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Abstract

Robots have been used to automate many tasks, and yet designing robots remains

largely a manual process. This thesis seeks to “automate automation” by developing

methods to automate both design of the mechanism and control of the robot. To make

these automation problems tractable, we use modular robots, as their components

can be readily rearranged to form a customized robot for each new task. This work

addresses two problems: control over many different modular designs, and selecting

the best design for each task.

First, we present a control framework geared toward the case where a large num-

ber of designs are made from a set of modules, such that it would be prohibitively

expensive to create a new control policy from scratch for each robot design. We

introduce modular policies that learn to control a range of designs in one training

process. In the policy architecture, information about the dynamics and controls is

shared among modules of the same type via shared neural network parameters. We

use deep reinforcement learning algorithms to train the policies on multiple designs

and environments simultaneously. We then show that modular policies can transfer

to new designs and environments not seen in training.

With a modular control framework in place, we apply it to select the best robot

designs for specific tasks. We frame design optimization as a sequential decision

making problem in which modular robots are incrementally constructed one module at

a time. We then implement a deep reinforcement learning approach to train a design

value function, an estimate of how each module added to the design will impact

performance. The design value function serves as a search heuristic to efficiently

identify the best design for each new task. This method is applied to two classes

of robots: designing manipulators to reach locations in a workspace, and designing

mobile robots to traverse a non-flat terrain.

Through these contributions, this thesis shows that leveraging modularity in learn-

ing enables the creation and transfer of robot behaviors across tasks and designs.
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Chapter 1

Introduction

1.1 Motivation

We have all dreamed of robots doing all kinds of jobs for us– Rosie the cartoon robot

from “The Jetsons” cleans, repairs, walks the dog, and does many other tasks we may

wish to avoid. But the reality is that a general-purpose robot that can handle a wide

variety of tasks is still fiction. On the other hand, real robots can be found in modern

automobile manufacturing plants performing an intricate ballet of tasks, yet these

special-purpose robots can only perform a single task. We believe that modularity

can break the trade-off between generality and specialization in robots, by allowing a

designer to combine a small set of building blocks into specialized robots for a wide

variety of tasks. In other words, a designer can use modules to create a variety of

special-purpose robots.

The potential benefits of modularity are especially apparent when considering

applications where the task to changes frequently. For example, in an urban disaster

response scenario, the scenario that will be encountered cannot be predicted. One

option to prepare for a variety of scenarios may be to transport a set of different

robots to the disaster site. But, a fleet of different robots may be impractical due

to the bulk, cost, and complexity involved in building, maintaining, and transporting

the fleet. Instead, modularity could be employed, whereby a smaller portable “bag of

modules” could act as general-purpose building blocks for customized special-purpose

1



Figure 1-1: Modular robots made from body, leg, and wheel modules. A set of
modular components (center, inside the black oval) can be made into different robots,
each specialized for its environment (outside the black oval).

robots. If the first responders arrive to a disaster site and find they need to search

a collapsed building, they could construct a modular legged robot design to climb

through the rubble. If first responders instead need a robot to traverse a series of

hallways and shut off a gas leak, those same modules could be reused to build a

wheeled mobile manipulator. An example is depicted in Fig 1-1.

Another potential application for modularity lies in flexible manufacturing. A

manufacturing facility that changes their production line frequently may benefit from

specializing the manipulator designs to pick and place products, when the product and

assembly line change frequently. Or, in a future factory, a broader set of modules could

be re-combined to complete mobility and manipulation tasks that vary day-by-day

(illustrated in Fig 1-2). A more futuristic application is extra-planetary exploration,

where we could launch a set of robot modules without knowing what environment

the robot will land in. The robot could predict which design will be able to explore

the terrain most efficiently, then self-reassemble into that design.

In addition to the applications we envision, conceptually modularity provides a

means for robots to generalize to new scenarios. Information gained (about the design,

dynamics, controls, and/or performance) can be re-used, which will become especially

important when constructing each new robot and/or controller from scratch is too
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Figure 1-2: A rendering of a future modular factory, where a set of modular com-
ponents (center, inside the black oval) such as manipulators, conveyor belts, mobile
platforms, and sensors could be made into different manufacturing processes (outside
the black oval). (Figure credit: Matt Dworman)

expensive or time consuming. One goal of this thesis is to develop methods where

both the hardware and software components are modular, such that knowledge gained

previously can be transferred to the development of new robot designs and controllers.

1.2 Contributions

This thesis develops new methods in “automating automation” by synthesizing mod-

ular control and design using two new concepts. First, we present a modular policy

framework, in which one policy can learn to control a variety of designs, and readily

transfer to new designs. Secondly, we present design value functions, a method to

efficiently search for the optimal robot for a task. Through experiments and demon-

strations of these contributions, this thesis shows that leveraging modularity in

learning enables the creation and transfer of robot behaviors across tasks

and designs.

During the process of selecting the best robot mechanism design for a given task,

multiple candidate design prototypes may be iteratively created and evaluated. In

our experience, this is true when the robot is engineered either with conventional or
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automation-assisted methods, and when the candidates are physically prototyped or

tested in simulated. To the best of our knowledge, the best way to evaluate a design

is to measure its performance at the task, which cannot be done without a controller.

In other words, to test how well-matched a robot is for a task, we need to control

that robot.

For some tasks and robots where control methods are computationally inexpen-

sive and well-studied, such as quasi-static fixed-base manipulators operating in free

space, controlling a series of candidate mechanism designs to evaluate each candi-

date’s performance at the task is tractable. But for more complex tasks, such as

legged locomotion, creating controllers for each candidate can be a bottleneck, as it

would be computationally expensive to optimize a new policy from scratch for each

candidate.

Our approach to this challenge is to first create a modular policy that can control

a wide variety of designs throughout the design space. This policy in turn allows

us to control the subset of designs that may be evaluated within an iterative design

optimization process. By evaluating many different combinations of designs and tasks,

we obtain data on their performance. From this data, our system learns how to select

optimal designs for new tasks.

1.2.1 Modular policies

Given even a small set of modules, there is a combinatorial exponential explosion

in the number of specialized robot designs that can be generated from that set [30,

144, 178]. Each of these many designs needs a control policy to coordinate motion

among its constituent modules. For low-degree-of-freedom systems operating in open

environments, such as fixed-base manipulators in open space, control may be possible

in closed-form [57]. But, as the robot and environment become more complex, we are

motivated to apply more expressive and complex control policies.

One possible control solution would be to learn a new control policy for each design

and task. Deep reinforcement learning (RL) has been used in recent years to control

a variety of robots both in simulation and in reality, producing impressive results
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[28, 37, 65, 68, 71, 79, 80, 99, 100, 113, 121, 124, 141, 142, 151, 174, 176, 184]. These

and related methods are improving at a rapid pace, both in reducing the computation

needed and in augmenting the output policy capabilities. We draw inspiration from

these works in this thesis, but despite the promise they hold, they must train a new

policy for each new robot design.

The first contribution of this thesis is a modular policy learning framework, intro-

duced in Chap. 3, geared toward the situation where a large number of designs are

derived from a set of modules. Our approach leverages the fact that the kinematics

of a modular robot can be represented as a design graph, with nodes as modules and

edges as connections between them. Given a robot, its design graph is used to create

a policy graph with the same structure, illustrated by Fig. 1-3). Each type of module

has a neural network associated with it– i.e. there is one network used to control all of

the “leg” modules, and a different one used to control all of the “wheel” modules. Each

node in the policy graph uses the neural network associated with its corresponding

module type’s node to convert the inputs from that module’s observations into the

outputs for that module’s actions. For example, a single neural network for leg-type

modules is used to compute actions for each of the legs on a hexapod, one leg at a

time.

The policy graph structure mediates how robots with different designs share

knowledge, and enables modules to learn to modulate their outputs via a commu-

nication procedure in which they send and receive information over the graph edges

[137, 162]. As a result, the policy can produce different behaviors for the same module

depending on its location and neighboring modules within the robot. We find that

graph-structured policies were able to learn to locomote more effectively than were

non-graph alternative policy structures, both for designs that were seen, and those

not seen, during training.

We train the modular policy with deep reinforcement learning, by collecting and

learning from data from a set of different designs. We demonstrate the policy control-

ling a variety of designs to locomote with real robots. The modular policy generalizes

to significantly more simulated designs not seen during training, without any ad-
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ditional learning (i.e. “zero-shot transfer”). We quantify policy generalization via

experiments in which the policy is trained with 12 designs then transferred to 132

additional designs, and measure the difference between the commanded and observed

locomotion heading and speed. In summary, as the first contribution of this thesis, we

adapt graph neural networks as a modular policy architecture and show how modular

policies can learn to control robots composed of various combinations of modules,

then transfer without additional training to new robots with different designs.

Next, we develop two extensions to the modular policy learning framework. The

policy developed in Chap. 3 is proprioceptive, that is, it takes internal joint encoder

and body IMU measurements as its inputs, and is trained only in a flat uniform

environment. In Chap. 4, the policy is given exteroceptive (vision-based) inputs,

enabling it to learn to adapt its behavior to local terrain features such as stairs.

We show that the policy can generalize to both new designs and environments si-

multaneously. Then in Chap. 5, the policy is trained in a novel reinforcement and

imitation learning paradigm, where different designs can learn from each other. Our

experiments show that including demonstrations from modular designs, even when

those demonstrations are not from the same robot designs that are being trained, can

accelerate learning. This method allow demonstrations from one set of designs can

act as a sort of “prior” over behaviors for different designs. These chapters show how

a modular policy can learn to control a set of designs and then transfer to new de-

signs and environments, and how a modular policy facilitates the transfer of existing

behaviors between designs.

1.2.2 Design value functions

With a framework in place for controlling modular robots, we next turn to design

automation. In related work on robot design, a single task (e.g., locomoting in a given

environment) is fixed, and a single design is specialized for that task [7, 19, 31, 32,

35, 45, 61–63, 81, 82, 98, 104, 107, 108, 110, 138, 163, 175]. These methods have been

applied to a range of robot topologies, applications, and module types. However, these

prior methods suffer from one of two limitations. Some require experts to customize
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Modular policy controls a 
variety of robots

Figure 1-3: The first contribution of this thesis is a modular policy that can control
a variety of robots. A module-level policy (depicted here as brains in the top box)
is assigned to each module type (body, legs, and wheels). When the modules are
assembled into robots (bottom row), the module-level policies are composed into
robot-level policies (inside thought bubbles), where the policy structure matches the
graph structure of the physical robot. Note the brain icons are drawn multiple times
for each robot to acknowledge that there are multiple components in the policy, but
in our method, all modules of one type are controlled via one neural network. The
policy only has a total of one of each grey, white, and blue brain, and does not make
copies of those three networks. For example, although we have drawn the blue brain
four times in the left-most four-wheel design, each of those blue brain icons refers to
the one wheel-type neural network. That wheel-type network is used to control each
of the wheels not only in the four-wheel design, but also in the four-leg/two-wheel
design.
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the algorithm for each new task or type of robot; as a result, they cannot be easily

applied to new tasks or robots. Others are computationally expensive; given that

these methods must be restarted from scratch each time a new robot is optimized for

a new task, this limits how quickly they can be applied to new tasks.

The second contribution of this thesis is a framework for robot design optimiza-

tion. We frame design optimization as a decision-making process, where modules are

selected one at a time to add to the robot design. We introduce design value functions

characterizing the benefit of adding each module to the robot towards achieving the

task. The design value function is represented by a deep neural network, which takes

a partial design and the task as input, and outputs the estimated value of adding each

module type to the robot. To create a task-specific robot, the design value function is

applied iteratively to sequentially select modules. This iterative process is executed

by a “design generator” agent, which takes the task as its input and uses the design

value function as a search heuristic in optimizing the design. The design generator

thereby functions as a mapping from task to design (illustrated by Fig. 1-4).

The design value function is trained using reinforcement learning, which learns

the relationships among task, design, and performance offline in advance of deploy-

ment. Before the design value function can be applied, its training process must

explore a large number of design/task combinations, making training computation-

ally expensive. This training process is more computationally expensive than any

individual design search using prior methods. But, by conducting offline training we

gain a substantial computational benefit at run-time, when the design generator can

search for the best design for multiple new tasks in an inexpensive evaluation process.

This enables a user to rapidly progress from task specification, to design selection, to

deployment, more efficiently than prior methods at run-time.

We apply this method to optimizing designs for two classes of robots. Chap. 6 ad-

dresses fixed-base manipulators, with manipulation tasks in cluttered environments,

where the end-effector must reach a set of points in the workspace while avoiding

obstacles and torque limits. Chap. 7 addresses mobile robots, with locomotion tasks

in bumpy environments, where the robot must move as efficiently as possible across
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Distribution of tasks

Modules
Robots

Design generator

Figure 1-4: In this thesis, a robot design generator (indicated by the brain icon) uses
a set of modules (top left) and a distribution of tasks (bottom left) to output task-
specific robot designs (right). The tasks shown here are different terrains to traverse,
and the robots generated use different combinations of legs and wheels that will most
efficiently locomote on that terrain. The second contribution of this thesis is a design
optimization method using design value functions. The design value function is
trained to estimate the benefit of adding each module to the robot, and once trained,
serves a search heuristic to efficiently identify the best design for each new task.

the terrain. We leverage our modular policy to evaluate the performance of differ-

ent designs applied to a distribution of tasks. These chapters show how a design

value function can learn the task-dependent value of modular designs in terms of the

modules composing each design.

1.3 Modules and Tasks

In this thesis we need a consistent set of definitions, because on their own, words like

“task” or “module” may be too vague for formal problem statements. In this section,

we establish definitions of these terms so that they can then be used in later chapters.

1.3.1 Modules

Modular robots are defined as robots composed of readily interchangeable and inter-

operable parts [177]. The choice of what constitutes a module is itself an interesting

question. One common preconception about modules considers them to be “simple”

units, from which complex designs emerge. Like cells in a body, smaller units combine
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to form a larger system (hence, some modular robotics literature and conference

sessions refer to them as “cellular” robots). However, even if modules, like biological

cells, are used to form assemblies more complex than the individuals, that does not

necessarily mean that each individual cell is simple. A module is not necessarily only a

single-degree-of-freedom actuator, but rather a module can contain any combination

of sensors, actuators, structure, power, and computation, as long as they share a

set of standardized interfaces for power, communication, and mechanical connection.

Modules can have a “simple” structure like rotary joints, prismatic joints, links, and

brackets [33, 59, 63, 84, 101, 105, 107, 143]. Alternatively, modules may contain more

complex multi-degree-of-freedom structures, like a leg or arm [36, 56, 89, 106, 172].

Modules may be all of the same type, i.e., homogeneous units [42, 102, 105, 106, 129,

146, 177], or they can be of different types, i.e., heterogeneous units [63, 84, 107, 143,

148, 167].

We use the terms arrangement and designs interchangeably in this thesis to refer

to a combination of connected modules in a robot. These terms distinguish the design

from the configuration, which is sometimes used in modular robotics literature to refer

to a composition of modules. A configuration in broader robotics literature more often

refers to an element of the configuration space, which is a vector of joint angles that

can be used to determine the location of every point on the robot.

Similarly, the word “modular” is used broadly and loosely throughout robotics and

computer science literature to refer to anything with an interchangeable hardware or

software components. For example, Devin et al. [46] states that their “policies can be

decomposed into task-specific and robot-specific modules;” their modules correspond

to different parts of the policy, but not to any division of hardware components within

an individual robot. In our usage of the word “modular,” we will refer to cases where

the hardware is composed of interchangeable and interoperable components, and refer

to modular policies as those divided up into the same number and arrangement of

components as is the physical hardware.
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Advantages and disadvantages of a modular system

Based on our literature reviews and experience, we see the following advantages,

disadvantages, and challenges of using modular robots as compared to monolithic

(e.g. non-modular) robots. Some advantages are:

• Rapid design. Modules can be quickly assembled into specialized designs for

a variety of tasks.

• Rapid re-design. The ability to easily and quickly change the design if the

task changes.

• Individual design complexity. Any individual modular design can be less

complex than a monolithic design would need to be, if that monolithic design

needed to perform many different tasks, but the modular design could be rear-

ranged to perform each different task.

• Re-use during engineering. If multiple sections of the robot are the same

(e.g. the left leg and right leg can be identical), the engineering time can be

reduced relative to the time needed to design each part separately. The number

of different parts to be made or purchased can be reduced, and purchasing parts

in batches can reduce the total parts budget. For example, the hexapod used

througout this thesis has six identical legs, such that all legs can be constructed

and repaired using a single pool of common components.

• Re-use for future projects. Modules developed for one project can be re-

used for future projects, which can reduce time and money spent developing

new robots in the future.

• Maintenance. Modules can be replaced if they break, reducing maintenance

effort for an individual design.

Modularity in robotics comes with disadvantages as well:

• Complexity. The interfaces between modules add mass, complexity, cost, and

potential failure points to the system. In our experience, the interfaces are the
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part of the module that break most often and require the most engineering

effort to design. The interfaces also need a set of communication and power

transmission standards applicable to any combination of modules.

• Efficiency. Any individual design may be less capable or efficient than a mono-

lithic design created specifically for that task. For example, a mobile robot

made from modules will be heavier than a comparable-size monolithic robot,

and therefore will expend more energy locomoting the same distance using the

same control policy. In our experience, this sometimes means that the mod-

ular robot’s capabilities may not match the expectations one may have after

witnessing the capabilities of comparably-sized monolithic robots.

• Physical limits. The use of modules restricts the design space. A modular

robot sometimes has physical limits are more constrained than those of a com-

parable monolithic design, due to the constraints on the design space imposed

by the size and mass of the modules. For example, consider using modules to

make a fixed-base shoulder-elbow-wrist manipulator. If the module set contains

only single-axis rotary joints, then one cannot exactly replicate a spherical joint,

as would be desired for the wrist. To approximate a wrist, we could connect a

chain of three joint modules with the smallest possible distance between them,.

However, that wrist-like assembly might be too heavy for the base modules to

support when extended out to reach positions far from the base.

Additionally, we see a number of challenges introduced by modularity. These are

not necessarily fundamental drawbacks, but are problems to be addressed:

• Control creation. There is an additional engineering burden in creating con-

trollers for multiple designs, and deciding how centralized/decentralized those

controllers should be. We address this challenge in Chapters 3-5.

• Design selection. It may be difficult to decide which design to use for each

task, requiring either robotics experience or design optimization computation.

We address this challenge in Chapters 6 and 7.
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• Systems engineering. It is more difficult to engineer, initially, a set of mod-

ules than it is to design a single monolithic robot. This is particularly chal-

lenging if there are demanding design requirements like waterproofing, extreme

low-mass or low-size, or high force output.

• Defining the module set. In the module engineering process, it is not ob-

vious what the contents of each module should be, and how many modules to

make. These choices have ramifications when those modules are used later to

make designs; for instance, in the “Physical limits” limitation above, it may

be possible to engineer a spherical joint to use as a wrist, which would make

additional manipulator designs feasible. But, when the modules are developed

far in advance of deployment, it may not be obvious whether it is worth the

additional engineering cost to develop and produce a spherical joint module.

1.3.2 Tasks

The word “task,” like “modular,” is used frequently throughout robotics literature

with different definitions made by each author. In this thesis, we will define a task to

be an environment and an objective to achieve. For the sake of semantic simplicity,

if either the environment or the objective is changed at all, we will call that a new

task, even if the other (environment or objective) have not changed. In this thesis,

we primarily change the environment and/or desired goal locations, and keep the

high-level objective (e.g. manipulation vs. locomotion) fixed, although this need not

be the case for our methods to apply.

A vague task description may be “locomotion over rough terrain.” Unfortunately,

a description like this is insufficient to create a precise numerical representation of

the environment and objective. In this thesis, we require tasks to be parameterized

so that the relevant objective functions, constraints, and simulation environment

can be created. This type of conversion of high-level task description into a precise

representation for the robot is itself an open area of research [11, 154]. We set the

scope of our work to exclude semantic task parsing, and instead assume we can
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manually parameterize the tasks.

For example, manipulation tasks 𝑇manipulation could be parameterized by their

workspace, start, and goal. The workspace could be represented by a voxelized occu-

pancy grid of size 𝑁×𝑁×𝑁 , and an initial and final end effector pose to be reached,

such that

𝑇manipulation ∈ {0, 1}𝑁×𝑁×𝑁⏟  ⏞  
Workspace obstacle

occupancy

× SE(3)⏟  ⏞  
End-effector desired

initial pose

× SE(3)⏟  ⏞  
End-effector desired

final pose

. (1.1)

A set of positions and obstacles is an instance of this space of tasks.

Similarly, ground locomotion tasks 𝑇locomotion could be parameterized by a terrain

height map size 𝑀 ×𝑀 with an initial and final goal waypoints,

𝑇locomotion ∈ R𝑀×𝑀⏟  ⏞  
Terrain elevation

map

× SE(2)⏟  ⏞  
Robot initial

location

× SE(2)⏟  ⏞  
Robot desired
final location

(1.2)

A waypoint and a discretized terrain height map is an instance of this space of tasks.

Given these definitions for the space tasks, we can assign bounds and likelihoods

to different instances of the objectives and environments. We introduce additional

parameters like the max, min, mean, and variance of obstacle sizes, or bounds on

the waypoint locations, to make up the task distribution. For example, in mobility

tasks, the terrain may not be arbitrarily rough. We must limit the task distribution

to environments we believe the robot is likely to encounter, for instance, the terrain

could be parameterized by a bumps with uniformly distributed length, width, and

height. We can train the design generator to infer the optimal robot design for tasks

sampled from that distribution.
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Chapter 2

Background

This thesis draws inspiration from a variety work reviewed in this chapter. We begin

by describing the different forms of modular robots in Sec. 2.1. Then, Sec. 2.2 outlines

relevant literature on model-based control and deep reinforcement learning. Sec. 2.3

summarizes methods for design automation, including both long-standing methods

like evolutionary algorithm, branch-and-bound methods, and recent methods using

machine learning.

2.1 Modular Robots

2.1.1 Modular robots in academic research

The design of modular robot mechanisms has been an active area of academic research

since at least the 1990’s [30, 39, 93, 140, 178], and a wide variety of different modular

robot concepts have been developed since then [144]. Modular robots can be classified

by whether the robot can alter their collective design autonomously without external

intervention. Robots with this ability are known as self-reconfigurable robots [179,

180]. Self-reconfigurable modular robots offer the promised ability to change their

design to complete multiple tasks without human intervention [42], and redundancy

to automatically leave behind broken modules. Self-reconfiguration has been a long-

standing open problem in modular robotics [179] as well as the subject of recent

15



(a) (b) (c)

(d) (e) (f)

Figure 2-1: Examples of recent modular robots. The modules sets in the left column
are simpler, in that they contain at most one actuator. In the middle column has more
complex modules, and in the right column, modules can be an entire interchangeable
limb or tool. (a) S-series modules and (b) “Eigenbot” modules from the Biorobotics
Laboratory, (c) Disney Research’s Snapbot [56], (d) Hebi robotics [70], (e) University
of Pennsylvania’s SMORES [106], and Universal Robotics’ quick-change end-effectors
[157]

research [102, 106, 129, 146, 148, 152, 172]. One challenge in self-reconfiguration is

that the modules need additional hardware features, such as batteries on each module

and actuated interface mechanisms [48]. Another challenge for self-reconfigurable

robots is reconfiguration planning, that is, how to control the modules to alter the

overall design of the assembly [24, 55]. In contrast, manually reconfigurable modules

require a user or external agent to alter the design [180]. While this means that

the design is fixed during deployment, it allows for more robust interfaces, and fewer

required electromechanical features per module. In the above self-reconfiguration

prior works, identification of the initial and final designs are provided by a user.

2.1.2 Commercially available modular robots

Although modular robots have been of interest to industry since at least the 1970’s

[92], few modular robots have made the transition from the laboratory to the real

world. That is not to say that no modularity has historically existed in robotics, be-

cause any interchangeable components and standardized interfaces can be considered
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Table 2.1: Recent commercially available modular robot systems.

Company Product Year Type of robot URL
Schunk Powerball 2012 Manipulators schunk.com
Hebi - 2016 Arms, legs and wheels hebi.us

Modbot - 2020 Manipulators modbot.com
Robco - 2020 Manipulators robco.de/en

Modrobotics - 2020 Educational toys modrobotics.com
Keyirobot Clicbot 2020 Educational toys keyirobot.com
Beckhoff ATRO 2022 Manipulators [16]

to be a form of modularity. In particular, interchangeable end-effectors have become

common in commercially available manipulators.

We have compiled a small table of some commercially available robots that have

modularity in their overall design, and not just their end-effectors, in Table 2.1. This

is by no means exhaustive, as new start-ups and products are being created frequently,

and companies may go out of business or discontinue a product line.

2.2 Robot Control

A robot control policy is a function that takes as input the robot’s observation of its

state, and outputs actions for the robot’s actuator. We will use the shorter term

“policy” to refer to a robot control policy.. A policy can take many forms: it could be

a hand-coded look-up table, or an algorithm using dynamic trajectory optimization,

or it could be a neural network.

Our modular policy architecture and training algorithm build on a range of liter-

ature on model-based control, deep reinforcement learning, and methods that learn a

single policy for multiple robot designs. Because the control methods we develop in

this thesis are applied to ground robot locomotion, we focus our attention on related

work using such systems.
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2.2.1 Gait libraries

Previous work controlling modular locomoting robots used a table or library of policies

that are either hand-crafted [36, 42, 84, 181] or optimized individually for each robot

design [64, 68, 167]. While these methods have been successful for individual designs,

conventional policy creation methods, where highly-trained experts carefully hand-

tune the policy over long periods of time for individual robots, become expensive

when the robot takes on a new design every day.

2.2.2 Model-predictive control

Model-predictive control (MPC) methods combine hand-engineered dynamics models

with trajectory optimization. They are used widely in engineering processes, both

within and outside robotics. In MPC, a trajectory is optimized for a finite horizon, a

short sequence of the output actions are applied, then the trajectory is re-optimized,

typically warm-starting using the unused portion of the previously output trajectory

as an initial seed [125].

Recently, promising results in legged and leg-wheel robot locomotion have been

made through MPC [20, 21, 53, 54, 171]. For example, they have enabled legged

and leg-wheel robots to locomote through three-dimensional terrain while applying

simultaneous localization and mapping (SLAM) to build up a map of the environ-

ment included in model predictions [20]. Though some impressive results have been

achieved, these methods suffer from a few limitations.

One drawback of these methods is that they often rely on assumptions specific

to an individual robot design, such as assuming the robot has centroidal dynamics,

massless limbs, with a rectangular prism workspace or user-specified foot contact

sequences [20, 21]. When working with robots with numerous combinations of legs and

wheels, not all designs will have properties compatible with these assumptions– each

design may have a different number of limbs, different types of limbs, and a different

distribution of mass. Similarly, when adapting the controller to a new environment,

even when holding the design constant, a different foot/wheel contact sequence may
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be optimal in different environments. These assumptions makes it difficult to quickly

adapt the controller to the many designs that can be made from modules, and to new

environments.

Another drawback of these MPC approaches is, in general, that they require effi-

cient trajectory optimization subroutines, in order to react quickly to disturbances or

unmodelled interactions with the environment [21]. This requirement for efficiency is

further complicated by the curse of dimensionality, i.e., the tendency for the computa-

tional complexity of the optimization algorithms used in MPC to scale superlinearly

with the size of the state space [86, 97]. As a result, these methods rely on large

on-board computers to manage solution time, so that the policy can replan as fast as

possible. Modular robots, in particular those with distributed computation, in our

experience cannot always support a large computer.

The solution time can also be reduced via code optimization, and via pre-computed

and engineered heuristics can be used [21, 22]. But in our experience, the subroutines

in custom trajectory optimization are often limited to specific robot designs, and the

heuristics customized to an individual design and contact sequence As a result, these

methods do not provide a scalable solution to the wide range of potential designs and

environments we encounter with modular robots.

2.2.3 Reinforcement learning

Reinforcement learning (RL) is a class of methods that train a policy using data

collected iteratively from an agent’s interaction with its environment [80]. RL has

been used in recent years to control a variety of robots, included highly-articulated

locomoting robots, both in simulation and in reality [9, 68, 71, 79, 80, 121, 174, 183].

These methods produce a “global reactive” policy, which takes as input an observation

from any part of the state space and outputs an action that reacts immediately to the

observation. The RL algorithm operates as an optimizer solving for policy param-

eters that maximize the robot’s rewards (or equivalently, minimize a cost/objective

function) when that policy is applied to the environment over a time horizon.

In recent years, these policies are often represented with deep neural networks.
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These networks often contain millions of parameters, causing the networks to be com-

putationally expensive to train. However, once trained, a deep neural network policy

can be applied computationally efficiently due to the fact that the “forward pass” from

inputs to outputs consists only of a short series of matrix multiplications and addi-

tions, in contrast to the comparatively expensive trajectory optimization inner loop

processes in conventional MPC. The computationally inexpensive run-time of neu-

ral network policies makes them attractive for use on systems with limited on-board

compute, such as modular robots. RL algorithms can be divided into two categories:

model-free reinforcement learning (MFRL), and model-based reinforcement learning

(MBRL).

Model-free reinforcement learning

In MFRL, trajectory data, i.e., sets of states, actions, and rewards, from either a

physics simulation or a physical robot are used to reinforce policy action selections

that result in high reward, while treating the robot and environment together as

a black box [80]. That is, a policy is learned directly from an agent’s interaction

with its environment, collecting and learning from trajectory data without explicitly

modelling the system dynamics. There are a variety of different methods within

MFRL [150]. “On-policy” methods such Proximal Policy Optimization [142] train

an “actor” network as the policy and a “critic” network. The critic is trained to

estimate the state value function, which represents the maximum possible return (sum

of rewards) that can be achieved when applying a policy from a given start state. “Off-

policy” methods such as deep Q-learning [112] learn an estimate of the state-action

value function, which represents the maximum possible return that can be achieved

when applying a policy from a given start state with a given action. The state-action

value function can then be used as a policy by selecting the greedily selecting the

action with the highest estimated return at each time step. Note that RL can be

applied to any sequential decision-making process, not only to robot control. We will

apply Q-learning to our robot design synthesis in Chapter 6 and 7, and describe the

Q-learning algorithm in greater detail.
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MFRL has been used recently to create compelling demonstrations of many vari-

eties of locomoting robots both in laboratory settings and deployed in the real world

[1, 65, 68, 71, 79, 94, 111, 121, 151, 174]. The primary drawback of these approaches

is that they often suffer from high sample complexity, (equivalently low sample ef-

ficiency), that is, the amount of data needed, where data consists of trajectories

gathered from the policy interacting with the environment. Collecting data sam-

ples is typically the computational bottleneck in MFRL, and the sample complexity

tends to increase with the size of the policy network, as well as with the number

of degrees-of-freedom of the robot. Consequently, to direct a robot to locomote in

multiple directions, often a separate policy is trained for each desired robot heading

[68, 121, 174]. The sample complexity also tends to scale with the dimensionality of

the observation, leading many of the above works to learn proprioceptive policies that

use only robot internal state information as observations. However, recent develop-

ments in parallelized simulation have shown promise in mitigating MFRL’s sample

complexity drawback [109].

