
PLATEAU
13th Annual Workshop at the
Intersection of PL and HCI

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
Creative Commons
Attribution 4.0 International
License.

Programmer Experience When Using CRDTs to
Build Collaborative Webapps: Initial Insights
Yicheng Zhang1, Matthew Weidner1 and Heather Miller1

1Carnegie Mellon University, USA

Abstract
Conflict-free Replicated Data Types (CRDTs) are data structures that are supposed to make multi-user appli-
cations easier to develop. In this paper, we describe our initial insights from a qualitative user study that seeks
to answer the question: how hard is it in practice to add real-time collaboration to a web app using CRDTs?
We performed coding interviews with 15 participants using three different CRDT libraries; Automerge, Collabs,
and Yjs. We observed participants’ confusion between local and collaborative data, their struggle to under-
stand replica initialization, and the impact of different library designs on how quickly or slowly participants
got started implementing their solutions, and how buggy or not, their solutions tended to be. We hope our
work highlights directions for CRDT library developers to further improve.

Keywords: CRDTs. Replicated data. User study. Distributed systems. Concurrency.

1 Introduction
Real-time collaboration is a prominent aspect of popular web applications like Google Docs, Figma,
and Notion. Given the success of these high-profile apps where collaboration is a core feature, web
application developers are increasingly interested in adding real-time collaboration to their own apps
[1]. However, real-time collaboration is difficult for programmers to implement—in particular, keeping
data consistent in the face of concurrent edits by different users is challenging for most developers.

Conflict-free Replicated Data Types (CRDTs) provide one solution to this challenge [2][3]. Essen-
tially, CRDTs are data structures that “look like” ordinary data structures (maps, sets, text strings,
etc.), except that they are collaborative: when one user updates their copy of a CRDT, their changes
automatically show up for everyone else. CRDTs guarantee consistency using expert-designed algo-
rithms. By building an app on top of CRDTs provided by an external library, it is in principle possible
to make the app collaborative with only modest programmer effort [1][4].

In this paper, we describe informal observations obtained while conducting a qualitative user study
that seeks to answer the question: how hard is it in practice to add real-time collaboration to a web
app using CRDTs? Specifically, we investigate this question for three Javascript/TypeScript CRDT
libraries published on npm1: Yjs [5][6], Automerge [7][8], and Collabs [9][10]. We challenged 15
participants (5 per library) to add collaboration to a partially-completed web app and asked them to
describe what they are trying to do under the think-aloud protocol[11][12]. Ours is the first user study
examining how programmers reason about adding collaboration (using CRDTs) that we are aware of.

While we have not completed the data analysis, we share some initial observations and hope it
will benefit the PLATEAU community. We discuss our preliminary results in section 3.

2 Methods
In this section, we provide a brief summary of our study design, and introduce three libraries that we
chose.

2.1 Participants
We conducted our study with 15 participants (no specific preference over gender identity and infor-
mation about it is not collected). We presented the same challenge to 5 participants for each of the 3
libraries: (Automerge, Collabs, Yjs). All participants were over 18 and had various levels of education
and experience, including undergraduate, graduate, Ph.D., or several years of industry experience. All
participants had experience with JavaScript or TypeScript and represent target developers for those
libraries, which are mainly novices in Distributed Systems.

1 https://www.npmjs.com/

1/7

Figure 1. User Interface of Task 1

Figure 2. User Interface of Task 2

Figure 3. User Interface of Task 3

2.2 Tasks
Participants were asked to complete the provided partially-implemented collaborative Animal Shelter
app which maintains a list of animals. Upon completion, users of the app should be able to collab-
oratively insert new animals and collaboratively change attributes of animals already stored in the
app. Participants were asked to complete this task in a period of 90 minutes using TypeScript. We
provided the code for a simple user interface that participants should bind to, as well as all P2P
communication-related code. Participants were asked to follow the think-aloud protocol while writing
code, and were encouraged to ask questions as they went.

