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Abstract 
This thesis aims to explore the environmental factors, resources, and psycho-social considerations 

associated with the adaptive capacity of individuals and organizations facing chronic and/or compounding 

threats. The uncertainty, complexity, and occasional novelty of complex and compound threats may 

necessitate adaptive capacity and adaptive decision-making at the individual and organizational levels. 

Adaptive capacity is defined as processes, actions, or outcomes in a system that facilitate coping, managing, 

and adjusting to changing conditions, stressors, or hazards. For both individuals and organizations, built and 

natural environmental conditions can influence vulnerability and adaptive capacity. This thesis explores the 

intersection of adaptive capacity and enacted adaptive decision-making and behaviors by considering both 

internal barriers and external stressors that challenge the willingness and ability to adapt to current threat 

landscapes. Adaptive capacity and adaptive decision-making are contingent on a variety of factors internal 

and external to individuals and organizations, such as knowledge and concern about threats and 

vulnerabilities, the willingness and ability to engage in proactive behaviors, and the capacity to change 

existing behaviors (i.e., emergent technology use). Examples of adaptive capacity assessed in the current 

thesis include individual-level use of multi-modal, sustainable transportation modes (Chapter 1), compound 

threat management strategies and constraints (i.e., incident prioritization, availability and use of emergent 

technology adoption, use of decision support tools) (Chapter 2), and compound threat resource allocation 

(Chapter 3). Both quantitative and qualitative data are used to assess adaptive capacity, including 

quantitative surveys, qualitative data from semi-structured interviews, and quantitative historical data 

records of natural hazards. This thesis emphasized the relationship between adaptive capacity and resource 

availability, particularly in the context of chronic and/or compound threats. Findings across the three 

analytical chapters suggest that the availability of and access to resources alone is insufficient in capturing 

individual and organizational adaptive behavior. In addition to tangible resources, psycho-social factors such 

as personal experience, competing objectives, and risk perception and communication can constraint 

adaptive capacity. Chapters 2 and 3 focus on challenges presented by a variety of compounding threats, 

which are anticipated to increase in frequency, severity, and complexity moving forward. Overall, results 

focus on U.S. adaptive capacity of communities and federal hazard management agencies, who serve to help 

communities prepare for, respond to, recover from, and adapt to stressors and disruptions in the natural and 

built environments. Findings from Chapter 2 and Chapter 3 suggest that it is critical to support the essential 

hazard management workforce to adapt to compound threat events, particularly given the resource 

constraints and mental health concerns discussed in Chapter 2 and resource use implications presented in 

Chapter 3. 
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Introduction Chapter 
 

Individuals and institutions are confronted with a variety of natural and anthropogenic threats that 

occur over acute and chronic timeframes. These threats have affected a wide range of economic, 

infrastructure, human health, and ecological systems in the United States and other nations. According to the 

National Oceanic and Atmospheric Administration’s (NOAA) 2021 Billion-Dollar Disaster Report, 20 

billion-dollar weather and climate disasters occurred in 2021, totaling $2.5 trillion in disaster-related costs. 

The number of billion-dollar disasters in 2021 was the second most of any recorded year, behind the 22 

billion-dollar disasters that occurred in 2020 (Smith, 2022). Hurricanes and wildfires have imposed large 

losses over the past five years, accounting for 85% of total disaster-related costs in 2021 (Smith, 2022).  

In addition to climate- and weather-driven hazards, anthropogenic sources of risk—which are 

defined as being primarily driven by human behavior and built environmental systems—are increasingly 

prevalent (UNDRR, 2022). For instance, there was an observed increase in global high-impact ransomware 

incidents against critical infrastructure organizations in 2021 that effected 14 of 16 US critical infrastructure 

sectors (Cybersecurity & Infrastructure Security Agency, 2022). Such attacks threaten to stall life-sustaining 

goods and services (i.e., emergency services, agriculture, information technology sectors). Yet, 

anthropogenic threats need not be malicious; for instance, the transportation sector was the highest 

contributor of US greenhouse gas emissions in 2021 (US EPA, 2022), exemplifying the association between 

daily individual-behavior and environmental change. Individuals and institutions simultaneously contribute 

to and are threatened by natural and anthropogenic hazards, and this thesis aims to understand if and how 

increasingly complex and interconnected threats influence individual- and institutional-level objectives and 

behavior. 

Individual behavior is studied in Chapter 1 using classification tree models to classify transportation 

behavior based on survey data including a diverse set of demographic and individual preference data, as well 

as local environmental factors related to transportation mode accessibility and population dynamics (i.e., 

population densities) tailored to participating household addresses. The goal of this chapter was to evaluate 

if and how both personal and built environment factors were associated with more sustainable and 

multimodal transportation behavior for a representative sample of San Francisco Bay Area commuters with 

varying accessibility to emergent (i.e., bicycle/scooter sharing, car sharing, ridehailing) and conventional 

(i.e., public transport, private vehicle, bicycle) transportation modes. As such, Chapter 1 addresses 

individual-level decision-making and transportation behavior according to participant use of emergent and 

conventional transportation modes, assessing multimodal transportation behavior as a potential transition 

from personal vehicle use to more sustainable transportation modes.  
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Then, taking on an institutional perspective largely inspired by the COVID-19 pandemic1, 

subsequent chapters address decision-making processes and resilience of US federal agencies involved in 

natural hazard management. Specifically, Chapters 2 and 3 will explore and assess if and how federal hazard 

management agencies prepare for, respond to, recover from, and adapt to compound threats. Compound 

threats are defined as two or more events that occur simultaneously or successively (Pescaroli & Alexander, 

2018). The Intergovernmental Panel on Climate Change (IPCC) has defined compound hazards as (i) two or 

more extreme, co-occurring events, (ii) extremes derived from background conditions that amplify effects, 

or (iii) extremes derived from co-occurring “average” events (IPCC, 2012; Pescaroli & Alexander, 2018).2 

Examples of compound threats include concurrent natural hazard events (i.e., concurrent wildland fire 

incidents or complexes like the 2020 August Complex and LNU Lightning Complex) or successive natural 

hazard events (i.e., successive hurricanes like 2017 Hurricanes Harvey, Irma, and Maria). Further, though 

increasingly studied by climate scientists, compound threats can also include non-climatic threats, such as 

the confluence of natural hazards and the COVID-19 pandemic (Yusuf, 2020; Phillips et al., 2020). 

Compound threats are anticipated to increase in frequency and severity given climate change and our 

increasingly interconnected critical infrastructure systems (IPCC, 2022; Zscheischler et al., 2018). 

Compound threats are posited and shown to pose risks beyond the sum of their parts (Jay et al., 2018), 

threatening life, safety, and critical infrastructure functioning (Zscheischler et al., 2018). Interactions 

between multiple natural and/or anthropogenic risks can result in compounding overall risk that spans 

jurisdictions and sectors with the potential to present novel risks (IPCC, 2022). Compound hazards threaten 

public health, critical infrastructure, agriculture, and ecosystems (IPCC, 2022), presenting potential 

challenges to hazard management institutions in terms of incident prioritization and resource allocation. 

Multi-hazard risk assessment approaches are being developed to forecast compounding risk (Hariri-Ardebili, 

2020). Beyond risk assessments, systems resilience and adaptation are necessary to maintain critical 

functioning despite the uncertainty and novelty presented by many compound threat scenarios, including 

those that might be difficult to capture in anticipatory risk assessments (Fox-Lent & Linkov, 2018; Zhang & 

Ng, 2021; Yadav et al., 2020).  

Compound threats and hazards are expected to challenge the resilience of societies and systems 

globally (Quigley et al., 2020). In particular, hazard management agencies—who provide the critical 

services associated with hazard preparation, response, recovery, and adaptation—are required to make rapid 

decisions in complex, uncertain multi-objective decision spaces if and when presented with compound 

threats. Acute and chronic stress on government systems presented by the co-occurrence of natural hazards 

and COVID-19 exemplified the challenges that emergency response organizations face (Kruczkiewicz et al., 

2021). For example, California was short hundreds of contracted wildland firefighters in 2020 when 

COVID-19 regulations prevented inmates from working on firefighting crews (Stark, 2020), and hurricane 

 
1 See Appendix A for list of organizational resilience and COVID-19 related publications based on my research 

involvement with the US Army Corps of Engineers’ Risk and Decision Science Lab.  
2 Where ‘extreme’ can be defined statistically or based on threshold exceedance (Pescaroli & Alexander 2018).  
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and tropical storm evacuation and sheltering protocols were constrained by inabilities to social distance 

(Whytlaw et al., 2021; Cegan et al., 2022). Compound threats including but not limited to those arising 

during the COVID-19 pandemic illustrate the need to understand compound risks and address current 

limitations in hazard communication, adaptive governance, and social justice (Kruczkiewicz et al., 2021).  

To begin to understand compound hazard management, Chapter 2 focuses on how US federal hazard 

management agencies determine objectives and critical decision-making processes, including incident 

prioritization and resource allocation. This work will use both qualitative data based on the lived experiences 

of hazard management personnel, as well as quantitative analyzes using historical hazard management 

datasets. There is currently limited research on if and how federal agencies have adapted their operations and 

management strategies and maintained organizational resilience under compounding risks. As suggested by 

Kruczkiewicz et al., 2021, compound hazards implicate complex decision-making that should be further 

explored via existing and emergent knowledge and frameworks. Through a mixed-methods approach, the 

current thesis aims to learn from compound hazard experiences to understand how hazard management 

policies, objectives, strategies (i.e., incident prioritization, resource allocation), and constraints are 

influenced by compound threats. Narrative accounts from federal agency personnel (Chapter 2) as well as 

empirical data analyses (Chapter 3) will be used to inform future risk management and resilience-based 

directions for compound threat management, including applications of emergent technologies and decision-

support approaches, communication and coordination channels, and multi-jurisdiction and multi-stakeholder 

decision support.  

This thesis focuses on developing an understanding of the characteristics that facilitate decision-

making processes in a rapidly changing world, focusing primarily on behavior related to technology 

adoption and use as well as organizational adaptive capacity and resilience in multi-objective decision 

spaces with uncertainty. Three chapters are outlined with the overarching goal of exploring and assessing the 

behavioral and sociotechnical properties and characteristics of individuals and institutions that may facilitate 

and inhibit adaptive capacity and resilience under a range of acute, chronic, and compound threats.  

Chapter 1: Factors associated with emerging multimodal transportation behavior in the San 

Francisco Bay Area 

Chapter 13 characterized how demographic, local transportation environment, and individual 

preferences for transportation attributes are related to multimodal transportation behavior in an urban 

environment with emergent transportation mode availability. Chapter 1 assessed commuting behavior based 

on a survey administered in the San Francisco Bay Area according to whether residents commuted (i) 

exclusively by vehicle, (ii) by a mix of vehicle and non-vehicle modes (i.e., multimodal behavior), or (iii) 

exclusively by non-vehicle modes. Multimodality has been considered a key component of sustainable, 

 
3 This work has been published in Environmental Research: Infrastructure and Sustainability. The full published text is presented in 

Appendix A: Wells, E. M., Small, M., Spurlock, C. A., & Wong-Parodi, G. (2021). Factors associated with emerging multimodal 

transportation behavior in the San Francisco Bay Area. Environmental Research: Infrastructure and Sustainability, 1(3), 031004. 
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efficient, and resilient transportation systems, as this travel behavior can represent a shift away from 

personal vehicle use to more sustainable transportation modes, especially in urban environments with 

diverse transportation systems and emergent shared transportation alternatives (e.g., carsharing, ridehailing, 

bike sharing). However, it is unclear what factors contribute towards people being more likely to exhibit 

multimodal transportation behavior in modern urban environments. 

A classification tree approach identified associations between commuting classes and demographic 

variables, preferences for transportation attributes, and location-based information. The characterization of 

commuting styles could inform regional transportation policy and design that aims to reduce vehicle use by 

identifying the demographic, preference, and location-based considerations correlated with each commuting 

style. Results suggested that transportation behavior was classified based on a variety of location-based and 

individual preferences. For instance, population density differentiated those who were multimodal from 

those who commuted by exclusively non-vehicle modes. Transportation preferences at the individual 

participant level suggested that the importance of engaging in other activities while commuting 

differentiated between those who exclusively used vehicles from those who were multimodal, and the 

importance of minimizing environmental impacts differentiated between those who were multimodal from 

those who exclusively did not use vehicles. Further, sensitivity analyses were conducted to assess if and how 

transportation behavioral outcomes might hypothetically shift given variations in select location-based and 

transportation preference factors.  

Chapter 2: Organizational Absorptive Capacity and Resilience Under Compound Threats: 

Learning from Federal Agency Perspectives 

The COVID-19 pandemic co-occurred with natural hazards and exemplified how emergency 

management can be challenged, constrained, and changed by the compound occurrence of two or more 

independent or inter-related threats. Chapter 2 will include interviews with hazard management 

professionals that describe their perspectives on how representative organizations have managed and 

potentially adapted to meet the challenges posed by compound threats. Specifically, this work focuses on 

federal agency perspectives. Federal agencies involved in hazard management are required to make rapid 

decisions in highly uncertain, often novel threats while operating under information and resource constraints. 

Federal agencies must find a balance among the multiple objectives of human health and safety, 

infrastructure, and ecological damage, while facing multiple sources of risks and constraints on resource 

limitations and social and political considerations. Chapter 2 explores the characteristics, properties, and 

protocols of federal agency decision-making in compound threats to generate hypotheses on knowledge 

gaps, needs, and concerns of federal agencies navigating complex, uncertain decision-spaces. 

A qualitative, semi-structured interview approach is used to learn from past compound hazard 

experiences from the perspective of federal agency personnel. While existing research has assessed 

organizational resilience in the specific context of the COVID-19 pandemic and hurricane compound threat 

based on multi-stakeholder workshops (Yusuf et al., 2020; Whytlaw et al., 2021), Chapter 2 takes on broader 
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definitions of compound threats to include COVID-19 pandemic related threats as well as other examples 

experienced by federal agency personnel. An interview-based approach was used to learn from the lived 

experiences of federal agency personnel involved in compound threat management, which can inform if and 

how their respective agency managed compound threats in the past. Interview topics included compound 

risk assessment and decision support processes used to faciliate incident prioritization and resource 

allocation decisions, as well as discussions of emergent factors that personnel expressed could be leveraged 

to enhance organizational resilience to compound threats, as well as other complex and uncertain threats. 

A conceptual framework for federal compound threat management and resilience was developed based 

on existing empirical work (Cutter et al., 2008; Linkov et al., 2013; Resilient Organisations, 2019) and on 

the current qualitative interview data. The expressed strengths and weaknesses of federal agency compound 

threat management and resilience were explored according to deductive and inductive interview coding. 

Existing research stresses that resilience, or the ability to maintain critical functioning despite disruption, is 

achieved over multiple phases (i.e., preparation, response/absorption, recovery, adapation/mitigation) and 

multiple domains (i.e., physical, information, cognitive, social) (Cutter et al., 2008; Linkov et al., 2013). 

Thematic content analysis of interview data was conducted to explore and identify opportunities for federal 

hazard management agencies to adapt and maintain resilience under compound threats, such that critical 

functioning and decision-making processes are supported. Results provide insights on organizational 

structures, information needs, technology use that supports organizational mission fulfillment, adaptive 

capacity, and overall resilience under compounding threats. Interview results relate to the set of policies, 

resources, and emerging technologies and modeling approaches deployed in compound threats, and resulting 

themes relate to multi-objective decision making, resource constraints, and stakeholder engagement and 

coordination within and between federal, state, local, and community based organizations. Findings suggest 

that federal agency compound threat management is strained in part by by personnel availability and 

scarcity, which will be empirically assessed in Chapter 3.   

Chapter 3: Are Compound Threats Associated with Changes in Resource Use? An 

Assessment of Wildland Fires Suppression Resources given the COVID-19 Pandemic  

Chapter 3 builds from the results of Chapter 2. Chapter 3 aims to provide an empirical assessment of 

if and how wildland fire suppression resource use changed before and during the COVID-19 pandemic, both 

at national and regional levels. This work aims to assess the relationship between ground personnel 

resources used for daily fire suppression efforts before and during the COVID-19 pandemic via a Regression 

Discontinuity Design (RDD) approach. As compounding threats, such as wildland fires co-occurring during 

pandemics, are projected to increase in frequency and severity in the future (i.e., due to climate change and 

increasingly interconnected critical infrastructure systems) (Mora et al., 2022), it is essential to understand 

fire management changes under pandemic conditions, which may introduce high levels of complexity, 

uncertainty, and potential novelty. A combination of interview results from Chapter 2 as well as a review of 

interagency fire policy documents that outlined specific adaptations for wildland fire suppression strategies 
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motivated the hypothesis that the COVID-19 pandemic strained firefighting resource use in 2020 and 2021 

relative to prior recent years. COVID-related wildland fire policy documents, including the regional 

“Wildland Fire Response Plan: COVID-19 Pandemic” policy guidance, promoted early and aggressive 

initial attacks by way of increased aviation suppression efforts, as well as the increased use of unmanned 

aircraft systems (UAS) to minimize the potential for COVID-19 exposure and transmission within and 

between crews and affected communities (NIFC, 2020).  However, it is currently unknown if and how trends 

in resource requests and use were empirically different for the 2020 and 2021 seasons relative to past fire 

seasons after controlling for environmental conditions of the regional landscapes and societal risks posed to 

nearby communities.  

To statistically assess and model resource use given the compounding COVID-wildland fire threat, 

the current work compiled resource assignment data and controlled for daily fire behavior, societal risk 

factors, and geotemporal weather data for each fire incident across the western US that occurred between 

2017 and 2021. Sharp Regression Discontinuity Design (RDD) models are being developed to predict 

resource use per fire day pre- and post- the COVID-19 pandemic at the national and regional levels. To 

capture and control for the range of tangible and intangible risk factors considered in suppression 

management, natural language processing was used to identify key risks and concerns discussed by Incident 

Management Team Incident Commanders (i.e., fire managers) in the ‘Strategic Objectives’ field of the 

Incident Command System 209 documentation for each fire day. Coding these narrative accounts can 

account for the social, economic, ecological, and political concerns that may have motivated resource 

requests and use. Thus, these models will integrate and control for diverse societal and ecological factors 

associated with wildland fire suppression, narrowing in on if and how the pandemic may have influenced 

resource use per fire day. These insights will provide empirical lessons learned for if and how wildland fire 

suppression absorbed simultaneous fire- and pandemic-related threats.  
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Chapter 1: Factors Associated with Emerging Multimodal Transportation 

Behavior in the San Francisco Bay Area 
 

Peer reviewed citation: Wells, E. M., Small, M., Spurlock, C. A., & Wong-Parodi, G. (2021). Factors 

associated with emerging multimodal transportation behavior in the San Francisco Bay Area. Environmental 

Research: Infrastructure and Sustainability, 1(3), 031004. 

 

1. Introduction 
A range of traditional (e.g., personal vehicles, buses) and emergent (e.g., ridehailing such as Uber or 

Lyft, carsharing such as Zipcar, and bicycle/electric scooter sharing) transportation modes are available to a 

growing number of urban Americans. As emergent transportation mode availability has increased, reliance 

on personal vehicles could potentially decrease. Ideally, greater diversity in urban transportation alternatives 

promotes multimodal transportation behavior, which is the use of more than one transportation mode – such 

as a car and bus – over a defined time period [1 – 3].4 Extant research on multimodal transportation behavior 

has focused on traditional transportation modes [1 – 2], yet less is known about this behavior in urban 

environments with emergent transportation modes. 

Multimodal transportation systems and behavior are often framed as a key component of sustainable, 

resilient, and efficient transportation design and policy [4 – 6]. Shared transportation modes are often more 

sustainable, fuel-, and cost-efficient than some traditional modes [7 – 10], such as personal vehicles which 

contribute up to 60% of total annual US transportation emissions [11 – 13]. Hence, shifting to multiple 

modes may reduce GHG emissions, depending on individual travel [14]. Even occasional exposure to non-

vehicle transportation modes has been shown to increase non-vehicle mode use and decrease intent to use 

personal vehicles over time [2, 7, 15 – 18]. Understanding how the local transportation environment, human 

behavior, and preferences are associated with multimodal behavior is essential for developing transportation 

policies to meet sustainability, resilience, and efficiency goals [19 – 22]. (See Appendix A for additional 

information on multimodal literature.) 

As multimodal behavior may represent a shift away from personal vehicle use, the objective of this 

study was to identify (a) demographic, (b) location based, (c) transportation mode attributes, and (d) public 

transit accessibility factors differentiating (i) unimodal, (ii) multimodal, and (iii) non-vehicle commuters. 

This study incorporated a comprehensive set of both objective variables (i.e., demographics and location), as 

well as subjective variables (i.e., preferences for transportation mode attributes). The hypothesized 

correlations between explanatory variables and commuting classes are presented in Table 1. A non-

parametric analysis was conducted using the Classification Tree (CT) modelling approach [23] with survey 

responses from 888 San Francisco Bay Area residents.  

 

Table 1. The hypothesized direction of the correlation between input variables and commuting style 

classes based on findings from prior literature. The “+” symbol indicates a hypothesized positive 

correlation, “~” indicates a hypothesized weak or neutral correlation, and “-“ indicates a hypothesized 

negative correlation.   

Variable Category Variable Unimodal Multimodal Non-Vehicle References 

Demographics 

Age (older) + - - 
[1, 2, 16, 17, 

25] 

Female - + + [2, 26]  

Bachelor's degree 

or higher 
- + + [2, 7] 

Primary 

destination: Work 
+ - - [2, 27]  

 
4 As in existent literature, the definition of multimodality encompassed intermodality, the combination of more than one mode of 

transportation over the course of one trip [1, 2].  
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Primary 

destination: 

School 

- + + [2]  

Smartphone 

Ownership 
- + + [28] 

Household Income - + + [2, 29, 30] 

Young Children in 

Household 
+ - - [2, 15, 17]  

Car availability + - - 
[1, 2, 7, 16, 

17, 27, 31] 

Location Based 

Residential 

population density 
- + + [1, 2] 

Commute 

destination 

population density 

- + + [32]  

WalkScore - + + [33]  

Preferences for 

Transportation 

Attributes 

Low cost + ~ - [34 – 36] 

Predictable cost + ~ - [34 – 36] 

Short/Predictable 

travel time 
+ + - [27, 37] 

Shelter from bad 

weather 
+ ~ - [36, 38 – 41] 

Ability to easily 

make more than 

one stop 

+ ~ - [36, 38 – 41] 

Ability to engage 

in other activities 
- + + [42 - 45] 

Ability to safely 

transport a child 

under 8 years old 

+ ~ - [46, 47] 

Safety + ~ - [26]  

Minimizing 

environmental 

impact 

- ~ + [46, 48, 49]  

Public transit 

accessibility 

Access and egress 

travel times 

(walking) 

+ ~ - [50, 51] 

Transfers + ~ - [50, 51] 

 
Existing multimodal transportation behavior research tends to use multinomial logistic regression 

approaches to predict between pre-defined, categorical multimodal behavior [1 – 2], and post-hoc, data-

driven multimodal behavior (i.e., latent class cluster analysis) [3, 22 52 – 53]. Here, however, a CT approach 

was used to predict commuting class outcomes. CT involves non-parametric data mining methodologies 

using recursive binary splitting of explanatory variables to predict multinomial outcomes across the sample. 

The CT approach offers advantages to logistic regression, as it is a non-parametric approach that does not 

assume a distribution for included explanatory variables [54]. For instance, CTs do not assume variable 

distributions and relationships, such as the Independence of Irrelevant Alternatives (IIA), which assumes 

that random error terms are independent and uncorrelated [54].  If such error term distribution assumptions 

are violated, regression results and implications may be invalid. Thus, while standard regression models 

assume that the same fitted relationship applies across the full input and output parameter space, CT divides 

the parameter space into subsets where different relationships may apply. Additionally, the CT approach can 

incorporate a variety of variable types (i.e., numeric, categorical, ratings, combinations), and the resulting 
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tree structure is insensitive to monotonic transformations of explanatory variables [55]. CTs also handle 

multidimensional analyses that are sensitive to multicollinear explanatory variables [54]. In the 

transportation behavior context, this is particularly advantageous as transportation decisions occur in highly 

complex and multidimensional decision spaces based on individual, household, and local transportation 

environment factors. Finally, CTs provide a clear presentation of the output that is relatively simple to 

interpret, even for nontechnical stakeholders and decision makers [23, 55 – 56]. As such, they provide a tool 

to communicate findings and associations that may be otherwise more complicated to explain and interpret. 

This papers made the following contributions to the transportation behavior literature: (i) a CT 

methodology was used to predict commuting classes while accounting for diverse variable types, (ii) diverse 

variable types included objective measures of the local transportation environment considering route-

specific commute distances by vehicle, public transit, and foot, as well as subjective assessments of 

transportation attributes, and (iii) secondary model assessments, including the importance weights of 

explanatory variables and sensitivity analyses, were performed to generate further commuting behavior 

implications. Additionally, a case study approach was taken to better understand commuting behaviours in a 

modern metropolitan context with the presence of emerging transportation modes. Accordingly, the San 

Francisco Bay Area (herein, “Bay Area”) was used as a case study, as the region often pioneers the 

deployment of emergent transportation technologies and may foreshadow adoption patterns in other urban 

U.S. regions [24]. The Bay Area has also instituted policies to disincentivize vehicle use and accelerate the 

uptake of sustainable transportation technologies, with varying levels of success.  For instance, the Bay Area 

enacted the Commuter Benefits Program in 2014, an ordinance requiring that employers provide employee 

commuter benefits, such as public transit subsidies [57]. Yet, the Bay Area’s Metropolitan Transportation 

Commission [58] fell short of its goal to reduce total non-auto mode share by 10% between 2011-2017, 

attaining a 4% reduction. This survey analysis using the CT approach can thus be used to inform ongoing 

transportation planning in the Bay Area to identify the explanatory factors that distinguish between 

commuting class outcomes and to assess whether commuting class outcomes are predicted primarily by 

demographic, location-based, transportation attributes, or public transit accessibility factors. Through further 

sensitivity analyses using CT, we explored which of these factors may be more or less likely to change due 

to uncertainty or future changes, either through public policy mechanisms, the increasing potential of novel 

capabilities via emergent transportation modes, or through trends in societal perceptions of transportation 

qualities and implications. This paper conducts sensitivity analyses to further assess importance of specific 

explanatory, which can in turn inform the local transportation environment factors and transportation mode 

attributes that influence SF Bay area commuting decisions. Addressing these variables may help target 

specific unimodality reduction efforts as the region strives to reduce personal vehicle use and transitions to 

more sustainable and emergent transportation modes.  

 

2. Methods 

2.1. Recruitment.   

Data were collected through the SMART Mobility Consortium’s WholeTraveler Transportation Behavior 

Study funded by the U.S. Department of Energy’s Energy Efficient Mobility Systems (EEMS) program [24]. 

A random sample of 60,000 Bay Area household addresses were sent recruitment letters via paper mail 

between March and June 2018. A total of 1,045 respondents completed the online survey, yielding a 

response rate of 1.7%. This response rate was comparable to other surveys using similar unsolicited 

recruitment mailings with similar incentive payment levels. For instance, the 2015–2017 California Vehicles 

Survey had a 1.5% overall response rate [59]. A final sample of 888 Bay Area resident responses were 

included for analysis after excluding commuters who did not commute in the past week. (See Appendix B 

for more details.) 

 

2.2. Respondents.  

The average reported age was 46 years old (SD = 14.5), with 49% identifying as women. Eighty-six percent 

of respondents held at least a Bachelor’s degree, and the median annual household income was $100-149K. 

Respondents resembled the local population [60] but were slightly more educated and affluent, perhaps due 

to the online format of the survey. (See Appendix B for more details.)  
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2.3. Commuting class definitions.  

Respondents provided their past one-week commute behavior by indicating the mode(s) of transportation 

they used to get from their place of residence to their most frequently travelled destination (e.g., work, 

school, workplace of a household member). Reported mode use characterized respondents’ commuting class 

(Table 2), and definitions of each mutually exclusive commuting class were adapted from Buehler and 

Hamre [2]. Commuting behavior was focused on, as commuting contributes to peak traffic congestion [61] 

and may be relatively consistent within respondents. A one-week timeframe was chosen to capture the 

typical variability of routine travel [1, 2, 17, 31].  

 

Table 2. Definitions of commuting classes over past-week trips to respondent’s primary destination. 

Unimodal  Multimodal  Non-vehicle 

Exclusively used a vehicle (as 

driver or passenger) to commute.  

Vehicle modes included: personal 

vehicle, carpooling, ridehailing, 

carsharing vehicles.  

Used a vehicle mode as well as 

at least one other non-vehicle 

mode to commute.  

 

Exclusively used non-vehicle modes 

to commute. A single mode or a mix 

of non-vehicle modes could have 

been used. 

Non-vehicle modes included: public 

mass transit, bus, private mass transit, 

walking, biking, telecommuting, 

motorcycle, electric scooter.  

Note. This study used a pre-defined, categorical definition of commuting behaviors by adopting Nobis’ (2007) broad 

definition of multimodality: “…any person who uses more than one mode of transportation within 1 week is classified 

as multimodal, regardless of the frequency of use” (pg. 36). We further modify this definition by including carsharing 

and ridehailing as possible vehicle modes. 

2.4. Explanatory variables.  

2.4.1 Objective variables. Demographic, location-based, and local public transportation environment 

variables were collected as objective input variables for the CT.  

- Demographics. Participants reported their age, gender, education, primary destination type, 

household income, and whether children lived in their household.  

- Location-based. Survey respondents indicated the address or cross streets of their most frequently 

visited primary destination (Figure 1). Location-based information was collected using confidential 

individual-level home and primary destination addresses. Residential and primary destination 

population densities at the census block group level (measured by thousands of people per square 

mile), driving distance between one’s residence and primary destination address according to 

Google Maps application programming interface (API), WalkScore metric, and county-level 

dummy variables were additionally collected. The Google Maps API was used to collect travel time 

and distance estimates for four modes: vehicle, public transit, walking, and biking. Estimates were 

collected during peak commute hours, and comparisons of travel times by mode and time of day are 

assessed across the commuting classes in Appendix C. For the CT analysis, the vehicle travel 

distance according to Google Maps’ time-minimizing route was selected.  

- Public transit accessibility. The Google Map API generated public transit accessibility for each 

respondent’s home to primary destination route using an existing R program [62]. The following 

data were pulled to access individual, commute-specific public transit availability: estimated 

walking time (minutes) between respondent’s residence address and destination address and the 

nearest public transit stop along the route (access/egress), number transfers along the route, and 

number of alternative public transportation routes for each address pair. 
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Figure 1. Primary destination address and map tool used to collect information regarding the destination that 

each survey respondent commuted to outside of their home the most frequently for day-to-day activities.  

2.4.2 Subjective variables. In addition to the objective input variables, subjective ratings of “Preferences for 

transportation attributes” were reported by survey participants.  

- Preferences for transportation attributes. Participants were asked to indicate how important each of 

the characteristics of transportation options were to their modal decision-making. Respondents rated 

the importance of transportation attributes when considering their commute to their primary 

destination (Figure 2) on a 5-point Likert scale (1 = Not at all important to 5 = Very important). If 

respondents selected “Not applicable” for an attribute, it was coded as zero (Spurlock et al 2019).5  

For each of the transportation attribute items, survey participants were also presented with the option 

to select “I never thought about it before” for each transportation attribute. This was optional and 

independent of the Likert scale rating. However, due to the low correlation with “I never thought 

about it before” and importance, as well as the high correlation with the “Not applicable” response 

option, this measure was not assessed in the current work. The importance of social interaction and 

 
5 If respondents chose “Not Applicable” for Importance of Transportation Attribute variables, these scores were recoded with a score 

of zero, giving zero value to characteristics that a respondent deemed as factors that are not relevant to their commute mode choice 

[24].  Appendix E Table 3 shows the counts of “Not Applicable” responses, where the proportion of “Not Applicable” responses for 

11 of the 12 attributes range from 0.5 – 4.4%. The exception is for the “Importance of transporting children” attribute, where 54.4% 

of respondents reported “Not Applicable”. Appendix E Figures 3 and 4 show the CT results when these values are instead assigned a 

score of three or omitted entirely. Appendix E also shows that the main conclusions drawn from the CTs were unaffected by changes 

in the recoding of “Not Applicable” transportation attribute scores to either 3 (middle of Likert scale) or variable medians. 
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of minimizing environmental impact fell on a scale from -5 to 5 based on positive and 

negative survey item framings.6, 7  

 

Figure 2. Survey items for the Preferences for Transportation Attributes explanatory variables. 

2.5. Data analytic approach. 

2.5.1. Classification tree development. The rpart package [63] was used in R to run a CT to classify respondents 

into commuting class outcomes (Table 2). The CT methodology was used to develop predictive models of 

the three mutually exclusive commuting class outcomes (Table 2) [54, 64]. The CT method is a non-

parametric data mining approach that involves the recursive binary splitting of explanatory variables to 

predict multinomial outcomes across the sample. The data are split such that within each of the tree’s 

branches, the heterogeneity in the outcome variable is minimized [65 – 67]. CTs are represented through 

graphical trees in which each binary node has the predictor variable with the greatest discrimination ability 

among cases in that branch. The CT algorithm recursively partitions data to identify all possible splits of all 

explanatory variables and selects the optimal splits starting from the root node, and then selects the optimal 

splits for subsequent nodes [54, 65]. The Gini index was used to assess overall model splits, wherein the 

algorithm selected the splitting variable that maximized the explained variance of the class predictions [54]. 
Optimal tree size was determined using a 10-fold cross-validation technique that minimized CT 

complexity and misclassification rates [54, 64 – 67]. Cross-validation mimics the use of a test sample while 

extracting information from all cases of a data set to develop the model. The tree size with the lowest cross-

validated prediction error was selected, as determined through 10-fold cross-validation. The tree was 

constructed from 35 candidate explanatory variables using the identified best tree size [23]. The full model 

classification tree was then simplified through a pruning process to produce the final model and 

corresponding classification statistics [55], importance weights, and sensitivity analyses.  By pruning 

 
6 The environmental impact and social interaction variables are derived from two questions in the WholeTraveler survey instrument. 

First, respondents indicated whether they perceived environmental impact and social interaction each as a positive or negative 

transportation attribute (Appendix C Figure 4). If a respondent chose that those attributes were positive, they were then presented 

with “minimize environmental impact” and “ability to interact with others (other than close friends or family members)” (Figure 1) 

for evaluation of importance when determining mode choice. If perceived as negative attributes, the respondent was presented with 

“maximize environmental impact” and “not having to interact with other people (other than close friends or family).” Each 

respondent was shown one version of the questions. The survey items responses were coded to reflect either the positive or negative 

responses for both questions, coding a response to the negative form as a negative value from 1 to 5, and an answer to the positive 

version as a positive 1 to 5. A “Not Applicable” response was coded as a zero [24].    
7 For all WholeTraveler survey items used in this study, see Appendix C. 
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classification trees, nodes are systematically removed from the bottom of the tree. Nodes are removed that 

minimize tree complexity and misclassification rates [23]. (See Appendix E Table 3 for unpruned tree 

structure statistics). The final classification tree and subsequent analyses used the pruned CT due to its 

reduced complexity without significant loss of information. Loss of information was assessed using the No 

Information Rate (NIR). The NIR reflects observed (not predicted) outcome distributions without any input 

data, in that it reflects the largest proportion of the observed classes. As such, the NIR reflects the CT 

classification accuracy rate. The CT classification accuracy rate was compared to the No Information Rate 

classification rate, The tree’s predictive power was characterized by the Area Under the Curve (AUC) from 

the Receiver Operator Characteristic (ROC) curve using macro-averaged AUCs calculated by taking the 

AUC for each classification versus all other possible categories, then averaging the AUCs from each 

classification [55]. The AUC provides an indicator for the diagnostic ability of a discrete classifier system 

based on the probability of true positive classification across the sample. (See Appendix E for further 

methodological detail). 

 

2.5.2. Importance weights. To compare how influential explanatory variables classified the three commuting 

class groups, importance weights were estimated [54]. The measure of importance of an explanatory 

variable in relation to the final tree is defined as the weighted sum across all splits in the tree based on tree 

improvements when each variable is used as a primary or surrogate splitter. The variable importance of each 

variable is expressed in terms of a normalized quantity relative to the variable having the largest measure of 

importance, ranging from 0 to 100. The variable having the largest measure of importance scored as 100. 

The variable importance is expressed as the normalized quantity relative to the variable having the largest 

measure of importance [54].  

2.5.3. Sensitivity analysis.  Sensitivity analyses were conducted for each distinct explanatory variable 

retained in the pruned CT to derive a better understanding of how sensitive the classifications were for each 

retained explanatory variable. For each explanatory variable retained in the pruned CT, one standard 

deviation was independently added and then subtracted from each respondent’s respective, original 

explanatory variable value. The updated dataset was entered into the original pruned classification tree to 

assess whether and to what extent the predicted commuting class outcomes shifted across the sample. A shift 

from one commuting class to another occurred when the additive change by one standard deviation per 

retained explanatory variable resulted in a participant’s predicted reassignment to a different commuting 

class than originally predicted using the pruned CT. This sensitivity analysis approach was taken as CTs do 

not indicate individual explanatory variable effect size. As such, additively increasing and decreasing each 

retained explanatory variable in the pruned CT allowed for an assessment of how potential uncertainty in 

metric estimates could influence predicted commuting shares between the unimodal, multimodal, and non-

vehicle outcomes. Alternatively, the sensitivity analysis results may be interpreted such that the additive 

changes in explanatory variables could reflect future changes in explanatory variables, as many of the local 

transportation environment and preference for transportation attribute variables are dynamic. For instance, 

public transit accessibility may evolve as transit routes change and extensions are established, and 

preferences for transportation attributes, such as the importance of minimizing environmental impacts, may 

be weighted differently across the sample in future years.  

 

3. Results 
3.1. Descriptive statistics.   

Of the 888 respondents’ commuting classes, 43.8% (n = 389) were unimodal, 35% (n = 313) were 

multimodal, and 21% (n = 186) were non-vehicle (Table 3).8 Most multimodal commuters used personal 

vehicles, followed by telecommuting and commuting via bike, foot, or public mass transit. Within the 

multimodal commuting group, 25% used emergent transportation modes (e.g., ridehailing, carsharing) in the 

past week and used the most shared modes, including scooters, ridehailing, and carsharing. Conversely, only 

3.8% of unimodal commuters used an emergent vehicle mode in the past week. Among the non-vehicle 

commuters, public mass transit, bike/foot, and bus were most used.  

 
8 See Appendix D Table 2 and Table 3 for past month and past day distributions of mode use by commuting class.  
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Table 3. The percent of each commuting class that used each specific transportation mode within the past 

week.    

Unimodal vehicle Multimodal Non-vehicle 

Personal vehicle (100%) 

Carpooling (16.5%) 

Ridehailing (Single) (1.5%) 

Ridehailing (Carpool) (1%) 

Carsharing vehicle (0.3%) 

Personal vehicle (73.2%) 

Carpooling (28.1%) 

Ridehailing (Single) (15.7%) 

Ridehailing (Carpool) (16%) 

Carsharing vehicle (1%) 

Public mass transit (31.6%) 

Bus (16%) 

Private mass transit (8.9%) 

Walking/biking (43.1%) 

Telecommuting (44.1%) 

Motorcycle/electric scooter (2.2%) 

Public mass transit (53.4%) 

Bus (32.8%) 

Private mass transit (6.9%) 

Walking/biking (52.4%) 

Telecommuting (24.9%) 

Motorcycle/electric scooter (1.1%) 

 

 

Table 4 shows the mean and standard deviation for each explanatory variable included in the pruned CT.9  

 

Table 4. Descriptive statistics (mean, standard deviation) for each explanatory variable across the sample (n 

= 888).   

Variable 

Category Variable Name 

Variable 

Type Mean SD 

Demographic Birth year Discrete 1974 14.6 

Location-

Based 

Residence Population Density (thousand people 

per square mile) 
Continuous   13.5 15.68 

Destination Population Density (thousand people 

per square mile) 
Continuous 9.1 13.42 

Residence to Destination Drive Distance Continuous 12.6 14.35 

Importance of 

Transportation 

Attributes 

Importance of Other Activities Ordinal 2.6 1.44 

Importance of Environmental Impact Ordinal 3.3 1.77 

Importance of Social Interaction Ordinal 0.2 2.70 

Importance of Multiple Stops Ordinal 3 1.51 

Public Transit 

Accessibility 
Transit Transfers Discrete 1.9 0.99 

 
3.2. Classification tree results. There were 13 total splits in the pruned, 10-fold cross-validated CT (Table 

5).10 The overall CT classification rate across the three commuting classes was 61.4% (95% CI: 58.1% - 

64.6%). As there were three mutually exclusive outcomes, misclassification rates above 33% perform better 

than chance. The cross-validated error rate was 38.6% (95% CI: 35.4% – 41.9%), suggesting that the model 

may incorrectly predict respondents’ commuting class 38.6% of the time. The classification tree prediction 

rates were compared to the No Information Rate (NIR) classification rate of 43.8%. The pruned 

classification tree had a statistically significantly lower misclassification rate than did the NIR model, 

 
9 Where possible, these sample statistics were compared to population-level statistics for the Bay Area (Appendix B). 

The set of sample statistics for all explanatory variables input into the model is shown in Appendix D Table 1.  
10 See Appendix E for unpruned classification tree structure and results. 
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suggesting that the classification tree performed better than chance. Finally, the Area Under the Curve 

(AUC) for unimodality was 72.7%, multimodality was 62.6%, and non-vehicle commuting was 70.9%. 

Table 5. Pruned and unpruned classification tree statistics, including the number of splits, the 

(mis)classification rates and their 95% confidence intervals, the No Information Rate model, the p-value to 

assess the classification rate of the CT versus the NIR, and finally, the Area Under the Curve (AUC) for 

each commuting class outcome.  

Pruned CT Statistic Estimate 

Number of splits 11 

Classification Rate (95% CI) 61.4% (58.1% - 64.6%) 

Misclassification (Error) Rate (95% CI) 38.6% (35.4 – 41.9%) 

No Information Rate (NIR) 43.8% 

p-value (Classification Rate > NIR) P < 0.001 

Unimodal AUC 72.7% 

Multimodal AUC 62.6% 

Non-Vehicle AUC 70.9% 

 

General predicted patterns can be observed from the classification tree. Explanatory variables exert greater 

influence on classifications depending on their location within the fitted tree and their partition levels. These 

features of the fitted tree are generally consistent with hypothesized associations (Table 1).  For example, 

those who (1) had greater residential and destination population densities, (2) placed greater importance on 

minimizing environmental impact and engaging in social interaction, and (3) placed less importance on 

making multiple stops along their commute were more likely to be classified as non-vehicle. The greatest 

difference between commuting classes was associated with residential population density – appearing as the 

first partition in the tree (Figure 3); those with greater density were predicted to be multimodal and those with 

less were predicted to be unimodal. We also observed that those who placed greater importance on 

minimizing environmental impact were predicted to be non-vehicle, whereas those who placed less 

importance were unimodal. Finally, those placing more importance on social interaction and making multiple 

stops were classified as multimodal, and those living closer to their destination were classified as non-

vehicle.



 

 

Figure 3A-B. The pruned, cross-validated CT developed using all 35 explanatory variables. The classification tree was trained on the full dataset (n = 888) using 10-

fold cross validation. Each node in Figure 3 shows the predicted classification for that placement in the tree. The percent of respondents that fall in that placement of 

the tree is also shown in each node. The first node starts with 100% of the participants, and each subsequent branch shows the number and percent of the participants 

that did (left branches) or did not meet (right branches) that variable condition. Figure 3b shows the overall commuting class predictions across the sample based on 

the pruned CT structure. 
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3.3 Importance weights of pruned variables. ‘Location based’ explanatory variables (residential and 

destination population density, the importance of making multiple stops, and residence to destination 

driving distances) yielded the most heterogeneous data splits, followed by ‘importance of transportation 

attributes’ (Table 6).  These weights reflect the explanatory variables from the pruned CT that established 

the most heterogeneous splits of the data. As such, these variables were instrumental in the classification 

of commuting styles based on the numeric splits presented in the pruned CT (Figure 2). For instance, 

residential population density and the importance of making multiple stops held the highest importance 

weights in the pruned CT. 

Table 6. Importance weights for the unpruned classification tree. For the full set of importance weights, 

including those not directly presented in the pruned classification tree, see Appendix 1E.  