Recent work has also shown that MFRL can learn visual-motor policies, i.e., those

that take exteroceptive (externally-measured) inputs in addition to proprioceptive

inputs. The exteroceptive measurements usually take the form of a local terrain height

map computed in conjunction with a SLAM system. For example, Yu et al. [182]

trained a vision policy that outputs foot placements, then uses model-based contact-

scheduled control. Miki et al. [111] trained a policy that takes in both local terrain

map and proprioceptive, trained with a multi-stage process including both MFRL

and imitation learning. Rudin et al. [132] showed that a stair-climbing quadruped

policy using visual inputs could be trained rapidly with GPU-enabled simulations.

In addition to learning behaviors from scratch, MFRL has also been combined

with imitation learning (IL). In conventional imitation learning, a dataset of demon-

strations is used to train a policy without additional data gathering procedures; for

example, the most long-standing IL method known as “behavioral cloning” trains a

policy with supervised regression [122]. Hester et al. [73] combined RL and IL by

training a value function approximation network from state transitions in a dataset.
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Ding et al. [47] used expert demonstrations within a variant of hindsight experience

replay [10]. Peng et al. [121] constrained the policy to be near the states in the

dataset. Although these methods allows for small differences in the design of the

system in the demonstration and the robot design, they require the design in the

demonstrations have the same topology as the design being trained.

Model-based reinforcement learning

Where MFRL treats the robot-environment interactions as a black box, MBRL differs

by explicitly learning a model of the environment dynamics [8, 9, 37, 67, 96, 96, 113,

124, 124, 176, 183]. This approximate dynamics model can be used efficiently within

policy optimization, because the model can “imagine” how the robot would respond

to a large number of possible control inputs without having to execute them with the

simulation or on a real robot. MBRL has been repeatedly shown to be more sample

efficient than MFRL [8, 37, 113, 124], that is, uses fewer trajectory data samples to

gain equivalent proficiency. This means that MBRL is often more computationally

efficient than MFRL, as gathering data is usually the main computational bottleneck

in RL control algorithms.

The model learned in MBRL can be used in place of a hand-engineered dynamics

model within MPC. The same model can be used to optimize control sequences for

multiple tasks, such as directing the robot to locomote at various headings and speeds

[113, 176]. But running MPC in real-time creates similar limitations as described in

Sec. 2.2.2. As an alternative, one can train a reactive policy neural network, which

can compute control actions is comparatively inexpensive at run-time, even for high

degree-of-freedom systems. Guided Policy Search (GPS) [28, 99, 100, 184] is a form of

MBRL that can produce such a reactive controller. GPS iteratively re-fits dynamics

models, uses local trajectory optimization off-line to find a series of local trajectories,

then merges those trajectories via imitation learning into a global reactive control

policy.

One limitation of MBRL methods is that the policy relies on the accuracy of the

learned dynamics model. If the dynamics model is not precise enough, the policy
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can exploit the model, a phenomena known as model bias [38]. To work well, the

model must be able to gather data from the “right” parts of the state space that

would be used by an optimal policy, which can be difficult in high-dimensional or

complex/unstructured environments. MFRL does not have this problem because in

MFRL, the agent is always interacting directly with the environment, and does not

need to model the dynamics. However, “incremental” MBRL methods such as GPS

mitigate this problem by iteratively re-fitting the model as new data is gathered [124],

such that some recent MBRL methods have reached the performance of MFRL [9].

Most existing MBRL work operates in uniform environments without exterocep-

tive (e.g. visual/depth map) inputs. However some recent work [160, 161] adds a

local terrain measurement to the model input, and operates on rough terrain. These

works have to date been limited to low degree-of-freedom (DoF) car-like robots, and

use the approximate model for MPC rather than learning a reactive policy. Given

that computation time to compute actions with MPC scales exponentially with the

number of degrees-of-freedom, this would prove difficult to implement on an onboard

computer for more articulated robots. A summary of recent MBRL algorithms can

be found in [96].

2.2.4 Learning decentralized and multi-design control

RL can not only apply a single algorithm separately to many designs– in some cases

it has been used to train one policy that can transfer to multiple designs. This is

accomplished by applying one set of neural network parameters to a range of designs,

and training the network using data gathered from those designs. One method to do

so is to condition the policy network input on the robot design parameters encoded

as a vector [34, 108, 138]. Then, the policy can be applied directly to, or fine-tuned

to transfer to, a design with a design not seen during the initial training period.

However, this has only been shown previously where the set of designs all share the

same topology.

When robots contain repeated structures, but not necessarily the same overall

topology, another method to transfer a policy among multiple designs is to train a
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decentralized policy. The policy is applied to each repeated part of the robot, e.g.

the joints or limbs reused multiple times within the designs. By assigning a policy

component to each part of the robot, when that part of the robot is removed or an

additional part added, the policy can transfer to the altered design. For example,

Sartoretti et al. [136] trained a decentralized policy for the legs of a hexapod. This

demonstrated that sharing policy information among the legs enabled accelerated

training compared to a centralized policy for the full robot, and showed the policy

could transfer to robot designs with fewer legs. However, each leg acted independently,

without any internal coordination between limbs, ultimately limiting its capabilities.

In order to allow internal coordination between decentralized policy components,

a more complex function than a conventional deep neural networks is needed. Graph

neural networks (GNNs) are one such class of functions. GNNs are a form of neural

network that operate over graphs. They can encode graphical structures into neural

networks and share learned knowledge among repeated components [173]. Unlike

more conventional neural networks, which have a fixed input and output dimension,

GNNs allow a single set of neural network parameters to process inputs and produce

outputs with variable dimensions. For robotics applications, this means that a single

GNN can be applied to a range of robots with different numbers of sensors and

actuators, as long as those components can be represented as nodes in a graph. [162]

introduced “NerveNet,” which used GNNs as a control policy. Each joint on the robot

formed a node in the policy graph. NerveNet was able to generalize to some simulated

designs not seen in training, such as from a centipede-like simulated robot to another

centipede-like model with a different number of body and leg segments. Similarly,

[78, 119] trained GNNs where each node controlled an individual robot joint, showing

that GNNs can transfer to control systems with different topologies than were seen

during training. However, these methods were only applied to simplified simulated

robot models, and used a computationally expensive MFRL training algorithm.

GNNs have also been used to represent an approximation of the forward dynamics

model, such that a single model can be applied to multiple designs [14, 134]. But, the

GNNs and training procedures used by these works [14, 78, 119, 134, 162] encoded
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only the connectivity between joints into the graph, without the recognition that

groups of joints repeated within the robot (e.g. limbs) or rigid components without

joints (e.g. bodies or links) can be reused across different designs. Further, in order

to make the model agnostic to the design, these works use maximal-coordinate state

representations, for instance by including the full world-frame positions and velocities

of each link in the robot to their state, which would make transfer to reality difficult

in the face of uncertain state estimation.

2.3 Mechanism design synthesis

When using a set of robotic modules, a clear question facing the user is what design

would be best for each task for a robot to complete. Expert users may be able to

decide the best design either through intuition and experience, or if time allows,

through trial and error informed by extensive simulations. The simplest solution, is

to “enumerate and evaluate” by exhaustively simulating all possible designs. While

this is feasible in relatively small search spaces, the space of modular designs grows

exponentially with the number of modules, so such exhaustive approaches are not

scalable. A number of approaches have been developed to search for designs, which

we categorize into either evolutionary algorithms, branch-and-bound searches, and

learning-based methods.

2.3.1 Evolutionary algorithms

The most popular class of methods to automate robot design are evolutionary algo-

rithms (EA). A small selection of the plethora of such works include [19, 31, 32, 51,

82, 104, 110, 120, 163, 175]. EA search the design space by starting with a popula-

tion of designs, randomly varying individuals in the population, over time selecting

for those that perform best at the task. Each candidate design will need a controller

synthesized for it, which can be created anew at each evaluation step [82] or developed

incrementally alongside the population [163].

An EA typically proceeds as follows. EAs are initialized with a population of
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randomly selected designs. Each design is evaluated according to an objective function

(in this literature, usually referred to as a “fitness” but also equivalent to an “episode

return” or “net cost” in other literature). The designs with the highest fitness are

propagated to the next iteration, and random changes are applied to the remainder

of the population. These biologically-inspired operations usually include “cross-overs”

in which components are traded between sets of designs, and ”mutations” in which

small random changes are applied to individual designs. The new population is then

evaluated, the highest-fitness designs are replicated, and the lowest-fitness designs are

removed. The process is repeated until the population converges to a steady-state

containing high-performing designs.

EAs have been successful in the field due to a number of inherent advantages.

Our own observation has been that the method is, compared to other applicable

methods, relatively simple to implement. This is still the case when the search space

is complex, high-dimensional, mixed discrete and continuous, and even when the

design and control are to be evolved simultaneously. To set up an EA, one must

first craft an encoding that allows any design to be converted to a fixed-length “gene”

vector. This vector should compatible with some mutation and cross-over operations;

if a single value in the vector is altered (mutation), it should still correspond to a valid

design, and if a section of the vector for one individual is exchanged with the same

section of a vector from a different individual (cross-over), both vectors altered should

correspond to a valid design. Next, one must craft a task-specific fitness function.

An EA will then require a simulation environment able to convert a design variables

into a robot model, and evaluate the objective function on that robot.

Another advantage of evolutionary methods is their ability to be parallelized.

Evaluating of the designs in the population, by applying their policy to the task,

can be conducted in parallel threads across many CPU cores. This allows large

populations to be distributed potentially across multiple computers as well, although

this does not change the total amount of compute used.

EAs are not without their drawbacks. First, the simulation environment is effec-

tively treated as a black box– information about the relationship between design and
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performance is propagated between iterations only via the parameters of the designs

in the population. Second, the results can vary substantially between runs, due in

part to sensitivity to the designs drawn in the initial population. For example, if

all of the initial designs in the population are, by chance, very low fitness, then the

population may take many iterations to develop a high-fitness design. On the other

hand, if the initial population happens to find a single high-fitness design by chance

in an early iteration, that design can quickly reproduce and dominate the population,

potentially excluding other designs with even higher fitness. Lastly, EAs can quickly

become computationally expensive because many candidate robots must be simulated

at each iteration.

Within the robot design problem, the optimal design depends on both the task and

the control policy. In some cases, the control policy exists a priori, for instance, using

conventional path planners and inverse dynamics control for fixed-based manipulators.

When the control does not already exist in advance, one solution is to develop a

new policy individually for each design. However, this can become computationally

burdensome as the number of designs increases with the number of modules. Some

evolutionary approaches (e.g. [19, 104, 110, 120]) address this by evolving policy

parameters along with the design. The drawback of such an approach is that it

results in a much larger, more complex, search space, exacerbating the aforementioned

limitations of these algorithms. An additional side-effect of EA with both design and

control is the tendency for designs that are easier to control to develop faster [61, 74].

This effect is found in biological evolution, where it is called the Baldwin effect. In

other words, there is a larger evolutionary hurdle (an attractive poor local minima)

to advance to a stage in an evolutionary process in which a complex control operates

on a complex design. To mitigate this effect, modifications to the EA algorithms were

made in [35] that allow for multiple control evolution steps at each design evolution

step.
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2.3.2 Branch-and-bound methods

An alternate deterministic method to improve upon an “enumerate and evalute” search

method is to prune and prioritize regions of the search space using heuristics. In other

words, iteratively identifying a section of the design space, and creating a bound on the

objective function in that region. [7] performed a series of checks which progressively

eliminate candidate designs based on simple criteria such as total length or static

torques. This method requires the evaluation criteria be manually specified for each

task and module set, and could become computationally expensive en masse given

an exponentially large search space.

Another way to search the design space is by viewing the space of designs as a

graph and applying graph search algorithms. The most prevalent way to do so, which

is adopted in our work, is to view the space of modular designs as a tree. In this tree,

each node is an arrangement of modules. The root node is an empty arrangement,

and each child represents adding a module to the arrangement. Each attachment

must be compatible with the physical hardware attachment points. Each step away

from the root of the tree represents a module sequentially added to the robot, until

either the maximum number of allowable modules is reached or no more modules can

be added due to a lack of open attachment points. These leaf nodes are considered

“complete” designs and can be evaluated in simulation.

In order to manage the search complexity on this tree, its branches can be pruned

via a best-first tree search [44, 45, 63]. In these works, a heuristic was hand-crafted

that estimated the ability of each partially complete arrangement in fulfilling the

task, and was used to guide a search over a tree of different designs. These heuris-

tics were carefully constructed by hand, and were meant to represent a reasonable

estimate of the best-case potential performance of any designs stemming from that

partially complete design. While a best-first search is guaranteed to be complete,

the search heuristic was not shown to be admissible, i.e., it may over-estimate the

cost-to-go and incorrectly de-prioritize the branch on which the true optimum lies.

The evaluation of these heuristics involve solving an optimization subproblem, which
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becomes computationally burdensome as the number of possible module types and

connections grows. Further, the heuristics do not consider obstacles, self-collisions,

or torque constraints. These methods also assume the existence of a planning and/or

control algorithm used to evaluate each candidate design.

2.3.3 Learning-based methods

Another variety of design optimization methods draw on machine learning, most often

reinforcement learning (RL). Wang et al. [163] combined an evolutionary algorithm

to optimize robot design with reinforcement learning to simultaneously optimize a

control policy. Schaff et al. [138] learned a policy and a distribution over designs at

once, narrowing the distribution at each iteration to converge on an optimal design.

Ha et al. [62] used a deep neural network to output both the design parameters and

control actions. These methods optimize a single design and control policy for a given

task, and each search conducted is computationally expensive. As a result, if the task

is altered, these algorithms must be restarted, making them costly to use as a design

space exploration tool in rapid-prototyping. These methods create a single policy

and design for a single environment, but do not retain information about how various

designs performed, which could be of use in future design automation problems for

new tasks.

In addition to these learning-based methods for robot design, we find similar

methods applied to non-robotics domains. Design synthesis problems in the chemical

engineering literature bear some similarities to our modular design problem. Machine

learning has been used to design novel molecules, selecting component atoms and

bonds from a discrete set [43, 58, 135, 189]. In particular, Zhou et al. [189] used a

deep reinforcement learning paradigm for molecule discovery by sequentially adding

atoms to a molecule. This allows for an expressive space of designs (molecules) created

while keeping the decision space limited to the number of discrete components (atoms

and bonds) in the design. In a similar method, RL has also been used to design a

deep neural network for image recognition [12], where the layer sizes and types are

treated as sequential decisions to be made in neural network architecture.
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The methods we have listed so far use evolution or RL as the optimizer for a

single task; that is, they fix the task and environment then search for a design. Thus

they suffer from the time it takes to optimize each design, and do not retain informa-

tion about the relationships among task, design, control, and performance that are

observed over the course of the optimization process. This limits their potential for

use within robot reconfiguration and redeployment, when rapidly prototyping designs

and when the task changes frequently.
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Chapter 3

Learning modular robot control

policies

Even with a small set of modules, there is a large number of different robot designs

that can be generated from that set [30, 144, 178], and each design needs its own

control policy. Further, there is an added nuance to this scaling: how the modules

interact with each other also plays a role in optimizing policies. Each module needs

to behave differently depending on its context, i.e., its functional role in the system.

For instance, the legs in a hexapod must behave differently than those same legs need

to behave in a quadruped. And, within any one robot, the location of the module

impacts its desired behavior, e.g. a leg should function differently when used as a

front or rear limb. Dynamic interactions among the different portions of a robot (e.g.

coupling between legs) are important within the policy as well.

Given that context matters, with an eye towards mitigating computational com-

plexity, we aim to create policies for the modules that can automatically determine

their function within their given context. Just as one can install a new keyboard into

a computer without reinstalling the operating system, we seek for the module’s poli-

cies to have a similar “plug and play” feature. However, we seek a “plug and adaptive

play” because in robots, a module’s behavior must adapt to its context within the

system.

Instead of optimizing separate policies for each individual robot design, this chap-
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Figure 3-1: A set of modular components, a body, legs, and wheels, (top) can be
combined to form many robot designs (middle). These designs can be represented
by graphs (bottom). Our modular policy learning algorithm leverages the graph
structure common to all such modular designs, enabling us to control a variety of
robots composed of these modules.

ter develops a learning process that trains policies for the modules. The modules’

policies learn to adapt to different contexts, such that they can be connected to-

gether into system-wide policies for various designs. In our architecture, which we

call modular policies, a global policy (comprised of the union of the module policies)

consists of a set of deep neural networks, where there is one network for each type of

module. For instance, our hexapod has six leg-type modules, and each leg uses the

same neural network to process its observations and produce actions. A leg-wheel

hybrid design uses that same leg-type neural network for all of its legs, but applies a

different wheel-type neural network to its wheels. Once trained, the policy can readily
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transfer to many different robots made from the same set of modules.

Our approach leverages the fact that kinematic structure of any modular design

can be represented as a graph, where modules are nodes and electromechanical con-

nections between them are edges. Fig. 3-1 depicts the relationship between modular

designs and graphical structures which we adopt in this thesis. When a robot design

graph is input, the module policies combine to act as a reactive feedback control policy

for that robot, where the module policies are connected with a graph structure corre-

sponding to that of the hardware. Making the policy graph structure the same as the

hardware graph structure changes how robots with different designs share neural net-

work parameters when compared to prior hardware-conditioned policies. We find our

graph-structured modular policies learn to match a desired heading and speed more

effectively than non-graph policy counterparts such as the “hardware-conditioned”

policies of [34].

The policy graph structure also enables modules to adjust their behavior to their

context. Module policies do not act independently, but rather learn to automatically

adapt their outputs via a communication procedure [137] in which they send and

receive information over the graph edges. Some prior work has applied graph structure

to robot learning, treating each joint in the robot as a node to learn dynamics [134]

or policies [119, 162]. However, these approaches were not transferable to distinct

robot designs from those seen in training.

We are able to achieve some notion of scalability, and test on many additional

designs, because each type of module, regardless of which robot it is situated in,

shares the same dynamics model and policy neural network parameters. Each module

type (e.g. a leg), uses the same parameters in all positions within a single robot, and

over all robots that are generated; this prevents them from over-fitting to a single

positions and design, forcing them to learn to communicate with other modules in

the system and adapt to their context.

To train the policy to handle a variety of robot designs, we use reinforcement

learning. The algorithm introduced in this chapter is inspired by the ideas of Guided

Policy Search [28, 99, 100, 184], which iterates between learning an approximate model
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of the system dynamics, predicting optimal trajectories under the learned model, and

distilling those local trajectories into a global policy. We achieve policy generalization

to new robots: we show zero-shot transfer (application without additional learning

or optimization) to an order of magnitude more designs than were in the training

set. Then, we demonstrate our modular policy applied to designs with different

combinations of legs and wheels locomoting on real robots.1

3.1 Problem Overview

In this section, we first define the modules and design graph. Then, we describe the

objective function used to optimize modular policies for locomoting robots.

3.1.1 Module and design graph

We represent each robot system with a design graph, where a node corresponds to a

module, and an edge corresponds to the electromechanical connection between two

modules. In this chapter, the example modules we use to ground the discussion are

a two-DoF steered wheel, a three-DoF leg, and a rigid body with no actuation. A

design 𝑑 has 𝑁𝑑 modules, and can contain multiple modules of the same type. For

example, a robot made up of a body, two wheel, and four leg modules, uses all three

module types and has 𝑁𝑑 = 7 total modules in it.

Let 𝑀 represent the number of types of module, where each type has an index

𝑚 = {1, . . . ,𝑀}; here we will use 𝑀 = 3 for the leg, wheel, and body modules. Note

that this index refers to the type of module, and not an instance of that module in the

robot; a single module type may appear multiple times within a design. Each module

naturally has a state, makes observations through its sensors, and executes actions

through its actuators. Let 𝑥𝑚 ∈ R𝑛𝑥,𝑚 be the state of a module type 𝑚 where 𝑛𝑥,𝑚 is

the size of that module’s state vector. Likewise, let 𝑜𝑚 ∈ R𝑛𝑜,𝑚 and 𝑢𝑚 ∈ R𝑛𝑢,𝑚 be the

observations and actions, respectively, for module type 𝑚 where 𝑛𝑜,𝑚 is the number of
1This work is currently under review. A preprint of the journal paper is available at https:

//arxiv.org/abs/2105.10049
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Figure 3-2: Our modular policy architecture: (a) the modules, depicted by the three
boxes in the upper left, can be composed to form different designs. Each module
has a deep neural network associated with it, indicated by the brain icons, which
processes that module’s inputs (sensor measurements), outputs (actuator commands),
and messages passed to and from its neighbors. Assembling those modules into a robot
(bottom left) creates a graph neural network (GNN), with a structure reflecting the
design, where nodes and edges correspond to the modules and connections between
them. The architecture is decentralized in form, but due to messages passed over the
edges that influence the behavior of the nodes, the graph of networks can learn to
compute coordinated centralized outputs. Note that the blue brain is drawn twice
in the graph neural network to indicate that it is used by each of the wheels, but
the policy only has one “copy” of the wheel-type neural network which is used to
control each of the wheel modules. An alternate depiction is shown in Fig. 3-3.
(b) The GNN nodes (top right) are shared by all designs made from these modules.
The modular architecture is trained using trajectory data collected from a variety of
designs (bottom right) such that it can apply to any combination of the modules.

observations and 𝑛𝑢,𝑚 the number of output actions for module type 𝑚. Observations

contain partial and/or noisy state measurements. The full states 𝑥 ∈ 𝑋, observations
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dispersed view
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compact view

Figure 3-3: There are two equivalent ways of depicting the modular policy, shown in
this figure with a hexapod as the example design. In both cases, we color-code the
brains to indicate that the node type either corresponds to legs (white) or body (grey)
nodes. One way, which we favor in most of this work for simplicity (left), is to show
each node in the policy graph as a separate entity. The neural network parameters
used by all nodes of the same color are the same: the top left leg uses the same set
of neural network weights to process its inputs, messages, and outputs, as does the
top right leg, and any other legs present. The second way, which we include here as
an alternate perspective (right), is to show only the neural networks instantiated in
the code. Only one “copy” of each node type exists. But, the body node sends and
receives six different messages over the graph edges, and each of those messages is
processed by the leg node to control each of the six legs.

𝑜 ∈ 𝑂, and actions 𝑢 ∈ 𝑈 of any design are the union of states, observations, and

actions of that design’s component modules. Note that the dimensionality of these

spaces, for any given design, vary depending on the modules in that design.

Each module type has a 𝑁ports,𝑚 ports, which form connections between modules,

and exchange power and data. Each port has at most one edge connecting to one

neighboring module, or that port may be empty if no module is attached to it. In

our module set, we created a body with six ports, such that the robot can have up

to six limbs. The wheel and leg modules have one port each where they can connect

to the body.

3.1.2 Modular policy optimization problem

During training, our objective is to obtain reactive policies optimized for a set of 𝐾

modular robot designs 𝐷 = {𝑑1, 𝑑2, . . . 𝑑𝐾}. The 𝐾 designs may be fewer than the
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total number of possible combinations of modules. 2

In order to specify locomotion with various headings and speeds, we input a target

velocity to the policy in addition to the robot’s sensor observation inputs. We call

this auxiliary input the policy “goal” 𝑔 ∈ 𝐺, the target desired velocity for the robot

to achieve, represented by a linear velocity (𝑣𝑥, 𝑣𝑦) and yaw angular velocity (𝜔𝑧), so

𝑔 = [𝑣des
𝑥 , 𝑣des

𝑦 , 𝜔des
𝑧 ], 𝐺 ⊆ R3. During training, these desired velocities are sampled

from a distribution 𝑔 ∼ 𝒢. 𝒢 is a distribution over 𝐺, e.g., a uniform distribution

over a bounded range of velocities. At deployment time, goals can come from a user

(e.g. joystick teleoperation) or from a high-level planner. Without loss of generality,

goals could also contain other desired state conditions. The policy 𝜋 : 𝑂 × 𝐺 → 𝑈 ,

conditioned on a design, takes an observation and goal as input and outputs actions

for all modules in the design. We condition the policy on a desired body velocity,

which has not been shown by previous MBRL methods. The policy 𝜋 takes the form

of a GNN with parameters 𝜃, which will be described in detail in the next section.

The overall objective of policy optimization is to minimize a cost function 𝐶 :

𝑋 × 𝑈 × 𝐺,→ R+. The cost penalizes deviations of the velocity from the desired

velocity, e.g. 𝐶(𝑥, 𝑢, 𝑔) = ||[𝑣𝑥, 𝑣𝑦, 𝜔𝑧]− 𝑔||2 + 𝑐(𝑥, 𝑢). The cost function also includes

additional penalties 𝑐 include regularizing the control input norm, rate of control

variation, as well as the roll, pitch, and height of the body. Further cost function

details are listed in the Appendix. The policy optimization problem can be written

as

𝜃* = argmin
𝜃

E𝑔∼𝒢⏟  ⏞  
Expectation
over goals

[︂ Average over 𝐾designs in 𝐷⏞  ⏟  
1

𝐾

∑︁
𝑑∈𝐷

𝑇∑︁
𝑡=1

𝐶
(︀
𝑥𝑡, 𝜋𝜃(𝑜𝑡, 𝑔), 𝑔

)︀
⏟  ⏞  
Cost for individual design 𝑑

]︂
. (3.1)

Over the course of a trajectory of length 𝑇 , the state evolves according to an under-

lying forward dynamics transition 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡). The dynamics 𝑓 are different for

each design. We assume 𝑓 is not known analytically, but robot-environment inter-

action data can be accessed from a simulation. We develop a GNN architecture to
2In this chapter, these designs are assumed to be given. Future work will address automatic

selection of the design training set.
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Figure 3-4: An illustration of the graph neural network from the point of view of
the body module node, depicted as a dark gray brain icon. Each module in the
robot (left side) has a graph node, which undergoes a “forward pass” indicated by the
contents of the thought bubble. The node first obtains the relevant input (e.g. sensor
observations from the body). Then, within the space of a single time step in the real
world, all nodes compute a series of 𝑁int internal propagation steps. During these
steps, the nodes exchange messages to propagate information through the graph. All
nodes undergo these steps at once, then compute outputs (e.g. control actions for
each modules’ actuators). See Sec. 3.2 for further descriptions of these functions.

approximate 𝑓 and represent 𝜋.

3.2 Graph neural networks for modular robots

The modular policy and approximate model are implemented as GNNs [137, 162,

173], deep function approximators comprised of a network of neural networks. In

our implementation, each node in the GNN has a node type corresponding to its

associated module type. For any design 𝑑, the connectivity of the GNN is set to match

the connectivity of the physical hardware graph with nodes {𝜈1, . . . , 𝜈𝑁𝑑
}. Fig. 3-2

illustrates the GNN architecture. The functions mapping inputs to outputs (a.k.a.

the neural network “forward pass”) for a GNN are more complex than they are for

conventional multi-layer perceptrons (MLPs, also known as dense neural networks).

MLPs process inputs by sequentially passing vector-structured data through a series

of layers. GNNs must use a more sophisticated series of internal functions to operate
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Figure 3-5: The twelve “training set” designs with different arrangements of legs and
wheels used in our experiments. In our learning process, the approximate dynamics
models and control policy parameters are shared among these designs, chosen for
their bilateral symmetry. The policy can generalize to a much larger “test set” of
asymmetric designs.

on graph-structured data.

3.2.1 Graph neural network internal functions

The GNN forward pass uses a series of functions: first an input function, then multiple

internal steps with message-passing and internal update functions, then lastly an

output function. The form of our GNN is inspired by [162]. Fig. 3-4 illustrates the

process of a forward pass from the perspective of the body node, and Algorithm 1

describes it in pseudeocode.

Input function

At each time step 𝑡, each node 𝜈 receives an observation 𝑜𝜈 , which is passed through

an input function 𝐹in to produce an hidden state vector ℎ0
𝜈 = 𝐹in(𝑜𝜈). Here we use

the subscript to indicate that a vector belongs to the node 𝜈. Each node maintains

its own hidden state ℎ. Nodes take as input their local parts of the full robot’s

observation in minimal coordinates. For example, a leg module node takes in the

local joint angles and velocities from a leg’s three joint encoders, but does not require

information about the Cartesian position of that limb. The body node takes in its

orientation, linear, and angular velocities from the IMU sensors on the body.
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Message-passing propagation

In the GNN, there are two notions of “time.” The first is the standard time step

discretizing the dynamics and controls, during which the GNN forward pass occurs.

The second notion occurs inside the span of each real-world external time step, when

multiple computation steps occur inside the GNN during a single forward pass. In the

space of one external time step, the GNN computes a series of internal propagation

steps to pass messages (real-valued vectors whose content will be learned) between

nodes. This learned communication protocol occurs internally to the network during

each time step; it provides a means for the nodes of the GNN to produce collective

coordinated outputs. Each module learns to alter its behavior depending on the

messages it receives, and learns to pass messages that inform other modules how to

alter their behavior, to achieve the full robot’s goals.

At each internal propagation step, each node sends outgoing messages, receives

incoming messages, and then uses those messages to update its hidden state. Specifi-

cally, after the input function, the graph undergoes 𝑁int internal propagation (message-

passing) steps within a single time step. Let 𝑒 represent an edge connecting 𝜈 to a

neighboring node. At internal propagation step 𝑖 ∈ {1 . . . 𝑁int}, each node converts

its hidden state into outgoing message vectors m that will be sent over each of its

edges using an output function, m𝑒,𝜈 = 𝐹mes,𝑒(ℎ
𝑖
𝜈). The superscript on ℎ indicates the

internal propagation step index. The message output function 𝐹mes sends a separate

message to each port. The content of the messages is a learned output of the node,

and not directly human-interpretable.

After each node computes its outgoing messages, each node reads all messages

received from its neighbors. Those messages are concatenated into a vector min,𝜈 =

[m1,𝜈 . . .m𝑁ports,𝜈 ]. When a module’s port is unoccupied, the node receives zeros as

messages over that port.

The maximum number of input and output ports on each node are fixed according

to the ports on the modular hardware. Then, by concatenating incoming messages,

the receiving node can easily learn to determine the source of incoming messages.
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In contrast, recent related work [119, 134, 162] averaged incoming messages, which

prevented the receiving node from determining their source. Fixing the number and

order of messages allows the nodes to implicitly learn to send information about the

relative location of the receiver module to the sender, and as a result, allows modules

to adapt their behavior according to their placement on the body.

Update function

Each node uses the incoming messages to update its hidden state via an update

function ℎ𝑖+1
𝜈 = 𝐹up(min,𝜈 , ℎ

𝑖
𝜈). The message computation and internal update func-

tions are called repeatedly for 𝑁int internal propagation steps, iteratively integrating

information from incoming messages into the hidden states.

Output function

After 𝑁int internal propagation steps, all of which occur within a single time step, each

node computes an output from its hidden state via an output function 𝐹out(ℎ
𝑁int
𝜈 ).

3.2.2 Implementation

Each module type has its own instance of the input, update, message, and output

functions (𝐹in, 𝐹mes, 𝐹up, 𝐹out). We use MLPs within each of these functions, although

other function representations could be used as well.

