
Compositional Information Flow Monitoring for Reactive Programs

McKenna McCall
Carnegie Mellon University

Pittsburgh, USA
mckennak@andrew.cmu.edu

Abhishek Bichhawat
Indian Institute of Technology Gandhinagar

Gandhinagar, India
abhishek.b@iitgn.ac.in

Limin Jia
Carnegie Mellon University

Pittsburgh, USA
liminjia@andrew.cmu.edu

Abstract—To prevent applications from leaking users’ pri-
vate data to attackers, researchers have developed runtime
information flow control (IFC) mechanisms. Most existing
approaches are either based on taint tracking or multi-
execution, and the same technique is used to protect the
entire application. However, today’s applications are typi-
cally composed of multiple components from heterogenous
and unequally trusted sources. The goal of this paper is to
develop a framework to enable the flexible composition of
IFC enforcement mechanisms. More concretely, we focus on
reactive programs, which is an abstract model for event-
driven programs including web and mobile applications.
We formalize the semantics of existing IFC enforcement
mechanisms with well-defined interfaces for composition, de-
fine knowledge-based security guarantees that can precisely
quantify the effect of implicit leaks from taint tracking,
and prove sound all composed systems that we instantiate
the framework with. We identify requirements for future
enforcement mechanisms to be securely composed in our
framework. Finally, we implement a prototype in OCaml
and compare the effects of different compositions.

1. Introduction

Applications such as web and mobile phone apps
collect a huge amount of user data. Such event-driven ap-
plications are typically modeled as reactive programs [24],
where a program is a set of event handlers, triggered by
corresponding user input events. Shared storage allows
the same data to be accessed by different event handlers
(e.g., cookies) and organizes the event handlers themselves
(e.g., the DOM). These applications often include code
from heterogeneous and untrusted sources and could po-
tentially leak the users’ sensitive data to an adversary. To
prevent such leaks, many runtime mechanisms have been
developed for enforcing information flow control (IFC)
policies [15]–[17], [20], [30], [33], [39], [68], most of
which guarantee (variants of) noninterference, i.e., private
data should not influence data sent on channels that are
publicly observable [34]. Broadly, these approaches can
be classified into multi-execution approaches [10], [11],
[31], and taint tracking approaches [8], [9], [65], [70].

Multi-execution-based approaches, like secure multi-
execution (SME) [31], and faceted execution [10], execute
code multiple times at different security levels. These
ensure that the code executing at a particular level only
outputs data at the same security level, and replace sensi-
tive data from higher security levels with “default” values.

Taint tracking approaches annotate data with labels to
indicate its security level, and can suppress outgoing
sensitive data to publicly observable channels to prevent
leaks. These approaches differ in performance, how much
they alter the semantics of safe programs (transparency),
and the relative strength of their security guarantees.

Most of these approaches use the same enforcement
mechanism for all components in an application. Given
the heterogeneity of applications, a compositional enforce-
ment mechanism where different components execute un-
der different IFC enforcement mechanisms could offer an
attractive solution to the tradeoffs of each approach.

In this work, we motivate the usefulness of com-
position (Section 3), build a framework for composing
different IFC enforcement mechanisms, and explore which
security properties can be proven for which compositions.
One of the challenges is to build a unified framework so
that different styles of enforcement (taint tracking-based
and multi-execution-based) can interact smoothly and two
distinct elements of reactive systems (event handlers and
shared storage) can interface nicely. To do so, our for-
malism identifies the common elements between all tech-
niques, as well as the interfaces between the event handler
execution component and the shared storage components,
and converts values between mechanisms securely.

As we show in Section 4, the compositional semantics
are cleanly separated into a top-level component to trigger
event handlers and a low-level component that executes in-
dividual event handlers and interacts with shared storage.

To reason about security guarantees and their relative
strengths, we define, in Section 5, security properties
based on attacker knowledge, which is the set of all pos-
sible (secret) inputs that the attacker believes could have
produced the public outputs observed by the attacker [5].
As the attacker makes more observations, they become
more certain about the possible secret inputs. We also de-
fine a weaker security condition which extends prior work
on weak and explicit secrecy [65], [70] that permits the
attacker to additionally learn what is implicitly leaked by
taint tracking. We propose a set of security requirements
that describe what is required by each system component
and could be used to securely instantiate our framework
with additional enforcement mechanisms in the future.

We implement the enforcement mechanisms in OCaml
(Section 6) to validate the model and show an empirical
comparison of the different compositions.

Contributions. We develop a framework to enable the
flexible composition of dynamic IFC enforcement mech-

Figure 1: High-level depiction of a reactive system

anisms for reactive programs with provable security guar-
antees and model a simple web environment. We use a
knowledge-based security condition to compare the rela-
tive security of different compositions. We extend prior
work on weak secrecy to reason about implicit flows of
information due to control flow decisions within as well as
between event handlers and show that the overall security
of a composed system may depend more on the security
of the data structures shared between event handlers than
the security of the event handler execution. Finally, we im-
plement the framework in OCaml1 to validate our model
and to compare the tradeoffs of different compositions.
Detailed definitions, lemmas, and proofs can be found in
the Appendix.

2. Background

IFC monitors for reactive programs typically associate
security labels with input events, data, output channels,
and event handlers to reflect the security policy. Labels
are elements of a security lattice. In what follows, we
consider the two-point security lattice L v H meaning
that information labeled L (public) is allowed to flow
to H (secret), but not the other way. We briefly review
noninterference and weak secrecy, standard runtime IFC
mechanisms, and knowledge-based security.

2.1. Reactive programming

A simple reactive system is shown in Figure 1. First, a
user input triggers an event (1) which causes correspond-
ing event handlers (EH) to run. Event handlers may be
stored in a tree (such as the DOM on a webpage) or a
simpler data structure, like an unordered list. Event han-
dlers wait in a queue (2) to be run. The runtime manages a
single-threaded event loop to run all of the event handlers
in the queue. The runtime also keeps track of the system
state which is producer (while an event handler is running)
or consumer (when an event handler finishes). While an
event handler is running (3), it may trigger new events or
register new event handlers by interacting with the event
handler storage. An event handler may also interact with
other types of storage (like cookies or bookmarks) that
persist after the event handler finishes (4). A new event is
processed when all event handlers have finished running.

2.2. Noninterference and Weak secrecy

Noninterference [34] ensures that secret inputs do
not affect public outputs. It prohibits explicit leaks, like

1. The code repository is available at https://github.com/CompIFC/
comp-model/releases/tag/eurosp22.

output (L, h) where h contains secret data and L is a
public channel, as well as implicit leaks via control flow
like the following, where h is secret and l is public:

if h = 0 then l := 1 else l := 0; output(L, l)
A weaker form of noninterference that allows implicit

leaks is weak secrecy [70] or explicit secrecy [65]. Weak
secrecy only allows information leaks through branch
predicates. The program above satisfies weak secrecy, as
it can be re-written as a secure program without “high”
branches: l := 1; output(L, l) and l := 0; output(L, l). Be-
cause both of these programs are secure, the original
program satisfies weak secrecy.