Variable Category Variable Name Weight 

Normalized 

Weight 

Location Based Residential Population Density 17 100% 

Transportation Attributes Importance of Multiple Stops 13 76.5% 

Location Based Residence to Destination Drive Distance 12 70.6% 

Location Based Primary Destination Population Density 9 52.9% 

Transportation Attributes Importance of Engaging in Other Activities 8 47.1% 

Public Transit Accessibility Public Transit Transfers 6 35.3% 

Transportation Attributes Importance of Social Interactions 5 29.4% 

Demographic Birth year 5 29.4% 

Transportation Attributes Importance of Min. Environmental Impact 4 23.5% 

Public Transit Accessibility Public Transit Access/Egress Walk Time to Stop 4 23.5% 

 
3.4 Sensitivity analyses.  For each of the variables retained in the pruned CT, standard deviations were 

calculated across the sample. Then, we decreased and increased individual-level values for each of these 

explanatory variables by one standard deviation to demonstrate resulting shifts in the predicted share of 

unimodal, multimodal, and non-vehicle commuters (Figure 4). Shifts in commuting class outcomes across 

the sample exemplified how sensitive the classifications were for each explanatory variable assessed. For 

instance, as shown in Figure 4f, given a decrease in each participant’s “Importance of social interactions” 

rating by one standard deviation, the predicted share of unimodal commuters was predicted to increase by 

7 percentage points (e.g., from a predicted 54% of the sample to 61% of the sample), while the predicted 

share of multimodal commuters would decrease by 9 percentage points (e.g., from 31% of the sample to 

22% of the sample). Given an increase by one standard deviation from each participant’s current value for 

“residential population density” (Figure 4a), there was a predicted 20 percentage point decrease in the 

share of unimodal commuting and a 15% increase in the predicted share of non-vehicle commuting. 

Similar results were found for increases in “destination population density”, though the predicted increase 

in multimodal commuting was greater than the predicted increase in non-vehicle commuting. These 

results show how predicted commuting class shares may differ due to statistical uncertainty, as well as 

due to potential future changes in non-static, dynamic explanatory variables, such as population densities 

and the perceived importance of various transportation attributes. 
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Figure 4. The distribution of CT predicted commuting classes based on modified input data for 

individuals based on the pruned classification tree. Within each bar chart, the left three bars on 

each chart show the effect of a one SD decrease in the explanatory variable, and the right three 

bars show the effect of a one SD increase in the explanatory variable.  

4. Discussion 
This survey analysis revealed the distribution of unimodal, multimodal, and non-vehicle 

commute behaviours for a sample of Bay Area residents, assessing individual-level use of traditional and 

emergent transportation modes. While approximately 74% of multimodal commuters indicated they used 

a personal vehicle in the past-week (Table 2), this commuting class also indicated the highest reported 

rate of past-week emergent transportation mode use. Conversely, only 3.8% of unimodal commuters used 



 

19 

 

an emerging vehicle mode in the past week, indicating that they may be less inclined to use or adopt 

emergent transportation modes than multimodal commuters (Table 2).  

A Classification Tree approach was used to assess which types of explanatory variables (i.e., 

demographic, location based, transportation mode attributes, and public transit accessibility) classified 

commuting classes. Attributes including residential and destination population densities, commute 

distance, and public transit transfers and walking accessibility were variables that distinguished 

commuting class outcome predictions (Figure 3A). Moreover, perceptions of the importance of making 

multiple stops, engaging in other activities, social interactions, and minimizing environmental impact also 

distinguished commute behavior (Figure 3A), which may provide key insights for policy makers aiming 

to incentivize shifts towards sustainable and emergent commuting behavior.   

The ‘location based’ and ‘transportation mode attributes’ established the most heterogenous splits of 

the CT (Figure 3A). Residential population density was the most heterogeneous factor associated with 

commuting classes, aligning with existent research which has indicated population density is positively 

associated with public transportation use and negatively associated with personal vehicle use [2, 68]. The 

same relationship may hold for emergent transportation modes, including ridehailing. For instance, Wang 

and Mu [69] found that Uber accessibility was positively correlated with road network density, 

population density, and reduced commute times.  

Various transportation attributes were associated with heterogeneous splits of the commuting class 

outcomes, exemplifying greater differences between commuting classes than most demographic and 

public transit accessibility factors (Figure 3A). The importance of making multiple stops along the route 

distinguished respondents’ commuting classifications suggesting that transportation may fulfil a critical 

need for flexibility (perhaps for childcare, taking care of errands, etc.). Flexibility in commuting travel 

stops may be a critical factor that differentiates exclusive versus occasional vehicle use, and more 

sustainable shared and mass transit travel modes could see increased ridership if their services better 

accommodated this need. Possible improvements might be more frequent stops or ticketing policies that 

allow for briefer stops to be made along a route or within a defined timeframe.  

Additionally, multimodal commuters perceived engaging in other activities while commuting was to 

be more important than did unimodal commuters (Figure 3A). This aligns with hypotheses (Table 1) and 

may have implications for the adoption and use of emergent transportation modes that enable 

multitasking or passive travel, such as shared and/or automated vehicles. For instance, if this 

transportation attribute were to become more important or attractive to commuters, current sample 

sensitivity analyses show a potential shift in the share of unimodal commuting, which was predicted to 

decrease by 3% and redistribute to multimodal commuting (Figure 4). The sensitivity results suggest how 

the importance of engaging in other activities may offer policy implications for emergent transportation 

mode use or interest in use. Hardman [70] conducted interviews with partially automated vehicle users, 

who reported an increased ability to multitask while traveling. Multitasking has been defined as engaging 

in activities such as working, sleeping, eating, or reading while traveling [71]. Thus, if the ability to 

multitask becomes increasingly important to commuters, the sensitivity analysis results (Figure 4) 

predicted decreased unimodal, increased multimodal, and no change in non-vehicle commuting class 

outcomes. Policy implications include enhancing working or other multitasking experiences on 

commutes, such as through providing Internet access to riders [42].  

Further, perceptions of engaging in social interaction emerged in the pruned CT (Figure 3A). 

Increased importance of social interaction was positively associated with multimodality, more so than 

both unimodal and non-vehicle commuting, despite non-vehicle commuters reporting more public 

transportation use, where exposure to social interaction is likely high. This aligns with prior work 

regarding the perceived importance and role of socialization for ridehailing users. Sarriera et al. [72] 

found that both social and negative social aspects of ridehailing motivated or deterred share ridehailing 

use, with a larger effect than personality or demographic characteristics. Amirkiaee and Evangelopoulos 

[73] found that social trust was a key factor predicting attitudes and use of ridehailing. Alternatively, non-

vehicle commuters who biked or walked may have rated social interaction importance lower, thus leading 

to the observed heterogeneity.  
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The pruned CT also included the importance of minimizing environmental impact (Figure 3A). While 

the relationship between environmental worldviews and pro-environmental behavior remain uncertain 

[74], these results suggest greater environmental consciousness may be associated with more sustainable 

transportation behavior. Age was the only demographic differentiating factor, as those born after 1988 

were classified as multimodal and those born before 1988 were classified as non-vehicle, aligning with 

previous research [75 – 78]. Younger individuals may be more flexible in their adaptation to multimodal 

transportation options while older individuals may experience reduced access to private automobile 

ownership and use. 

The CT approach is well suited to reveal how multidimensional, even multicollinear, individual-, 

household-, and community-level factors can be structured to predict commuting classes. Though this 

approach does not overcome confounding factors such as residential selection present in studies of 

transportation choices [79 – 80], it does detect interrelations between explanatory variables, only 

including variables in the CT that establish the most heterogeneous splits across the sample. Thus, the CT 

approach revealed which explanatory variables were associated with heterogeneous commuting behavior. 

Though the relationships between explanatory and outcome variables were strictly correlational, the 

importance weights and sensitivity analyses provide insights as to how potential changes in dynamic 

explanatory variables may associated with a shift in commuting outcome distributions. 

 
4.1. Limitations.  Though the survey solicitation was designed to gain a representative sample, 

respondents were more affluent and educated than the average Bay Area residents, limiting 

representativeness and translation of results to other regions. Second, the study focused on commute 

behavior, but travel behavior may differ for other types of trips (i.e., recreational or social). Third, the 

survey-estimated use of each transportation mode was binary, offering only first order assessment of 

commuting behavior. However, Buehler and Hamre [2] compared model outcomes based on differing 

measures of multimodality (i.e., predefined definitions and according to intensity of vehicle use), finding 

the general relationships and effect sizes of covariates were consistent.11  Fourth, the CT approach does 

not show the effect size for the relationship between each explanatory variable and outcome variables. 

Hence, we derived importance weights and sensitivity analyses. This sensitivity analysis approach 

assumed uniform, additive changes across the sample to detect how sensitivity CT predictions were to 

changes in explanatory variables, though we recognize that these shifts would be unlikely to occur 

uniformly across the full sample or population. Future analyses could integrate additional location-based 

information that has been associated with emergent transportation mode use. For instance, in their spatial 

assessment of shared electric scooter trips, Hosseinzadeh et al [81] included objective measures such as a 

mixed-use land index, percent of public and semi-public land, and densities of intersections, bike-lanes, 

and sidewalks.  

Additionally, though outside the timeframe of the current analysis, it is informative to consider how 

social and societal issues may influence commuting behavior preferences, demand, and supply. For 

instance, the year 2020 presented a decline in both public transit supply and demand across the US given 

the COVID-19 pandemic. It is estimated that public transit ridership declined by approximately 73 – 79% 

across the US [82], compared with previous demand levels; ridership decline was particularly pronounced 

in places like the Bay Area with a large tech-based sector [83]. Urban areas in the US, including and 

especially the SF Bay Area, were predicted to experience risk for extreme traffic unless transit systems 

could return to COVID-19 safe transit systems with a high level of service, in terms of route availability, 

frequency, and capacity [84]. Further, for other urban regions in the US, Wilbur et al. [85] found that 

decreased transit ridership in 2020 tended to be lowest during peak commute hours—the focus of the 

current study. As such, we would expect that the results derived in the current analysis would look 

different for 2020 and perhaps 2021, such a decline in public transit ridership is expected and is 

hypothesized to lead to declines in both the multimodal and non-vehicle commuting classes, as these 

 
11 See Appendix A for further details on measures of multimodality.  
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commuting classes include public transit use. The decline in non-vehicle commuting class outcomes is 

expected to be most pronounced, as 53.4% of current non-vehicle commuters in the sample used public 

mass transit and 32.8% used buses (Table 3). Many of these transit riders would likely switch to personal 

vehicles to commute if they owned them, which would increase the unimodal commuting class rate in the 

sample as people return to their offices. Alternatively, as many non-essential workers had the option to 

work from home in 2020, there may have been an have been a shift towards remote work across the 

current sample in 2020 relative to 2018; as such, the share of non-vehicle workers would be expected to 

increase. In either case, the SF Bay Area is currently working towards a recovery plan to restore service, 

increase public transit accessibility, and increase public transit demand as of 2021 [86].  

 

5. Conclusion 
This study revealed associations between location-based metrics and reported importance of 

transportation attributes (e.g., making multiple stops, engaging in other activities) and commuting styles 

adopted by the public. Planning and policy implications of this work suggest the importance of taking 

these factors into consideration when designing transportation mode systems and investing in emerging 

technologies such as shared ridehailing services and automated vehicles. Future work should investigate 

whether these patterns hold in other urban regions, as well as over time to investigate how perturbations to 

the transportation system (e.g., closures or other adjustments made in response to COVID-19) and new 

technologies affect mode choice. A deeper understanding of the interactions between the transportation 

environment, human behavior, public health, and available technology may help target specific 

unimodality reduction efforts as urban regions in the U.S. strive to reduce personal vehicle use and 

transition to more sustainable and emergent transportation modes.  
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Chapter 2: Organizational Absorptive Capacity and Resilience Under 

Compound Threats: Learning from Federal Agency Perspectives 

 
 

1. Introduction 
Communities around the world are witnessing a rise in two or more natural and/or human-caused 

threats that co-occur (De Angeli et al., 2022; Ridder et al., 2022; Zscheischler et al., 2018; Cutter, 2018). 

These co-occurring threats—herein, compound threats—are predicted to increase in frequency and 

severity (IPCC, 2022). In the United States, governments and other hazard management organizations 

(e.g., American Red Cross) are responsible for preparing for, responding to, and mitigating the risks 

posed to humans, ecosystems, and critical infrastructure by compound threats. Thus, hazard management 

organizations must be resilient and adapt to highly uncertain and complex compound threats to fulfill 

critical missions and provide support for vulnerable communities (Quigley et al., 2020; National 

Response Framework, 2020; Seville et al., 2008). In these compound threats, federal agencies make 

critical operational decisions, such as where and when to allocate scarce resources; often, these decisions 

must be coordinated rapidly while balancing multiple objectives and considering multiple sources of risk 

(Izumi et al., 2022). For example, firefighters in recent years have had to combat increasingly severe 

wildland fires against the backdrop of the COVID-19 pandemic (Thompson et al., 2020). Additionally, 

severe weather events including the 2021 Texas Winter Storm have challenged public health agencies’ 

ability to provide COVID-19 testing, vaccination, and treatment continuity (Traynor et al., 2021). It is 

projected that climate change and biodiversity degradation will increase the emergence and transmission 

of infectious diseases such as COVID-19 (Williams et al., 2021), showing the interconnectivity of and 

future potential for compound threats. Compound threats, including but not limited to infectious disease 

spread and natural hazards, are forecasted to increase in frequency and severity given climate change and 

increasingly interconnected critical infrastructure systems (IPCC, 2022; Zscheischler et al., 2018). Hence, 

there is an acute need to understand how hazard management organizations can be more resilient and 

adaptive in an everchanging compound threat landscape to meet the needs of communities more nimbly 

and successfully. 

 Hazard management describes the science of managing complex systems and multidisciplinary 

personnel to prepare for, absorb, recover from, and adapt to extreme events (U.S. Department of Health & 

Human Services, 2012). Organizations involved in hazard management must consider and weigh 

multiple, often conflicting, objectives, such as minimizing public and personnel health and safety risks, 

critical infrastructure impacts, and ecological damages (Marcot et al., 2012; de Almeida et al., 2017). As 

hazard management organizations face and manage disruption to protect communities, infrastructure, and 

ecosystems, their resilience is essential. Organizational resilience is defined as the continuity and 

restoration of organizational services and functions despite adverse events (Hutton et al., 2021; Lee et al., 

2013; Connelly et al., 2017). Continuity of federal agency support and services over the course of threats 

and hazards may be vital for community wellbeing, particularly during compound threats (Hutton et al., 

2021). In the threat and hazard context, organizational resilience is closely linked to the broader concept 

of disaster resilience, defined as a system’s ability to resist, absorb, recover from, and adapt to the effects 

of a hazard(s) in a timely and efficient manner to preserve and restore critical functions (United Nations 

Office for Disaster Risk Reduction , n.d.).  Federal agencies, such as but not limited to the Federal 

Emergency Management Agency (FEFMA), are often critical stakeholders involved in managing 

uncertain threats that involve rapid incident prioritization and resource allocation decisions to protect 

vulnerable communities and public lands (FEMA, 2019).   

Organizational resilience characteristics are critical to identify and draw upon, as they may 

facilitate mission fulfillment, prioritization of response efforts, and equitable and timely distribution of 

critical resources. Various studies have assessed the characteristics and practices of organizations that 

facilitate or inhibit organizational resilience (Lee et al., 2018, Barasa et al., 2018). Largely inspired by 

COVID-19 co-occurring during natural hazards, recent work has started to explore organizational 
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resilience and adaptive capacity under compound threats (Campbell et al., 2021). For instance, existing 

research has explored the organizational resilience of non-profits during the compound threat of the 

COVID-19 pandemic in hurricane-prone New Orleans through interview and survey-based approaches 

(Hutton et al., 2021). Similarly, research with government, non-profit, and community representatives in 

the Gulf Coast has explored hurricane evacuation and sheltering protocols during the COVID-19 

pandemic (Marshall et al., 2021; Yusuf et al., 2021; Whytlaw et al., 2021; Shultz et al., 2020), 

characterizing organizational operations, constraints, and resilience. While there is conjecture about the 

challenges that hazard management agencies face under compound threats (Kruczkiewicz et al., 2021), 

relatively few studies have explored compound threat management from the perspective of practitioners, 

particularly for threats aside from the COVID-19 pandemic. Exploratory studies that use data from the 

perspective of practitioners who have responded to such events should be conducted to draw on lessons 

learned and efforts needed to support adaptive decision-making and organizational resilience for future 

compound threat events.  

Compound threats may be natural and/or anthropogenic in nature and occur over acute to chronic 

timeframes. Here ‘compound threats’ are defined as the confluence of two or more individual threats that 

occur in the same geospatial location during the same time period, such that response and/or recovery 

efforts necessary to respond to one threat overlaps with the response and/or recovery efforts of another. 

This definition is intentionally broad to capture the diverse range of natural, anthropogenic, and socio-

technical threats that may occur over a range of geo-temporal scales (UNDRR, 2021). Acute timeframes 

have definitive start and end points while chronic timeframes present ambiguous start and end points.  

An example of a compound threat involving two acute threats include Hurricane Irma and 

Hurricane Maria. On August 30th, 2017, Hurricane Irma formed in the open Atlantic, growing in strength 

to a Category 5 hurricane. Irma struck Barbuda on September 6th, while sending strong winds and rains 

towards Puerto Rico. Irma caused significant, but limited damage along Puerto Rico’s northern coast, 

disrupting power for over 1 million people, killing 4, and causing $700 million in storm damages (Cox et 

al., 2019). Irma’s impact on the Virgin Islands and other Caribbean atolls was much larger: over $77 

billion in damages and over 50 deaths. Two weeks later, while Hurricane Irma recovery efforts were 

ongoing, Hurricane Maria formed east of the Lesser Antilles, rapidly intensifying to a Category 5 storm. 

It struck Dominica on September 18th, weakened to a Category 4 Hurricane, and then struck Puerto Rico 

on September 20th. Almost 3,000 Puerto Ricans died, most of the island lost power, and over $90 billion 

in damages were left in the storm’s wake (Cox et al., 2019). Although two weeks apart, the devastation of 

and limited recovery after Maria were exacerbated by the earlier arrival of Irma. Irma’s direct impact on 

Puerto Rico was limited, but it drew the resources of federal and local agencies and left Puerto Rico 

underprepared for another storm. FEMA’s only emergency stockpile in the Caribbean was located in 

Puerto Rico, and only 17% of the stockpile remained after Irma, with only 10% of FEMA’s emergency 

water, tarps, and cots available for use during and after Maria. Hurricanes Irma and Maria exemplified the 

operational and logistical hurdles associated with incident prioritization and resource allocation given 

back-to-back disasters with overlapping hazard management cycles.  
Overall, there has been limited research exploring organizational resilience in the context of 

compound threats, particularly for United States federal agencies. A focus on exploring the lived 

experiences of federal agency personnel who use US federal hazard management protocols, such as 

FEMA’s National Incident Management System (NIMS), would be especially illuminating. To the 

author’s knowledge, there has been limited empirical research on federal agencies’ ability to cope with 

compounding threats based on predetermined hazard management decision-making processes and to 

adapt to evolving threat situations. The ability to cope (herein, absorptive capacity) and to adapt (herein, 

adaptive capacity) to evolving threats are considered key facets of organizational resilience (Lee et al., 

2013; Linkov et al., 2018; Wood et al., 2019). Deeper understanding of how existing hazard management 

processes absorbed and adapted to compound threat events can help practitioners and researchers identify 

the internal barriers and external stressors that may hinder the resilience of federal hazard management 

organizations. As such, this exploratory study seeks to provide federal agency personnel insight into the 

characteristics and strategies that enable U.S. federal agencies to be resilient and adaptive when facing 
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compound threats based on lived experiences. Interviews were used to characterize the field experiences 

of federal agency personnel, whose expertise and knowledge of organizational decision-making processes 

and lessons learned can yield insights to future systems-level improvements (Austhof & Brown, 2021; 

Timberlake et al., 2021; Kim et al., 2007). Here, U.S. federal agency personnel involved in threat 

management were interviewed and surveyed. Given the saliency of the COVID-19 pandemic co-

occurring during other natural and anthropogenic threats and hazards, federal agency personnel 

perspectives and lessons learned were assessed regarding this global pandemic as well as other compound 

threat experiences.  
 

1.1. Background 

Existing and relevant federal hazard management frameworks, including coordination structures 

and decision support tools, were reviewed to contextualize existing federal and interagency hazard 

management processes. Organizational resilience definitions, characteristics, and actions were also 

reviewed to contextualize this study. When possible, both hazard management frameworks and 

organizational resilience are discussed in this study in the context of compounding threats.  

Extension beyond risk. Multi-hazard risk analyses have been developed to assess the potential collective 

effect of two or more risks when they interact in compound threat scenarios (Wang and Wang, 2020; 

Center for Resilient Cities and Landscapes, 2020). Multi-hazard risk assessments can estimate the risks 

associated with complex simultaneous or subsequent threats, for which the combined, collective risk may 

be greater than the sum of its parts (De Angeli et al., 2022; IPCC, 2022; Center for Resilience Cities and 

Landscapes, 2020; Wang et al., 2020; Hariri-Ardebili, 2020). Further, given projections for increasing 

frequency and severity of compound threats, prior policy work has recommended that organizations use 

risk frameworks that adapt to risks over time, rather than eliminate them completely, which may require 

technical and institutional changes via social learning and adaptation (Essen et al., 2021). As there is 

limited research on local to regional feedback processes that may predict the occurrence and 

consequences of compound threats (IPCC, 2022; Prudhomme et al., 2014; Sillmann et al., 2017; Hao et 

al., 2018; Miralles et al., 2019), it is essential for federal organizations to address not only risk potential, 

but how they can be resilient if faced with novel and/or highly uncertain compound risks. Resilience 

presumes that various disruptions may occur over time and emphasizes the ability to recover while 

maintaining critical functions and subsequently adapt the system to improve planning and response 

processes for future threats (Linkov & Trump, 2019). The shift in thinking toward a resilience-based 

paradigm, which extends risk-based paradigms, signals a recognition that while risk-based approaches 

work well under conditions of relatively low uncertainty and complexity, compounding and cascading 

threat scenarios present novel, complex system-level constraints that can potentially exacerbate 

disruptions (i.e., resource constraints; cascading failures across interconnected critical infrastructure 

systems) (Pescaroli et al., 2021).  

 
Importance of organizational resilience. Generally, resilience is a temporal and multidimensional, 

sociotechnical phenomenon that addresses how systems or individuals manage uncertainty (Linkov et al., 

2013; Lee et al., 2013). The term ‘resilience’ has been studied across a diverse array of disciplines, such 

as psychology, public health, environmental science, engineering, and economics (Koliou et al., 2019; 

Haimes, 2009; Hicks-Masterson et al., 2014; Klein, Nicholls, & Thomalla, 2003; Manyena, 2006; Norris 

et al., 2008). Further, resilience has been applied across varying scales, from individual-level frameworks 

and metrics related to human psychology or infrastructure including bridges and dams to systems-level 

scales, such as social networks, socio-ecological systems, supply chains, and interconnected critical 

infrastructure networks (Koliou et al., 2019). Though resilience-based metrics and models differ by 

application areas and levels of analysis, they share the common understanding that resilience can enable 

systems to prepare for, respond to, recover from, and adapt to both foreseen and unforeseen disruptions 

(PPD-21, 2013; Linkov et al., 2013). Organizational resilience has been conceptualized and assessed 

based on factors internal to the organization (i.e., vertical or horizontal hierarchical structures, leadership, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508589/
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innovation) as well as on external considerations, such as effective partnerships (Resilient Organisations, 

2019).   

 Resilient organizations are posited to be those that are prepared for and can adapt to stressors or 

disruptions, including novel or  “worst-case scenarios” (Kantur et al., 2012), with the ability to learn 

(Weick et al., 2005), innovate (Kendra and Wachtendorf, 2003), and adapt (Vogus and Sutcliffe, 2012) to 

maintain critical functioning (Linkov et al., 2013). Various Presidential directives and orders have tasked 

U.S. federal agencies with improving resilience following catastrophic events such as Hurricane Katrina 

and Superstorm Sandy, emphasizing flexible and adaptive ways for critical services to recover given 

disruption (Larkin et al., 2015). Further, federal agencies have begun to adopt resilience-focused 

approaches to hazard management. It is particularly important for federal agencies to be resilient given 

their duty of care to the public; without critical infrastructure and critical service provision (i.e., water, 

transportation, healthcare, power, etc.), communities may be less apt to respond and recover from a 

hazard (Lee et al., 2013; Cutter et al., 2008).  

Organizational resilience is linked to community resilience, which is defined as communities’ 

ability to plan for, absorb, recover from, and adapt to natural and/or human-caused disruptive events 

(PPD-21, 2013; Koliau et al., 2019). Such disruptions can damage or hinder critical infrastructure systems 

(i.e., public and private built environments, cyber infrastructure, health care infrastructure, etc.), economic 

systems, and/or social systems.  While this chapter focuses on organizational resilience rather than 

community resilience, the resilience of federal agencies involved in hazard management can support 

affected communities both directly and indirectly. Federal agencies have programs that can directly 

contribute to community resilience by addressing community emergency response, preparedness, 

security, risk mitigation and communication, as well as physical and economic recovery post-disruption 

(Koliou et al., 2019). For instance, the U.S. Department of Homeland Security has recently implemented 

the Building Resilient Infrastructure and Communities (BRIC) grant program to support states, local 

communities, and tribes to proactively invest in climate resilient infrastructure (US DHS, 2021). Federal 

resilience programs tend to evolve following disasters (e.g., Hurricane Katrina, Hurricane Sandy) to more 

adequately and equitably address community preparedness, emergency response, recovery, and mitigation 

based on community disruption experiences (Congressional Research Service, 2017). Organizational and 

community resilience are further linked in that short- and long-term community recovery post-hazard can 

indicate if and how organizations can improve their hazard management approach to better support the 

communities that they serve (Koliou et al., 2019). To facilitate community resilience to threats and 

hazards—including compound threats and hazards— hazard management organizations must be resilient 

themselves. 

 Compound threats may present complex decision spaces that are uncertain, and in some cases, 

novel, with the potential to pose multiplicative risks (Zscheischler et al., 2018). To be resilient in the face 

of compound threats, hazard management agencies must plan for and adapt to uncertainty in dynamic and 

complex socio-ecological systems (Essen et al., 2021; Nowell et al., 2018). Understanding the internal 

barriers and external stressors that challenge federal agency adaptive capacity in facing compound threats 

is particularly pertinent given changing conditions in the natural and built environments. To the author’s 

knowledge, there is limited research that explores U.S. federal agency organizational resilience, adaptive 

capacity, and adaptive decision-making processes for compound threats.  

Existing US hazard response frameworks.  A brief review of existing U.S. federal hazard management 

frameworks helps to understand if and how federal agencies have adapted to compound threats, 

considering operations, inter-agency coordination, and decision-making processes. 

Various directives, standards, and hierarchical structures are in place across the U.S. federal government 

that clarify jurisdictional and agency-specific responsibilities given a threat or hazard. Such frameworks 

provide a general organizational structure for incident response. Generally, if an incident affects a local 

community, local hazard management resources will be deployed. If the incident demands more resources 

than the community can supply, then state resources can be requested and deployed. Should the incident 
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demand more resources than the state can supply, then federal resources can be requested and deployed 

after “emergency declarations” are filed (FEMA, 2022).  

Following the 2001 terrorist attacks, the National Incident Management System (NIMS) was 

enacted by the U.S. DHS in 2003 to provide a nationwide and standardized approach for responding to 

any type of incident regardless of scope, size, or complexity. The NIMS addresses all phases of the hazard 

cycle: planning, response, recovery, and mitigation (FEMA, 2017). Further, NIMS was designed to 

integrate multi-jurisdiction governments, private sector organizations, tribes, and NGOs in hazard 

management; as such, it is considered applicable to all stakeholders with incident management and 

support responsibilities (FEMA, 2017). The NIMS provides a framework for multi-jurisdiction and cross 

sectoral coordination by clarifying hazard management responsibilities for the Incident Command System 

(ICS) teams, Emergency Operations Center (EOC) structures, and Multi-agency Coordination System 

(MACS) units. Hazard management responsibilities addressed by the NIMS include: (i) resource 

management, (ii) command and coordination, and (iii) communications and information management.  

The NIMS provides guidance for resource management and coordination, as most organizations 

and jurisdictions do not own full fleets of critical resources that may be needed before, during, and after 

threats and hazards (FEMA, 2017). Thus, NIMS addresses multi-jurisdiction resource coordination and 

collaboration, while also addressing private sector and volunteer organization support. During an incident, 

incident objectives are determined and strategic decision-making processes guide the operational 

strategies and tactics necessary to fulfill those objectives. Then, the resources needed for response tactics 

are requested and may be allocated and mobilized to the incident if resources are available and the 

incident is prioritized (FEMA, 2017). After resources are no longer needed, they are demobilized back to 

their original location (FEMA, 2017). 

The Incident Command System (ICS) is a critical component of NIMS’ command and control 

approach to hazard management that is involved in resource management. ICS focuses on standardizing 

on-scene response to all hazards events across all responding organizations. The ICS is designed to clarify 

key response-related tasks and overcome any confusion that may arise when multiple agencies and 

jurisdictions mobilize during major disasters (Tierney, Lindell, and Perry, 2001). Theoretically, the ICS is 

designed to provide streamlined coordination structures to diverse threats and hazards types. As a system, 

the ICS is intended to standardize multi-agency and multi-jurisdiction organization and execution of 

hazard response (Jensen and Thompson, 2016, pg. 159). The ICS is designed to be flexible and scalable 

across incident types, complexity, durations, and sizes (Jensen and Thompson, 2016, pg. 160). Further, 

the ICS offers differing approaches to singular incident command and complex incident command, 

wherein complex incidents can include two or more concurrent threats/hazards occurring in similar 

geographic locations. Complex incidents, therefore, align with this chapter’s definition of compound 

threats, and entail the deployment of Unified Command and Unified Area Command structures. Unified 

Command occurs when an incident spans multiple jurisdictions (i.e., if a wildland fire were to spread to 

both state and federally owned lands) and enables joint management of incident activities between 

multiple jurisdictions, though each unified jurisdiction maintains responsibility for its personnel (FEMA, 

2017). When there are multiple hazards that co-occur geospatially and temporally, Unified Area 

Command may be enacted. Unified Area Command is relevant when entities responding to compound 

hazards request similar resources, such as during multiple, co-occurring wildland fires. Unified Area 

Command, therefore, is one organizational structure that federal and cooperating agencies have developed 

to manage complex, multi-incident events (FEMA, 2017).   

Despite the intended flexibility and scalability of the ICS, practitioners and academics have 

different perspectives on its utility. For instance, some research has posited that the ICS system is 

inflexible, slow, and less adaptive to threats and task environments that require rapid decision making 

under uncertainty (Waugh, 2009, pg. 172). Academics have rarely studied ICS, and to the author’s 

knowledge, there is very little research on the efficacy and resiliency of the ICS given compound threats. 

The characteristics of the ICS that are proposed to promote interagency hazard response (i.e., flexibility, 

adaptability, and applicability to a robust set of potential incidents) align with the characteristics 

associated with organizational resilience. However, command-and-control structures such as the ICS have 
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been critiqued for their horizontal, hierarchical chain of command, which may give Incident Commanders 

and agency administrators disproportionate influence in strategic and tactical decision-making (Jensen 

and Waugh, 2014). Incident Commanders and Agency Administrators have exhibited cognitive decision-

making biases, such as loss aversion, discounting, and status quo bias when evaluating and deciding 

between wildfire management strategies (Wilson et al., 2011; Rapp et al., 2020). Therefore, the 

hierarchical structure of ICS systems, as well as broader resource allocation systems such as the National 

Interagency Fire Center (NIFC), may be subject to human decision-making biases. More broadly, 

research has found that the intention of the NIMS to standardize emergency management is contingent on 

policy characteristics (i.e., objectives, incentives, financial and technical capacity), management 

preferences (i.e., perceived utility of NIMS), local resource capacities, and inter-organizational 

relationships (i.e., trust, cultural values) (Jensen and Youngs, 2015). Given the current contrast between 

the perspectives of practitioners and academics on the utility of NIMS and command-and-control systems, 

the current paper assesses the absorptive and adaptive capacities of current hazard management 

frameworks in the context of compound threats, with the goal of identifying potential strengths barriers to 

compound hazard management and resilience.  

      In addition to hazard management frameworks, technical advances in forecasting hazard 

occurrence probabilities in modeling loss potential via integrated weather and geospatial data may 

facilitate risk-informed decision-making (Rapp et al., 2020; Linkov et al., 2014). Further, some federal 

agencies have begun using decision support tools to streamline and make strategic, risk-informed 

decisions. For instance, the Wildland Fire Decision Support System (WFDSS) is used by wildland fire 

agencies to inform wildland fire response strategies based on integrated fire modeling and geospatial 

analyses (WFDSS). WFDSS supports broad and strategic decision-making for Incident Management 

Teams (IMTs) by integrating fire behavior, weather, and societal risk factors via spatial data layering (i.e., 

structures, communities) (Rapp et al., 2020). Using WFDSS, fire behavior analysts and fire managers can 

forecast fire behavior and spread probabilities based on current and forecasted weather, proximal fuels, 

and values at risk (Thompson, 2015). Decision-support tools like WFDSS are intended to facilitate risk 

communication and the development of strategic and tactical fire responses within and between 

firefighting crews. Similarly, HURREVAC is a decision support tool used by the National Hurricane 

Program, which is administered by FEMA, USACE, and NOAA through the National Hurricane Center. 

HURREVAC offers a web platform for government emergency management of hurricanes, storm surges, 

and floods (Becker et al., 2021; Kirlik, 2007). It includes the ability to forecast storm surges, excessive 

rainfall outlooks (1 – 3 days out with probabilistic forecasts) and includes Storm Simulator and Potential 

Track Area (Cone Error) to test potential scenarios based on NHC forecasting (NOAA, 2022).  

 

Concept model. The “disaster resilience of place” (DROP) model (Cutter et al., 2008) and existing 

frameworks for organizational resilience given environmental threats (Lee et al., 2013; Linkov et al., 

2013) were adapted to explore multi-phase, systems-level federal agency resilience to compound threat 

disruption. We adapted the core constructs from the DROP model to fit the organizational perspective, as 

Cutter et al. (2008) claimed that resilience given hazards is informed by inherent, antecedent conditions as 

well as adaptive capacities, both of which can be applied to infrastructure, institutional, organizational, 

social, and economic systems. Further, the DROP model’s cross-sectoral coordination structure aligns 

with federal hazard management frameworks, such as the “whole community” approach promoted by 

FEMA’s National Incident Management System (FEMA, 2022). Accordingly, the DROP model 

motivated the general framework of federal agency resilience under compound threats. The core 

constructs posited by the DROP model are defined in Table 1.  

  

https://www.fema.gov/emergency-managers/nims
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Table 1. Definitions for the deductive parent codes related to the DROP model (Cutter et al., 2008) and 

organizational resilience constructs. 

Construct Definition 

Antecedent Conditions “…multiscalar processes that occur within and between social, natural, and built environment 

systems. Antecedent conditions include both inherent vulnerability and inherent resilience…” 

(Cutter et al., 2008, pg. 602).  

Absorptive Capacity “Absorptive capacity (or threshold) is the ability… to absorb event impacts using predetermined 

coping responses…can be exceeded in two ways. First, if the hazard event is so large it 

overwhelms local capacity; and second if the event is less catastrophic, but existing coping 

responses are insufficient to handle the impact” (Cutter, 2008, pg. 603).  

Adaptive capacity The ability and capacity to adapt to changing environmental conditions through flexibility, 

improvisation, and organizational learning  (Barasa et al., 2018; Cutter et al., 2008). 

Recovery “… degree of recovery [is] a continuum ranging from high to low. If… absorptive capacity is not 

exceeded, higher rates of the recovery are reached quickly. If the absorptive capacity is exceeded 

and the adaptive resilience process does not occur, a lower degree of recovery may result… if the 

absorptive capacity is exceeded and the adaptive resilience process does occur… more likely to 

achieve a higher degree of recovery” (Cutter et al., 2008, pg. 603).  

Organizational Resilience Organizational planning, absorptive capacity, adaptive capacity, and recovery that contribute to the 

organization’s ability to maintain critical functioning during ‘business as usual’ and given 

disruption; contingent on internal and external relationships (Cutter et al., 2008; Lee et al., 2013; 

Barasa et al., 2018, Wood et al., 2019). 

 

The antecedent conditions of the system (here, a federal agency) are characterized by social systems, 

natural environmental systems, and built environment factors. At some point, this system will face a 

disruption—in this case, a compound threat. Then, the system may absorb the disruption based on 

predetermined coping strategies, aiming to fulfill critical functioning and recover to a high degree. 

However, the system may face resource, time, and/or sociopolitical constraints that exceed its ability to 

absorb and efficiently recover from the disruption (Cutter et al., 2008). Agencies may need to adapt when 

presented with complex, sometimes novel compound threats (e.g., the confluence of COVID-19 and 

natural hazard); adaptation is needed when more conventional, predetermined coping processes (i.e., 

resources, information and decision-making processes, and coordination networks) prove insufficient to 

manage the current threat (Cutter et al., 2008). Thus, an organization’s adaptive capacity—which has 

been considered a critical facet of organizational resilience—can influence how the organization copes 

with and recovers from disruption. Adaptive capacity has been associated with flexibility, innovation, 

improvisation, and learning (Barasa et al., 2018). As compound threats may pose greater risks than 

singular threats, absorptive capacity may be more likely to be exceeded, in which case adaptive capacity 

will be critical (i) to help cope with and recover from incidents and to (ii) provide insights for how 

organizations can mitigate and plan for future threats. 

Adaptive capacity has been considered a core facet of organizational resilience (Lee et al., 2013), 

though organizational resilience is considered a broader set of planning, absorptive, and adaptive 

processes and characteristics that can facilitate organizational functioning despite disruption. Extant 

literature identifies characteristics associated with organizational resilience, including for organizations 

specializing in hazard response. The development of resilience-measurement scales is quickly evolving 

because such scales can facilitate interaction between academia, practitioners, and policymakers (Cutter 

and Derakhshan, 2019; Pescaroli et al., 2020). Organizational resilience is often conceptualized as a 

property, ability, or capability that can be improved over time (Ruiz-Martin et al., 2018; Larkin et al., 

2015). As such, resilience is a continuously moving target that contributes to performance (i.e., provision 
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of critical functions and services) that is maintained during hazards (Lee et al., 2013; Mitroff, 2005), and 

driven by the ability to plan for and adapt to complex and uncertain disruptions, such as compound 

threats. Organizational resilience can be assessed according to the physical properties of the organization 

(i.e., resource availability, resource scarcity, communication channels, technology, etc.), as well as 

according to organizational practices, standards, and culture (i.e., organizational structure, leadership, 

training, experience) (Cutter et al., 2008; Tierney and Bruneau, 2007). Here, organizational resilience 

indicators identified by the Relative Overall Resilience (ROR) framework (Lee et al., 2013) were used as 

deductive codes and were categorized by three main components found in existing empirical literature: (i) 

planning, (ii) adaptive capacity, and (iii) internal and external relationships (Organisational Resilience, 

2019; Lee et al., 2013; Cutter et al., 2008; Larkin et al., 2015; Wood et al., 2019; Linkov et al., 2013).  

 

1.2. Research questions. 

Recent literature has identified that hazard management may be increasingly complex given 

compound threats, yet few articles have holistically addressed the unique challenges, constraints, and 

opportunities of compound threat management from the perspectives of practitioners. Literature that has 

assessed compound threat management from practitioner perspectives has tended to focus on threats 

involving the COVID-19 pandemic (Yusuf et al., 2020; Hutton et al., 2021). This work aims to capture a 

more diverse set of federal compound threat management approaches based on the lived experiences of 

U.S. federal agency personnel. To do so, we explore the following research questions using a qualitative 

approach: 

1. What types of compound threat events have federal agency personnel experienced in the 

current threat landscape across the US, including but not limited to the COVID-19 pandemic? 

2. How do federal agencies currently manage compound threats?  

3. What internal and/or external challenges, constraints, and stressors do agencies face in 

adapting to compound threats, relative to their management of singular threats? 

4. What organizational characteristics, practices, and resources support or inhibit organizational 

resilience and adaptation, particularly as they relate to compound threat operations? 

 

2. Methods 
Semi-structured interviews were conducted to obtain exploratory insights into federal agencies’ 

self-reported compound hazard experiences, ability to absorb and adapt to compound hazards, and 

characteristics and actions taken to facilitate or inhibit organizational resilience. Complementary follow-

up surveys were distributed to participants, and survey results were used to validate interview themes and 

capture broader perspectives on agency operations, constraints, and risks that may not have been 

discussed at the time of the interview.12 Descriptive statistics of survey responses are included in 

Appendix 2C.  

2.1. Interview protocol.  

We used a set of guiding interview questions during each interview session, though conversations 

were not limited exclusively to these questions (Rapp et al., 2020; Patton, 2002). (See Appendix 2B for a 

full list of guiding interview questions). Interview questions were informed by existing federal hazard 

management frameworks and empirical organizational resilience models (FEMA, 2022; Resilient 

Organisations, 2019; Lee et al., 2013; Cutter et al., 2008).  Conversations focused on identifying and 

 
12 After each interview session, participants were asked to complete a follow-up survey that was distributed via a Qualtrics URL. 

Survey responses were anonymous, and the average completion time was [7] minutes. Follow-up survey questions captured 

hazard management objectives and constraints as expressed in interviews, as well as variations in absorptive capacity and 

organizational resilience for singular versus compound threats (Wong-Parodi et al., 2016).  
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understanding the pathways between social and technical capabilities, coordination structures, and 

challenges that federal agencies face in compound threat management.      

2.2. Data collection.  

We recruited a total of 33 federal agency personnel to participate in the semi-structured 

interviews. Participants had been employed for at least one year by federal agencies involved in hazard 

management, and participants had expertise related to hazard preparation, response, recovery, and/or 

adaptation. Targeted federal agencies included those involved in environmental hazard management (i.e., 

FEMA, Army Corps of Engineers, US Forest Service). Participants were recruited from the author’s 

professional and academic contacts through a purposive snowball sampling conducted between October 

2021 and May 2022 (Rapp et al., 2020; Naderifar et al., 2017; Volken et al., 2017). Table 2 shows the 

federal agencies and U.S. geographic regions corresponding to the set of participants, as well as the mean 

years worked in their current agency. Participants were primarily employed by the U.S. Department of 

Homeland Security (DHS) (42%) and the U.S. Department of Agriculture (36%). Participants resided and 

operated across a diverse set of U.S. geographic regions to capture a range of natural and anthropogenic 

threat types. Approximately 45% indicated that the primary hazard that they respond to in their current 

position is wildland fires, followed by hurricanes (33%) and inland flooding (15%). Additionally, as 

hazard management is generally conceived across four phases, the hazard management phase(s) that each 

interviewee was primarily involved in at the time of the interview was captured. Across the sample, there 

was a particular focus on the ‘response’ of hazard management, which captured operations, logistics, and 

field work deployment (Khan et al., 2020). Over half of the participants (55%) were involved in the 

planning/preparation phase of hazard management. 

 

Table 2. Participant characteristics of the 33 anonymous and confident federal agency personnel 

interviewed. 

Years employed by federal agency mean (SD) 16.3 9.6 

Participant Characteristics n % 

Federal Department   

US Department of Homeland Security 14 42% 

US Department of Agriculture 12 36% 

US Department of Defense 4 12% 

US Department of the Interior 3 9% 

US Geographic Area   

National 5 15% 

Western US (states) 8 24% 

Eastern US (states) 6 18% 

Southern US (states) 5 15% 

Midwest (states) 4 12% 

Primary Hazard Type   

Fire  15 45% 

Other 18 55% 

Role(s) within Hazard Management Phases   

Planning/Preparation 18 55% 

Response 19 58% 

Recovery 6 18% 

Mitigation/Adaptation 2 6% 

 

Semi-structured interviews were conducted using remote technology (Zoom) between November 

2021 and May 2022. Interviews lasted 45 – 120 minutes. Calls were recorded, anonymized, and 

transcribed to remove identifiable information. Carnegie Mellon University’s Institutional Review Board 

for the Protection of Human Subjects approved the research protocol (IRB approval number: 
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STUDY2020_00000248). Informed consent was secured from participants, who were not compensated 

for their participation. Two coders were trained by the author, and both were enrolled in graduate 

programs in public policy with experience in qualitative data analysis at the time of coding. The coders 

individually coded transcripts via deductive and inductive methods, and then codes were jointly compared 

and discussed across the research team to validate findings (Yusuf et al., 2021). The inter-rater agreement 

score of the coding team was 0.78 – 0.81, which is accepted as a valid level of inter-rater agreement 

representing mutual understanding of the codebook (McHugh, 2012) (See Appendix 2B for details on 

inter-rater agreement calculations). 