An important feature in our application of GNNs to create modular policies is that

all instances of a module type share the same network weights for the GNN internal

functions. The policy parameters are divided by module type, 𝜃 = [𝜃1 . . . 𝜃𝑀 ]. Then,

𝜃𝑚 are the parameters used in functions (𝐹in, 𝐹mes, 𝐹up, 𝐹out) for all modules of type

𝑚. Each module type has the same parameters regardless of the design in which

they are used, so the number of learned parameters scales with the number of module

types, and not with the number of designs or number of total modules. When invoked,

the GNN nodes are automatically connected to match the design graph, arranging the

nodes into the same connectivity as the hardware. For example, in a hexapod robot
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Algorithm 1 Message passing graph neural network forward pass described by Sec.
3.2 . Our algorithm uses one GNN as an approximate dynamics model and another
as a policy.
1: Collect graph-structured observation 𝑜 from robot for the current time step.
2: for 𝜈 ∈ {𝜈1, . . . , 𝜈𝑁𝑑

} do
3: Apply input function ℎ0

𝜈 = 𝐹in(𝑜𝜈)
4: end for

Message passing internal propagation steps
5: for 𝑖 = 0 . . . 𝑁int do
6: for 𝜈 ∈ {𝜈1, . . . , 𝜈𝑁𝑑

} do
7: for Each edge 𝑒 of node 𝜈 do
8: Compute message function m𝑒,𝜈 = 𝐹mes,𝑒(ℎ

𝑖
𝜈)

9: end for
10: Send messages to neighbors over graph edges
11: end for
12: for 𝜈 ∈ {𝜈1, . . . , 𝜈𝑁𝑑

} do
13: Aggregate incoming messages,

min,𝜈 = [m1,𝜈 . . .m𝑁ports,𝜈 ]
14: Apply update function ℎ𝑖+1

𝜈 = 𝐹up(min,𝜈 , ℎ
𝑖
𝜈)

15: end for
16: end for
17: for 𝜈 ∈ {𝜈1, . . . , 𝜈𝑁𝑑

} do
18: Apply output function 𝐹out(ℎ

𝑁int
𝜈 ) to obtain either a next state 𝑥 (model net-

work) or action 𝑎 (policy network).
19: end for
20: Return the graph-structured outputs.

(a body and six leg modules), the GNN contains six leg nodes which all share the

same neural network parameters, and a body which has its own parameters. Each leg

module uses the leg-type node parameters to compute their hidden states, messages,

and outputs separately. To properly coordinate full-robot locomotion, the legs learn

to alter their behavior according to the messages passed to them via the body module.

An example of the modular policy structure is shown in Fig. 3-3.
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Figure 3-6: An overview of our model-based reinforcement learning process, described
in detail in Sec. 3.3. All steps are applied simultaneously to multiple robot designs,
which share one set of graph neural network parameters. (a) First, data is collected for
random control actions from which (b) initial dynamics approximations are learned.
(c) Next, the learned model is used to optimize trajectories for the various designs
to locomote in a range of headings and speeds. The resulting trajectory data is used
to improve the dynamics approximation. (d) A global control policy is learned that
distills the set of optimized trajectories. (e) Finally, the policy is tested in simulation,
then validated on physical robots.

3.3 Training Modular Policies with Reinforcement

Learning

We now turn to training the modular policy to produce effective behaviors for a

range of designs. A large number of neural network policy optimization methods

could be adapted to this modular policy learning problem, including, but limited to:

evolving neural network weights [147], imitating an optimal control expert [88], model-

free reinforcement learning (see Sec. 2.2.3), or model-based reinforcement learning

(see Sec. 2.2.3). To solve the policy optimization problem (3.1), we use model-

based reinforcement learning (MBRL). We choose an MBRL-based method because

they have been shown to be more computationally efficient than alternatives [37,

113, 124]. The main difference between our algorithm and prior MBRL methods is

that where prior MBRL learns for a single robot design, we include multiple designs

simultaneously.

MBRL first learns an approximate model of the system dynamics for use within

trajectory optimization (for brevity, henceforth referred to as “TrajOpt”). Then, sim-

ilarly to Guided Policy Search (GPS), the well-known idea from the MBRL literature

[28, 99, 100, 184], optimized trajectories are used within imitation learning, resulting

in a global reactive control policy. Our training algorithm is shown at a high-level
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graphically in Fig. 3-6, and in more detail by Algorithm 2.

The most significant difference between our algorithm and prior MBRL/GPS

methods is that we apply one set of neural network parameters to, and synthesize

data from, a varied set of the many possible designs, shown in Fig. 3-5. Two separate

GNNs– a model GNN and a policy GNN– are trained as part of our MBRL algorithm.

The model GNN, 𝑓𝜑 with parameters 𝜑 approximating the forward dynamics, takes

the robot state and action as input and outputs the estimated next state. The model

is used in TrajOpt, then refit with data gathered from low-cost regions of the state

space visited by the optimized trajectories, becoming more accurate in those regions,

such that in the next iteration we obtain trajectories closer to those that would be op-

timal under the true dynamics [95]. The policy GNN, 𝜋𝜃 with parameters 𝜃, takes the

robot state as input and outputs actions used as control set-points for each module’s

actuators.

With MBRL, it is possible to learn from real-world robot data [176]. It is time-

consuming and expensive, however, to gather such data from a variety of robot de-

signs. We therefore collect all robot data in a simulation environment. This means

training must take additional considerations, described throughout this section, to

ensure that the resulting policies can be used on robot hardware.

Our method produces a reactive control policy mapping directly from robot sensor

observations to actuator signals. This stands in contrast to recent MBRL approaches

[37, 176] that use a learned approximate dynamics model for model predictive control

(MPC) to produce actions applied to the robot. GPS methods [28, 99, 184] add

an additional step, using optimized trajectories to learn a global reactive policy via

imitation learning, which is then applied to the robot. We adopt the latter approach

for the following reasons, which overlap with those recently noted by Kaufmann et

al. [88]:

• We use full states within TrajOpt, which includes quantities like body position

and velocity, and directly impose a cost on those quantities within the trajectory

optimization. But, we learn a global policy that operates over partial observa-

tions, mitigating the need to accurately estimate those quantities on a physical
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robot.

• MPC in real-time can become computationally expensive to run on-board a

robot when compared to using a single forward pass of a neural network at each

time step.

• The global policy can be used to provide initial seeds to TrajOpt. In our method

the approximate dynamics is relearned from the states gathered during TrajOpt.

This causes the model to become more accurate in regions of the state space

near the policy, which leads to better TrajOpt results in the next iteration.

In the remainder of this section, we present the process for each step in the algo-

rithm, along with associate experiments demonstrating their efficacy when applied to

multiple designs simultaneously. The hyperparameters for the various components in

this method were tuned by hand and can be found in the appendix.

3.3.1 Initial trajectory collection

First, trajectories from random actions were gathered, similar to the data collection

methods in [113, 134]. These trajectories are used to learn initial approximation of

the dynamics model, and do not resemble the trajectories that are obtained by later

stages of the algorithm. To create smooth random actions, 10 random values were

chosen for each joint and splines fit to those values equally spaced over 100 time steps.

Each design was simulated for a number of trajectories proportional to the number

of joints in that design. If the robot flipped onto its side (roll or pitch magnitude

exceeds 𝜋/2) then that trajectory was ended. Each trajectory 𝒯 = (𝑥0, 𝑢0, . . . 𝑥100)

was added to a dataset 𝒯 .

3.3.2 Learning modular forward dynamics approximations

The dynamics model approximation network 𝑓𝜑 was learned from the trajectories

contained in 𝒯 . The model network learns to approximate the change in state between

45



Algorithm 2 MBRL for modular robots. Each step is conducted for all designs in
the training set.
1: Collect dataset 𝒯 from random action trajectories.
2: for 𝑖 = 1 . . . 𝑁 do
3: Learn model 𝑓𝜑 from 𝒯
4: 𝒯𝑛𝑒𝑤 ← ∅
5: for 𝑗 = 1 . . .𝑀 do
6: Trajectory optimization:
7: if 𝑗 > 1 then
8: Sample initial state from 𝒯𝑛𝑒𝑤
9: else

10: Use nominal initial state
11: end if
12: for 𝑘 = 1 . . . 𝑅 do
13: Use current policy 𝜋𝜃 and model 𝑓𝜑 to predict the next 𝑇 actions, 𝑢0

1:𝑇

14: Use 𝑢0
1:𝑇 as initial seed for trajectory optimization with dynamics 𝑓𝜑 to

obtain control 𝑢1:𝑇

15: Simulate 𝑛𝑒𝑥 < 𝑇 steps forward with control 𝑢
16: end for
17: Add trajectory from simulation to 𝒯𝑛𝑒𝑤
18: end for
19: Learn policy 𝜋𝜃 from 𝒯𝑛𝑒𝑤 with behavioral cloning
20: 𝒯 ← 𝒯 ∪ 𝒯𝑛𝑒𝑤
21: end for

time steps, similar to the models used by [113, 134, 176],

𝑥̃𝑡+1 = 𝑥𝑡 + 𝑓𝜑(𝑥𝑡, 𝑢𝑡) (3.2)

where 𝑥̃𝑡+1 approximates the true next state 𝑥𝑡+1 = 𝑥𝑡+∆𝑥𝑡 for a fixed time step ∆𝑡.

The dynamics of each design is different, but all designs share the same model GNN,

trained with batches of data from the training set of designs.

This model approximation can be learned using standard supervised regression,

but additional techniques can increase the accuracy of this approximation in making

predictions over multiple time steps. We adapt two of these techniques to our modular

model learning: probabilistic neural networks [37] and a multi-step loss [176].
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Probabilistic graph neural networks

A probabilistic neural network is one whose output variables are interpreted as the

parameters of a probability distribution rather than as a deterministic value [37]. In

our case, this means that the GNN outputs at each node are a mean and a variance

of a Gaussian with diagonal covariance, that is,

𝑓𝜑 ∼ 𝒩
(︀
𝜇𝑓 (𝑥𝑡, 𝑢𝑡),Σ𝑓 (𝑥𝑡, 𝑢𝑡)

)︀
(3.3)

Then, the corresponding log-likelihood loss function for a batch of 𝑁 data samples is

𝐿𝑓 = −
𝑁∑︁

𝑛=1

log 𝑓𝜑(∆𝑥𝑛|𝑥𝑛, 𝑢𝑛)

=
𝑁∑︁

𝑛=1

(𝜇𝑓 (𝑥𝑛, 𝑢𝑛)−∆𝑥𝑛)
⊺Σ−1

𝑓 (𝜇𝑓 (𝑥𝑛, 𝑢𝑛)−∆𝑥𝑛) + log detΣ𝑓 (𝑥𝑛, 𝑢𝑛).

(3.4)

This allows the learned model to capture heteroscedastic noise, and has been found

to result in more accurate models even when the data, generated from simulation, is

not inherently noisy [37, 96]. We found that in practice, it also allows the networks

to properly scale the relative loss contributions from state components with different

orders of magnitude such that batch normalization as used by [113, 134] was no longer

necessary.

Multi-step probabilistic loss

A learned approximate model is not guaranteed to stay within physically meaningful

states when used to predict dynamics over long time horizons [91, 113]. To mitigate

such divergence effects, one recent approach is to penalize deviations from the ground

truth over sequences of states [176], rather than from single state transitions as in

(3.4). We adapt the multi-step loss from [176] for use with a probabilistic network,

𝐿𝑓,𝑚𝑠 =
𝑁∑︁

𝑛=1

1

𝑇

𝑛+𝑇∑︁
𝑡=𝑛

[︀
(𝜇𝑓 (𝑥̂𝑡, 𝑢𝑡)−∆𝑥𝑡)

⊺Σ−1
𝑓 (𝜇𝑓 (𝑥̂𝑡, 𝑢𝑡)−∆𝑥𝑡) + log detΣ𝑓 (𝑥̂𝑡, 𝑢𝑡)

]︀
,

(3.5)
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where 𝑥̂ are recursively predicted states 𝑥̂𝑡+1 = 𝑥̂𝑡 + 𝜇𝑓 (𝑥𝑡, 𝑢𝑡), and when 𝑡 = 𝑛 (the

first state in the multi-step sequence) 𝑥̂𝑡 = 𝑥𝑛 is sampled from dataset 𝒯 . The recur-

sively predicted sequence of states measures the deviation over time of the learned

dynamics. We use sets of 𝑇 = 10 sequential states to compute this loss.

One drawback to this approach is that the gradients of this loss become increas-

ingly expensive to compute as the sequence length increases and the network is called

recursively multiple times. This is compounded when using a GNN, which already

has more complex gradients than a MLP. To reduce training time, we used a form

of curriculum learning [17], in which the multi-step sequence length started is incre-

mentally raised over the course of training. At the start of training, we set 𝑇 = 1 in

(3.5) and then periodically increase it up to 𝑇 = 10. This adaptation resulted in the

same trained model accuracy with significantly less computation.

Multi-design training

𝑓𝜑 is trained to approximate the dynamics of the training set of designs. During

training, we sample batches of 𝑁 state-action sequences (i.e., short trajectories)

𝒯 = (𝑥𝑛, 𝑢𝑛, 𝑥𝑛+1, 𝑢𝑛+1 . . . 𝑥𝑛+𝑇 ) for each design, compute (3.5), and accumulate the

gradients over multiple designs before taking an optimization step with an Adam

optimizer [90]. Averaging the loss over multiple designs prevents the model from

over-fitting to any specific design, and instead, to fit jointly to all designs.

To further reduce computational load, we applied a form of curriculum learning

over the number of designs included in each step. At each training step, a subset

of designs were sampled for a forward pass, rather than including all designs in the

loss. The number of sampled designs was incrementally increased until all training

set designs were used at each step. This adaptation also resulted in the same trained

model accuracy with significantly less computation.

Translation and yaw invariance

The dynamics of motion, under a constant gravitational field and in a uniform flat

environment, are invariant to the translation and yaw of the system. Prior work [113,
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134] learned the model in the world frame, then subtracted out the body translation to

compute network inputs. We extended this translation-invariance with an additional

inductive bias by recognizing the symmetry of the dynamics with respect to not only

the translation in the plane but also the yaw of the body.

The model dynamics were learned in a frame which we call the “planar body

frame.” This frame is different from the conventionally-defined body frame, as the

height, roll, and pitch of the body are still relevant when the dynamics occur under

the external force from gravity. The x-position, y-position, and yaw 𝛾 in the plane

were removed from the state. Then the world velocities were rotated by the negative

yaw; for example, the body world-frame linear velocity 𝑣 ∈ R3 was rotated to the

planar body frame velocity 𝑣𝐵 = 𝑅𝑧(−𝛾)𝑣, where 𝑅𝑧(·) represents an SO(3) rotation

matrix about the z-axis. The state transitions (and also the global policy, discussed

later) were learned with respect to the planar body frame. The change in x-position,

y-position and yaw with respect to that frame was predicted by 𝑓𝜑.

3.3.3 Trajectory optimization with a learned model

The next step in the algorithm is to use the learned model in TrajOpt. The goals and

states visited by the optimized trajectories will ultimately be used to train a global

reactive control policy. Note that each of these steps is applied at each iteration to

all designs in the training set.

Optimization and Model Predictive Control

Each TrajOpt solves for a series of control inputs 𝑢 that minimize an objective function

𝐶 over a finite horizon length 𝐻. Each trajectory was given a constant body velocity

matching goal 𝑔 within the objective function, for a minimization problem,

𝑢*
0:𝐻 = argmin

𝑢0:𝐻

𝐻∑︁
𝑡=0

𝐶(𝑥𝑡, 𝑢𝑡, 𝑔)

s.t. 𝑥𝑡+1 = 𝑥𝑡 + 𝜇𝑓 (𝑥𝑡, 𝑢𝑡).

(3.6)
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In the TrajOpt, the dynamics evolve according to the mean predicted by the model

GNN. The initial state 𝑥0 in each trajectory has a significant impact on the full MBRL

process and on transfer from simulation to reality, as it governs the states used to

train the policy, and will be discussed later.

The objective of the TrajOpt process is to create a dataset 𝒯𝑛𝑒𝑤 of “expert” demon-

strations showing robots tracking various goals 𝑔 from many initial states 𝑥0. As such,

for each trajectory, we sample a new body velocity from the bounded range of goal

body velocities 𝐺. The cost function 𝐶 penalizes deviations of the body velocity

from the desired body velocity, as described by Sec. 3.1.2. Further penalties in the

cost function include costs on the control input norm, as well as the roll, pitch, and

height of the body. A cost term that we found to be critical is the “slew rate” penalty,

which penalizes abrupt changes in the control inputs. While trajectories without this

penalty perform well in simulation, they did not transfer well to physical hardware,

where actuators perform poorly when commanded to frequently abruptly change di-

rection.

Many TrajOpt methods exist to find locally optimal solutions to (3.6). Prior work

[113, 176] used simple gradient-free random shooting methods. We found that such

methods suffer from the curse of dimensionality when applied to high-dimensional

systems like our hexapod. Instead, we turn to a gradient-based method, differential

dynamic programming with input constraints [8, 153], which is able to exploit model

linearization to efficiently find locally optimal control inputs. Other TrajOpt algo-

rithms could be used as well. Batches of trajectories were optimized at once using

batched forward passes of the learned model.

To create a trajectory, a start state 𝑥0 and velocity goal 𝑔 is sampled, a local

solution to (3.6) is solved under the approximate model. However, the approximate

model is not guaranteed to stay within physically meaningful states when used to

predict dynamics over long time horizons [113, 176]. To mitigate such divergence

effects, we combined the multi-step loss described above with TrajOpt in a model-

predictive control fashion [113, 176]. That is, we set the horizon length 𝐻, solve (3.6),

then execute the first 𝑛𝑒𝑥 steps of the optimized control in the simulation environment.
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The remaining 𝐻 − 𝑛𝑒𝑥 steps are then reused as part of the initial seed for the next

replan. This process was repeated 𝑅 times for each goal, resulting in each trajectory

𝒯𝑚𝑝𝑐 of length 𝑛𝑒𝑥𝑅. The trajectories 𝒯𝑚𝑝𝑐 are stored in a dataset 𝒯𝑛𝑒𝑤.

Initial seeds

The local TrajOpt requires an initial control input seed, which had a significant im-

pact on the quality of the solution at convergence. During the first MBRL iteration,

when the global policy is entirely untrained, we used zeros as initial control seeds.

During subsequent iterations, we use the global policy rolled out on the learned model

to create initial control seeds. This ultimately resulted in lower-cost trajectories than

always using zeros as initial control seeds. More importantly, the optimized trajec-

tories end up nearby the global policy, and the policy is then retrained from those

trajectories. This process iteratively reinforces a consistent gait style. Without using

the policy as the initial control seed, motions generated by TrajOpt were dissimilar

between iterations, and cyclical locomotion patterns did not emerge.

Initial states

We found the initial state set in the TrajOpt to have a significant impact on the

policy’s ability to change locomotion heading on-the-fly both in simulation and reality.

While prior GPS learned policies for forward locomotion [99, 184], our objective is

to learn policies that move the robot in any direction in the plane, and to be usable

with tele-operation. Consequently, policies must have the ability to quickly change

direction and speed. The policy is learned via imitation, given optimal “expert”

trajectories demonstrating the robot changing directions.

To create trajectories that contain rapid direction and speed changes, we follow

the following steps. During the first 𝑀𝑖𝑛𝑖𝑡 trajectories in each iteration, the initial

state 𝑥0 was set to a nominal state, standing upright at zero velocity, as shown in Fig.

3-5. These trajectories provide expert examples showing the robot starting from rest,

stored in 𝒯𝑛𝑒𝑤. Then, we sample additional initial states from states visited in 𝒯𝑛𝑒𝑤.

This was inspired by the methods of Zhang et al. [184], who noted that such a process
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creates overlap in the state distributions visited by the optimized trajectories. Since

the velocity and heading goal of the new trajectory were sampled independently of

the goal used to create that sampled state, this resulted in trajectories in which the

robots abruptly change directions mid-step, an essential behavior to capture if the

end user will be creating the heading on-the-fly with a joystick. To further enable

transfer to reality, we injected a small amount of noise to each sampled initial state,

in the form of small perturbations to the joint angles and velocities. This provided

demonstrations for the global policy of how to optimally recover from disturbances.

Gait style objective

When creating controllers for legged robots, experts often inject their intuition or

preferences about gait style. For instance, recent work in deep reinforcement learning

forced cyclical motions (gaits) to emerge by using reparameterization of the actions

space [176] or externally generated cyclical keyframes [121, 174]. While our method

does not require keyframes for gaits to emerge, we introduce the option to impose a

manually selected gait styling with an additional cost on leg joint angles.

The gait style objective was created by first selecting an amplitude, frequency, and

phasing for hexapod joint positions that would result in an “alternating tripod” step-

in-place pattern. Deviations of any joints in legs from this pattern are then penalized

in 𝐶. These open-loop joint angles do not move the robot in any direction nor effect

the wheels, and the TrajOpt process must discover how to produce locomotion to

minimize the velocity matching cost. This cost resulted in gaits that follow the main

body velocity-matching objective while also remaining near an alternating tripod gait

style. In designs where the gait style makes locomotion more difficult (for example,

in a quadruped), because we set it to a smaller weighting than velocity-matching

objective, it can be overcome by TrajOpt. Note that this cost is not necessary for

gaits to emerge with our method. When a simpler cost on angles deviating from

their nominal stance is used, cyclical gaits still emerged which are equally effective in

simulation as those learned with the gait style cost.
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3.3.4 Learning the modular control policy

Given a dataset 𝒯𝑛𝑒𝑤 of expert demonstrations, the next step in the MBRL process is

to distill these local policies into a global policy via imitation learning. That is, given

many samples of robots moving in many different directions, the imitation learning

process acts to “interpolation” between the samples.

We use a reactive control policy for the reasons stated at the start of the section:

it is simpler to implement on a physical real-time system than is running MPC with

the learned model, it is able to operate on partial state observations while allowing

the internal trajectory optimization operate on the full state, and it provides initial

seeds for TrajOpt. We introduce some modifications to the policy inputs and out-

puts compared to those of related work [113, 184] in order to facilitate transfer from

simulation to reality.

We command target velocities to the actuators, which are tracked by low-level PID

loops at a higher frequency on-board the actuator. The actuators (X-series from Hebi

Robotics [70]) perform more accurate tracking when provided with a feed-forward

(FF) torque value 𝜏 . Thus, in addition to control outputs, we learn an additional

output of the policy network that estimates the feed-forward torque needed for the

actuator to track the desired velocity. The data for this output is obtained by tracking

the torques experienced by the joints in simulation, contained in 𝒯𝑛𝑒𝑤.

The global policy outputs control command 𝑢 and FF torque 𝜏 , parameterized by

means (𝜇𝑢, 𝜇𝜏 ) and diagonal variances (Σ𝑢,Σ𝜏 ),

[𝜇𝑢,Σ𝑢, 𝜇𝜏 ,Σ𝜏 ] = 𝜋𝜃(𝑜, 𝑔), (3.7)

given an observation 𝑜 and body velocity goal 𝑔 as input. The goal is appended to

the body graph node input.

The policy is used deterministically, so at runtime, only 𝜇𝑢 and 𝜇𝜏 are used. But,

to avoid batch normalization, we found that interpreting the network outputs as a

Gaussian (making it a probabilistic GNN, see Sec. 3.3.2) resulted in a more consistent

learning process than we found when using a mean-squared error loss. The policy is
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learned using a log likelihood [37] behavioral cloning loss,

𝐿𝜋 =
𝑁∑︁

𝑛=1

[︀
(𝜇𝑢,𝑛 − 𝑢𝑛)

⊺Σ−1
𝑢,𝑛(𝜇𝑢,𝑛 − 𝑢𝑛) + 𝑤𝜏 (𝜇𝜏,𝑛 − 𝜏𝑛)

⊺Σ−1
𝜏,𝑛(𝜇𝜏,𝑛 − 𝜏𝑛)

]︀
, (3.8)

for a batch of 𝑁 samples of (𝑜, 𝑔, 𝑢, 𝜏) drawn from 𝒯𝑛𝑒𝑤. 𝑤𝜏 is a weighting hyperpa-

rameter controlling the importance of accuracy of the FF torque predictions relative

to the control joint velocity set point outputs. A key feature of our method is that

the global policy shares data from, and applies to, the full set of modular designs.

That is, the loss over all designs are averaged at each training step.

To further facilitate sim-to-real transfer, we learn the policy with sensor noise and

partially-observed inputs. At each iteration within the policy supervised learning

process, we add white noise to the observations. The body velocity and height,

while easily observable in simulation, require state estimation techniques to observe

in reality. To avoid the added complexity of such state estimation, we remove the

body velocity and height from the state observation input. We also learn the policy

with respect to the planar body frame, as discussed in Sec. 3.3.2, such that the

body planar position and yaw are not included in the observation. To account for

latency [176], the delay between sensing and actuation, we use the observation from

the previous time step as the policy input.

3.3.5 Updating the learned model

The trajectories seen in simulation during TrajOpt form a dataset 𝒯𝑛𝑒𝑤 that provides

“guiding samples” [100] to update the dynamics and learn the policy. We retrain the

model using both 𝒯𝑛𝑒𝑤 and 𝒯 , adding samples along trajectories relevant to perform

effective locomotion without causing catastrophic forgetting of the dynamics in other

states. After the policy is learned, the trajectories in 𝒯𝑛𝑒𝑤 are merged into 𝒯 , and

𝒯𝑛𝑒𝑤 is reset to empty. Then, training as described in 3.3.2 is continued, warm-started

using GNN parameters from the previous iteration.

Note that the TrajOpt problem in (3.6) uses the approximate model 𝑓 , so the

resulting trajectories are optimal with respect to those dynamics and not to the true
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dynamics. However, the model is relearned from trajectories seen during TrajOpt in

the previous iteration, increasing model accuracy in the vicinity of low-cost regions

in the state space. Subsequently, the optimal trajectories in the next iteration will

be closer to the optimum under the true dynamics, and the policy learned from those

expert trajectories will be closer to the true solution to (3.1). In other words, iterative

process of re-learning the model with data seen during TrajOpt is intended to combat

the recently observed “objective mismatch” in MBRL: namely, learning a globally

accurate dynamics model does not necessarily lead to higher-quality trajectories [95].

3.3.6 Evaluation metric

In order to evaluate the quality of the local trajectories and the global policy, we

developed a metric quantifying the mismatch between the desired and achieved body

velocity over a fixed time period. In the case of forward locomotion at maximum

speed, as is commonly used in locomotion learning, the distance travelled or average

speed serves easily as an evaluation metric. In the case of a multi-direction and

multi-speed distribution of desired body velocities, (which we represent as a goal

distribution 𝒢 in (3.1)), this metric no longer suffices, and we must create a new

evaluation metric.

As an evaluation metric we form a fixed “test set” of goal velocities that serve as a

finite sampling proxy for the expectation over all possible goals 𝑔 ∈ 𝐺 in (3.1). This

test set of goal velocities include moving forward, backwards, left, right, and turning

in place left and right. For each of these test goals, we execute the policy. At every

𝑛𝑒𝑥 step period over the resulting 𝑛𝑒𝑥𝑅 step trajectory we measured the difference

between the desired and achieved average velocity. Under this metric bounded on

[−1, 1], higher values are better. A value of 1 would indicate that the robot always

moved exactly in the commanded direction, and a metric of 0 indicates that the

robot did not move at all. We did not know in advance how fast each design would

be physically capable of moving, and therefore a metric value 1 was not achieved in our

experiments, because the desired maximum speed in the goals set was chosen based

on a rough estimate of the theoretical maximum robot speed ( additional details
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and hyperparameters are described in the Appendix). Similarly, any given design

might not achieve the top speed, even were it physically capable of doing so, since

the multi-objective TrajOpt cost balances body velocity matching with other costs.

Some designs have difficulty in locomoting in a given direction due to their design, for

instance, if a goal velocity requires moving perpendicular to the direction of a wheel.

We use this metric to track the progress of training over the outer MBRL loop and

within policy transfer tests.

3.3.7 Zero-shot transfer to unseen designs

The policy and model GNNs were trained on a set of 12 designs, chosen out of the full

set of possible module combinations because they are symmetric along their front-

back axis and allowed to have the middle port unoccupied. However, these make up

only a small fraction of the total possible space of designs from these modules– if

we allow the designs to be asymmetric, there are an additional 132 possible designs,

not seen during training. The policy can automatically be applied to each of the 132

asymmetric designs. We conducted an experiment to test zero-shot transfer (that is,

without additional training or modification) of our policy to these designs.

3.3.8 Comparison to MLP weight sharing

In our GNN architecture, the model and policy are both hardware-conditioned be-

cause the structure of the learning representation matches the physical kinematic

structure of the robot, and modules of the same type share information. This stands

in contrast to the related hardware-conditioned policies used by [34], which shared

all weights among all robots using an MLP. To test whether our learning architecture

results in higher-quality policies than other weight-sharing architectures using MLPs,

we created two baseline comparisons, which we call “hardware-conditioned MLP” and

“shared trunk MLP.”

The hardware-conditioned MLP is based directly on the architecture presented

by [34]. When initializing the network, a fixed maximum number of modules and
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maximum dimension of the inputs and outputs are specified. For each robot design

the network is applied to, the inputs are padded with zeros to reach this constant

maximum dimension length before entering them into the network. For example, the

leg module has a state dimension size six (position and velocity for each joint), and

the wheel dimension three (position and velocity for the first joint, and wheel velocity

for the second). When entering the state of a leg into the network, no zeros need be

appended. When entering the state of a wheel module into the network, three zeros

are appended to bring the input size up to the maximum length six. The output

layer of the network is also set to a maximum output size, and the unused outputs

for each module are ignored. The design used during each forward pass is encoded

via a one-hot vector, with entries corresponding to the type of each module. This

architecture allows transfer to new designs not seen during training.

The shared trunk MLP is a simpler weight sharing scheme loosely inspired by

multi-task image recognition architectures [41, 186]. The bulk of the neural network

weights are shared by re-use of the hidden layers across the 12 training set designs.

To account for the different dimensions of states, actions, and observations among

the designs, each design is given its own input and output layers that are not shared.

Then at each forward pass, the design index is passed to the network, so that the

corresponding input and output layers are used. This architecture does not transfer

to new unseen designs without further training, as each design has its own input and

output layer specific to its dynamics and dimensionality.

For each of these two network architectures, a separate network instance was used

as a model and policy. The number of layers and depth were tuned to approximately

match the capacity and depth of the set of GNN nodes. We then applied our MBRL

algorithm to measure the policy efficacy via the velocity matching metric. The gait

style objective was used in these experiments.

3.3.9 Application to real robots

Our MBRL algorithm was designed to create a control policy that allows a user to

drive a variety of robot designs with a joystick in reality. The body contained a
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battery pack, Ethernet switch, WiFi router, and and IMU. A USB gamepad was

connected to an off-board laptop, on which joystick inputs were converted to goals,

appended to the control policy input, and joint-level commands were computed and

sent via WiFi to the robot.

3.4 Results

Our method enabled us to control a variety of robot designs with a single set of

GNN parameters. The modules behave differently when placed in different locations

on the robot, even though the GNN node weights are the same for all modules of

the same type, because the messages passed between nodes differ depending on the

relative position of the modules. Further, the modules behave differently within dif-

ferent designs– for example, the gait pattern that emerges to control the quadrupedal

design is different than that of the hexapod. We ran the algorithm for 3 iterations

(alternating between batches of model learning, TrajOpt, and policy learning), which

resulted in a policy trained for 12 designs, after approximately 10 hours on a large

desktop with 18 Intel i9 cores and four NVIDIA RTX 5000 graphics cards. We be-

lieve with further code optimization time to train could be reduced, for example, by

parallelization of functions that were conducted independently and sequentially for

the 12 designs.

