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ABSTRACT

We describe an error analysis technique that facilitates blame as-
signment among the various components of a speech recognizer and
provides insight into their behavior. Tools are presented that help
clarify how each of the component models and their interactions
contribute to the bottom line performance. We use this technique to
study the performance of the backoff [4] language model. The anal-
ysis highlights the significant effect of negative n-grams - sequences
of words not seen in the training data. This leads to two modifica-
tions to the decoder, both of which are presented with experimental
results. The first modification failed so far to improve recognition
performance. The second yields up to 4% reduction in word error
rate.

1. ANEW ERROR ANALYSIS TOOL

The current practice of using WER as the standard metric of perfor-
mance for speech recognition systems, while useful as a common
currency and as a hard bottom line for performance measurement,
is limited in its ability to provide insight into the behavior of com-
plex recognition systems. The causes of error in a large vocabulary
speech recognition system such as Sphinx-II [1] fall roughly into
one of five categories: problems with dictionary pronunciations, in-
accuracy in the acoustic models, inaccuracy in the language model,
search errors, and interactions between the component acoustic and
language scoring facilities. If we only look at WER performance in
evaluating our systems we will be unable to understand how each of
the component models and their interactions contribute to the bottom
line error performance. Also, WER captures only limited informa-
tion about where on the time line errors occur and how they relate
temporally to the correct decoding of the reference transcript.

In the example in Figure 1 the decoder has output two words to
accomodate one word in the transcript. The begin and end times of
the error actually correspond to the begin and end boundaries of the
missed word in the input stream. While it may be "fair" to count two
errors in this situation, it is not particularly helpful; nor is it likely
that a high level summary of insertions, deletions, and substitutions
that contain similar patterns will help us to understand how to modify
the recognizer.

REF: richard SARAZEN *** chief
HYP: richard SIZE AND chief

Figure 1: Decoder behavior for the out-of-vocabulary (OOV) word
“Sarazen”.

A simple step toward adjusting the WER metric for this time-related
problem is to use phonological alignment (see Figure 2). Although
this adjustment does straighten out the incorrect labeling of an inser-
tion and a substitution, the larger problem of understanding exactly
what caused the error sequence in the first place remains. Also,
words are too coarse grain a level to capture the details of how
acoustic models fail and interact with the language model.

Our analysis technique, which does address the need to identify
the underlying source of errors, is based on three modular phased
operations called FORCE, ERRCMP, and ERRCNT. The first is
dependenton the particular decoder being analyzed, and would have
to be replicated independently at a site adopting the use of the tool.
ERRCMP and ERRCNT, however, are independent of the decoder
being used and are available for distribution.!

1. Segmentation Database (FORCE. ): For each utterance a
database entry is created that includes utterance name, start
and end frames for each component word segment, an acous-
tic score for each segment, a language model score for each
segment, and the type (source) of the language model score
from the backoff language model. Segmentation information
for both the (forced alignment of the) reference sentence and
the decoder hypothesis is included.?

2. Error Region Database (ERRCMP): A set of error regions on
the time line are defined by comparing the segmentations of the
reference sentences and the decoder output from the segmenta-
tionn database. Within error regions additional subregions that
"explain” the same input data frames are identified. (See Figure
3 for anexample of the structure imposed by this analysis onthe
output of the first phase.) Both machine- and human-readable
databases are produced.

3. Useful Statistics (ERRCNT): The error region database is read
by a program that can count and report any statistic relating
error region identity and frame or scoring information.

2. ANALYSIS OF THE BACKOFF
LANGUAGE MODEL

With the error region database in hand it is possible to ask detailed
questions about the behavior of the component lexical, acoustic, and
language models and about their interactions. The Katz-style [4]
backoff language model implemented in Sphinx-II and many similar

"For a complete description of these tools and the formats of the databases
they produce and use, see [2].

2In our currentimplementation the segmentation database does notinclude
forced alignments of reference transcripts that contain OOV words w.r.t. our
decoder dictionary.
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Simple alignment produces:

REF: in the second month DR. SHENAUGH LEFT FOR ARGENTINA ***#*k*xxix

HYP: in the second month DOG AND

Phonological alignment produces:

REF: in the second month DR. *** SHENAUGH LEFT FOR
EFFORT ARGENTINA’S

HYP: in the second month DOG AND SHEEN ALL

SHEEN ALL EFFORT

ARGENTINA'S

ARGENTINA

Figure 2: A problem with simple alignment that is corrected with phonological alignment.

systems will assign a finite maximum likelihood (MLE) score to any
sequence of tokens from the decoder, making it possible for the de-
coder to produce seemingly unlikely sequences of words, especially
if the acoustic match for these words is good. The idea that somehow
the decoder could exploit "negative n-grams" to prevent the decoder
from assigning survivable scores to errorful word sequences that did
not appear in the trigram database was approached using our new
error analysis tool.