 

2.3. Data analysis.   

A master list of codes was developed during the transcript coding process. The coders used both 

inductive and deductive coding schemes to code each anonymized interview transcript via MAXQDA, a 

qualitative data analysis software. Deductive coding was based on both federal hazard management and 

operations policy and guidelines (i.e., National Response Framework) and resilience literature (i.e., Cutter 

et al., 2008; Linkov et al., 2013; Resilient Organisations, 2019). Thus, themes were connected to the 

broader literature on hazard management, public policy, and organizational resilience (Yusuf et al., 2021; 

Lee et al., 2013; Cutter et al., 2008; National Response Framework, 2019; Linkov et al., 2013). 

Additionally, inductive coding via thematic analysis was used to identify emergent patterns between 

participant responses. Inductive thematic analyses identified patterns across the qualitative interview data 

not identified by predetermined topics and constructs (Rapp et al., 2020; Braun and Clarke, 2006; 

Charmaz, 2014). After coding was complete, the author organized existing codes into themes related to 

compound hazard experiences, compound hazard absorptive capabilities (i.e., objectives, priorities, 

constraints), and organizational resilience in compound threats. (See Appendix 2B for details on 

codebook development.) 

We developed a conceptual framework to explore federal agency antecedent conditions, 

absorptive capacity, and organizational resilience under compound threats (Table 1). Framework themes 

were developed for the following parent codes derived from existing literature on hazard management and 

resilience: (i) agency antecedent conditions and recalled compound threat experiences, (ii) compound 

threat absorptive capacity, (iii) compound threat adaptive capacity, and (iv) organizational resilience. The 

thematic analysis results reflect the coders interpretation of participant narratives (Wong-Parodi et al., 

2017). Qualitative assessments of interview responses include interviewee quotes that clearly articulated a 

perspective on an interview response, as well as the count and percent of total participants who discussed 

a code. Further, we compared responses from personnel who are primarily involved in wildland fire 

management to participants primarily involved in other hazard types (e.g., hurricanes, flooding) to assess 

unique insights to compound threat management by hazard type. In addition to participant counts, themes 

were developed based on the total number of segments of text (e.g., 2-4 sentences in length) that were 

categorized to a given code (Browne et al., 2021). The same segment of text could contain multiple codes, 

referred to as code intersections (Browne et al., 2021).  

Themes emerged across the data based on participant code counts, code segment counts, and code 

intersections (i.e., code co-occurrence). Follow-up survey results were assessed via descriptive statistics. 

Survey items quantitatively gauged singular and compound threat objectives, risks, constraints, and 

information and resource needs of federal agencies. However, the low sample size (n = 26) inhibits 

formal statistical significance tests. Descriptive statistical results are provided in Appendix 2C to offer 

informative first insights for hypothesis generation and research designs to improve understanding of 

compound threats and federal hazard management absorptive capacity.  
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3. Results and Discussion 
 

3.1. Conceptual framework  

We propose a conceptual framework of federal compound hazard management as informed by existing 

empirical work as well as analyses of the semi-structured interview transcripts. Figure 1 maps themes 

identified across the interview data according to their relation to the initial DROP and ROR conceptual 

frameworks. To adapt the DROP and ROR frameworks to the context of hazard management, the 

“absorptive capacity” and “recovery” phases—which served as parent codes in the coding scheme—

included child codes that mirrored the hazard management responsibilities addressed by the NIMS 

include: (i) resource management, (ii) command and coordination, and (iii) communications and 

information management. Figure 1 identifies the deductive and inductive coding results that emerged 

from 33 interview transcripts to explore compound threat experiences, how federal agencies absorbed 

(i.e., responded to) these threats, and if and how they adapted to fulfill mission objectives given 

compound threats. Figure 1 acknowledges that federal agency hazard management is influenced by the 

broader social, natural, and built environment of their antecedent conditions; additionally, the current 

framework is informed by inductive factors related to individual characteristics of hazard management 

personnel (e.g., career experience and duration, agency of employment, and IMT participation). Using 

this framework, we address: (i) the types of compound threats that were experienced by federal agency 

personnel, (ii) decision-making processes during compound threat events (i.e., absorptive capacity), (iii) 

the internal and external barriers that they face in adapting to compound threat events (i.e., adaptive 

capacity), and (iv) opportunities to improve organizational resilience to enhance how agencies plan for, 

absorb, recover from, and adapt to compound threat events. Figure 1 integrates the deductive ROR model 

of organizational resilience (Resilient Organisations, 2019) with inductive interview data to address 

federal agency resilience considering compound threats across the deductive hazard management phases 

(i.e., antecedent conditions, absorptive capacity, recovery).  
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Figure 1. Concept model for compound threat management. Blue shaded boxes show the deductive parent 

codes related to the phases of hazard management and to the organizational resilience parent code. Grey 

shaded boxes show how deductive codes related to the hazard management phases and organizational 

resilience components that were discussed by participants. Yellow shaded boxes represent the inductive 

coding findings that emerged across interviews. 

3.2.1. Federal agencies recall diverse compound threat experiences  

All participants indicated that their agency tends to be mindful of and plan for the possibility of 

compound threat occurrences. Generally, participants expressed that compound threats are “…extremely 

common” (Interview 8), occurring “…at least once or more, sometimes, throughout the [year]” (Interview 

20).  This aligns with findings from existing literature in that compound threat frequency and severity 

may exacerbate risks to human health and safety (Wilhelmi et al., 2021; Santana et al., 2021), critical 

infrastructure systems (Wells et al. 2022), and ecological systems (Doherty et al., 2015). The awareness 

of and experience in compound threat management have related to the generally increasing intensity of 

natural and anthropogenic threats, as well as their intersection. Most participants indicated that they had 

observed increased frequency (n = 18, 55%) and/or severity (n = 18, 55%) of natural hazards over their 

career. Personnel who have primarily managed wildland fires discussed increased natural hazard 

frequency (n = 10, 67% of fire personnel) and severity (n = 11, 73% of fire personnel) at a greater rate 

than other participants. Eleven participants (33%) attributed evolving environmental conditions to climate 

change, some claiming that there has been “…increased attention towards the effects of climate change 
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and the effects that those can have on increasing the severity of natural hazards” (Interview 2). 

Additionally, 13 participants (39%) noted that natural hazard seasons “are just getting longer” (Interview 

20), evolving into year-round threats. This observation was pronounced among fire personnel (n = 9, 60% 

of fire personnel), one of whom stated, “It's kind of this elephant in the room that people are whispering 

about, but we're not quite taking hard enough action” (Interview 20).  Though participants less frequently 

discussed anthropogenic hazards than natural, some discussed changes in anthropogenic hazard frequency 

(n = 5, 15%) and severity (n = 4, 12%). Participants attributed anthropogenic hazard changes to 

development in hazard-prone geographies (n = 8, 24%), such as within the wildland-urban interface 

(WUI) and flood-prone areas, and to increasingly interconnected and interdependent critical infrastructure 

systems (n = 5, 15%).  

Participants recalled lived compound event experiences that they encountered over the course of 

their career. Table 3 presents all compound threat recollections that represent the lived experiences of 

participants, as well as the number of participants who recalled each compound threat type. The sample of 

compound threat recollections highlights that federal hazard management agencies have been tasked with 

managing natural, anthropogenic, and socionatural13 threat types that range from chronic (e.g., COVID-

19, invasive insect populations) to acute (e.g., hurricanes, solar eclipse) timeframes. Nineteen unique 

compound threat pairs were recalled, and participants recalled an average of 1.8 comound threat 

experiences for a total of 60 compound threat discussions. Approximately 69% of the threats discussed 

were natural threat sources, 8% were anthropogenic risk sources, and 29% were socionatural threat 

sources.  Biological threats such as infectious disease outbreaks (including but not limited to COVID-19), 

injuries/fatalities, and invasive species events were considered ‘socionatural’ threats such that they are 

associated with combinations of natural and anthropogenic factors (i.e., transmission contingent on 

human behavior and protective measures) (UNDRR, 2022). 

 

Table 3. Compound threat experiences recalled by participants based on their personal lived experiences 

working for their respective federal hazard management agency. In total, 120 unique threat types across 

60 compound threat experiences were recalled by participants. Threat sources were then categorized as (i) 

natural, (ii) anthropogenic, and (iii) socionatural.   

Compound Threat  Threat Source 

Threat 1 Threat 2 Count of 

Participant 

Mentions 

Natural Anthropogenic Socionatural 

COVID Wildfire 15 1  1 

COVID Hurricane/Tropical Storm 6 1  1 

COVID Flood event 1 1  1 

COVID Earthquake 1 1  1 

COVID Cyberattacks 1 1 1  

COVID Building collapse 1 1 1  

COVID Chemical plant explosion 1 1 1  

 
13 The United Nations Office for Disaster Risk Reduction defines natural hazards as “predominantly associated with natural 

processes and phenomena”, anthropogenic hazards as “…induced entirely or predominantly by human activities and choices”, 

and socionatural hazards as “…associated with a combination of natural and anthropogenic factors, including environmental 

degradation and climate change” (UNDRR, 2017).  
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Hurricane Hurricane 8 1   

Hurricane Damaged dam* 2 1 1  

Hurricane Las Vegas shooting 1 1 1  

Hurricane Disease outbreak 1 1  1 

Hurricane Earthquake 1 2   

Wildland fire Wildland fire 11 2   

Wildland fire Landslide 1 2   

Wildland fire Personnel fatality* 3 1  1 

Wildland fire Solar eclipse viewing 2 1 1  

Wildland fire Drought 2 2   

Wildland fire Invasive insects 1 1  1 

Heat wave Remote music festival 1 1 1  

 120 unique 

threats  

83 

(69%) 

9 (8%) 28 (23%) 

* In this incidence, the dam was described to be damaged prior to the hurricane event. 

** Personnel fatalities are referred to as “Incident-within-an-incident” situations are considered accidents and/or medical 

emergencies. Prior to deployment, personnel receive training for how to deal with these emergency situations. Incident-within-

an-incident situations may not align with the current definition of compound threats, but are included in this table because these 

high risk situations were recalled by participants when asked about their compound threat experiences.  

 

The most frequently recalled compound threat experience were two simultaneous natural hazards 

(i.e., two wildland fires or two hurricanes) that affected the same geographic area at approximately the 

same time. The frequencies of mentions of simultaneous natural hazards highlighted regional 

vulnerabilities to natural hazards. For instance, the 2020 August Complex fire in California was 

associated with 38 unique ignition points that burned over one million acres and has been attributed to 

extreme environmental conditions; a lightning storm ignited the incidents, and fires quickly spread over 

the ensuing days due to high winds, heat, and vapor pressure deficits (InciWeb, 2021; Zhuang et al., 

2021). Similarly, compounding hurricanes, such as Hurricanes Irma and Maria, were recalled as 

compounding natural hazards that affected tropical cyclone-prone Caribbean islands and hurricane-prone 

Atlantic coast.  

In addition to compound threat experiences that involved two or more natural hazards, some recalled 

anthropogenic threat types. For instance, one participant recalled the 2021 Surfside condominium collapse 

in Florida that occurred during the COVID-19 pandemic; FEMA and USACE were involved in search 

and rescue efforts while both were actively involved in and cognizant of COVID-19 transmission risks 

(FEMA, 2021). Another example includes the 2017 Las Vegas shooting, which occurred soon after 

Hurricane Maria – requiring resources deployed to Hurricane Maria response and recovery to be 

demobilized and deployed to support the community affected by the shooting. The examples of 

anthropogenic sources of risk in Table 2 exemplify the diverse range of compound  threat event types; the 

diversity accentuates the need for federal agencies to absorb and adapt to complex, uncertain, and 

occasionally novel threats. The absorptive and adaptive capacity of federal agencies managing these 

events are discussed in the following sections.  

 

https://inciweb.nwcg.gov/incident/6983/
https://www.pnas.org/doi/full/10.1073/pnas.2111875118#sec-4
https://www.pnas.org/doi/full/10.1073/pnas.2111875118#sec-4


 

36 

 

3.2.2. Federal agency absorptive capacity to manage compound threats 

Participants described their agency’s absorptive capacity, or ability to cope, to fulfill mission 

objectives during compound threat events. Participants identified two critical decisions required in 

compound threat management: incident prioritization (n = 30, 91%) and resource allocation (n = 33, 

100%). Incident prioritization was defined as the risk and decision analyses involved in prioritizing 

incidents when there are multiple, co-occurring threats or incidents. As “…there’s always logistical 

limitations and resource limitations” (Interview 21), critical resource allocation decisions are based on 

incident prioritization and based on the tactical efficacy (i.e., chance of success) of resource deployment 

strategies. Federal agencies’ absorptive capacity when faced with compound threats was described to 

involve strategic, multi-objective decision-making, including trade-off analyses of risks, objectives, and 

constraints (Dunn et al., 2017). 

Participants reported that their respective federal agency plans for compound threats in part 

because they now frequently occur. Federal agency personnel expressed that they feel decision-making 

processes and organizational structures are in place to anticipate and respond to compound threats, though 

such threats present unique challenges to incident prioritization and resource allocation. Participants 

claimed that their agency plans for the “worst case” scenarios, which can include compound threats, 

particularly for natural hazard events which may co-occur due to weather and climate patterns. For 

instance, one participant explained that “…the products that the National Hurricane Center produce in 

terms of [storm] surge are very much worst case scenarios, and we need to be ready for either [the lower 

limit or worst case scenario]” (Interview 18). 

During compound threats, incident prioritization was expressed as being particularly critical, as 

compound threats present multi-objective decision spaces with multiple sources of risk. Table 4 shows the 

number of participants who described each objective as critical in incident prioritization. Nearly all 

participants (n = 30, 91%) discussed minimizing public health and safety risks most heavily (Table 4). 

Similarly, 23 participants discussed minimizing personnel health and safety risks. Participants claimed 

that protecting public and personnel health and safety for communities facing immediate, acute risks 

drove incident prioritization decisions. While most participants described that incident prioritization was 

based on fulfilling health and safety objectives, other objectives were described with more nuance, 

potentially complicating incident prioritization and resource allocation decisions.  The interview findings 

that prioritizing public and personnel health and safety align with 2001 US Federal Wildland Fire Policy, 

which indicates that protecting public and personnel health and safety should be of highest priority (Dunn 

et al., 2017). Most participants described minimizing critical infrastructure damage and private property 

protection (n = 29, 88%) in relation to incident prioritization, whereas fewer discussed minimizing 

ecological (n = 14, 42%) or cultural/historical site (e.g., cemeteries) (n = 14, 42%) damages.  

While protecting public and personnel life and safety is the primary objective across jurisdictions, 

weighing objectives can be complicated when alternatives do not necessarily pose immediate life and 

safety risks, but rather threaten infrastructure and/or ecological, cultural, or historical sites. Hazard 

response decision-makers often need to weigh the protection of these valuable assets, also known as 

‘values at risk’ (Dunn et al., 2017). The decision to prioritize incidents and resource allocation based on 

values at risk was expressed as particularly challenging among fire personnel, as wildland fire 

suppression efforts can actively protect certain values at risk over others. This leads to social/political 

pressures (n = 14, 93%) and ecological considerations (n = 10, 67%) that influence multi-objective 

decision-making, both during the response and planning phases of the hazard cycle. For instance, one 

participant described that “…the political and social side of things also affects decision making…history 

is a big driver in how we make decisions” (Interview 8), particularly if wildfires affect the same 

community in back-to-back years, as communities may still be recovering from prior fires. Economic 

considerations were discussed by fewer fire personnel (n = 7, 47%) than other hazard personnel (n = 13, 

72%), suggesting potential differences in fire agency participant’s perception of economic cost 

minimization, despite the increasing emphasis on cost constraints in recent wildfire management policies 

due to increasing fire activity across the U.S. (Dunn et al., 2017).  
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Table 4. Count of participants who discussed each objective as influencing decisions related to compound 

threat incident prioritization and resource allocation across the full sample (n = 33), for fire personnel (n = 

15), and for other hazard personnel (n = 18).  

Objective Participant 

count (% of 

total sample) 

Fire personnel count 

(% of total fire 

personnel) 

Other hazard 

personnel count (% 

of total other 

hazard personnel) 

Minimize public health/safety risks 30 (91%) 14 (93%) 16 (89%) 

Minimize personnel health/safety 

risks 

23 (70%) 13 (87%) 10 (56%) 

Minimize critical infrastructure 

damage 

29 (88%) 14 (93%) 15 (83%) 

Minimize private property damage 11 (33%) 7 (47%) 4 (22%) 

Minimize ecological damages 14 (42%) 10 (67%) 4 (22%) 

Minimize economic costs/losses 21 (64%) 8 (53%) 13 (72%) 

Minimize cultural/historical site 

damage 

14 (42%) 7 (47%) 7 (39%) 

Minimize social/political contention 26 (79%) 14 (93%) 12 (67%) 

  
While incident prioritization and resource allocation were described to be informed by 

preferences for objectives, these decisions were also informed by situational awareness of various 

constraint types (Table 5). Personnel constraints (n = 29, 88%) and social/political constraints (n = 29, 

88%) were the most frequently discussed constraints across participants, and these constraints were 

shared by fire and other hazard personnel. Field equipment/technology constraints were discussed by 61% 

(n =20) of participants and emergent technology constraints were discussed by 33% (n = 11) of 

participants. The least frequently discussed constraints included timeliness of hazard management actions 

(i.e., response actions and decision-making constrained by the immediacy of the threat/hazard) (n = 18, 

55%) and access to emerging technology constraints (n = 11, 33%).  

 

Table 5. Count of participants who discussed each constraint as influencing compound threat incident 

prioritization and resource allocation across the full sample (n = 33), for fire personnel (n = 15), and for 

other hazard personnel (n = 18).  

Constraint type Participant 

count (% of 

total sample) 

Fire personnel count 

(% of total fire 

personnel) 

Other hazard 

personnel count 

(% of total other 

hazard personnel) 

Personnel 29 (88%) 13 (87%) 16 (89%) 

Social/political  29 (88%) 14 (93%) 15 (83%) 

Coordination/communication 28 (85%) 14 (93%) 14 (78%) 

Time 18 (55%) 6 (40%) 12 (67%) 
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Data collection, availability 21 (64%) 10 (67%) 11 (61%) 

Field equipment, technology 20 (61%) 7 (47%) 13 (72%) 

Emerging technology 11 (33%) 8 (53%) 3 (17%) 

  

Figure 2 illustrates the relationship between objective and constraint codes via coded segment 

intersection rates. Intersecting coded segments (approximately 2-4 sentences of transcripts) indicate if and 

how frequently constraints were discussed in the context of pursing objectives in compound threats. 

Constraints were grouped into three types: (i) resource management, (ii) information and analysis, and 

(iii) coordination and communication constraints. Constraint groups were formed based on constraint 

coded segment intersections (See Appendices 2C) and considering the deductive hazard management 

processes outlined in the NIMS. According to Figure 2, the economic efficiency and communication 

objective-constraint pair revealed the highest code intersection rate (32% of economic efficiency codes 

intersected with communication constraint codes), suggesting that economic efficiency objectives are met 

with social and political constraints during compound threat management. Exemplifying how objectives 

and constraints intersect, one participant explained that during compounding fire incidents: 

“There's public perception. [Our state partners and private land owners] want to see us doing 

something… to keep [a fire] from coming onto private land. But largely those efforts aren't effective, 

and they cost a lot of money. They put a number of firefighters at risk, maybe doing work that we 

know doesn't have a high probability of success” (Interview 8).  

Similarly, Figure 2 revealed that 24% of discussions on meeting social and political objectives (e.g., 

reducing inter-agency and/or multi-jurisdiction context; appeasing public concern) intersected with 

information and coordination constraints, such as time and/or information constraints. Overall, coded 

segment intersections suggest that coordination and communication constraints were discussed most 

frequently for in the context of all objectives other than personnel life and safety. Personnel life and safety 

objectives were mentioned in 124 coded segments, and 24% of these intersected with the resource 

constraint code, suggesting that personnel life and safety protection may be constrained by resource 

limitations. Accessibility of and constraints to unmanned aviation systems (UAS) were mentioned by 

participants in this context, such that UAS “are a game changer” for real-time data collection during 

incidents and hazard management situational awareness that can “…take some of the risk out… doesn't 

have to be four people in a small aircraft flying around with that potential for catastrophic failure and 

death… The challenge now is just capacity, right? There's very few of them. And everybody needs it. … 

eventually would want to have that capacity on every incident (Interview 21).  
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Figure 2. Coded segment intersections between coded segments for objectives and constraint codes within 

the absorptive capacity parent code. The numbers in parentheses indicate the total number of coded 

segments for each code, and the percentages along the links indicate the conditional probability that a 

constraint type intersected with each objective code.  

 

3.2.1. Strategic planning and response strategy development for CTs via multi-objective decision-making 
processes.  
Participants discussed knowledge transfer (n = 29, 88%), data collection and sharing (n = 33, 100%), and 

data analysis and decision support (n = 33, 100%) as critical operational processes for federal agency 

absorptive capacity when facing compound threats. These decision-making resources and processes were 

explained to facilitate informed decision-making regarding various objectives and constraints. Knowledge 

transfer was defined as “…communicating knowledge between both individuals and organizations across 

a range of domains and time scales (e.g., shift changes, best practices)” (DHS, 2010, pg. 3.14). Thus, 

knowledge transfer involves experiential knowledge, lessons learned, training, and intra- and inter-

jurisdiction information sharing. Knowledge transfer was described as “…an art, it's a human factor, 

human piece” (Interview 21) that goes into strategic decision-making, such as resource allocation 

decisions. Qualitative knowledge transfer was described to occur within federal agencies and between 

jurisdictions; for instance, one participant described how “historic ground knowledge went into those 

[hazard response] discussions, and I think it really helped it. I think it would have been tougher if we 

didn't have the huge amount of local knowledge, historic knowledge there” (Interview 20). 

Yet, given the complexity of compound threats, “Some people were very uncomfortable with 

making decisions, because basically, they were making life and death decisions… We have to be mindful 

of that, but we also have to give [decision-makers] the tools and techniques to make better informed 

decisions in… the ‘fog of war’” (Interview 24). Accordingly, federal agency knowledge transfer was 

described to benefit from “…tying [analytics] to experiences” (Interview 15). The integration of 

experiential knowledge and analytics was supported by multiple participants (n = 10, 30%), who agreed 

that decision-making should balance between experiential “recognition-primed decision-making” 

(Interview 21) and data analytics. As discussed in judgement and decision-science literature, naturalistic 

decision making (NDM) implies that experts evaluate situations and make decisions based on 

experiential, tacit knowledge and intuition. Recognition-primed decision-making (RPD) is a form of 
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naturalistic decision-making that posits expert decision-makers facing time constraints and uncertainty 

will assess how familiar a situation is and select a singular course of action that can then be modified, 

rather than evaluating the full set of potential alternatives and associated outcomes prior to or at the outset 

of an incident (Kahneman & Klein, 2009; Rapp et al., 2020). Currently, as decision-support tools that 

enable risk informed, multi-objective decision-making become more available, participants expressed a 

need to balance naturalistic RPD and data-driven decision-making. For instance, one participant claimed 

that: 

 “…you can't 100% rely on the model, and you can't 100% rely on the plan, because the plan is 

based on an assumption… have to be able to adapt based on what you see in the ground. And 

that's where the experience comes in. And not an over reliance on one thing or the other” 

(Interview 24).  

 

Regarding the current state of data-driven decision-making, participants primarily discussed two 

necessary components that facilitate compound threat response: (i) data collection (n = 22, 66%) and 

availability (n = 27, 82%), and (ii) data analytic capabilities (i.e., modeling, forecasting, decision support) 

(n = 29, 88%). Data collection technologies were described to have advanced in recent years via the 

adoption and use of remote sensing technologies including drones (n = 15, 45%), satellite imagery (n = 9, 

27%), and infrared technologies (n = 10, 30%). Remote-sensing technologies were described to support 

real-time situational awareness during compound incidents, as well as during damage surveillance (n = 4, 

12%) activities. Simultaneously, remote sensing technologies reduce personnel health and safety risk by 

offsetting the need to send personnel into potentially risky situations. Aviation assets (i.e., helicopters, 

large airtankers) were described by participants (n = 8, 24%) assisting in response activities, and some 

participants noted their increasing application in damage surveillance (n = 5, 15%). 

Participants (n = 8, 24%) discussed how data collection and availability fuel multi-hazard risk 

assessments and forecasting  monitor compound threat events. Modeling approaches that integrate the 

combined risk of multiple incidents and/or stressors have been posited to more accurately forecast 

multiplicative risks that arise from compound hazard incidents (De Angeli et al., 2022; Gill and Malamud, 

2014; Marzocchi et al., 2012). As discussed by participants, multi-hazard risk assessment models inform 

hazard risk potential and inform incident prioritization, resource allocation, and response strategies. 

Generally, participants discussed how incidents are prioritized based on comparative risk assessments, 

wherein protecting public and personnel life and safety is the primary objective in this multi-objective 

decision space. 

In addition to multi-hazard climatological models, participants discussed how decision-support 

tools have evolved such that federal agencies are now able to quickly forecast hazard occurrence, damage 

potential, and community vulnerabilities via integrated geospatial data. Modeling approaches facilitate 

incident prioritization and resource allocation decision-making and have evolved in a few key ways: (i) 

they have transitioned from deterministic to stochastic, accounting for uncertainty in risks (n = 3, 9%); (ii) 

they have incorporated multiple objectives, including social considerations (n = 16, 48%); (iii) they 

increasingly use real-time data if available (n = 7, 21%); and (iv) they increasingly account for changing 

environmental conditions (n = 3, 9%). Decision support tools assess the geotemporal probability of 

hazard occurrence and severity, and this information is paired with community damage and vulnerability 

projections (i.e., FEMA’s National Risk Index for Natural Hazards). Moving beyond “simple risk” 

assessment (Essen et al., 2022), decision-support models are now equipped to integrate various data 

sources to assess and weigh risk based on multiple, predetermined objectives via “fair, equitable, and 

transparent processes” that are “…rigorous and defendable” (Interview 24).  Examples of decision-

support tools include the Wildland Fire Decision Support System (WFDSS) and the Hurricane Decision 

Support Tool (HURREVAC), both of which are intended for government hazard management (USGS, 

2022; FEMA, 2022). Of note, one participant said “There are a lot of different decision making models 

and planning processes that we use, but there's not one that's stamped, saying you must do this. We have 

discretion in how we do that” (Interview 17). 
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In addition to modeling and decision-support tool use that has supported compound threat 

management, there are predetermined incident management structures for compound hazards (and/or 

otherwise complex incidents) as outlined in the NIMS ICS (see 1.1. Background section for more 

information). When compound threats occur across multiple jurisdictions (e.g., a natural hazard affects 

both federally- and state-owned land), participants (n = 3, 9%) indicated that Unified Area Command 

incident management protocols are engaged. Unified Area Command was discussed as reducing resource 

competition that might otherwise occur between jurisdictions during periods of resource constraints. As 

jurisdictions and teams are unified under this command structure, the competition for scarce resources 

was said to diminish as multiple jurisdictions work towards the same objectives in unison, reducing 

redundancy of effort and resource needs.  

 

3.2.2. Federal agencies prioritize hazard response during COVID-19, while implementing socio-technical 
adaptations.  

Despite efforts that federal agencies have taken to absorb CTs effectively and efficiently to 

maintain critical functioning and fulfill their mission objectives, novel risks presented by some CT events 

require adaptive decision-making and innovation. All participants were asked to describe how their 

agency absorbed and adapted to the compound threat of the COVID-19 pandemic during natural threats 

(e.g., wildfire or hurricane management given COVID-19 conditions). Almost all participants (n = 30, 

91%) suggested that the COVID-19 pandemic influenced how their agency operated but did not 

necessarily change their mission objectives, duties of care, and incident prioritization processes. Though 

the primary objective to minimize health and safety risks was unchanged, many participants (n = 21, 

64%) noted that operational changes occurred. Participants had mixed perceptions on the degree to which 

the COVID-19 pandemic influenced hazard management operations, ranging from minimal to extreme 

changes in operations and management. Though the pandemic introduced an environment with “no sense 

of normalcy” (Interview 7), some participants comment that “…the COVID environment has not changed 

the fact that we still have to show up in person when there’s a disaster” (Interview 28). Relative to those 

involved in hazard preparation and mitigation, those involved in field deployments generally claimed 

fewer operational changes occurred because, relative to COVID-19 transmission, “…the bigger risk [for 

response units] is not being cohesive” (Interview 21), where cohesion has been defined as collective 

togetherness based on social relationships, trust, and orientation towards the common good and common 

goals (Schiefer and van der Noll, 2017). 

The primary operational change during the COVID-19 pandemic was a transition to remote work 

(n = 28, 85%), which was viewed as a relatively comfortable transition for participants employed by the 

US DHS, who already had been developing remote work operations before the pandemic. Transitions to 

the remote work environment were perceived by some participants to increase coordination between 

federal, state, and local hazard management agencies as well as with the public (n = 11, 33%). Though 

fire suppression efforts required in-person deployments, participants representing federal agencies 

primarily involved in fire management described operational changes to minimize transmission risks 

within and between teams and the surrounding community (n = 12). These operational changes included 

fire crew re-organization into smaller, more contained units that were generally regarded as positive 

“learning opportunities” (Interview 15). For instance, fire agencies used smaller spike camps--defined as 

temporary or secondary camp sites for forestry crews (Haynes, 2019)--in lieu of larger base camps, where 

hundreds to thousands of crew members would sleep and eat during large wildland fire incidents. 

Additionally, fire agencies operated in “module of one” crew structures, defined as firefighting units that 

worked together the whole season with little to no personnel changes between crews (Symonds, 2021). 

Structural reorganizations were said to improve the health and quality of life of deployed personnel: 

“What came out of 2020 was really a COVID mitigation, and all the hot shots never want to go back. 

Because we've never been healthier [in terms of infectious disease transmission]… COVID made us leap 

forward with some of our practices.” (Interview 15).  
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While effective in minimizing COVID transmission, remote work introduced operational 

constraints and challenges. Remote work was sufficient for intra-agency communication channels, but 

many hazard response operations were still required to be on site (i.e., for wildland fire suppression), with 

potential consequences for hazard response communication channels. Thus, fire personnel stated that 

remote work “…created more and more division… a whole combination of not only different perceptions, 

but different risk management” (Interview 25) approaches within agencies. Differing COVID risk 

management approaches challenged coordination structures and the ability to “…go work as a cohesive 

unit. How do we do that when we’re not working together?” (Interview 25).  

In addition to communication challenges, remote operations were not always conducive to typical 

hazard response procedures. Many participants (n = 17, 52%) observed “reductions in the workforce” 

(Interview 17), as contracted personnel were less available (n = 4, 12%), older or at-risk personnel felt the 

COVID-19 transmission risk was too high (n = 3, 9%), or because “their leadership kind of locked things 

down” (Interview 25).There were expressed difficulties in collaborative response efforts between 

response crews, as well as with volunteer community members. For wildland fire response in particular, 

participants noted that fire suppression strategies and tactics “…were less flexible” (Interview 8) such that 

inter-regional support was limited for fire regions facing resource scarcity.  

The COVID-19 environment was posited to have presented “…a good opportunity to press our 

Chief Information Officer and Chief Technology Officer to bring us into current status with tools that are 

out there because we were forced to” (Interview 5). This participant, a DHS employee, continued by 

saying that the COVID environment “…was really the only moment in time where we sort of caught up” 

(Interview 5) in terms of adopting and using the latest available telecommunication technologies and data 

sharing platforms. Several participants reported that the pandemic was a window of opportunity for the 

adoption and use of emergent technologies such as drones and satellite imagery used in hazard 

preparation, response, and recovery. The pandemic may have catalyzed the rate of adoption of emerging 

“cloud based” (Interview 5) technologies across federal agencies based on perceived resource and 

information requirements to facilitate rapid decision making in complex threats. Further, participants 

discussed that federal agencies were increasingly attentive to data analytic applications in hazard 

management, leading to the recent establishment of data analytics units within FEMA’s National 

Response Coordination Center (Interview 3). Data analytics are increasingly used by agencies such as 

FEMA to facilitate decision support for incident prioritization and resource allocation and were only 

recently stood up given “…an environment of scarcity during the pandemic” (Interview 3). 

 

3.3. Federal agency adaptive capacity to manage compound threats (RQ3) 

Table 6 summarizes the barriers to federal agency adaptive capacity in terms of the internal (i.e., within 

agency) and external (i.e., environmental and societal conditions; multi-jurisdiction and cross sectoral 

relationships) stressors (Lee et a., 2013; Kendra and Wachtendorf, 2003). Generally, participants 

expressed that “one of [federal agencies’] real challenges… is to be able to make decisions and to make 

change that allows us to actually adapt (Interview 21). 
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Table 6. Summary of the internal barriers and external stressors that participants mentioned as inhibiting 

the adaptive capacity of federal hazard management agencies in compound threats. The number in 

parentheses indicates the percent of total participants (n = 33) who mentioned each factor at least once. 

 Internal barriers External stressors 

Resource 

management 

Lack of access to field equipment (i.e., 

helicopters, large air tankers) (66%) 

Lack of access to emergent technologies (i.e., 

drones) (33%) 

Workforce quality of life (61%) 

Low workforce compensation (24%) 

Workforce attrition (i.e., aging workforce; 

reduction of applicants) (12%) 

Demobilization of resources (9%) 

Innovation and creativity (51%) 

Technology acquisition (i.e., information 

security risks) (9%) 

Declining rates of volunteerism (9%) 

Longer hazard seasons (13%) 

Increasing cost of living (24%) 

Information & 

analysis 

Balancing experiential, recognition-primed and 

data-driven decision making (61%) 

Conflicting goals between leadership and 

modeling outcomes (16%) 

Inaccessibility of emergent data collection 

technologies (33%) 

Inaccessibility of models in remote 

locations/critical infrastructure disruption (9%) 

Lack of data and models focused on recovery 

prioritization (12%) 

Changing climate conditions (18%) 

Limited data sharing between agencies; 

redundancy of efforts (39%) 

Model validation (i.e., comparison between 

outcomes and model predictions) (15%) 

 

Communication 

& Coordination 

Training (21%)  

Leadership status quo bias (48%) 

Resource competition (esp. within the Area 

Command ICS structure) (21%) 

Biased, exaggerated situational awareness reports 

(12%) 

Lack of community trust (45%) 

Recurring hazards in communities (30%) 

Public risk perception (i.e., public prefers 

aerial attack for fire incidents, though strategy 

may be inefficient) (39%) 

Misalignment of inter-jurisdiction objectives  

(64%) 
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3.3.1. Barriers to adaptive capacity by workforce and emergent technology resource availability 
Internal barriers. Table 6 summarizes the internal barriers to adaptive capacity related to 

resource availability and use. Participants discussed that both personnel and technology/equipment 

constraints influenced their agility and adaptive capacity. Specifically, barriers to innovation and creative 

problem solving were mentioned by 17 participants, and 58% of these deductive coded segments framed 

barriers to innovation and creativity as barriers to adaptive capacity. Federal agency personnel expressed 

that they “are behind the marketplace… We still have a long way to go to be as agile as we need to be in 

technology, whether it's communications, collaboration, file sharing… we're still a couple steps behind, 

which is a shame, but it's kind of the nature of the federal government” (Interview 5). This participant 

explained that federal government setbacks in adopting and using technology “have to do with security, 

verification, validation… there is a lot of area for improvement” (Interview 5). Another participant said 

that their federal agency “needs to eradicate the ‘not-invented-here’ syndrome” (Interview 24), referring 

to hesitancy to adopt and use science and modeling approaches developed by academia or the private 

sector.  

Over half of the participants expressed interest in and/or use of the remote sensing technologies 

for real-time situational awareness and assessment. Yet, many participants noted that these emerging 

technologies are currently in the early stages of adoption across hazard response agencies and are 

considered a limited resource that hazard managers are “lucky” (Interview 25) to acquire. Frustration was 

expressed over the limited supply of these technologies, as other agencies do currently have adequate 

access to similar and more advanced remote sensing technologies (e.g., Department of Defense).  

Another internal barrier to federal agency adaptive capacity was personnel workforce constraints. 

Twenty participants (61%) discussed that the working conditions and general treatment of federal hazard 

management personnel decrease personnel quality of life; this inductive finding was expressed more 

frequently among fire agency participants (n = 12, 80% of fire agency participants) relative to other 

hazard participants (n = 8, 44%). Diminished quality of life was attributed to the low wages for high-risk 

positions that often require being “…gone from their families for more than six months and living in 

awful conditions” (Interview 17). Federal agency personnel claimed that agencies have experienced 

increased attrition rates (n = 4, 12%) and decreased applicant rates, exacerbating the personnel scarcity 

problem and putting more pressure on current personnel. Participants expressed that the increased 

workload with minimal recovery time leads to “burning out a lot of people, you know, people are working 

a lot. There doesn’t seem to be a lot of support from the agency with certain things” (Interview 22).  

Another participant explained:  

 

“We have never built into our system, the ability to recover rest. It's been a system that is 

seasonal. What's worked in the past is, we ask folks to go really, really hard for a duration and 

that duration, you know, historically was 2-4 months. Now, that duration is 6-8 months. And then 

we turn around and ask them to do it again” (Interview 8). 

 

Personnel scarcity was cited as a limit to federal agency adaptive capacity during compound threats such 

that personnel scarcity adds pressure on the current workforce, who also face longer hazard seasons and 

increasingly complex threats. The relationship between strategic resource use and the external stressor of 

climate change was exemplified such that “the system for prioritization of resources… was built on the 

concept of overwhelming force. And the system is showing that it's really not adapting well... and really 

does not deal well with scarcity” (Interview 15) that was associated with increasing hazard severity and 

complexity. Adapting to the current natural and anthropogenic threat landscape may require shifts from 

prior approaches based on overwhelming force to more strategic, decision-making processes that consider 

longer-term objectives and constraints. Further, some participants expressed concern that the confluence 

of an aging workforce, increasing attrition rates, and decreasing application rates may have led to less 

experienced personnel—including those who received [partial] remote training during the COVID-19 

pandemic—receiving promotions to management positions with insufficient training and ground 

experience. 



 

45 

 

Establishing recovery priorities was one of the least frequently discussed planning indicators across 

participants (n = 4, 12%), suggesting that some participating federal personnel may not be as apt to 

associate organizational resilience with participating in exercises or setting clear recovery priorities. Of 

total recovery priority coded segments, 70% were conveyed as organizational resilience inhibitors, or 

characteristics and practices of the agency that could be improved to become more resilient. Recovery 

priorities was defined as an agency-wide awareness and understanding of what priorities would be before, 

during, and after a compound threat, such that these priorities are clearly articulated by the agency and 

minimum operating requirements are maintained (Resilient Organisations, 2019; Lee et al. 2013).  

In addition to resource availability, participants discussed the implications of resource allocation and 

use decisions such that the internal decision-making processes for resource allocation decisions limited 

agencies’ ability to adapt to evolving compound threats. Most frequently, participants discussed how 

these constraints--which have been more apparent over the past 5 to 10 years--limited their agency’s 

adaptive capacity. Participants expressed sentiments such as, “…working around staffing issues is always 

a concern, whether it’s multiple events or even if it’s just one” (Interview 13). Multiple participants (n = 

3, 9%) discussed that the firefighting applicant pool dropped by 50 – 66% over the past two years, relative 

to past years. Participants attributed this to low compensation for high-risk jobs (n = 8, 24%), wherein “... 

we pay less than our local gas station for new employees, so there is competition for people to work” 

(Interview 25). In all, low compensation has exacerbated personnel scarcity while increasing demands on 

the current workforce. Further, agency adaptive capacity was said to be influenced by personnel 

constraints such that “Strategies have definitely changed how we're fighting fire… driven by lack of 

resources, increased fire behavior, increased fire growth… Over the past few years, we're told many times 

that we're just out of resources… so figure out a strategy with what you've got” (Interview 18). Thus, 

federal agency adaptive capacity is limited by personnel constraints that have become increasingly limited 

with increased hazard complexity by limiting the range of potential operational strategies and tactics.  

Finally, mobilizing and demobilizing personnel and other resources during compound threat events 

was said to occur “more and more with the environment that we’re working in and the increase of 

responses that we’re making” (Interview18), alluding to climate change and other environmental 

stressors. Personnel safety concerns are further complicated by hazards that affect two or more different 

states, as each state is required to declare separate state-of-emergency declarations. One participant 

described how this requirement complicated hazard response in that “… you can't run just one operation 

to cover both states” (Interview 23). Natural hazards such as hurricanes with the potential to affect two or 

more states bifurcates response, which “…drains a little more of the resource capability that [FEMA has]” 

(Interview 23). Similarly, participants expressed difficulty in managing devolution and demobilization 

given “no notice type incidents” (Interview 5). This participant went on to say that federal agencies “need 

to be better than [current demobilization]. We need to be faster, we need to be automatic” (Interview 5), 

drawing on the time constraints associated with compounding threats and demobilizing deployed 

personnel and resources who may be vulnerable to secondary incidents. For instance, discussing how 

compound threats challenge personnel health and safety objectives when a secondary threat interferes 

with initial hazard response, one participant described that compound threats involve “… making sure 

that you're securing and protecting your staff…  also trying to look forward, because now you realize… 

another event is happening. Can we get additional staff to start supporting the other event? They're going 

to be in a whole different part of the process… even if it's only a few days apart” (Interview 13). 

External stressors. In addition to the internal barriers that limit federal agencies’ adaptive capacity 

while facing compounding threats, external pressures limit resource availability and use. The decline in 

workforce availability was attributed to a variety of external stressors, including longer hazard seasons 

attributed to climate change (n = 6, 18%), an aging workforce and evolving generational values (n = 3, 

9%), and increasing costs of living (n = 8, 24%). Participants noted that the hazard management 

workforce is inadequately compensated for the high risks faced by these personnel, particularly those that 

require field deployments. Economic stressors compounded by migration trends during the COVID-19 

pandemic have led to situations such that “…people are moving away from population centers into rural 

areas, which is also driving up the cost of living… harder for an entry level firefighter to move [into a 
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rural community]… There’s no homes to buy or rent and it’s become more difficult for people to live 

rurally now” (Interview 25). “Urban flight” to more rural areas during the COVID-19 pandemic has been 

empirically shown by cell phone mobility data, and was more prevalent for younger, wealthier, white 

populations with the ability to work remotely (Coven et al., 2022). Thus, particularly across the fire-prone 

western U.S. and hurricane- and flood-prone coastal U.S., there may be opportunities to reduce resource 

scarcity challenges if the federal workforce receives increased wages that enable personnel to live 

comfortably. Though interviews were conducted prior to the passing of the Biden-Harris Bipartisan 

Infrastructure Law in 2022 (Biden-Harris Administration, 2022), various participants (n = 5, 15%) 

discussed its potential to improve “work-life balance and mental health for people because it is taxing, 

you know? It’s exhausting” (Interview 18). For instance, the Bipartisan Infrastructure Law requires that 

federal wildand firefighter salaries increase by either $20,000 per year or “50% of salary in specified 

geographic areas where it is difficult to recruit and retain the firefighting workforce (USDA, 2022) 

In addition to the potential for reductions in the federal hazard management workforce, several 

participants (n = 3, 9%) noted declining rates of volunteerism over the course of their career. Declining 

rates of volunteerism were related to generational values and the ability and preference to donate money 

online rather than participate in in-person community volunteer efforts, which was exacerbated by 

COVID-19. Reductions in volunteerism were said to increase the pressure on the federal workforce such 

that outside support may be less bountiful or consistent now than in the past. Federal agencies, therefore, 

should acknowledge and account for reductions in volunteer support in developing compound threat 

response and recovery plans, especially in cases of infectious disease.  

Related to technology acquisition and availability, participants expressed slow adoption of these 

technologies due to federal government bureaucratic processes, financial constraints, and information 

security risks that could threaten homeland security. One interviewee noted that there may be potential for 

hazard management agencies to acquire remote sensing data via contracts with other agencies who have 

access to such emergent technologies to alleviate current technology constraints following a hazard. More 

recently, the U.S. Senate has introduced the bipartisan Drone Infrastructure Inspection Grant (DIIG) Act, 

which aims to increase local, state, and federal access and training for infrastructural inspections and 

damage assessments via drone technology. The passage of this or similar grants can enable hazard 

management agencies from the local to federal levels to deploy drones for real-time data acquisition that 

can protect community and workforce health and safety, improving upon resource constraints mentioned 

by participants.  