The following subsections describe the results of our experiments on model and

policy learning with multiple designs, on zero-shot transfer, and demonstrate sim-to-

real transfer.

3.4.1 Modular model learning

We conducted an experiment to validate the utility of training a shared model with

data from multiple three-dimensional articulated robot designs. We created datasets

using the random-action procedure from Sec. 3.3.1 for three designs (as shown in the

left-most column of Fig. 3-5): four-wheel car, a six-leg walking hexapod, and a design

with two wheels and four legs. We then divided the data into training and validation
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sets, and trained a GNN and a MLP for each design separately using two data regimes:

either 100 trajectories or 1,000 trajectories. The total number of parameters in the

GNN and MLP were made comparable in this experiment. We also trained a single

shared GNN model using data from all three designs.

We compared the validation error of a forward dynamics approximation network

learned via comparably sized GNNs and MLPs within high-data and low-data regimes.

We compared further against a GNN trained using data from all three designs. We

also compared the prediction validation error between the conditions to a “constant

prediction baseline” [134]: the error value that would be obtained if the state change

prediction was zero at each step. The results of this experiment are shown in Fig.

3-7. We found that shared weights between modules of the same type helps prevent

over-fitting in low-data regime, and also results in lower validation error for the same

number of parameters. Data from multiple modules of the same type contribute to

the parameters of the corresponding graph node. Where [134] conducted a similar

experiment, they used higher-capacity models (e.g. deeper networks) and thus was

able to obtain lower validation error than we obtained. However, lower validation error

has recently been shown to not necessarily correspond with the cost of trajectories

obtained in model-based TrajOpt [95]. We also observed that using data from multiple

designs had little impact on the validation error, indicating that parameters can be

shared among designs to accurately predict the future states of multiple designs made

from the same set of components.

3.4.2 Modular policy learning

Next we explored whether a policy created via our full MBRL process with data

shared among 12 designs would perform as well as a policy trained with only one

design at a time, with the same hyperparameters. In this experiment, we first use the

full MBRL process on 12 designs at once, at each step using data from all designs.

Then, we use the full MBRL process on the lowest and highest degree-of-freedom

systems (car and hexapod) independently, at each stage using only data from a single

design. Table 3.1 shows the evaluation metric applied to the car and hexapod designs;
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Figure 3-7: Results described by Sec. 3.4.1. The graph neural network (GNN) has
a lower validation error than a multi-layer perceptron (MLP) with similar capacity
and depth. It also is more data-efficient, achieving comparable validation error with
10 times less data. We tested model learning on three designs: a four-wheel car-like
design, a hexapod, and a leg-wheel hybrid. Images depicting these three designs are in
the left-most column of Fig. 3-5. Learning a model from shared data of the multiple
designs (GNN MD) does not harm the validation error. The constant prediction
baseline (dashed lines) indicates the the validation error for predictions of zero state
change between steps.

this indicates that the policy trained with shared data between multiple designs is

able to perform similarly to a policy trained on only one design.

Velocity matching metric Hexapod Car
Trained alone 0.63 0.80

Trained with 12 designs 0.73 0.80

Table 3.1: Modular policy training result for Sec. 3.4.2.

3.4.3 Generalization to unseen designs

We trained the control policy with data shared between 12 bilaterally symmetric de-

signs, then tested the policy on 132 simulated asymmetric designs without further

training or optimization. Fig. 3-8 shows the evaluation metric, as described in Sec.

3.3.6, applied to the test set (robots seen during training) and transfer set (not seen

during training). While the average metric for the transfer designs is lower than the

training set, we found that the policy was able to direct all designs in the commanded

direction on average. The designs which performed worst in the transfer tests qualita-
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Figure 3-8: Results of applying the policy to the training and zero-shot transfer set of
designs. The left and left-center plots show our modular GNN architecture with and
without the gait style objective applied, described by Sec. 3.4.3. The right-center
and right plots show the baseline comparisons with multi-layer perceptrons, described
by Sec. 3.3.8. The training set contains 12 designs, and the transfer set 132 designs
not seen during training. The mean of the set is shown in orange, the boxes show
the first and third quartiles, and the maximum and minimum of the set are shown
by the top and bottom whiskers for each set. The policies were measured using a
velocity matching metric, where higher values indicate that the policy tracked the
desired robot velocity well. We found that our modular policy results in effective
locomotion for different headings and speeds on a range of different robots, and is
able to generalize (without additional training) to an even larger set of designs.

tively appear to be those with fewer limbs and more asymmetries in limb placement,

such that their dynamics differed most from that of the designs in the training set.

The results are similar with and without the alternating-tripod gait style objective

applied during training.

3.4.4 Comparison to MLP weight sharing

The results of our weight-sharing baseline comparisons with MLPs are shown in

Fig. 3-8. We found that the GNN policy had both a higher mean performance

and narrower range of performance among both the training and transfer set of de-

signs. Although sharing neural network parameters centrally for all parts of multiple

robots was demonstrated previously by [34] for fixed-base manipulators, we found a

hardware-conditioned MLP to be less effective when applied to robots with multiple

limbs. This experiment shows that the inductive bias we applied in learning, that is,
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matching the structure of the graph network to the structure of the robot, enables

more effective learning than using a more generic architecture.

3.4.5 Zero-shot transfer comparison

In Sec. 3.4.4 with corresponding Fig. 3-8, we found that our GNN was able to gener-

alize to unseen designs more effectively than a hardware-conditioned MLP. However,

the average, max and min performance of the many designs does not reveal which

designs the policy can transfer to. We plot the number of leg modules and wheel

modules against the transfer results in Fig. 3-9. We can see that the MLP is able to

transfer most effectively to designs with wheels, which agrees with our intuition that

wheels are “easier” to learn to control.

3.4.6 Physical robot validation

We tele-operated the twelve “training set” robots using the modular policy outdoors

on a sidewalk. Fig. 3-10 shows a time-lapse of this demonstration. Qualitatively, most

designs performed well, although differences in ground interactions between simula-

tion and reality appear to hamper some of the designs where slipping or dragging

contacts occurs.

3.5 Discussion

Model-based trajectory optimization for legged or leg-wheel hybrid robots, such as

[20, 21, 53, 171], typically make the assumption that the contact sequence is known

a priori. An emergent feature of our work is that the contact sequence can be discov-

ered automatically. This becomes particularly important when we are tasked with

creating trajectories for multiple robot designs, because each design may have differ-

ent combinations of legs and wheels, resulting in a different optimal contact sequence.

We added a gait style objective for the case where the user biases learning towards

a particular contact sequence. An example of the difference in contact sequences
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Figure 3-9: The zero-shot transfer test results from Sec. 3.4.4 and Fig. 3-8, broken
down by number of leg and wheel modules in each robot design. Multiple designs may
have the same number of legs and/or wheels, arranged in different ways. The circle
markers show the mean of the designs with a given number of legs or wheels, and
the vertical bars indicate the max and min. The velocity matching metric measures
how well the robot can match a desired heading and speed using the learned policy.
As the number of legs increases and number of wheels decreases, the MLP policy
performance degrades significantly more than does the GNN policy. In all cases, our
GNN policy is able to transfer more effectively to new designs.

that emerge with and without the gait style objective is shown in Fig. 3-11. When

the gait style impedes learning, it is overcome; we found this was the case with the

quadruped, which qualitatively has a similar behavior, and quantitatively has a sim-

ilar performance measure, both with and without the gait style.

The contact sequences that emerge differ among the designs, even though they

are the result of a single policy. We found that the interplay between trajectory

optimization and global policy imitation learning played a key part in enabling the

policy to be effective on many designs. Training the modular policy using the dataset
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Figure 3-10: Timelapses of the twelve modular designs controlled with the learned
policy. The robots were teleoperated with a joystick demonstrating forward and turn-
in-place locomotion on a sidewalk.

created by each iteration of trajectory optimization creates module-level behaviors

that apply increasingly well to the full range of designs. In the first iteration of the

pipeline, before the policy has been trained at all, the initial control seed in TrajOpt is

zero. The local trajectories that arise for the different designs appear dissimilar, and

some are low-quality local optima. The policy learns to imitate the collective dataset

of trajectories, so in the first iteration, the policy may not be effective on even a single

design. However, that policy provides an intial seed for the next iteration of TrajOpt,

resulting in lower-cost local minima that are more similar across designs. We observe

that this effect compounds until ultimately the policy is effective on the full training

set of designs.

A number of choices in the algorithm are taken to aid computational efficiency.

We allow for intra-limb coordination of multiple joints encapsulating multiple actu-
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Figure 3-11: A time lapse of the simulated hexapod motion with (top) and without
(bottom) the alternating-tripod gait style objective, walking from left to right. The
feet in contact with the ground are circled within dotted lines. Both gaits move at
a similar speed, but without the gait style objective, a different contact sequence
emerges.

ated joints within a graph node, which reduces the number of message passing steps

compared to related work [78, 134, 162] in which each node controls, or approximates

the dynamics of, one joint. We use smaller capacity models than [134] to learn the

dynamics, but find that these are still effective when used within trajectory opti-

mization, especially when combined with the multi-step loss function introduced by

[176]. We also showed that the additional inductive bias introduced by shared weights

between limbs of the same type helps prevent over-fitting in the low-data regime, re-

sulting in sample efficient training. With these choices, in addition to some strategic

curriculum learning as described throughout Sec. 3.3, we were able to conduct train-

ing on a single computer without cloud compute resources. We believe this to be an

important feature in making deep learning accessible and reproducible.

This chapter introduced a model-based reinforcement learning method to control a

variety of modular robot designs with a single policy. Both a dynamics approximation

and a global control policy are learned with graph neural networks (GNN) that share

parameters among distinct designs and learn from a combination of data from those

designs. Our GNN formulation embodies a novel inductive bias [15] in the learning

representation and training process relative to prior works [78, 134, 162]: not only is

a robot made up of a tree of joints, but there are multiple types of modules repeated
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in the graph structure of modular designs, and the structural modules without joints

impact the dynamics and control as well. The GNN learns how each module type

(body, wheel, or leg) should behave within the context of the other modules present

in the design. As a result, we observe emergent behavior wherein limbs with the same

neural network weights behave differently for different designs and locations on the

body. The policy allows a user to drive a range of robots with a joystick, or for the

policy to be used as motion primitives within a high-level path planner.

We showed that our policy transfers readily to designs, composed of those same

modules that were not seen during training, without additional learning or optimiza-

tion. We were inspired by the computer vision research community, which has found

that the right learning representation (convolutional neural networks) and a diverse

set of training examples (dataset of images) enables generalization to images not seen

in training [133]. Similarly, we find that for modular robots, a learning representa-

tion that stores knowledge about dynamics and controls in the module graph nodes

(a GNN), and a diverse set of training examples (designs with various combinations

of modules) enables policy generalization to designs not seen in training.

In the development of our methods, we noticed a number of limitations. As noted

by [95], there is a fundamental mismatch in the functions being optimized in model-

based reinforcement learning– a more accurate model does not necessarily result in a

better policy. Our use of Guided Policy Search techniques [100] appear to mitigate

this problem, at each iteration increasing the accuracy of the model in regions of

low trajectory cost. Future work will thus consider convergence analysis, as well as

further study on the effect of the number and size (number of joints) of the modules,

as well as the effect of the many other hyperparameters on convergence, in particular

when applied simultaneously to many robot designs at once.

Another limitation of our work lies in the simulation to reality transfer. We

showed that the policy transfers to reality, but the performance of robots in simulation

appears better than in reality. In future work, we will investigate learning from data

collected on a combination of simulation and physical hardware. Our experiment,

with results in Sec. 3.4.1, found that a GNN can learn from smaller datasets more
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efficiently than a comparably sized MLP when data from modules of the same type

are shared, which shows that our method has the potential to learn from physical

robot data. We are also investigating combining our methods with existing sim-to-

real techniques like simulated latency [176] or domain identification [121].

In this work, we learn a model from simulation, and perform trajectory optimiza-

tion using that learned model. One reason we do so is the potential to learn a model

using data from reality either in place of, or in addition to, simulation data. A reason-

able alternative would be to use the simulation directly for trajectory optimization.

Our initial attempts to do so using Pybullet [40] failed, which we attribute to the dif-

ficulty in using finite differences to compute dynamics linearizations while frequently

making and breaking contacts. Further, we found it computationally less expensive

to compute batches of trajectories in parallel with neural networks on GPUs than

with parallel physics simulations. But, this may be possible using a differentiable

physics simulator [26], or using gradient-free TrajOpt [170] in tandem with physics

simulations that run in parallel on GPUs [103]. To account for sim-to-real transfer,

the resulting policies could be used to gather real-world data from a robot, and that

data used to learn an error correction term to create a model that is hybrid of a

simulator and a neural network [2], potentially rivaling our current sample efficiency

by learning only terms defining how reality differs from the simulation.

We presented generalization of the policy to designs not seen during training;

however, we noticed that the worst-case from those designs, while still moving in the

right direction on average, performed worse than the lowest-performing design from

the training set under our evaluation metric. One way to address this would be to

include some bilaterally asymmetric designs in the training set, such that the policy

learns to coordinate limbs in asymmetric designs. However, such an approach would

likely not be scalable in the general case, as even our small set of components can be

used to form over 100 designs. In future work, we plan to scale the method up to

larger design spaces by sampling designs at each training iteration, rather than using

every design in a fixed set at each iteration. Further, we recognize that not all designs

have the physical capability to move effectively, and so we intend to interleave design
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optimization with policy training to simultaneously identify high-performing designs

and create their policies.
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Chapter 4

Learning modular visual-motor

policies

Modular robots have the potential to be customized to each new environment. For

instance, a robot that will locomote on flat ground can be constructed with wheels, but

if it will need to climb stairs, it can be re-constructed with legs. To control modular

robots effectively, the controller should consider both the design and the environment.

However, there can be a large number of designs one could construct with the modules,

which may need to operate in many different environments. As such, it is inefficient

to create a new control policy from scratch for each new design and environment.

Building on the methods of Ch. 3, in this chapter we develop a modular visual-

motor policy that trains with and applies to both multiple robot designs and multiple

environments. The policy can learn from designs and environments seen previously,

and share knowledge among robots with different designs. We train the policy with

a set of three designs and two environments, then show that the policy generalizes to

new designs and new environments similar to those seen in training.

Chapter 3 showed that given an appropriately “modular” learning architectures

and algorithms, a single policy can be trained using reinforcement learning (RL) to

control multiple robot designs and generalize to new designs. That is, for a given set

of modules (e.g. leg, wheel, body), assume a large number of “feasible designs” 𝐷feas

can be constructed. We can train a policy 𝜋 for “training designs” 𝐷train ⊂ 𝐷feas,
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where |𝐷train| < |𝐷feas| so that the policy can generalize to 𝐷feas. However, the

policies presented in Chapter 3 operate in flat obstacle-free environments, using only

proprioceptive sensor inputs.

This chapter alters our previous methods to produce modular visual-motor policy

that can control multiple robot designs to locomote through multiple environments,

and to generalize to both new designs and environments. We do so by augmenting

the policy learning algorithm of Chap. 3 to include visual inputs drawn from three-

dimensional terrains. Once trained, the policy can generalize to both new designs and

environments. We test how training jointly with different combinations of designs

and environments impacts generalizability. Finally, we demonstrate the policy both

in simulation and on real robots.

4.1 MBRL with exteroceptive inputs

4.1.1 Problem formulation

We assume training designs 𝐷train are first chosen from the feasible designs 𝐷feas
1.

The objective we optimize maximizes the reward a policy would accumulate when

applied to multiple designs and environments,

𝜃* =argmax
𝜃

E𝑒∼ℰ

[︂ Average over designs⏞  ⏟  
1

|𝐷train|
∑︁

𝑑∈𝐷train

E𝑎∼𝜋

𝑇∑︁
𝑡=1

𝑟(𝑠𝑡, 𝑎𝑡, 𝑑)⏟  ⏞  
Expected reward
for each design

]︂
(4.1)

s.t. 𝑠𝑡+1 = 𝑓(𝑠𝑡, 𝑎𝑡, 𝑒, 𝑑) Dynamics (4.2)

𝑎 ∼ 𝜋(𝑎|𝑜, 𝜃, 𝑑) Policy (4.3)

𝑜 ∼ 𝑂(𝑠) Observation function (4.4)

𝑠𝑜 ∼ 𝑝(𝑠) Initial state distribution (4.5)

1Here, training designs are selected by the user, but future work will consider automatically
selecting training designs based on design optimization, described further in Sec. 8.2.3
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Here the policy 𝜋 is a distribution over actions conditioned on observations and pa-

rameters 𝜃. The policy is applied to the training designs 𝐷train on a distribution of

environments 𝑒 ∼ ℰ from the space of three-dimensional environments 𝑒 ∈ 𝐸. The

reward 𝑟 : 𝑆 × 𝐴 × 𝒟 → R is computed over a time horizon 𝑇 . The observation

function 𝑂 adds noise to, or removes, parts of the state vector. As in Ch. 3, our

observations remove the x/y position, yaw, and the linear velocity of the body from

the state, as these can be estimated by an odometry system, whereas the remainder

of the state (joint positions and velocities, body orientation and angular velocity)

can be readily obtained from joint and IMU sensors. We assume that a low level of

Gaussian noise is added to all sensor readings, with variance tuned to approximate

the noise levels of hardware sensor readings. Exteroceptive observations (e.g. from a

vision system) are incorporated into the observations for the body module, making 𝜋

a visual-motor policy, rather than a purely proprioceptive policy.

This problem formulation is similar to that used in the previous chapter, with the

addition of marginalization over multiple environments. We approach this problem

with an MBRL algorithm, which learns an approximate model 𝑓𝜑 with GNN param-

eters 𝜑 and then optimizes the policy parameters with that model as a differentiable

stand-in for the true dynamics.

4.1.2 Algorithm overview

Our MBRL algorithm alternates between multiple phases of model learning, policy

optimization, and data collection, within each iteration. The algorithm in this work

differs from that of our prior work, and differs from related work, by including both

multiple designs and multiple environments in each phase. A block diagram of the

phases is shown in Fig. 4-1, and psuedocode in Algorithm 3.

In the first phase, an approximate dynamics model is trained with supervised

learning from a dataset of randomly generated trajectories in the simulation envi-

ronment. Next, the model is used within policy optimization, leveraging the fact

that the a neural network-based model is differentiable and can be applied in large

parallel batches. The policy is then applied to robots in simulation to generate more
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Figure 4-1: A diagram depicting the phases of the reinforcement learning algorithm for
modular visual-motor policies. Each block in this diagram is described in a subsection
of Sec. 4.1, and the psuedocode of this algorithm is shown in Algorithm 3.

trajectory data. The dynamics model is retrained with the additional data, the policy

re-optimized, and the process repeated. All robot data is gathered from simulation

(NVIDIA IsaacGym [109]), and after training, the policy is applied to real robots.

Additional details and hyperparameters for each of the learning processes that follow

are described in the appendix.

4.1.3 Initial model data acquisition

The designs 𝐷train are randomly initialized at states perturbed from their nominal

joint positions and velocities. Initially, the environments are set to be uniformly flat.

Random actions are created by sampling 10 joint actions from a normal distribution,

and fitting splines to create smooth joint commands over 100 time steps, similar to

the methods used in Sec. 3.3.1. These actions are applied to obtain initial trajectories

stored in a dataset of trajectories 𝒯train.

4.1.4 Model learning

The dataset 𝒯train is used for supervised model learning, in which the model 𝑓𝜑 is

trained using a multi-step probabilistic loss (3.5). 𝑓𝜑 is a GNN with body, leg, and

wheel module node types. The body node takes as input the state of the body (world

frame orientation and velocity). In contrast to Sec. 3.3.2, the method introduced by

this chapter incorporates an additional local terrain observation processed through

convolutional layers, flattened, and appended to the body node input. The leg and

wheel nodes take in states from their respective modules, such as joint angles and

joint velocities. Each node learns to output a change in state similarly to Sec. 3.3.2
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and [113, 134, 176].

4.1.5 Policy optimization

The policy is optimized to minimize objective cost (maximize reward) with respect

to the model. The policy optimization method developed in this chapter differs from

that of Sec. 3.3. Where the previous chapter used the model to create a dataset of

trajectories, which were then used to train a policy via behavioral cloning indepen-

dently from the model. This work instead optimizes the policy network parameters

end-to-end with the model. The loss function to minimize derived from (4.1) is

ℒRL = −E𝑒∼ℰ

[︂
1

|𝐷train|
∑︁

𝑑∈𝐷train

E𝑎∼𝜋

𝑇∑︁
𝑡=1

𝑟(𝑠𝑡, 𝑎𝑡, 𝑑)

]︂
(4.6)

When optimizing this loss, the approximate state evolves according to the model

𝑠𝑡+1 = 𝑓𝜑(𝑠𝑡, 𝑎𝑡, 𝑒, 𝑑), where the model is held fixed during policy optimization. The

actions are sampled according to the policy, 𝑎𝑡 ∼ 𝜋𝜃(𝑎𝑡|𝑜𝑡, 𝑑), 𝑜𝑡 ∼ 𝑂(𝑠𝑡). The initial

state 𝑠𝑡 = 𝑠0 is taken from the simulator. Over the time horizon length 𝑇 , the policy

is applied to the approximate state, a reward is computed, and the state is advanced

according to the model. The total reward over 𝑇 steps is accumulated in ℒRL, and

gradients with respect to the policy parameters are used in gradient descent. In other

words, after a fully differentiable 𝑇 -step roll-out of forward passes using the model and

policy GNNs, policy parameter gradients are computed by back-propagating through

the sequence of states and actions. This process is repeated with random mini-batches

of initial states.

The reward is computed for each state and action taken in the joint model-policy

roll-out. The reward function 𝑟 is designed to cause a variety of robot designs to

locomote forward over rough terrain. The main term in the objective rewards the

distance in the +𝑥 direction. Additional terms with smaller relative weights penalize

roll, pitch, yaw, deviation from 𝑦 = 0, control effort, and distance from a nominal

stance. The environment (terrain height) observations are taken by sampling the

simulation map height at the approximated state’s world frame position. Note that
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the objective does not contain gait parameters such as gait speed, foot phase, or

contact patterns, unlike many of the related work discussed by Chap. 2. As a

consequence, the algorithm allows robots to learn locomotive behaviors that vary

depending on the design and on the environment sensed.

4.1.6 On-policy model data acquisition

After the policy training phase, the policy is used to gather additional trajectories

in simulation. In early iterations, the model is likely inaccurate, such that the policy

optimization can exploit model bias to produce a policy that will be low-cost under

the model but could be high-cost in the simulation environment. To correct model

bias near states created by the policy, we apply the policy to gather trajectories. The

model is fine-tuned with this new data. At the next iteration of policy optimization,

the model will be more accurate near the policy, causing a virtuous cycle in which

the model improves near states visited by the policy, and the policy is optimized with

respect to the refined model.

The policy is applied to the simulation environment deterministically, following

𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝜋𝜃(𝑜𝑡, 𝑒𝑡)). The resulting states and actions are added to 𝒯train. The

policy can also be applied to the simulation environment with time-correlated noise.

That is, the policy is applied to the model for 𝑇 steps, 𝑥𝑡+1 = 𝑓𝜑(𝑥𝑡, 𝜋𝜃(𝑜𝑡, 𝑒𝑡)), to

obtain control actions 𝑢1:𝑇 . These control actions are perturbed with time correlated

noise similarly to the noise generated in Sec. 4.1.3, then applied to the simulation

environment. Trajectories across multiple designs and environments at each iterations

are added to 𝒯train. The model is then refit using supervised learning, and used for

the next phase policy optimization.

4.1.7 Terrain curriculum

We created an adaptive curriculum on the terrain difficulty, inspired by recent related

work [111, 132]. At the first iteration, the terrain is fully flat, presenting the easiest

learning problem. The initial model and policy are trained on flat ground, and once
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all designs pass a threshold distance travelled, the maximum height of terrain fea-

tures in all environments is incrementally increased. Then, each batch in the policy

training and on-policy trajectories contains some samples from each terrain difficulty

to prevent catastrophic forgetting.

4.1.8 Additional implementation details

We found that for our algorithm to succeed, a few additional training implementation

details were helpful.

Firstly, where the policy in Ch. 3 was recurrent only within the GNN message-

passing internal steps within a time step, the visual-motor policy is recurrent over

time. The recurrent network hidden state inside each module policy node is set to

zero at the start of a roll-out, and then is not reset between time steps. We found that

a recurrent policy trained more reliably than a non-recurrent policy; a potential cause

for this could be vanishing gradients over the time sequence in which the policy loss

was computed. In order to train a recurrent policy to operate for more than 𝑇 time

steps (the policy optimization horizon), we apply truncated backpropogation through

time [165]. Each time a batch of states are sampled as initial states for the policy

rollout, half of those states come from the simulation of the previous policy iteration,

and half of those states come from an “imagination” of applying the policy to the

current model. The states that come from imagination are associated with a policy

hidden recurrent vector, used as the initial hidden recurrent vector for those initial

states. Using a policy that is recurrent over time, and not just recurrent over the

internal propagation phase of each GNN forward pass, has an additional benefit. We

were able to tune the number of internal propagation steps within the GNN at each

time step to 𝑁int = 1 (as described by Sec. 3.2), which means that the forward pass is

slightly less computationally expensive, and has less complex gradient functions than

it would if 𝑁int > 1.

Secondly, we found that with a fixed learning rate, the policy optimization would

sometimes diverge. We implemented a simple adaptive learning rate to stabilize policy

optimization. At the start of policy optimization, we compute the net reward from
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applying the policy for 𝑇 steps to a large set (e.g. 10x the batch size) of initial states.

This “validation reward” acts similarly to a validation loss in a supervised learning

problem. If the current validation reward becomes lower than that initial validation

reward, we revert the policy parameters back to the last point when the validation

reward was computed, lower the learning rate, and continue.

Thirdly, we found regulating the stochastic policy entropy (e.g. the variance

of the normal distribution output by the policy) aids in balancing exploration and

exploitation. The policy variance is assigned an upper and lower bound. Then, when

the policy is applied to compute the RL loss, a small entropy bonus is added to

prevent premature convergence to a poor local minima [66].

4.2 Generalization experiments

We first measure the modular visual-motor policy’s capability to generalize along two

domains: new designs and new environments.

4.2.1 Designs and environments tested

We created a set of training and test set of designs and environments.

In the following experiments, we limit the training designs 𝐷train to three designs,

each with four legs and two wheels, where the position of the wheels is left-right

symmetric and either in the front, middle, or rear of the body. The test designs 𝐷test

consists of three designs, each with four legs and two wheels, but where the location

of the wheels is left-right asymmetric.

We create training environments with two types of three-dimensional terrain. The

first, which we label “stairs,” contains regularly spaced ascending steps. The second,

which we label “curbs” contains rectangular blocks with fixed width at a regular

interval. The test environment consists of steps and flat regions staggered. See

Fig. 4-2 for a visualization of these environments. The terrain difficulty curriculum

includes multiple “levels” of difficulty, ranging from fully flat to higher obstacles, with

the maximum step height increasing in 2 cm intervals. For the following experiments,
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Figure 4-2: Our modular visual-motor policy is trained simultaneously using multiple
designs and environments at the same time. Top: One of the designs trained to
locomote through stairs and curbs. Bottom: Generalization to a new design and a
new environment not seen during training. We show multiple instances of the same
robot at the same time step, at states reached from different initial conditions.

we report the results of the same policy tested on a nearly-flat terrain (2 cm steps)

and a more difficult terrain (10 cm steps).

Although the policy optimization objective function 4.1 includes multiple terms,

we use the distance travelled forward as a metric for policy success, as the objective is

dominated by this term and it is more easily interpretable than the full objective value.

After training, for each design/environment combination, the policy was simulated

from 10 perturbed initial conditions. The mean and standard deviation of the distance
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Algorithm 3 Visual-motor MBRL for modular robots. Each step is conducted for
multiple designs and environments.
1: Collect dataset 𝒯train from random action trajectories
2: for 𝑖 = 1 . . . 𝑁 do
3: Model learning phase:
4: Train model 𝑓𝜑 from 𝒯train with supervised learning
5: Policy optimization phase:
6: Initialize buffer ℬ with random initial robot states and zero-valued policy

hidden-state vectors, i.e., ℬ ← {𝑠0,𝑖, ℎ0}𝑁batch
𝑖=1 where ℎ0 = 0⃗

7: for 𝑘 = 1 . . . 𝐾 do
8: Sample a batch of initial states 𝑠0 with hidden-state vectors from ℬ, and set

the hidden state of the policy 𝜋𝜃

9: 𝑅 = 0, 𝑠0 = 𝑠0
10: Roll out policy with imagined dynamics
11: for 𝑡 = 1 . . . 𝑇 do
12: 𝑎𝑡 ∼ 𝜋𝜃(𝑎𝑡|𝑂(𝑠𝑡))
13: 𝑠𝑡+1 = 𝑓𝜑(𝑠𝑡, 𝑎𝑡)
14: 𝑅 = 𝑅 + 𝑟(𝑠𝑡, 𝑎𝑡)
15: end for
16: ℒRL = −𝑅
17: Gradient descent on policy parameters 𝑑ℒ/𝑑𝜃
18: Overwrite part of ℬ with intermediate states and policy hidden-state vectors,

i.e., ℬ ← {𝑠𝑇/2,𝑖, ℎ𝑇/2}𝑁batch
𝑖=𝑁batch/2

19: end for
20: Curriculum check:
21: Increase environment difficulty for any designs that have met the performance

threshold
22: Data collection phase:
23: Apply 𝜋𝜃 to collect data 𝒯𝑛𝑒𝑤
24: 𝒯𝑡𝑟𝑎𝑖𝑛 ← 𝒯𝑡𝑟𝑎𝑖𝑛 ∪ 𝒯𝑛𝑒𝑤
25: end for

travelled after 200 time steps (about 16.7 seconds) was recorded. Each policy was

trained three separate times, and the results averaged for each cell. The model and

policy GNN sizes and learning hyperparameters used in these experiments are listed

in the Appendix.

4.2.2 Comparison to hand-crafted baseline

We developed a hand-crafted gait applicable to the various combinations of legs and

wheels tested in this work. All legs are given an alternating tripod gait, with phase and
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position offsets assigned as if they were in a hexapod. All wheels are given differential

drive/skid-steering commands, with position offsets and wheel speeds assigned as if

they were on a car. Gait speeds and amplitudes were tuned to produce steps as

fast and high as could be tracked by the joint velocity limits. This gait is not fully

open-loop, as it reacts to steer back to face forwards based on the observed yaw

angle, but it does not use other proprioceptive or exteroceptive observations. The

baseline gait enables the tested designs to locomote effectively on flat ground and over

small obstacles, but its performance degrades as the terrain features (steps, curbs)

become larger. In the tables following, we denote the results from this gait as “tripod

baseline.”