All participants focusing on each of the three libraries were given the following tasks with the same
general instructions and hints.
• Task 1 (figure 1): implement a data structure that has one animal with properties height and

name.
• Task 2 (figure 2): implement a data structure that has one animal that can be either a dog or a

cat. A dog has properties of height, name, and obedience level. A cat has properties of height,
name, and whether or not it purrs.

• Task 3 (figure 3): implement a list of animals which allows an animal to be added or edited
collaboratively. The app user should be able to iterate through the list of animals freely.

2.3 CRDT libraries
Our study considered three CRDT libraries. In particular, we were interested in observing the developer
experience when developing collaborative applications across all three library designs. The libraries we
focused on in this study are Automerge[8], Collabs[10], and Yjs[6]. All three libraries are comparable in
the sense that they all support compositional data, they were created for collaborative web applications,
and they are network-agnostic. Automerge and Yjs are by far the only libraries that are used in this
field, and Collabs is a library developed by the researchers’ group.

Automerge Automerge is a persistent CRDT library that provides tools for building collaborative
applications in JavaScript. It is designed for and focused on JSON-formatted data, and is based on

Y. Zhang, M. Weidner, H. Miller | PLATEAU | v.13 | n.1 | ennnnn | 2023 2/7

OpSets[13]. It does not specify any network connection protocol but we configured it to use the same
connection protocol as Collabs. In order to kick off communication between replicas of automerge
docs, developers need to explicitly call the network sending and receiving functions. Automerge does
not support creating their own new classes in Java style but only JaveScript-style types.

Collabs Collabs[10] [9] is a library created in the authors’ research group. It provides CRDTs in the
form of strongly-typed data structures, that are modeled on traditional (non-collaborative) collections
libraries. It also allows creating custom CRDTs, including custom data models created through
composition—e.g., a “CRDT object” composed of CRDT instance fields.

Yjs Yjs[6] is based on the YATA CRDT algorithm[5] and supports nested maps, arrays, rich text,
and XML structured data. It has seen widespread uptake—it is used in the beta collaborative version
of Jupyter Notebook[14]. However, Yjs does support modeling arbitrary data as classes, though its
author believes app-specific data models are a good idea[15].

3 Observations and Discussion
In this section, we describe informal observations we made over the course of this study. While we
have not yet completed the data analysis step yet of our study, and are currently in the process of
qualitative coding, we believe that these initial observations are nonetheless useful to the PLATEAU
community, and summarize them here.

3.1 Confusion between local and collaborative data
A point of confusion that we observed across all libraries was that participants sometimes mixed up
local and shared data. But it seems easy for people to figure it out by themselves.

For example, in task 3, participants were asked to implement a list of animals that can be collab-
oratively added to and edited. As shown in Figure 3, the user interface displays an add/edit page to
the end user, enabling them to either add a new animal or make changes to the currently selected
animal. To navigate, end users are able to page backwards or forwards with the “prev” and “next”
buttons.

To implement this, participants need to create a list_index to locally keep track of the index
of which animal is shown. That is, list_index is local to the client.

Most participants correctly decided that list_index should be local and not collaborative.
They did encounter bugs displaying updates to list_index, but we believe that these were an
artifact of our starter code—in particular, our choice not to use a reactive GUI framework.

3.2 Understanding Replica Initialization
Initialization of replicas was also a point of confusion across all libraries studied. Participants frequently
did not consider implementing checks to see if a specific CRDT replica was already present when
adding new functionality. This in turn frequently caused what we refer to as double initialization,
which typically results in data loss.

More concretely, in an application that is built with CRDTs, when one user has initialized the
collaborative data structure, other users should not also initialize it. If this happens, it effectively
overwrites the first-initialized replica. When this problem is repeated, every operation on a CRDT
causes new CRDTs to be created and previous state to be lost, which is counter to the goal of CRDTs
in the first place. This problem is particularly pronounced for Automerge, and less so for Yjs.

For example, in Automerge, according to its documentation [16], when adding an object to an
Automerge doc, users need to first check whether the element already exists, before subsequently
adding or modifying it. However, we observed participants tending to initialize it first as shown in
Figure 4. This mistake is also hard to debug, as there are no warnings and participants do not know
what is happening until a new peer joins. Figure 5 shows correct initialization in Automerge.