 

3.3.2. Barriers to adaptive capacity related to the adoption of modeling tools, and model validation  
Internal barriers. As discussed in the “Absorptive Capacity” section, advances in quantitative 

decision-support tools have been effective in weighing if and how agencies should respond to compound 

threats based on values and communities at risk. Despite data analytics advancements, the “…cultural 

practice is experiential” (Interview 15). Some participants (n = 16, 48%) expressed a “success bias” 

(Interview 27) related preferring status quo approaches based on experiential decision-making. 

Participants described how those in leadership positions were “…still dependent on their experiential 

models in their head. And they just kind of culturally resist some of this stuff. But people are catching on 

to it pretty fast” (Interview 15). Participants (n = 5, 33%) discussed how decision-support tool incident 

prioritization and resource allocation optimization did not align with goals set forth by those in leadership 

positions, who are among the select few federal agency personnel who ultimately select the response 

objectives and priorities in compound threat risk management (FEMA, 2022). Reluctance to use decision-

support and modeling outcomes was associated with ineffective and inefficient allocation of hazard 

response resources (Interview 15). Resource allocation inefficiencies may be particularly prevalent in 

uncertain, complex threats, as biases based on experience and existing knowledge can detract from 

optimal, resilient outcomes in light of unexpected event (Hariri-Ardebelli et al., 2020). Participants, 

particularly those representing fire agencies, expressed that those who were more reluctant to use 

emerging decision-support tools generally had more field experience (Interview 5), and therefore may be 

inclined to rely on “recognition primed decision-making” (Interview 27). 

https://www.whitehouse.gov/bipartisan-infrastructure-law/
https://www.fs.usda.gov/inside-fs/delivering-mission/excel/wildland-firefighter-pay-classification-infrastructure-law#:~:text=Bipartisan%20Infrastructure%20Law%20requires%20an,difficult%20to%20recruit%20or%20retain
https://www.congress.gov/bill/117th-congress/house-bill/5315
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Participants claimed that reliance on RPD and reluctance to use decision-support and modeling tools 

was due to model uncertainty (n = 6, 21%), mistrust in model outcomes (n = 4, 12%), prior experiences 

with inaccurate model predictions (n = 3, 9%), and fundamental communication chain constraints that 

require officers to make decisions in the field under time and data availability constraints. One participant 

felt that status quo bias among leadership led to “…always trying to use that particular tool” (Interview 

7). This participant went on to suggest, “... the way around [status quo bias] is to broaden understanding 

of various different tools and techniques… broaden the decision-making processes for... more of a 

consensus to [objective] decisions” (Interview 7).  

Yet, given the complexity of compound threats, “Some people were very uncomfortable with 

making decisions, because basically, they were making life and death decisions… We have to be mindful 

of that, but we also have to give [decision-makers] the tools and techniques to make better informed 

decisions in… the ‘fog of war’” (Interview 24). Accordingly, federal agency knowledge transfer was 

described to benefit from “…tying [analytics] to experiences” (Interview 15). The integration of 

experiential knowledge and analytics was supported by many participants (n = 20, 61%), who agreed that 

decision-making should balance between experiential “recognition-primed decision-making” (Interview 

21) and data analytics. For instance, one participant claimed that “…you can't 100% rely on the model, 

and you can't 100% rely on the plan because the plan is based on an assumption… have to be able to 

adapt based on what you see in the ground… that's where the experience comes in” (Interview 24). For 

instance, another participant described “... a reliance on technology… makes us lazy in other areas that we 

need skills” (Interview 20). This participant described that “We have a lot of young guys that don’t know 

how to use a map and compass” (Interview 20), which is sometimes necessary for fire suppression 

activities in austere environments. For instance, some noted that data-driven decision-making may be 

hindered by technical constraints, such as lack of internet or cell phone reception, which constrains data-

driven decision-making; in these situations, personnel must make rapid, on-the-ground decisions based on 

field experience and knowledge.  

 External stressors. For both expertise- and modeling-driven decision-making, there was an 

expressed concern about the inability of mental models and technical modeling approaches to capture and 

forecast threats in the current natural and anthropogenic environments due to climate change and the 

interconnectivity of critical infrastructure systems. One participant described that “complexity in fire 

behavior and how frequently you have large growth days… really doesn't match your mental model 

anymore” (Interview 15). Thus, there is a need to incorporate changing environmental conditions and 

anthropogenic sources of cascading risk into incident prioritization decision making to proactively 

mitigate hazard complexity. Further, the changing climate and its atmospheric interactions have led to 

underestimations of model predictions of hazard frequency and severity; fire behavior modelers, for 

instance, are finding that “models aren't accurate anymore… wasn't true 10 years ago, and now it is. So, 

they're having to scramble and figure out something new to explain the phenomena” (Interview 15) 

associated with changing climates and fuel moisture, such as the “long-term drought” (Interview 15) in 

the western U.S.  

Participants expressed current challenges in data sharing and model validation. Some participants 

expressed that data availability and transfer within and between government agencies of all levels could 

help support overall hazard management (n = 13, 39%). One participant said that “It's hard to get federal 

agencies to work together and figure out protocols for data transfer and, and there's always a security 

element to it” (Interview 11). There may be redundancy of data collection efforts, and some participants 

suggested that data collection efforts should be more widely available between agencies, jurisdictions, 

and the public to promote efficiency and transparency. Over time, this could help consolidate data for 

improved information dissemination. Further, five participants (15%) expressed that model validation is a 

useful but often neglected approach to understand if and how changing environmental and societal 

conditions as well as preparation, response, and mitigation actions promote recovery. Real-time data 

acquisition on damages accrued would help validate if and how model predictions differ from actual 

damage. This notion is supported by the IPCC (2022), who advocate for tracking adaptation progress over 
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time given monitoring using continuous information gathering. Some participants noted that model 

validation in terms of damages incurred cannot currently rely on FEMA assistance or insurance claims 

given both over- and under-reporting of hazard-related damages to private property. For instance, one 

participant described how some affected community members are concerned with seeking or receiving 

federal financial assistance. One U.S. DHS participant described this in the context of the flood zone, 

where programmatic requirements dictate that during flood events, if your home is damaged and the 

damage is valued at 50% or greater of your home value, homeowners are required to mitigate for 

inspection. However, this participant described that inspectors, accordingly, will “…say the damage is 

valued at 47% the home value… not helping communities, and this is a common problem across the U.S. 

If [homeowners] don’t have the resources… [homes] will essentially fall apart… Not really helping the 

community, but can buy them time” (Interview 26). This participant, along with three others, described 

that these communities tend to be smaller with fewer personal and local financial resources; they also tend 

to rely on coastal economies (e.g., fisheries) for employment, and have deep seeded historical and cultural 

ties to the coastal community in which they reside, such as owning “…homes passed from generation to 

generation” (Interview 26). Public concerns over reporting damage—while warranted—challenge the 

ability to validate the severity and extent of natural hazards, highlighting the intersection between policy, 

public perception, and model validation.  

 

3.3.3. Barriers to adaptive capacity related to coordination and communication 
Many participants described that coordination and communication constraints have influenced federal 

agency adaptive capacity. Coordination constraints were associated with internal coordination processes, 

as well as misalignment between cross-sectoral and multi-jurisdiction preferences in multi-objective 

decision spaces and capabilities, capacity, and coordination structures.  

Internal barriers. Most participants (n = 28, 85%) discussed that federal agency adaptive 

capacity was constrained by internal coordination/communication structures and processes. Coordination 

constraints included lack of transparent priority setting within and between federal agencies (n = 11, 

33%), inefficiencies and competition in resource allocation (n = 7, 21%), and knowledge transfer between 

response teams (n = 13, 39%). As discussed in prior absorptive capacity themes, critical and scarce 

resources are not necessarily allocated based on objective decision-support tool outcomes. Resource 

allocation inefficiencies have been described as “a huge problem” (Interview 11) attributed to financial 

incentives, such that “…agency administrators are trying to use [Congressional funding] in areas where 

there's more timber that is easier to extract from the land, or where there's acres that are easier to treat” 

(Interview 11).   

Considering organizational structures, while some participants felt the Unified Area Command 

ICS structure reduced resource competition through unifying hazard response across jurisdictions, others 

claimed that the ICS enabled resource competition via the “Area Command” structure (n = 4). The Area 

Command ICS structure is enacted when an organization oversees and manages multiple incidents, a very 

large incident, or an evolving incident with multiple Incident Management Teams (IMTs) involved 

(FEMA, 2018). In these threats, IMTs usually have “similar needs”, such that “they’re all going to be 

competing for the same scarce resources” (Interview 30). Multi-Agency Coordination Systems (MACS) 

were described to “make the prioritization” and resource allocation decisions amidst incidents with 

similar needs, some of which “have life and death, huge property losses attached" (Interview 30). Another 

participant described that MACS have “differences of opinion on where [resources] should go… used to 

use word of mouth to make determination. Now, analytics can help with that, but that’s where resistance 

comes in” (Interview 15).   

Further, in describing the ICS resource request process, one participant noted a bias such that 

when requesting resources, “the best writer wins… those of us that can write well and explain what’s at 

risk, and professionally exaggerate what’s at risk… bias the agency administrators” (Interview 27). This 

bias has led to a system that allocates resources based on inaccurate knowledge transfer and situational 

awareness that has propagated throughout incident management systems. One participant remarked that 
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“You say it's lifesaving because you want to get to a higher priority, but if everything's lifesaving, nothing 

is lifesaving" (Interview 33). In addition to exaggerating risks to acquire resources, social connections can 

bias decision-makers to inefficient resource allocation. For instance, one participant said:  

 

“…if somebody has a lot of experience and knows a lot of people, they’re going to get a lot of 

research advisors to their fire than another fire that may be much bigger, be more complicated 

and have more resource issues. If that lead doesn't know anybody and doesn't know how to work 

the system, they don't get very many people” (Interview 12).  

 

Social network connections were described to influence the allocation of scarce, specialized resources 

(e.g., search and rescue, hazardous waste management teams, research advisors, and ecologists). In 

addition to hazard response resource allocation, another participant mentioned that there are inefficiencies 

in administering grant programs across regions, as grants have been divided in ways that “were equal, but 

not… equitable” (Interview 31). As different regions and states have different economic resource needs, 

“…money isn’t going far enough” (Interview 31) when financial grant dispersal is based on equality 

rather than equity. For instance, this participant went on to explain that certain regions can use federal 

support to “…buy new office chairs every year… You tell them, hey, we're going to start reallocating 

equitably, and you are messing with people's money. You are messing with their staffing and… their 

livelihoods. They're going to bite you" (Interview 31). This participant described that “The squeaky wheel 

can [get resources], depending on who can call the governor… naive or in denial if you think that doesn't 

happen… watching affluent communities get resources in a manner that is disproportionate was tragic” 

(Interview 31). Additionally, inequities in financial support were described to be prevalent for rural areas 

(n = 3, 9%), which was attributed to generally more remote locations with fewer resources available than 

in urban areas. 

External stressors. Land and hazard management was described as “a patchwork of ownership 

like federal, state and private” (Interview 11), wherein different government jurisdictions have “different 

personalities” (Interview 21). Local, state, and federal jurisdictions—which could each be affected by the 

same compound threat—were said to have “…misalignment…variation in mission and focus between 

state, local, and the federal agencies that has created a lot of stress on incidents and a lot of stress between 

them” (Interview 17). Personnel scarcity creates resource competition within and between federal 

agencies and state agencies. To overcome coordination barriers, participants described three key ways in 

which federal agency adaptive capacity could be bolstered through increased and diversified stakeholder 

engagement: (i) with local and state jurisdictions (n = 15, 47%), (ii) with community members (n = 13, 

41%), and (ii) through the expansion of private-public partnerships (n = 6, 19%). 

 In multi-risk, multi-objective decision spaces, decision-makers often need to weigh the 

protection of these valuable assets, also known as ‘values at risk’ (Calkin et al., 2021). The decision to 

prioritize incidents and resource allocation based on values at risk was found to be particularly 

challenging for firefighting agencies, as wildland fire suppression efforts can better protect certain values 

at risk over others. Conflicting priorities entail social, political, and economic pressures that influence 

compound threat incident prioritization and resource allocation decisions during all phases of the hazard 

management cycle. To overcome multi-jurisdiction conflicts, several participants stressed “…the 

importance of interagency coordination and collaboration with stakeholders when responding to 

compounding threats, and if you're able to have that smooth coordination…  makes it much easier to 

respond to these multiple, compounding threats” (Interview 14). Participants stressed that having “…all 

the federal agencies on the same page with that same [affected] community, with their state partners, 

singing the same song” (Interview 26) is essential to facilitating efficient decision-making and 

streamlining compound threat management. Participants described “a huge potential area for 

improvement with coordinating between federal land management agencies and state management 

agencies" (Interview 11) such that “there’s an absolute need for both robust government response at all 

levels and a robust volunteer response at all levels” (Interview 28). For instance, one participant who 

formerly worked for the American Red Cross claimed, “It's a people challenge. It's bridging the federal 
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philosophy with the [NGO] philosophy. It's a resource issue on, you know, who pays for what? It is a 

control issue” (Interview 28).  
Establishing volunteer and community-level engagement was expressed as a way to increase 

awareness of and sensitivity to local needs, preferences, and values. While establishing such connections 

“…takes some work… [as] all the programs have different timing, have different requirements…” 

(Interview 26), localized coordination facilitates situational awareness, information and knowledge 

dissemination, and has the potential to integrate local objective preferences and reduce resource 

competition and/or redundancy of hazard management efforts (Interview 26). For instance, one 

participant described that their federal unit “…sought out a specific fire behavior analyst that used to be a 

fuels person in that area. She knew the terrain and the topography and the weather influences there… 

sought her out to do multiple fire behavior analyses… having all that local knowledge and experience 

really helped weigh that decision” (Interview 20). Generally, participants expressed that federal agencies 

are increasingly aware of and pursue local and tribal knowledge, having established programs such as the 

Silver Jackets, who leverage local knowledge into flood risk management assessments, and federal ICS 

Liaison positions to support “the state and local agencies in collaborating with us because, realistically, 

they are the ones that know the community the best” (Interview 14). Thus, the general consensus across 

participants who discussed external coordination was that “the better relationships that we have been able 

to develop and maintain, have made for a lot easier time, even with the COVID stuff… the better 

relationships that you have with [local and state] cooperators, or even between agencies, it just makes for 

a better outcome… regardless of what happens on the other side, on so many different levels” (Interview 

20). 

In addition to federal-state agency coordination, participants acknowledged that the “federal 

community has to leverage the state and locals to help… bridge the gap to the community, and in order to 

be able to effectively communicate” (Interview 14). Expressed contention between federal agencies and 

affected communities was attributed to: (i) federal lack of transparency, (ii) differing preferences for 

response and recovery decisions between communities and agencies, and (iii) general lack of trust of 

federal agencies. The relationship between federal agencies and communities was expressed to be a 

needed focus area for federal hazard management, as “local communities are threatened by federal 

presence… they get defensive, they don’t want to be told what to do” (Interview 23) and “hiding things 

behind the curtain does not win anybody any favors” (Interview 16). As hazards, such as wildland fires, 

were described to “evoke an emotional response” (Interview 25), it is “really crucial that we can… 

communicate risks appropriately” (Interview 14), as well as corresponding objectives and management 

strategies to the public. Similarly, one USDA participant expressed that “…the agency is struggling to be 

relevant within the communities. You know, we’ve lost that tide of the community… [affected 

communities] may not like a team… that was there making decisions about certain things. I think the 

agencies struggle with that overall” (Interview 22).  

 In addition to engaging with local and community level organizations, several participants 

suggested that continued development of public-private partnerships can establish a holistic, community-

based approach to hazard resilience, though there is currently “misalignment… that is pretty prevalent” 

(Interview 17).  For instance, one interviewee noted that Walgreens provides prescription drugs to 

community members affected by a natural hazard for 30 days after the hazard, which supports community 

recovery and eases public health concerns that federal, state, or local governments may otherwise face.14 

Conversely, some participants discussed how public-private partnerships have negatively affected hazard 

management; for instance, the “fire industrial complex” (Interview 21) was attributed to the investment in 

heavy equipment (i.e., large air tankers, dozers) for fire suppression tactics, pushing the notion that across 

the U.S., fires have been “villainized” (Interview 21) and some of which consistently lead to aggressive 

suppression strategies with adverse, long-term ecological consequences. 

 
14 https://www.walgreens.com/images/adaptive/pharmacy/healthcenter/b2b/pdfs/377-

Walgreens_DisasterPreparedness_WhitePaper_012921_AccessFixed.pdf 

https://www.walgreens.com/images/adaptive/pharmacy/healthcenter/b2b/pdfs/377-Walgreens_DisasterPreparedness_WhitePaper_012921_AccessFixed.pdf
https://www.walgreens.com/images/adaptive/pharmacy/healthcenter/b2b/pdfs/377-Walgreens_DisasterPreparedness_WhitePaper_012921_AccessFixed.pdf
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3.4. Understanding federal agency opportunities through comprehensive perspectives on 

organizational resilience 

Figure 3 shows the total number of participants who discussed each Relative Overall Resilience 

(Lee et al., 2013) and each inductive resilience indicator (values in parentheses). Within the “planning” 

component of organizational resilience, “maintaining a proactive posture” (n = 21, 64%) and “planning 

strategies” (n = 16, 48%) were discussed by the most participants, and in the “adaptive capacity” 

component, “staff engagement” (n= 20, 61%) and “leadership” (n = 20, 61%) were discussed by most 

participants. “Internal resources” (n = 22) and “leveraging knowledge and information” (n = 19, 58%) 

were the most frequently discussed “relationships” components. Additionally, inductive resilience 

indicators emerged; inductive indicators included workforce quality of life (n =20, 61%), mental health (n 

= 16, 48%), social cohesion (n = 8, 24%), and flexibility (n = 8, 24%). The percentages in the bar chart 

reflect the total percentage of coded segments that were discussed as a facilitator (dotted bars) or inhibitor 

(solid bars) to organizational resilience.  

 

 

Figure 3. Mentions of organizational resilience indicators across interviews. The organizational resilience 

factors were based on a deductive coding scheme including existent indicators (Lee et al., 2013; 

McManus et al., 2008). The value in parentheses represents the number of times each indicator was 

discussed across the full set of interviews. The percentages represent the percent of coded segments for 

which participants expressed the indicator facilitated (dotted bars) or inhibited (solid bars) organizational 

resilience.  

3.4.1. Organizational resilience exemplified through planning strategies, proactive postures, inclusivity, 
and flexibility.  

While the preceding themes of this work pertain to many of the adaptive capacity indicators 

defined by the ROR, planning component indicators were also mentioned in interviews. Participants most 

frequently discussed the proactive posture (n = 21, 64%) and planning strategy (n = 16, 48%) indicators 
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(Figure 3).  Both indicators involve preparation and foresight of future conditions and actions and to 

address vulnerabilities in the antecedent context (Lee et al., 2013).  Of the planning strategy coded 

segments, 57% of segments were coded as facilitating overall organizational resilience. One participant 

employed by a fire management agency reported planning strategies are developed “every single day 

based on what we’re doing. Does it work? No? How do we adjust it? … fire organizations as a whole are 

incredibly good at adapting to changing environments and changing conditions” (Interview 18). Planning 

strategies were described as critical to organizational resilience because if plans of action are not 

addressed and understood by the workforce in advance of a threat or hazard, “It’s distracting your 

attention from actually dealing with the incident and saving lives” (Interview 3). Of the proactive posture 

coded segments, 68% of segments were coded as facilitating overall organizational resilience by enabling 

“…strategic and behavioral readiness to respond to early warning signals of an organization’s internal and 

external environment before they escalate into crisis” (Lee et al., 2013). Proactive postures were 

described to be particularly critical when personnel had not experienced a hazard type in recent history; 

for instance, one personnel described that proactively having “communication channels open” (Interview 

13) between divisions, jurisdictions, and personnel who are more experienced with certain hazard types is 

essential to strategic decision-making. Yet, it is worth noting that some participants felt that their agency 

took on a more reactive stance, particularly in terms of technology adoption. Taken together, federal 

agency personnel had generally positive outlooks on the development of planning strategies and proactive 

postures, suggesting that federal agencies have implemented effective planning protocols and practices 

that have facilitated organizational resilience, indicating a paradigm shift from reactivity to proactivity.   

 

3.4.2. Organizational resilience could be improved by individual-level support 
Though we were primarily interested in federal agency perspectives of compound threat 

management and organizational resilience at the agency-level, many participants defined and discussed 

organizational resilience as it related to individual-level personnel resilience. Inductive themes pertaining 

to individual-level mental health, workforce treatment (i.e., wages, work-life balance, deployments), and 

inter-personal workforce social cohesion emerged across interviews: “[resilience is] really how well we 

take care of ourselves, and how well we take care of each other” (Interview 9). Another participant 

explained that they thought of resilience “more like human capital type things… less about strategies and 

mitigation options to ensure that we can manage our risks… there is a space for these different flavors of 

resilience to coordinate, coexist, overlap… I don't think anybody is there yet” (Interview 32).  

 Mentions of mental health were included as inductive codes, and workforce mental health was 

perceived to be negatively associated with organizational resilience such that 62% of mental health coded 

segments were discussed as an agency weakness or opportunity for improvement. Participants discuss that 

workplace pressure leads to “…what [they] perceive to be a high divorce, suicide, depression rate” 

(Interview 17), as well as fatigue, burn out15, and other mental health concerns such as substance abuse, 

PTSD, and anxiety. Personnel mental health support following an incident was related to agency recovery 

priorities; participants claimed that increased focus on individual-level mental health support and 

recovery should be considered a recovery priority set forth by hazard management agencies. Participants 

described that organizations will only be resilient if the individuals that comprise the organization are 

resilient, which they directly related to mental health concerns.  

Though federal agencies are increasingly aware of the toll of hazard management on mental 

health due to repeated exposure to traumatic events, participants and existing empirical literature have 

found that workforce mental health is inadequately addressed across federal hazard response agencies, 

leading to fatigue and attrition (Belval et al., 2018).16 Mental health was frequently embedded in 

 
15 Burnout is defined as “a syndrome conceptualized as resulting from chronic workplace stress that has not been successfully 

managed.” (World Health Organization, 2020).   
16 Belval, E. J., Calkin, D. E., Wei, Y., Stonesifer, C. S., Thompson, M. P., & Masarie, A. (2018). Examining dispatching 

practices for Interagency Hotshot Crews to reduce seasonal travel distance and manage fatigue. International journal of wildland 

fire, 27(9), 569-580. 

https://d.docs.live.net/dd1af4a22fdce4a0/Desktop/Dissertation/Chapter%202/Wells_Ch2_Draft_V5.docx#_msocom_1
https://d.docs.live.net/dd1af4a22fdce4a0/Desktop/Dissertation/Chapter%202/Wells_Ch2_Draft_V5.docx#_msocom_6
https://d.docs.live.net/dd1af4a22fdce4a0/Desktop/Dissertation/Chapter%202/Wells_Ch2_Draft_V5.docx#_msocom_7
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conversations of personnel shortages, leading the current hazard workforce to work long hours over back-

to-back deployments, aligning with anecdotal perspectives brought to light in recent years (Rott, 2021).17 

ICS Incident Management Team personnel are deployed to an incident and then resume work at their 

typical day job with minimal financial incentive; for instance, USFS Forest Managers may be deployed 

for 2-3 weeks as an Incident Commander or Operations Section Chief on an IMT, then must return to the 

USFS Forest Manager duties post-deployment, which stresses the workforce as “… being on an Incident 

Management Team is not anybody's primary job…. It puts a lot of strain on their home life because 

somebody else has to carry the load for them while they're gone. If nobody's taking over for their regular 

job, then when they come back, their workload is just crazy” (Interview 18). Additionally, participants 

discussed that while federal agencies are apt to invest in heavy equipment such as helicopters, there is a 

lack of investment in training opportunities for firefighters interested in incident command, operations, 

and logistics.  

In addition to workforce mental health, social cohesion emerged as an inductive code that was 

mentioned by 8 (24%) participants. Social cohesion was defined by participants as “…the idea of 

synergy…” (Interview 21) between federal agency personnel during hazard management, and participants 

said that resilience often comes down to: 

“How are we taking care of our personnel and ourselves, there's really a bottom line. And there's 

no science to that. There really isn't a model for that there's really a tool for that. It's really the 

ability to mentally focus on each other, and then understand the differences that we all bring to 

the table when something happens that's so far out of what we expected” (Interview 9). 

Participants had mixed views on if and how federal agencies currently promote social cohesion, as 54% 

of related coded segments portrayed that lack of social cohesion can inhibit organizational resilience. 

Social cohesion was described as being difficult for IMTs, such that these teams “…don't have existing 

[interpersonal] relationships. You don't have trust, or you have to build it… it's really hard in a 14-day 

period to build synergy where you're greater than the sum of the parts, right?” (Interview 21). Other 

participants felt their agency’s “training and exercise requirements facilitate resilience… place us in 

positions to execute on what we will be asked to execute upon in the real world, and the act of doing 

things together builds camaraderie” (Interview 7). This participant explained that camaraderie is “really 

important, because my resilience may be at a different level than your resilience” (Interview 7). Thus, 

social cohesion may bolster individual resilience such that social cohesion has been association with 

decreases in individual-level mental health disorders (Zemba et al., 2019; Wood et al., 2017; Breslau et 

al., 2016). Considering compound threats, some participants claimed that personnel were encouraged and 

inspired to “… jump on any anything that comes up, we help each other to support each other… and we 

get the work done, no matter what it is [headquarters] throw at us” (Interview 10). For instance, FEMA 

had little to no historical involvement with infectious disease management and support, but were assigned 

to be critical stakeholders in COVID-19 testing, treatment, and vaccination efforts (Interview 2). 

Participants felt that cohesion and defining a common goal helped orient and engage agency personnel, 

particularly those deployed on IMTs: “I think about an IMT. What makes it successful? I would say, 

common mission, common objectives… it's also their values and importance in the work we're doing. 

That’s one of the real strengths of wildland firefighting and being part of the organization is that you are 

part of something bigger than yourself, right?” (Interview 21). 

Related to cohesion, the deductive organizational resilience indicator “minimization of silos” was 

described as facilitating federal agency organizational resilience. Minimizing silos involves the breaking 

down of “divisive social, cultural, and behavioral barriers, which are most often manifested as 

communication barriers creating disjointed, disconnected, and detrimental ways of working” (Lee et al., 

2013). Multiple participants (n = 5, 33%) described their agency as inclusive and diverse, offering “an 

integration of different viewpoints into how we attack problems” (Interview 7). Participants expressed 

 
17 Rott, N. (2021). As fires worsen, a mental health crisis for those battling them. Capitol Public Radio. 
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that a sense of inclusivity was necessary for organizational resilience, such that team members felt 

comfortable sharing their knowledge and ideas with each other (i.e., horizontal information 

dissemination) and with leadership (i.e., vertical information dissemination). Further, participants 

explained that “building that respect, and that trust” prevents “pointing fingers at each other… We are all 

responsible… let’s learn from it, get better, and move forward” (Interview 21). Several participants 

expressed that divisions and units within their agency were becoming increasingly collaborative and 

“changing back to where everyone’s helping each other do different things… if we work more as a team, 

all together, not just in fire, but the whole organization, and there will be more resilient and be able to 

tackle bigger issues” (Interview 25).  

 

3.5. Limitations 

The current interview findings should be considered exploratory given the sample size (n = 33) and unit 

of analysis (i.e., federal hazard management agencies). While current insights and participant perceptions 

of federal compound threat management tend to align with existing empirical, theoretical, and policy-

oriented work, this set of exploratory findings may not apply to all federal agencies and/or units. Results 

may vary by agency and according to the geographic vulnerabilities that participants have been exposed 

to. While the federal resources are often shared and while the NIMS and similar hazard management 

frameworks are designed to be generalizable and scalable to different threat types and geographies, 

findings from the interview-based study may not portray all federal personnel experiences with compound 

threat management. 

4. Conclusion 
Understanding and identifying barriers to federal agency resilience and management of compound 

threats is critical, as compound threat events are projected to increase in frequency, severity, and 

complexity over longer-duration natural hazard seasons (De Angeli et al., 2022; Ridder et al., 2022; 

Zscheischler et al., 2018; Cutter, 2018). Compound threats may complicate how federal hazard 

management agencies prioritize co-occurring incidents, which may share competing resources (Phillips et 

al., 2020). Using qualitative data based on semi-structured interviews with federal hazard management 

personnel, federal agencies were found to face internal resource constraints primarily attributed to 

workforce scarcity and external stressors associated with community and local government coordination. 

Resource constraints were associated with: (i) increasing duration of natural hazard seasons that limited 

off-season recovery for the workforce, (ii) fatigue, burnout and other mental health concerns, (iii) 

increasing costs of living across much of the United States at the time of the interviews, and (iv) potential 

reductions in on-site volunteer efforts. Coordination between federal hazard agencies and local 

governments and vulnerable communities also constrained federal adaptive capacity to compound threats 

such that local and federal preferences for incident prioritization, objectives, and resource allocation may 

diverge and complicate the multi-objective, multi-threat decision space. Considering that adaptive 

capacity is a core component of organizational resilience, results suggest that federal agency hazard 

management and organizational resilience would benefit from increased focus on community 

involvement and on prioritizing mental health of the workforce. 

  



 

55 

 

Chapter 3: Are Compound Threats Associated with Changes in Resource 

Use? An Assessment of Wildland Fires Suppression Resources given the 

COVID-19 Pandemic  
 

1. Introduction 
The severe 2020 and 2021 wildfire seasons in the US were further complicated by the compounding 

threat of the COVID-19 pandemic. From 2020 through 2021, there were approximately 55 million 

reported cases of COVID-19, responsible for nearly 825,000 deaths in the US (US CDC, 2022). 

Concurrently, there were nearly 59,000 wildfires in both 2020 and in 2021, burning over 10 million acres 

in 2020 and 7 million acres in 2021 across the US (NIFC, 2021). Fire frequency, duration, severity, and 

spread have increased across the US since 2000 with an estimated eight-fold increase of high-severity fire 

between 1985 and 2017 (Westerling, 2016; Singleton et al., 2019; Mueller et al., 2020; Abatzoglou and 

Williams, 2016; Schultz et al., 2021). Increasingly intense fire seasons strain local, state, and federal 

firefighting critical workforces. Wildland firefighters work increasingly long fire seasons, facing a variety 

of physical and mental risks including smoke inhalation, post-traumatic stress disorder (PTSD), 

depression, anxiety, and fatigue (Groot et al., 2019; Koopmans et al., 2022). Additionally, wildfire smoke 

inhalation has been associated with amplified COVID-19 health outcomes due to added strain on the 

respiratory system (Henderson, 2020). The risk of infected personnel coincides with community 

transmission and supply chain constraints, wherein supply chain constraints challenged the deployment of 

critical firefighting resources to fire lines. Thus, the compounding threat of wildland fires and COVID-19 

has challenged fire agencies and responding organizations, whose primary objective to is protect 

vulnerable communities. As such, it is necessary to examine if and how wildland fire suppression 

strategies may have been constrained or otherwise changed under the compounding risk of COVID-19.  

Infectious disease transmission, including but not limited to COVID-19, can propagate within and 

between fire crews and other personnel, particularly across wildland fire camps (Belval et al., 2022; 

Thompson et al., 2020). Fire camps are sites where hundreds to thousands of dispatched firefighters from 

across the country are based while they respond to fire incidents and where fire crews are provided with 

food, water, shelter, and sanitary services (Thompson et al., 2020). “Camp crud” is a contagious annual 

respiratory illness often transmitted at fire camps (Wildland Fire Lessons Learned, 2020), exemplifying 

how fire camps may be “ideal settings” for COVID-19 transmission (Thompson et al. 2020, pg. 1).  

Historically, noroviruses have spread through fire camps, such as during the 2011 Idaho Black Canyon 

Fire response when approximately 27% of responders contracted the norovirus (Britton et al., 2014). 

Studies of COVID-19 transmission within the firefighting workforce have revealed that incidence rates of 

COVID-19 were higher for the firefighting workforce relative to surrounding communities (Newberry et 

al., 2021), and COVID-19 transmission within fire crews has persisted through 2022 (Schmid, 2022).  

Viral outbreaks at fire camps threaten workforce health and safety and constrain critical scarce 

resources (Belval et al., 2022). Fire agencies approached the 2020 fire season with limited knowledge of 

best wildfire management practices given pandemic conditions (Thompson et al., 2020), where the 

projected fire season severity was met with the potential for disease transmission for fire crews and fire 

prone communities alike. An international survey analysis (including 40% U.S. participants) conducted 

by Stoof et al. (2020) showed that fire managers and firefighting personnel perceived increased risk and 

concern regarding COVID-19’s impact on organizational operations, management, and performance such 

that 63% of study participants were moderately to very worried about COVID-19’s impact on the 

operations of their respective fire agency. Additionally, fire agencies also faced limitations in terms of 

contracted fire crews and volunteer personnel that typically assist in wildland fire suppression. For 

instance, less than half of California’s inmate firefighting crews were active for duty in the summer of 

2020 due to COVID-19 transmission concerns – a reduction of over 1,000 wildland firefighters (Stark, 

2020).  

To mitigate the compounding risks presented to personnel and community by the confluence of 

wildland fires and COVID-19, national and multi-jurisdiction fire management organizations proposed 

https://covid.cdc.gov/covid-data-tracker/#trends_totaldeaths
https://www.nifc.gov/fire-information/statistics/wildfires
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various adaptations to status quo wildfire management practices. Several guiding policy documents, as 

well as early literature reviews of these policy documents (Moore et al., 2020), have recommended 

several changes to the wildland fire management paradigm. Policy guidelines that informed adaptations in 

fire management addressed five key fire management areas: (i) firefighter health safety, (ii) community 

health and safety, (iii) suppression strategies, (iv) use of suppression resources, and (v) use of other 

technology (i.e., to enable remote work). For instance, the National Interagency Fire Center’s (NIFC) 

Wildland Fire Response Plan: COVID-19 Pandemic (2020) included prescriptive guidance to minimize 

within crew COVID-19 transmission which included: (i) reconfiguration of fire camps to reduced “spike” 

camps to promote social distancing, (ii) behavioral COVID-19 hygiene, sanitation, and screening 

practices (i.e., regular COVID-19 testing, use of personal protective equipment (PPE), and sanitation of 

vehicles, equipment, camps); (iii) clear plans and preparation for possible outbreaks; and (iv) increased 

remote work when possible. Various policy guidelines outlined potential changes to fire suppression 

strategies and tactics (see Appendix 3A for table of proposed wildland fire management changes under 

COVID-19), including for suppression strategy selection and the use and distribution of resources to 

fulfill suppression strategies:  

• “Utilize suppression strategies that minimize the number of assigned personnel and incident 

duration… Use predictive services and professional judgement to balance assigned resources and 

incident duration” (NIFC, 2020, pg. 16).  

• “Evaluate opportunities for application of aviation and mechanized assets to reduce assigned 

personnel” (NIFC, 2020, pg. 17). 

While these and other wildland fire management policies and guidance were recommended to mitigate the 

compound COVID-19 threat, it is unclear if and how federal fire agencies adapted to the compound threat 

via the adoption of these policies and recommendations. Many guidance documents advocated for 

reduced personnel assignment and use, primarily by way of increased use of predictive services and 

applications of aviation and mechanized assets. While anecdotal evidence suggests that wildland fire 

management resources and strategies were constrained by the COVID-19 pandemic, there are limited 

empirical analyses regarding how U.S. wildland fire agencies have adapted to changing societal 

conditions presented by the COVID-19 pandemic. Accordingly, we assessed potential shifts in wildland 

fire suppression resource use using a Regression Discontinuity Design (RDD) modeling approach that 

evaluated and compared ground personnel resource use prior to and during the COVID-19 pandemic. The 

RDD approach developed here used a quasi-experimental design with relatively weak conditions 

compared to other quasi-experimental techniques (i.e., instrumental variables method, matching method) 

(Hidano et al., 2015). The RDD models approximated if and how ground personnel resources used during 

the pandemic changed from pre-pandemic conditions while controlling for fire behavior, weather, and 

societal risk factors.  

 

Objectives and policy implications. Various interagency policy guidelines promoted earlier, more 

aggressive initial attacks given the pandemic. Aggressive initial attacks were thought to minimize the 

potential for fire spread that would require additional firefighting personnel, increasing the risk of 

COVID-19 transmission between personnel. It is currently unknown whether trends in personnel 

resources used during the pandemic were empirically different for the 2020 and 2021 seasons relative to 

past fire seasons. This chapter assessed if and how wildfire suppression resource use changed during 

pandemic conditions, controlling for environmental conditions of the regional landscapes as well as 

proximity and threats to nearby communities (i.e., public health and safety, property damage, critical 

infrastructure damage). Specifically, RDD models are developed to examine fluctuations in ground 

personnel resource use during wildland fire suppression (i.e., the response to extinguish a fire incident) . 

By comparing wildland fire incidents across the Western U.S. from 2017 to 2021, I aim to provide 

https://edepot.wur.nl/521344
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empirical insights as to the organizational adaptive capacities18 of U.S. fire agencies facing simultaneous 

fire and COVID-19 risks. Adaptive capacity will be assessed by using daily fire suppression ground 

personnel used per day for each fire incident (herein, “fire days”) as the unit of analysis, which is 

measured using historical records of fire incidents and resource use data. 

This assessment builds from the interviews conducted in Chapter 2 such that Chapter 3 quantitatively 

assesses if and how the COVID-19 pandemic constrained resource allocation and use in the wildland fire 

suppression context based on historical fire management data. According to group workshops with fire 

managers and personnel hosted by the USFS’ Human Performance & Innovation and Organizational 

Learning team (2020), “Whatever actions are taken this season should not be looked at as a temporary fix 

for a temporary situation… possible permanent changes to how we fight fire into the future that make us, 

as a group, more resilient” (pg. 1). As such, the compound threat of fire and COVID-19 presented in 

2020, 2021, and perhaps beyond may have presented a window of opportunity for fire agencies to adapt 

their wildfire response (Wildland Fire Lessons Learned Center, 2020). Historical data analyses of 

wildland fire suppression personnel resource use can help identify if and how resource constraints 

changed during the compounding wildland fire and COVID-19 pandemic threat. Understanding resource 

use as a gauge for the adaptive capacity of fire agencies will help to provide empirical lessons learned for 

if and how pandemic conditions influence wildland fire resource use. This analysis can be used to inform 

anticipatory action and governance surrounding suppression management given the emergence of other 

future infectious diseases (Bacciu et al., 2022; Mora et al., 2022). 

 

1.1. Research questions 

• Across the western US, if and how did suppression resource use per fire day differ during the 

pandemic relative to recent prior years?  

• Were there regional differences in resource use per fire day during the COVID pandemic? 

Considering the NIFC management guidelines and the potential for COVID-19 transmission, the 2020 

and 2021 fire years were hypothesized to show reductions in total ground personnel used per fire day (i.e., 

daily observations for each unique fire incident) relative to prior recent years after controlling for weather, 

fire behavior, societal risks, strategic objectives, and regional Preparedness Levels (PL).19 This hypothesis 

is motivated by the guidance set forth by the NIFC regarding wildland fire response under COVID-19 

pandemic conditions. As COVID-19 was a national risk, there were no anticipated differences in ground 

resource use per fire day for different U.S. fire regions. In addition, each region recommended similar 

wildland fire management protocol for handling COVID-19.  

2. Methods and Materials 
I developed sharp Regression Discontinuity Design (RDD) models to evaluate ground personnel 

resource use per fire day for wildland fire suppression efforts across the western U.S. from 2017 to 2021.  

Specially, these models assessed ground personnel resource use before versus during the COVID-19 

pandemic. Figures 1A and 1B show aggregate ground personnel used per fire acre burned (Figure 1A) 

and per fire acre burned per fire (Figure 1B) on a daily basis from January 1, 2017 through December 31, 

2021 with the official declaration of the COVID-19 pandemic depicted on March 10, 2020 (WHO, 2020). 

Daily resource aggregate resource use trends show that, controlling for fire acres and fire incidents, there 

was an apparent reduction over time in ground personnel resources used across daily fires in the western 

 
18 Adaptive capacity is defined as a system’s ability to adjust to change, moderate the effects, and cope with a disturbance (Cutter 

et al., 2008, pg. 600); adaptive capacity is often exemplified through a system’s ability to improvise and/or engage in social 

learning (Cutter et al., 2008). 
19 Preparedness Levels (PLs) are published by the National Interagency Fire Center within the daily Incident Management 

Situation Report (NIFC, n.d.). PLs are determined by the National Multi-Agency Coordination Group (NMAC) and are dictated 

by fuel and weather conditions, fire activity, and fire suppression resource availability throughout the country. PLs are included 

in fire suppression management models to serve as a proxy for resource scarcity.  

 

https://www.nature.com/articles/s41558-022-01426-1
https://www.nifc.gov/sites/default/files/2020-09/National_Preparedness_Levels.pdf
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U.S. according to Resource Ordering and Status System data. The aggregate resource use trends show that 

there were fewer ground resources used per fire acre and per fire acre per fire from 2020 through 2021 

relative to 2017 through 2019, suggesting reductions in ground personnel resource use per fire acre after 

March 10, 2020. The locally weighted smoothing (LOESS) curves represent timeseries trends that show 

reductions in ground resource use on a daily basis across the western U.S., and the RDD modeling 

approach then evaluates these trends by assessing ground resource use considering environmental and 

societal conditions for each individual fire incident day. The “fire day” unit of analysis is used throughout 

the remainder of this chapter to assess ground resource use outcomes by controlling for the unique 

environmental, societal, and managerial conditions that occur on daily bases.  

A.  B.  

Figure 1A-B. Daily aggregate ground personnel resources used (A) per fire acre burned and (B) per fire 

acre burned per fire. The vertical dashed line shows when the COVID-18 pandemic was declared. The 

curved line represents the locally weighted smoothing (LOESS) curve with standard errors (gray shaded 

curve) between the timeseries data and the ground personnel resource use outcome (Jacoby, 2000).20 The 

loess curve signals that there were fewer ground resources used per fire acre per fire in 2020 relative to 

2017-2019, and  ground personnel resources used per fire acre per fire began increasing in 2021 relative 

to 2020.  

2.1. Scope.  

The United States is divided into 10 geographic fire regions (Figure 2) referred to as Geographic Area 

Coordination Centers (GACCs). This analysis focused on GACCs located in the western US (i.e., ONCC, 

OSCC, PNCC, SWCC, RMCC, GBCC), as wildland fires are more prevalent and pose greater risks in 

these GACCs than GACCs located in the Eastern US. Models were developed to estimate total personnel 

use via global (i.e., all western US GACCs combined) and local (i.e., individual GACCs). The timeframe 

of 2017 – 2021 was selected because heavy equipment (i.e., dozers, engines, helicopters, air tankers) used 

for fire suppression has been relatively consistent since 2017 (Stonesifer et al., 2021).  

 
20 The locally weighted smoothing (LOESS) curve in Figure 1A-B is a non-parametric curve of best fit that is a generalization of 

least squares methods (Jacoby, 2000). This smoothing technique is suitable for showing the relationship between timeseries data 

and an outcome when the dataset may include sparse data points (i.e., fire days during the off-season that have no reported 

resources used, fires, or fire acres burned).  

COVID-19 
Pandemic 

COVID-19 
Pandemic 

https://www.sciencedirect.com/science/article/abs/pii/S0261379499000281?casa_token=xWYf4-2nBXoAAAAA:HuHJo6PeGqFntorG8PNcmvMwauFf7ASM-RuSsM-LeJkOU3ecBw-70DLGBxA_1SsHgSxSaYg6hmo


 

59 

 

 
 

Figure 2. Map of contiguous U.S. GACCs (i.e., fire regions). GACCs shaded in green or yellow represent 

those included in this analysis. The gray dots represent fire incident origin locations for each large fire 

incident that occurred between 2017 – 2021.  

 

The analysis focused on fire day resource use for wildland fires of categorized Fire Complexity 

Types 1, 2, or 3 (NIFC).21  Complexity Types 1 are designated to the most complex fire incidents, and 

Complexity Types 5 are the least complex and most common. For the current analysis, Complexity Types 

1, 2, and 3 were selected because generally, for large wildland fires that are of Complexity Types 1, 2, or 

3, necessary ICS-209 data are reported by fire managers on a near daily basis to monitor the incident 

(NIFC, n.d.). Additional data cleaning mechanisms were used to finalize the fire day sample for the 

current preliminary results (Appendix 3B). There were a total of 22,022 fire day observations used in the 

analysis, which represented 1,916 unique fire incidents. Of these, 11,093 fire day observations occurred 

prior to the COVID-19 pandemic (i.e., between January 1, 2017 and March 10, 2020) and 10,929 fire day 

observations occurred during the COVID-19 pandemic (i.e., between March 11, 2020 and December 31, 

2021). Table 1 provides an annual overview of the number of unique fire incidents, reported fire days 

across incidents, and the number of fire days categorized as having Complexity Types 1, 2, or 3 fires per 

year.  