4.2.3 Generalization to new designs and environments simul-

taneously

First we test the capability of the policy when applied to new designs, new envi-

ronments, and both simultaneously. Here the policy is trained with all designs and

environments jointly, then the average distance travelled by all designs recorded in

Table 4.1. We found that the policy on average produced larger displacement than

the baseline. In particular, the results indicate that the policy can generalize to new

designs in new environments at the same time, and still produce behaviors better

than our hand-crafted policy.

4.2.4 Generalization across domains

With a policy for multiple designs and environments in hand, we are able to formu-

late new hypotheses about the effect of data variation on policy training outcomes.

We aim to build a better understanding of how robots with different designs but

shared structure can learn from each other, and how robots operating in different en-

vironments can learn from each other. A common underlying assumption in modern

machine learning is that learning from more a larger, more varied, or more diverse

training set improves generalizability: the performance difference of a model when
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Avg. dist. traveled in 16.7 seconds (m)
2 cm steps Tripod baseline Policy

Train designs and train env. 6.3 7.0 ±0.5
Test designs and train env. 5.9 7.0 ±0.4
Train designs and test env. 6.6 7.1 ±0.3
Test designs and test env. 6.2 7.3 ±0.3

10 cm steps Tripod baseline Policy
Train designs and train env. 2.3 4.9 ±0.2
Test designs and train env. 3.5 4.2 ±0.4
Train designs and test env. 2.5 4.2 ±1.0
Test designs and test env. 3.6 4.2 ±0.6

Table 4.1: Generalization to new designs, new environments, and both simultane-
ously. “Train” indicates that the design/environment was seen during training, “test”
indicates that it was not. The policy mean and standard deviation are listed after
the policy is trained from three times with random initial seeds.

evaluated on previously seen (training set) data and data it has never seen before

(test set) [145]. For example, in supervised classification problems, adding more data

results in better generalization and transfer to new inputs [29, 85, 133, 155, 156].

In reinforcement learning for locomotion or manipulation, adding more variation in

environment dynamics leads to better generalization to new settings [156]. We ob-

serve that in a modular learning setting, the design and environment are two distinct

domains on which data can vary.

The previous chapter showed learning a control policy from a variety of designs

enables generalization to new designs. Similarly, related work demonstrated learning

in multiple environments improves generalization to new environments [111]. A new

question of interest posed by this work is how diversity in one domain’s training set

effect generalization to the other domain’s test set. In other words, does learning from

multiple designs improve generalization to new environments? And conversely does

learning from different environments improve generalization to new designs? To our

knowledge, this is the first investigation on how the variety of designs in training

effects generalization to new environments, and vice versa.

We introduce the following related hypotheses:

• (H1) A policy will have higher performance when generalizing to new environ-
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ments when it has seen multiple designs in its training set than it would if it

has only seen a single design in its training set.

• (H2) A policy will have higher performance when generalizing to new designs

when it has seen multiple environments in its training set than it would if it has

only seen a single environment in its training set.

In other words, if these hypotheses were supported, it would indicate that training

multiple designs jointly can improve generalization to new environments, and vice

versa. We conducted experiments to test these hypotheses by training the policy

jointly with multiple designs and environments, and with individual designs and en-

vironments.

4.2.5 The effect of design variety on environment generaliza-

tion

We next test whether using multiple designs in training improves the policy’s ability to

generalize to new environments. Here, the policy is either trained with three designs

jointly, or trained three times with an individual design each time. Then, the policies

are applied to the test environment, and the results over the three designs averaged,

and the results recorded in Table 4.2.

4.2.6 The effect of environment variety on design generaliza-

tion

We next test whether using multiple designs in training improves the policy’s ability

to generalize to new environments. Here, the policy is either trained with two environ-

ments jointly, or trained two times with an individual environment each time. Then,

the policies are applied to the test designs, and the results over the two environments

averaged, and the results recorded in Table 4.3.
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Avg. dist. traveled in 16.7 seconds (m)
Tripod
baseline

Designs
ind. +
Envs.
ind.

Designs
ind.
Envs.
joint

Design
joint +
Envs.
joint

Joint
learning
delta (m)

Train envs. (2 cm) 6.3 7.2 7.6 7.0 -0.6
Test envs. (2 cm) 6.6 – 7.6 7.1 -0.5
Train envs. (10 cm) 2.3 6.4 6.2 4.9 -1.3
Test envs. (10 cm) 2.5 – 5.0 4.2 -0.8

Table 4.2: The effect of diversity in designs during training on generalization to new
environments. In this table, all conditions use the training designs, and the average
distance traveled in 16.7 seconds was measured. In the condition when designs and
environments are trained individually, we do not test generalizability. A positive joint
learning delta would indicate that using multiple designs in training helped improve
policy performance, but a negative value indicates that using multiple designs was
detrimental to policy performance.

4.2.7 Results

Though our algorithm can train a policy for multiple designs and environments, as

the environments become more difficult, the policy performance decreased when ad-

ditional designs and environment types were added to training. We observed what

we denote the “joint learning delta:” when training with a more difficult objective

(including either multiple designs or environments), the performance on the more dif-

ficult terrain decreases. On flat ground and low obstacles, the policy performance was

not significantly effected by adding multiple designs or environments in training. But

with larger obstacles (higher steps), the policy performance was worse when trained

with multiple designs and environments than the policy was trained individually for

each of those same designs or environments.

The joint learning delta most apparent from the upper right cell in Tables 4.2 and

4.3. This drawback can also be seen by comparing the results when training with

both designs and environments individually, which allows the policy to specialize

even further. Jointly training with multiple designs and environments will likely

require larger neural network capacities, larger batch sizes, and more training time in

order to reach the performance of the policy that is trained with a single design and
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Avg. dist. traveled in 16.7 seconds (m)
Tripod
baseline

Designs
ind. +
Envs.
ind.

Designs
joint +
Envs.
ind.

Design
joint +
Envs.
joint

Joint
learning
delta (m)

Train designs (2 cm) 6.3 7.2 7.0 7.0 0.0
Test designs (2 cm) 5.9 – 7.0 7.0 0.0
Train designs (10 cm) 2.3 6.4 5.1 4.9 -0.2
Test designs (10 cm) 3.5 – 4.6 4.2 -0.5

Table 4.3: The effect of diversity in environments during training on generalization
to new designs. In this table, all conditions use the training environments, and
the average distance traveled in 16.7 seconds was measured. In the condition when
designs and environments are trained individually, we do not test generalizability.
A positive joint learning delta would indicate that using multiple environments in
training helped improve policy performance, but a negative value indicates that using
multiple environments was detrimental to policy performance.

environment.

In this setting, we found that on average, learning from multiple designs did not

improve generalization to new environments, nor was the converse supported. The

results do not support Hypothesis 1: this can be seen in Table 4.2 from the “joint

learning delta” column corresponding to the test environments. Nor do the results

support Hypothesis 2: this can be seen in Table 4.3 from the “joint learning delta”

column corresponding to the test designs.

4.3 Robot demonstrations

Simulations are doomed to succeed [23]. We next validate that our algorithm produces

policies valid in the real world.

The robot chassis is comprised of a chassis with onboard power (batteries from

GRIN technologies [60]), computation (an Intel NUC), sensing (a Realsense D435 and

XSens IMU) and a small router. The actuators on the legs and wheels are X-series

modules made by Hebi Robotics [70] and connected via ethernet cables. The onboard

vision system uses VINS-Fusion [123] for odometry, and Elevation Mapping [49, 50]

to produce terrain maps. The local terrain map in the form of a 21 by 21 grid of
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Figure 4-3: A diagram of the software interactions used in our hardware deployment.
The SLAM system and policy are computed in real-time on an on-board computer
(Intel NUC). In this diagram, the hardware components have red borders, software
processes have blue borders, and data have no borders.

points aligned with the robot body frame are resampled from the global map, and

sent as input to the policy.

The policy outputs target joint velocity commands, which are sent to the actua-

tors, and tracked by low-level PID loops at a higher frequency on-board the actuator.

The actuators perform more accurate tracking when provided with a feed-forward

(FF) torque value 𝜏 , in particular when they are under heavy load. In addition to

control outputs, we learn an additional torque estimation network (a GNN of similar

structure to the policy GNN) that estimates the feed-forward torque needed for the

actuator to track the desired velocity. The data for this output is obtained by tracking

the torques experienced by the joints in simulation over multiple policy roll-outs.

Our policy was able to transfer from simulation to reality. Most notably, the policy

was able to control a hexapod to climb outdoors human-scale stairs. The results of

applying policies trained for a combination of curbs and stairs environments are shown

in Figures 4-4 and 4-5.

In the stair-climbing demonstration, we found the limiting factor in reliability was

the odometry system. The state estimate frequently diverged when the camera was

obscured, which happens when the camera moved too close to the stairs, causing the
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map to be corrupted. Future implementations may apply different odometry systems

or add additional cameras.

To test the reliability of the simulation-to-reality transfer, we conducted a repeated

trials of the policy applied to a hexapod traversing a 19 cm-high curb. The robot was

reset one meter from the curb, then the modular visual-motor policy applied for 20

s. We conducted five trials, and in each one, the robot was able to locomote over the

curb, transitioning from a flat-ground walking motion to a climbing motion and back

to flat ground. We also applied the baseline alternating tripod behavior, with the step

size tuned to be high enough to step on to the curb. The alternating tripod baseline

was only able to traverse the curb one out of five trials. This baseline indicates that

this obstacle is difficult enough to require some behavior change away from open loop

to succeed. Finally, we conducted an additional test in the same environment to

determine whether the policy was using the vision system to influence its actions. In

this test the policy, which was trained using local vision inputs, but at run-time was

given a spoofed terrain map image consistent with walking on flat ground, effectively

“blindfolding” the policy. Note this is different than policies trained by related work

that do not use vision at all and learn to navigate through small terrain features

proprioceptively, e.g., [94]. When the policy was not given terrain maps at run-time,

it was able to locomote on flat ground, but was not able to traverse the curb in any

of five trials.

4.4 Discussion

This work presents an algorithm to produce a visual-motor policy that can control

multiple designs in multiple environments, and can generalize to new designs and

environments. We have also shown how imitation learning can be used to transfer

behaviors between designs and to accelerate training performance. Then, we for-

mulated and tested hypotheses regarding generalizability when training jointly with

multiple designs and/or environments, however the data did not support our hypoth-

esis.
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Figure 4-4: A timelapse of robots with four legs and two wheels climbing up a curb
using the onboard vision system and modular visual-motor policy.

A policy trained with multiple designs and environments comes with drawbacks

alongside its benefits. The policy is fit to a more complex objective, rather than

specializing to a single design and environment. As a consequence, though it gains the

ability to generalize, this benefit comes at a cost of decreased performance compared

to a specialized policy. As the task becomes more difficult, allowing the policy to

specialize to a single environment and design allowed it to perform better than when

trained jointly.
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Figure 4-5: A time-lapse of a hexapod climbing up stairs using the onboard vision
system and modular visual-motor policy. The steps in the stairs shown here are 14
cm high, comparable to the height of the robot body at its nominal resting stance.
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4.4.1 Limitations

Our methods also come with a number of limitations.

Computational expense and training time.

Optimizing neural networks with millions of parameters requires significant compute

time. Even as we continue to improve sample complexity by using more sophisticated

learning representations and algorithms, at the same time aim for more complex

tasks such as including more designs and environments. We used a custom GNN

implementation, which does not batch well between different designs, so a better

GNN package with improved batch, such as that of [4], or using optimized GNN

packages, may improve training speed.

Behavior reward shaping.

The reward function plays a critical role in producing locomotion across three-dimensional

terrain, and in creating policies that transfer to reality. The details of the reward

weights used are listed in the Appendix, but required significant tuning to discover.

Hyperparameters.

In addition to the parameters involved in the reward, there are many hyperparameters

in each of the phases of the algorithm. For example, the model learning phase has

hyperparameters for GNN depth, width, activations, dropout, learning rate, batch

size, number of iterations, and more, and the policy learning phase has even more.

The time taken to train a single trial is only a portion of the total expense in de-

velopment of novel deep learning applications, because tuning the network requires

many trials before satisfactory results are achieved. Some hyperparameters are more

sensitive than others– for example, the number of iterations can be increased, but

increasing the learning rate can cause divergence. Similarly, if the time horizons in

policy optimization are set too short, then locomotive behaviors with legs do not

emerge, but if they are too long, then the approximate model trajectories become in-
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accurate. This is mitigated somewhat by the structure of algorithm in which learning

happens in multiple phases rather than end-to-end; it is possible to isolate and tune

each phase one at a time. But, each step requires expert knowledge, and can take

hours of compute to test each hyperparameter combination setting.

Further, there are a large number of hyperparameters in tuning the physical robot

behavior. Each joint has position, velocity, and effort PID loop gains, as well as low-

pass filter values, deadzones, and a number of other parameters. These values have

a significant impact on the real robot performance and change how well the policy

transfers.

Limitations of MBRL.

Our method is susceptible to problems commonly associated with MBRL. Model bias,

that is, the tendency for the policy to exploit inaccuracies in the model, does exist

in our work. The algorithm mitigates model bias by iteratively gathering data from

the simulation to train the model, but there is no guarantee that in general this will

fully eliminate model bias. Further, our method does not have an explicit method for

exploration. Including an entropy bonus in policy optimization allows it to discover

behaviors sufficient for our tasks, but is unlikely to discover large changes in behavior.

We mitigate this problem by using curriculum learning, such that the policy only ever

has to discover small improvements in behavior to go from flat ground up to steep

stairs. Future work will investigate techniques to explore while training.

Simulation transfer.

Our policy transfers from simulation to reality, but on more difficult environments,

the transferred behaviors degrade compared to their simulated counterparts, though

we have yet to quantify the sim-to-real gap for the variety of designs and environments

used in this work. The success rate observed for the climbing behaviors is lower in

simulation than reality. We observe that MBRL methods for “sim2real” are less well

developed than are related MFRL methods. Techniques such as domain randomiza-

tion [160] or domain adaptation [94] have been shown to be effective for sim2real. We
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included sensor noise in our observation function, and qualtitatively, this improved

sim2real transfer, however, we did not yet quantify this effect.

A potentially viable alternative with MBRL would be to learn exclusively from real

robot data [176], but for our application involving multiple designs and environments,

the requirement to frequently change the design and environment would make data

collection prohibitively expensive.

The dynamics of the real robot are different from the dynamics in simulation.

The largest difference is in the dynamics of the actuators– the Hebi X-series modules

are series-elastic actuated, with a rubber spring between the motor and output shaft.

This elasticity is not modeled in the simulation, which treats the joints as pure torque

sources.

Reactive policies.

Reactive policies, which act on recent observations and produce a single action at

each time step, have a number of benefits, but also some limitations. Firstly, the

policy must be specifically trained to produce single-step actions that result in long-

horizon behaviors. This means that they are best coupled with a longer-term planner.

Secondly, even when trained to convergence, the policy may not produce globally

optimal actions at all time steps. One promising direction to combine the benefits

of finite-horizon MPC and reactive policy learning such that the policy acts as a

good initial seed to warm-start trajectory optimization. Such an approach has been

successful for high-speed manipulation [83]

Baselines and comparisons.

This work does not compare against other learning methods. We do not claim that

the policies developed in this work, when applied to an individual design and envi-

ronment, would surpass those trained by methods such as PPO [132]. However, it has

been our experience that adapting MFRL methods to new robots and tasks requires

significant time and expertise. A direction for future work is developing comparisons

to methods such as PPO [132], SMP [78], or hardware-conditioned MLPs [34]. Ad-
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ditional baselines, which would be expensive but informative to implement as well,

would be a fully model-based (no RL) model-predictive control approach [20, 22].

The joint learning delta.

On flat ground, the previous chapter, and this chapter as well, found that a policy

learning jointly with multiple designs could perform equally well as a policy trained

with individual designs. Unfortunately, we did not find the same result on more dif-

ficult terrain. We found that policies trained on individual designs and environments

performed better than those trained jointly on multiple designs and environments.

We term this effect the “joint learning delta,” caused by optimizing a more difficult/-

complex objective over multiple tasks as opposed to optimizing multiple policies for

multiple tasks. This effect may be mitigated in future work by increasing policy and

model capacity while simultaneously increasing the amount of data, but would come

at the cost of additional computation. Methods such as that of Fu et al. [52] could

prove a future means of decreasing the joint learning delta as well.

Hardware limitations.

One of the downsides to modularity (mentioned in Chap. 1) is that modular robots are

often heavier and less powerful than similarly sized non-modular counterparts. The

speed of the robot, the size of environment features it can traverse, and the types

of gaits it can use, are constrained by the power output of the actuator modules.

While this is broadly true for all robots, it becomes apparent when comparing the

locomotion speed of our robots to that of similarly-sized non-modular robots.
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Chapter 5

Learning modular policies with

imitation

Training a policy with deep reinforcement learning can be computationally expen-

sive, especially when learning from multiple designs and environments. Robot learn-

ing algorithms, including those in our previous chapters, often assume that no prior

knowledge is given and must discover behaviors from scratch [68, 71, 80, 151]. But, if

demonstrations of optimal (or even just “good”) trajectories are provided, that demon-

stration data can be leveraged in a combined reinforcement and imitation learning

(IL) paradigm [121]. Imitation learning uses a dataset of expert demonstrations to

learn a controller, where the experts are typically either humans [69, 130] or a model-

predictive controller [115, 116]. However, in existing IL or or combination RL+IL

methods, the demonstration data must be provided from the same robot to which

the policy is trained. This chapter introduces a novel method of combining RL and

IL to train a modular policy, where the demonstrations can come from robots with

different designs than the robots being trained.

We extend the algorithm of Ch. 4 to make use of demonstrations from multi-

ple modular designs, which bootstraps policy training for different modular designs.

Specifically, we provide the learning algorithm with some prior demonstrations, in

the form of a dataset of trajectories 𝒯demo where each of the “demonstration designs”

𝐷demo ⊂ 𝐷feas may have multiple trajectories in the dataset, and |𝐷demo| << |𝐷feas|
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(e.g. |𝐷demo| = 2). Each demonstration trajectory consists of a sequence of states,

actions, and observations. Each design 𝑑 ∈ 𝐷demo has trajectories in the dataset, and

this demonstration data is used to bootstrap learning for 𝐷train. We show how this is

still possible even when the demonstrations are from designs that are not themselves

being trained, when 𝐷demo ∩𝐷train = ∅.

This chapter introduces a novel combination imitation and reinforcement learning

method that is able to incorporate demonstrations from modular robots with differ-

ent designs than those being trained. Then, we conduct experiments showing how

including demonstrations from different designs can accelerate learning.

5.1 Learning from modular demonstrations

The optimization problem (4.1) discovers a policy to maximize the average perfor-

mance of multiple designs. It learns a behavior “from scratch” without prior knowledge

that could be gained from policies known for other designs or from experts. We next

turn to the question of how to incorporate such behavioral priors. The prior will be

derived from a set of trajectories demonstrating behavior from designs 𝐷demo that

are allowed to, but not required to, be in 𝐷train. Our approach combines RL and IL

by adding a loss term to the policy optimization problem of Sec. 4.1, and additional

steps in the training algorithm.

5.1.1 Problem formulation

A trajectory 𝜏 conssists of a sequence of states, actions, and observations for a single

design. A set of 𝐿 trajectories make up the demonstrations dataset for a single design

index 𝑖 ∈ {1 . . . |𝐷demo|}, and a set of demonstrations from multiple designs make up

the full demonstration dataset 𝒯demo,

𝜏 = [(𝑠0, 𝑎0, 𝑜0), . . . (𝑠𝑇 , 𝑎𝑇 , 𝑜𝑇 )]

𝒯 𝑖 = [𝜏 𝑖1 . . . 𝜏
𝑖
𝐿], 𝒯demo = [𝒯 1 . . . 𝒯 |𝐷demo|]

(5.1)
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These demonstrations could be created via an external policy such as human tele-

operation or open-loop hand-crafted behaviors.

Given these demonstrations, we derive a constraint requiring the policy to imitate

the actions given the observations from the dataset. The likelihood of the policy pro-

ducing individual single actions from the dataset is 𝜋(𝑎|𝑜, 𝜃, 𝑑). The joint probability

is

𝜋(𝑎1|𝑜1, 𝑑1) ∩ 𝜋(𝑎2|𝑜2, 𝑑1) ∩ . . . 𝜋(𝑎𝑇 |𝑜𝑇 , 𝑑1) ∩ 𝜋(𝑎1|𝑜1, 𝑑2) . . .

Assuming independence between samples in the dataset, we want to lower-bound this

joint probability, [︀ ∏︁
𝑑∈𝐷demo

∏︁
(𝑜,𝑎)∈𝒯demo

𝜋(𝑎|𝑜, 𝜃, 𝑑)
]︀
> 𝜅

where 𝜅 ∈ R+. Taking the logarithm of both sides maintains the inequality and

converts the products to sums,

[︀ ∑︁
𝑑∈𝐷demo

∑︁
(𝑜,𝑎)∈𝒯demo

log(𝜋(𝑎|𝑜, 𝜃, 𝑑))
]︀
> log(𝜅). (5.2)

resulting in a constraint on the joint likelihood of the policy producing all of the

actions from the dataset.

Converting this hard constraint into a soft constraint via a Lagrange multiplier 𝜆

leads to a loss function, optimized during the policy learning phase,

ℒIL = −
∑︁

𝑑∈𝐷demo

∑︁
(𝑜,𝑎)∈𝒯demo

log(𝜋(𝑎|𝑜, 𝜃, 𝑑)) (5.3)

ℒ = ℒRL + 𝜆ℒIL. (5.4)

A novel aspect of our RL+IL method is that demonstration designs do not need

to be the same as the training designs. In other words, our method makes it possible

to derive a behavioral prior from designs even when 𝐷demo ∩𝐷train = ∅. As long as

all designs in 𝐷demo and 𝐷train are constructed with combinations of modules, our

method allows for robots with different designs to learn from one another.
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5.1.2 Creating demonstration data

We create demonstration data for the lowest and highest degree-of-freedom designs

in our feasible set: the four-wheel car (eight DoF) and the six-leg hexapod (eighteen

DoF). We hand-craft behaviors based on expert knowledge for these designs. The

hexapod demonstrations show alternating tripod gait trajectories, where the left and

right side step sizes are modulated to steer the body yaw towards zero while walking

forward. The car demonstrations show differential drive skid-steering, in which the left

and right side wheel velocities are modulated to steer the body yaw towards zero while

driving forward. Note these are the same behaviors used as a baseline in Chapter 4.

For both the car and hexapod, we start the robot in 50 different randomly perturbed

initial conditions, and create trajectories of 100 time steps showing the robot turning

toward zero yaw and moving forward. These trajectories form the dataset 𝒯demo.

5.1.3 Learning from demonstration data

The demonstration data is incorporated into the MBRL algorithm to create an

MBRL+IL algorithm. First, it is used to “pre-train” a policy, that is, to warm-start

the policy before the algorithm in Sec. 4.1 begins. In policy pre-training, we employ

behavioral cloning using the demonstration dataset. The IL loss (5.3) is used to per-

form supervised regression on the policy parameters, such that the policy produces

similar actions to the dataset when the observations and designs in the dataset are

input. The resulting policy is not effective globally– it does not know how to recover

to the demonstrated gaits from arbitrary random positions. However, it serves to

initialize the policy such that it does not need to discover behaviors from scratch. In

this phase, policy learning only uses 𝐷demo.

Then, the demonstrations 𝒯demo are used in the loss (5.4). At each iteration in

the policy optimization phase, a batch of data is sampled from 𝒯demo and used to

compute a behavioral cloning IL loss, and added to the RL loss. As a result, the

policy is encouraged to reproduce the actions in the demonstrations, without being

limited to those behaviors, and can still learn recovery behaviors.
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5.1.4 Implementation details

The drawback to using demonstrations to bootstrap policy learning is that those

demonstrations may not be optimal with respect to the objective, such that the IL loss

(5.3) could act to limit the minimum RL loss (4.6) that could be achieved otherwise.

To account for this possibility, we set 𝜆 in (5.4) to decay at each iteration. By decaying

the IL term, we observe the policy initially imitates the demonstrations, then as the

algorithm iterations between phases, the same gait style (e.g. alternating tripod-like

gaits) persist even when as the behavior may diverge from the demonstrations.

Another scenario we encountered is a poor-quality local minima that can occur

when the RL and IL loss conflict during early iterations. The likelihood of the policy

imitating the demonstrations could be low, while still lowering the RL loss. To prevent

this situation, we penalize the entropy of the actions output by the policy when given

observations from the demonstration dataset, that is, an additional loss term of the

form
∑︀

𝑜∈𝒯demo
𝐻(𝜋(𝑎|𝑜) where 𝐻(·) is the entropy function. We found this loss guided

the policy towards matching the actions in the demonstration dataset, stabilizing the

initial RL+IL iterations.

5.2 Experiments: RL + IL

We conducted experiments to determine the value of adding imitation learning to the

MBRL algorithm. The demonstration trajectories can be derived from robots with

either the same or different designs as the designs the policy is trained to control, as

long as all designs involved are made up of combinations of the modules. We hypoth-

esize that the inclusion of demonstration trajectories can improve policy convergence

speed. We further hypothesize that the improvement in convergence speed will be

more noticeable when the training designs are the same as the demonstration designs,

but that there will still be an effect when the training and demonstration designs are

disjoint sets, i.e., when the designs the policy learns to control are not shown by the

demonstration dataset.

We test two cases: firstly, where demonstrations are from the training designs
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Demonstrations Policy training

(a)

(b)

(c)

(d)

Figure 5-1: The designs used to create a demonstration dataset (left), and the designs
used train a modular policy (right) with our RL+IL algorithm, in our experiments.
The results of each condition (a-d) are shown in Fig. 5-2.

(𝐷demo = 𝐷train), and secondly, where demonstrations are from different designs

(𝐷demo ∩ 𝐷train = ∅). To isolate the effect of the 3D terrain from the imitation

learning, we apply these tests on flat terrain, although the method is applicable to

the full visual-motor policy on 3D terrain. In each test, we run the algorithm three

times, average the results, then plot the max, min, and mean of the distance travelled.

The designs used in the demonstration dataset and in policy training are illustrated

in Fig. 5-1.

In the first experiment, we set 𝐷train to be only either the hexapod (six-leg) or car

(four-wheel) design, and measure the effect of including demonstrations from those

designs in training. The results of this test are shown in Figs. 5-2a and 5-2b. We

found that including hexapod demonstrations improved the convergence speed of the

algorithm, and that the car demonstrations had little effect on the car learning. The

car is able to learn to locomote nearly optimally in a single iteration. This result

suggests that when the learning task is less complex (lower dimensional, smoother),

the demonstrations are not as useful, but do not impede the RL algorithm.
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In the second experiment, we set 𝐷train to be a design with four legs and two

wheels, then a design with two legs and two wheels, and measure the effect of includ-

ing both hexapod and car demonstrations in training. The results of this test are

shown in Figs. 5-2c and 5-2d. The inclusion of demonstrations increases the speed of

convergence and decreases the variance, even when the designs learning to locomote

are different than the designs shown in the data.

5.2.1 Discussion

For robots to become more versatile and capable in the real world, they must be able

to function in multiple environments, and they may benefit from learning from other

robots that have different designs. Our results show that one policy can be used on

multiple robots and environments, even outside of those seen during training. While

we have focused on a narrow class of locomoting robots in this work, we believe our

methods are general enough to be applied to different types of robots and settings.

Our ongoing work will develop additional baseline comparisons, as well as testing

other network architectures, designs, and environments.
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Algorithm 4 MBRL with IL for modular robots. Each step is conducted for multiple
designs and environments.
1: if Using prior demonstrations then
2: Train 𝜋𝜃 with behavioral cloning from 𝒯demo

3: end if
4: Collect dataset 𝒯train from random action trajectories
5: for 𝑖 = 1 . . . 𝑁 do
6: Model learning phase:
7: Train model 𝑓𝜑 from 𝒯train with supervised learning
8: Policy optimization phase:
9: Initialize buffer ℬ with random initial robot states and zero-valued policy

hidden-state vectors.
10: for 𝑘 = 1 . . . 𝐾 do
11: Sample a batch of initial states 𝑠0 with hidden-state vectors from ℬ, and set

the hidden state of the policy 𝜋𝜃

12: 𝑅 = 0, 𝑠0 = 𝑠0
13: Roll out policy with imagined dynamics
14: for 𝑡 = 1 . . . 𝑇 do
15: 𝑎𝑡 ∼ 𝜋𝜃(𝑎𝑡|𝑂(𝑠𝑡))
16: 𝑠𝑡+1 = 𝑓𝜑(𝑠𝑡, 𝑎𝑡)
17: 𝑅 = 𝑅 + 𝑟(𝑠𝑡, 𝑎𝑡)
18: end for
19: ℒRL = −𝑅
20: if Using prior demonstrations then
21: Sample a batch of (𝑜, 𝑎) from 𝒯𝑑𝑒𝑚𝑜

22: Compute ℒIL per (5.3), add to ℒRL

23: end if
24: Gradient descent on policy parameters 𝑑ℒ/𝑑𝜃
25: if 𝑘%update rate == 0 then
26: Create a batch of new random initial states, and apply the policy for

𝑇rand < 𝑇 steps
27: Add the resulting states and policy hidden-state vectors to ℬ
28: end if
29: end for
30: Curriculum check:
31: Increase environment difficulty for any designs that have met the performance

threshold
32: Data collection phase:
33: Apply 𝜋𝜃 to collect data 𝒯𝑛𝑒𝑤
34: 𝒯𝑡𝑟𝑎𝑖𝑛 ← 𝒯𝑡𝑟𝑎𝑖𝑛 ∪ 𝒯𝑛𝑒𝑤
35: end for
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Figure 5-2: The results of the experiments described in Sec. 5.2, in which we compare
the outcome of training with and without demonstration data (RL vs. RL+IL). In
each plot, the blue curve corresponds to the average over three trials when training
with RL+IL method, and the red curve to the RL method without IL. The shaded
regions indicate the maximum and minimum value for the trials. (a) A hexapod
trained using demonstrations of a hexapod walking with alternating tripod, (b) A
car trained using demonstrations of a car driving with skid steering, (c) a robot with
four legs and two wheels trained using demonstrations from both a hexapod and a
car, and (d) a robot with two legs and two wheels trained using demonstrations from
both a hexapod and a car.
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Chapter 6

Automating manipulator design

Synthesizing the design of a modular robot for a given task involves a number of

challenges, one being that the space of possible modular designs grows exponentially

in the number of types of modules and ways they can be connected. When searching

this exponentially large space, we have to evaluate whether each candidate robot

can complete the task. This evaluation requires comparing the relative performance

of each candidate. If the task requires complex behaviors, realistic simulation, or

planning, then even evaluating a fraction of the possible designs at run-time would

cause a delay in deployment, and is computationally intractable at scale. We address

this intractability by learning a design value function (DVF), an estimate of how

each module added to a design will impact the performance. After off-line training,

designs can be obtained on-line through an inexpensive search using the DVF as a

search heuristic.1

The main contribution of this chapter is an algorithm which uses deep reinforce-

ment learning to create the DVF, enabling us to efficiently search the space of arrange-

ments in the context of each robot’s inherent capabilities for a given task. Specifically,

the DVF is a state-action value function, conditioned on the task, that estimates the

impact adding each module would have on robot performance. In this chapter, we

limit the scope of the problem to synthesizing the arrangements of modular serial

manipulators, for tasks in which the manipulator must reach a set of quasi-static
1This chapter is adapted from [168]
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Figure 6-1: Our approach searches for modular manipulator designs by viewing the
space of arrangements as a tree, where modules are sequentially added to the end
of the robot. The arrangement at the root of the tree is a base mounting location.
Solid arrows represent module additions, and dashed arrows indicate that the tree
continues but is not shown. We use deep reinforcement learning to create a data-
driven search heuristic which guides search on this tree. We apply our algorithm to
modular components produced by Hebi Robotics [70].

workspace positions and orientations.