[ Dac [ #Uus | #Speak | #Words | #OOV | OOV Rate

[Novo3 | 303 | I0(SMSF) | 8227 | 248  30%

Table 1; The si-dt.20 test data used in this paper.

Figure 4 reports the backoff rates in complete utterances in the
si_dt20 test set {5]. described in Table 1. The backoff lan-
guage model calculation of a conditional probability estimate
P(ws]wy, wy) will fall into one of five categories [4]:

1. T: The trigram (w1, w2, w3) is present in the language model
database.

2. BB-B: The bigram (wy, w2 ) is present and the bigram (w2, w3)
is present.

3. B: Only the bigram (w2, wj) is present.

4. BB-BU: Only the bigram (w, w;) is present.

S. BU: Neither (w;, w2) nor (w2, w3) is present.

It is interesting to note in Figure 4 the sharp increase in the "BU"
cases among OOV utterances. This sharp rise corresponds to the
fact that on average 1.85 words are used to "decode” OOV words in
this test set.

Figure 5 reports the relative rates of backoft types within the error
regions in the test set. The number of trigrams used by the decoderin
error regions drops more than 15%. This loss of trigram use spreads
itself out over the four backoff cases. This means that the backoff
language model is being too generous in allowing some sequences
of unseen trigrams to be decoded.

In Figure 6 we see that trigram language model transitions tend to
occur in reliable regions of decodings, while backoffs to the unigram
probability of w3 are more likely than notto appear in an error region.
even though they occur overall only 2% of the time in non-OOV
utterances.

These analyses motivate two modifications. One is to help the back-
off language model to be more judicious in its scoring of unseen
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Figure 4: Overall rates of language model transition types. The
left-hand bars represent rate within non-OOV reference utterances.
Middle bars represent rate within the corresponding decoder output.
Right-hand bars represent rate within the decoder output of OOV
utterances.

sequences of words. The section after next describes a technique
called context-based backoff capping (CBC) that does just that. The
other is to adjust the relative role of the language model and acoustic
models in error-prone language model contexts. A technique for
doing this is described in Section 5.

3. SEARCH

The search mechanism in Sphinx-II. described in detail in [6]. is a
three-pass system which is configured for these tests with a 20,000
word vocabulary. The first two passes use a backed off bigram
language model to generate a word lattice with possible begin and
end times. The third pass. an A™ search through the word lattice
generated by the first two passes. has been extended to flexibly
support long distance language models. Two such language models
are referred to in this paper. The first is a backed off trigram language
model and the second is the context capping (CBC) model described
in Section 4. The acoustic and language model scores in Sphinx-II
are combined in probability space according to the relation

P(walh(r neiyy = [ [ AC(wi) x LM (wilher o)™

=1

.
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REF: two previous word processing leaders have SLIPPED
HYP: two previous word processing leaders have SLEPT

Error region:

LM
(263, 307) (308, 374)
REF: SLIPPED </s> 148324
HYP: SLEPT </s>
(263, 307) (308, 374)

AC TOT

301093 152769

Figure 3: Hand output of ERRCMP for a simple error region. The output shows the reference transcript tokens (REF), the decoder hypothesis
output tokens (HYP), and the alignment used to count WER. An error region beginning at frame 263 and ending at frame 374 has been
identified. The component subregions (SLIPPED/SLEPT and </s>/</s>) of the error region and the difference in component scores within
the error region are displayed. The value "148324" under "LM" is interpreted to mean that in this error region the language model score for
the REF sequence was better than the language model score for the HYP sequence by 148324 score points. A similar delta value is presented
for the acoustic model scores and the total combined scores. At this verbosity level segment acoustic scores, language model scores, and

language model sources are not displayed.
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Figure 5: Rates of language model transition types within error
regions.

B

where AC'is the acoustic score, L} is the language model score,
and LW is an optimizing parameter.

4. CORRECTING OVERESTIMATION
IN THE BACKOFF MODEL

The backoff n-gram language model[4] is defined recursively as:

(1=d)C(w?) / C(uT™") ifC(w) >0
A C(@] ™)) Paci(walwh™") if Clw]) =0

(0
where d, the discount ratio. is a function of C{w}'), and the a's are
the backoff weights, calculated to satisty the sum-to-1 probability
constraints.

Po(wnwi™h) = {

When C{w(') = 0. the model assumes that the probability is propor-
tional to the estimate provided by the n-1-gram, P, _, (wnlw;*').
But for frequent n-1-grams, there may exist sufficient statistical ev-
idence to suggest that the backed-off probabilities should in fact be
much lower.
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Figure 6: Relative rates of language model transition types.