 
21 Fire complexity is ranked from Types 1 to 5 per incident; this ranking is determined by fire agency administrators and is used 

to facilitate personnel assignment decisions (NIFC, 2004). Type 5 incidents are of the lowest level of complexity, and Type 1 are 

the most complex. Type 5 incidents are the most common and require no more than five personnel to manage, whereas Type 1 

incidents involve 500+ personnel (NIFC, 2004). 

https://gacc.nifc.gov/swcc/management_admin/Agency_Administrator/AA_Guidelines/pdf_files/ch5.pdf
https://www.predictiveservices.nifc.gov/intelligence/ICS-209%20When%20to%20Report%20Wildland%20Fire%20Incidents%20Flowchart.pdf
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Table 1. Counts of annual total fire incidents and ICS-209 reports (which represent individual fire days), 

including the distributions and annual percentages of fire days categorized by fire managers as 

Complexity Types 1, 2, and 3.  

Year 

Fire 

Incident 

Count 

Fire Day ICS-209 

Report Count 

Complexity T1 

Count (%/Year) 

Complexity T2 

(%/Year) 

Complexity T3 

(%/Year) 

2017 523 4803 986 (21%) 1495 (31%) 2322 (48%) 

2018 382 4581 1037 (23%) 1312 (29%) 2232 (49%) 

2019 199 1703 155 (9%) 264 (16%) 1284 (75%) 

2020 525 6408 1343 (21%) 1764 (28%) 3301 (52%)  

2021 288 4527 986 (22%) 1525 (34%) 2016 (45%) 

TOTAL 1917 22022 4507 (20%) 6360 (29%) 11155 (51%) 

 

2.2. Concept model.  

The declining trends in ground resources used per fire day motivated the sharp RDD methodology, as this 

quasi-experimental approach has been used to evaluate how policy interventions or historical 

interventions influence hazard management outcomes pre- versus post-intervention (Young et al., 2020; 

Hidano et al., 2015). Sharp RDD models were developed for samples including: (i) all western U.S. large 

fire incidents, (ii) by U.S. fire region (iii) by fire complexity types, and (iv) by national Preparedness 

Levels (PLs). Further, RDD models were used to assess resource use sensitivity across different 

timeframes of analysis—referred to as the model bandwidths in RDD (Young et al., 2020). Figure 3 

shows the concept model for this modeling approach that predicts ground personnel (i.e., crew and 

equipment personnel) used per incident per fire day. The model inputs include the primary variable of 

interest and RDD threshold variable, which was the date of the fire day. Strategic objectives identified by 

fire managers (i.e., minimize infrastructural damage, minimize ecological damage, minimize 

historical/cultural site damage), societal risks (i.e., structures at risk of damage, evacuations, etc.), fire 

behavior characteristics, weather conditions, strategic objectives, and national and regional PLs are used 

as model controls.  

 
Figure 3. Concept model illustrating model inputs and the predicted model outputs – ground personnel 

used per incident per day.  
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2.3. Model Inputs.  
Table 2 summarizes the model covariates, data sources, data types, and descriptive statistic for the sample 

for large wildland fire incidents that occurred across the western US between January 1, 2017 to 

December 31, 2021. See Appendixes 3B for these covariate distributions and statistical tests of 

comparative distributions in the pre-COVID and during-COVID subsamples.  
 

Table 2. The variable categories, measurement types, mean, standard deviation (SD), median, and inter-

quartile range (IQR) used for the set of model covariates.   

Variable Category Variable Variable Type Mean SD Median 

25th 

Percentile 

75th 

Percentile 

Dependent variable Ground personnel used 

per fire day 

(untransformed) 

Continuous 190.2 478.6 56 18 153 

 Ground personnel used 

per fire day (ln) 

Continuous 3.9 1.8 4.03 2.9 5.0 

Incident Overview 

(ICS-209) 

During-COVID 

Threshold 

Binary 0.5 0.5 0 0 1 

Human-caused Binary 0.1 0.3 0 0 0 

Fire Behavior 

(ICS-209) 

Complexity Type 1 Binary 0.2 0.4 0 0 0 
New fires in GACC Continuous 16.4 15.3 13 7 22 
Complexity Type 2 Binary 0.3 0.4 0 0 1 
Complexity Type 3 Binary 0.5 0.5 0 0 1 
Current fire size (ha) Continuous 33,395 81,797 5,444 956 26,354 

Current fire size (ha) Continuous – log 

scale 
8.5 2.3 8.6 6.9 10.2 

Percent incident 

contained 

Continuous 46.5 35.8 0.01 10 45 

Fire behavior: minimal Binary 0.5 0.5 0 1 1 
Fire behavior: 

moderate 

Binary 0.2 0.4 0 0 0 

 Fire behavior: active Binary 0.2 0.4 0 0 0 
 Fire behavior: extreme Binary 0.05 0.2 0 0 0 

Weather conditions 

(GridMet) 

Energy release 

component (percentile) 

Continuous 0.8 0.2 0.9 0.8 0.9 

Daily accumulated 

precipitation (mm) 

Continuous 0.6 2.9 0 0 0 

 Vapor-pressure deficit 

(kPa) 

Continuous  1.7 0.8 1.58 1.1 2.2 

Societal Risk Factors 

(ICS-209) 

Evacuations in 

progress or planned 

Binary  0.04 0.2 0 0 0 

Area closure Binary  0.01 0.1 0 0 0 
Structures threatened* Continuous 405 3224 0.03 0.03 0.03 

 Public injuries and 

fatalities 

Continuous 2.1 5.8 0 0 0 

 Responder injuries and 

fatalities 

Continuous 0.1 /0.9 0 0 0 

Strategic Objectives 

(ICS-209) 

Historical, cultural 

concerns 

Binary  0.2 0.4 0 0 0 

Public land ecological 

concerns 

Binary 0.02 0.1 0 0 0 

Social considerations Binary 0.2 0.4 0 0 0 
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Economic 

considerations 

Binary 0.1 0.3 0 0 0 

Personnel health and 

safety concerns 

Binary 0.1 0.3 0 0 0 

Public health and 

safety concerns 

Binary  0.2 0.4 0 0 0 

Regional PL 

(SIT Reports) 

PL 1 or 2 Binary 0.2 0.4 0 0 0 

 PL 4 or 5 Binary 0.5 0.5 0 0 1 
Daily COVID-19 

caseloads 

(CDC) 

New daily COVID-19 

cases per state and 

across western U.S.** 

Continuous 2077 3612.9 637 262 2712 

* Including residential, commercial, and other structure types 

** Only used COVID-19 caseloads in models that assessed 2020 versus 2021 

 

For each day of a large fire incident, fire managers’ report and submit an Incident Command 

System 209 Report (ICS-209) (FEMA, n.d.). The Federal Emergency Management Agency’s (FEMA) 

ICS-209 Reports are used to assess daily fire incident situations, including daily fire behavior, estimated 

societal risks, and strategic objectives for each incident per reporting period. Generally, for large wildland 

fires that are of fire complexity 1 through 3, these reports are filed daily to monitor the incident (NIFC, 

n.d.). Additionally, FAMWEB’s Situation Reports were to assess “Preparedness Levels” (PLs), which 

reflect wildland fire frequency and severity at the national and regional levels. PLs are used as model 

controls because they serve as a proxy for resource scarcity.  

Fire managers request and use fire suppression resources in part based on the suppression strategy 

selected. The suppression strategy is selected based on how it fulfills multiple objectives that are 

considered by fire managers (Belval et al., 2015; Calkin et al., 2016). Multiple, sometimes competing 

objectives address the minimization of health and human safety risks to affected communities and 

personnel, the minimization of social and/or political tensions, the minimization of infrastructural 

damage, the minimization of damage to historical and/or cultural sites, and the minimization of ecological 

damage. Weighting schemes for incident objectives have been developed at the regional level to facilitate 

incident prioritization and suppression resource allocation decisions. Fire managers, such as Incident 

Commanders on Incident Management Teams (IMTs), report on a near daily basis if and how these 

objectives may be fulfilled by suppression strategies and tactics. These reports support resource requests 

sent to regional Multi-agency Coordinating Group Systems (MACS), who make final resource 

prioritization and resource allocation decisions. To communicate if and how certain resources are needed 

to satisfy the multi-objective decision space of each fire incident, fire management fills out a narrative 

field in the FEMA ICS-209 report on a fire day basis. To capture strategic objectives, natural language 

processing (NLP) was used to codify and pull key phrases indicative of the set of objectives considered in 

the decision-weighting scheme for incident prioritization and resource allocation (California Wildland 

Fire Coordinating Group, 2021) (Figure 4). NLP was used to integrate data for each fire incident related 

to the “harder-to-quantify” and/or intangible objectives that fit into resource allocation and use decision 

making, including social and political factors that influence such decisions (Figure 4).  

 

https://training.fema.gov/emiweb/is/icsresource/assets/ics%20forms/ics%20form%20209,%20incident%20status%20summary%20(v3).pdf
https://www.predictiveservices.nifc.gov/intelligence/ICS-209%20When%20to%20Report%20Wildland%20Fire%20Incidents%20Flowchart.pdf
https://www.predictiveservices.nifc.gov/intelligence/ICS-209%20When%20to%20Report%20Wildland%20Fire%20Incidents%20Flowchart.pdf
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Figure 4. Natural language processing results of the “Strategic Objectives” narrative field filled out in 

ICS-209 Reports. 

 

Additionally, an interaction term for off-peak fire season fire days that were of Complexity Type 

1 (i.e., most complex fire incidents) was included to control for complex fire days that occurred in off-

peak periods when fire suppression resources were available in higher quantities. Generally, these fires 

were assigned high quantities of ground personnel both due to their complexity and availability of 

resources given limited resource competition with other co-occurring fire incidents (e.g., the December 

2017 Thomas Fire and the November 2018 Camp Fire, both in California). This interaction was included 

to account for large fires with highly rated complexity levels that occurred during periods with fewer 

competing fires.  

2.4. Predicted model outcomes.  

Total ground personnel used per fire day was the outcome of interest, where ground personnel include 

personnel working on fire crews and personnel who operate heavy equipment (i.e., fire engines, 

bulldozers, etc.) (Belval et al., 2020).  Ground personnel resource use per fire day (i.e., daily quantities of 

personnel types used for each individual fire incident) were collected via the Resource Ordering and 

Support System database (ROSS) (NWCG, 2020) and Interagency Resource Ordering Capability (IROC) 

(NWCG, 2022). The ROSS and IROC databases also include overhead personnel used per fire day (i.e., 

those working in administration, logistics), though these positions were not included in this analysis 

because of the potential to work remotely. Personnel working in overhead positions may not have faced 

the same COVID-19 – wildfire risks as ground personnel, who were unable to conduct remote work.  

Table 3 shows the summary statistics for ground personnel resources used per fire day for fire 

incidents that occurred over all fire days during 2017 to 2021, for the pre-COVID fire days, and for the 

during-COVID fire days. The mean ground personnel per fire day pre-pandemic was 328 (SE = 640) 

relative to the during-pandemic mean total ground personnel per fire day of 55 (SE = 90). Reductions in 

ground personnel were observed according to pre- and during-COVID group means, medians, and inter-

quartile ranges (IQR). These descriptive statistics clearly show a reduction in ground personnel used per 

fire day, which was further explored through multivariate RDD modeling controlling for weather, fire 

behavior, and societal risk factors.  
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Table 3. Descriptive statistics of ground personnel resource use per fire day according to the full dataset 

(n = 22,022) and according to the pre-COVID (January 1, 2017 through March 10, 2020) and during-

COVID (March 11, 2020 through December 31, 2021) timeframes of analysis. The arithmetic and 

geometric means are included as the model uses the natural log of ground personnel as the predicted 

outcome, and regressors share a multiplicative relationship with this predicted outcome.  

Timeframe Arithmetic 

Mean (SD) 

Geometric 

Mean  

Median IQR 

2017- 2021 

(n = 22,022) 

190 (479) 49 (5.8) 56 18 – 153 

Pre-COVID 

(n = 11,093) 

328 (640) 117 (4.4) 127 48 - 323 

During-COVID 

(n = 10,929) 

55 (90) 20 (4.7) 23 8 – 62  

 

2.5. Modeling approach.  

A sharp Regression Discontinuity Design (RDD) approach was used to assess federal agency ground 

resource use to suppress fires on a fire day basis before and during the COVID-19 pandemic.22  Sharp 

RDD modeling approaches have been conducted to provide a quasi-experimental regression approach 

suitable for investigating how an intervention (i.e., a policy) may influence an outcome (Young et al., 

2020).23 Specifically, a sharp RDD modeling approach was developed to assess ground personnel use 

outcomes before and during the COVID-19 pandemic.  

Sharp RDD is characterized by a deterministic treatment assignment that is based on whether an 

observation falls above or below a cut-point threshold of a continuous variable, generating a discontinuity 

in the probability of treatment receipt at that point according to different model slopes (Young et al., 

2020). RDD can be used post hoc to conduct analyses of the association between an intervention and a 

predicted outcome. Here, RDD models were developed to assess whether the NIFC’s Wildland Fire 

Response Plan: COVID-19 Pandemic (2020) may have had an influence on (Y1) total ground personnel 

used per fire day. Sharp RDD was used to assess and compare trends in ground personnel per fire day 

before and after WHO officially declared the COVID-19 pandemic on March 11, 2020 (WHO, 2020). 

Thus, the RDD models explored what association, if any, between the COVID-19 pandemic and ground 

personnel resource use per fire day (Y1).24 We theorize each response (Y1) to be defined by:  

 

𝑌1 =  𝛽0 +  𝛽1𝑋𝑖 + 𝛽2𝐹𝑖 +  𝑢𝑖 

 
22 In addition to the sharp RDD modeling design, mixed-effect regression models were developed to further validate trends in 

resource use per fire day across western GACCs by accounting for region-specific weather, fire behavior, and societal risk 

factors. Mixed-effects models are well suited to account for geographic variation in that may occur between different GACCs 

given their ability to estimate within-group variation (Schielzeth et al., 2020). Mixed-effects models can be developed on 2017 – 

March 9, 2020 data and tested on March 10, 2020 – December 31, 2021 data to validate if and how resource use per fire day in 

2020 could be used to forecast resource use per fire day in 2021.  
23 This approach to assessing fire suppression change was inspired by Young et al. (2020), who assessed wildland fire strategies 

and acres burned before and after the implementation of the federal 2009 Guidance for Implementation of Wildland Fire 

Management Policy, which aimed to encourage fire managers to adopt “expanded strategies” aside from aggressive suppression 

for wildland fire response (Young et al., 2020). Using the RDD approach, Young et al. (2020) found that the 2009 policy 

corresponded with an estimated 27 – 73% increase in the number of fires managed with expanded strategies options and limited 

evidence of an increase in size or annual area burned (pg. 587). 
24 As in Young et al. (2020), we assumed that fire managers were aware of and complying with the Wildland Fire Response Plan: 

COVID-19 Pandemic (2020), and as such, a sharp rather than fuzzy regression discontinuity design was conducted (Jacob et al., 

2019). 
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such that  

𝑋𝑖 =  {0,   𝑊𝑖<𝑐
1,   𝑊𝑖≥𝑐

 

 

where (Xi) represents an indicator variable equal to 1 if the fire day (i) occurred after March 11, 2020, the 

threshold c of the running variable, which is fire day date (Wi,) in the current model (Young et al., 2020). 

F represents a vector of wildland fire variables (i.e., behavior, weather, societal risks, strategic objectives) 

used as controls in the model. Sharp RDD includes deterministic treatments that are discontinuous at the 

cut-off: all observations with 𝑊𝑖 < 𝑐 do not receive treatment and all observations where 𝑊𝑖 ≥ 𝑐 do 

receive treatment. Additionally, 𝛽1 is the average treatment effect for individuals with Wi = c, which is 

assumed to be a good approximation to the treatment effect in the population. Global model results for all 

western U.S. fire days across the full timeframe (2017 – 2019 vs. 2020 – 2021) used every observation in 

the sample to model the outcome as a function of the rating variable and treatment status. This approach 

“borrows strength” from observations far from the cut-point score to estimate the average outcome for 

observations near the cut point score and the estimation of treatment effects as a “discontinuity at the cut 

point” (Jacobs et al., 2019).  To minimize bias, different functional forms for the rating variable (linear, 

quadratic) were tested by conducting F-tests on higher-order interaction terms and inspecting the residuals 

(Appendix 3C).   

RDD approaches can include fuzzy or sharp forms, where sharp regression discontinuity applies 

uniform (rectangular) kernel weighting and fuzzy regression applies heterogenous kernel weighting 

(Jacob et al., 2012; Young et al., 2020). Sharp RDD forms are used in the current analysis given the wide 

timeframe bandwidths of the global model and because fire days that occurred during the COVID-19 

pandemic could deterministically be assigned to the quasi-“treatment” group (Perraillon, 2020). First, 

linear and quadratic univariate models were assessed to observe the relationship between the pre-COVID 

and during-COVID threshold effect on predicted logged ground personnel outcomes (Lee and Lemieux, 

2010; Jacob et al., 2012; Young et al., 2020). Then, multi-variate models were developed that included 

weather, fire behavior, strategic objective, and societal risk covariates to control for fire day 

characteristics that may be attributed predicted ground personnel resource use. Multi-variate sharp RDD 

methods were developed with different functional forms (i.e., linear, quadratic), and local and global 

linear models are included in the main text.25 We examined underlying distributions of the data-

generating process and fitted the appropriate global model. Global models assume a functional form that 

is consistent before and during the COVID-19 pandemic.26 The current results use log-level linear 

regression to meet the following Gauss-Markov linear regression assumptions: (i) linearity, (ii) 

independence of residuals, (iii) homoscedasticity (natural log of ground personnel use per fire day)27, (iv) 

normality (residuals normally distributed), (v) omitted variable bias. A natural log transformation of the 

dependent variable—ground personnel resources used per fire day—was used for final model results to 

mitigate heteroskedasticity. As approximately 18% of fire day observations (n = 3,964) had zero ground 

personnel assigned, a monotonic transformation was applied by adding one ground personnel to each fire 

day observation (including those with greater than zero ground personnel resources used) such that the 

natural log for each fire day could be estimated with minimal bias (i.e., not yield negative infinity) (Davis, 

2018). This handling of fire day observations with zero ground personnel observed was further explored 

in Appendix 3B by testing model results with different treatments of fire days with zero ground personnel 

used; overall, the modeling results were consistent despite the handling of fire days with zero ground 

personnel used.  

 
25 Model results and goodness of fit as measured by the adjusted R2 for quadratic model forms did not significantly deviate from 

linear regression results, and therefore, linear regression results are presented in the main text. See Appendix 3C for model results 

using quadratic model forms.  
26 See Appendix 3B for pre-COVID and during-COVID distributions of covariates.  
27 For distributions of untransformed ground personnel use and log-transformed ground personnel use, see Appendix 3B.  
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Using the natural log of dependent variable approach, the relationships between covariates and 

the logged dependent variable are multiplicative, thus altering the interpretations of model coefficients 

relative to model interpretations of the untransformed dependent variable (Wooldridge, 2009). 

Continuous, untransformed covariates are interpreted such that a one unit increase in X is associated with 

a 100 × 𝐵1 percentage change in the dependent variable. For binary covariates—including the main 

effect of interest, the “during-COVID threshold” that differentiated pre-and during-COVID fire days—

when the binary variable switches from 0 to 1 (i.e., from pre- to during-COVID), the percentage change 

of Y is [100 ×  ((𝑒𝐵1) − 1)] (Halvorsen and Palmquist, 1980). These coefficient interpretations indicate 

percentage changes in Y (i.e., natural log of ground personnel used per fire day), but do not indicate how 

many ground personnel were predicted to change. To do so, it is first necessary to differentiate the model 

with respect to the “during-COVID threshold” variable after inverting the log to derive the number of Y 

(ground personnel) that are predicted to change if input changes by one unit.  

 

𝐺𝑟𝑜𝑢𝑛𝑑 𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑢𝑠𝑒𝑑 =  𝑒𝛽0+ 𝛽1𝑋𝑖+ 𝛽2𝑊𝑖 − 1 

 
𝜕

𝜕 𝐷𝑢𝑟𝑖𝑛𝑔 − 𝐶𝑂𝑉𝐼𝐷 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
=  𝐵1  ×  𝑒𝛽0+ 𝛽1𝑋𝑖+ 𝛽2𝑊𝑖   

 

where 𝐵1 reflects the "During-COVID Threshold” binary variable for fire day observations that occurred 

during the pandemic (i.e., March 11, 2020 – December 31, 2021). For a one unit increase in the “During-

COVID Threshold” variable (i.e., from pre-COVID to during-COVID, holding covariates constant), we 

would expect  𝐵1  ×  𝑒𝛽0+ 𝛽1𝑋𝑖+ 𝛽2𝐹𝑖 fewer ground personnel used. This implies a multiplicative 

relationship between covariates and the logged dependent variable, thus altering the interpretations of 

model coefficients relative to model interpretations of the untransformed dependent variable.  

Various bandwidths were selected to compare model outcomes across different timeframes 

(Young et al., 2020). By adjusting model bandwidths, model outcomes were compared for different 

timespans between 2017 and 2021. The global models include all fire day observations that occurred 

between 2017 and 2019 versus all fire day observations that occurred between 2020 and 2021. Local 

models included narrower bandwidths to compare ground personnel resources used. Comparing different 

bandwidths allows for balancing precision with consistency (i.e., accuracy) to further explore the 

sensitivity of results. Narrow bandwidths suggest more consistent and less biased results if there are many 

observations proximal to the policy treatment (Young et al., 2020; Imbens and Lemieux, 2008; Lee and 

Lemieux, 2010). By adjusting the bandwidth, this analysis assessed the sensitivity of ground personnel 

resource use considering different timeframe comparisons.28 For instance, ground personnel resource use 

changes specific to peak fire season observations (May through September) were compared pre- and 

during-COVID fire days, fire days in 2019 were compared to those in 2020, and fire days in 2020 were 

compared to 2021 to assess during-COVID resource use fluctuations. In models assessing resources used 

for 2020 relative to 2021 fire days, additional COVID-19 related covariates were included: (i) fire 

management mentioning COVID-19 within their discussion of strategic objectives for that incident in 

ICS-209 reports, and (ii) daily statewide COVID-19 caseloads at the start of each fire day (CDC, 2022). 

COVID-19 related covariates were included for the 2020 versus 2021 bandwidth to better assess if and 

how fluctuations in the pandemic were associated with shifts in ground personnel resource use. 

Additionally, the sharp RDD multivariate linear regression model for all western U.S. fire days across the 

global bandwidth (i.e., 2017 – 2021) covariates were assessed and presented in terms of their respective t-

statistic. The t-statistic (𝑡�̂�) reflects the “variable importance” (Grömping, 2009) when each covariate is 

added to the model by deriving:  

 
28 For instance, 2019 and 2020 were quite different in terms of the fire risks posed; however, 2018 and 2020 were comparable in 

terms of the fire risks posed. Therefore, it may provide deeper insights to compare these years directly.  
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𝑡�̂� =  
�̂� −  𝛽0

𝑆𝐸(�̂�)
 

where �̂� is the estimate of the covariate, 𝛽0 is a non-random known constant (i.e., intercept), and 𝑆𝐸(�̂�) is 

the standard error of the estimator (Kennedy and Cade, 1996). The t-statistic provides a commonly used 

measure of the relative extent to which the absolute value of the slope will change when each covariate is 

added to the model, such that higher t-statistics suggest greater changes in the predicted outcomes.  

3. Results 

3.1. Global RDD results for western U.S.  

Univariate and multivariate sharp RDD model results indicate that the COVID-19 pandemic had a 

significant effect on the number of ground personnel used per fire day across the western U.S. Figure 5B 

shows scatterplots and univariate linear regression relationships between pre-COVID and during-COVID 

fire days on (A) untransformed ground personnel resources used and (B) natural log ground personnel 

resources used per fire day. Untransformed outcomes are included to illustrate the scale of ground 

personnel changes pre- and during-COVID, though to satisfy linear regression assumptions, the core 

results use the natural log + 1 transformed ground personnel and changes in covariates reflect percentage 

changes in average predicted ground personnel used per fire day. 

 
Figure 5. Scatterplot and fitted univariate linear regression line for the effect of the “During-COVID Threshold” 

variable on predicted (A) ground personnel and (B) natural log transformed ground personnel used per fire day. The 

dots represent observed ground personnel use per fire day. Negative x-axis values reflect fire days that occurred pre-

COVID. The vertical red dashed line represents March 11, 2020 – the date the WHO declared the COVID-19 

pandemic, which served as the threshold date for the RDD to compare ground personnel use across the Western US. 

Pre-pandemic there were a total of 11,093 fire days representing individual incidents per date. Pre-COVID, the mean 

ground personnel used was 328 personnel (SD  = 640) per fire day. During the pandemic, the mean ground 

personnel used was 55 ground personnel (SD = 90) per fire day. Both the (A) untransformed and (B) natural log 

transformed relationships are illustrated to contextualize the predicted scale of the reduction in ground personnel 

during-COVID. 

 Table 4 shows the global sharp RDD results for a multivariate linear regression model that 

included all covariates. We focused on the change in logged ground personnel used before and during the 

COVID-19  
Pandemic 

COVID-19  
Pandemic 
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COVID-19 pandemic to meet linear regression assumption of homoscedasticity (i.e., constant variance of 

residuals). Table 4 results compared the bandwidth of 2017 – March 10, 2020 fire days to March 11, 2020 

– December 31, 2021 fire days. The coefficient for the “During-COVID-19 Threshold” variable predicted 

that, holding covariates constant, ground personnel used on during-COVID fire days were predicted to 

reduce by an average of 92.2 – 93.2% (p < 0.001) relative to pre-pandemic fire days, which had an 

observed geometric mean of 122 (SE = 4.4) ground personnel resources used per fire day. This 

percentage reduction in ground personnel was derived such that when the binary variable switches from 0 

to 1 (i.e., from pre- to during-COVID), the associated percentage change of Y is [100 × ((𝑒𝐵1) − 1)] 
(Halvorsen and Palmquist, 1980). Here, the 95% confidence intervals around the coefficient results in 

Table 4 predict a reduction by [100 ×  ((𝑒−2.69) − 1)] =  −93.2% to [100 × ((𝑒−2.69) − 1)] =
 −92.2%. The multivariate modeling results were consistent with the univariate global RDD model, 

which revealed an average predicted reduction of 93 - 94% (p < 0.001) of ground resources used per 

during-COVID fire day relative to pre-COVID. Details and further results on univariate models (i.e., 

level-level models, log-level models in linear and quadratic forms) are presented in Appendix 3C. 

  
Table 4. Sharp RDD linear regression results for global pre-COVID (2017 – March 10, 2020) versus during-COVID 

(March 11, 2020 – December 31, 2021) model predictive of the natural log + 1 transformation of ground personnel 

used per fire day. This table includes the coefficient estimates for the natural log transformation on the dependent 

variable, standard error (SE), lower-bound of the 95% Confidence Interval (CI Lower), upper-bound of the 95% 

Confidence Interval (CI Upper) and coefficient p-values. The adjusted R2 for this model was 0.47 (p < 0.001). 

Covariates are ordered by their relative model importance according to the t-statistic when the covariate is added to 

the multivariate regression model that includes all other covariates.  

Predictors Est. t-stat SE 

Lower 

CI 

Upper 

CI P-value 

Intercept 3.32 -- 0.07 3.19   3.46 <0.001 

During-COVID threshold -2.61 70.2 0.04 -2.68   -2.54 <0.001 

Fire Complexity Type 1 0.95 33.4 0.03 0.89   1.01 <0.001 

Fire Complexity Type 2 0.71 30.3 0.02 0.67   0.76 <0.001 

Region: ONCC 0.93 23.3 0.04 0.86   1.01 <0.001 

Region: OSCC 0.92 22.5 0.04 0.84   1.01 <0.001 

Off-peak fire days * Complexity Type 1 1.47 14.2 0.10 1.26   1.67 <0.001 

Regional PL 4 or 5 -0.26 13.7 0.02 -0.30   -0.22 <0.001 

Current incident area (log) 0.07 13.5 0.01 0.06   0.08 <0.001 

Region: NWCC 0.39 10.8 0.04 0.32   0.47 <0.001 

Region: GBCC 0.41 10.6 0.04 0.34   0.49 <0.001 

Off-Peak Fire Day -0.45 8.0 0.06 -0.56   -0.34 <0.001 

General fire behavior: active 0.23 7.9 0.03 0.18   0.29 <0.001 

Cause: Human 0.24 7.8 0.03 0.18   0.30 <0.001 

VPD (kPa) 0.08 6.1 0.01 0.05   0.09 <0.001 

Objective: Public land -0.38 5.9 0.06 -0.51   -0.26 <0.001 

General fire behavior: moderate 0.15 5.8 0.03 0.10   0.20 <0.001 

Evacuations planned or progressing 0.25 5.6 0.04 0.16   0.34 <0.001 

Region: SWCC 0.24 5.4 0.04 0.15   0.32 <0.001 

Public Injuries/Fatalities * Regional PL 4 | 5 -0.12 5.2 0.02 -0.17   -0.09 <0.001 

Structures threatened (log) 0.01 4.2 0.00 0.01   0.02 <0.001 

General fire behavior: extreme 0.17 3.6 0.05 0.08   0.26 <0.001 

Region: NRCC -0.13 3.5 0.04 -0.21   -0.06 <0.001 

Public injuries or fatalities 0.06 3.3 0.02 0.02   0.10 0.001 

Percent Fire Contained 0.01 3.2 0.00 0.00   0.01 0.001 

Objective: Responder health and safety 0.11 3.1 0.04 0.04   0.18 0.002 

Responder injuries or fatalities 0.01 3.0 0.00 0.01   0.01 0.003 

ERC Percentile -0.11 2.4 0.05 -0.21   -0.01 0.038 

Objective: Social consideration 0.07 2.3 0.03 0.0   0.13 0.016 
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Objective: Human health and safety 0.05 2.1 0.03 0.01   0.11 0.042 

Daily precipitation (mm) 0.01 1.3 0.00 -0.01   0.01 0.214 

Regional new fires 0.01 1.3 0.00 -0.01   0.0 0.167 

Area restriction in progress 0.11 1.3 0.08 -0.06   0.27 0.2 

Objective: Cultural resources -0.02 0.8 0.03 -0.08   0.04 0.546 

Objective: Economic consideration 0.02 0.2 0.04 -0.06   0.10 0.579 

Observations 22,022          

Adjusted R2 0.466      
  

The covariates in Table 4 (aside from the Intercept) are ordered from those found to be the most important 

to least important to model results, which was calculated by evaluating models that did and did not 

include each covariate one at a time according to changes in the absolute value of the t-statistic of the 

model (see Appendix 3C for more details on covariate importance and scaling). The binary “During-

COVID Threshold” variable that separated pre- from during-COVID fire days was found to be the most 

important variable according to the t-statistic, followed by the categorization of fire days by their fire 

complexity type. While the relationship between the “During-COVID Threshold” variable and the 

predicted ground personnel use per fire day outcome variable is of primary interest, the relationships 

between the covariates and the predicted model outcome also shed light on factors associated with 

resource use on large wildland fires. Additionally, indicators for fire days that occurred in the northern 

(ONCC) and southern (OSCC) California fire regions were found to be important according to the t-

statistic, and were predicted to increase ground personnel resource use by 150 – 153% on average, 

relative to the reference fire region, the Rocky Mountain Coordination Center (RMCC), holding 

covariates constant. Comparatively, fire days that occurred in the NRCC were predicted to decrease 

ground personnel resource use per fire day by 12% on average relative to those in the RMCC. 

Complexity Types 1 and 2 are considered most complex in that they require more rigorous 

management approaches, including the establishment of multiple branches to manage suppression efforts 

(NIFC, 2004). Relative to complexity type 3 fires (least complex of those included in dataset), complexity 

type 1 fires were predicted to increase ground personnel by an average of 159% (p < 0.001) and 

complexity type 2 fires were predicted to increase ground personnel by an average of 107% (p < 0.001) 

holding covariates constant. We controlled for fire days with high complexity and that occurred during 

the western U.S. off-peak fire season (i.e., January through March and November through December of 

each year), such as the December 2017 Thomas Fire in California. These off-peak fire days were 

positively correlated (Pearson r = 0.24, p < 0.001) with ground resource use, potentially due to increased 

resource availability in winter months. Accordingly, we included an interaction term to capture off-peak, 

highly complex fire days (e.g., “Off-Peak * Complexity Level Type 1”). These fire days predicted that, on 

average, personnel use would increase by 333%, holding covariates constant. Additionally, fire days that 

occurred in northern California (ONCC) or southern California (OSCC) were considered important 

covariates of the sharp RDD model, as was the natural log of the current incident area (ha). Additionally, 

we included an interaction term for the relationship between regional PL 4 or 5 (i.e., fire days that 

occurred during days with high regional fire activity and resource scarcity) and public injuries and 

fatalities. These were included to further highlight the relationship between resource use, resource 

scarcity, and public safety risks.  

 

3.2. Global RDD bandwidth sensitivity results.  

Table 5 shows the main effects of pre-COVID versus during-COVID fire day resource use according to 

different bandwidth selections. The main effects reflect the difference in the estimated number of 

personnel used per fire day for during-COVID fire days, relative to pre-COVID fire days, according to 

different model forms and bandwidths. Preliminary results are contingent on the model form (i.e., linear, 

quadratic, cubic). Various model forms are being tested because when all models identify a significant 

effect, the estimated policy effect can be considered more robust to alternative model specifications 

(Young et al., 2020). Generally, there was a predicted decrease in total personnel used per fire day on 

https://gacc.nifc.gov/swcc/management_admin/Agency_Administrator/AA_Guidelines/pdf_files/ch5.pdf
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average across the western US, after controlling for weather, fire behavior, strategic objectives, and 

societal risk covariates. This association was consistent across model forms and bandwidth comparisons, 

increasing confidence in the revealed negative association between during-COVID fire days and resource 

use. The negative association was strongest when comparing 2018 to the 2020 during-COVID treatment 

group, suggesting a potentially significant reduction in personnel use in 2020 relative to 2018, though 

both fire years were similar in large wildland fire frequency and severity.29 For this 1-year bandwidth 

comparison, it was estimated that, on average, during-COVID fire days used approximately 110 to 1300 

fewer personnel per fire day, contingent on model form. 

Table 5. Sharp RDD regression results of the main effect of the “During-COVID Threshold” variable on 

average predicted changes in ground personnel resources used per fire day. Models A – E vary the 

bandwidths used to compare fire day observations using multivariate linear regression with a logged 

dependent variable. All covariates were included in these models. The predicted percentage change in 

ground personnel reflect average predicted changes when fire days occur during the “Treatment” group 

relative to the “Control” group specified by each model.  

Bandwidth Selection (total n) 

Pre-COVID During-COVID 

n 

Obs. Geom. 

Mean (SD) 

Obs. 

Median n 

Obs. 

Geom. 

Mean (SD) Obs. Median 

(A)   Global  

(n = 22022) 
11093 117 (4.4) 127 10929 20 (4.7) 23 

(B)   Global (omit outliers, 

influential)  

(n = 19475) 

9742 117 (3.2) 124 9733 22 (3.9) 24 

(C)   Peak Fire Season  

(n = 19127) 
10087 105 (4.6) 118 9040 20 (4.6) 25 

(D)   Narrow Bandwidth  

(n = 8111) 
1703 108 (4.3) 105 6408 9 (4.7) 11 

(E)   Exclude only 2019  

(n = 20319) 
9390 116 (4.9) 130 10929 20 (4.8) 23 

(F)   During-COVID  

(n = 10935) 
6408 9 (4.3) 11 4527 40 (3.6) 49 

(A)   Global: 2017 – 2019 versus 2020 - 2021 (R2 = 0.467) 

(B)   Global: 2017 – 2019 versus 2020 - 2021 without outliers, highly influential obs. (R2 = 0.455) 

(C)   Peak Fire Season Observations: 2017 - 2019 versus 2020 – 2021 (R2 = 0.412) 

(D)   Narrow Bandwidth Observations: 2019 versus 2020 (R2 = 0.516) 

(E)   Exclude 2019 Observations: 2017 – 2018 versus 2020 – 2021 (R2 = 0.447) 

(F)   During-COVID Observations: 2020 versus 2021 (R2 = 0.447) 

  

In summary, Table 5 shows that various model bandwidths that compare pre-COVID to during-

COVID fire day observations based on sample sizes, the observed geometric mean, standard deviation, 

and median based on the historical data. Observed data comparing pre- and during-COVID groups shows 

that, across all selected bandwidths, the pre-COVID group had approximately 105 to 117 ground 

personnel assigned per fire day based on the geometric mean. Conversely, the during-COVID fire days 

had approximately 9 to 22 ground personnel per fire day based on the geometric means of various 

bandwidth selections. These results were consistent across timeframe bandwidths. Bandwidth selection F 

in Table 5 shows the comparison between 2020 fire day observations and 2021 fire day observations. 

Observational results for the 2020 versus 2021 bandwidth suggest that ground personnel reductions that 

were observed and predicted in 2020 recovered slightly in 2021, such that the observed geometric mean 

 
29 In 2018, there were 58,083 recorded wildland fires that burned 8.8 million acres across the US. In 2020, there were 58,950 

wildland fires that burned 10.1 million acres across the US (NIFC, n.d.) 

https://www.nifc.gov/fire-information/statistics/wildfires
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ground personnel increased from 9 (SD = 4.3) to 40 (SD = 3.6) per fire day. This suggests that the 

average observed reduction in ground personnel rebounded in 2021 relative to 2020.  

To further understand ground personnel changes based on sharp RDD multivariate regression, 

Figure 6 shows the average predicted reduction in ground personnel by an average of 67 to 98% during-

COVID fire days relative to pre-COVID fire days, holding covariates constant. All during-COVID 

threshold main effects were statistically significant at the α < 0.001 level. Further, Figure 6 shows that, 

relative to the (A) global model comparing all western U.S. fire incidents between 2017 – 2019 to 2020 – 

2021, when comparing (B) peak fire season fire day observations in this same timeframe results in a 

smaller percentage reduction of ground personnel used per fire day during-COVID relative to pre-

COVID. The reduction of ground personnel used per fire day by 88 – 90% suggests that during peak fire 

season (April – October of each year), the change in ground personnel used was not as extreme. Next, we 

modeled a narrower bandwidth, comparing only 2019 (n = 1,709 fire days) to 2020 (n = 6,402 fire days) 

fire day observations (Table 5 Model C). Narrow bandwidths tend to yield more consistent and less 

biased results, as observations can be considered more similar if they occur closer together (Young et al., 

2020; Imbens and Lemieux, 2008). However, as shown in Table 5, the 2019 fire year had fewer overall 

fire day observations and was considered a mild fire year across the western U.S. Accordingly, there was 

an average predicted percentage decrease in ground personnel used per fire day by 67 – 83% on during-

COVID relative to pre-COVID fire days. This reduction is relatively less extreme than in the (A) global 

and (B) peak fire season models. As 2019 was considered a relatively mild fire season with fewer and less 

severe fire days, the percentage reduction in ground personnel used was not as extreme as in models (A) 

and (B).   

Considering the unique 2019 fire season, we then excluded 2019 fire day observations when 

deriving Table 5 Model D; in this model, the percentage reduction from pre-COVID to during-COVID 

ground personnel used per fire day was greater than for the (A) global and (B) peak fire season models 

that integrated 2019 data. By excluding 2019 fire day observations, during-COVID ground personnel 

used per fire day was predicted to decrease by 96 to 98% on average relative to pre-COVID fire days, 

holding covariates constant. Finally, we compared ground personnel resource use per fire day for 2020 

relative to 2021 fire day observations to assess potential changes in ground personnel resource use over 

the course of the pandemic (Table 5 Model E). Results suggest that there was an average predicted 

increase in the percentage of ground personnel resources used per fire day in 2021 relative to in 2020 by 

803 to 1118%, holding covariates constant. This suggests that fire day observations in 2021 used more 

ground personnel resources than in 2020, highlighting the drop in ground personnel resources used in 

2020 began to recover in 2021.  

 

 

Figure 6. Forest plot for the effect sizes of the binary “During-COVID Threshold” variable across the 

bandwidth model types developed across western U.S. fire days, corresponding with the results presented 

in Table 5. The error bars show the 95% confidence interval for the change in the percentage of ground 
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personnel used per fire day for during-COVID observations relative to pre-COVID observations. The 

predicted geometric mean is included to provide a baseline for the average model prediction of pre-

COVID ground personnel used per fire day, holding covariates constant. All “During-COVID Threshold” 

effects and models were statistically significant at the α < 0.001 level.  

In addition to assessing different bandwidth selections that compare pre- and during-COVID fire 

day observations, bandwidths were selected that compared 2020 and 2021 fire day observations. Figure 7 

shows the average predictive changes in ground personnel use during 2021 relative to 2020 using sharp 

RDD fitted univariate linear regression trend lines. Generally, the further fire days occurred from the start 

of the COVID-19 pandemic in early 2020, the greater predicted ground personnel resources were used per 

fire day according to the (A) untransformed dependent variable and (B) natural log transformed 

dependent variable models. This suggests the potential for recovery of ground personnel resources used as 

the pandemic progressed from 2020 and into 2021.  

 

Figure 7. Scatterplot and fitted univariate linear regression line for the effect of the “During-2021 

Threshold” variable on predicted (A) ground personnel and (B) natural log transformed ground personnel 

used per fire day. Dots represent the observed ground personnel use per fire day. The dashed vertical line 

represents the “During-2021 Threshold” cutoff of December 31, 2020, which served as the modeling 

threshold variable.  

3.3. Regional sharp RDD results.  

Sharp RDD models were developed for individual GACCs to assess if and how ground personnel 

resources used before and during COVID-19 changed within specific fire regions across the western U.S.  

In addition to exploring where resource use trends tended to occur over the western U.S., studying each 

region in isolation can also help understand when resource use shifts may have occurred by region. Figure 

8 shows the total ground personnel used per calendar date from 2017 through 2021, illustrating how 
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certain GACCs exhibit earlier fire season severity according to the relative proportion of ground 

personnel use. For instance, the pink shaded bars show the Southwest Coordination Center (SWCC), 

which tends to have the earlier fire seasons, whereas the blue shaded bars illustrate how California 

(ONCC and OSCC) tend to exhibit greater relative resource use in later months of the year.   

 

  
Figure 8. Total daily ground personnel used from 2017 through 2021 as summed across western U.S. 

GACCs according to integrated ICS-209 and ROSS/IROC data.  

When comparing resource use trends across GACCs, it is also helpful to first understand the 

observed frequency, median, and average ground personnel resource at the regional level to inform 

predicted changes in natural log ground personnel used. Table 6 shows the total fire day observations for 

each GACC, the pre- and during-COVID arithmetic means and standard deviation, and the pre- and post-

COVID geometric means. ONCC and OSCC exhibit the highest ground personnel use per fire day pre-

COVID, such that the observed geometric mean for the ONCC was 376.5 (SE = 4.1; median = 387) 

ground personnel used per fire day. By comparison, the NRCC revealed a geometric mean of 65.9 (SE = 

3.9; median = 82) ground personnel per fire day, highlighting that regional trends in resource allocation 

and use may be critical to further evaluate under the sharp RDD univariate and multivariate linear 

regression approach.  
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Table 6. Observed count of regional fire day observations (n), geometric means, and standard deviations 

from the geometric means of ground personnel resources for pre- and during-COVID fire day 

observations according to observed ICS-209 reports.  

 Pre-COVID During-COVID 

GACC (total n) n 

Geometric 

Mean (SD) Median n 

Geometric 

Mean (SD) Median 

GBCC (3208) 1463 65.9 (3.9) 82 1745 24.3 (3.8) 29 

NRCC (4083) 2499 53.8 (3.9) 69 1584 17.3 (4.4) 23 

RMCC (1983) 1063 69.7 (4.2)  92 920 11.6 (3.9) 13 

SWCC (2125) 945 77.2 (3.2) 80 1180 11.2 (5.8) 14 

NWCC (4815) 2316 112.9 (3.9) 132 2499 28.9 (3.3) 30 

OSCC (2683) 1544 323.3 (4.2) 387 1139 17.6 (4.9) 20 

ONCC (3125) 1615 376.5 (4.1) 434 1510 28.9 (4.8) 31 

 

At the regional GACC level, univariate sharp RDD models across the global bandwidth (2017 – 

2019 versus 2020 – 2021) indicated that there were statistically significant percentage reductions in 

ground personnel resources used per fire day for during-COVID relative to pre-COVID fire days. Figure 

9 shows the univariate sharp RDD linear regression trends for natural logged ground personnel used pre- 

relative to during-COVID fire days.  