We observed that for Automerge, developer-provided documentation provided some coverage of
concepts related to initialization of replicas, but it was typically not found by subjects, leading to

Y. Zhang, M. Weidner, H. Miller | PLATEAU | v.13 | n.1 | ennnnn | 2023 3/7

Figure 4. Double initialization logics

Figure 5. Correct initialization logic

significant confusion and substantial errors for novices attempting to build collaborative apps using
Automerge in our study.

3.3 Differences between participants in different libraries
All libraries studied presented both strengths and weaknesses.

For the Automerge library, the JSON formatted files might be more familiar to JavaScript de-
velopers, and they may find easier to start, as shown in figure 6. However, it is easier to get into
the double-initialization problem, mainly because Automerge is the only one out of the three tested
libraries that is not declarative.

Participants working with Yjs to achieve their tasks to be quick and easy, as all data in Yjs is
modeled as essentially nested maps or arrays, as shown in figure 7. For example, Task 1 could be
solved by simply creating two Yjs maps. On the other hand, because there are only maps and more,
it might be more difficult to maintain large, long-lived applications.

In Collabs, users are encouraged to create data structures as class definitions (as in figure 8).
Structuring programs in this way provides rich type information, which could lead to easier to reason
about code and could lead to a more maintainable code base. However, participants faced a somewhat
steeper learning curve and an increased upfront starting cost due to the need to read up on the
Collabs library’s base type definitions. In order to complete their tasks with Collabs, participants
had to describe their data definitions as classes within the Collabs framework. Participants using
Yjs on the other hand, lost no time upfront in describing data, because they simply inserted their
data freeform into Yjs maps. For Task 1, this results in fewer lines of code for Yjs (∼45) whereas
Collabs requires a bit more (∼75). We observed the trade-off here to be one that is similar to points
commonly made in the (tired) debates of dynamic vs static languages: in one case, prototyping and
getting to a functioning solution is faster, but making updates tends to be more error prone as more
functionality is added. And in the other, initial data definitions require upfront effort and slow down
initial development, but making updates later tends to be more straightforward and smoother. While

Y. Zhang, M. Weidner, H. Miller | PLATEAU | v.13 | n.1 | ennnnn | 2023 4/7

// Automerge
// We change the "doc" object by
// passing a lambda function
let newDoc =

Automerge.change(currentDoc, (doc)=>{

// we change the variable as if it
// was "just" a regular JSON object
doc.animalName = "my_animal_name";
doc.animalHeight = 5;

});

// Send the changes to peers explictly
// & update the DOM. Note that such
// sends are not declarative
wsNetwork.send(

Automerge.getChanges(currentDoc, newDoc)
);

currentDoc = newDoc;
refreshDisplay();

Figure 6. Automerge code example.

// Yjs
let doc = new Yjs.Doc();
const wsProvider =

new WebsocketProvider(wsURL, "", doc);
// get a map, set a map, done
const animal = doc.getMap("animal");
animal.set('name', "my_animal_name");
animal.set('height', 5);

Figure 7. Yjs code example.

// Collabs
class Animal extends collabs.CObject {

// Notice that we have two private
// variables. Both are Collabs,
// and not local variables.
private readonly _animalName: CVar<string>;
private readonly _height: CVar<number>;

constructor(init: InitToken,
initName: string, initHeight: number) {
super(init);

// Setup child Collabs.
this._animalName = this.registerCollab(
"animalName",
(init) =>
new Collabs.CVar(init, initName)

);
this._height = this.registerCollab(
"height",
(init) =>
new Collabs.CVar(init, initHeight)

);
}

// Convert our methods into child methods
get animalName(): string {

return this._animalName.value;
}

set animalName(animalName: string) {
this.animalName._value = animalName;

}

get height(): number {
return this._height.value;

}

set height(height: number) {
this._height.value = height;

}
}

Figure 8. Collabs code example.

it is possible to wrap Yjs maps in richly-typed classes [14], this requires the use of something like
a database object-relational mapping (ORM). And while it’s possible for the Yjs authors to include
such a mapping as part of Yjs rather than by way of an external framework, it nonetheless would
require end users of Yjs to actually provide that type information, which would increase the lines of
code required of end users regardless of library.