2.3. Standard IFC Enforcement Mechanisms

We illustrate different enforcement mechanisms devel-
oped to enforce noninterference for reactive systems via
an example event handler:

onKeyPress(k) { if k == 42 then l := k }
Assume that initially l = 0. The event handler runs
for keypress events and receives as a parameter the key
pressed. The keypress events are public, while the param-
eter k, is secret. This means an attacker is allowed to learn
that a key was pressed but not which key.

Multi-execution based approaches. These include secure
multi-execution [31] and faceted execution [10].

Secure multi-execution (SME) executes the example
program twice, once for each security level L and H ,
maintaining separate memory stores for each copy of the
execution. Each execution receives only the data that is
“visible” at its level, otherwise it is replaced with a default
value. Thus, when a key is pressed, the execution at the
H level reads the value of the key press k (the H input),
and assigns 42 to the H copy of l if k 7→ 42. In the
L execution, the H input k is replaced with the default
value, say 0, so the branch is never taken. Thus, at the end
of the L execution, l remains unchanged in the L store,
irrespective of the value of k.

Faceted execution (MF) simulates multiple execu-
tions while avoiding unnecessary re-execution by creating
facets of a value only when the value contains a secret,
e.g., v = 〈vh|vl〉 where vh is the value of v observable at
H and vl is the value of v observable at L2. In the above
example, l 7→ 0 initially and is observable at all levels.
If the secret input k is 42, l is assigned the faceted value
〈42|0〉, meaning H observers see 42, while L observers
see l’s original value.

Taint tracking approaches. Taint tracking (TT) ap-
proaches carry and propagate taint, or security labels,
along with the data. In the example, suppose l 7→ 0L

initially, where L is the label of l. If k 7→ 42H , then
l 7→ 42H at the end. Otherwise, the branch is not
taken, and l remains 0L. Since the value of l depends
on the branch condition, the branch condition is leaked
implicitly through l. To securely handle such implicit
leaks, some approaches maintain a program context (pc)
label which keeps track of the context of the control
flow decisions. In the example above, the context is H
when assigning to l because of the branch predicate.

2. The original faceted values [10] have the format 〈k ? v : v′〉, where
those that can read principal k’s private data see v and others see v′.

https://github.com/CompIFC/comp-model/releases/tag/eurosp22
https://github.com/CompIFC/comp-model/releases/tag/eurosp22

1 onClick() {
2 if (strength > 5) {
3 p = pwdNode.value;
4 u = unameNode.value;
5 output (H, u+p); }};

Listing 1: Event handler to send username and password to
host server

1 onInput(e) {
2 p = e.target.value; /∗ get password value ∗/
3 if (p.match(/[0−9]/)) { strength+=1; }
4 if (p.match(/[A−Z]/)) { strength+=4; }
5 ...
6 output (L, p); }; /∗ Explicit leak ∗/

Listing 2: Third-party event handler to check password
strength; “strength” is a global variable

Then, these approaches abort the execution or diverge
when assigning to public variables in secret contexts [8].
These approaches are called no-sensitive-upgrade (NSU)
and satisfy termination-insensitive noninterference. Some
other approaches satisfy weak secrecy by allowing implicit
leaks and blocking only explicit leaks that output secret
information to public channels [65], [70]. Here, we only
consider approaches that do not abort or diverge.

3. Motivating Example

We demonstrate the usefulness of composing enforce-
ment mechanisms via a web example in which event
handlers run under different enforcement mechanisms.

Consider a website with a sign-up form including
username and password fields and a submit button. There
is also a third-party password strength-checking script
which registers an event handler to the password field
for the onInput event. The event handler is triggered
whenever the user changes the password. It checks the
password strength based on some algorithm (e.g., count
the character classes of the password) and writes a nu-
meric representation of the strength to a global variable
strength (illustrated in Listing 2). The main page registers
(among others) an event handler for the onClick event
associated with the submit button (as shown in Listing 1).
This event handler reads the global variable strength , and
either allows the form submission (if the strength reaches a
certain threshold) or displays a pop-up suggesting adding
character classes, such as numbers and symbols.

The third-party script should compute the strength of
the password locally without sending it on the network.
A malicious script might try to send the password to their
servers (line 6). The output command models sending
a message to the third-party site. Let us see how taint
tracking and multi-execution would enforce IFC in this
scenario, and why composing them might be desirable. We
will use this as a running example in the paper to describe
our framework and later as a case study for evaluation.

Taint-tracking enforcement. Suppose we execute the
event handlers with a taint tracking enforcement mech-
anism. NSU would terminate the execution of the entire
page if any script attempts to assign to a public variable
in a secret branch. This effectively opens up all pages to

1 onInputLeak(e) {
2 p1 = e.target.value.charAt[0];
3 present a = true; /∗ labeled L ∗/
4 detected a = false; /∗ labeled L ∗/
5 if (p1 = ’a’) {
6 detected a = true;} /∗ tainted H if p1 is ’a’ ∗/
7 if (!detected a) {
8 present a = false;} /∗ still labeled L if p1 is ’a’ ∗/
9 output (L, present a) };

Listing 3: Malicious third-party event handler

denial of service attacks, so we do not use NSU here (more
discussion can be found in Section 7). Let’s consider naive
taint tracking [33] without NSU, instead.

If the thid-party checker tries to directly leak the pass-
word on line 6 in Listing 2, the output will be suppressed
because the output requires the value’s label to be lower
than or equal to that of the channel, which does not hold.

A well-known limitation of naive taint tracking with-
out NSU is that it allows the script to leak information
via implicit flows [8]. Listing 3 is adapted from a classic
example of implicit leaks. Here, the variable detected a
is only tainted if the first character is ‘a’. In this case,
the assignment on line 8 is not executed as the branch
is not taken. As a result, present a remains true (and
labeled L). On the other hand, if the first character is not
‘a’, the assignment on line 6 will not be taken. Then,
the condition on line 8 will branch on an L value and
therefore, present a remains L and the value updated
to false. Finally, the output on line 9 will successfully
notify the attacker whether the first character is ‘a’. We
can expand the program to test the password character-
by-character for every ASCII symbol and thus leak the
entire password [6]. Thus, taint tracking has weaker se-
curity guarantees, which we later formalize using weak
secrecy [65], [70], that allows attackers to learn which H
branches are taken and which L variables are upgraded
to H . Because we allow branch conditions to be leaked,
anyway, we simplify our semantics by not upgrading the
pc when branching on secrets.

Multi-execution enforcement. To prevent the above-
mentioned leaks, we can instead execute the event han-
dlers using a multi-execution mechanism like SME [31].
The event handlers would then execute twice: once for
the secret and once for the public level, where the secret
execution would allow only H outputs while the public
execution would allow only L outputs. The secret exe-
cution would see the actual value of the password but
the public execution would get a default value instead. If
the script sends the password on an L channel (line 6 in
Listing 2), the public execution would send the default
value instead of the actual password, while the secret
execution would skip the output altogether. This also
prevents the implicit leaks shown in Listing 3. Although
SME securely computes accurate information, it runs the
event handlers multiple times and stores multiple copies
of data, which is resource intensive.