 

Figure 9. Univariate sharp RDD results for global model (2017 – 2019 v 2020 – 2021) for each GACC 

using the full dataset. The fire observations to the right of the dashed gray line show during-COVID fire 

days.  
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 In addition to univariate trends, Figure 10 shows the average predicted “During-COVID 

Threshold” per GACC main effect results for the sharp RDD multivariate linear regression models using 

the global bandwidth, holding covariates constant. Figure 10 orders western GACCs according to average 

predicted percentage change in ground personnel used per fire day during-COVID, after holding all 

regional-level covariates constant. 

 

 

Figure 10. Forest plot showing the average predicted percentage change in ground personnel resource use 

during- relative to pre-COVID using sharp RDD multivariate regression models developed for each 

GACC (global bandwidth; 2017 – 2021). The effect sizes of the binary “During-COVID Threshold” 

variable are visually represented in the figure, and adjacent values in the data table align with each 

GACCs “During-COVID Threshold” estimate, the corresponding 95% CI, and the predicted geometric 

mean for pre-COVID fire days. The predicted geometric mean is included to provide a baseline for the 

average model prediction of pre-COVID ground personnel used per fire day, holding covariates constant. 
All “During-COVID Threshold” effects and models were statistically significant at the α < 0.001 level.  

 All GACCs shown in Figure 10 were predicted to have reductions in the percentage of ground 

personnel used per fire day during-COVID relative to pre-COVID fire days, holding covariates constant. 

As shown in Table 6 and Figure 6, the ONCC (northern California) fire region was predicted to have the 

greatest average reduction in ground personnel used per fire day, such that there was a predicted average 

reduction of ground personnel by 98 – 100% during-COVID fire days relative to pre-COVID fire days, 

where there was a mean of 773 ground personnel used per pre-COVID fire day. Similar findings held for 

OSCC (southern California), where ground personnel resource use for pre-COVID fire days was 

predicted to reduce by an average of 97 – 98% during-COVID fire days, holding covariates constant. The 

global sharp RDD multivariate linear regression model predicted that the GBCC, NRCC, and RMCC fire 

regions had a lesser, though still strategically and tactfully impactful, reduction in the average predicted 

reduction in ground personnel used for during-COVID fire days relative to pre-COVID. To further assess 

why certain regions, such as the GBCC, NRCC, and RMCC, were predicted to have less extreme average 

reductions in ground personnel than other regions. Figure 11 illustrates the relative proportions of  total 

ground personnel used per year per GACC according to general fire behavior, categorized by fire 

management teams along a 1 to 4 categorical scale (i.e., 1 = Minimal to 4 = Extreme fire behavior).  
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4. Discussion 
Sharp RDD model designs were developed to assess ground resource use per fire day across the 

western U.S. and by fire regions before and during the COVID-19 pandemic. Model results inform if and 

how fire suppression management may have changed over the course of the pandemic, controlling for a 

wide range of weather, fire behavior, societal risk factors, and strategic objectives as identified by fire 

managers. While anecdotal evidence has suggested potential reductions in personnel use per fire day 

during the COVID-19 pandemic, the extent of this reduction was formerly unclear. As such, the sharp 

RDD modeling approach aimed to inform if and how fire suppression resource use may have shifted or 

adapted over nearly two years of the pandemic. To do so, we focused on ground personnel (i.e., crew 

members, equipment operators), who are typically required to work in the field and therefore unable to 

work remotely, unlike overhead personnel (i.e., administration, fire behavior modeling, etc.).  

Comparing fire days that occurred in the western U.S. between 2017 and 2021, sharp RDD univariate 

and multivariate regression results indicated significant percentage reductions in ground personnel used 

per fire day for during-COVID fires relative to pre-COVID fires. Ground personnel reductions were 

found to be consistent across bandwidths and according to the model that did versus did not include 

outliers and highly influential data points (Table 5, Model B). Generally, average reductions in ground 

personnel were predicted to be approximately 70 to 98% of pre-COVID fire days, controlling for weather, 

societal risk factors, strategic objectives, regional PLs, and GACCs. Using the 2020 versus 2021 model 

bandwidth, there was an average predicted percentage change in ground personnel resource use such that 

approximately 8 times as many ground personnel were used per 2021 fire day relative to 2020 fire days. 

By the end of 2021, the average predicted ground personnel resources used per fire day nearly aligned 

with pre-COVID rates.  

Regionally, we found observed and predicted reductions in ground personnel resource use between 

pre- and during-COVID fire days for all western U.S. fire regions (i.e, GACCs). Predicted reductions 

were particularly pronounced in California. In the ONCC (i.e., northern California), the sharp RDD 

multivariate model using the global bandwidth and all fire day observations predicted an average 

reduction in ground personnel used per fire day during-COVID by 98 to 100% (p < 0.001) relative to pre-

COVID fire days. Similarly, average reductions by 97 to 98% (p < 0.001) were predicted in the OSCC 

(southern California). Though the current model does not incorporate or distinguish between personnel 

agency affiliation (i.e., state, federal, contracted ground personnel), resource scarcity in California has 

been discussed and linked to reductions in California inmate crew personnel (Tillman, 2020). Reporting 

on workforce composition for the 2018 – 2019 fire year, CAL FIRE (California’s state fire agency) 

reported that inmates composed approximately one-quarter of their total workforce (i.e., 3,500 ground 

personnel) (CAL FIRE, 2018; Tillman, 2020). While some inmate crew members were released from 

prison due to overcrowding concerns associated with COVID-19 transmission, other inmate crews 

experienced COVID-19 transmission within fire camps (Stark, 2020). In July 2020, it was reported that 

94 of the 192 state inmate crews were active (Stark, 2020). California’s use and treatment of inmate crews 

has been criticized, as these critical ground personnel are estimated to make $2 to $7 per fire day (Lowe, 

2021). Further, those who have served on inmate crews and who have been released from prison have 

faced barriers in that—despite their experience—state and local agencies have not hired people with 

criminal records (Lowe, 2021). Future work is needed to tease apart where, when, and why California 

ground personnel resource use reductions have occurred over the course of the pandemic, though 

reasonable speculation may connect overall ground personnel reduction to reductions in inmate crew 

availability. From the author’s perspective, perhaps this also indicates that career opportunities should be 

made available to those who have endured the fire line and are subsequently released from prison, despite 

convictions.  

Though there were consistent reductions in predicted ground personnel use during-COVID fire days 

across each GACC, the degree of the reduction varied. As discussed, the highest percentage reductions 

were observed and predicted for California’s ONCC and OSCC. The Southwest region (SWCC) has 

consistently had the earliest peak fire season in the western U.S., which co-occurred during the beginning 

of the COVID-19 pandemic in March 2020. Further, the SWCC fire season was particularly active, 

https://spectrumnews1.com/ca/la-west/weather/2020/08/21/inmate-firefighters-sidelined-in-california
https://web.archive.org/web/20200329195608/https:/www.fire.ca.gov/media/4922/glance.pdf
https://www.npr.org/2020/07/29/896179424/coronavirus-pandemic-sidelines-californias-inmate-firefighters
https://www.theatlantic.com/politics/archive/2021/07/california-inmate-firefighters/619567/
https://www.theatlantic.com/politics/archive/2021/07/california-inmate-firefighters/619567/
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burning nearly 1 million acres in Arizona alone – the states most active fire season in the past decade 

(Vandell, 2021). Sharp RDD models predicted an average reduction of 85 to 90% (p < 0.001) of ground 

personnel on during-COVID fire days, compared to pre-COVID fire days. Considering that the SWCC 

had the earliest peak fire season that co-occurred during the start of the pandemic, assessments of SWCC 

fire management perspective and experiences in strategic and tactical operations at the start of the 

pandemic may be useful to inform whether the observed and predicted ground personnel reductions were 

attributed to COVID-19 risk management concerns, resource availability, or potential data inconsistencies 

outlined in the Limitations section. Finally, the  GBCC (i.e., Utah, Nevada, southern Idaho, western 

Wyoming) had observed and predicted reductions of ground personnel per fire day to a lesser degree than 

other fire regions. Comparative differences between regions affirm that it may be preferable to interpret 

results at the regional level, as resource use changes were disproportionate by GACC. 

Overall, the reductions in resource use in 2020 exhibited here—whether associated with COVID-19 

risk management, workforce availability, or other considerations—may be of concern to both fire 

management agencies as well as vulnerable communities.  

 

4.1. Future work. 

Immediate next steps in the current analytic plan include running models by national and/or 

regional PLs to assess if and how fire days with varying resource scarcity classifications were associated 

with observed and predicted changes for ground personnel use during-COVID relative to pre-COVID fire 

days. Univariate sharp RDD results for the predicted changes in ground personnel use according to the 

global model bandwidth (2017 – 2019 versus 2020 – 2021) are included in Appendix 3D. To extend this 

work beyond resource use assessments, future projects can align these models with wildland fire 

suppression outcomes, including: the ratio of structures damaged to threatened, lives lost, suppression 

costs, and other metrics of net societal damages (i.e., perceived value of cultural/historical site damages, 

including monetary and non-monetary, through preference weighting). Extending models in this way will 

help determine if and how potential resource use changes led to different fire outcomes. For instance, 

structural equation modeling could be used to link models of fire characteristics, resource use, and fire 

outcomes at the fire day or fire incident level to assess the relationship between pre- and during-COVID 

resource use and fire outcomes. While the current analysis suggests significant ground personnel resource 

reduction during fire days that occurred during the COVID-19 pandemic relative to prior recent years, this 

analysis does not assess fire outcomes in terms of specific or net societal losses incurred as related to this 

reduction in ground personnel resource use. We believe the relationship between resource use and fire 

outcomes may be worth assessing to evaluate if and to what extent fire agencies can better prepare for and 

adapt to the evolving fire landscape met with predicted increases in infectious disease spread attributed to 

climate change (Baker et al., 2022).  

To derive a first order approximation of the relationship between ground resource use and fire 

outcomes, we aggregated total public and personnel injuries and fatalities at the monthly level across the 

current dataset. Then, we calculated the ratio total injuries and fatalities per fire incident from 2017 to 

2021 (Figure 11).30 We elected to assess injuries and fatalities rather than fire acres burned for the first 

order assessment of fire outcome changes that may be associated with during-COVID reductions in 

ground personnel use per fire day (Kolden, 2020).  

 

 
30 We also derived the ratio of total injuries and fatalities to total monthly fire incidents. See Appendices 3D for 

more information.  
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Figure 11.  Average combined public and personnel injuries and fatalities per fire incident by year.  

 

 Results from Figure 11 suggest that the average public and personnel injuries and fatality rates at 

the fire incident unit of analysis may have disproportionately increased 2021, despite ground resource use 

recovery in 2021 relative to 2020 as predicted by the sharp RDD multivariate model. The average number 

of injuries and fatalities in 2021 was 36.1 responders and public community members, relative to 23 to 25 

injuries and fatalities per incident in 2017, 2018, and 2020. The reduction in injuries and fatalities in 2019 

is likely attributed to overall fewer fire incidents and less complex fire incidents, as shown in Table 1. 

While Figure 11 does not control for factors such as weather conditions or national/regional PLs, the first 

order results suggest that it may be worth assessing how ground personnel resource reduction during the 

pandemic was associated with societal damages and costs, including but not limited to injuries and 

fatalities.  

 Finally, evaluations of the Biden-Harris Infrastructure Law can be conducted to assess if and how 

other factors, such as rising costs of living that occurred during the COVID-19 pandemic, might be 

related to resource availability and subsequently resource use. As discussed in Chapter 2, the Biden-

Harris Infrastructure Law will increase federal firefighting salaries by $20,000 per year, or up to 50% of 

their current salary depending on if they work in a region that is predetermined to have scarce resources 

(Biden-Harris Administration, 2022).  Similar sharp RDD models could be developed to evaluate trends 

in resource use per fire day before and after the passage of the Infrastructure Law, which can further 

inform how the observed and predicted ground resource use reductions shown in this study where related 

to workforce compensation and resource availability. Finally, this dataset did not include information on 

COVID-19 transmission within crews; which would be useful to include to assess ground personnel 

resource use under conditions of within or between crew transmission of COVID-19 or other infectious 

diseases (Belval et al., 2022; Thompson et al., 2020). There may be opportunities to integrate predictive 

epidemiological models with historical data here to test if and how national and regional shifts in resource 

use may be linked to infectious disease transmission within and between firefighting units 

 

4.2. Limitations. 

While RDD models are considered “quasi-experimental”, we believe that these relationships should 

be considered correlational as resource use per fire day may be influenced by various societal, political, 

and economic considerations. While we attempted to capture fire management objectives through NLP 
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processing of Incident Commander “Strategic Objectives” summaries in the ICS-209 data, learned 

information from Chapter 2 (i.e., interviews on compounding threat management) suggests that resource 

allocation can be influenced by social networks as well as the career experiences of fire management 

personnel. As such, while this modeling approach captured a range of physical and societal considerations 

that might influence resource allocation and subsequent use, there may be other management-related 

variables not captured in the current set of models. Additionally, resource use per fire day is most likely 

correlated with and constrained by the number of available resources on any given day. Resource 

availability data at the national and regional levels was considered to be sensitive information and my 

access was therefore restricted. Resource availability may have reduced overall given the pandemic, such 

as was likely the case in California, where approximately half of inmate firefighting crews were unable to 

participate in fire suppression activities due to COVID-19 transmission risks.   

Further, wildland fire agencies transitioned from the ROSS to IROC resource management systems in 

early 2020, right around the same time as the COVID-19 pandemic began. Fire managers report resource 

requests, assignments, and use via this system. As global models of overhead, rather than ground, 

personnel resources used (Appendices 3B) did not reveal this same reduction despite being logged on the 

same resource monitoring and tracking platform, we have reason to believe that the observed reduction in 

ground personnel resources used was not greatly influenced by potential data inconsistencies that could 

have occurred given the transfer to new software. If this reduction were attributed to database 

inconsistences/errors, national fire management should adjust for this for future operations and research 

purposes.  

 

5. Conclusion 
Chapter 3 used historical records of fire days from 2017 through 2021 to assess if and how 

ground personnel resource use changed between pre-COVID and during-COVID periods. Using sharp 

RDD univariate and multivariate linear regression models at the western U.S. and western U.S. fire region 

scales, we show that during-COVID, there was an average predicted reduction in ground personnel used 

per fire day by approximately 70 – 99%, relative to pre-COVID fire days. Observed and predictive 

reductions in ground personnel used per fire day were consistent across bandwidths (i.e., timeframes) of 

analysis and for each of the western U.S. fire regions (albeit to different degrees of observed and 

predicted reduction). When modeling 2020 to 2021 fire day observations, there was an observed and 

predicted increase in ground personnel used per fire day. Finally, to estimate how changes in ground 

personnel might be associated with fire outcomes, we included a first order assessment of aggregate 

public and personnel injuries and fatalities per fire day observation from 2017 through 2021. First order 

results suggest that their may be an association between reductions in ground personnel use and estimated 

public and personnel injuries and fatalities; future work is recommended to further assess the implications 

of ground personnel reductions for wildland fire suppression efforts.  

  



 

80 

 

Conclusion Chapter 
 

This thesis focuses on developing an understanding of the characteristics that facilitate and inhibit 

adaptive capacity and adaptive decision-making processes given increasingly complex threats, focusing 

primarily on behavior related to adaptive technology and resource use in chronic and/or compounding 

threats. Three chapters use qualitative and quantitative data to explore and assess the behavioral, 

geospatial, and sociotechnical properties and characteristics of individuals and institutions that may 

facilitate and inhibit adaptive capacity and resilience under a range of chronic and compound threats. 

Together, findings converge on the “capacity-adaptation relationship” (Mortreux and Barnett, 2017, pg. 

7), a complicated relationship wherein prior research has found that the availability of and access to assets 

and resources are insufficient in predicting and capturing enacted adaptive behavior. Adaptive capacity 

has been associated with psycho-social factors including risk perception and attitudes, personal 

experience, trust and expectations in authorities, place attachment, and competing objectives or concerns 

(Wong-Parodi, 2022; Mortreux and Barnett, 2017; Fazey et al., 2007).  

Chapter 1 assessed San Francisco Bay Area commuting behavior by integrating transportation 

alternative accessibility, demographic, and socioeconomic factors with preferences for transportation 

attributes. In doing so, I aimed to capture psycho-social facilitators and barriers to sustainable, 

multimodal commuting behavior by weighing if and how adaptive transportation behaviors were 

informed by geospatial and socioeconomic factors, as well as personal preferences and competing 

concerns related to socializing, multi-tasking, and minimizing environmental impacts. Soon after, I was 

exposed to the stressors, constraints, and competing objectives involved in hazard management during the 

COVID-19 pandemic through my experience as a student contractor for the U.S. Army Corps of 

Engineers. Realizing, and to a small extent partaking in, the hazard management responsibilities that fall 

on local, state, and federal agencies, I aimed to connect individual perspectives of adaptive hazard 

management to organizational and institutional objectives, constraints, and overall resilience. Thus, 

Chapter 2 used a semi-structured interview approach to learn from the lived experiences of federal hazard 

management personnel, who faced compounding threats including but not limited to the COVID-19 

pandemic co-occurring during natural hazards. An interview approach was taken to capture a broad range 

of institutional and socio-technical barriers and facilitators to federal agency adaptive capacity that might 

be otherwise difficult to quantity, but that influenced incident prioritization, resource allocation, and 

coordination processes during compounding threats, which have been empirically associated with 

multiplicative risks (Zscheischler et al., 2018). Inductive findings related to workforce fatigue, mental 

health, and attrition motivated Chapter 3. Chapter 3 aimed to measurably assess if and how wildland fire 

suppression resource use changed over the course of the COVID-19 pandemic. While prior research on 

organizational and institutional adaptive capacity is often limited by lack of data or evidence of adaptive 

behaviors (Mortreux and Barnett, 2017), I aimed to empirically assess the capacity-adaptation relationship 

for western U.S. wildland fire agencies faced with increasingly long, frequency, and severe fire seasons 

compounded by the COVID-19 pandemic.  

 

Chapter 1 Overview:  

Based on integrated survey and geospatial analyses of commuter transportation behaviors in the San 

Francisco Bay Area, Chapter 1 focused on identifying if and how multimodal transportation behavioral 

patterns emerged via a Classification Tree approach. Demographic, socioeconomic, transportation 

preference, and geospatial commute characteristics of participants were used as inputs to predict whether 



 

81 

 

participants were unimodal (i.e., vehicle only commuters), non-vehicle (i.e., walking, biking), or 

multimodal (i.e., use vehicle at least once and other transportation mode at least once) over a week. 

Chapter 1 introduced a method that integrated participant preferences with geospatial data to classify 

behavioral outcomes and emerging transportation adoption in an urban environment with a growing 

population that has encouraged multimodal and non-vehicle transportation choices through various 

incentives and disincentives. Further, at the time of data collection, the San Franscisco Bay Area had a 

host of emergent and sustainable transportation modes available to the public, with varying degrees of 

accessibility based on participant residential and workplace addresses. Classification Tree results 

suggested that while environmental factors, such as residential population density at the zip code level, 

were predictive of commuting behaviors, participant preferences for general attributes of transportation 

mode alternatives were also determinants in predicting commuting behavior. For instance, the 

“importance of engaging in other activities”, the “importance of making multiple stops along the route” 

and the “importance of minimizing environmental impact” were associated with reported commuting 

behaviors.  

The results in Chapter 1 offer deeper understanding of the interactions between the transportation 

environment, human behavior, public health, and available technology. These insights help target specific 

unimodality reduction efforts as urban regions in the US strive to reduce personal vehicle use and 

transition to more sustainable and emergent transportation modes. Future work could use this survey and 

modeling approach to assess if and how preferences for transportation attributes and commuting behavior 

shifted over the course of the COVID-19 pandemic. Additionally, this model could be used to assess if 

and how multimodality in California will shift along the lifecycle of the California Air Resources Board’s 

newly proposed zero-emission vehicles rule, which mandates that 100% of vehicles sold in California will 

be plug-in hybrid electric, electric, or hydrogen fuel cell by 2035 (California Air Resources Board, 2022). 

Longitudinal studies using this and similar commuting behavior models can detect trends and factors 

associated with transitions to more sustainable commuting, including multimodal and non-vehicle 

commuting. Implications from the legislation in California may inform shifts in preferences for and 

adoption of transportation alternatives, including electric vehicles as well as public transit, bicycling, 

scooters, and walking modalities.  

 

Chapter 2 Overview:  

The association between preferences and geospatial data on technology use inspired subsequent thesis 

chapters, which pivoted from a focus on transportation behavior at the individual level to organizational 

behavior and adaptation to compound threats. Chapter 2 involved deductive and inductive thematic 

content analysis to explore if and how federal hazard management agencies adapted to and were resilient 

in light of compound threats, according to agency personnel perspectives. Particular emphasis was placed 

on wildfire and hurricane management agencies, with representation also from federal agencies involved 

in flood and tornado events.  

Semi-structured interview results explored how federal agencies manage compound threat events 

based on lived experiences, perceived strengths, and perceived opportunities to adapt federal hazard 

management to meet the mounting risks presented by compound threats. Interview results suggest that the 

sampled federal hazard management personnel were aware of compound threat potential, indicating that 

hazard management has involved increasingly frequent, severe, and complex incidents. The compound 

threat of COVID and other hazards was discussed in each interview, and generally, participants expressed 

that the COVID-19 pandemic instigated positive change and new management practices, including the 
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acquisition and use of improved remote communication systems within and between agencies and 

communities, as well as positive operational adaptations (e.g., spike camps, module-of-one concept in fire 

management). Beyond COVID-19, many participants attributed the increasingly complex threat to 

climate change and/or interconnected critical infrastructure systems. Emergent modeling approaches and 

remote sensing technologies were described as useful in adapting to compound threat management by 

offsetting personnel risk, collecting real time data for forecasting, situation monitoring, and conducting 

damage assessments in hazard-affected areas. However, participants described the internal barriers and 

external stressors that limit the absorptive and adaptive capacities of federal agencies managing 

compound threats. Absorptive and adaptive capacity were found to be constrained by: (i) lack resource 

availability and scarcity, (ii) lack of consensus or validation of predictive decision-support tools, and (iii) 

inter- and intra-agency coordination constraints, including balancing objectives in multi-objective 

decision spaces that necessitate “pretty rapid-fire” (Interview 2) decision making processes under 

uncertainty with resource competition. 

A central theme that emerged from the interviews was that there is a current scarcity of hazard 

management personnel at all levels of government. This was attributed to an increase in hazard season 

durations and severity, wages not meeting the rising cost of living, and general mental health concerns for 

personnel exposed to high levels of physical and emotional stress. The “degrading workforce” (Interview 

27) amidst intensifying threats has constrained the range of strategic operations and may be adding to the 

workload of individuals working in federal hazard management, particularly those who are deployable. 

Participants expressed that resource availability and adjacent hiring practices and workplace culture do 

not promote adaptation to current threats (i.e., sufficient recovery periods post-deployment). These 

participant perspectives, however, seem to be acknowledged institutionally such that the Biden-Harris 

Infrastructure Law will increase the compensation of wildland firefighters.  

Additionally, the interviewees expressed a view that community engagement may improve equitable 

hazard management given compound threats, such that “…there’s a shift across the board with federal 

agencies looking at social equity… And you know, that has a big role to play in compounding threats” 

(Interview 14, USACE). Equitable hazard management is essential given the disproportionate risks faced 

by marginalized communities (Lukasiewicz, 2020). Compound threat management decisions based on 

benefit-costs analysis alone can perpetuate inequities experienced by marginalized communities. This is 

particularly concerning for compound threats, which may pose unforeseen and/or compounding risks to 

vulnerable communities. The United Nation’s Sendai Framework and many other risk assessments do not 

currently integrate structural inequities or social injustice (Kruczkiewicz et al., 2021). As threats and 

stressors beyond acute natural hazards, including but not limited to the COVID-19 pandemic, have also 

disproportionately affected lower socioeconomic and Black, Indigenous, People of Color (BIPOC) 

communities, it is imperative for federal agencies to establish decision-making processes that consider 

and weigh the risks faced and resources needed by affected communities. Chapter 2 participants discussed 

opportunities for making hazard support processes more equitable. For instance, emergent data collection 

and analytic capabilities within the Federal Emergency Management Agency  (FEMA) were described as 

helping them to identify if and how FEMA financial assistance has been distributed equitably to support 

hazard-affected homeowners and small business owners.  

Future work could extend these exploratory interview findings to guide the development of broader 

data collection processes, such as surveys that could be distributed across federal agencies. For instance, 

survey approaches could probe if and how decision-making processes, incident priorities, and constraints 

differ between compound and singular threats. Such information could inform existing compound threat 
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management approaches, such as the “Unified Area Command” approach within the ICS, by garnering 

more data on workforce perceptions of the competing objectives and resources during compound threat 

scenarios. Insights might benefit from more localized place-based and/or hazard-based assessments 

(Cutter et al., 2008). Additionally, future research can quantitatively assess if and how resource 

availability and use have historically changed over time, particularly in the contexts of compound threats 

(i.e., wildland fires and COVID-19) and in light of recent introductions and passages of federal resource 

support (i.e., the Biden-Harris Bipartisan Infrastructure Law, FEMA’s emergent Building Resilient 

Infrastructure and Communities support, and the Drone Infrastructure Inspection Grant Act). To do so, 

historical FEMA ICS data could be used to evaluate societal risks (i.e., structures damaged/destroyed, 

public and personnel injuries and fatalities) and resource allocation in singular versus complex incident 

types over time and by region.  

 

Chapter 3 Overview:  

A core finding that compound threat management is constrained by personnel scarcity motivated Chapter 

3, which assessed and compared wildland fire suppression resource use and before and over the course of 

the COVID-19 pandemic. While Chapter 2 focused on identified the core constraints that limit federal 

agency adaptive capacity, Chapter 3 focused on if and how the perceived personnel constraint found in 

Chapter 2 was manifested in wildland fire suppression efforts. In Chapter 3 historical datasets of daily fire 

management situation reports, weather conditions, and resource scarcity are used to develop sharp 

Regression Discontinuity Design models that predict daily ground resource use for fire suppression 

efforts, controlling for weather conditions and societal risk factors from the perspective of fire managers. 

Models developed at the western U.S. and fire region scales consistently reveal that ground resource use 

per wildland fire days is predicted to have been reduced during the COVID-19 pandemic by an average of 

70 – 98%, holding covariates constant. Thus, even when controlling for a wide variety of weather, fire 

behavior, and societal risk factors, ground personnel resource use declined in 2020 and in 2021, relative 

to 2017 – 2019. Future work can be extended by developing models, such as structural equation models, 

that assess if and how the observed and predicted reductions in ground personnel resources used are 

associated with fire outcomes (i.e., public and personnel injuries and fatalities, structures damaged, 

suppression costs, etc.). Further, as personnel and other resources were expressed to hinder the absorptive 

and adaptive capacity in compound threats, evaluations of how federal agencies have operationalized 

compound threat-specific management by assessing historical resource allocation data can help to identify 

and evaluate thresholds for which agency practices and technologies facilitate or hinder adaptive capacity 

during compound hazard management. These considerations will help to inform further extensions of 

Chapter 3 of this thesis, which assesses wildland fire suppression resource use before and during the 

COVID-19 pandemic. 

Concluding Remarks and Directions for Future Work:  

There is increasing recognition that current resources and decision-making processes from the individual 

to institutional scales may be inadequate in preparing for, responding to, and adapting to the changing 

climate. This thesis emphasized the relationship between adaptive capacity and resource availability – but 

that the availability of and access to resources alone is insufficient in capturing individual and 

organizational adaptive behavior. In addition to tangible resources, psycho-social factors such as personal 

experience, competing objectives, and risk perception and communication can constraint adaptive 

capacity. Chapters 2 and 3 focus on challenges presented by a variety of compounding threats, which are 
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anticipated to increase in frequency, severity, and complexity moving forward (Phillips et al., 2020). 

While the authors agree that the U.S. government, corporations, and citizens should engage in sustainable 

behaviors that limit environmental and atmospheric degradation (such as transitioning to more sustainable 

transportation alternatives as explored in Chapter 1, or more preventative management of hazards as 

raised in Chapter 2 interviews), global societies also need to understand how to overcome the internal 

barriers and external stressors that limit our ability to adapt to this changing world. The adaptive capacity 

of the United States is in part contingent on the resilience of local, state, and federal hazard management 

agencies, who serve to help communities prepare for, respond to, recover from, and adapt to stressors and 

disruptions in the natural and built environments. Thus, it is critical to support this essential workforce, 

particularly given the resource constraints and mental health concerns discussed in Chapter 2 and resource 

use implications presented in Chapter 3. Consistent with the findings presented in this thesis, various 

policy changes are underway that may enhance hazard management adaptive capacity and resilience. For 

instance, the Biden-Harris Bipartisan Infrastructure Bill was recently enacted with the intent to bolster 

support for physical infrastructural resilience and adaptation, as well as support essential workforces 

involved in hazard management, such as wildland firefighters. Future work can evaluate federal agency 

adaptive capacity through the lens of resource availability before and after the implementation of 

workforce benefits received under the passage of the Biden-Harris Infrastructure Bill (Biden-Harris 

Administration, 2022). Additionally, the bipartisan Drone Infrastructure Inspection Grant (DIIG) Act 

aims to increase local, state, and federal access and training for infrastructural inspections and damage 

assessments via drone technology (H.R. 5315, 2022). The passage of this or similar grants can enable 

hazard management agencies from the local to federal levels to deploy drones for real-time data 

acquisition that can protect community and workforce health and safety, improving upon resource 

constraints mentioned by participants. While the benefits costs of these policies and grants are yet to be 

evaluated, their introduction and passage suggest that the federal government acknowledges current and 

future threats and has weighed if and how our current federal hazard management workforce can be 

supported to absorb and adapt to such threats. Enhanced resource capabilities may facilitate resilience of 

the agencies themselves as well as the communities that they protect by offsetting personnel safety risks. 

Future research, which I hope to participate in, can empirically evaluate the efficacy, efficiency, and 

equity of these emergent policies.  
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APPENDIX 1: Factors associated with emerging multimodal transportation 

behavior in the San Francisco Bay Area 
 

Appendix 1A: Literature Review 
Multimodality has been defined across the literature as the use of at least two modes of transportation 

during a predetermined time period [1 – 3]. Intermodality, the combination of more than one mode of 

transportation over the duration of one trip, is a subset of multimodality [1, 2]. As in existent literature, 

intermodal behavior was enveloped within the multimodal class in the current study.  

Classifying whether an individual exhibits multimodal transportation behavior has been executed both 

qualitatively and quantitatively [4]. The qualitative classification of multimodality requires strict, 

predetermined definitions of transportation behavior groups, and an individual’s behavior determines 

which behavioral group they fall into [1, 2]. Classification of transportation behavior groups via 

qualitative means are heavily dependent on the predefined definitions of the groups. Alternatively, 

behavior groups have been established according to data-driven methods, such as latent class cluster 

analysis. Data-driven approaches establish behavioral groups across data patterns, and individuals’ 

classifications are based on which latent behavioral group they belong to [4, 5, 6].  

Data sources of multimodal information. According to Buehler and Hamre (2015), there are three types of 

data typically used in multimodality research: (1) multi-week travel diaries, (2) week travel diaries, or (3) 

one-day travel surveys with questions regarding prior travel behavior (e.g., over the past year) [1, 7]. 

While multi-week travel diaries capture occasional transportation behavior, they suffer from smaller 

sample sizes. As such, the majority of related literature uses past-week transportation behavior 

information [1 – 3, 7].  

Appendix 1B: Sample Recruitment Details 
The WholeTraveler survey was distributed across the nine counties of the San Francisco Bay Area in 

2018. Recruitment letters were sent to approximately 60,000 randomly selected household addresses 

across the SF Bay Area. The recruitment letters were sent via a paper mail invitation and follow-up 

postcard. The recruitment letters specifically asked the household member over 18 years old with the 

most recent birthday to participate. This was done to randomly select one person from a given household. 

Participants completed the survey via an online web page between March and June 2018. The survey was 

presented in English only. Participants were compensated with a $10 Amazon gift card for completing the 

survey. Of the 60,000 households that were sent a recruitment letter, 1,045 participants completed the 

portion of the online survey used for this analysis. The average survey completion time was 28 minutes. 

A final sample of 888 participants was used for analysis after data preprocessing. A total of 157 

participants were not included in the final analysis because they indicated that they did not commute to 

their identified primary destination within the past week.  

Appendix 1C: Sample vs. Population 

Table 1 compares the final 888 respondents from the WholeTraveler survey to the Bay Area 

population as collected by the American Community Survey (ACS) Public Use Microdata 

Sample (U.S. Census Bureau, 2018).  The ACS PUMS Bay Area data represents over 377,000 

residents and over 157,000 households across the SF Bay Area. The ACS PUMS data represents 

the 2017 data collection cycle; as the WholeTraveler survey data was collected in 2018, there 

may have been minor differences between the 2017 and 2018 Bay Area populations. As there 

were age restrictions for participation in the WholeTraveler survey such that all participants had 

to be at least 18 years of age, the age distributions within each survey difficult to compare 

directly.  
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Table 1. WholeTraveler survey sample representation of San Francisco Bay Area population according to 

population-weighted ACS PUMS data (U.S. Census Bureau, 2018).   

 Percent of PUMS Bay Area Percent of WholeTraveler Sample 

Female 51 49 

At least HS Educ.  75 98 

At least Bachelor's Educ. 39 86 

Born 1930s 4 1 

Born 1940s 8 7 

Born 1950s 13 14 

Born 1960s 14 18 

Born 1970s 14 21 

Born 1980s 14 28 

Born 1990s 12 10 

HH Inc < $75 K 36 25.4 

HH Inc $75 - 150 K 29 34.4 

HH Inc $150 - 200 K 12 14.6 

HH Inc > $200 K 22 25.6 

Alameda County 25 22 

Contra Costa County 14 15 

Marin County 3 3 

Napa County 1 2 

San Francisco County 16 11 

San Mateo County 8 10 

Santa Clara County 23 25 

Solano County 4 6 

Sonoma County 6 6 

Population and demographic information across the San Francisco Bay Area counties are derived from 

the 2017 American Community Survey (ACS) Public Use Microdata Sample (PUMS) as collected by the 

U.S. Census Bureau.  
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Appendix 1D: Descriptive Statistics Results 
Table 1. Descriptive statistics (mean, standard deviation) for each explanatory variable input into the 

Classification Tree across the sample (n = 888).  

Variable 

Category Variable Name Variable Type Mean SD 

Demographic Birth year Discrete 1974 14.6 

Female Binary 0.49 0.50 

Education Categorical (1 – 8) Bachelor’s  NA 

Destination: School Binary 0.04 0.21 

Destination: Work Binary 0.73 0.45 

Destination: Other Binary 0.19 0.39 

Income  Categorical (1 – 12) $100 - $150K NA 

Any child Binary 0.15 0.36 

Location 

Based 

Alameda County Resident Binary 0.26 0.44 

Contra Costa County Resident Binary 0.14 0.34 

Sonoma County Resident Binary 0.06 0.23 

Santa Clara County Resident Binary 0.22 0.42 

San Mateo County Resident Binary 0.08 0.28 

Marin County Resident Binary 0.03 0.17 

Napa County Resident Binary 0.01 0.11 

Solano County Resident Binary 0.04 0.18 

San Francisco County Resident Binary 0.17 0.37 

Residence Population Density (thousand 

people per square mile) 

Continuous  13.5 15.68 

Destination Population Density (thousand 

people per square mile) 

Continuous   9.1 13.42 

Residence to Destination Drive Distance 

(miles) 

Continuous 12.6 14.35 

Importance of 

Transportation 

Attributes 

Importance of Other Activities Ordinal 2.6 1.44 

Importance of Child Transport Ordinal 1.2 1.81 

Importance of Environmental Impact Ordinal 3.3 1.77 

Importance of Social Interaction Ordinal 0.2 2.70 

Importance of Low Cost Ordinal 3.8 1.22 

Importance of Low Hassle Ordinal 4.4 0.95 

Importance of Multiple Stops Ordinal 3 1.51 

Importance of Predictable Cost Ordinal 3.6 1.30 

Importance of Predictable Time Ordinal 4.4 0.90 

Importance of Safety Ordinal 4.2 1.08 

Importance of Shelter Ordinal 3.7 1.30 

Importance of Short Travel Ordinal 4.3 0.93 

Public Transit 

Accessibility 

Access/Egress Walk Time (min) to Transit Continuous 17 12.12 

Transit Transfers Discrete 1.9 0.99 

Alternative Transit Routes Available Discrete 3.8 0.66 

 

 

 

 

Table 2. Distribution of transportation mode use of each commuting class when past-month behavior is 

assessed.  

 Unimodal Multimodal Non-vehicle 
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Personal Vehicle 1.00 0.82 0.13 

Carpool 0.26 0.40 0.05 

Ridehail (Single) 0.07 0.25 0.13 

Ridehail (Carpool) 0.03 0.24 0.13 

Carshare 0.00 0.03 0.01 

Telecommute 0.08 0.53 0.38 

Bike, Foot 0.03 0.47 0.55 

Public Mass Transit 0.04 0.41 0.60 

Bus 0.02 0.23 0.36 

Private Mass Transit 0.02 0.12 0.08 

Motorcycle/Scooter 0.01 0.02 0.07 

 

Table 3. Distribution of transportation mode use of each commuting class when past-day behavior is 

assessed.  

 Unimodal Multimodal Non-vehicle 

Personal Vehicle 0.51 0.31 0.00 

Carpool 0.03 0.09 0.00 

Ridehail (Single) 0.00 0.01 0.00 

Ridehail (Carpool) 0.00 0.01 0.00 

Carshare 0.00 0.00 0.00 

Telecommute 0.00 0.12 0.07 

Bike, Foot 0.00 0.16 0.23 

Public Mass Transit 0.00 0.09 0.19 

Bus 0.00 0.05 0.08 

Private Mass Transit 0.00 0.03 0.04 

Motorcycle/Scooter 0.00 0.00 0.00 

 

Table 4. Descriptive statistics of the location-based variables. The population densities are 

reported as thousands of people per square mile. The WalkScore is a standardized score from 0 

to 100 that estimates walking accessibility to various amenities (e.g., stores, schools, libraries, 

etc.) (Carr et al., 2011). Primary distance is the estimated driving distance (miles) between 

participants’ residence and primary destination address according to Google Maps.  

Input Variable Mean SD Q1 Median Q3 

Residence Population Density (thousands of 

people/mi) 

13.5 15.7 4.7 9.1 17 

Primary Destination Population Density 

(thousands of people/mi) 

9.1 13.4 1.7 5.7 11.1 

Primary Distance (miles) 13 14.6 2.8 8.3 17.2 

WalkScore (1-100) 55 28.7 33 58 80 

Table 5. Descriptive statistics of the preference for transportation attribute variables. Each 

attribute was ranked in terms of importance to the participant along a 5 point Likert-scale (1 = 

Not at all important to 5 = Very important).  
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Other 

Activities 

Child 

Transport 

Min. Env. 

Impact 

Social 

Interaction Low Cost Low Hassle Mult. Stops Pred. Cost Pred. Time Safety Shelter 

Short 

Travel 

Other 

Activities 1.00            
Child 

Transport 0.08* 1.00           
Min. Env. 

Impact 0.16** 0.02 1.00          
Social 

Interaction 0.11** 0.18** 0.11** 1.00         

Low Cost 0.11** 0.06 0.25** 0.06 1.00        

Low Hassle 0.07* 0.07* 0.11** -0.12** 0.24** 1.00       

Mult. Stops -0.02 0.19** -0.03 0.05 0.09* 0.21** 1.00      

Pred. Cost 0.14** 0.10** 0.23** 0.03 0.57** 0.32** 0.13** 1.00     

Pred. Time 0.02 0.07* -0.01 -0.08* 0.20** 0.34** 0.16** 0.32** 1.00    

Safety 0.14** 0.17** 0.11** 0.01 0.28** 0.28** 0.18** 0.34** 0.27** 1.00   

Shelter 0.05 0.09* 0.02 -0.07* 0.16** 0.31** 0.24** 0.24** 0.30** 0.36** 1.00  

Short Travel -0.01 0.00 -0.04 -0.10** 0.29** 0.41** 0.19** 0.26** 0.36** 0.18** 0.25** 1.00 

** p ≤ 0.01              

* p ≤ 0.05             

 

Table 6. Correlation matrix showing the Pearson r correlation coefficients between perceived ‘Importance of Transportation 

Attributes’ explanatory variables. The transportation attribute pairs sharing the strongest positive correlations included: Predicable 

Cost and Low Cost (r = 0.57), and Short Travel and Low Hassle (r = 0.41). The transportation variable pairs sharing the strongest 

negative correlations included: Social Interaction and Low Hassle (r = -0.12), and Social Interaction and Short Travel (r = -0.10). The 

statistical significant of each ‘Importance of Transportation Attribute’ explanatory variable pair is also shown (** p ≤ 0.01 and (* p ≤ 

0.05). The majority of relationships were statistically significant at the alpha = 0.05 level, except for between: Other Activities and 

Multiple Stops (p = 0.62), Other Activities and Predictable Time (p = 0.54), Other Activities and Shelter (p = 0.15), Other Activities 

and Short Travel (p = 0.76), Child Transport and Min. Environmental Impact (p = 0.50), Child Transport and Low Cost (p = 0.09), 

Child Transport and Short Travel (p = 0.92), among others. 
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Table 7. Public transit accessibility metrics estimated by the Google Maps API averaged during 

peak commute hours (8AM and 5PM). 

 Mean SD Min Q1 Median Q3 Max 

Available 0.938 0.25      

Transfers1 1.9 1 1 1 2 3 4 

Transfers2 2 0.9 1 1 2 2 6 

Alt. Routes1 3.8 0.7 1 4 4 4 4 

Alt. Routes2 3.8 0.7 1 4 4 4 4 

Access + Egress Walking 

Time (min)1 

17.3 12.6 0 8.5 14 22.6 87.9 

Access + Egress Walking 

Time (min)2 

15.5 8.7 0 9.4 15.5 18.8 87.9 

Access + Egress Walking 

Time (min)3 

22.4 21.9 0 9 14.9 25.7 87.9 

1 If PT routing data unavailable, missing values were omitted.  
2 If PT routing data unavailable, missing values were set to sample mean.  
3 If PT routing data unavailable, missing values were set to sample max. 

Table 8. The Google Maps API travel time estimates for 8AM and 5PM were averaged for each 

mode. The correlations between transportation mode travel times were estimated using Pearson r 

coefficient. 95% confidence intervals are shown in parentheses. The correlations between the 

estimated travel times for each mode across the sample show strong positive correlations, 

indicative that higher travel times for one mode will be associated with higher travel times of 

another. For this reason, these travel time estimates were not including in the logistic regression 

models due to high multicollinearity and variance inflation factors. 
 

Drive Transit Bike Walk 

Drive 1 
   

Transit 0.72 (0.68, 0.75) 1 
  

Bike 0.89 (0.89, 0.90) 0.79 (0.76, 0.81) 1 
 

Walk 0.86 (0.84, 0.87) 0.8 (0.77, 0.82) 0.98 (0.98, 0.98) 1 
 

Table 9. Descriptive statistics of the residence to primary destination commute variables collected via the 

Google Maps API estimates. Travel time estimates were run during and averaged over peak commuting 

hours (8AM and 5PM).  

 Mean St. Dev.  Q1 Median Q3 

Vehicle 30 24 11.4 24.4 40.3 

Public Transit 67.5 59 29 55.4 87.8 

Bicycle 75 53 16 42.6 96.5 

Walk 227 276 48.3 121.4 303.2 
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Table 10. Analysis of variance tests were conducted to assess whether the differences in mean 

weekly travel time by mode were statistically significantly different between commuting classs.  
 

df sum sq mean sq F P 

Drive Time (min) 2 437129 218565 4.8 0.008 

Public Transit Time (min) 2 7794721 3897360 16.8 0 

Bicycle Time (min) 2 3616214 1808107 3.8 0.022 

Walk Time (min) 2 34240000 17120187 3.8 0.023 

PT Access/Egress Walk Time (min) 2 32971 16485 3.8 0.02 

  

Table 11. A Tukey multiple comparisons of the means test was conducted. The difference in the 

means of weekly commute travel times is shown for each transportation mode, with the 95% 

confidence interval for the mean difference shown in parentheses. The p-values for these 

differences in means are also presented. P-values below the significance level of 0.05 indicate 

that the weekly travel time was significantly different for that set of commuting classes.   
 