In sum, we did not observe that any one library stands out in terms of ease of use as compared
to the others. Of the three libraries studied, none enabled participants to implement collaborative
functionality quickly and without bugs. The Collabs library makes headway on the intialization problem
by requiring initial values when calling constructors, but requires more time upfront learning the
framework and writing class definitions. Yjs tended to be quick to implement a sketch of a solution
in, but initialization and correctly making updates to nested maps presented some obstacles for
participants. Automerge, while general, requires initialization repeatedly throughout each object
initialization, which participants notably struggled to get right. And finally, in all three libraries,
participants struggled to differentiate local from collaborative data.

4 Conclusion
We performed a qualitative study aimed at understanding how novice JavaScript programmers make

sense of converting a single-user app into a collaborative one, comparing approaches offered by three
different libraries; Automerge, Yjs, and Collabs. Through our work, we observed a few noteworthy
artifacts of the design of the various libraries. Notably; (1) the double initialization problem in

Y. Zhang, M. Weidner, H. Miller | PLATEAU | v.13 | n.1 | ennnnn | 2023 5/7

Automerge affected several subjects, and may be worth reconsidering in future designs. And (2), we
note that both Automerge and Yjs required less code than Collabs for users to create and operate
on collaborative data, but at the expense of rich type information and compile-time support for data
access. This could be solved by adopting an ORM, but would thus require additional lines of code, as
users must provide data definitions somehow. In sum, when considering all three libraries, we conclude
that none in particular stood out from one another. However, we do suppose that there might be a
useful taxonomy or classification that can be devised that can help programmers decide which library
to use.

5 Future Work
We plan to complete qualitative coding of the coding interviews, and hope to surface additional

insights in doing so. We also hope that authors of any of the frameworks we studied find these initial
insights useful to drive usability design decisions for their libraries.

Acknowledgments
We thank our shepherd, Andrew Head, and the anonymous reviewers for their insightful comments.
This work was funded by a Cylab Secure and Private IoT Initiative Award, and an NDSEG Fellowship
sponsored by the US Office of Naval Research.

References
[1] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. McGranaghan, “Local-first software: You own

your data, in spite of the cloud,” in Proceedings of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software, ser. Onward! 2019,
Athens, Greece: Association for Computing Machinery, 2019, pp. 154–178, isbn: 9781450369954. doi:
10.1145/3359591.3359737. [Online]. Available: https://doi.org/10.1145/3359591.3359737.

[2] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehensive study of Convergent and
Commutative Replicated Data Types,” Inria – Centre Paris-Rocquencourt ; INRIA, Research Report
RR-7506, Jan. 2011, p. 50. [Online]. Available: https://hal.inria.fr/inria-00555588.

[3] N. Preguiça, C. Baquero, and M. Shapiro, “Conflict-free replicated data types crdts,” in Encyclopedia
of Big Data Technologies, S. Sakr and A. Zomaya, Eds. Cham: Springer International Publishing, 2018,
pp. 1–10, isbn: 978-3-319-63962-8. doi: 10.1007/978- 3- 319- 63962- 8_185- 1. [Online]. Available:
https://doi.org/10.1007/978-3-319-63962-8_185-1.

[4] P. van Hardenberg and M. Kleppmann, “Pushpin: Towards production-quality peer-to-peer collabora-
tion,” in Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data,
ser. PaPoC ’20, Heraklion, Greece: Association for Computing Machinery, 2020, isbn: 9781450375245.
doi: 10.1145/3380787.3393683. [Online]. Available: https://doi.org/10.1145/3380787.3393683.

[5] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Near real-time peer-to-peer shared editing on
extensible data types,” in Proceedings of the 19th International Conference on Supporting Group Work,
ser. GROUP ’16, Sanibel Island, Florida, USA: Association for Computing Machinery, 2016, pp. 39–49,
isbn: 9781450342766. doi: 10.1145/2957276.2957310. [Online]. Available: https://doi.org/10.1145/
2957276.2957310.