Composing taint-tracking and multi-execution. In this
example, a desirable approach would be to execute the
third-party script and store the global variable strength
using a multi-execution approach so that it can correctly

Execution contexts:
Sec. label set: L ::= {·, L,H}
Program counter: pc ∈ L
Security label: l ∈ L
Policy context: P
Global storage enf.: G
EH enforcement: V

Program syntax:
Value: v ::= n | b | dv
Expression: e ::= x | v | uop e | e1 bop e2 | ehAPIe(...)
Command: c ::= skip | c1; c2 |while e do c |x := e

| id := e | if e then c1 else c2
| output ch e | ehAPIc(...)

Runtime configurations:
Global state: σG

Local state: σV

Execution state: s ::= P |C
Events: E ::= · |E, (id .Ev(v), l)
Configuration: κV ::= σV , c, s, E
Config. stack: ks ::= · | (V;κV ; pc) :: ks
Comp. config.: KG ::= σG; ks
Actions: α ::= in | ch(v) | •

Figure 2: Syntax for the compositional framework

compute the strength of the password without compro-
mising its secrecy. Meanwhile the event handlers on the
main page could execute with a taint tracking mechanism
as they do not purposely exploit implicit leaks and will
be more performant than a multi-execution approach. In
this particular example, for the main page event handlers
to access precise information, the event handler will run
in the H context to access the H copy of strength .
Composition allows us to balance good security for the
untrusted third-party scripts with good performance for
the more trustworthy first-party scripts.

Another interesting composition question arising from
this example is whether it is necessary to store shared
variables such as strength twice as is typically done with
SME and MF or is it sufficient to merely taint the variables
and execute the script with SME? In this example, when
onInput runs, the L copy runs first and sets the imprecise
value for strength based on the default value for the
password. The H copy runs next and sets the precise value
for strength based on the real password with label H , as
it is written from the H execution context. Is this secure?
We take the first steps to explore different ways of storing
data and executing scripts (Section 4), as well as what type
of security each composition achieves (Section 5).

4. Compositional Enforcement Framework

One of our observations is that the semantics of reac-
tive programs necessitate a high-level event handling loop
that processes inputs and outputs, leading to the high-
level semantics of dynamic IFC enforcement for these
programs behaving similarly, regardless of the mechanism
(e.g., SME or taint tracking). We design a framework
that is flexible enough to incorporate all of the dynamic
enforcement techniques described in Section 2. We de-
scribe the components from Figure 1, each of which has

G,P ` K α
=⇒ K′

P(id .Ev(v)) = H
G,P, σ ` lookupEHAll(id .ev(v)) ;H ks

G,P ` σ; · id.Ev(v)
=⇒ σ; ks

IN-H

P(id .Ev(v)) = L
G,P, σ ` lookupEHAll(id .ev(v)) ;· ks

G,P ` σ; · id.Ev(v)
=⇒ σ; ks

IN-L

(a) Simplified input rules

producer(κ) αl = outV(P, ch(v), pc)

G,P,V ` σ, κ ch(v)−→ pc σ
′, ks ′

G,P ` σ; ((V;κ; pc) :: ks)
αl=⇒ σ′, ks ′ :: ks

OUT

producer(κ)

G,P,V ` σ, κ α−→pc σ
′, ks ′ • = outV(P, α, pc)

G,P ` σ; ((V;κ; pc) :: ks)
(•,pc)
=⇒ σ′, ks ′ :: ks

OUT-SKIP

consumer(κ)

G,P ` σ; ((V;κ; pc) :: ks)
(•,pc)
=⇒ σ, ks

OUT-NEXT

(b) Simplified output rules

Figure 3: Simplified semantics for processing inputs (user
events) and performing outputs (communications on channels).

its own semantics (Section 4.2). The topmost level of
semantics is responsible for processing inputs and outputs,
and looking up event handlers. The next level manages
the event handler queue, and another level describes how
individual event handlers are run, according to the selected
enforcement mechanism. Finally, the lowest level seman-
tics are described in Section 4.3 determines how event
handlers interact with shared storage (such as the DOM).

4.1. Syntax

The syntax for our compositional enforcement frame-
work is shown in Figure 2. We organize our security
labels, l, in a three-point security lattice which is the
standard two-point security lattice with an additional label
‘·’. At a high-level, · means “no (pc) context” and is
neither public nor private, so we put it at the bottom of
the security lattice. This is used by MF to differentiate a
standard execution from one which has split into an L and
H copy. The program context label indicates the context
under which the event handlers execute, denoted as pc.

The policy context P keeps track of the labels as-
signed to input events and output channels, and is also
responsible for deciding which event handlers run with
which enforcement mechanism. For example, P might
mark the onInput event for the password field as secret
(H), output channels that belong to an attacker as public
(L), and the enforcement of the onClick event handler
to be TT and the third-party onInputCk event handler
to be SME. We discuss considerations for making such
decisions in Section 7. The enforcement for the global
store is denoted G. The enforcement for a particular event
handler is denoted V .

Values include integers (n), booleans (b), and a pre-
determined default value dv, which is used to replace the
public copy of private data in multi-execution [35]. Each
value type can have a distinct default value; for simplicity
we use a single default value. Commands and expressions
are mostly standard in our framework. The event handler
APIs ehAPIe (e.g., look up a DOM node’s attribute) and
ehAPIc (e.g., create a new child node in the DOM) interact
with the event handler store, and id := e updates the
attributes in the event handler store.

A single configuration κ contains a local store for
storing local script variables, σV (whose structure is deter-
mined by the enforcement mechanism V), the command
(event handler) being executed, the state of the execution
(either Producer (P) or Consumer (C)), and a list of events
triggered by that event handler, E. The compositional
configuration KG is a snapshot of the current system state.
It maintains the global store σG and the configuration
stack, ks . The global store inclues variables shared be-
tween scripts and event handler storage. The structure of
the global store depends on the enforcement mechanism.
Each element of the configuration stack includes one of
the event handlers pending execution in κ, as well as the
enforcement mechanism it should run under, V , and the
context in which it should run, pc. The enforcement (V)
used for each event handler in the stack is determined
by P and may be different for different events. Actions
emitted by the execution, α, include user-generated input
events, outputs on channels and silent actions, denoted •.

4.2. Framework Semantics

We organize our semantics into several layers to match
the components illustrated in Figure 1.

Input/Output, EH Lookup. The top-most level for our
compositional framework processes user input events and
outputs to channels. These rules govern how inputs trigger
event handlers and how outputs are processed and use the
judgement G,P ` K α

=⇒ K ′, meaning the compositional
configuration K can step to K ′ given input α or producing
output α under the compositional enforcement G and label
context P . Simplified rules are shown in Figure 3.