Drive diff p Transit 

diff 

p Bicycle 

diff 

p Walk diff p Access 

diff 

p 

Non-vehicle - 

Multimodal 
-29.2  0.3 -188.5  0 -166.7  0.03 -547.4  0.02 -7.2  0.5 

Unimodal - 

Multimodal 
-25.9  0.005 65.1  0.2 -110.6  0.1 -241.7  0.3 9.6  0.2 

Unimodal - 

Non-vehicle 
-22.7 0.5 253.6  0 56  0.6 305.7  0.3 16.8  0.02 
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Appendix 1E: Classification Tree Development and Extended Results 
 

Appendix 1E.1. Summary of Classification Tree Methodology and Rationale  
While multimodal transportation behavior work tends to use multinomial logistic regression approaches 

to predict between pre-defined, often categorical [1, 2] or post hoc, data-driven (i.e., latent class cluster 

analysis) classifications of multimodal behavior [4 – 6]. CT approach offers certain advantages to logistic 

regression in that it is a non-parametric approach that does not assume a distribution for included 

explanatory variables [8]. Additionally, the CT approach can incorporate a variety of variable types (i.e., 

numeric, categorical, ratings, combinations) [8, 9]. CTs also handle multidimensional analyses that are 

insensitive to multicollinear explanatory variables [10]. In the transportation behavior context, this is 

particularly advantageous as transportation decisions occur in highly complex and multidimensional 

decision spaces based on individual, household, and local transportation environment factors. Finally, 

CTs provide a clear presentation of the output that is relatively simple to interpret, even for nontechnical 

stakeholders and decision makers [9 – 11]. Each of the following sets of explanatory variables input into 

the CART algorithm: (i) Demographic, (ii) Location Based, (iii) Transportation Mode Attributes, and (iv) 

Public Transit Accessibility.    

 

Appendix 1E.2. Classification Tree Development  
To classify participants into commuting class outcomes, the CT algorithm sequentially divided 

explanatory variable data to maximize homogeneity across participants [10]. The CT algorithm 

recursively partitions data to identify all possible splits of all explanatory variables and selects the optimal 

splits starting from the root node, and then selects the optimal splits for subsequent nodes [10]. The Gini 

index was used to assess overall model splits in the CTs, wherein the algorithm selected the splitting 

variable that maximized the explained variance of the class predictions [10]. 

The rpart package was used [12] in R. The CT algorithm parameters were set such that a 

minimum of 20 observations per node was required for a partition to be attempted and a minimum 

improvement of 0.01 on the complexity parameter was required for a partition to be considered successful 

[13]. Through partitioning, the tree grows, which can result in over-fitted, complicated models which 

many branches, while a tree that is too small might not capture the important structure of the data. Thus, 

determining an optimal tree size an important task in constructing a classification tree [11] In this study, 

the optimal tree size was determined by using the 10-fold cross-validation technique. Cross-validation 

mimics the use of a test sample while extracting information from all cases of a data set to develop the 

model. The tree size with the lowest cross-validated prediction error was selected, as determined through 

10-fold cross-validation [9]. While tree size was selected by prediction error, future analyses could base 

tree size selection according to the tradeoff between tree size and misclassification and prediction error 

[14]. The tree was constructed from 35 candidate explanatory variables using the identified best tree size 

[11].   

The full model classification tree was then simplified through a pruning process. By pruning 

classification trees, nodes are systematically removed from the bottom of the tree. Nodes are removed that 

minimize tree complexity and misclassification rates [11]. This pruned classification tree was used as the 

final model for which importance weights and sensitivity analyses were performed. The final 

classification tree and subsequent analyses used the pruned classification tree due to its reduced 

complexity without significant loss of information, and because it performed better than the No 

Information Rate classification rate.31 The CT classification accuracy rate is compared to the No 

Information Rate classification rate, which captured the largest proportion of the observed classes. The 

tree’s predictive power was characterized by the Area Under the Curve (AUC) from the Receiver 

 
31 See Appendix E Table 1 for unpruned tree structure statistics. 
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Operator Characteristic (ROC) curve using macro-averaged AUCs calculated by taking the AUC for each 

classification versus all other possible categories, then averaging the AUCs from each classification [9]. 

 

Appendix 1E.3. Classification Tree Results 
 

 

Figure 1. The complexity factor (“cp”) versus the 10-fold cross validated relative error for the 

unpruned Classification Tree with all 35 explanatory variables included. As the crossed validated 

relative error rate is minimized for 16 splits, there were 16 splits in the unpruned classification 

tree.  

Table 1. Unpruned, cross-validated CT confusion matrix.  

  Observed 

Predicted 

 Unimodal Multimodal Non-Vehicle 

Unimodal 331 138 46 

Multimodal 45 131 47 

Non-Vehicle 13 44 93 
 

Table 2. Pruned, cross-validated CT confusion matrix.  

  Observed 

Predicted 

 Unimodal Multimodal Non-Vehicle 

Unimodal 311 128 44 

Multimodal 65 141 49 

Non-Vehicle 13 44 93 
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Table 3. Pruned and unpruned classification tree statistics, including the number of splits, the 

(mis)classification rates and their 95% confidence intervals, the No Information Rate model, the 

p-value to assess the classification rate of the CT versus the NIR, and finally, the AUCs for each 

outcome.  

Statistic Unpruned Pruned 

Number of splits 16 11 

Classification Rate (95% CI) 62.5% (59.2 – 65.7%) 61.4% (58.1% - 64.6%) 

Misclassification Rate (95% CI) 37.5% (34.3 – 40.8%) 38.6% (35.4 – 41.9%) 

No Information Rate (NIR) 43.8% 43.8% 

p-value [Classification Rate > NIR) P < 0.001 P < 0.001 

Unimodal AUC 74.1% 72.7% 

Multimodal AUC 62.9% 62.6% 

Non-Vehicle AUC 70.9% 70.9% 
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Figure 2. The unpruned classification tree developed using all 35 explanatory variables. The classification tree was trained on the full 

dataset (n = 888) using 10-fold cross validation. 
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Appendix 1E.4. Unpruned classification tree interpretation 
Figure 2 shows the unpruned classification tree that was developed using all 35 explanatory variables. 

The 10-fold cross-validation approach was used to develop Figure 2. Figure 2 is annotated with the 

predicted outcomes across the sample at that point in the tree. The tree’s first node, for stance, starts with 

100% of the respondents and has a predicted outcome of unimodal commuting behavior, as this 

commuting class had the greatest frequency across the sample. The node is partitioned according to the 

explanatory variables that establish the two most heterogeneous groups of survey respondents according 

to their commuting class outcomes. The top node is split by whether residential population density, a 

continuous variable, was above or below 11 (thousand people per square mile) for each respondent’s 

residential address. This partitioning process is repeated along each branch of the tree according to other 

explanatory variables until the data splitting yields insufficient differentiation among respondents with 

respect to the commuting class outcomes.   

Table 4. Counts of “Not Applicable” scores for the Importance of Transportation Attribute variables across 

the full sample (n = 888).  

Transportation Attribute Variable Count of “Not Applicable” Responses  

(Percent of Total Sample) 

Importance of Other Activities 31 (3.5%) 

Importance of Child Transport 483 (54.4%) 

Importance of Environmental Impact 15 (1.7%) 

Importance of Social Interaction 34 (3.8%) 

Importance of Low Cost 10 (1.1%) 

Importance of Low Hassle 10 (1.1%) 

Importance of Multiple Stops 39 (4.4%) 

Importance of Predictable Cost 21 (2.4%) 

Importance of Predictable Time 4 (0.5%) 

Importance of Safety 10 (1.1%) 

Importance of Shelter 21 (2.4%) 

Importance of Short Travel 5 (0.6%) 
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Appendixes 1E.5. Alternative CTs based on alternative handling of ‘Not Applicable’ 

Transportation Attribute Variables 
We present two comparative assessments of handling ‘Not applicable’ responses on the ‘Importance of 

Transportation Attribute’ explanatory variables. For each of the 12 transportation attributes, survey 

respondents rated how important the attribute was to the transportation decision making along a Likert-

scale from 1 = Not at all important to 5 = Extremely important. Alternatively, respondents could select 

‘Not applicable’ rather than rate the Transportation Attribute along the Likert-scale. In the main text, the 

‘Not applicable’ scores were set to zero. Here, we assess and compare two alternative handlings of ‘Not 

applicable’ scores: (1) Not applicable scores were set to 3 along the Likert scale, and (2) Not applicable 

scores were set to the variable median.  

Overall, we found that alternative CTs One and Two included an extra branch for female gender, such 

that female gender was associated with higher multimodal commuting class frequencies relative to the 

non-vehicle commuting class. This may be attributed to different handlings of ‘Not applicable’ variables, 

such that 483 respondents selected ‘Not applicable’ for the child transportation attribute, potentially 

leading to the inclusion of the gender variable. Otherwise, the ‘Importance of Transportation Attribute’ 

variables generally align with the pruned CT found in the main text. For instance, importance of 

minimizing environmental impact, engaging in other activities, engaging in social interaction, and making 

multiple stops along the route remain in the pruned, alternative CTs presented in Figures 3 and 4 in this 

section. 

 

 
 

Figure 3. Pruned classification Trees after setting “Not Applicable” scores of Importance of 

Transportation Attributes variables to 3 along the Likert scale from 1 to 5.  

Appendix 1E.6. Importance of Transportation Attribute Alternative CT One: Set NA to 3 
While similar, this pruned CY includes a node for female gender, where those who indicated that they 

identify as having a female gender were classified as multimodal as opposed to non-vehicle. This may 

indicate that by setting the rated importance of transporting a child to 3 rather than 0 for the “Not 
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Applicable” response option, the multicollinear role of gender is retained as an explanatory factor that 

classifies commuting classes. 

Table 5. Importance of Transportation Attribute Alternative CT One confusion matrix. The rows 

indicate the commuting class outcomes as predicted by the pruned CT, and the columns indicate 

the commuting class outcomes observed across respondent survey data. 

  Observed 

Predicted 

 Unimodal Multimodal Non-Vehicle 

Unimodal 337 164 46 

Multimodal 37 102 98 

Non-Vehicle 15 47 98 
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Figure 4. Pruned classification Trees after setting “Not Applicable” scores of Importance of 

Transportation Attributes variables to each survey item’s median value along the Likert scale 

from 1 to 5.  

Appendix 1E.6. Importance of Transportation Attribute Alternative CT Two: Set NA to 

Median 
While similar, this pruned CY includes a node for female gender, where those who indicated that they 

identify as having a female gender were classified as multimodal as opposed to non-vehicle. This may 

indicate that by setting the rated importance of transporting a child to the variable median rather than 0 for 

the “Not Applicable” response option, the multicollinear role of gender is retained as an explanatory 

factor that classifies commuting classes. 

Table 6. Importance of Transportation Attribute Alternative CT Two confusion matrix. The rows indicate 

the commuting class outcomes as predicted by the pruned CT, and the columns indicate the commuting 

class outcomes observed across respondent survey data. 

  Observed 

Predicted 

 Unimodal Multimodal Non-Vehicle 

Unimodal 315 116 44 

Multimodal 63 154 48 

Non-Vehicle 13 43 94 
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Table 7.  Statistics for pruned CTs that differentially handle ‘Not applicable’ responses for ‘Importance of 

Transportation Attribute’ variables, including the number of splits, the (mis)classification rates and their 

95% confidence intervals, the No Information Rate model, the p-value to assess the classification rate of 

the CT versus the NIR, and finally, the AUCs for each outcome. 

Statistic Alternative CT One 

(NA = 3) 

Alternative CT Two  

(NA = median) 

Number of splits 13 16 

Classification Rate (95% CI) 60.5% (57.2 – 63.7%) 63.4% (60.1 – 66.6%) 

Misclassification Rate (95% CI) 39.5% (36.3 – 42.8%) 36.6% (33.4 – 39.9%) 

No Information Rate (NIR) 43.8% 43.8% 

p-value [Classification Rate > NIR) P < 0.001 P < 0.001 

Unimodal AUC 72.3% 74.5% 

Multimodal AUC 59.4% 65.1% 

Non-Vehicle AUC 71.9% 71.3% 

 

As shown in Table 7, the statistics Alternative CTs One and Two yielded similar results, such that their 

accurate classification rates were comparable in terms of the point statistic (60.5% versus 63.4%), as well 

as their 95% confidence intervals. The classification rates for both alternative CTs performed better than 

the null model with statistical significant (P < 0.001). Both alternatives classified unimodal commuting 

outcomes with the greatest accuracy (AUC = 72.3% versus 74.5%), and multimodal commuting with the 

least accuracy (AUC = 59.4% versus 65.1%).  
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APPENDIX 2: Organizational Absorptive Capacity and Resilience Under 

Compound Threats: Learning from Federal Agency Perspectives 
 

Appendix 2A: Background Information 
 

Relative Overall Resilience definitions 

The organizational resilience indicators according to the Relative Overall Resilience (ROR) framework 

are defined in Table 1; these indicators were used to code interviews and to develop the survey tool 

(Resilient Organizations, 2019; Lee et al., 2013; McManus et al., 2008). These definitions were used for 

deductive interview coding, as well as for the follow-up survey Likert-scale question on organizational 

resilience strengths and weaknesses. Previously, the ROR was used to  

Table 1. Organizational resilience attributes and corresponding indicators with corresponding definitions 

according to the Relative Overall Resilience framework (Resilient Organisations, 2019).  

Resilience Attributes Resilience Indicator Definition 

Leadership and 
Culture 

Leadership Strong crisis leadership to provide good management and 
decision making during times of crisis, as well as 
continuous evaluation of strategies and work programs 
against organizational goals. 

Staff engagement The engagement and involvement of staff who understand 
the link between their own work, the organization’s 
resilience, and its long term success. Staff are empowered 
and use their skills to solve problems. 

Situation Awareness Staff are encouraged to be vigilant about the organization, 
its performance, and potential problems. Staff are rewarded 
for sharing good and bad news about the organization 
including early warning signals and these are quickly 
reported to organizational leaders. 

Decision making Staff have the appropriate authority to make decisions 
related to their work and authority is clearly delegated to 
enable a crisis response. Highly skilled staff are involved, 
or are able to make, decisions where their specific 
knowledge adds significant value, or where their 
involvement will aid implementation. 

Innovation and creativity Staff are encouraged and rewarded for using their 
knowledge in novel ways to solve new and existing 
problems, and for utilizing innovative and creative 
approaches to developing solutions. 

Networks and 
relationships 

Effective partnerships An understanding of the relationships and resources the 
organization might need to access from other organizations 
during a crisis, and planning and management to ensure 
this access. 

Leveraging knowledge Critical information is stored in a number of formats and 
locations and staff have access to expert opinions when 
needed. Roles are shared and staff are trained so that 
someone will always be able to fill key roles. 

Breaking silos Minimization of divisive social, cultural and behavioral 
barriers, which are most often manifested as 
communication barriers creating disjointed, disconnected 
and detrimental ways of working. 

Internal resources The management and mobilization of the organization’s 
resources to ensure its ability to operate during business as 
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usual, as well as being able to provide the extra capacity 
required during a crisis. 

Planning Unity of purpose An organization wide awareness of what the organization’s 
priorities would be following a crisis, clearly defined at the 
organization level, as well as an understanding of the 
organization’s minimum operating requirements. 

Proactive posture A strategic and behavioral readiness to respond to early 
warning signals of change in the organization’s internal and 
external environment before they escalate into crisis. 

Planning strategies The development and evaluation of plans and strategies to 
manage vulnerabilities in relation to the business 
environment and its stakeholders. 

Stress testing plans The participation of staff in simulations or scenarios 
designed to practice response arrangements and validate 
plans. 

 

Appendix 2B: Methodological details 
 

Semi-structured interview protocol. The first focus area was addressed to contextualize the current 

threat environment, as well as the technologies and policies employed by federal agencies to manage such 

risks. The second focus area (‘Organizational decision-making between singular and compound threats’) 

was designed to elucidate if and how the risk assessment and risk management approaches associated 

with singular versus compound threats spaces were similar and different, as well as to identify 

opportunities for agencies’ ability to prepare, respond to, and adapt to compound threats. Interviewees 

were asked to recall and reflect upon if and how their agency deviated from singular threat response to 

handle compounding threats by outlining their operations and risk management procedures, information 

and resource needs, and the potential for social and culture influence on decision-making.  Finally, the 

third focus area (‘Organizational resilience and adaptive capacity’) offered a broader exploration of how 

federal agency personnel define organizational resilience, and they were asked to identify characteristics 

and actions of their respective agencies that they perceived facilitated and inhibited organizational 

resilience.  
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Table 2. Interview topic areas and questions asked during interview sessions.  

Interview Section  Qualitative Questions (Interview) 

Part 1. Organizational 

role and temporal 

changes within each 

organization.  

 

Overview: Derive sense of career and if and how organizations may have adapted over interviewees 

careers. (Time: 10 minutes) 

Interviewer: Thank you again for participating in this interview. I will start with a few open-ended 

questions about your role and experiences within [organization].  

1. Can you tell me about your role within [organization] and what interested you about working in 

this field?  

2. What year did you enter this field? 

3. Since [year started], have you noticed any changes in the environmental conditions and threats 

that your agency might respond to?  

a. If yes: What changes?  

b. If no: Can you comment on why you think that environmental conditions and threats 

conditions have been consistent? 

4. Since [year started], have you observed changes in data collection, analysis, and modeling 

technologies and techniques used by your agency?  

a. If yes: What are these technologies? What do you use them for?  

b. If no: What technologies have you been using? Do you feel existing technologies are 

sufficient to carrying out your agency’s mission and functions? 

5. Since [year started], have you observed changes in technologies used in the field by your agency?  

a. If yes: What are these technologies? What do you use them for?  

b. If no: What technologies have you been using? Do you feel existing technologies are 

sufficient to carrying out your agency’s mission and functions? 

6. Since [year started], have policies changed that have influenced how your organization 

functions?  

a. If yes: What types of policy changes? How have they changed your organization’s 

functioning and objectives? 

b. If no: Are there any policies—at the local, state, or federal level—that you think should 

be changed?  

7. Tell me what your job has been like during [the COVID-19 pandemic]. What was it like last 

summer (2020)? How about this summer? 

Part 2.  Compound threat 

hazard management 

decision-making (i.e., 

absorptive, adaptive 

capacity) 

Overview: Within separate conversations on single and multiple incidents, derive a sense of risk 

management and decision-making processes (i.e., intuitive versus naturalistic). Also discuss 

objectives and inter-agency coordination for singular and compound threats. Elicit understandings of 

how and when expert intuition versus objective data sources/decision support models are used. The 

theoretical foundation for these questions is based on Okoli et al. (2016): work on intuitive and 

naturalistic decision-making for fire managers. (Time: 20 minutes) 

Interviewer: Imagine that your organization is responding to an incident when another occurs within 

approximately the same timeframe and location. Imagine that your organization is now responding to 

multiple incidents simultaneously. 

 

1. Can you tell me of a time when you responded to a similar circumstance and had to respond 

to multiple incidents at the same time. [If they can’t think of anything, bring up COVID 

example] 

2. Starting at the beginning of the incident, how did you make decisions in this context? What 

were your organization’s objectives?  

a. For notable decisions: You mentioned that your organization needs to [make X 

decision]. How do you approach this? 

b. If and how might multiple incidents influence your organization’s decision making?  

c. Can you recall any times when decision-making processes differed from the norm? 

3. What information would you need to decide how to respond to multiple threat incidents?  

a. Where do you get this information (i.e., colleagues, data, models, etc.)? 

b. Do you feel your organization have sufficient information or data on [information 

type mentioned]? Why [or why not]? 

4. What risks does your organization face during [single threat]?  

a. How does your organization approach these risks? 

https://link.springer.com/content/pdf/10.1007/s10111-015-0348-9.pdf
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b. How could your organization’s risk management processes be improved? 

5. What types of constraints or limitations does your organization face? (i.e., resources, 

personnel, technology, time) 

a. How do these constraints effect your organization’s ability to function? 

b. Are these constraints different from the single threat incidents? If so, how? 

c. Has your organization started using or is currently considering using new 

technologies or resources given [compounding threat]? Resource scarcity? 

d. Can you describe the time pressure involved in making decisions?  

6. What challenges did your organization face?  

a. How are these challenges for multiple threats similar to those you face during single 

threats?  

b. How are they different? 

12. Please describe how your agency communicates or coordinates with other government 

agencies, organizations, or community stakeholders.  

Part 3. Organizational 

resilience 

Overview: This portion of the interview will serve to understand the key factors associated with 

organizational resilience under single and multiple threats. The structure and order of the questions 

relates to the National Academy of Science’s phases of resilience: prepare, absorb, recover, and 

adapt. Absorb is not addressed in this section because it is thoroughly addressed in Part 2 of the 

interview. (Time: 15 minutes)          

Interviewer: Next, I would like to talk about your organization’s ability to prepare for, recover from, 

and adapt to multiple threat incidents.  

 

1. What, if anything, does the term “organizational resilience” mean to you? 

2. Organizational resilience is defined as “…ability to survive, and potentially even thrive, in 

times of crisis” (Seville et al., 2008). Stated another way, organizational resilience is the 

ability to prepare, absorb, recover, and adapt to stressors to maintain functioning.  

a. What are some key factors that facilitate organizational resilience under multiple 

threats?  

b. What are some key factors that inhibit organizational resilience under multiple threats? 

Part 4. Transition to 

survey.   

Finally, I would like to ask you to participate in a brief survey. I will send you the link in the chat 

window now. The survey is confidential and should take approximately 5-10 minutes. Please let me 

know if you have any questions as you complete the survey.  

Part 5. Closing.  Thank you for participating in this interview. Your time and insights are greatly appreciated. To 

continue gaining understandings of federal emergency response organizational resilience, I wanted to 

close by asking if you might be willing and able to connect me with two colleagues who similarly 

work for a federal emergency response, public health, or environmental engineering agency. If so, 

their name and contact information would be much appreciated. 

 

Survey design. After each interview session, interviewees were asked to complete a follow-up survey 

that was distributed via a Qualtrics URL. Survey responses were anonymous, and the average completion 

time was [7] minutes. Follow-up survey questions captured similar information as interview questions by 

following the same general interview focus areas presented in Figure 1 and were used to estimate the 

prevalence of views expressed in interviews (Wong-Parodi et al., 2016), as well as demographic and 

individual career-specific information. Survey questions were designed to provide a more direct and 

quantitative comparison between singular and compound threat risk perception, mission objectives, 

resource/information needs, and constraints. Many questions included 5-Point Likert Scale responses that 

separately addressed singular and compound threat management objectives, information needs for 

decision-making, and the likelihood of a variety of potential risks and constraints faced by the agency. 

Risks included personnel and community health and safety, infrastructural impacts, resource access, 

information access, timeliness of response, and ecological impacts. These risks assessed were designed to 

mirror the variety of risks posed by natural and anthropogenic threats, as identified in existent literature. 
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Constraints assessed included operational, resource, personnel, communication, and information 

constraints, which were also identified according to existing literature. Survey data that differentiated 

between singular and compound threats allowed for a structured approach to assess if and how singular 

and compound threat risk spaces were perceived differently by federal agency personnel, and whether 

compound threats were perceived to change hazard management objectives, information needs, risks, 

and/or constraints relative to singular threats. The survey also included a series of questions related to the 

strengths and weaknesses of organizational resilience when facing a compound threat, and which adopted 

indicators were believed to be indicative of organizational resilience (Lee et al., 2013; McManus et al., 

2008; OrgRes Diagnostics, 2021) (Figure 1 of main text).  

 

Thematic coding of qualitative interview data  

Intercoder Agreement.  
Three coders coded the anonymous interview transcripts. The lead author of this chapter coded all 

interview transcripts, and the other two coders coded a random sample of half of the interview transcripts. 

The coders first coded a random selection of two interviews together by using a deductive set of interview 

codes. Then, the coders independently coded transcripts, meeting on a weekly basis to discuss coding 

questions and iteratively refining the codebook to include clear definitions, examples, and 

counterexamples of each mutually agreed code definition.  

To assess how similarly the coders interpreted and applied the deductive codes, intercoder reliability 

scores were calculated as a percentage of coding agreement based on the ensemble of all codes. The 

qualitative software package used for this project, MAXQDA, assesses intercoder reliability via the kappa 

calculation (Brennan & Prediger, 1981). The kappa calculation assumes that the transcripts are 

independent from one another and that the research team independently coded transcripts (Brennan & 

Prediger, 1981). Kappa is calculated based on the percent of coded transcript segments (approximately 1 

– 3 sentences in length) that two coders applied the same code relative to the percent chance that two 

coders would apply the same code. This is calculated using the following set of equations, as applied to 

the coding agreement results between Coder 1 (lead author) and Coder 3.  

 

https://orgrestool.resorgs.org.nz/orgres-tool/
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The final intercoder agreement rate between Coder 1 (lead author) and Coder 2 was kappa = 0.78, and the 

intercoder agreement rate was kappa = 0.81 between Coder 1 and Coder 3. To improve the interrater 

reliability score as measured by the Kappa coefficient, the coders have refined “Organizational resilience” 

codes as well as the “Risk Management” codes to increase interrater reliability score.  

Thematic coding: Antecedent Context of Organizational Hazard Management. The individual-level career 

information for each interviewee was captured, including: (i) the agency they worked for, (ii) the number 

of years they were employed by their current agency, (iii) the U.S. geographic region that they served, 

(iv) the phase of the disaster management system (i.e., preparation, response, recovery, 

adaptation/mitigation) that most closely aligned with their job title and described job responsibilities. 

Deductive coding was used to capture individual-level roles to assess how the set of interviewees 

represented the hazard management cycle. Additionally, interviewees were asked to describe the current 

threat landscape that their agency faces according to environmental, data/technology, and social/political 

changes that have evolved over the course of their career, which served to define the “Antecedent 

context” (Figure 1). Organizational changes in objective setting, operations, and constraints under the 

specific compound threat of the COVID-19 pandemic were thematically coded to identify if and how 

federal agency hazard management changed over the context of the COVID-19 pandemic. This case study 

also served to exemplify a salient example of compound threat management for the set of interviewees.  

 
Thematic coding: Absorptive and Adaptive Capacity under Compound Threats. Next, interviewees were 

asked to recall one or more compound threat incidents that they have been professionally involved in over 

the course of their career, as represented by the “Compound threat” component of Figure 3. Compound 

threats could include any combination of natural or anthropogenic shocks (acute) or stressors (chronic) 

that presented compound risk. Then, questions regarding if and how their agency’s “absorptive capacity” 

was exceeded, based on discussions of decision-making procedures, information/resource needs, 

constraints, and inter-agency coordination, and thematic coding was used to identify themes in if and how 

compound threats led to exceedances in organizational absorptive capacity. The deductive coding scheme 

was in part adapted from Cutter’s ‘disaster resilience of place model’, and interview questions probe 

organizational absorptive capacity in hazard response, as well as organizational resilience (Figure 3). 

Absorptive capacity refers to the ability to absorb hazard impacts using predetermined coping strategies, 

and organizational resilience includes the ability to plan for and adapt to complex threats, such as 

compound threats, that may lead to constraints to system functioning (Cutter et al., 2008). Absorptive 

capacity and organizational resilience are thought to influence the degree of recovery after hazard impact 

has occurred. Absorptive capacity exceedance is conceptualized to be more common for compound threat 

events, therefore challenging organizational recovery from compound threats. Interviewees expressed 

how their respective agencies managed and operated under compound threats, which provided 

information on if and how agency absorptive capacity can be exceeded in these threats. An agency’s 

absorptive capacity is associated with how they can respond to and recover from a threat in the shorter 

term, and as such, absorptive capacity is in part contingent on antecedent planning and mitigation efforts 

of the agency. Thus, the full range of preparation, response, recovery, and mitigation efforts considering 

compound threats was thematically coded to identify current strengths and potential weaknesses in 

compound threat management across all phases of the hazard cycle. Additionally, as the antecedent 

context of the agency is grounded in social systems, natural environment systems, and the built 

environment, the identified themes in compound threat response were codified according to four domains 

(i.e., physical, information, cognitive, and social) (Linkov et al., 2013). 

 
Thematic coding: Organizational Resilience. Organizational resilience was conceptualized to allow for 

recovery despite absorptive capacity exceedance (Cutter et al., 2008). Organizational learning and 

adaptive capacity have been shown to be contingent on factors like the adequacy of resources, decision 

flexibility, management structures, which were explored through interviews. Deductive coding was used 

to assess interviewee’s definitions of organizational resilience, as well as characteristics and actions (or 
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lack thereof) that they perceived facilitated or inhibited their agency’s organizational resilience. Interview 

questions build from existing theories and measurement scales of organizational resilience, focusing on 

organizational ability to prepare for, respond to, recover from, and adapt to compounding threats (Lee et 

al., 2013; Linkov et al., 2013). Interviews and surveys borrowed from existing organizational resilience 

measurement scales to assess both internal factors (i.e., command structure, culture, and the prioritization 

of response actions and resource allocation) as well as interagency factors (i.e., communication channels, 

interagency command structure, deliberation, etc.).  

 

Appendix 2C: Extension of results 
 

Table 3. Deductive and inductive parent and corresponding child codes, along with the total number of 

participants who discussed each child code at least once, the percentage of total participants who 

discussed each child code, and the number of coded segments (i.e., code applications over 2-4 sentences 

within transcripts). The percentage of for coded segments is derived from the number of coded segments 

per child code over the total number of coded segments for its respective parent code.  

Parent Code  Child Code 

Interview 

Count 

Percentage 

of Total 

Interviews 

Coded 

Segment 

Count 

Percentage 

of Coded 

Segments 

Job Role       248   

 Deployment/Field Work 15 45% 25 10% 

 Recovery 5 15% 6 2% 

 Mitigation/Adaptation 4 12% 22 9% 

 Incident Commander 11 33% 13 5% 

 Planning 24 73% 47 19% 

 Logistics 18 55% 26 10% 

 Public Information 12 36% 14 6% 

 Safety 5 15% 7 3% 

 Liaison 10 30% 23 9% 

 Finance/Administration 7 21% 7 3% 

 Operations 29 88% 58 23% 

Operations and Management      1323   

 Resource Allocation 32 97% 281 21% 

 Incident Prioritization 30 91% 124 9% 

 Knowledge Transfer 29 88% 131 10% 

 Situational Awareness 24 73% 63 5% 

 Analysis and Decision Support (+) 32 97% 164 12% 

 Information Security 5 15% 7 1% 

 Info Collection, Sharing 32 97% 122 9% 

 Risk Governance (Current) 32 97% 255 19% 

 Risk Management Improvements 28 85% 176 13% 

Relevant Policies       112   

 Funding 9 27% 11 10% 

 Multi-Jurisdiction Policy Change 7 21% 11 10% 

 Social/Political 13 39% 32 29% 

 Operations 30 91% 35 31% 

 Mission 8 24% 11 10% 

 Presidential Administration 7 21% 12 11% 

Field Technology Changes     72   

 Aviation Assets 8 24% 13 18% 
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 Infrared Technologies 10 30% 14 19% 

 Satellites 9 27% 16 22% 

 Drones (UAVs) 15 45% 29 40% 

Data/Information Technology Changes     130   

 Analyst Job Roles 5 15% 8 6% 

 

Assessing/Forecasting Hazard 

Vulnerabilities 

8 24% 

10 8% 

 

Assessing/Forecasting Hazard 

Consequences 

10 30% 

21 16% 

 

Assessing/Forecasting Hazardous Event 

Occurrence 

10 30% 

20 15% 

 Data Availability 20 61% 32 25% 

 Data Collection 22 67% 39 30% 

Environmental Changes     124   

 Work Conditions 13 39% 25 20% 

 Anthropogenic Hazard Severity 4 12% 5 4% 

 Anthropogenic Hazard Frequency 5 15% 7 6% 

 Natural Hazard Frequency  17 52% 33 27% 

 Natural Hazard Severity 17 52% 28 23% 

 Threat/Hazard Type 7 21% 10 8% 

 Climate Change 11 33% 16 13% 

COVID Absorption and Adaptation     305   

 Objectives 16 48% 33 11% 

 Operations 18 55% 126 41% 

 Transmission Risk 21 64% 49 16% 

 Remote Work 27 82% 63 21% 

 Personnel Availability 16 48% 34 11% 

Compound 

Threat   

    

158   

 Chronic Hazard 15 45% 24 15% 

 Acute Hazard 28 85% 54 34% 

 Anthropogenic Hazard 13 39% 19 12% 

 Natural Hazard 28 85% 61 39% 

Objectives       576   

 Public Life and Safety 30 91% 116 20% 

 Personnel Life and Safety 23 70% 86 15% 

 Infrastructure 29 88% 124 22% 

 Economic Considerations 21 64% 71 12% 

 Ecological Resources 14 42% 43 7% 

 Cultural/Historical Resources 14 42% 32 6% 

 Social/Political Considerations 26 79% 104 18% 

Constraints       594   

 Social/Political Constraints 29 88% 152 26% 

 Coordination/Communication Constraints 28 85% 111 19% 

 Time Constraints 18 55% 32 5% 

 Emerging Technology Constraints 11 33% 16 3% 

 Technology/Field Equipment Constraints 20 61% 51 9% 

 Data/Information Constraints 21 64% 63 11% 

 Personnel Constraints 29 88% 169 28% 

Information and Analysis     301   

 Expertise 26 79% 89 30% 

 Data/Information Availability 27 82% 87 29% 

 Modeling Capabilities 27 82% 125 42% 
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Coordination       815   

 Community Coordination 27 82% 121 15% 

 Private Sector Coordination 12 36% 32 4% 

 NGO Coordination 8 24% 22 3% 

 Local Coordination 23 70% 113 14% 

 State Coordination 24 73% 124 15% 

 Regional Coordination 18 55% 46 6% 

 Federal Coordination 32 97% 357 44% 

Organizational Resilience     492   

 Workforce Treatment 20 61% 51 10% 

 Mental health 16 48% 41 8% 

 Cohesion 8 24% 20 4% 

 Proactive Posture 20 61% 30 6% 

 Recovery Priorities 9 27% 14 3% 

 Participation in Exercises 6 18% 10 2% 

 External Resources 16 48% 23 5% 

 Planning Strategies 16 48% 6 1% 

 Situation Monitoring and Reporting 11 33% 16 3% 

 Decision Making 13 39% 24 5% 

 Information and Knowledge 19 58% 45 9% 

 Staff Engagement and Involvement 20 61% 54 11% 

 Leadership 19 58% 40 8% 

 Minimize Silos 16 48% 34 7% 

 Innovation and Creativity 17 52% 31 6% 

 Internal Resources 21 64% 53 11% 

 

 

Code intersections.  

 

Table 4. The total coded segments intersections between objective codes. The values in the shaded cells 

represent the percentage of code co-occurrence, calculated by the count of two codes applied to the same 

transcript segment over the total segments for that row.  

Code 

Code 
Frequency 
(Segments) 

Cultural/ 
Historical 
Resources 

Ecological 
Resources 

Economic 
Considerations Infrastructure 

Personnel 
Life and 
Safety 

Public Life 
and Safety 

Social/ 
Political 
Considerations 

Cultural/Historical Resources 32   16% 4% 8% 1% 4% 20% 

Ecological Resources 43 22%   15% 15% 0% 14% 9% 

Economic Considerations 71 9% 26%   17% 5% 14% 18% 

Infrastructure 124 31% 42% 30%   12% 39% 21% 

Personnel Life and Safety 86 3% 0% 6% 8%   13% 6% 

Public Life and Safety 116 16% 37% 23% 36% 17%   24% 
Social/Political 
Considerations 104 66% 21% 27% 18% 7% 22%   

In addition to deriving the total participants who discussed each objective as influencing 

compound threat management and overall absorptive capacity, Figure 3 shows the relational findings for 

the number of coded segments across interview transcripts that contained multiple objective codes. Figure 

3 shows that of the 116 total “minimize public life and safety risks” coded segments, 45 coded segments 

(39%) intersected with “minimize critical infrastructure damages”, suggesting that these objectives tend 

to be discussed by participants as complementary objectives. Conversely, of the 86 “minimize personnel 
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life and safety risks”, 10 coded segments (12%) intersected with the “minimize critical infrastructure 

damage” objective code. As noted by a few participants (n = 6, 18%), there can often be trade-offs 

between minimizing personnel life and safety risks and minimizing infrastructure damages. For instance, 

one interviewee noted that “…wildland firefighter is not certified to attack a structure fire” (Interview 27), 

as they do not have the same protective equipment necessary for building protection. Thus, protecting 

critical infrastructure and protecting personnel life and safety objectives can be at odds, though the 

relationship between critical infrastructure protection and public life and safety are framed as 

complementary.  

 

 
Figure 1. Relational findings for the code segment co-occurrence for stated objectives in compound threat 

management. The number in parentheses next to each node indicates the number of coded segments there were for 

each objective across the 33 interview transcripts. The number of each line indicates the number of segments with 

code intersections between two objective codes.  

 

In addition to assessing the degree of code intersections, compound threat management can be 

informed by code pairs with fewer intersections, such as when comparing coordination/communication 

constraints, time constraints, and field equipment/technology constraints. Of the 111 

coordination/communication constraint segments, 6 segments intersected with field 

equipment/technology and 6 segments intersected with time constraints, indicating that 

coordination/communication constraints may not involving timing or field equipment constraints as much 

as personnel and social/political constraints.  
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Figure 2. Relational findings for the code segment co-occurrence for stated constraints in compound threat 

management. The number in parentheses next to each node indicates the number of coded segments there were for 

each objective across the 33 interview transcripts. The number of each line indicates the number of segments with 

code intersections between two constraint codes. 

Post-interview survey results 

Follow-up surveys were sent to each participant following their interview session. Surveys were used to 

quantitatively evaluate singular and compound threat objectives, constraints, information needs, and 

organizational resilience factors. Though not the primary focus of this chapter, descriptive survey results 

can be found following this link.  

https://1drv.ms/b/s!AqDk3C-i9BrdiNNiaFL-U3--iC6nHw
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APPENDIX 3: Are Compound Threats Associated with Changes in Resource 

Use? An Assessment of Wildland Fires Suppression Resources given the 

COVID-19 Pandemic 
 

Appendix 3A: Background material 
Table 1 shows proposed wildland fire suppression management guidance published across the United 

States during the 2020 COVID-19 pandemic.  

Table 1. US fire agency policy and management guidelines proposed at the start of the 2020 wildfire 

season to mitigate viral transmission and other risks associated with the COVID-19 pandemic.  

Policy 

Objective 

Specific policy proposal Source proposing policy 

 

Firefighter 

safety 

Reconfigure camps: “Utilize line spike 

and small spike camps as much as 

possible” 

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

Remote work: “Minimize briefing size 

and limit face-to-face contact as much as 

possible”  

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

COVID testing National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

PPE / sanitation Center for Disease Control and Prevention 

(2020) 
Suppression 

strategies 

10AM Policy: “Hit it hard. Go back to the 

10 AM policy for the season; utilize 

aircraft more on IA to keep fires small.” 

USFS (2020) 

Aggressive initial attack National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

 

USFS (2020) 

Point protection: “Explore opportunities 

for more indirect attack, focused use of 

heavy equipment, and designation of 

management action points using natural 

barriers” 

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

Suppression 

resources 

Minimize responding personnel: “Create 

suppression strategies to minimize 

assigned personnel and incident 

duration… Use predictive services and 

professional judgement to balance 

assigned resources and incident duration”. 

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

“Utilize more heavy equipment and less 

crews” 

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

 

USFS (2020) 

https://d.docs.live.net/dd1af4a22fdce4a0/Desktop/Proposal/Full%20Proposal/Wells_Proposal.docx#_Toc99633247
https://d.docs.live.net/dd1af4a22fdce4a0/Desktop/Proposal/Full%20Proposal/Wells_Proposal.docx#_Toc99633247
https://d.docs.live.net/dd1af4a22fdce4a0/Desktop/Proposal/Full%20Proposal/Wells_Proposal.docx#_Toc99633247
https://www.cdc.gov/coronavirus/2019-ncov/community/wildland-firefighters-faq.html
https://static1.squarespace.com/static/5ea4a2778a22135afc733499/t/5ec2d14e9cc90f48ede34fc6/1589825871602/HPIOL_COVID-19.pdf
https://static1.squarespace.com/static/5ea4a2778a22135afc733499/t/5ec2d14e9cc90f48ede34fc6/1589825871602/HPIOL_COVID-19.pdf
https://static1.squarespace.com/static/5ea4a2778a22135afc733499/t/5ec2d14e9cc90f48ede34fc6/1589825871602/HPIOL_COVID-19.pdf
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“Evaluate opportunities for application of 

aviation and mechanized assets to reduce 

assigned personnel” 

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

Technology 

use and 

innovation 

Utilize decision support centers and tools National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

Use of unmanned aerial vehicles when 

possible 

National Interagency Fire Center - Wildland Fire 

Response Plan COVID-19 Pandemic (May 2020) 

 

 

Appendix 3B: Methodological details 
 

Data cleaning and sample selection.  

 

 

Figure 1.  Data cleaning process used to derive the final set of fire day observations.  

Data sources.  

FEMA ICS-209: ICS-209 Reports are intended to report information for significant incidents. These 

reports contain basic information used to support decision-making across all levels of government, 

wherein decision-makers include the agency/jurisdiction where the fire incident occurs, as well as the 

multi-agency coordination system (MACS) agencies (FEMA, n.d.). Incident information is reported as a 

way to provide situational monitoring such that the appropriate local, regional, state, or national 

jurisdiction can decide if, when, and how many resources to allocate to the incident. While these forms 

can be used for a variety of incident hazard types, it is estimated that 98% of them are used for wildland 

fire incidents (St. Denis et al., 2020).  

ICS-209 reports were used for fire incidents that occurred between 2017 – 2021 and were of fire 

complexity 1, 2, or 3. Fire complexity is determined by agency administrators and are used to facilitate 

personnel assignment (NIFC, 2004). Type 5 incidents are of the lowest level of complexity, and Type 1 

are the most complex. Type 5 incidents are the most common and require no more than five personnel to 

manage, whereas Type 1 incidents involve 500+ personnel (NIFC, 2004). Only ICS-209 reports with of 

complexity Types 1, 2, or 3 were included in this analysis.   

National Interagency Coordination Center (NICC) Incident Management Situation Report 

(IMSR): The IMSR provides an overview of the national wildland fire activity of the previous day. The 

report is produced daily when national Preparedness Levels (PLs) are Level 2 or above (NICC, 2019). 

The NICC Predictive Services Intelligence Section reviews the national and regional fire activity, which 

is used to generate national and regional PLs per day (NICC, 2019). Fire activity updates are provided 

from the ICS-209 reports, and are used to inform daily national and regional PLs. More specifically, PLs 

are determined by the fire activity levels, the number and kind of resources committed to incidents, 

Timeframe

2017 - 2021

Regions

Western US 
GACCS

Fire 
Complexity

Types 1, 2, 3

N = 22,022 
ICS-209s 

representing 
individual 
fire days

https://training.fema.gov/emiweb/is/icsresource/assets/ics%20forms/ics%20form%20209,%20incident%20status%20summary%20(v3).pdf
https://www.predictiveservices.nifc.gov/intelligence/Understanding%20the%20IMSR%202019.pdf
https://www.predictiveservices.nifc.gov/intelligence/Understanding%20the%20IMSR%202019.pdf
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weather conditions, and fuel conditions (NICC, 2019). National and regional PLs range from Levels 1 to 

5, and each level includes specific management actions such that higher PLs reflect greater levels of 

wildland fire activity and resources committed (NIFC, n.d.). As such, they are used in the current analysis 

as a proxy for resource scarcity per fire day at both the national and regional levels.  