We build on prior modular design synthesis methods [44, 63] which incrementally

construct and search a tree of different modular arrangements. Specifically, each node

added as a child to a current leaf node represents adding a module to the distal end

of the manipulator, as shown in Figure 6-1. We view the construction of this tree as

a series of states (arrangements) and actions (adding modules), and treat assembly

of an arrangement as a Markov Decision Process [149]. Under this formulation, we

learn a state-action value function which approximates the benefit of adding each

module type to an arrangement given the task. The DVF is a form of deep Q-

network (DQN) which learns to approximates this value function using reinforcement

learning [112]. The DVF is used within a search heuristic for a best-first graph search

[18]. In the context of a branch-and-bound graph search, the DVF can be thought

of as estimating the maximum performance (minimum cost) that a robot on a given
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branch of the search tree could have.

We compare our approach to two related methods which search for modular ar-

rangements: a best-first search [63] and an evolutionary algorithm [82]. After training

the DVF, our algorithm finds lower-cost solutions more efficiently than these related

methods.

6.1 Deep Q-learning

We formulate the robot design problem as a finite Markov Decision Process, in which

we construct a robot by adding one module at a time. We define a complete arrange-

ment as one that ends with an end-effector module, and a partial arrangement as one

that does not. At each time step 𝑡, the agent selects an action 𝑎𝑡 that adds a module

to a partial robot. The state 𝑠𝑡 contains the arrangement, so the next state depends

deterministically on only the previous state and the module added. This results in a

new robot, 𝑠𝑡+1, and a reward, 𝑟𝑡, from the environment. In this context the set of

all robot modules defines the action space 𝒜, while the set of partial and complete

robots defines the state space, 𝒮.

We define the return at time 𝑡, 𝑅𝑡 =
∑︀𝑇

𝑡′=𝑡 𝛾
𝑡−𝑡′𝑟𝑡′ , with a discount factor 0 ≤

𝛾 ≤ 1. The state-action value function 𝑄𝜋 : 𝒮 × 𝒜 ↦→ R is then defined as the

expected return given the action 𝑎𝑡 is taken in state 𝑠𝑡 following policy 𝜋 : 𝒮 ↦→ 𝒜.

Our approach uses reinforcement learning to estimate the optimal state-action value

function 𝑄*, which can be defined in terms of the Bellman equation,

𝑄*(𝑠𝑡, 𝑎𝑡) = max
𝜋

E
[︂
𝑟𝑡 + 𝛾max

𝑎′∈𝒜
𝑄*(𝑠𝑡+1, 𝑎

′)

]︂
. (6.1)

Tabular Q-learning [164], a temporal difference learning method [149], can be used

to compute an estimate of the state-action value (“Q-value”) corresponding to every

possible state-action pair. This approach becomes intractable for large state and

action spaces, so deep Q-networks use a deep neural network as a function approxi-

mator 𝑄(𝑠, 𝑎; 𝜃) with network parameters 𝜃 to approximate 𝑄*(𝑠, 𝑎) [112]. We train
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this network with experience replay [127] and a target network [158].

Our method also uses additions to the original DQN framework. Universal value

function approximators (UVFA) are learned value functions conditioned on the task

goal [139]. We use a UVFA to enable our DVF to apply to a range of goals, which sep-

arates our methods from those of related design RL methods for non-robot-systems

such as [12, 43, 58, 135, 189]. Hindsight experience replay (HER) is a data aug-

mentation technique employed for RL problems with sparse reward signals [10]. In

HER, episodes are replayed with a different goal than the one used during the original

episode.

6.2 Design value functions for manipulators

In contrast to recent work [62, 138] that used RL to solve an optimization problem

to build a robot for each task, we use RL to learn a UVFA for a class of tasks [139].

Specifically we use a DQN as a UVFA to learn the expected state-action value of

adding each module type to an arrangement given the goal of reaching a workspace

target. The modules are chosen from a set of 𝑁𝑚 types with indices 𝑚 ∈ 1, 2, ...𝑁𝑚.

Each module could include any number of actuators and links, and may be able only

to connect to some subset of other module types. The modular design synthesis

problem is then to select a sequence of modules which form an arrangement 𝐴 that

can complete a given task.

In this work we limit the space of tasks to a set of 𝑁𝑇 workspace targets which a

serial manipulator should reach. A workspace target 𝑇 = [𝑝, 𝑛̂] consists of a position

in space 𝑝 ∈ R3 and tip axis orientation 𝑛̂ ∈ R3, ||𝑛̂|| = 1. This representation can

include manipulation tasks including peg-in-hole-insertion, positioning a camera, or

screw insertion.

Let 𝑁𝐽(𝐴) represent the number of actuated joints in a given arrangement 𝐴. The

forward kinematics (FK) of 𝐴 with joint angles 𝜗 ∈ R𝑁𝐽 (𝐴)

[𝑝𝐸𝐸, 𝑛̂𝐸𝐸] = FK(𝐴, 𝜗), (6.2)

104



outputs 𝑝𝐸𝐸, the end-effector tip position, and 𝑛̂𝐸𝐸, the tip axis. To evaluate whether

an arrangement can reach a target, we define the inverse kinematics (IK) of an ar-

rangement as the joint angles that minimize the difference between the FK and a

target,
𝜗 = IK(𝐴, 𝑝, 𝑛̂)

= argmin
𝜗
||𝑝− 𝑝𝐸𝐸||+ (1− 𝑛̂ · 𝑛̂𝐸𝐸)

s.t. 𝑓(𝐴, 𝜗) ≤ 0

(6.3)

where 𝑓 represents a set of constraints including self-collision avoidance, obstacle-

collision avoidance, and joint limits. We use the interpenetration distance between

colliding rigid bodies as the collision constraint metric. We solve IK numerically

using gradient descent with multiple random initial seed restarts. In a slight abuse of

notation, we will use 𝑝𝐸𝐸(𝐴, 𝑝, 𝑛̂) and 𝑛̂𝐸𝐸(𝐴, 𝑝, 𝑛̂) to denote the forward kinematics

output of the inverse kinematics solution for a given target. To evaluate whether

an arrangement can reach a given target, we set tolerances 𝜖𝑝 and 𝜖𝑛, and define a

“reachability” function for the arrangement as

reach(𝐴, 𝑇 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 ||𝑝− 𝑝𝐸𝐸(𝐴, 𝑝, 𝑛̂)|| ≤ 𝜖𝑝 and

1− 𝑛̂ · 𝑛̂𝐸𝐸(𝐴, 𝑝, 𝑛̂) ≤ 𝜖𝑛

0 otherwise.

(6.4)

Our goal is to find an arrangement of modules that is capable of reaching the

targets. At the same time, we desire robots with fewer actuators (lower complexity)

and lower mass. However, we must recognize that for arbitrary environments and

module type sets, not every target may be reachable. Therefore, we pose this problem

as a multi-objective optimization to maximize the number of targets reached while

minimizing the complexity and mass of the robot, which gives us an objective function

𝐹 ,

𝐹 (𝐴, 𝑇 ) = −𝑤𝐽𝑁𝐽(𝐴)− 𝑤𝑀𝑀(𝐴) + reach(𝐴, 𝑇 ) (6.5)

where we use 𝑀(𝐴) to represent the total mass in arrangement 𝐴, and 𝑤𝐽 and 𝑤𝑀
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Figure 6-2: During training, the DVF is used repeatedly to evaluate the contribution
each module type would have toward reaching a target. The arrangement is assembled
sequentially (top) with modules selections made by the DVF (bottom)

are user-set weighting factor to trade off between the multiple objectives. We seek an

arrangement that maximizes this function,

𝐴* = argmax
𝐴

𝑁𝑇∑︁
𝑖=1

𝐹 (𝐴, 𝑇𝑖). (6.6)

Next we will learn a neural network which approximates the benefit of adding each

module to an arrangement to maximize (6.5) for a single target. Section 6.2.3 will

describe how this function is used to maximize over multiple targets.

6.2.1 Deep Q-network for module selection

Our algorithm assembles a serial-chain manipulator one module at a time, as illus-

trated in Figure 6-2. We use the output of a trained DQN, which takes as input the

partial design and the task, as the DVF. To use RL, we must first define the state,

actions, and reward signals.

We encode the arrangement 𝐴 as a list of one-hot vectors, where each index in a

single vector indicates a type of module selected, with a user-set maximum number

of modules allowed in the arrangement 𝑁𝑚𝑎𝑥. At each time step an action selects a

module type 𝑚 from the set of 𝑁𝑚 module types. Each episode is a series of steps

where one module is added until either the arrangement is complete (an end-effector

is added) or the maximum number of modules in an arrangement has been reached.

We append a single workspace target 𝑇 = [𝑝, 𝑛̂] to the state. This conditions
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Figure 6-3: Left: An arrangement of modules (dark grey and red) with base located
at the origin reaches a single workspace target position and tip axis (green point with
arrow) without colliding with voxelized obstacles (grey cubes). Right: The physical
modular robot matches the arrangement and environment.

the Q-values on the target, forming a UVFA that can apply to a range of targets

[139]. We also condition the learned Q-value function on the locations of obstacles

in the environment. To make a tractable parameterization of environment obstacles,

we voxelize the space into a coarse “grid” and assign a binary occupied/unoccupied

value to each voxel, so 𝑂 ∈ {0, 1}(𝑛𝑂×𝑛𝑂×𝑛𝑂), where 𝑛𝑂 is the number of voxels on

each edge of the grid. The size of the voxels and the range of space over which they

span were set by hand; we used 𝑛𝑂 = 5 with voxel edge length 0.25 m; see Figure 6-3

for an illustration. The inputs to the DVF are the partial arrangement, the target,

and the obstacle grid. Figure 6-4 depicts the structure of the neural network.

We use a reward signal such that the sum of rewards over an episode matches

(6.5) because we aim to select an arrangement that maximizes that function in (6.6).

The non-terminal rewards are penalties assigned for the mass and complexity of each

module 𝑚 added to the arrangement,

𝑟(𝑚) = −𝑤𝑗𝑁𝐽(𝑚)− 𝑤𝑀𝑀(𝑚). (6.7)

If the module added is an end-effector (EE), this is considered a terminal action,
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𝐴 [𝑝, ො𝑛] 𝑂

𝑄1
𝑄2
⋮

𝑄𝑁𝑚

Figure 6-4: The neural network architecture we used for our DVF consists of fully
connected (FC) layers with rectified linear unit (ReLU) activation, and a 3D convo-
lution (Conv3D) over the grid of obstacles. The inputs to the DVF are the current
arrangement 𝐴, target 𝑇 = [𝑝, 𝑛̂], and obstacle grid 𝑂. The outputs are the state-
action values 𝑄 for each type of module.

and the terminal reward is returned. The reachability function (6.4) is evaluated and

added to the reward. If the maximum number of modules is reached without any

end-effector added, a penalty of −1 is returned,

𝑟terminal =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 length(𝐴′) == 𝑁𝑚𝑎𝑥

and 𝑚 is not an EE

reach(𝐴′, 𝑇 ) 𝑚 is an EE,

(6.8)

where we define 𝐴′ as the arrangement resulting from the addition of 𝑚 to the existing

arrangement 𝐴. The elements of the Q-value vector 𝑄 ∈ R output by a forward pass

of the DVF represent the expected value of a module type 𝑚 that could be added to

the tip of the arrangement 𝐴 given a target 𝑇 and grid 𝑂,

𝑄(𝐴, 𝑇,𝑂,𝑚) = E
[︀
𝑟 +max

𝑚′
𝑄(𝐴′, 𝑇, 𝑂,𝑚′)

]︀
≈ DVF𝑚(𝐴, 𝑇,𝑂),

(6.9)

where DVF𝑚 is the 𝑚th component of the output of the DVF, as shown in Fig. 6-4.

6.2.2 Training the DVF

The DVF is trained to approximate the Q-values of each module type for a given

arrangement, target, and grid. At the start of each episode during training we ran-
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domize the target and grid. Each element of 𝑝 and 𝑛̂ is selected from a [−1, 1] range,

and 𝑛̂ is normalized. When we randomize the target and environment occupancy, we

ensure that any points that must be occupied by the robot (e.g. the base and target)

are unoccupied.

During training we build up an arrangement by sequentially selecting modules. At

each step in the episode, the network outputs Q-values for each module type. In our

module set, each type of module can connect to only a subset of the other module

types. We mask out invalid module connection actions, and only learn Q-values

for valid actions. An episode ends when an EE module is chosen or the maximum

number of allowable modules has been added. The episodes have a maximum length,

enabling us to use a discount factor 𝛾 = 1. We use a Boltzmann exploration strategy

[13], as there are multiple similar module choices with similar values that should

be explored, such that we avoid exploiting a single robot arrangement for all tasks.

We use curriculum learning [17] on the obstacle grid, mass penalty, and complexity

penalty. We begin training with no obstacles or penalties, and periodically increase

the maximum number of randomly selected obstacles and the penalty value during

the early stages of training.

To learn from the sparse reward signal, we use HER [10]. Each time a complete

arrangement is found which does not reach the target, the episode is replayed with the

point that was reached set as the target. We introduce additional data augmentation

by randomly sampling joint angles and occupancy grid for the robot found, calculating

FK, removing any samples that are in collision, and replaying the episode with the

pose reached by each sample’s FK set as the target. We found this results in higher

quality solutions to our full graph search procedure by training the network to better

predict the potential value of lower mass/complexity arrangements. While training,

we periodically test the DVF on a small set of randomly generated test points. The

performance of the graph search procedure on these test sets is used as an evalution

metric to decide when to end training.
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6.2.3 Using the DVF to search for designs

To search for task-specific arrangements, we use the DVF module value approximator

to guide a best-first search. The forward pass of the DVF outputs the Q-value for

each module type conditioned on a single target and grid. This Q-value encodes the

expected future value of the objective function 𝐹 defined in (6.5).

Different tasks may involve reaching different numbers of targets; as per (6.6), we

seek to maximize return over multiple targets. But, for a single neural network to

operate on multiple points at once, the value function would need to be conditioned

on all permutations of those points, and would be constrained to a fixed maximum

number of points. It would be significantly more computationally expensive to train

if each arrangement selection were to be conditioned on a set of targets than if it were

conditioned on one target. To address this challenge, we create a search heuristic

from the output of one forward pass for each target.

First we observe that at terminal actions, the state-action value summed over all

targets matches the desired maximization in (6.6). That is, for actions that result in

terminal states (when the selected action 𝑚 is an end-effector),

𝑁𝑇∑︁
𝑖=1

𝑄(𝐴, 𝑇𝑖, 𝑂,𝑚) =

𝑁𝑇∑︁
𝑖=1

𝐹 (𝐴′, 𝑇𝑖). (6.10)

Even though this equation is not exact for non-terminal actions, we find that the

summation over Q-values is a good search heuristic to maximize objective 𝐹 . There-

fore we form the search heuristic ℎ ∈ R from a summation of forward passes of the

DVF for each target,

ℎ(𝐴, 𝑇1...𝑇𝑁𝑇
, 𝑂,𝑚) =

𝑁𝑇∑︁
𝑖=1

DVF𝑚(𝐴, 𝑇𝑖, 𝑂). (6.11)

This search heuristic prioritizes modules selected based on their potential to reach

the targets with fewer additional modules.

Our DVF-best-first search algorithm is outlined in Algorithm 5. At each iteration,

the arrangement with the highest heuristic value is popped from the open set. If it is
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Algorithm 5 Manipulator arrangement search, a best-first search guided by the
output of a DVF.
1: Input: A set of 𝑁𝑇 targets and an occupancy grid 𝑂
2: openset = [Empty arrangement]
3: while time < time limit do
4: Pop node with highest ℎ value from openset
5: Expand the node
6: if node contains complete robot then
7: Evaluate IK at all targets
8: if all targets reached then
9: Store return for the arrangement

10: end if
11: else
12: Forward pass of DVF and sum output for each target as in (6.11)
13: Add each child 𝐴′ to the openset with value ℎ
14: end if
15: end while
16: Return arrangement with highest return (lowest cost)

a complete robot, it is evaluated. Otherwise it is expanded, passed through the DVF

to create new ℎ values for its children, and those children are added to the open set.

The Q-value is the expected return from the current arrangement onward. We

penalize the addition of modules, so the DVF outputs from arrangements with more

modules are usually higher than the outputs from arrangements with fewer modules.

As a result, the search tends to act more like a depth-first search than a breadth-first

search. A neural network forward pass is computationally inexpensive, so computa-

tion of the DVF scales linearly with the number of targets, keeping computation for

each node expansion low.

6.2.4 Comparisons to related work

We implemented two methods from prior work, a genetic and a best-first search, as

bases of comparison. Here we describe these implementations and the experiments

we ran.
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Genetic algorithm

Each individual 𝐴 in the population was represented with a gene 𝑔 ∈ [0, 1)𝑁𝑚𝑎𝑥 . To

convert each gene to an arrangement, each element was interpreted sequentially as

the next valid module to attach. For example, if there are two possible children

module types for the module at 𝑗 − 1, and element 𝑗 of the gene is 0 ≤ 𝑔𝑗 < 0.5,

then the first of the two types would be selected, but if 0.5 ≤ 𝑔𝑗 < 1 then the second

of the two types would be selected. Each individual in the population was evaluated

with a score combining their IK error, weighted complexity and mass, and whether

they are complete. The population was resampled with elite selection, crossover, and

mutation.

Best-first search algorithm

We implemented the algorithm of [63], in which the tree of possible designs is explored

with a best-first search. At each step, partial robots are evaluated with a heuristic

function based on an IK-like subproblem. The candidate with the lowest heuristic

cost is expanded, and any complete robots are evaluated for the specified task. We

removed velocity constraints from the IK and heuristic subproblem evaluations, which

speeds up these functions which are evaluated many times.

Comparison tests

We conducted a comparison test between the different methods: a genetic algorithm,

best-first search, and our DVF-best-first search. We used modular components pro-

duced by Hebi Robotics [70] with a set of 11 types of modules: three base mount

orientations, one actuated joint, six different links/brackets, and one end-effector.

We limit the maximum number of modules in an arrangement to 𝑁𝑚𝑎𝑥 = 16, a suffi-

cient length for complete robots with a maximum of seven actuated joints given these

modules. During training and all tests, we set the objective weights 𝑤𝐽 = 0.025,

𝑤𝑀 = 0.1. In the comparison tests, we generated 50 sets of 10 random targets, each

set with a randomized obstacle grid with up to 10 obstacles. For each method, we
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measured:

• the time until the first feasible arrangement (one which reaches all targets) was

found for each set,

• the standard deviation of the time until the first feasible robot was found was

found for each set,

• the penalty 𝑤𝐽𝑁𝐽(𝐴) + 𝑤𝑀𝑀(𝐴) from the complexity and mass of the first

feasible robot,

• the number of complete arrangements evaluated before a feasible robot was

found,

• the feasible arrangement with the lowest cost found after five minutes, and

• the number of target sets for which no feasible arrangement was found after five

minutes.

When no feasible arrangement was found for a given method and set within the time

limit, that set was not included in the averages or times for that method. We selected

these criteria because we are interested in rapid prototyping and field applications,

where we may need to trade off between speed and solution quality. As such both

the first arrangement found (fastest solution) and the solution found after a fixed

amount of time are relevant. The IK evaluation of complete robots is the most

computationally expensive step. We trained the DVF and conducted all tests on a

desktop computer with Ubuntu 16.04, Intel i5 four-core processor at 3.5 GHz, and an

NVIDIA GTX 1050 graphics card. We trained the DVF for 450,000 episodes (about

33 hours) before using it within our algorithm.

Searching with torque constraints

In addition to the DVF network above, we trained a network for a more difficult

variant of the problem, with more module types and a constraint on the actuator

torque limits. We added five more module types (four links and one rotary actuator),
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Table 6.1: Results of the comparison tests described in Section 6.2.4 (lower values are
better for all metrics).

11 modules 16 modules, torque constraint
Method Ours Best-first Genetic Ours Genetic

Avg. runtime to first (min.) 0.3 3.0 0.6 0.2 31
Std. dev. runtime to first (min.) 0.1 1.0 0.7 0.4 1.7

Avg. num. complete robot evaluations to find first 10 29 138 40 311
Avg. cost for first found 0.57 0.59 0.62 0.63 0.64

Avg. best cost after five min. 0.52 0.58 0.53 0.60 0.63
Num. trials none found after five min. 1/50 16/50 1/50 1/50 28/50

for 16 total module types. One actuator module type had lower mass and lower

maximum torque, and the other had higher mass and higher maximum torque. When

evaluating the reachability function, if any actuator torque limit was exceeded, then a

terminal reward of 0 was returned. As a basis of comparison, we modified the genetic

algorithm to include a penalty on arrangements that overload the actuator torques.

We were unable to compare this extension to the method of [63] as their method does

not consider torques. The test set used in this test was the same as those described

above. We trained this DVF for 700,000 episodes (about 57 hours).

6.3 Results

The results of the comparison tests are shown in Table 6.1. We found that our

method produces the best results in all categories. For one of the tests, none of the

three algorithms were able to find a feasible robot within five minutes.

The genetic algorithm finds costly feasible arrangements in few iterations by ran-

domly sampling arrangements, and then refines those results over further iterations

to less costly arrangements. Qualitatively we found it tends to do well when there are

many feasible robots for the task, for example when there are few targets and few ob-

stacles, because the initial sampling may include costly arrangements that complete

the task. However, the genetic algorithm requires many complete robot planning

evaluations. If the computational cost of evaluating planning for complete robots

were to increase, we expect this method to correspondingly become more expensive.

The best-first search does not include obstacles in its search heuristic, so its per-
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formance tends to degrade in the presence of many obstacles. It evaluates robots in

order of increasing complexity, but must solve an nonlinear program to evaluate each

node. Due to this computationally expensive subproblem, this algorithm was not able

to find solutions for a third of the test cases within the five minute time limit. In

the cases where it did find a solution, it was not usually able to improve upon that

solution within the remaining time.

We observed that our method acts depth-first initially, evaluating a complete

robot after only a few DVF forward passes. The reward structure during training

guides the search toward less costly arrangements. In contrast to the heuristic of [63],

our heuristic considers obstacle locations. We found this improves average solution

quality and run time over an ablated variant that did not condition the heuristic on

obstacles.

In the variant with a torque constraint and additional module types, our method

still searched the space of arrangements efficiently, and output feasible designs quickly,

albeit after a longer training time. The higher-mass actuator module was frequently

needed to create arrangements capable of extending to the farthest targets without

exceeding the maximum torques, resulting in solutions with higher cost than in the

previous experiments. Even with the larger set of modules and additional constraint,

a feasible design was still consistently returned within one minute. In contrast, the

genetic algorithm was unable to find a feasible arrangement within five minutes in

the majority of the test cases.

In the most directly related work [63] the search suffers from the curse of dimen-

sionality at runtime. When the branching factor (from number of types of modules

available) increases, the number of heuristic function evaluations increases exponen-

tially. In contrast, when more modules are added, we must train the DVF for ad-

ditional time, but still use DVF forward passes to assign a heuristic to all children

of the expanded node at once. Where our method is strongest, compared to related

methods, is the low computation needed before finding a feasible arrangement, arising

both from the computational efficiency with which the DVF is computed and in the

lower number of complete robot evaluations. As the task becomes more complex, we
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expect that the number of complete robot motion planning evaluations will domi-

nate the search time, resulting in decreased performance of related methods, but only

increasing training time for our method.

6.4 Limitations

One limitation of our work is the need to retrain the neural network if the set of

module types changes; future work will consider using a trained network to warm-

start training with small differences in module set. Another limitation is that our

formulation does not include costs on velocity/motion smoothness. In future work

we will to move toward dynamic motion plans rather than quasi-static IK. Further,

rather than rely on conventional motion planning algorithms for evaluation of each

arrangement at the task, future work will involve learning control policies conditioned

on the robot design, task, and environment [34] end-to-end with the module selection

policy.

The module arrangement input representation in this work is a list of one-hot

vectors, each vector representing a module in the sequence, and padded with zeros up

to the maximum number of allowed modules in the arrangement. A limitation of this

encoding is that it limits the arrangement to serial topologies. Similarly, we restricted

the design to be composed of discrete selection of components. A more general, but

more complex, case of robot designs composed of both continuous design parameters

and discrete components is an area of ongoing research [166].

6.5 Discussion

In this chapter we presented an algorithm that uses a data-driven graph search heuris-

tic to synthesize task-specific modular robot designs. We showed that our method

returned lower-cost solutions more computationally efficiently than similar state-of-

the-art methods. In the arrangement search, the “curse of dimensionality” appears

from the high branching factor in the series of discrete module selection choices.
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Search efficiency is needed to mitigate the computational burden of creating a mo-

tion plan for each candidate arrangement. Our method addresses these challenge by

using a deep neural network forward pass to approximate the value of all options at

once, moving the vast majority of the computation into off-line training. Although

this chapter is focused on serial-chain fixed-base manipulators, a similar method could

be applied to more complex body designs. In the next chapter, we turn to applying

DVF to mobile robot designs.
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Chapter 7

Automating modular mobile robot

design

Conducting a combinatorial optimization process to create each new specialized de-

sign is computationally expensive, which becomes particularly important if the task

changes frequently. The modular policies give us the ability to control, and therefore

evaluate the performance of each design. With this performance criteria in hand, we

can turn to optimizing mobile robot designs for different tasks.1

In this chapter, we modify the methods developed in the previous chapter to apply

to mobile robot design. As in the previous chapter, we assume that the control policy

is known a priori, but in contrast to the previous chapter which used simple quasi-

static interpolation as the controller, here we use the learned policy from Chapter

3.

Our goal is to enable a user to progress from task specification, to modular robot

design selection, to deployment within a short time frame. To do so, our method learns

relationships among task, design, and performance far in advance of deployment, in

the form of a Design Value Function (DVF). The DVF is used to identify the best

design for a given task quickly at deployment. In this chapter, our goal is to select

mobile robot designs that will perform highest in a given environment under a known

control policy, with the assumption that the selection process must be conducted for
1This chapter is adapted from [169]
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new environments frequently. We use deep reinforcement learning to train the DVF,

a neural network that, given a terrain map as an input, outputs the mobile robot

designs deemed most likely to locomote successfully in that environment.

We recognize that the task/environment in reality can never exactly be replicated

in simulation. Therefore, in this chapter, we require our algorithm to output multiple

designs, and a ranking of their estimated performance, such that a user can physically

test or choose between them.

Our long-term goal is to create a process that creates modular robot designs to

complete a task in any specified environment. Chapter 6 introduced the notion of

incrementally constructing and searching a tree of modular arrangements for manip-

ulators. We extend this idea to mobile robots, where each node added as a child to a

current node represents adding a module to the robot, as shown in Figure 7-2. The

construction of this tree can be viewed as a series of states and actions. Each state

represents a partially complete design. Each action represents adding a module, form-

ing edges between states on the tree. Under this formulation, we learn a state-action

value function [149] which approximates the benefit of adding each module type given

the task. We train a deep neural network to approximate this value function [112].

Completed designs are simulated, and their resulting performance is used to learn

about the capabilities of each design in each environment.

We consider robots with various combinations of legs and wheels (the same as

were shown in Fig. 1-4); our intuition and experience leads us to think that on

rough terrain, legs will perform better, and on smooth ground, wheels may perform

better. Our algorithm can support or contradict such ideas in a data-driven manner,

as well as suggesting less intuitive leg-wheel combinations that may have surprising

capabilities.

7.1 Design value functions for mobile robots

We treat the modular robot design problem as a finite-length Markov Decision Process

with a discrete action space, in which the robot is constructed by adding one module
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(a) (b)

Figure 7-1: Our modular designs are evaluated in simulation to gather data on their
performance over terrains of varying roughness. Then, our design selection algorithm
is used to predict the best design for each environment. (a) For example, smooth
terrain (top) may be well suited for wheels. The top image shows a simulated car
robot in near-flat terrain. Terrain with low-lying features (middle) may be suited to
a combination of legs and wheels. The middle image shows a simulated robot with
both legs and wheels. Terrain with taller features (bottom) may be suited to robots
with only legs. The bottom image shows a simulated hexapod on terrain with tall
features. (b) This figure depicts designs considered valid during training. The left
side of each of these designs is the “front”. Each of these 12 designs has a different
permutation of legs and wheels.

at a time. We define a complete design as one that has attachments to all available

ports specified, and a partial design as one that does not. At each time step 𝑡, the

agent selects an action 𝑎𝑡 that adds a module to one of the open ports on the chassis

of the partial robot (see Fig. 7-2). The state 𝑠𝑡 contains the partial design, so the

next state 𝑠𝑡+1 depends deterministically on only the previous state and the module

added. Each action results in a new design state and a scalar reward 𝑟𝑡 from the

environment. In this context the set of all robot modules defines the action space 𝒜,

while the set of partial and complete robots defines the state space, 𝒮.

We define the return at step 𝑡 as 𝑅𝑡 =
∑︀𝑇

𝑡′=𝑡 𝑟𝑡′ . The state-action value function

𝑄𝜋 : 𝒮 × 𝒜 ↦→ R is then defined as the expected return given action 𝑎𝑡 is taken in
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Figure 7-2: We search for modular mobile robot designs by viewing the design space
as a tree, in which modular limbs are sequentially added from front to back on the
chassis. A deep neural network is used to learn a state-action value function for each
decision made on this tree, conditioned on the terrain that the robot will operate in.
This figure shows an example sequence of decisions on such a tree. At the root lies a
chassis with no modules, and each step adds a module, resulting leaf nodes containing
robots with various permutations of legs, wheels, and ports deliberately left open.

state 𝑠𝑡 following policy 𝜋 : 𝒮 ↦→ 𝒜, 𝑄𝜋(𝑠, 𝑎) = E[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. Q-learning

estimates the optimal state-action value function 𝑄*, which can be defined in terms

of the Bellman equation,

𝑄*(𝑠𝑡, 𝑎𝑡) = max
𝜋

E
[︂
𝑟𝑡 +max

𝑎′∈𝒜
𝑄*(𝑠𝑡+1, 𝑎

′)

]︂
. (7.1)

Similarly to the method described in Chapter 6, the DVF is a deep neural network

with network parameters 𝜃 that outputs 𝑄(𝑠, 𝑎; 𝜃), trained to approximate 𝑄*(𝑠, 𝑎)

[112]. We train this network with experience replay [127] and a target network [158].

We condition the value outputs on the task [139]: a key feature of the DVF is that it

can apply to a range of tasks (in this case, environments to be traversed).