Regardless of how the event handlers or global vari-
ables are stored, or how the policy determines to enforce
IFC on individual event handlers, the logic for looking up
event handlers is the same. In each case, the label context,
P , tells us whether the event is secret (H) or public
(L). The EH lookup semantics, given by the judgement
G,P, σ ` ks; lookupEH(...) ;pc ks ′ return the stack of
event handlers to run.

The label of an input event id .Ev(v) is given by
the policy P . For secret events as in IN-H, all event
handlers visible to H are run in the H context by using
lookupEHAll with pc = H to build ks . When the input
is a public event as in IN-L, all event handlers are run in
whatever context they are visible in by using the · pc for
the lookup.

Similar to the input rules, the output rules shown in
Figure 3b are the same regardless of the enforcement
mechanism or event handler storage. The mid-level se-
mantics are of the form: G,P,V ` σG1 , κ

α−→pc σ
G
2 , ks

(omitted due to space constraints) and run a single event

handler κ with the given enforcement mechanism V and
produce some output α. producer(κ) and consumer(κ)
tell us whether the execution state of κ is producer or
consumer (respectively). When an event handler is cur-
rently running, the system is in producer state (OUT and
OUT-SKIP) and when the event handler has finished, the
system is in consumer state (OUT-NEXT) and the current
event handler can be popped off ks . outV(...) determines if
an output should be allowed (OUT) or suppressed (OUT-
SKIP) which is determined by whether the value being
output is visible to the channel receiving the output and
varies depending on the enforcement mechanism (V).

EH Queue. The mid-level semantics control the execution
state (P for Producer, when an event handler is running,
and C for consumer, when it has finished) as well as
adding event handlers for locally-triggered events (i.e., not
triggered by a user) to the resulting configuration stack.
After an event handler finishes running, these semantics
check for any locally-triggered events. If there are some,
their corresponding event handlers are added to ks . Fi-
nally, the current event handler enters consumer state to
tell OUT-NEXT to run the next event handler.

Running EHs. The lower-level semantic rules for evalu-
ating individual event handlers are triggered by the mid-
level semantics in the “producer” state. These rules are
mostly standard and enforcement-independent, except for
interactions with the store. The rules in Figure 4 high-
light the way our framework handles these differences.
ASSIGN-G performs an assignment to a global variable
while ASSIGN-D performs an assignment to an attribute
in the event handler storage. Expressions are evaluated
using the judgment G,V, σG, σV ` e ⇓pc v. This also
ensures v is in the format expected by the enforcement
when different mechanisms are composed. For instance, to
convert a tainted value (v,H) to a value used by SME, we
check that the label on the value is visible to the execution.
The L execution would receive the default value dv instead
of something tainted (v,H), while the H execution would
receive the real value. This is reminiscent of the way SME
replaces secret inputs with dv for the L execution. More
discussion on conversion can be found in Section 4.3.

The assignment is performed using enforcement-
specific helper functions. assignG(...) assigns global vari-
ables or event handler attributes, depending on whether
a variable or node id is passed as an argument. The pc
ensures that the assignments are performed securely (i.e.,
in the correct copy of the store, facet, or with the correct
label, depending on the type of enforcement).

4.3. Shared storage

Event handlers may interact with each other through
shared storage. To introduce the storage techniques, we
describe the syntax for both variable and event handler
storage (using the DOM as a case study) and describe
their semantics at a high-level, then we explain how shared
storage with one type of enforcement may be composed
with an event handler running with a different type of
enforcement. Finally, we illustrate these interactions by
returning to our example from Section 3.

Variable storage syntax. We refer to shared storage
techniques using similar terms as the enforcement mech-

G,V σG1 , σ
V
1 , c1

α−→pc σ
G
2 , σ

V
2 , c2, E

G,V, σG1 , σV1 ` e ⇓pc v
x ∈ σG1 assignG(σG1 , pc, x, v) = σG2

G,V σG1 , σ
V
1 , x := e

•−→pc σ
G
2 , σ

V
1 , skip, ·

ASSIGN-G

G,V, σG1 , σV1 ` e ⇓pc v
x 6∈ σG1 assignV(σV1 , pc, x, v) = σV2

G,V σG1 , σ
V
1 , x := e

•−→pc σ
G
1 , σ

V
2 , skip, ·

ASSIGN-L

G,V, σG, σV ` e ⇓pc v

G,V, d σG, σV , output ch e
ch(v)−→ pc σ

G, σV , skip, ·
OUTPUT

Figure 4: Selected command semantics

Shared Storage

Shared storage: σG ::= σGg , σ
G
EH

SME/SMS Variable Storage
Single store: σpc ::= · |x 7→ v
SME/SMS Storage: σSME, σSMS

g ::= σH , σL

MF/FS Variable Storage
Faceted value: vMF, vFS ::= v | 〈vH |vL〉 | 〈·|v〉 | 〈v|·〉
MF Storage: σMF ::= · |σMF, x 7→ vMF

FS Storage: σFS
g ::= · |σFS

g , x 7→ vFS

TT/TS Variable Storage
Labeled value: vTT, vTS ::= (v, l)
TT Storage: σTT ::= · |σTT, x 7→ vTT

TS Storage: σTS
g ::= · |σTS

g , x 7→ vTS

Figure 5: Storage syntax

EH Storage:
EH map: M ::= · |M,Ev 7→ {(eh1, l1), ..., (ehn, ln)}

Unstructured SMS DOM:
Single store: σpc ::= · | id 7→ (v,M)
DOM: σSMS

EH ::= σH , σL

Unstructured FS DOM:

DOM: σFS
EH ::= · |σFS, id 7→ (vFS,M)

Unstructured TS DOM:

DOM: σTS
EH ::= · |σTS, id 7→ (vTS,M, l)

DOM addresses:
Location: loc ∈ Address
Address: a ::= loc |NULL
Root address: art ::= loc
Address list: A ::= · |A, a

Tree-structured SMS DOM:
Node: φSMS ::= (id , v,M, ap, A)
Single store: σpc ::= art 7→ φSMS |σpc , loc 7→ φSMS

DOM: σSMS
EH ::= σH , σL

Tree-structured FS DOM:
Faceted address: aFS ::= a | 〈aH |aL〉 | 〈·|a〉 | 〈a|·〉
Faceted address list: AFS ::= · | aFS :: AFS

Node: φFS ::= (id , vFS,M, aFSp , A
FS)

DOM: σFS
EH ::= art 7→ φFS |σFS, loc 7→ φFS

Figure 6: Event handler storage syntax for the DOM

anisms for code execution: secure multi-storage, SMS,
stores each item multiple times (once per security level),
faceted storage, FS, stores multiple copies only when
necessary, and tainted storage, TS, tracks labels for every
item in the store. Storage syntax is shown in Figure 5.
For SME/SMS, variables are stored twice: once at each
security level. Observers at H will interact with the H
copy of the store (σH) and observers at L with interact
with the L copy of the store (σL). For MF/FS, variables
are also stored twice, but only when the value depends
on a secret. A faceted value such as 〈vH |vL〉 depends on
a secret. H observers will interact with the H facet (vH)
and L observers interact with the L facet (vL). Empty
facets (such as the L facet of 〈v|·〉) are treated as a default
value. Finally, for TT/TS, values have an accompanying
label to reflect whether they have been influenced by a
secret (label H) or not (label L).