GridMet: GridMet is a database of daily high resolution meteorological data that covers the continguous 

US from 1979 – yesterday. The dataset provides a spatially and temporally complete gridded weather 

dataset at ~4km resolution. The energy release component (ERC) for each incident site on each fire day 

was pulled via the climateR R package (Johnson, 2021). This package accesses gridded sources of climate 

data using consistent parameter sets. Specifically, it pulls weather data from the Gridded Meteorological 

Dataset, a dataset of daily high-spatial resolution (source). The “energy release component” was pulled 

for each incident at the daily level to control for weather conditions in this analysis. ERC is a calculated 

output related to the available energy (BTU) per unit area (square foot) within the “flaming front at the 

head of a fire” (USDA FS, n.d.). The ERC is used for the National Fire Danger Rating System (NFDRS), 

and reflects potential fire intensity via a composite fuel moisture index including the contribution of live 

and dead fuels (USDA FS, n.d.). As the ERC fluctuates based on the fuel moisture index over time per 

unit area, the ERC was expressed as a percentile for each incident site. The ERC is used by fire managers 

and planners both to prepare for upcoming fire seasons, as well as to monitor daily fire behavior, which 

can facilitate decision support for personnel and equipment assignments. 

NICG Resource Ordering and Support System (ROSS) / Interagency Resource Ordering 

Capability (IROC): ROSS and IROC both have served as centralized resource ordering and tracking 

platforms and were used to provide historical data on resources used per fire day from 2017 – 2021 in the 

current analysis. In 2020, IROC replaced ROSS as the centralized resource ordering and tracking platform 

in 2020, though both datasets contain the same information (NICG, 2020). IROC is a modernized and 

more flexible and scalable resource ordering platform for all hazard incidents that is supported by both 

PCs and mobile devices (NICG, 2020).  ROSS and IROC have been used to provide the dispatch 

community with a reliable system of tracking where, when, and which resources are allocated to 

incidents, even during peak capacity (NICG, 2020). In the current analysis, ROSS/IROC datasets were 

used for total personnel resources used per fire day—the predicted output of interest in model 

development.  

Weather variable descriptions 
Three variables related to weather conditions and fire landscapes were collected for this analysis: (i) accumulated 

precipitation per day (mm), (ii) vapor pressure deficit, and (iii) energy release component (ERC) percentiles. These 

data were extracted from GridMet via the climateR package in R (Johnson, 2020). ERC percentiles were derived 

from historical, site-specific ERC values pulled for each day over the past 10 years, as described below.  

Definitions:  
– Accumulated precipitation (mm): Total accumulated precipation (mm) per day measured at the incident 

origin point.  

– VPD: Difference between the amount of moisture in the air and how much moisture the air could 

potentially hold when it is saturated; a higher VPD implies that the air can hold a large amount of water; 

independent of air temperature (Wollaeger & Runkle, n.d.) 

– ERC values: ERCs are a fire characteristic (link). ERCs are derived from predictions of: (i) the rate of heat 

released per unit area during flaming combustion and (ii) the duration of flaming (SWCC, 2022). The 

primary operational weather inputs to ERC are daily maximum and minimum temperature and relative 

humidity; temperature and relative humidity at the local observation time of 1300, and precipitation amount 

and duration for the previous 24-hours from the observation time (Brown et al., 2014). The primary 

operational weather inputs to ERC are daily maximum and minimum temperature and relative humidity; 

temperature and relative humidity at the local observation time of 1300, and precipitation amount and 

duration for the previous 24-hours from the observation time (Brown et al., 2014). Weather data used to 

calculate ERCs are collected and calculated via the Parameter-elevation Regressions on Independent Slopes 

https://www.predictiveservices.nifc.gov/intelligence/Understanding%20the%20IMSR%202019.pdf
https://www.nifc.gov/sites/default/files/2020-09/National_Preparedness_Levels.pdf
https://famit.nwcg.gov/applications/IROC
https://famit.nwcg.gov/applications/IROC
https://famit.nwcg.gov/applications/IROC
https://www.climatologylab.org/gridmet.html
https://github.com/mikejohnson51/climateR
https://www.canr.msu.edu/uploads/resources/pdfs/vpd-vs-rh.pdf
https://www.fs.fed.us/psw/publications/documents/psw_gtr082/psw_gtr082.pdf
https://gacc.nifc.gov/swcc/predictive/fuels_fire-danger/nfdrs_charts/Areawide.htm
https://link.springer.com/content/pdf/10.1023/B:CLIM.0000013680.07783.de
https://link.springer.com/content/pdf/10.1023/B:CLIM.0000013680.07783.de
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Model (PRISM) and validated/augmented with data from the Remote AutomatedWeather Station (RAWS) 

network weather data (Bayham et al., 2020). For each fire incident location, daily weather data (and 

automatically calculated ERC values) are collected from a network of land management agency RAWS 

across the U.S.  

– ERC Percentiles: As ERCs are unitless values derived relative to location, the ERC values of different 

incident locations cannot easily be compared. As such, percentiles are used in fire behavior modeling. 

Daily ERC values pulled from a 10-year timeframe for each incident location are preferred to derive ERC 

percentiles, which will be used as model covariates. However, deriving 10-year ERC data for all ~2000 

unique incident locations included in this analysis may be computationally challenging, as the climateR 

code used to pull ERC values runs (prohibitively) slowly. 

Weather variable summary statistics 
Table 1. Summary statistics for the weather variables as related to each incident origin point (longitude, latitude 

provided on ICS-209 Reports.  

 Mean (SD) Median IQR 

Precipitation (mm) 0.6 0.00 0.00 – 0.00 

VPD 1.7 1.6 1.1 – 6.5 

ERC values 69 70 59 - 116 

ERC percentiles 0.8 0.9 0.8 – 0.9 
 

Weather variable correlations 
Table 2. Correlations between the weather variables. As there was a moderately strong, positive correlation between 

the ERC value and ERC percentile, only the ERC percentile was included in final models.  

 Precipitation VPD ERC (value) ERC Percentile 

Precipitation 1    

VPD -0.23 1   

ERC (value) -0.07 -0.32 1  

ERC Percentile -0.02 -0.01 0.61 1 
 

ERC Percentile Derivation  
Fire management personnel commonly use the ERC to assess current fire danger and develop management 

plans for both suppression and fire use. The calculated ERC is the available heat per unit area (kilojoules/m2). ERCs 

are based on the estimated potential energy released per unit area at the flaming front of a fire (SWCC, 2022). Daily 

variations of ERC are attributed to changing moisture content of local fuels (SWCC, 2022). ERC values tend to 

range from 0 to 100, though they can be higher given weather extremes and fuels modeling. The larger the ERC 

value, the “hotter” and potentially more severe the fire. Fire management decision makers commonly use ERCs, 

which are a calculated output of the National Fire Danger Rating System (NFDRS) (NIFC, 2022). According to 

Brown et al. (2014), ERCs are used by fire managers as an indicator of both fire severity (i.e., potential amount and 

extent of fire activity) and fire business (i.e., decision-making and economics involved in fire suppression and fuel 

treatment approaches). ERCs are provided in the NFDRS to improve information available to fire management 

decision makers; the goal is to “…inform decision makers for proactive wildland fire management, thus better 

protecting lives and property, reducing firefighting costs and improving firefighting efficiency” (NIFC, 2022). ERCs 

help depict seasonal trends offering a comparison tool against prior years. ERCs are one of the indicators used to 

determine a region’s Preparedness level. ERCs are also used in models that predict fire behavior (Young et al., 

2020) and in models that predict fire management fire risk perception and related suppression decision-making (i.e., 

resource allocation, suppress strategies, incident prioritization) (Bayham et al., 2020). 

Daily ERC values are used to inform fire management strategies and planning. According to Brown et al. 

(2014), fire specialists have indicated that ERC values of 40 and 60 might be useful thresholds that can be related to 

management strategies and planning. They also note that “…a fire danger index such as ERC is meant to represent 

an aspect of fire potential. As such, there can be many days with a high ERC value in which there is no fire 

occurrence, and therefore it is not surprising that simple linear correlations are difficult to obtain” (Brown et al., 

https://www.publish.csiro.au/WF/fulltext/WF19189?jid=WFv29n10&xhtml=77D3DC0E-B65A-41B7-AD56-94AFC02C5810
https://www.publish.csiro.au/WF/fulltext/WF19189?jid=WFv29n10&xhtml=77D3DC0E-B65A-41B7-AD56-94AFC02C5810
https://www.mdpi.com/1999-4907/11/2/169
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2014). Though small fires can occur with virtually any value of ERC, large fires (> 400 hectares) tend to be 

associated with ERC values of 60 or higher (and thus, are often associated with higher economic fire costs) (Brown 

et al., 2014). For this and other analyses that use ERC values, “…the ERC was calculated for the day of the fire start 

based on historical weather records from the Western Regional Climate Center’s RAWS archive. If the nearest 

RAWS did not have complete data for the day of the fire start, then the next nearest RAWS was selected, and so on” 

(Brown et al., 2014). The distance between a RAWS location and fire incident location may be up to 50 km, as ERC 

tends to be broad in spatial scale (Brown et al., 2014).   

Using Predictive Service Areas (PSAs) to pull 10-year ERCs: Rather than pulling daily ERC values over 10-

years for each specific incident included in the model, PSAs may be useful in approximating this data. PSAs are 

defined as: 

“… geographic areas for which national-level fire weather or fire danger services and products are produced 

by wildland fire agency meteorologists and intelligence staffs in support of resource allocation and 

prioritization. A PSA boundary defines areas where 2 or more weather elements or National Fire Danger 

Rating System (NFDRS) indices exist with a high correlation to historical significant fire size. "Significant 

fires" are the 95th percentile fire size for the PSA” (NIFC). 

There are 251 PSAs across the US, and 138 PSAs across the western US, 

which are used to communicate current and forecasted fire potential (Figure 

2). As PSAs are used in meteorological and fire management risk assessments 

and decision-making frameworks, I used PSAs as geographic units of analysis 

from which 10-year ERC values were pulled. Then, each individual incident 

location included in my dataset can be matched to the PSA in which it is 

located (each PSA centroid location is subsequently matched in the nearest 

RAWS weather station, where data is collected). The incident ERC percentiles 

can then be estimated according to the 10-year ERC distribution for each PSA 

(rather than for each specific incident location/coordinate pair). For instance, 

to assess if and how using PSA centroid locations to approximate incident 10-

year (2011 – 2021) ERC percentiles, I pulled daily ERC values for 

California’s 25 PSA centroid locations (Figure 3). Each CA PSA in Figure 2 

has associated daily ERC values for 2011 - 2021. The deciles for daily ERC 

values for each CA PSA were calculated, as shown in Figure 4. Match each 

incident location with each PSA - match to closest by distance. Finally, I 

calculated the percentile for each raw ERC value (at the incident-level) 

according to the ERC distribution of its associated PSA.  

 

Figure 3. Map of all 2017 – 2020 fire incident locations (black triangles) in the western US Geographic Areas. The 

black outlined boundaries represent the western US Predictive Service Areas (PSAs), and the green dots represent 

each PSA centroids. The 10-year ERC values were pulled for each of California’s PSAs. 

Example using Figures 3 and 4: The nearest PSA centroid to a fire incident location is the Eastern Deserts PSA. The 

ERC value for that fire incident (based on incident origin coordinates) is 82 one day that the fire is burning (i.e., one 

Figure 2. Map that represents the 
cumulative forecasts of the eleven 
Geographic Area Predictive 
Services Units and the National 
Predictive Services Unit (NIFC). 

https://data-nifc.opendata.arcgis.com/datasets/nifc::national-predictive-service-areas-psa-boundaries/about
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fire day). Based on the 10-year ERC distribution for the Eastern Deserts PSA, the ERC value of 82 falls into the 50th 

ERC percentile for that incident on that fire day. (Same logic for Central Coast Interior.

 

B.  

Figures 4A-4B. (A) The 10-year ERC percentiles for each of CA’s 25 PSAs. For instance, the 50th percentile for the 

Central Coast Interior PSA has an ERC value of 19, whereas the 50th percentile of the Eastern Deserts PSA has 

an ERC value of 82. In (B), the ERC values are presented along the x-axis for a select number of PSA locations with 

corresponding percentiles presented along the y-axis, like an empirical cumulative distribution function for daily 

ERC values from 2011 – 2021.  

Figure 5 shows the distances between each of the 2017 - 2020 incident location distances from the nearest PSA 

centroid point. 

 

Figure 5. The distances (miles) between each of the 2017 - 2020 incident location distances from the nearest PSA 

centroid point. The red vertical line shows the sample median distance and the blue vertical line shows the sample 

mean distance. According to Brown et al. (2014), The distance between a RAWS location and fire incident location 

may be up to 50 km (32 miles), as ERC tends to be broad in spatial scale (Brown et al., 2014).   

Limitations of 10-year ERC Distributions at the PSA level. Using the 10-year ERC values for each PSA will 

provide an approximate ERC value distribution that each fire observation used in the model can be paired to. While 
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PSA ERC data can be used to approximate ERC percentiles for each incident location, this approach will not be as 

high resolution as pulling incident location specific ERC values. While not as high resolution as pulling historical 

daily ERC values at the incident level, regional Geographic Area Coordination Centers (GACC) use PSAs to assess 

and communicate ERC percentiles. For instance, Figure 5 (below) shows how the Southwest Coordination Center 

uses PSA boundaries to communicate ERC percentiles (SWCC, 2022).  

A. B.  

Figures 6A-6B. The Southwest Coordination Center (SWCC) uses (A.) PSAs to communicate ERC percentiles, an 

indicator of general trends in seasonal conditions used to assess how the season is processing relative to prior years. 

(B.) Units throughout the SWCC produce local, site specific charts that are higher resolution than the PSAs via 

Automated Weather Stations, which are strategically located throughout the National Forests of the SWCC. Each 

day around 1400 local time, this data is uploaded via satellite to the National Weather Information System (WIMS) 

(SWCC, 2022). 

 

Figure 7. The histogram of ERC percentiles corresponding to each daily fire day ERC value, wherein percentiles 

were derived from historical 10-year ERC values for each PSA centroid.  

 

  

https://gacc.nifc.gov/swcc/predictive/fuels_fire-danger/nfdrs_charts/Areawide.htm
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Collinearity between DV (logged ground personnel use and covariates) 
Table 3. Pearson r correlations and p-values between the dependent variable (natural log of ground 

personnel used per fire day). The strongest negative correlation was with the “During-COVID threshold” 

variable (binary; 1 = fire day occurred during COVID) (p < 0.001) and the strongest positive correlation 

was with fires of Complexity Type 1 ( p < 0.001).  

Covariate Pearson r Correlation p-value 

During-COVID Threshold -0.49 0.00 

CAUSE_HUMAN 0.05 0.00 

COMPLEXITY_LEVEL_T1 0.24 0.00 

COMPLEXITY_LEVEL_T2 0.16 0.00 

COMPLEXITY_LEVEL_T3 -0.19 0.00 

CURR_INCIDENT_AREA_LOG 0.23 0.00 

ERCPercentile -0.05 0.00 

EVAC 0.07 0.00 

GBCC -0.02 0.00 

GEN_FIRE_BEHAVIOR_ACTIVE 0.12 0.00 

GEN_FIRE_BEHAVIOR_EXTR 0.01 0.04 

GEN_FIRE_BEHAVIOR_MIN -0.15 0.00 

GEN_FIRE_BEHAVIOR_MOD 0.05 0.00 

new_fire_gacc 0.05 0.00 

non_peak 0.02 0.02 

NRCC -0.13 0.00 

NWCC 0.04 0.00 

obj_culturalresources 0.04 0.00 

obj_economic 0.01 0.09 

obj_firefightersafety 0.01 0.08 

obj_humansafety 0.03 0.00 

obj_publicland -0.05 0.00 

obj_social 0.04 0.00 

ONCC 0.18 0.00 

OSCC 0.12 0.00 

prcp 0.00 0.78 

PROG_AREA_RESTR 0.01 0.12 

public_inj_fatal 0.02 0.00 

r_PL_4_5 0.01 0.14 

responder_inj_fatal 0.09 0.00 

STRUCT_THR 0.02 0.00 

STRUCT_THR_LOG -0.09 0.00 

SWCC -0.12 0.00 

vpd 0.02 0.01 
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Collinearity between all IV and DV covariates 

 

Figure 8. The correlation matrix between all model covariates, including the “During-COVID Threshold” 

main effect (i.e., duringcovid in the figure) and the dependent variable (i.e., ground_personnel_log). 

Small black x’s indicate statistically insignificant correlations (α < 0.05) between variable pairs.  
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Comparative distributions and tests of covariates between the pre- and during-COVID observations 
To meet the RDD assumption that the groups of data before and after the threshold of the running 

variable (i.e., before and after the COVID-19 threshold date), we calculated and compared the 

distributions for each covariate according to grouped data (i.e., pre-, during-COVID subsets). These 

comparative tests allowed us to determine if and how covariates aside from the “During-COVID 

Threshold” effect may have led to predicted changes in ground personnel used per fire day. We then 

conducted formal statistical tests to compare statistically significant differences between the groups; F-

tests were used to compare group means for normally distributed continuous covariates, and Chi-Squared 

tests were used to compare the relative expected proportions of binary variables. Additionally, for 

continuous and log-continuous variables, we created grouped density plots and then conducted F-statistic 

to compare group means and Chi-Square tests of proportions for binary variables. 

 

 

Figure 9. Density plots for the weather-related covariates including (i) the vapor-pressure deficits (kPa), 

(ii) the ERC percentile, and (iii) the logged precipitation accumulation per fire day for the 0 = pre-COVID 

fire days and the 1 = during-COVID fire days. 

  



 

137 

 

 

 

Figure 10. Density plots for the fire condition covariates including (i) the total new regional fires and (ii) 

the natural logged current incident area (ha) per fire day for the 0 = pre-COVID fire days and the 1 = 

during-COVID fire days.  

 

 

Figure 11. Societal risk factor covariates including (i) the logged total structures threatened, (ii) the 

number of responder injuries and fatalities, and (iii) the number of public injuries and fatalities per fire 

day for the 0 = pre-COVID fire days and the 1 = during-COVID fire days.  
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Table 4. Dependent variable and covariate distributions for the pre-COVID (n = XXX) and during-COVID (n = xxxx) groups.  

  Pre-COVID Fire Days 

Variable N Mean SD Median N Mean SD Median F Statistic Chi-Squared 

Ground personnel used per fire day 11093 327.91 639.14 127 10929 50.5 90.34 23 F=2019.105***  
Ground personnel used per fire day (ln) 11093 4.76 1.55 4.84 10929 3.01 1.49 3.14 F=7303.603***  
Human caused incident 11093 0.1 0.3 0 10929 0.08 0.28 0 F=17.263*** X2=17.057*** 

Off-Peak fire day 11093 0.03 0.18 0 10929 0.05 0.21 0 F=17.079*** X2=16.783*** 
Current incident area (ha) 11091 22687 53764 4190 10928 44263 101556 7763.25 F=389.757***  
Current incident area (ln ha) 11091 8.22 2.2 8.34 10928 8.75 2.37 8.96 F=291.325***  
PCT_CONTAINED_COMPLETED 11093 44.96 35.47 42 10926 48.03 36.09 50 F=40.442***  
General fire behavior: minimal 11041 0.42 0.49 0 10792 0.5 0.5 1 F=136.83*** X2=135.673*** 
General fire behavior: moderate 11041 0.27 0.44 0 10792 0.21 0.41 0 F=83.703*** X2=83.102*** 
General fire behavior: active 11041 0.26 0.44 0 10792 0.23 0.42 0 F=21.521*** X2=21.356*** 
General fire behavior: extreme 11041 0.05 0.23 0 10792 0.05 0.23 0 F=0.118 X2=0.099 

Fire Complexity Type 1 11093 0.2 0.4 0 10926 0.2 0.4 0 F=1.327 X2=1.289 

Fire Complexity Type 2 11093 0.28 0.45 0 10926 0.26 0.44 0 F=11.283*** X2=11.176*** 

Fire Complexity Type 3 11093 0.53 0.5 1 10926 0.39 0.49 0 F=428.869*** X2=420.159*** 
Total structures threatened 11093 27 415 0.03 10929 788 4526 0.03 F=310.382***  
Evacuations in progress or planned 11093 0.05 0.21 0 10929 0.04 0.19 0 F=11.051*** X2=10.825*** 
Area restriction in progress 11093 0.01 0.1 0 10929 0.01 0.11 0 F=4.608** X2=4.339** 
Responder injuries or fatalities 11093 2.12 5.87 0 10929 1.93 5.73 0 F=5.977**  
Public injuries or fatalities 11093 0.07 0.67 0 10929 0.16 1.17 0 F=49.054***  
Regional PL 1 | 2 11093 0.29 0.46 0 10902 0.16 0.37 0 F=549.247*** X2=535.171*** 

Regional PL 4 | 5 11093 0.38 0.49 0 10902 0.55 0.5 1 F=614.657*** X2=597.339*** 
New fires in region 11092 17.77 14.57 15 10929 15.02 15.96 12 F=177.673***  
Daily precipitation (mm) 11093 0.47 2.4 0 10929 0.7 3.31 0 F=37.039***  
ERC Percentile 11093 0.81 0.21 0.88 10929 0.86 0.17 0.92 F=349.499***  
VPD (kPa) 11093 1.66 0.77 1.6 10929 1.66 0.9 1.56 F=0.005  
ONCC 11093 0.15 0.35 0 10929 0.14 0.35 0 F=2.491 X2=2.43 

OSCC 11093 0.14 0.35 0 10929 0.1 0.31 0 F=63.095*** X2=62.594*** 

NWCC 11093 0.21 0.41 0 10929 0.23 0.42 0 F=12.738*** X2=12.616*** 

NRCC 11093 0.17 0.37 0 10929 0.2 0.4 0 F=44.285*** X2=43.97*** 

GBCC 11093 0.16 0.36 0 10929 0.13 0.34 0 F=24.334*** X2=24.121*** 

SWCC 11093 0.09 0.28 0 10929 0.11 0.31 0 F=32.816*** X2=32.509*** 
Objective: Social consideration 11093 0.11 0.32 0 10929 0.22 0.42 0 F=475.259*** X2=464.481*** 
Objective: Economic consideration 11093 0.05 0.21 0 10929 0.11 0.31 0 F=308.925*** X2=303.792*** 
Objective: Public land 11093 0.01 0.12 0 10929 0.02 0.16 0 F=30.177*** X2=29.608*** 
Objective: Cultural resources 11093 0.11 0.31 0 10929 0.21 0.41 0 F=449.341*** X2=439.618*** 
Objective: Human health and safety 11093 0.14 0.35 0 10929 0.18 0.38 0 F=69.133*** X2=68.617*** 
Objective: Responder health and safety 11093 0.07 0.26 0 10929 0.06 0.24 0 F=15.769*** X2=15.547*** 
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Multivariate Linear Regression Assumptions 

Multivariate linear regression assumptions were checked to ensure validity in model results and interpretations. 

The key assumptions of multivariate linear regression include:  

1. Linearity in the relationship between input variable (x) and predicted outcome variable (y). To test 

whether this assumption held, residual versus fitted data was assessed. 

2. Independence of input variables was assessed via tests of collinearity between input variables. 

Correlation matrices as well as variance inflation factors (VIF) were assessed. As all correlation 

coefficients between variable pairs were below r = 0.5 and all VIF values were below 5, the 

independence of input variable assumption was satisfied.  

A.   

B.  

Figure 12A-B. (A) Correlation coefficients between input variables as ranked by their correlation coefficient, r. 

Each correlation coefficient shown here was statistically significant at the alpha < 0.05 level. (B) The highest 

variance inflation factor (VIF) values of all model covariates. Each is below the commonly used threshold of 

VIF = 5.  

3. Normal distribution of residuals assumption was assessed according to the distribution of residual 

error terms. This assumption is conducted to ensure that there were no other relationships that could 

explain the variance that were not taken into account by the linear regression. To assess this, Q-Q 

plots were used to visualize if standard residuals were normally distributed.  

4. Homoscedasticity or equal variance of variables was tested to determine if error terms are the same 

across different levels of the outcome variable (y). To assess this, we plotted the spread of the 
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residuals, wherein residuals should exhibit constant spread. Heteroskedasticity apparent in Residuals vs. 

Fitted graphs of model results. Heteroskedasticity is likely to bias model results due to the right skew of the 

dependent variable (ground personnel used per fire day).  

A.          B.  

C.  D.  

Figure 13A-B. Histograms for the ground personnel resources used DV given (A) untransformed data and (B) log 

transformed data. The residual versus fitted graphs for the: (C) untransformed values of ground personnel used per fire day 

using the full sample (including outliers, high leverage) and (D) log transformed values of ground personnel used per fire 

day using the full sample (including outliers, high leverage) 
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Handling Fire Days with Zero Ground Personnel Used 

The final dataset (n = 22,022) included 4,121 fire day observations for which zero ground personnel 

were assigned. Pearson correlation coefficients for fire characteristics and societal risk factors showed weak, 

negative correlations with fire days with zero ground personnel used. As zero ground personnel fire days were 

not associated with fire characteristics or societal risk factors, we assume that zero ground personnel fire days 

were not strategic or intentional, as might be the case for a managed burn response to a wildland fire (i.e., if an 

incident occurred on public land that did not threaten structures or communities).  

Table 5. Pearson r correlation coefficients between observations with zero ground personnel and various 

physical fire characteristics and societal risk factors. All correlation coefficients were statistically significant at 

the alpha = 0.001 level, and the r values show weak, negative correlations between fire incident characteristics 

and zero ground personnel used at the fire day unit of analysis.  

Fire Characteristic and Societal Risk Variables Zero Ground Personnel Used 

Current Incident Area -0.07 

Fire Complexity T1 -0.13 

Fire Complexity T2 -0.11 

Fire Complexity T3 -0.01 

Structures Threatened -0.04 

Evacuations -0.04 

 

As we took the natural log of ground personnel used per fire day (the dependent variable) to avoid 

modeling issues of heteroskedasticity, observations with zero ground personnel used will yield negative infinity. 

To overcome this in the current analysis, various approaches were tested (Table 2) and predicted outcomes were 

compared. Generally, the predicted outcomes of logged ground personnel used per fire day were relatively 

consistent across different treatments of zero ground personnel fire days. Ultimately, to avoid omitting fire day 

observations, maintain a normal distribution, and to reduce the potential for bias by setting zero ground 

personnel fire days to their respective incident median or mean, we opted to set zero ground personnel fire days 

to the number of ground personnel used on that incident according to the closest report date. Figure 1 shows the 

histogram of the distribution after this transformation, and Table 2 shows the RDD results after conducting 

various transformation types to the zero ground personnel fire days. 

 

Figure 14. Histogram of the logged ground personnel used per fire day after setting zero ground personnel 

assignments to the number of ground personnel used on that incident according to the closest report date. 
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Table 6. Global linear RDD model results after conducting various transformations to the zero ground personnel 

fire day observations. Generally, the predicted outcome coefficients, p-values, and model R2 results were 

consistent across transformations.  

Functional Form 

Sample 

Pre- 

COVID 

During-

COVID 

Sample 

Size 

COVID 

Threshold 

Coef.  

SE 
p-value  

(threshold) 
R2 

p-value 

(model) 

Linear 

Log transformed DV 

   

 

     

0 GP → 1 GP 2017 – 2019 2020 - 2021 20,022 -2.9 0.05 < 0.001 0.44 < 0.001 

0 GP → Incident Med. 

GP 

2017 – 2019 2020 – 2021 20,022 -2.5 0.04 < 0.001 0.45 < 0.001 

0 GP → Closest 

Incident GP by Date 

2017 – 2019 2020 – 2021 20,022 -2.5 0.04 < 0.001 0.45 < 0.001 

 

 

Appendix 3C: Result Extensions and Sensitivity Analyses 

Univariate Sharp RDD regression results (western U.S. fire day observations) 

The linear and quadratic functional forms were developed and evaluated for final model form selection. Table 2 

shows the comparative univariate model results for linear and quadratic models.  

Table 1. Global model results (2017 – 2019 vs 2020 – 2021) for the univariate sharp RDD regression results 

including untransformed and log transformed dependent variables using linear and quadratic functional forms. 

The sample size for all univariate global model results was 22,022 fire day observations.  

Functional Form 

Sample 

Threshold Est.  SE p-value  

(threshold) 

R2 p-value (model) 

Linear 

Untransformed DV 

-362 12 < 0.001 0.1 < 0.001 

Linear 

Log transformed DV 

-2.73 0.04 < 0.001 0.295 < 0.001 

Quadratic 

Untransformed DV 

-251.7 18.47 < 0.001 0.088 < 0.001 

Quadratic 

Log transformed DV 

-2.71 0.07 < 0.001 0.318 < 0.001 
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Multivariate Sharp RDD regression results: Assessing Functional Forms 

The linear and quadratic functional forms were developed and evaluated for final model form selection. Table 2 

shows the comparative multivariate model results for linear and quadratic models.  

Table 2. RDD regression main effect results according to varying bandwidths and model forms. No covariates 

were included in these models. The “Main Effect” column includes the beta-coefficient that represents the fire 

incident days occurring during the pandemic; the effect size shows the association held between during-

pandemic fire days and total personnel outcomes.  

Functional Form 

Sample 
Sample Size 

Threshold 

Coef. 

Estimate  

SE 
p-value  

(threshold) 
R2 

p-value 

(model) 

Linear 

Untransformed DV 

      

Full Data 22,022 -301 13 < 0.0001 0.44 < 0.0001 

Exclude Influential and 

Outlier Observations 

21,193 -162 4 <0.0001 0.42 <0.0001 

Linear 

Log transformed DV 

 

 

     

Full Data* 22,022 -2.61 0.04 < 0.001 0.466 < 0.001 

Exclude Influential and 

Outlier Observations 

19,475 -2.73 0.03 < 0.001 0.455 < 0.001 

* The model that included the full set of observations with a natural logged dependent variable was selected for use in the main 

manuscript.  

Interpretation of a beta-one in Log-Level Regression 

We took the natural log of the dependent variable (ground personnel resources used per day) given the 

heteroskedasticity of the right-skewed untransformed dependent variable. Thus, in multivariate linear regression, 

interpretations of covariate coefficients changes from multivariate models with untransformed DVs. To interpret 

coefficient values for different model covariate types (i.e., binary, continuous, logged continuous), we used the 

following coefficient interpretations (Halvorsen and Palmquist, 1980):  

• Continuous covariates: Multiply by 100; If X increased by one percent, we expect ground personnel 

use to change by (+/-) percent.  

• Logged continuous covariates: Coefficient is the expected change in percent of ground personnel used 

when X is increased by one percent.  

• Binary covariates: When X switches from 0 to 1, the predicted percentage change of Y is 

[100 × (𝑒𝐵1 − 1)]  
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Multivariate sharp RDD model variable importance 

 

Figure 15. Overall importance of each of the covariates included in the global multivariate sharp RDD model. 

Importance was calculated by evaluating models that did and did not include each separate covariate one at a 

time according to changes in the absolute value of t-statistic of the model. The R2 statistic is calculated for the 

model against the intercept of the null model, which includes only the intercept. Relative importance was scaled 

to account for the different variable types included (i.e., binary, continuous, log-continuous). Overall, the 

COVID-19 Threshold (wherein a score of 1 indicated that a fire day occurred during COVID) was most 

important in variable associated with model fit.  
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Multivariate sharp RDD model results: Sensitivity of results after removing outliers and highly influential 

observations 

After RDD models predictive of ground resource use per fire day were developed for the 2017 – March 10, 

2020 versus March 11, 2020 – 2021 bandwidths, Cook’s distance metrics were calculated to detect and omit 

highly influential fire day observations from the dataset to assess if and how resulting effect sizes changed. 

Influential observations are defined as those that disproportionately influence any component of regression 

analyses, including the predicted outcome or slope coefficients. While outliers (i.e., extreme values of y) and 

high leverage points (i.e., extreme values of x) may also be influential observations, additional analyses are 

needed to assess whether they are influential. Cook’s distance is a commonly used assessment to detect highly 

influential observations (Cook, 1979).32 Cook’s distance calculates the influence exerted by each observation on 

the predicted outcome, such that the change in the fitted Ŷ is calculated with and without each observation i. 

This indicates the degree to which each observation i influences the fitted values.  Cook’s distance is calculated 

by the equation: 

 Di =
∑ (Ŷi-Ŷi(-k))²n

 i=1

(p+1)σ̂
2 =

∑ (Ŷi-Ŷi(-k))²n
i =1

P*MSE
  

Where Ŷj is the prediction for observation i based on all the data, Ŷi(-k) is the prediction for observation i for a 

regression where observation k is removed, p is the number of parameters in the model, and the MSE is the 

mean squared error of the regression that includes all covariates (Davis, 2018).  

Generally, observations with a Cook’s distance greater than 3 times the mean Cook’s distance are 

regarded as influential, though this threshold is not definitive. For the current sample and RDD model, 

there were 1,826 fire day observations that had Cook’s distances greater than 3 times the mean Cook’s 

distance, and these were influential observations. After removing highly influential observations, we 

identified observations (n = 500) with outlier values for the natural logged ground personnel used. We 

assessed the multivariate sharp RDD results for the global model results after omitting both highly 

influential and outlier observations, resulting in a total sample of n = 19,475. Of these, there were 9,742 

fire day observations that occurred pre-COVID and 9,733 fire day observations that occurred during-

COVID. For both the models that did and did not include outlier and highly influential observations, the 

portion of fire day observations that occurred during-COVID was approximately 50%. As shown in the 

global multivariate sharp RDD model results in Table 1 (below), the effect of the “During -COVID 

Threshold” variable was relatively consistent between the model that did include outl ier and highly 

influential observations (n = 22,022; 𝐵𝑑𝑢𝑟𝑖𝑛𝑔 =  −2.6, 𝑝 < 0.001) and the model that omitted outlier and 

highly influential observations (n = 19,475; 𝐵𝑑𝑢𝑟𝑖𝑛𝑔 =  −2.7, 𝑝 < 0.001). As outliers and highly 

influential observations did not bias the global model results, we included all observations in the final 

model of Chapter 3. 

 

Table 1. RDD models predictive of ground resource use per fire day were developed for the 2017 – March 10, 

2020 versus March 11, 2020 – 2021 bandwidths after outlier ground personnel observations and highly 

influential fire day observations were omitted from the analyses (n = 19,475).   

Predictors Estimates 

std. 

Error Lower CI Upper CI p 

(Intercept) 3.59 0.06 3.478   3.709 <0.001 

During-COVID threshold -2.73 0.03 -2.787   -2.664 <0.001 

Cause: Human 0.22 0.03 0.168   0.273 <0.001 

Off-Peak Fire Day -0.40 0.05 -0.501   -0.303 <0.001 

Current incident area (log) 0.05 0.00 0.038   0.055 <0.001 

Percent Fire Contained 0.00 0.00 0.000   0.001 0.007 

 
32 Cook, R. D. (1979). Influential observations in linear regression. Journal of the American Statistical Association, 

74(365), 169-174. 
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General fire behavior: moderate 0.12 0.02 0.081   0.164 <0.001 

General fire behavior: active 0.17 0.02 0.126   0.220 <0.001 

General fire behavior: extreme 0.17 0.04 0.089   0.247 <0.001 

Fire Complexity Type 1 0.94 0.02 0.891   0.986 <0.001 

Fire Complexity Type 2 0.80 0.02 0.766   0.843 <0.001 

Structures threatened (log) 0.02 0.00 0.011   0.021 <0.001 

Evacuations planned or progressing 0.46 0.04 0.386   0.537 <0.001 

Area restriction in progress 0.17 0.08 0.018   0.321 0.029 

Responder injuries or fatalities 0.01 0.00 0.002   0.008 0.001 

Public injuries or fatalities 0.10 0.03 0.049   0.153 <0.001 

Regional PL 4 or 5 -0.22 0.02 -0.255   -0.189 <0.001 

Regional new fires 0.00 0.00 0.001   0.003 0.001 

Daily precipitation (mm) 0.01 0.00 -0.000   0.012 0.054 

ERC Percentile 0.02 0.04 -0.064   0.108 0.618 

VPD (kPa) 0.04 0.01 0.024   0.065 <0.001 

Region: ONCC 0.73 0.03 0.660   0.795 <0.001 

Region: OSCC 0.71 0.04 0.642   0.779 <0.001 

Region: NWCC 0.25 0.03 0.191   0.311 <0.001 

Region: NRCC -0.31 0.03 -0.367   -0.243 <0.001 

Region: GBCC 0.35 0.03 0.282   0.408 <0.001 

Region: SWCC 0.30 0.04 0.226   0.371 <0.001 

Objective: Social consideration 0.06 0.03 0.007   0.103 0.024 

Objective: Economic consideration 0.00 0.04 -0.073   0.066 0.925 

Objective: Public land -0.24 0.07 -0.372   -0.116 <0.001 

Objective: Cultural resources -0.06 0.03 -0.107   -0.008 0.024 

Objective: Human health and safety 0.16 0.02 0.116   0.204 <0.001 

Objective: Responder health and safety 0.19 0.03 0.126   0.243 <0.001 

Off-peak fire days * Complexity Type 1 1.01 0.21 0.608   1.416 <0.001 

Public injuries/fatalities * Regional PL 4 or 5 -0.13 0.03 -0.190   -0.079 <0.001 

Observations 19475         

R2 / R2 adjusted 0.558 /  0.558 
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A.  

 

B.  

Figure 11A-B. The (A) annual GACC fire days classified according to the general fire behavior categories (i.e., 

1 = Minimal to 4 = Extreme fire behavior) and (B) corresponding annual proportions of each fire behavior 

category over all regional fire days. 

Figure 11A-B shows general fire behavior classification counts over all regional fire days by year to 

explore regional differences in fire behavior as categorized and reporting by fire managers on a fire day basis. 

Figure 11 intends to capture if and how fire behavior on individual fire days may be associated with regional 

resource use; for instance, given the lesser predicted percentage reduction in ground personnel used during-

COVID in the GBCC, NRCC, and RMCC relative to pre-COVID use, one might expect that these regions could 
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have had fewer proportions of active and extreme fire behaviors over total fire days during-COVID fire days 

relative to pre-COVID fire days in the region. While Figure 11 captures that in the GBCC, approximately 60% 

of pre-COVID fire days (excluding 2019, an outlier year in terms of western U.S. fire activity) were classified as 

having active or extreme fire behavior. This reduced to approximately 40 to 50% for during-COVID fire days. 

The ONCC, with the greatest predicted average reduction in ground personnel used for during- relative to pre-

COVID fire days, exhibited a relative increase in active and extreme fire behaviors per total annual fire days in 

the region.  

 

 
Figure 16. Univariate sharp RDD linear regression trends for each of the five national Preparedness 

Level (PL) categories (1 = Lowest fire activity category to 5 = Highest level of wildland fire activity).  
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Appendix 4: Hazard management and organizational resilience related 

publications 
 

Vecherin, S., Chang, D., Wells, E., Trump, B., Meyer, A., Desmond, J., ... & Linkov, I. (2022). Assessment of the COVID-

19 infection risk at a workplace through stochastic microexposure modeling. Journal of exposure science & environmental 

epidemiology, 1-8. 

• Abstract: The COVID-19 pandemic has a significant impact on economy. Decisions regarding the reopening of 

businesses should account for infection risks. This paper describes a novel model for COVID-19 infection risks and 

policy evaluations. The model combines the best principles of the agent-based, microexposure, and probabilistic 

modeling approaches. It takes into account specifics of a workplace, mask efficiency, and daily routines of employees, 

but does not require specific inter-agent rules for simulations. Likewise, it does not require knowledge of microscopic 

disease related parameters. Instead, the risk of infection is aggregated into the probability of infection, which depends 

on the duration and distance of every contact. The probability of infection at the end of a workday is found using 

rigorous probabilistic rules. Unlike previous models, this approach requires only a few reference data points for 

calibration, which are more easily collected via empirical studies. The application of the model is demonstrated for a 

typical office environment and for a real-world case. The proposed model allows for effective risk assessment and 

policy evaluation when there are large uncertainties about the disease, making it particularly suitable for COVID-19 

risk assessments. 

 

Wells, E. M., Cummings, C. L., Klasa, K., Trump, B. D., Cegan, J. C., & Linkov, I. (2021). Real-time Anticipatory 

Response to COVID-19: A Novel Methodological Approach. In COVID-19: Systemic Risk and Resilience (pp. 35-59). 

Springer, Cham. 

– Abstract: The SARS-CoV-2 novel coronavirus 13 (COVID-19) pandemic has revealed the technical requirements 

needed to enhance scientific analysis and epidemic modelling, but also the social and institutional challenges of 

operating in a global crisis. The large-scale and turbulent nature of the pandemic has exemplified that healthcare and 

public health safety organizations resilience is critical for maintaining function and community support in times of 

crises with unclear outcomes and implications. Conceptualizations of organizational resilience need support swift 

organizational decision-making that simultaneously prepares for and responds to adverse events and system strains 

under uncertainty. This chapter presents a modelling approach towards bolstering organizational resilience for 

healthcare organizations facing COVID-19 called “real-time anticipatory response,” which considers how 

organizations concurrently prepare for and respond to the pandemic under conditions of high pressure and high 

uncertainty. The framework supports strategic planning based on limited information and immediate need for 

organizational response which can be applied to a vast array of natural disaster and other crises that require 

stakeholders to enact quick decisions that facilitate organizational preparation and response simultaneously 

 

Cegan, J. C., Trump, B. D., Cibulsky, S. M., Collier, Z. A., Cummings, C. L., Greer, S. L., Jarman, H., Klasa, K., 

Kleinman, G., Surette, M.A., Wells, E., & Linkov, I. (2021). Can Comorbidity Data Explain Cross-State and Cross-

National Difference in COVID-19 Death Rates?. Risk Management and Healthcare Policy, 14, 2877. 

– Abstract: Many efforts to predict the impact of COVID-19 on hospitalization, intensive care unit (ICU) utilization, 

and mortality rely on age and comorbidities. These predictions are foundational to learning, policymaking, and 

planning for the pandemic, and therefore understanding the relationship between age, comorbidities, and health 

outcomes is critical to assessing and managing public health risks. From a US government database of 1.4 million 

patient records collected in May 2020, we extracted the relationships between age and number of comorbidities at the 

individual level to predict the likelihood of hospitalization, admission to intensive care, and death. We then applied 

the relationships to each US state and a selection of different countries in order to see whether they predicted observed 

outcome rates. We found that age and comorbidity data within these geographical regions do not explain much of the 

international or within-country variation in hospitalization, ICU admission, or death. Identifying alternative 

explanations for the limited predictive power of comorbidities and age at the population level should be considered 

for future research. 
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Zemba, V., Wells, E. M., Wood, M. D., Trump, B. D., Boyle, B., Blue, S., ... & Linkov, I. (2019). Defining, 

measuring, and enhancing resilience for small groups. Safety Science, 120, 603-616. 

 

– Abstract: Resilience is increasingly recognized as a factor that improves the functioning and 

performance of individuals and communities; however, it is underexamined in smaller groups or teams. 

We performed a comprehensive literature review to examine how resilience is defined, measured and 

used in small teams. Additionally, we evaluated the effectiveness of trainings or interventions on teams 

towards increasing unit resilience and performance. Following a literature review, 74 measures across 

37 articles were assessed. Study eligibility criteria include English-language publications between 1980 

and 2017 that included output from a research trial or survey on military or civilian groups pertaining to 

their resiliency to adverse events. Resilience of units/teams was assessed across the four phases of 

resilience defined by NAS: prepare, absorb, recover, adapt. Our review found that while the concept of 

resilience is not often studied in small groups empirically, the focus of available studies is on recovery 

with limited attention given to absorption and adaptation. This work reveals a potential mechanism to 

improve team/unit performance via unit resilience training and improved unit cohesion. Training had 

small but significant effects on the preparation (r = 0.03, k = 5) and recover (r = 0.05, k = 6) phases of 

unit resilience. In order to improve resilience in small groups, training programs and other interventions 

must be appropriately focused on the essential phases of resilience associated with mission execution. 

 

Wood, M. D., Wells, E. M., Rice, G., & Linkov, I. (2019). Quantifying and mapping resilience within large 

organizations. Omega, 87, 117-126. 

 

– Abstract: To complement risk assessment, large organizations need to be resilient in order to maintain 

critical functioning in the face of uncertain future threats (whether the threat is environmental, cyber, 

security-related, social, etc.). Given the complexity of both large organizations and future threat, it is 

challenging to enact programs and protocols that ensure resilience across whole organizations. We 

propose that large organizations can map current organizational resilience across threat event cycle 

phases (Plan, Absorb, Recover, Adapt) and context-specific resilience domains (Physical, Information, 

Cognitive, and Social) to contextualized resilience metrics. Subcomponents then can be compared to 

one another through dashboards or quantitative indices to facilitate decision making for resilience 

through identifying organizational strengths, weakness, synergies, and redundancies across its 

subcomponents in the context of their associated missions and capabilities. The United States 

Department of the Army is used as a case study example of how resilience approaches of large, complex 

organizations can be visualized to enable resilience insights using this methodology. 

 

 

 

 

 