To correct this systematic overestimation, [7] proposed Context-
based Backoff Capping (CBCY’: Let C(w?) = 0. Given a global
confidence level @, to be determined empirically, calculate a confi-
dence interval in which the true value of P(wn|w}™") should lie.
using the constraint:

[1 = Plwnw] ™)) 5 @ (2)

The confidence interval is therefore [0 ... CAPg |, where

CAPG(C(w] ™)) = (1 = @'/ ™)y (3)

functions as a cap on the value of P(wn|w?™"). The backoff case
of the standard model is therefore modified to:

Plwnluwp™) =

min [ a(w ™) Pa_i(walwi™'), CAPG(C(w]™"))] @)

(See [7] for more detail.)

3oroginally called “Confidence Interval Capping”.
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Lang. Mod. | Female Male
Baseline 160.21 | 184.93
Q=0.05 157.37 | 182.68
Q=0.1 156.80 | 182.20
Q=0.2 155.99 | 181.31
Q=03 155.30 | 180.46

Table 2: Test set perplexity on the si_dt_20 set of the 200-nvp WSJ
task, using the baseline adn the CBC model.

To test the effect of CBC, test set perplexity was measured on the
reference transcripts of the test set utterances. The baseline results
quoted in Table 2 are for values of Q ranging from 0.05 to 0.3. In
previous perplexity based tests of the CBC (bigram) language models
[7] the optimal value of @ was found to be 0.8. In the results in Table
2 it’s clear that the perplexity does drop as @ is increased. However,
it was clear from results quoted below with the decoder experiments
that any value of @ greater than 3.0 would not yield good error rate
results, so the issue of exactly how high the optimal @ value under
perplexity should be was moot. The largest perplexity reduction
quoted in the table is 3.1% for the female speakers and 2.4% for the
males. As discussed in [8], such a small change in perplexity does
not typically yield much benefitin WER.

Lang. Mod. | FOOV | FnoOOV | M OOV | M noOOV
Baseline 22,0% 13.2% 24.9% 17.1%
Q=0.05 21.7% 13.1% 26.0% 18.4%
Q=0.1 21.7% 13.5% 26.0% 18.6%
Q=02 22.7% 14.0% 26.5% 19.2%

Table 3: Word error rate on the si_dt 20 test set broken out by
utterances that contain OOV words and those that don’t.

The CBC method was integrated into the third (A") pass of the
decoder, as described in Section 3. The baseline results quoted in
Table 3 are for the system configured with forward and backward
passes using bigrams and the third (A*) pass using trigrams. Values
of Q=0.05, 0.1, and 0.2 are quoted as well. The only improvement
found in the test set was for the female speakers with the value of
Q=0.05. CBC implemented in the third pass of the decoder did not
enhance the performance of the trigram language model.

5. ADJUSTING BACKED OFF
CONTRIBUTIONS

Our error analysis indicated that regions in which backoff occurs are
more error-prone than others. One approach to dealing with this is to
modify the LW parameter value for transitions that are non-trigram,
letting the language model play a different relative role with respect
to the acoustic model in these cases. The decoder was modified
to support a second parameter, BO LW, which plays a mathemati-
cally analagousrole to LW but replaces LW in scoring non-trigram
language model transitions. The results in Table 4 indicate that an
improvement for both OOV and non-OOV utterances is provided
by increasing the value of BOLW. Raising the value of BOLW
causes a heightened sensitivity to goodness or badness in a backed
off language model score when compared with a trigram score. An
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improvement of 4% in the OOV utterances is made possible with an
even stronger BOLW . This improvement is largely due to the fact
that fewer words are used to decode each OOV word in the input
data.

Backoff LW | FOOV | FnoOOV
BOLW =8 23.1% 143%
Base=9.5 22.0% 13.2%
BOLW =10 | 21.7% 13.0%
BOLW =11 21.1% 13.5%
BOLW=12 | 22.5% 14.2%

Table 4: Word error rate on the female half of the si_dt.20 test set,
broken out by utterances that contain OOV words and those that
don’t. The baseline run is the one in which LW=BOLW=9.5, which
was the globally optimal value for LW in isolation.

6. CONCLUSIONS and FUTURE WORK

The apparently negative experimental results quoted for the CBC
scheme depend on the quality of the lattice produced under the non-
capped bigram language model produced by the first two baseline
passes. The lattice error rate of this system is approximately 5%.
Any ommissions of correct words from the lattice made under the
bigram model that might have been caught by the CBC model cannot
be recovered during the A* pass. We plan to test these ideas again
with a full three-pass implementation of CBC. The results of the
LW adjustment scheme are promising, and we plan experiments in
which LW, BOLW, and related parameters are optimized jointly
instead of singly.
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