EH storage syntax. Event handler storage associates
events with the appropriate event handlers. The DOM is
one type of event handler storage, which links event han-
dlers to elements on a webpage. We explain how to model
event handler storage in our framework by considering
both an unstructured DOM, where nodes are organized as
an unordered list [48], which is useful for reactive systems
like OS processes, as well as a more traditional tree-
structure [61], which is useful for modeling the DOM. For
brevity, we refer both the unstructured and tree-structured
event handler storage as the “DOM.” The syntax for both
structures are shown in Figure 6.

In the unstructured DOM, elements are identified by a
unique identifier (id) and contain both an attribute (whose
structure is determined by the type of enforcement, to be
described next) and an event handler map (M), which
maps events (Ev) to a list of event handlers (eh) and the
context they were registered in (l). M is the same for all
enforcement mechanisms, except that event handlers in FS
may have any label in L (“·” means the event handler can
be triggered by either L- or H-labeled events) but SMS
and TS event handlers may only be labeled L or H .

Similar to variable storage, the unstructured [48] SMS
DOM has two copies. H observers interact with the H
copy of the DOM and likewise for L observers. Attributes
are standard values (v), including integers and booleans.
Initially, the H and L copies of the DOM will be identical.
As events are triggered, new elements may be added to the
DOM, event handlers registered, or attributes updated in
one or both copies. The unstructured FS DOM is a single
structure whose attributes are duplicated when they have
been influenced by secrets. Here, attributes are standard
when the value does not depend on a secret (v) or faceted
values when the value appears different to H observers
than L observers (〈vH |vL〉). Initially, all the attributes are
standard values in the FS DOM. A DOM element which
has been added in only the H context will have an attribute
with an empty L facet (i.e., 〈v|·〉) and likewise for the H
facet of an element added in only the L context. The TS
DOM will associate labels with both attributes ((v, l)) and
DOM elements ((vTS,M, l)). The label on the element
reflects the context the element was created in, while the
label on the attribute reflects whether the attribute has been
influenced by a secret (l = H) or not (l = L).

In the tree-structured [61] DOM, each element on the

page has a matching DOM node (φ) which is stored by
reference (loc). Nodes have a unique identifier (id), an
attribute, and an event handler map, like in the unstruc-
tured DOM. They also contain a pointer to their parent
(ap), and a list of pointers to their children (A) (if any).
The root of the DOM is at art. The node at this address
cannot be replaced with another node, but its attribute
may be updated and children can be added to it. Since we
later prove that compositions involving the unstructured
TS DOM only satisfy weak secrecy, we only formalize
the more complex tree-structured DOM for SMS and FS.

The tree-structured SMS DOM has two copies and
behaves similarly to the unstructured SMS DOM. The
tree-structured FS DOM supports faceted attributes, as
well as a faceted parent pointer (aFS) and list of faceted
pointers to children (AFS). Because nodes are uniquely
identified by their ID, a node may have a faceted parent
pointer, for instance, if a node is created as a child of φH
in the H context and then a node with the same ID is
created as a child of φL in the L context. A node might
have a faceted pointer in its list of children if a child is
added in the H context, but not the L context. In this case,
if the child is at address a, the node would have 〈a|·〉 in
its list of children.

Storage composition. Since different event handlers run-
ning with different enforcement mechanisms may interact
through shared storage, values may need to be “converted”
from the format for one enforcement mechanism (i.e.,
a standard, faceted, or labeled value) to another. When
converting data, we follow three high-level guidelines to
ensure the composition is secure:
1. The pc context determines which copy to access in
multi- storage. If a value is coming from SMS or FS,
there may be two copies to pick from. When the context
(i.e., the pc) is H , we access the H copy, and likewise
for L. If the value does not exist in that copy of the store
(in the case of SMS) or is an empty facet (in the case of
FS), we use a default value.
2. The pc context and destination determines whether to
replace a labeled value with a default value. If the value
is coming from TS, we need to decide if we take the
actual value or use a default value. If the context is H , we
take the real value without leaking any information. If the
context is L and the destination is a multi-storage (SMS,
FS) or multi-execution (SME, MF) technique, we replace
tainted values (with label H) with a default value since the
L copy of the store/execution should never be influenced
by a secret. On the other hand, if the destination is TS or
TT, we use the original, tainted value, and propagate the
taint through the resulting label.
3. The destination and pc context determines the ultimate
format. Multi-storage and multi-execution techniques use
the context to determine which copy of the store/which
facet to update. For taint tracking techniques, the context
is also used to determine the final label on the data (e.g.,
public data is labeled H if it is computed in the H
context). Consider a public event handler running with
SME. It would run first in the L context and then in the
H context. The L execution would interact with the L
copy of store secured with SMS, or with the L facets for
a store secured with FS. The H execution would interact
with the H copy (respectively, H facets). On the other

hand, if the store is secured with TS, any changes made
by the L execution would be labeled L and ultimately be
overwritten by the H execution (which would have label
H). A table summarizing how data is converted for every
combination of enforcement is shown in Figure 7.

Examples. We describe how the example from Section 3
works in our framework, using the configuration in Fig-
ure 8. For illustrative purposes, we describe both SMS and
TS shared storage with an unstructured DOM.

For TS storage, everything maps to a value and a label,
including both variables and attributes and elements in the
DOM. SMS involves an H and L copy of both the shared
variables and DOM. The onInput event handler is public,
so it exists in both the H copy of the SMS event handler
storage and is labeled L in the TS storage. The contents
of the field idp are secret, so for SMS, the contents are
replaced with a default value in the L copy of the DOM,
and for TS the contents are labeled H . The onClick event
is secret, so it is only registered in the H copy of the SMS
DOM and is labeled H in the TS DOM. The policy is that
onInput event handlers should be run under SME. We trust
the first-party event handler onClick to not misbehave, so
the policy is to run this event handler with TT.

The ks in Figure 8 is the result of looking up event
handlers for the input event on the password field and the
public click event on the “Submit” button. Note that ks
will be the same whether we use SMS or TS for shared
storage (more details on this to follow). For illustrative
purposes, ks is the result of running all three event han-
dlers. In reality, the local stores would initially be empty
and the input event handlers would run to completion
before the click event was triggered.

Rule IN-L is used to process the public Input event.
It will run all of the registered event handlers in whatever
context they are visible. Since the event handler is regis-
tered in both the L and H copies of the SMS DOM, and
with label L in the TS DOM, it is visible to both the L and
H context. Since we are running this event handler with
SME, the ks has two onInput event handlers: one running
in the L context and one in the H context (note that SMS
and TS produce the same ks).3 The onInput event handler
attempts to output to an L channel. In the H execution,
this output is suppressed (OUT-SKIP) because the output
condition for SME requires that the label on the channel
matches the label of the pc. On the other hand, the same
output in the L execution would succeed (OUT). Recall
that event handlers running in the L context interact with
the L copy of the SMS DOM and receive default values
instead of tainted values from the TS DOM. Therefore,
this output does not leak anything to the attacker since the
L copy of the execution receives a default value for the
password from the DOM in both cases.