7.2 Methods

In order to select a robot design for a given terrain, we learn a design generator

𝐺 : 𝒯 → 𝒟 which maps from a terrain grid 𝜏 ∈ 𝒯 ⊂ R𝐿×𝑊 (terrain height mea-
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surements with length and width resolution 𝐿 ×𝑊 ) to a design 𝑑 ∈ 𝒟 (the space

of possible designs). The design is evaluated using a pre-defined controller. Terrains

have randomly distributed density and height of terrain features, where samples from

the distribution T are elements of 𝒯 . We optimize the parameters of 𝜑 of the gener-

ator neural network to maximize the expected robot performance criteria 𝑃 over the

terrain distribution,

𝜑* = argmax
𝜑

E𝜏∼T

[︀
𝑃 (𝐺𝜑(𝜏), 𝜏)

]︀
. (7.2)

Here, the performance 𝑃 is the distance travelled by the design over the terrain in

a fixed time span, explicitly dependent both on the design 𝑑 = 𝐺𝜑(𝜏) and terrain.

Designs are drawn from the design generator, which learns to output designs for

an input terrain. After training, the design generator is used to identify promising

designs for a given terrain.

The performance of a design depends on how that design will be controlled. Our

design selection method is agnostic to the particular control policy used, as long

as each design uses the same controller consistently. The performance criteria 𝑃 is

queried by simulating the control policy for a fixed time span and measuring the

final x-position of the robot, averaged over multiple trials. We use a modular reac-

tive policy network which directs the robot forwards along the x-axis through the

terrain, and corrects its course toward the x-axis, regardless of what components are

present in the robot. This method is currently under review, and we plan to include

further details about the control policy in future versions of this work. A high-level

controller observes the robot position and sends a body-frame heading command to

the mid-level controller. The mid-level control takes the heading command, robot

IMU readings, and joint sensor readings, and sends joint-level commands. We use a

Pybullet simulation [40] with robot models corresponding to physical hardware (Fig.

7-1) made from components produced by Hebi Robotics [70].
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7.2.1 Module selection deep Q-network

Our algorithm assembles a mobile robot one module at a time, as illustrated in Figure

7-2, using a deep Q-network to choose modules. In this section we define the states,

actions, and reward signals in greater detail.

We encode the design 𝑑 as a list of one-hot vectors, where each index in a single

vector indicates a type of module selected, with a user-set maximum number of mod-

ules in the arrangement 𝑁𝑚𝑎𝑥. Modules that are not yet chosen in the design are are

represented by vectors of zeros to maintain a fixed-size input. We currently restrict

our designs to symmetric designs on a chassis with six ports, leading to 𝑁𝑚𝑎𝑥 = 3

modules to be chosen. The terrain 𝜏 contains the height of the terrain over a grid of

points, and is passed first into convolutional layers. The output of the convolutional

layers are flattened and appended to the current design, and passed through a series

of fully connected layers with ReLU activation (Fig. 7-3).

At each step, an action indicates a module type from the set of 𝑁𝑚 module types.

We use 𝑁𝑚 = 3 module types: legs, wheels, or none (allowing unoccupied ports). We

append onto the design an additional one-hot vector of length 𝑁𝑚𝑎𝑥 which is set to the

index of the current open port on the chassis, indicating which port the next module

will be added to. The output of the network is interpreted as the state-action values

of adding each type of module to the partial design. An episode always ends after

𝑁𝑚𝑎𝑥 actions, such that the ports on the robot have either been assigned modules or

designated as deliberately unoccupied.

Each action results in a reward 𝑟 = 0 except for the terminal (third) action. Note

that if an additional cost were added to (7.2) to penalize for number or mass of

modules, non-terminal rewards could be used to alter the output designs accordingly,

as was the case in Chapter 6. At the terminal action, the completed robot design

is evaluated. We deem some designs undesirable, for instance those with the front

or back port unoccupied, and thus treat them as invalid and assign them a terminal

reward of −10. Valid designs are sent to the simulator to evaluate their performance

within the input terrain. Multiple simulations are run for the same robot and terrain,
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Figure 7-3: The neural network used as a DVF takes the terrain grid, passed through
as series of convolutional layers (Conv2D), and the design encoding, then passed
through a series of fully connected (FC) layers. The output of the network is in-
terpreted as the state-action value of each module type that could be added to the
partially complete robot design.

with slightly perturbed intial states, to obtain an average performance for that terrain.

The average distance travelled in meters after 150 steps is then returned as the reward.

In our current implementation, we allow only 12 valid designs, shown in Fig. 7-1.

An alternate formulation of our method would be to learn the total value of each of

the designs separately, or even to exhaustively simulate all designs and rank them.

However, we expect such approaches would not scale as the number of modules on

the design increases– for instance, even with these same components, were we to pick

the limbs on the left and right side of the robot independently, there would be 144

(over 10 times as many) possible designs. Our algorithm has an action space scaling

with the types of modules, meant to address this combinatorial explosion in state

space size.

7.2.2 Training process

During training, state-action values are learned from randomized terrains. At each

episode, a terrain is created from randomly placed blocks, with upper and lower

bounds on maximum block height and minimum distance between blocks. The height

at a grid of points on this terrain is measured as input to the DVF. The DVF is called

repeatedly, each time with the terrain and current design as input. At first, the design

input is empty, and after each call to the DVF, a module is added to the design. The

states, actions, and rewards are stored in a replay memory buffer. We use Boltzmann

exploration [13] with a temperature hyperparameter that is lowered over the course

of training. After each episode, we sample mini-batches from the replay buffer and
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step the optimizer.

7.2.3 Sampling tree to get multiple designs

The design selection networks are first trained to recognize patterns in how various

combinations of modules contribute to effective locomotion over a given terrain. After

training, the design selection network is used to conduct a computationally efficient

design search. To use the network for inference, first the height map is measured

of the terrain to traverse. Then, that height map is input to the generator network

𝑀 = 100 times in a batch, and design choices are made by interpreting the softmax

of the Q-value outputs as the weights of a categorical distribution. This results in

a set of designs 𝑑1 . . . 𝑑𝑀 , which may contain duplicates. The Q-values at the final

step are estimates of the expected reward obtained by each design. We then sort

the output designs by terminal Q-value, to obtain a ranking of the top designs for

that environment. This means that we can obtain multiple designs to prototype and

deploy rather than only a single design, along with estimates of their performance.

7.3 Results

To evaluate the trained design selection network, we applied it to three test environ-

ments with different randomly generated terrain distributions, from low (nearly flat)

to high (frequent high terrain features). We sampled designs using the procedure

described above, and collected a ranking of the best-performing designs. Then, we

simulated all 12 valid designs in each environment as a basis of comparison. Each

design was driven multiple times through the same environment to obtain an average

performance. We compared the best designs in simulation with the estimated best

designs from the DVF.

The results of this experiment are summarized in Table 7.1. The predicted top

five designs from the estimator and simulation overlap with 4 or 5/5 designs in each

terrain. Obtaining an exact overlap in rankings between estimator and simulation

is difficult, as there is high variability in performance. For instance, we observed on

125



Table 7.1: Preliminary results from design selection network. On each terrain, with
low, mid, or high roughness, we compare the output designs 𝑑 with the five highest
performance estimates (𝑃 , in meters) from the network, or the minimum and maxi-
mum from three simulation runs. Designs are specified by the modules chosen: a leg
(l), wheels (w) or none (n) on each port. The at least four of the top five designs
overlap between the estimated and simulated average performance (distance traveled,
in meters) in the three terrains.

Low Terrain, 5/5 Match Mid Terrain, 5/5 Match High Terrain, 4/5 Match

Estimated Simulated Estimated Simulated Estimated Simulated
𝑑 𝑃 𝑑 𝑃 min-max 𝑑 𝑃 𝑑 𝑃 min-max 𝑑 𝑃 𝑑 𝑃 min-max

lwl 10.9 lww 10.7 - 11.5 lnw 4.6 lwl 7.5 - 9.5 lll 3.9 wll 4.6 - 5.2
wwl 10.3 wwl 11.0 - 11.1 lwl 4.6 lll 4.2 - 4.9 wll 3.1 lll 4.7 - 4.9
lww 10.3 lwl 10.9 - 11.1 lll 4.6 lnw 3.5 - 5.6 lnw 2.7 lnl 3.9 - 4.5
wnl 8.1 wnl 8.7 - 9.7 wll 4.3 wll 1.5 - 5.4 lwl 2.6 lwl 2.0 - 5.0
wll 7.0 wll 6.8 - 7.2 llw 4.2 llw 2.3 - 5.3 llw 2.6 lnw 2.0 - 4.0

some terrains there are patches on which the robot may become stuck on some trials

but may narrowly avoid on others.

After training, the network can be used in real-time to generate designs condi-

tioned on the terrain. We made an interactive graphical user interface, in which a

slider bar changes the height of the randomly generated terrain. The robot design is

updated and simulated in real-time as the environment changes, allowing us to quickly

investigate how different terrain feature distributions effect the optimal design, with-

out additional training or intensive computation. A video showing this interface can

be found at https://youtu.be/f3PhXnuxk7g, and still images from this video are

shown in Fig. 7-4.

7.4 Discussion

Before training, we specify controllers for all possible designs, then the performance

of the robot in a given environment is conditional on the efficacy of that controller.

The control policy used here is that of Chap. 3 which does not include exteroceptive

measures of the environment, that is, it cannot preemptively adapt its behavior to up-

coming terrain and only adapts to what is sensed through proprioception. Our design
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selection method can still be applied as more complex control methods are developed,

or as environment-dependent longer-horizon planning is added to the controller.
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Figure 7-4: Three still frames from the interactive automatic design selection GUI. As
the user changes the environment, the design generator selects the robot it estimates
will work best for that environment, the robot is loaded into the simulation, and the
modular policy trained using the methods of Chap. 3 is applied to the robot.
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Chapter 8

Discussion, Future work, and

Conclusions

While one could craft a new policy from scratch for every possible modular design,

such an approach is not scalable, especially given the large number of designs that

can be generated from even a small set of modules. Instead, we created a modular

policy framework where the policy structure is conditioned on the hardware arrange-

ment, and trained a policy to control a variety of designs. In our policy architecture,

information in the form of neural network parameters is shared not at the level of the

robot but instead at the level of their modular components. The policy graph struc-

ture enables a single set of trained parameters to apply to many designs with different

numbers of sensors and actuators. We showed how modular policies generalized to

new robots and environments not seen during training.

Given the ability to control any design, we next turned to optimizing the design for

the task. We introduced a modular design generator, learned in conjunction with the

controller, that learns a value function estimating how each module would contribute

toward completing the task. We used design value function to define a task-dependent

distribution over designs, trained using deep reinforcement learning. After training,

within the space of seconds, the generator output the designs deemed most likely to

perform the task, i.e., reach waypoints in a given workspace, or locomote successfully

in a given environment. Through these contributions, we showed that leveraging
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modularity in learning enables the creation and transfer of robot behaviors across

tasks and designs.

8.1 Discussion

8.1.1 What drives the module engineering process?

Modularity in robotics can arise for multiple different of reasons. The system en-

gineer’s reason for using modularity effects the size, shapes, numbers, and types of

modules created. Based on our experience, (both the authors’ personal experience

and based on the collective wisdom from the Biorobotics Laboratory), we create three

categories of modular systems based on the methodologies used to create the modules.

Top-down modularity

We call one methodology of creating robot modules “top-down” modularity. In this

form of modularity, first, a monolithic robot design is created. This monolithic de-

sign could be of any form; for instance, quadrupeds, wheeled bases, or even snake-like

robots. Then, during iterations of the manual engineering design process, the en-

gineers identify how some benefits of modularity (e.g., those listed in Sec. 1.3.1)

could be applied, and convert components of the design into modules. For instance,

if the actuators are the most failure prone elements, then the engineers may make

the actuators modular. The actuators will be more easily interchanged, so that if one

fails, the time to repair the robot can be reduced. Or, if the engineers would like to

re-purpose the robot after the current project is complete, modular parts could be

more easily reused for future projects, even if those projects do not require exactly

the same robot.

The Biorobotics Lab has followed this route in some past projects. For example,

the joints in a series-elastic-actuated snake-like robot were designed so that the length

of the snake can be easily altered [128]. Then, those same actuator modules were re-

used to create a series of legged robots [84, 167]. Other labs appear to have followed
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a similar procedure in engineering modules as well. As another example, NASA Jet

Propulsion Laboratory created the components in their Robosimian robot originally

for the 2015 DARPA Robotics Challenge [87]. But, since it was designed with modu-

larity in its limbs and actuators, its components have since been re-purposed to form

robots with different combinations of wheels, tracks, and arms [117, 126]. While this

top-down approach to modularity is practical, it has some limitations. The modules

are initially created to be used within one robot design. This means that their spec-

ifications are driven mainly by the needs of that one design and its associated tasks,

potentially limiting the ability for those modules to be used to solve different tasks

in the future.

Bottom-up modularity

We call a second category of modularity “bottom-up.” In this form of modularity, the

modules are designed with the intention of creating and reconfiguring into as many

designs as possible. These usually result in a homogeneous set of generic shapes,

such as cubes [180] or spheres [102, 146], which self-reconfigure into various designs.

In our view, the mechanisms requirements that enable self-reconfiguration can limit

the ability these modules have to form complex designs. The limited strength of the

attachment mechanisms and the requirement to have multiple actuators and batteries

in each module leads to designs that are weaker and heavier than designs made from

manually-reconfigurable modules. More importantly, in bottom-up modularity, the

tasks to be solved are not typically explicitly considered in the module engineering

process. The ability to reconfigure into any arbitrary shape, while a worthwhile

aspiration, does not necessarily help solve specific tasks.

Middle-out modularity

In top-down and bottom-up methods, the tasks to complete are considered only as

secondary objectives in the creation of the modules. Those methodologies therefore

run contrary to our objective in using modules; our goal is to re-combine the set of

modules into different designs to solve a range of tasks. In practice, no single set of
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modules can be general enough to solve arbitrary tasks in arbitrary environments. But

if instead we define a distribution of tasks, where we assume tasks will be encountered

with frequency defined by that distribution, then it may be possible to select modules

optimally with respect to those tasks. The modules could be designed such that for

any task sampled from the distribution, the modules can be recombined into some

robot design that can perform the task.

We call this view of modularity “middle-out,” because the middle of the two afore-

mentioned methodologies serves as the starting point: identifying the distribution of

tasks to be solved. We can identify a few existing examples of middle-out modular-

ity. One set of modules, which arose from the Biorobotics Lab members’ experience

with our modular snake and walking robots, are those produce by Hebi Robotics [70].

These modules were designed with a set of collaborative manipulation and locomo-

tion tasks in mind, including the ability to make arms, legs, wheels, and gripping

end-effectors. Another set of modules which appear to fit within the middle-out

methodology are a line of modular manipulators produced by Schunk [143], which

were made to solve fixed-base manipulation tasks, and have been used within research

on automating modular manipulator design and control synthesis [7]. However, al-

though these modules fit within the middle-out view, the process of specifying the

composition of individual modules, or how many of each to make, is as far as we are

aware primarily manual. There is, as of yet, no automated approach to deciding the

contents of a set of modules given a distribution of tasks to be solved. A direction

for future work that could take a step toward automating middle-out modularity is

considered further in Sec. 8.2.2.

8.1.2 Connections to meta-learning

Robot modularity in this work enables the robot design to be adapted to the task at

hand. We are motivated by situations where the robot needs to be deployed quickly,

for example, where the task changes frequently, or where there is a cost to each

minute the robot is delayed. As a result, we develop design optimization methods

that search for new designs efficiently at run-time. The tasks used in Chapter 6
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where manipulation tasks, where there was a distribution of obstacle placement and

presence, and a distribution of end-effector goal locations. In Chapter 7 the tasks

were represented by distribution of terrain obstacles to traverse.

We can draw a connection between our design search problems and meta-learning

methods. Meta-learning is also known as “learning-to-learn,” “learning to optimize,”

or “learning to search” [3, 5]. In a meta-learning paradigm, the machine learning

model (e.g. deep neural network) gains experience over multiple learning episodes

within a distribution of related tasks, and uses this experience to improve its future

learning performance [75]. By learning over a distribution of tasks, the model can

be used to adapt to new tasks quickly, either by directly identifying solutions, or by

serving as a good initialization to be refined in a few steps. Our design generation

methods are related to meta-learning methods because the design value functions are

learned first for some randomly sampled tasks, then used within a search for new

designs for new tasks: design value functions are learning to search. A direction for

future work extending this connection is considered further in Sec. 8.2.3.
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8.2 Future work

The work in this thesis lays groundwork for many additional research topics related

to modular policy learning and design optimization.

8.2.1 Modular policies

Lifelong learning while adding modules and objectives

The methods of this thesis could be applied in a “lifelong learning” setting, in which

the set of modules and tasks could be progressively expanded, and the same model,

policy, and design value functions retrained to accommodate new tasks and modules.

Modularity in learning may have a benefit in a lifelong learning setting: modular

policy nodes and tasks can be added or subtracted without restarting training, and

prior knowledge contained in the existing nodes may accelerate convergence. Specifi-

cally, we propose to test whether when adding additional module types, and using an

existing modular policy as the initial seed, it may be computationally less expensive

to warm start while adding additional GNN node types than it would be to retrain

from scratch. Note that this section does not make any assumptions about how many

total modules there are, but rather about how many types of modules there are in

the system.

First, assume we have a modular policy with parameters 𝜃 has been trained to

convergence, minimizing (3.1), with a total of 𝑀 module types. In a modular policy,

the parameters are divided up 𝜃 = [𝜃1, . . . 𝜃𝑀 ], where each 𝜃𝑖 is a vector of real numbers

parameterizing the GNN functions used for all modules of type 𝑖. To add an additional

module type, such that there would be a new total of 𝑀 + 1 module types, we can

add parameters to the policy to create a new set of parameters 𝜃′ = [𝜃′1, . . . 𝜃
′
𝑀 , 𝜃′𝑀+1].

Consider two methods of initializing 𝜃′. The first and simplest method is to

randomly initialize all parameters in 𝜃′, and train the policy from scratch; the previous

modular policy is erased and no prior knowledge is assumed. The second proposed

method is to warm-start the new modular policy with the previous modular policy, by

randomly initializing 𝜃′𝑀+1 but setting 𝜃′1 ← 𝜃1, . . . 𝜃
′
𝑀 ← 𝜃𝑀 . Similarly, if we would
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like to remove a module type at the same time, we can warm-start the remaining

policy parameters by removing that module type’s corresponding policy parameters.

Here we will assume that the RL methods of Chapters 3 and 4 are applicable to

training the policy. 1 Figure 8-1 illustrates these examples.

In this proposed method, parts of the previous policy, such as the behavior of

the previous modules and the learned communication protocol (messages passed over

graph edges), will still be applicable to the remaining modules. Re-training need only

set the parameters of the new node type, and adjust the messages passed such that

the new module’s policy node is able to inter-operate with the existing set of modules;

these adjustments may require fewer optimization steps than would training the full

modular policy from a random initialization. We pose the following hypothesis: When

warm-starting the new policy parameters 𝜃′ with parts of the previous parameters 𝜃,

the number of iterations to convergence will be lower than the number of iterations to

convergence when 𝜃′ is trained from random initialization.

We could test this hypothesis via two experiments. In the first experiment, a

module type would be added to the modules used in Chapters 3 and 4. The module

added can be a four-DoF combination of a leg and wheel, consisting of a leg with a

wheel in place of a foot. In the second experiment, a module type would be added to

replace an existing module. The body module, which currently has six attachment

ports, can be replaced with a smaller body with only four attachment ports and

different overall dimensions. In each of these experiments, a new modular policy can

be trained, both with and without warm-starting with previous policy parameters,

and the number of iterations to convergence measured.

One could also alter the objective function (𝐶 in (3.1)) simultaneously with a

change of modules, and warm-start training with previous policy parameters. Specif-

ically, we propose to add a manipulator (e.g. a three-DoF arm with parallel-jaw end

effector) as a module type that can be interchanged with the leg and wheel mod-
1When the previous policy is used to warm-start the new policy, it may be beneficial to freeze

the parameters from the old policy for a few iterations, to allow the new modules to learn mes-
sages compatible with the previous modular policy functions, and prevent any initial catastrophic
forgetting by the previous modules.
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Figure 8-1: The modular policy in this thesis is trained for three module types (top).
The policy could be used to warm-start training for either adding new modules (bot-
tom), for instance adding an arm-type module. The policy could also be used to
warm-start training when replacing a module type (right), for instance, changing the
shape and/or number of ports on the body module.

ules. The locomotion objective can be augmented with a manipulation objective, for

instance, to reach two locations in space for a “pick and place” task.

There may be drawbacks to adding more modules. For example, additional designs

in the training set and more complex objective functions may require larger batch

sizes, and though warm-starting may reduce the number of training iterations (gradi-

ent descent parameter optimization steps), it may come with increased computational

cost of each iteration.

Learning architectures

In Chapter 3 we compared our modular policy architecture to two other policy ar-

chitectures based on MLPs. However, new architectures are being discovered all the

time, some of which could be used as alternatives to GNNs. For example, transform-

ers [159] and other variants of graph networks [78] are promising candidates. Graph

convolutional networks [185, 187] are promising for use as a design value function.

Another possible addition to the learning architecture is to apply model ensembles

[37] to capture epistemic uncertainty in the model predictions. Future work may

compare the impacts of using these architectures for the models, policies, and value

functions used throughout this thesis.
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Developing additional modular policy training algorithms

The methods of Chapters 3 - 5 use model-based reinforcement learning. Our ongoing

work aims to develop model-free methods with modular policies, leveraging recent

parallelized simulation which can gain order-of-magnitude speed-ups MFRL policy

learning [131]. Another alternative direction is to merge model-free and model-based

learning to overcome problems of MBRL such as model bias, or to start with MBRL

and then fine-tune the policy with MFRL [113].

Simulation to reality

In this thesis, we learn policies fully in simulation, then transfer them to reality.

While we were able to apply our policies to real robots in this thesis, the transfer from

simulation to reality was far from perfect– the robots did not behave as smoothly or

travel as far in reality as they did in the simulation.

A promising direction for future work lies in using data from real robots to close

the domain gap [176]. Another direction is to use real robot data to fine-tune a policy

learned initially in simulation. A difficulty in using real robot data for modular robots

is the need to repeatedly reconfigure the robot, which makes repeated experimentation

expensive.

Another direction for future research is in adapting other simulation-to-reality

approaches currently popular in model-free learning literature into situations with

modular robots and model-based learning. For example, domain randomization [160]

and domain adaptation [94] do not yet have direct well-established equivalents in

model-based or modular learning.

Distributed learning and execution

Graph neural networks were originally introduced as a means to decentralize com-

putation across a network of computers [137]. But in practice, we (and, to our

knowledge, other related prior work on robot GNNs) conduct GNN training and in-

ference on a single centralized computer. A potential avenue for future exploration is
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to decentralize the training and/or execution of the policy.

Each module in our work has an onboard micro-controller used for low-level motor

control and inter-module communication. Given the low computational cost of neural

network inference, these processors could be used to conduct the forward pass and

message passing subroutine in a GNN as a distributed process. Distributed training

may also be possible in the future. Distributed computation may have two benefits.

Firstly, it would reduce the need for a centralized computer (either allowing a lighter-

weight computer to be chosen, or freeing computation for other processes like SLAM).

Secondly, it may make the system more robust to failure of individual modules.

Expanding model learning

The forward dynamics model approximation we learn takes in the current state and

action, and outputs the estimated change in state from the current to the next time

step. The model is trained with supervised learning. However, it is possible to add

other predictions to the model output. For example, we experimented briefly with

adding the contact state of each limb, or the distance of the center of mass location

from the center of the support polygon, to the model output. Any quantity measured

within the simulation could be recorded alongside the state data, and then used

to train the model with additional outputs. While we did not find this approach

necessary to create effective policies for our locomoting robots, the ability for the

model to predict other quantities such as contact slip, or undesirable collisions, and

to use those quantities in policy optimization, would allow one more easily penalizes

those quantities within a differentiable reward function.

8.2.2 Design synthesis

Choosing sets of modules

In situations where the modules must be transported, for instance to a disaster re-

sponse application, a large set of modules may be too bulky to transport or too

costly to manufacture and maintain. Next we consider how we might choose the set
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of modules to minimize the total number of individual modules while still being able

to construct designs that can perform different tasks from a distribution of tasks.

One of the underlying assumptions in this work is that the number of modules

available is unconstrained. In other words, we assume that an arbitrary number

of each type of module may be used in each robot design. This assumption may be

warranted in cases where we have a sufficiently large supply of modules. For instance,

with respect to the leg/wheel modules used through Chapter 7, any given robot can

contain at most six legs and at most six wheels. As long as we have at least one

body module, six leg modules, and six wheel modules, (a total of 13 modules) we can

construct all feasible combinations of legs and wheels.

Future work may aim to select a “kit” of modules containing fewer total modules

than those that would be needed to create all possible designs (e.g. for the leg-wheel

example, fewer than 13 modules). The proposed methods would automatically select a

finite kit of modules, where those modules can be used to construct multiple designs

for multiple tasks. We will briefly review the unconstrained design optimization

problem addressed in previous chapters of this thesis. Then, we will add constraints

to the designs with respect to a kit, and propose a hierarchical problem to optimize

the kit itself. Fig. 8-2 shows an example of how the kit selection effects the candidate

and optimal designs.

The methods in this thesis optimized the parameters of 𝜑 of the generative model

to maximize the expected robot performance criteria 𝑃 over the task distribution,

where elements from a space of tasks 𝜏 ∈ 𝒯 are sampled from task distribution T,

𝜑* = argmax
𝜑

E𝜏∼T

[︀
𝑃 (𝐺𝜑(𝜏), 𝜏)

]︀
. (8.1)

For example, the performance 𝑃 can represent the distance travelled by the design

over the terrain in a fixed time span, and depends both on the design 𝑑 = 𝐺𝜑(𝜏)

and terrain. Our design value function (DVF) estimated the maximum expected

performance achieved by adding each module to a partial design. The DVF served

as a search heuristic to select designs, thereby acting as a generative model 𝐺.
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1 ×

6 ×

6 ×

Larger module kit Candidate designs Task distribution Optimized designs

1 ×

6 ×

2 ×

Smaller module kit Candidate designs Task distribution Optimized designs

Figure 8-2: The top row shows a quantity of each module in a kit (left-most column),
which can be made into many designs (second column from the left). Given tasks
in the distribution (third from column the left), some of these will be optimal at a
given task (right column). A kit with a large or even unlimited number of modules
can be used to make a large number of designs, but not all of those designs would
be optimal at any given task in the task distribution. The bottom row shows how
a smaller quantity of those same modules can be made into a more limited set of
designs, but nonetheless could be used to create multiple robots that can achieve the
tasks from the task distribution.

The designs 𝑑 ∈ 𝐷 are composed of 𝑀 types of modules. Let count : 𝐷 × Z→ Z

be a function that returns the number of a given module type present within a design,

i.e. for a design 𝑑 and module type 𝑖 ∈ {1 . . .𝑀}, if the design contains 𝑛 instances of

module type 𝑖 within it, then count(𝑑, 𝑖) = 𝑛. (8.1) does not constrain the number of

each module type within a design, but since in practice we apply a maximum bound

on the total number of modules 𝑁 , it implicitly assumes that there is a constraint,

𝑀∑︁
𝑖=1

count(𝐺𝜑(𝜏), 𝑖) ≤ 𝑁 ∀𝜏 ∈ 𝒯 . (8.2)

This constraint states that the generator can only output designs with at most 𝑁
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total modules, but that there can be any number of each individual module type

within the design, up to 𝑁 total modules.

To constrain the number of each type of module used in a set of designs, we

can parameterize a “kit” of modules 𝐾 ∈ Z𝑀 as a vector of integers representing the

available number of each module type. Let 𝐾𝑖 indicate the 𝑖-th element of this vector,

corresponding to a module type 𝑖 ∈ {1 . . .𝑀}. For a given kit 𝐾, we can apply a

constraint to (8.1),

𝜑* = argmax
𝜑

E𝜏∼T

[︀
𝑃 (𝐺𝜑(𝜏), 𝜏)

]︀
s.t. count(𝐺𝜑(𝜏), 𝑖) ≤ 𝐾𝑖 ∀𝜏 ∈ 𝒯 , 𝑖 ∈ {1 . . .𝑀}.

(8.3)

We will refer to the constraint in this problem as a kit constraint.

Creating a DVF that incorporates any fixed kit constraint is straightforward.

While gathering data exploring different designs to train the DVF, one could treat

any design that exceeds the kit constraint as an invalid design. The action leading to

that invalid design is an invalid action. The Q-values output by the DVF would then

reflect the limited number of modules. We will refer to such a DVF as a “constrained

kit DVF,” a DVF trained without a limit on the number of each module type as an

“unconstrained kit DVF.”

Creating a DVF that can be applied to various different kits is a slightly more

challenging problem. The DVF trained on an unconstrained module set is still a valid

search heuristic to search for designs under an the constraint of an arbitrary kit, but

may be a poor search heuristic. One possible solution, then, is to train the DVF as

per Chapter 3 or 4 with no constraint, and then apply a kit constraint during the

tree search.

A more advanced method to create a DVF that can be applied to various different

kits would be to condition the DVF on the kit contents. We will refer to such a DVF

as a “kit-conditioned DVF.” Let us define a distribution of kits K where kits can be

sampled from the distribution, 𝐾 ∼ K. One simple definition of kits would be a finite

list of kits, each with uniform probability mass. Then we can pose an optimization
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problem to learn a generative model explicitly dependent on the kit,

𝜑* = argmax
𝜑

E𝜏∼T,𝐾∼K

[︀
𝑃 (𝐺𝜑(𝜏 |𝐾), 𝜏)

]︀
s.t. count(𝐺𝜑(𝜏 |𝐾), 𝑖) ≤ 𝐾𝑖 ∀𝜏 ∈ 𝒯 , 𝑖 ∈ {1 . . .𝑀}.

(8.4)

We propose to address this altered problem statement via a modification to the DVF

training procedure. First, the neural network representing the kit-conditioned DVF

must be allowed an additional input, which would take in the kit. 2 Then, in addition

to sampling tasks from the task distribution at each training episode, a kit would also

be sampled from the distribution and fed into the kit-conditioned DVF. The DVF

would then learn the dependence of the value of each module conditioned on how

many of each module type is available.

With the notion of a kit constraint in hand, we can also ask an additional question:

how many modules of each type does one need to address the distribution of tasks?

Can we minimize the number of modules contained in the kit, without sacrificing the

ability to build various designs that can perform various tasks? We can pose this as

a minimization problem as well,

𝐾*, 𝜑* = argmax
𝐾,𝜑

E𝜏∼T

[︀
𝑃 (𝐺𝜑(𝜏 |𝐾), 𝜏)

]︀
− 𝛽𝐹 (𝐾)

s.t. count(𝐺𝜑(𝜏 |𝐾), 𝑖) ≤ 𝐾𝑖 ∀𝜏 ∈ 𝒯 , 𝑖 ∈ {1 . . .𝑀}.
(8.5)

where 𝐹 : Z𝑀 → R+ is the cost (e.g. total mass or price) of a kit, and 𝛽 ∈ R a

relative objective weight.

