350 acronyms are graphed, and the cutoff point for the frequency
of 200 is marked. (The first acronym, “U.S.", does not appear on
the graph, as its frequency is an order of magnitude greater than the
second, which is “G.M.".)

This method consistently corrected a small number of errors without
introducing new ones - in the 1994 developmenttest set we corrected
10 errors and introduced one (1).

6. Simple Class Grammar for
Verbalized Pronunciation

Two small class grammars were defined for the most common verbal-
ized pronunciation types — double quotes and parentheses. Altemate
forms of verbal production of each of these markers were allowed,
and a post-processing step in the decoder substituted lexical tokens
for the favored verbalized form into the decoder output. For in-
stance, it was possible for the decoder to output “END QUOTE"
when the language model score for “QUOTE" was used in decoding.
This technique allowed us to correct approximately six errors in the
evaluation test set, or about 0.1% absolute WER improvement.

7. Corrected Phonetic Modeling for Single
Phone Words

In previous versions of the Sphinx-II decoder, single phone words
were modelled with full cross-word phones as the left acoustic con-
text but with only the silence (SIL) phone model as the right context.
A correction was made to the search algorithm to support full cross-
word phone modeling in the right context for this set of words.
Development testing of this change was on a baseline system that
used the standard 10K senone known gender acoustic models, the
1994 standard 20k vocabulary, all available language training data,
a bigram cutoff of one (1), and a trigram cutoff of three ).

As reported in Table 3, a consistent improvement of approximately
3% relative was found on two development test sets for both genders.

language model | dt-94-m | dt-94-f | dt-93-m | di-93-f
dev baseline 18.7% | 13.6% | 18.5% | 13.9%
with full RC 182% | 132% | 180% | 13.8%

Table 3: The effect of full right context acoustic modeling for sin-
gle phone words. Word error rates are on the Nov 1994 CSRNAB
development test set and 1993 WSJ development test set using 10K
decision-tree based senones with known gender. The baseline lan-
guage model is on the standard 20K word 1994 vocabulary. The
language model training data for the baseline language model is all
of the available data.
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