For the Click event, IN-H runs all of the event handlers
visible to H (i.e. only those labeled H). This is the third
element in ks (note that, like above, SMS and TS produce
the same ks). When this event handler runs it will run in
the H context, so it will interact with the H copy of the

3. If the same event handler were to run under TT, we can output to
both L and H channels from the L context, but only H channels from
the H context. We only want to run the event handler once to avoid
duplicated outputs to H channels, and we don’t want to suppress all the
L outputs, so we would run the event handler in the L context only.

Destination and pc
SME,SMS MF,FS TT,TS
· L H · L H · L H

So
ur

ce
vstd vstd vstd vstd vstd 〈·|vstd〉 〈vstd|·〉 (vstd, L) (vstd, L) (vstd, H)
〈vH |vL〉 〈vH |vL〉 vL vH 〈vH |vL〉 vL vH 〈vH |vL〉 (vL, L) (vH , H)
〈v|·〉 〈v|·〉 dv v 〈v|·〉 dv v 〈v|·〉 (dv, L) (v,H)
〈·|v〉 〈·|v〉 v dv 〈·|v〉 v dv 〈·|v〉 (v, L) (dv, H)

(v, L) − v v v v v − (v, L) (v,H)
(v,H) − dv v 〈v|dv〉 dv v − (v,H) (v,H)

Figure 7: Conversion between standard, tainted, and faceted values.

TS Shared storage σg = strength 7→ (40, H), username 7→ (“bob”, L)
σEH = (idp 7→ ((“aKUd?mdu5GHa&l7gHJ5”, H), input 7→ {(onInput(x){cin}, L)}, L)),

(idb 7→ (, click 7→ {(onClick(){cclk}, L)}, H))
SMS Shared storage σg,L = strength 7→ dv, username 7→“bob”

σEH,L = (idp 7→7→ (dv, input 7→ {(onInput(x){cin}, L)})), (idb 7→ (, ·))
σg,H = strength 7→ 40, username 7→“bob”
σEH,H = (idp 7→ (“aKUd?mdu5GHa&l7gHJ5”, input 7→ {(onInput(x){cin}, H)}),

(idb 7→ (, click 7→ {(onClick(){cclk}, H)}))
Configuration stack ks = (SME, ((p1 7→ dv[0], presenta 7→ false, detecteda 7→ false), [idp/x]cin ,P , ·), L)

:: (SME, ((p1 7→ “a”, presenta 7→ true, detecteda 7→ true), [idp/x]cin ,P , ·), H)
:: (TT, ((p 7→ (“aKUd?mdu5GHa&l7gHJ5”, H), u 7→ (“bob”, L)), cclk ,P , ·), H)

Figure 8: Example configuration

SMS σg and runs the risk of upgrading public variables
in the TS σg. In this case, Listing 1 only reads from the
shared storage, so nothing is leaked through TS. Recall
from above that everything from the H copy of the SMS
storage will be labeled H , and everything that comes from
the TS storage will keep its label. An output for TT
succeeds if the pc (H) joined with the label on the value
being output (p + u , so, H tH = H in the case of SMS
or H tL = H in the case of TS) is at or below the label
on the channel (H). Therefore, this output succeeds.

This example shows that our framework can seam-
lessly compose enforcement mechanisms and securely
convert data between different enforcement mechanisms,
like SMS and TT.

5. Security and Weak Secrecy
Next we present two security definitions of different

strengths, compare these two definitions, and prove that
the techniques from Section 2 may be composed to en-
force varying levels of security.

5.1. Attacker Observation

To quantify how much an attacker learns by inter-
acting with our framework, we first define what the at-
tacker can observe from an execution trace. A trace T
is a sequence of execution steps, inductively defined as
T = G,P ` T ′ αl=⇒ K where an empty trace is the initial
state G,P ` K0. An attacker’s observation of T , denoted
T ↓L, is the sequence of L-observable inputs and outputs
in T . Two execution traces are L-equivalent if their L
observations are the same: T ≈L T ′ iff T ↓L= T ′ ↓L.
Key rules defining L observation of an execution trace
are in Figure 42.

Low inputs (TRACE-IN-L) and other low actions
(TRACE-L) are observable. TRACE-L defines a “low ac-
tion” as one produced in the low context (l v L) or

P(id .Ev(v)) = L

(G,P ` K id.Ev(v)
=⇒ T ′) ↓L= id .Ev(v) :: T ′ ↓L

TRACE-IN-L

P(α) = L or l v L

(G,P ` K (α,l)
=⇒ T ′) ↓L= α :: T ′ ↓L

TRACE-L

P(id .ev(v)) = H

(G,P ` K id.ev(v)
=⇒ T ′) ↓L= T ′ ↓L

TRACE-IN-H

P(α) = H or α = •

(G,P ` K (α,H)
=⇒ T ′) ↓L= T ′ ↓L

TRACE-H

Figure 9: Rules for projecting execution traces to L

an L-labeled action (P(α) = L). L-labeled inputs and
outputs to L-labeled channels are all L-labeled actions.
Secret events, are not observable (TRACE-IN-H). Finally,
secret actions (P(α) = H) performed in the H context
are not observable as shown in TRACE-H.

Two configurations K1 and K2 are L-equivalent if
their global stores σG1 and σG2 and their configuration
stacks ks1 and ks2 are L-equivalent. Configuration stacks
are L-equivalent if all of the L configurations have L-
equivalent local stores and they agree on commands. Most
of these definitions are straightforward. The most inter-
esting definition is L-equivalence of the tree-structured
DOM, which is defined inductively over the structure of
the tree beginning with the root nodes.

5.2. Progress-Insensitive Security

We first define attacker’s knowledge assuming that the
attacker can view all of the publicly-observable inputs and
outputs, as well as the initial state of the system (this

includes the initial global variables and DOM upon page
load which contains no secrets). The attacker’s knowledge
given a trace T is what they believe the secret inputs might
have been, which is the set of inputs from L-equivalent
execution traces starting from the same initial state:

K(T, σG0 ,P) = {τi | ∃T ′ ∈ runs(σG0 ,P),
T ≈L T ′ ∧ τi = in(T ′)}

We define runs(...) as the set of possible execution traces
resulting from the shared state σG0 under the policy P .
The set of inputs from a trace T is denoted in(T), while
τ is a sequence of actions.