(8.5) could be approached by applying a combinatorial optimization algorithm as

an outer loop to the DVF training. First, we propose to train the kit-conditioned

DVF to solve (8.4) over a uniform distribution of kits. Then, an algorithm such as

an evolutionary algorithm, simulated annealing, or even model-free RL could be used

to identify the optimal kit. It may also be possible to train the DVF and select a kit
2Note the representation of the kit as a list of integers may not be well-formed for neural network

input. The kit vector may need to either be normalized, represented via one-hot vectors, or a
different representation for the kit developed.
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at the same time by iterating between kit optimization and DVF training steps. The

kits sampled by the combinatorial optimization outer loop would effectively serve as

a distribution of kits, instead of sampling from random kits.

Once the proposed methods are implemented to optimize the kit with respect to

the task distribution, we propose to test new hypotheses about modular composition.

To do so, we must define an additional metric not yet present in design synthesis

research. Let us define the “kit utility” 𝑈 as the function measuring the expected

performance achieved by optimized designs over a distribution of tasks,

𝑈(𝐾,T) = max
𝜑

E𝜏∼T

[︀
𝑃 (𝐺𝜑(𝜏 |𝐾), 𝜏)

]︀
. (8.6)

The utility function assumes the existence of a generative model that can identify the

optimal design for each task conditioned on the kit. We will define the unconstrained

module set utility 𝑈max as the utility of an unlimited number of modules, which will

be equivalent to 𝑈max = max𝐾 𝑈(𝐾,T). 3 If a kit 𝐾 has high utility, then 𝐾 can

be made into designs each of which can perform some tasks optimally. Given this

definition of utility, we can view the kit search (8.5) as a search for the kit that

balances utility with the cost of the kit itself.

We may not need the wide variety of designs possible with an unconstrained kit in

order to create different robots that complete different tasks– a kit’s utility may still

be high even if it is constrained. We propose the following hypothesis: For a given

task distribution T, there exists a kit 𝐾 with utility 𝑈(𝐾,T) = 𝑈max− 𝛿. 𝛿 increases

as 𝛽 increases, but the relationship will be non-linear, such that 𝛿 increases slowly for

small values of 𝛽. In other words, as we penalize adding modules to the kit, we will

see a drop in the utility of the kit, but that drop will be small or even zero at first.

This hypothesis would not be supported universally, as we can easily create counter

examples: for instance, the case where every single task from the distribution requires
3We propose to use the above kit-conditioned DVF as the generative model in utility evaluation.

It may be possible to use other methods as well, such as evolving a design for each task sampled.
However, alternative methods will likely make computing the utility computationally expensive,
since in practice, evaluating the utility will require sampling many tasks and optimizing a robot
design for each.
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a completely different design to perform that task well. However, for some systems,

we may be able to reduce the number of modules while still constructing robots that

can perform the tasks.

This hypothesis could be tested on the leg-wheel locomotion and fixed-base ma-

nipulation tasks defined by Chapters 6 and 7. Optimizing the contents of the kit and

testing this hypothesis will lead to a better understanding of how many modules to

build/purchase, or how to best pack modules for deployments.

Designing individual modules

Another underlying assumption in this work is set of modules is created a priori by

robotics engineers. Future work may develop methods that automatically design the

individual modules.

Conventionally, modules are manually designed, and robot module optimization

has not been considered in existing literature. One direction extending this thesis

is to optimize the structure of the individual modules to maximize their utility over

a distribution of tasks. To do this, one could first train the modular policy and

design generator with the most “atomic” set of design elements, i.e., joints, links, and

brackets. These atomic modules can be combined to form larger interchangeable units

used within multiple robots, which we term “composite” modules, i.e., arms, legs, or

wheels. Fig. 8-3 illustrates this concept. In addition to a design generator, a “module

generator” could be trained to estimate the optimal set of composite modules. The

module generator would learn a value function estimating how each atomic element, if

included within a composite module, can contribute to the module kit’s utility across

the task distribution.

Learning distributions of designs

In Chap. 7, we investigated using a design value function to output not only the

estimate of the optimal design, but by sampling stochastically from the value function,

to estimate additional near-optimal designs. However, this method is not guaranteed

to produce an accurate ranking of the top design options, and the objective in the
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Modules are graphs of atomic parts 

Atomic parts: links, joints, wheels, feet
Robots are graphs of modules

Figure 8-3: Small design components, which do not necessarily have the computa-
tional infrastructure on-board to act as intelligent modules, can be considered “atomic
parts” (top left). Those atomic parts can be assembled in a graph to form “composite
modules” (bottom left). Robots (right) can be viewed as graphs of composite mod-
ules. This abstraction, combined with the design search methods in this thesis, could
be used by future work to develop methods that automatically design the individual
modules for a distribution of tasks.

RL (Q-learning) methods is not designed to produce solutions other than a single

optimum.

An alternative method to design synthesis is to formulate objectives and algo-

rithms that produce multi-modal solutions, e.g. producing the top-k solutions, or the

multiple solutions on a Pareto front of multiple objectives. To do so, we have begun

to develop methods in recent publications [76, 77] which merge methods from evo-

lutionary algorithms and generative adversarial networks, and provide an alternate

branch of design synthesis methods from our RL-based methods.

Including both continuous and discrete design components

Our past work [166] presented a gradient-descent-based method for optimizing link

lengths and the number of joints in manipulators. One possible direction would use

combined discrete-continuous reinforcement learning methods like those of Neunert

et al. [114], and adapt design generators to output both discrete componetns (joints,

links) and continuous variables associated with them (link lengths, nominal offsets).
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This is a challenging problem in part because each module may have a different

number and dimension of continuous parameters, which may require a hierarchical

design value function architecture. Another potential avenue is in combining discrete

component selection using RL with continuous parameter optimization with gradient-

descent.

8.2.3 Co-optimization

In this thesis we first created a control policy for many different designs, then applied

that control policy to evaluate candidate designs for different tasks. Another direction

for future work is in how to co-optimize the designs and control, e.g. a single training

process that could result in both the design value function (DVF) and modular poli-

cies. Fig. 8-4 illustrates this concept. Design and control co-optimization has been

investigated for some robot classes [62, 108, 138, 163], but not specifically for modu-

lar robots, not yet using articulated realistic robot models, and not incorporating a

distribution of tasks.

Single-task co-optimization

Prior work on joint design and control co-optimization (e.g. [62, 108, 138, 163])

address the problem of co-adapting the design and policy, with a problem formulation

similar to

𝑑*, 𝜋* = argmax
𝑑,𝜋

𝑃 (𝜋, 𝑑, 𝜏) (8.7)

where we have left the details out of the optimization problem by leaving out the

definitions of states, actions, dynamics, rewards, and the policy representation, and

have only left the design 𝑑, policy 𝜋, task 𝜏 , and performance 𝑃 ∈ ℛ (sum of rewards

over an episode). The output from solving this type of problem is a single design and

policy that performs a task. In our view, the largest limitation of this type of method

is that if the task changes, a new optimization problem must be posed and solved.

We propose to depart from prior work by incorporating the ideas introduced in this

thesis: considering a distribution of tasks in the optimization problem, then using a
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design value function to learn a mapping from task to design jointly with a modular

policy.

Task-distribution co-optimization

Including a distribution of tasks T, the optimization problem becomes,

𝜑*, 𝜋* = argmax
𝜑,𝜋

E𝜏∼T𝑃 (𝜋,𝐺𝜑(𝜏), 𝜏) (8.8)

where the generative model 𝐺 : 𝒯 → 𝐷 with parameters 𝜑 identifies the optimal

design for an input task. This problem no longer searches for a single design– similar

to the methods introduced in Chapter 6 and 7, we propose to learn a generative

model that can output designs for different tasks. Note that in the edge case where

the task distribution includes only a single task, then the design generator need only

ever output one design, and the problem reduces to (8.7). However, in general there

may be multiple different designs that are optimal with respect to performing different

tasks. In this optimization problem, the modular policy must learn to control multiple

designs, but only as many as are needed to perform the tasks in the distribution.

Therefore, the policy will be allowed to specialize more than it would when trained

with a larger set of designs, as the policy would not need to apply to designs that are

not optimal for any particular task 𝜏 ∼ T. Where this thesis thus far has assumed

that the modular policy is trained with a hand-selected set of designs, the proposed

method would allow the training set to be chosen dynamically using the DVF.

To solve 8.8 we propose an alternating maximization approach using steps from

modular policy and DVF learning methods. Algorithm 6 describes the proposed

method in pseudocode. We propose an algorithm leveraging the learning methods

used in this thesis, however, it may also be possible to apply different policy learning

methods (e.g. [78]) or different design generative models (e.g. [77]) as well with the

same algorithm structure.

The proposed algorithm is initialized with a randomly-seeded DVF and modular

policy. To begin training the policy and DVF, first, a random set of many designs
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and tasks are sampled, and the policy training algorithm applied. The performance

(net return over an episode of the design/task/policy combination) is collected, and

used to train the DVF.

The DVF would then be used to select a new set of designs. A new set of tasks

will be randomly sampled, and the DVF applied to search for the estimated optimal

design for each of these tasks. This set of designs and tasks would serve as the training

set for the next iteration of policy training. The alternating maximization of policy

and DVF training will proceed until either a computation/time limit is reached, or

convergence is reached. Convergence can be determined by the point at which the

estimates made by the DVF consistently match the true simulated performance of the

different design/task combinations sampled. Then, at run-time when new tasks are

sampled online, the DVF can be used to efficiently output a design, and the modular

policy immediately applied to control that design.

The convergence speed and stability of the proposed algorithm may be limited by

the fact that the DVF is effectively “chasing a moving target,” because the perfor-

mance of the various design/task combinations will change as the policy is trained.

A proposed variation on this algorithm would address this problem by adding an

additional learned function operating jointly with the DVF. We propose to add a

performance increase estimator (PIE). The PIE consists of a learned function struc-

tured and trained similarly to the DVF: a deep Q-network that outputs an estimated

decision tree branch value for each module added to a design. However, where the

DVF estimates the maximum performance of a design/task combination, the PIE will

estimate how much the performance of that design would increase given 𝐾 iterations

of policy training. The PIE could then be used in conjunction with the DVF to select

the designs used during policy training. The DVF selects designs based on how well

those designs would perform under the current (potentially unconverged) policy, but

the PIE selects designs based on how much we expect the performance of the policy

to improve with respect to those designs.

To further motivate the proposed PIE, consider the case where the design set

consists only of two designs: a four-wheel car and six-leg hexapod, which share the
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same modular policy, and where the task distribution consists only of two terrains to

be traversed: one flat and one with stairs. We found in our modular policy training

in Ch. 3 that the car reaches maximum performance (driving forward at maximum

wheels speed) within many fewer iterations than the hexapod, but that the hexapod

can achieve a higher performance on stairs after additional training iterations. When

the policy is not yet converged, any data collected from applying these two designs

to the two tasks would indicate that the car has a higher performance on both tasks,

because the hexapod has not yet learned to walk. As a consequence, if the DVF is

trained using this data, the DVF would estimate that the car is optimal for both

tasks, and would learn not to select it. However, the performance of the car would

not improve over iterations beyond the first, because it will not be able to climb

steep stair no matter how many iterations the policy is trained. The car will have a

low performance improvement, which could be learned by the PIE. In contrast, the

hexapod performance will increase with each policy training iteration. The hexapod

will have a high performance improvement initially, and the PIE outputs should

converge to zero for all designs over multiple iterations as the policy converges.

We propose to collect train the PIE to estimate how much the policy improved at

each iteration (note that change in performance between iterations is a form of meta-

data). Then, a combination of the DVF and PIE would be used to select designs to

use as the next iteration of policy, for instance, selecting most of the batch with the

PIE in early iterations and most of the batch with the DVF in later iterations. The

proposed PIE is a form of active learning for exploration in the design space, related

to the “curiosity” functions learned by [6, 25]. We hypothesize that the DVF will

more accurately identify the optimal designs, and the policy will be higher-performing

with respect to those designs, when the dynamically-changing nature of the policy

performance is taken into account during co-optimization. This hypothesis could be

test with respect to the mobile robot system described by Ch. 7.

An additional variation of the proposed algorithm would conduct the policy and

DVF training and data collection processes asynchronously in multiple threads. While

this parallelization may not reduce the overall computation budget, it could decrease
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Figure 8-4: A future extension of this work could integrate modular policies with
design value functions in a new formulation of design and control co-optimization.

wall clock training time.

Co-optimization as meta-learning

If design and control co-optimization (8.8) is posed as a combination of learning a

modular policy and learning a function that searches for designs, the problem can be

viewed as a form of meta-learning, i.e. “learning to learn” or “learning to optimize”

[3, 5], in which one learned function learns to compose another [27]. A “meta-policy”

is a policy operating on the structure of other learned function components, which

assembles a policy that can perform a task [27].

In the proposed work, 𝐺 will serve as the meta-policy that recombines the de-

sign/policy for different tasks, and guides the designs on which the policy parameters

are trained. This would make the proposed algorithm a form of meta-learning, but

with a distinct difference to prior work: the modules being assembled are not purely

software abstractions, but are tied also to hardware. We propose to call this embod-

ied meta-learning: the generator learns to assemble modules, where each module has

both a software component (a part of the policy) and hardware. The design generator

learns to choose both the physical structure and the policy structure.
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Algorithm 6 Proposed (future work) algorithm for joint co-optimization of DVF
and modular policies.
Require: Task distribution T, design space 𝐷. Hyperparameters include batch size

𝑁 , policy training iterations 𝐾, batch ratio reduction 𝛽 ∈ [0, 1]. Performance
function 𝑃 , e.g., sum of returns over an episode.

1: Initialize design value function (DVF), performance increase estimator (PIE) and
modular policy.

2: 𝛼 = 1/2 (Relative DVF/PIE batch size factor)
3: while Not converged: do
4: Sample tasks {𝜏}𝑁𝑖=1, 𝜏𝑖 ∼ T.
5: if In first iteration then
6: Sample a set of random designs {𝑑}𝑁𝑖=1 from 𝐷
7: else
8: Apply DVF to search for designs {𝑑}𝑁𝑖=round(𝛼𝑁) estimated to be optimal at

the tasks.
9: Apply PIE to search for designs {𝑑}round(𝛼𝑁)

𝑖=1 estimated to have a high increase
in performance during policy training.

10: end if
11: Apply modular policy to {𝑑}𝑁𝑖=1 to gather performance 𝑃0 before training
12: Train modular policy with design set {𝑑}𝑁𝑖=1, e.g. by applying 𝐾 iterations of

Alg. 3, or other policy optimization method.
13: Apply modular policy to {𝑑}𝑁𝑖=1 to gather performance 𝑃 after training.
14: Apply modular policy to additional designs randomly sampled from 𝐷 to gather

performance 𝑃 .
15: Train DVF with newly gathered design/task/performance data.
16: Train PIE with data ∆𝑃 = 𝑃 − 𝑃0, change of performance from training.
17: 𝛼← 𝛼/𝛽
18: end while
19: For new tasks, apply DVF to select robot designs and modular policy to control

those robots.

8.2.4 Integrated design and control synthesis demonstration

The methods in this work could be integrated into a single demonstration. A user

could scan in a 3D environment using a handheld or aerial robot with a RGBD sensor,

and construct an environment map, for instance, using the work of Zhou et al. [188].

The user could designate a start location and desired direction of motion for a robot,

and input that specification to the design generator. The output design could rapidly

assembled, then deployed using the modular policy. See Fig. 8-5 for an example.
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Figure 8-5: The terrain could be scanned in with depth sensors (left), then using our
method, the best robot for the terrain could be selected and deployed with the push
of a button (right).

8.2.5 Applicable throughout the thesis

Additional modules, tasks, and domains

This thesis, with the exception of Chap. 6, was limited to legs, wheels, and a body

as the modules. We have investigated training a policy with additional modules. For

instance, a modular policy was trained for combination leg and wheel and used in our

work [77]. Future work may seek to create graphs with more modules in them, which

will in turn create GNNs that require greater computation to train.

This thesis focuses on some fundamental tasks in manipulation (pick and place)

and locomotion (travel as fast as possible forwards over the terrain). Future work

may seek to expand the range of tasks, for instance by combining manipulation and

locomotion (travel to a point and pick up an object), or to create more complex

tasks or constraints on those tasks. While this thesis considers modular robots as the

application domain for our work on design and control automation, these ideas may

be applicable to domains outside of robotics, for instance, in chemical engineering

(e.g. molecule generation) or energy systems (e.g. designing and controlling a set of

wind turbines [72]).

Metrics

In testing control and design synthesis, we often found we lacked appropriate met-

rics by which to measure designs, tasks, and generalization. For example, there is

no uniform definition of the difficulty of an environment. The difficulty relates both

152



the to task and design, e.g. the complexity of the robot, the maximum torque/power

capabilities of the robot, its sensing capabilities, and its controller capacity. Similarly,

when a design or controller is transferred to a new scenario, some forms of general-

ization appear more difficult than others. Take for example the transfer of a policy

trained with a combination of legs and wheels. Transfer to a new design with only

wheels tended to result in good performance, seemingly because wheels are “easier”

to control. But, transfer to a design with only legs is “harder,” if only because we

found our policies did generalize to new robots with more legs, but not as well as it

did to wheels. One potential future direction is to predict how well a policy or design

generator will generalize to a new task, or estimate how much additional training

would be needed to reach competency at a new task.

Scaling laws

We observed that when adding more modules and designs to the modular policies

and design value function training processes, the time taken to train and number of

samples needed to reach satisfactory performance increased, but not always linearly

with the number of modules or designs. Future work could further investigate how

sample-efficiency is affected by increased number of designs and modules, in partic-

ular, when the designs added to the training set may be very similar (only different

by one module, perhaps) to those already in the training set, such that the data they

produce is somehow “similar.”

Applications

We envision our methods could be used in applications where there is a finite mass

or monetary budget for parts, and a need to apply the same modules to applications

that change frequently, but where the set of module types remains fixed, for instance,

in space, low-volume manufacturing, or military applications.

One potential future application of this work is in self-reconfigurable robots. Prior

work on self-reconfiguration often assumes that the initial and final designs are pro-

vided by a user. Our work could be used to automatically select the final design,
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enabling a higher degree of autonomy in future self-reconfigurable robots. In this the-

sis, we use manually reconfigurable modules which do not have self-reconfiguration

mechanisms, but our methods would be suitable for self-reconfigurable robots as well.

Another potential application of modular robots is urban search and rescue or

disaster response. In such a deployment, one does not know in advance what type

of environment one will encounter. One possibility may be to transport a set of

robots, as contingencies for each type of environment. The total cost and mass

of robot components can be reduced by reusing a small general set of modules to

build a robot with some combination of legs and wheels specially adapted to the

environment. Testing an integrated modular automated control and design system in

a mock disaster site could inform which parts of the pipelines are weakest, or reveal

new problems to be solved.
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8.3 Conclusions

This thesis developed tools that augment the conventional robot engineering pro-

cess. Our methods provide an avenue for exploring the relative benefits of distinct

design components, for instance the choice between legs and wheels, in a data-driven

manner. We hope that in the future this will enable non-expert users to customize

robots, because as modular hardware become less expensive to produce, automated

design tools like ours could help lower the barrier to robot prototyping. Further, as

modular robot hardware components become more commonplace, we believe the need

for scalable methods to simulate, prototype, and evaluate the potential of the many

possible designs will grow as well. Modular robots and synthesis algorithms could

have wide reaching impacts given the variety of potential applications for modular

systems in areas such as manufacturing, defense, or space exploration. Though we

used a limited set of modules, and created robots operating in a handful of environ-

ments, this work represents a stepping stone towards the vision of rapidly-deployable

task-specific robots.

In our long-term vision of a broader approach to modularity, modules can not

only be the individual joints, links, legs, or wheels on an individual robot, but can

also be parts in a full system of inter-connected robots working together.

Modular policies form a framework by which robots with different designs can

pool knowledge learned when they share some parts in common. The robots could

combine reinforcement and imitation learning to learn from one another, even when

they do not have identical designs. Modular policies also form a basis for robots to

adapt to new or upgraded components without learning from scratch.

Design value functions could serve as a basis for system-level adaptive hardware

compositions. A fleet of robots with various different designs could share a pool of

modules, autonomously decide when to reassemble to adapt to new tasks, decide how

to make the best use of new modules added to the system, and grow towards ever-

changing user needs. Design automation could also serve within a more sustainable

re-use structure for robot components. If all parts in a robot system are modular,
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then when some modules fail or become obsolete, the system could decide how to

reconfigure to best incorporate remaining modules into other robots, or decide which

modules to shift between robots to fill gaps. These concepts could be applicable to fu-

ture domains like extra-planetary exploration, in which a collection of modules could

be launched without exact knowledge of the environment in which those parts will

land. The system could observe the environment, decide how to self-assemble into a

collection of robots best suited for exploration or construction tasks, and then con-

tinuously share knowledge while learning to improve their collective control policies.

Our methods aim to make modules, both in physical hardware and in their control,

into the general building blocks with which robots can specialize to a task. Similarly

to the way in which computer components have standardized and become more mod-

ular over the past few decades, we believe standardization and modularity in robot

components will be a critical step towards a future where robots are ubiquitous in

daily life.
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Appendix A

Appendix

A.1 Modular policy learning

A.1.1 Hyperparameters and cost functions for policy learning

All neural networks in this work were implemented using PyTorch [118]. The many
hyperparameters listed below were tuned by hand. Tuning was conducted on each
process independently (i.e. tuning the model learning first on its own, then tuning
the trajectory optimization on its own, etc.).

A.1.2 Simulator parameters

The simulator used throughout this work had the following settings:

• Simulator: Pybullet [40]

• Simulator time step: 1/240 seconds

• Time steps per control action: 20, resulting in an effective time step for learned
model and controller of 20/240 seconds.

A.1.3 Approximate dynamics model learning

The dynamics model learning process used the following settings:

• Length of random rollouts: 100 steps

• Number of random rollouts per design: 300 rollouts per actuated joint on the
designs (between 12 and 18 joints).

• Batch size per design forward pass: 500

• GNN (internal state, message, hidden layer) size: (100, 50, 350)
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• GNN (input, message, update, output) function hidden layers: (0, 1, 0,0)

• GNN Update function LSTM hidden size: 50

• GNN training steps initial: 10000

• GNN training steps after each set of TrajOpt complete: 1000

• Learning rate: 1× 10−3, decays by half every 2500 steps

• GNN weight decay (weight norm penalty): 10−4

• Number of designs used per step: 6, increasing by one every 2000 steps

A.1.4 Trajectory optimization

The trajectory optimization used the following cost weights:

• Horizon length 𝐻 = 20

• Execute the first 𝑛𝑒𝑥 = 10 steps of each optimized control sequence

• Cost on norm control signal: 0.01

• Slew rate cost: 7

• Cost 𝑤𝑧||𝑧 − 𝑧𝑑||2 for z-position (height) of body: 𝑤𝑧 = 5, 𝑧𝑑 = 0.23

• Cost 𝑤𝑟||𝑟||2 for roll of body: 𝑤𝑟 = 30

• Cost 𝑤𝑝||𝑝||2 for pitch of body: 𝑤𝑝 = 20

• Cost 𝑤𝑥||𝑥 − 𝑥𝑑||2 + 𝑤𝑦||𝑦 − 𝑦𝑑||2 for time-varying x- and y-position of body,
following desired goal position over time: 𝑤𝑥 = 𝑤𝑦 = 110, 𝑥𝑑 = 𝑥0 + 𝑣𝑥,𝑑𝑡
𝑦𝑑 = 𝑦0 + 𝑣𝑦,𝑑𝑡, given body position (𝑥0, 𝑦0) at the start of the MPC replanning
step

• Cost 𝑤𝛾||𝛾−𝛾𝑑||2 for time-varying yaw of body, following desired goal yaw over
time: 𝑤𝛾 = 25, 𝛾𝑑 = 𝛾0 + 𝜔𝛾,𝑑𝑡, given body yaw 𝛾0 at the start of the MPC
replanning step

• Penalty for joint angle of open-loop gait style for first joint on wheel modules
(set to zero joint angle for all time): 0.4

• Penalty for joint angle of open-loop gait style on legs (set to zero joint angle for
all time for first joint, sine wave with amplitude 0.6 rad and period 1.25 s for
second and third joint): 6

• Maximum goal velocity in (x,y) directions, based on maximum wheel rotation
rate: 0.7 m/s

• Maximum goal velocity in yaw directions, based on maximum wheel rotation
rate and body radius: 2.4 rad/s
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A.1.5 Control policy learning

The control policy learning process used the following settings:

• Length of expert TrajOpt rollouts: 40 steps

• Number of expert rollouts per design: 750, or 1000 at final iteration

• Batch size per design forward pass: 500

• GNN (internal state, message, hidden layer) size: (100, 50, 250)

• GNN [input, message, update, output] function hidden layers: (0, 1, 2, 0)

• GNN Update function LSTM hidden size: 50

• GNN training steps: 8000

• Learning rate: 3× 10−3, decays by half every 2000 steps

• GNN weight decay (weight norm penalty): 10−4

• Feed-forward torque loss weighting: 0.25

A.1.6 Velocity matching metric

The velocity metric 𝑉 is calculated based on the desired x, y, and yaw changes over
𝑛𝑒𝑥 time steps, using the weights from Sec. A.1.5 as follows,

𝑒1 = 𝑤𝑥(∆𝑥𝑑𝑒𝑠 −∆𝑥)2+

𝑤𝑦(∆𝑦𝑑𝑒𝑠 −∆𝑦)2+

𝑤𝛾(∆𝛾𝑑𝑒𝑠 −∆𝛾)2

𝑒2 = 𝑤𝑥(∆𝑥𝑑𝑒𝑠)
2 + 𝑤𝑦(∆𝑦𝑑𝑒𝑠)

2 + 𝑤𝛾(∆𝛾𝑑𝑒𝑠)
2

𝑉 = (𝑒2 − 𝑒1)/𝑒2.

(A.1)

A.1.7 MLP baseline Hyperparameters

The MLP baselines were set with a comparable depth and capacity as the GNNs.
The same hidden layer sizes were used for both the “shared trunk” and “hardware-
conditioned” baselines. The shared trunk network has a separate input and output
layer for each design, which transforms its inputs and outputs to the hidden layer
dimension. The hardware-conditioned network uses the same input and output layers
for all designs, but pads the inputs with zeros as needed to reach the input layer size.

• Model network, 6 hidden layers with 300 ReLU units

• Policy network, 6 hidden layers with 350 ReLU units
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A.2 Modular visual-motor policy learning

A.2.1 Software packages

All neural networks are implemented in Pytorch [118]. All stochastic gradient descent
steps use the Adam optimizer [90]. We used the NVIDIA IsaacGym simulator, which
allows for batch computation with GPU acceleration [109].

A.2.2 Model learning details and hyperparameters

In the first iteration, the model is trained with trajectories from random actions. In
subsequent iterations, the model is trained with trajectories from applying the most
recent iteration of the policy. The trajectory data from random actions and from
previous iterations of the policy are kept in the dataset, but the sampling procedure
during stochastic gradient descent is manually biased to sample the newer data more
often than uniformly random. As a result, even with relatively few new trajectories
relative to the total number of trajectories, the model will devote more of its capacity
to the fitting the newer data while preventing catastrophic forgetting. In each batch
of sampled states, we force one quarter of the samples to be taken from the newest
iteration’s data, even when that data makes up less than a quarter of the full dataset.

The model is a message-passing GNN with the following hyperparameters, tuned
by hand:

• (Input, update, message, output) function number of hidden layers: [0, 1, 2, 1]

• (Input, update, message, output) function hidden layer size: 400

• (Internal state, messages out, LSTM hidden state) sizes: [250, 100, 75]

• Dropout with fraction 0.05 applied after each hidden layer in the input and
update function

• Batchnorm after each convolutional layer in the input function

The first model learning iteration uses 7500 steps, starting with a multi-step loss
sequence length of 2 and a learning rate of 4𝑒− 3, and increasing the sequence length
and decreasing the learning rate progressively over the course of training up to a
sequence length of 10. The batch size was set to 1000 in the first iteration to allow
space on the GPU for the full dataset to be stored.

A.2.3 Policy optimization details and hyperparameters

The policy is a message-passing GNN with the following hyperparameters, tuned by
hand:

• (Input, update, message, output) function number of hidden layers: [0, 1, 1, 1]

• (Input, update, message, output) function hidden layer size: 400
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• (Internal state, messages out, LSTM hidden state) sizes: [250, 100, 75]

• Batchnorm after each convolutional layer in the input function

The policy is optimized with 250 steps in the first iteration, 200 on the second,
and 150 on subsequent iterations. The learning rate starts at 6𝑒− 4 during the first
iteration, 5𝑒− 4 in the second, 3𝑒− 4 in the third, and decays every 100 steps. The
policy time horizon 𝑇 = 30, and the batch size 350.

We also emulate hardware latency caused by the time taken to compute the policy
actions and send those commands to the actuators. The policy is given the previous
instead of the current state.

A.2.4 Reward weights

The reward function was composed of the following terms and weights:

• Mean squared body roll, weight (running cost): 1.0

• Mean squared body pitch: 1.35

• Mean squared body yaw, to point the body forward: 2.5

• Mean squared yaw velocity, to prevent high yaw rate: 0.01

• Absolute value of joint angle deviation from center,

– First leg joint: 0.075

– Second leg joint: 0.05

– Third leg joint: 0.1

– First wheel joint: 0.075

– Second (continuous) wheel joint: 0

• Penalty when the leg folds in (second joint <0 and third joint>0), absolute
value of total bend: 4.0

• Control action sum squared: 0.0005

• Slew rate (change between subsequent actions): 0.0275

• Height of the body above the ground: 30.0 for each meter above 0.18 m

• RL entropy bonus: 0.03

• IL entropy penalty: 1.5

• x-direction position change after 𝑇 steps (terminal cost): 100

• y-direction position change after 𝑇 steps: -10
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A.2.5 Other settings

The simulation was set to a time step of 1/60 s, with each action repeated 5 times
for an effective time step of 5/60 s. The random-action data generation phase cre-
ated 10,000 trajectories of length 100, split up among the designs in the training set
proportional to the number of actuators in each design. The policy was applied 1200
times with the first application method and 600 with the second at each iteration,
split up among the designs in the training set proportional to the number of actuators
in each design. Each trajectory was length 150 time steps for the first method, and
75 for the second. The simulation was parallelized using the GPU acceleration from
IsaacGym.

The full loop was run for 20 iterations in each experiment, then we select the
best iteration, as some fluctuation in performance may occur after the maximum
terrain difficulty level is reached. Including the initial data generation phase, this
took approximately 12 hours for the three-design-two-environment experiments using
one GTX 1070 with 8 Gb memory. The time taken decreases nearly linearly with
the number of designs. This is mainly due to our implementation using separate
forward passes, with separate mini-batches, for each design, the gradients of which are
averaged at each training step. The primary bottlenecks are in the policy optimization
step, which can gain significant speed improvements when using newer graphics cards
with larger memory allowing for larger batch sizes.

A.3 Modular policy learning with imitation

A.3.1 Imitation learning details and hyperparameters

The initial policy was learned with imitation via behavioral cloning, with a maximum
sequence length for recurrent supervised learning of 10. This phase trained for 14000
steps with a batch size of 500 and learning rate of 2e-3, decayed periodically.

During policy optimization, the prior weight 𝜆 was set to 0.25 in the first iteration,
then decayed in subsequent iterations. The batch size for the IL loss was 200.
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