[6] K. Johns, Introduction, 2018. [Online]. Available: https://docs.yjs.dev/.

[7] M. Kleppmann and A. R. Beresford, “Automerge: Real-time data sync between edge devices,” in 1st
UK Mobile, Wearable and Ubiquitous Systems Research Symposium (MobiUK 2018), 2018.

[8] A. Contributors, Automerge crdt: Automerge crdt, 2022. [Online]. Available: https://automerge.org/.

[9] M. Weidner, H. Miller, H. Qi, et al., Collabs: Composable collaborative data structures, 2022. doi:
10.48550/ARXIV.2212.02618. [Online]. Available: https://arxiv.org/abs/2212.02618.

[10] M. Weidner, H. Miller, H. Qi, et al., Collabs documentation, 2022. [Online]. Available: https://collabs.
readthedocs.io/en/latest/.

[11] E. Goodman, Observing the user experience : a practitioner’s guide to user research, eng, 2nd ed.
Waltham, MA: Morgan Kaufmann, 2012, isbn: 0123848695.

Y. Zhang, M. Weidner, H. Miller | PLATEAU | v.13 | n.1 | ennnnn | 2023 6/7

https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://hal.inria.fr/inria-00555588
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://docs.yjs.dev/
https://automerge.org/
https://doi.org/10.48550/ARXIV.2212.02618
https://arxiv.org/abs/2212.02618
https://collabs.readthedocs.io/en/latest/
https://collabs.readthedocs.io/en/latest/

[12] J. NIELSEN, “Chapter 6 - usability testing,” in Usability Engineering, J. NIELSEN, Ed., San Diego:
Morgan Kaufmann, 1993, pp. 165–206, isbn: 978-0-12-518406-9. doi: https://doi.org/10.1016/B978-
0- 08- 052029- 2.50009- 7. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780080520292500097.

[13] M. Kleppmann, V. B. F. Gomes, D. P. Mulligan, and A. R. Beresford, Opsets: Sequential specifica-
tions for replicated datatypes (extended version), 2018. doi: 10.48550/ARXIV.1805.04263. [Online].
Available: https://arxiv.org/abs/1805.04263.

[14] JupyterLab, Real time collaboration, 2022. [Online]. Available: https://jupyterlab.readthedocs.io/en/
stable/user/rtc.html.

[15] K. Jahns, How we made jupyter notebooks collaborative with yjs, Jun. 2021. [Online]. Available: https:
//blog.jupyter.org/how-we-made-jupyter-notebooks-collaborative-with-yjs-b8dff6a9d8af.

[16] A. Contributors, Make a change: Automerge crdt, 2021. [Online]. Available: https://automerge.org/
docs/tutorial/make-a-change/.

Y. Zhang, M. Weidner, H. Miller | PLATEAU | v.13 | n.1 | ennnnn | 2023 7/7

https://doi.org/https://doi.org/10.1016/B978-0-08-052029-2.50009-7
https://doi.org/https://doi.org/10.1016/B978-0-08-052029-2.50009-7
https://www.sciencedirect.com/science/article/pii/B9780080520292500097
https://www.sciencedirect.com/science/article/pii/B9780080520292500097
https://doi.org/10.48550/ARXIV.1805.04263
https://arxiv.org/abs/1805.04263
https://jupyterlab.readthedocs.io/en/stable/user/rtc.html
https://jupyterlab.readthedocs.io/en/stable/user/rtc.html
https://blog.jupyter.org/how-we-made-jupyter-notebooks-collaborative-with-yjs-b8dff6a9d8af
https://blog.jupyter.org/how-we-made-jupyter-notebooks-collaborative-with-yjs-b8dff6a9d8af
https://automerge.org/docs/tutorial/make-a-change/
https://automerge.org/docs/tutorial/make-a-change/

	Introduction
	Methods
	Participants
	Tasks
	CRDT libraries

	Observations and Discussion
	Confusion between local and collaborative data
	Understanding Replica Initialization
	Differences between participants in different libraries

	Conclusion
	Future Work