Intuitively, the system is secure if the attacker does
not refine their knowledge. However, this definition is
too strong for our system because it is progress-sensitive.
An infinite loop that depends on a secret will allow
the attacker to refine their knowledge based on whether
the system makes progress to accept another low input.
Instead, we define a weaker, progress-insensitive security
property, by introducing the following progress-insensitive
attacker’s knowledge below:

Kp(T, σG0 ,P) = {τi | ∃T ′ ∈ runs(σG0 ,P),
T ≈PL T ′ ∧ τi = in(T ′) ∧ prog(T ′)}

The attacker is allowed to distinguish between traces
which do and do not make progress so we add prog(T ′)
as a condition on T ′ to consider only the traces which
produce the same L-observations and make progress.

Using these knowledge definitions, we define what it
means for a program to be secure: when the system takes
a step, the attacker’s confidence about the secret inputs
should not increase; they should not be able to distinguish
between any more traces than before, other than through
whether the system makes progress. We use � subscript
for the subset relation (⊇�) to say that the input sequences
after the step may be longer.

Definition 1 (Progress-Insensitive Security). The compo-
sitional framework is progress-insensitive secure iff given
any initial global store σG0 and policy P , it is the case
that for all traces T , actions α, and configurations K s.t.
(T

α
=⇒ K) ∈ runs(σG0 ,P), then K(T

α
=⇒ K,σG0 ,P) ⊇�

Kp(T, σG0 ,P).

We can prove that any combination of enforcement
mechanisms SME, SMS, MF, and FS satisfy this progress-
insensitive security condition:

Theorem 2 (Soundness). If event handlers are enforced
with V ∈ {SME,MF} and the global storage is enforced
with G ∈ {SMS,FS}, then the composition of these event
handlers and global stores in our framework satisfies
progress-insensitive security.

We prove our framework secure with these enforce-
ment mechanisms by defining a series of “requirements”
for the framework (called Trace and Expression require-
ments), variable stores (called Variable requirements),
and event handler store (called Event Handler require-
ments). These requirements are described in Figure 44.
For the most part, these requirements follow a similar
structure to other knowledge-based security proofs from
prior work. The most noteworthy difference is the notion
of “strong equivalence” for values. Traditionally, nonin-
terference only requires that values are equivalent (i.e.,

they are the same public values, or both values are secret)
but here we require that values are both equivalent and
publicly observable (i.e., they are equivalent only if they
are the same public values; they cannot be tainted). This
distinction is important for highlighting the difference
between progress-insensitive security and weak secrecy.

5.3. Weak Secrecy

As discussed in Section 3, NSU semantics are too rigid
for our setting. Unfortunately, without NSU semantics,
taint tracking techniques are susceptible to implicit leaks.
Namely, branching on a secret in the L context may result
in different public behavior for different secrets. We can
also see implicit leaks through global store: suppose a
secret event handler upgrades a public value stored in the
global variable x. If the attacker successfully output x
in the past, but cannot output x now, they can conclude
that a secret event handler which writes to x must have
ran recently. For example, the leaky third-party script
shown in Listing 3 violates Definition 1 when the script
is enforced with TT and the global storage with TS.
Consider the scenario where the user inputs a password
“abcd”. Before the output (true, L), the attacker knows
the input was some password, but they are not sure which
one, so their knowledge set is all possible passwords. After
the output, the attacker learns that the input password must
start with an ‘a’, thus refining the set of possible inputs
to only the passwords beginning with ‘a’, which violates
the security condition. Branching on a secret implicitly
leaked information to the attacker.

Instead, we prove a weaker security condition called
weak secrecy [65], [70] which allows implicit leaks
through control flow but still ensures that explicit leaks
via outputs are still prevented.

Additional attacker observations. We modify our se-
mantics with additional outputs to capture both types of
implicit leaks described above: br() when branching on
a tainted value in the L context, and gw() when a L-
labeled value is upgraded in the H context.

Knowledge-based weak secrecy definition. Since we
allow information to leak through control flow decisions,
we define another form of knowledge to capture this:

Kwp(T,Σ0,P, αl, I) = {τi | ∃T ′ ∈ runs(Σ0,P, I), T ≈L T ′
∧τi = in(T ′) ∧ prog(T ′) ∧ wkTrace(T ′, α′)

where α′ = (last(T)
αl=⇒ K)) ↓L}

last(T) returns the last configuration in a trace. Here, ≈L
ensures the implicit leaks up to this point were the same
and wkTrace ensures the next implicit leak is the same.
If T is about to output br(b) or gw(x), then T ′ can be
extended to produce the same output. We also need to
make sure that when T receives a public input, T ′ does not
leak anything until the next public input. Because inputs
come nondeterministically, and we only want to consider
traces which produce the same implicit leaks, we don’t
want T ′ to leak anything extra in a secret event handler
before the next public input. This ensures that if T and
T ′ were ≈L up to this point, they will continue to be
equivalent after the next step. Maintaining equivalence like
this is important for proving security.

Trace Requirements
(W)T1 ≈L traces, ≈L states Equivalent traces starting in equivalent states lead to equivalent states
(W)T2 Empty traces, ≈L states Traces producing no public events produce equivalent states

T3 Secret pc’s, empty traces Steps under a secret pc produce no public events
(W)T4 Strong one-step If a trace takes a step, then an equivalent trace can take an equivalent step
(W)T5 Weak one-step Equivalent traces taking steps producing equivalent public observations lead to equiv-

alent states
Expression Requirements

(W)E1 L-expressions are ≈L Evaluating an expression under equivalent stores with public pc’s results in (strong)
equivalent values

Variable Requirements
(W)V1 L-lookups are ≈L Lookups of the same variable under public pc’s in equivalent stores result in (strong)

equivalent values
(W)V2 H-assignments are ≈L Assignments to stores under a secret pc result in an equivalent store
(W)V3 L-assignments are ≈L Assignments to equivalent stores under public pc’s result in equivalent stores

Event Handler Storage Requirements
(W)EH1 L-lookups are ≈L Lookups in equivalent DOM’s under public pc’s result in (strong) equivalent values
(W)EH2 H EH lookups empty Event handler lookups under a secret pc produce no public event handlers

EH3 H-updates are ≈L Updates under a secret pc results in an equivalent store
(W)EH4 L-updates are ≈L Updates under public pc’s in equivalent stores result in equivalent stores

Figure 10: Requirements for Progress-Insensitive Security and Weak Secrecy

K1

K2
K2’

?

K1’

(a) Progress-insensitive Security: Each in the H context before EvL
is L-equivalent, even though T2 sees different H events than T1. From
T1 ≈L T2, T1 and T2 see the same public input: EvL. We show that
each step in the L context (K1 to K′1 and K2 to K′2) produces ≈L

states and from this, we prove that T2 can take step α
=⇒

producing the same output α = ch(v) and equivalent states ≈L .

? ?

(b) Weak Security: The proof is similar to above except that T1 and
T2 are also synchronized on gw() and br() actions. Because of this,

when T1 takes a step to accept a low event
EvL=⇒ , we need to

know that running the event handler for EvH,1 in T2 (=⇒∗) will
not produce any gw() actions. This is guaranteed by the wkTrace

condition in Kwp().

Figure 11: Comparison of Progress-insensitive security (top) and Weak Security (bottom) proofs. Given T1 ≈L T2, where T1 takes
a step to , we want to show that T2 can take equivalent steps , and that trace equivalence maintains state equivalence .

Consider, again, our leaky third-party script in List-
ing 3 where the user inputs the password “abcd”. In
our weak secrecy semantics, the execution of that event
handler would generate br(true) when branching on the
secret. The wkTrace predicate in the weak secrecy def-
inition allows the attacker to refine their knowledge to
include the fact that the branch condition must evaluate to
true by throwing out all the traces which do not generate
this branch condition. Only passwords starting with ‘a’
cause the branch condition to be true, so at this step, the
attacker is allowed to learn that the password must begin
with ‘a’ (i.e. the knowledge set is refined from all possible
passwords to all possible passwords starting with ‘a’).
Therefore, the output does not further refine the attacker’s
knowledge, so this program satisfies weak secrecy.

Definition 3 (Progress-insensitive Weak Secrecy). The
compositional framework satisfies progress-insensitive
weak secrecy in our framework iff given any initial global
store, σG0 , and policy P , it is the case that for all traces
T , actions α, and configurations K s.t. (T

α
=⇒ K) ∈

runs(σG0 ,P), the following holds

• If wkAction(last(T)
α

=⇒ K):
K(T

α
=⇒ K,σG0 ,P) ⊇� Kwp(T, σG0 ,P, α)

• Otherwise:
K(T

α
=⇒ K,σG0 ,P) ⊇� Kp(T, σG0 ,P).

Meta-theory. We prove that any combination of enforce-
ment mechanisms that we instantiated our framework
with, including TT and TS, satisfy Definition 3:

Theorem 4 (Soundness-Weak Secrecy). If event handlers
are enforced with V ∈ {SME,MF,TT} and the global
storage is enforced with G ∈ {SMS,FS,TS}, then the
composition of these event handlers and global stores in
our framework satisfies progress-insensitive weak secrecy.

We prove weak secrecy using a similar technique to
progress-insensitive security. The requirements are nearly
the same and are shown in Figure 44 with a (W). Re-
quirements T3 and EH3 cannot be proven in the presence
of implicit leaks (upgrades to global variables in the H
context is publicly observable). However, they are not
needed to prove weak secrecy. The requirements mention-
ing “strong equivalence” are weakened to “equivalence”
since leaking branch conditions is permitted.

Further comparisons of the proof techniques behind
these two security definitions are shown in Figure 11. The
events that two equivalent traces T1 and T2 have to agree
on for the weak secrecy definition are a superset set of
those required by the regular security definition, so the
set of traces in the equivalent class (knowledge set) of the
former is a subset of the latter. Consequently, attackers
know more in the system that allows implicit leaks. We

prove that our weak secrecy security condition is weaker
than our standard security condition, in general:

Theorem 5 (PI Security implies PI Weak Secrecy). If
the composition of event handlers and global storage
enforcement are progress-insensitive secure, then they are
also progress-insensitive weak secure.

5.4. Securing TT

We can prove that in the presence of a secure global
storage, using taint tracking for the event handler is secure,
even without NSU semantics.

Theorem 6 (Soundness (TT)). If event handlers are
enforced with V ∈ {TT,SME,MF} and the global storage
is enforced with G ∈ {SMS,FS}, then the composition of
these event handlers and global stores in our framework
satisfies progress-insensitive security.

The proof deviates from the requirements shown in
Figure 44. We cannot prove the variable requirements for
TT because looking up a tainted value violates require-
ment V1. However these requirements are stronger than
necessary. The proof is intuitive: from the requirements, a
secure global store will not allow a public event handler to
access secrets, nor will it let secret event handlers modify
public values. Recall that the local variable storage is
cleared between event handlers, so there is no way for
public event handlers to branch on secret values because
the local storage will only contain public values. This
means that WV1 is sufficient to prove the stronger se-
curity condition and taint tracking techniques can be used
securely, without NSU semantics, as long as the global
structures satisfy strong security guarantees.

Going back to our example, the event handler in
Listing 1 is secure, even though it is enforced with TT
because it does not have implicit leaks. On the other hand,
code with implicit leaks (Listing 2 and 3) can be secured
by connecting the taint tracking script enforcement with a
secure storage like SMS or FS, as shown by Theorem 6.
This is noteworthy because it suggests that the selection
of script enforcement is not as relevant to security as the
selection of the global storage enforcement. Furthermore,
the effects of TT are not manifested in this setting (since
tainted variables never appear in the L context), meaning
that as long as the shared structures are secure, the event
handlers execution may require no additional enforcement.

6. Prototype Implementation and Evaluation

We discuss our prototype implementation of the com-
positional IFC monitoring framework and present evalua-
tion results.

6.1. Prototype Implementation

We implemented our compositional semantics in
OCaml 4.06.1 to validate the semantic rules and to study
the results of composition. Our implementation consists of
2400 lines of OCaml code (including comments and blank
lines) that is parametrized over the execution mechanism
and the global store type. We optimized some of the
semantics; for instance, instead of splitting the program

when branching on a faceted value, our implementation
only splits the execution of the branch, after which the
program executes normally.

Limitations. Since the main goal of our prototype im-
plementation is to understand and study the behavior of
different compositions and to evaluate their security and
performance, we do not aim to include all features of a
browser (e.g., DOM APIs, cookies, localStorage, event
handling logic), and restrict our implementation to the
generic features modeled in Section 4. As future work,
we would like to explore integrating our current model
with Featherweight Firefox [23], an OCaml model of the
browser, and study the behavior of the framework in a
more realistic browser setting.

6.2. Evaluation Setup

We model web clients (specifically, a basic tree-
structured DOM) by creating one root node with other
nodes as children. For all experiments, we created 10
nodes in each of the stores with event handlers reg-
istered on some of these nodes. We emulate the exe-
cution of scripts on real-world websites by triggering
events on some of these nodes and running the asso-
ciated event handlers. To evaluate the performance of
composing one script with varying enforcement mecha-
nisms (Section 6.3.1), we install a keypress event handler
on the password node that checks for the presence of
certain characters in the entered password and returns
the computed strength as the result (à la Listing 2). The
program automatically inputs 100 character keypresses on
the password node, which then runs the event handler
producing some output depending on the mechanism used.

To evaluate the effects of composing different enforce-
ment mechanisms for different scripts (Section 6.3.2), we
implement a host page script, which installs an event
handler that sends the password to the host server based
on the strength of the password when the submit button
is clicked (à la Listing 1). To emulate the behavior of
multiple host scripts (and the possibility that more host
scripts run than third-party scripts), we run more instances
of the event handler installed by the host. The third-party
script is the same as above.

For studying the security and accuracy of various
enforcement mechanisms (Section 6.4), we implemented
an analytics tracking script that tracks mouse clicks and
keypresses by a user using the three event handlers shown
in Figure 12. The aim is to implicitly leak the key pressed
by the user through the global variable o.

6.3. Performance Evaluation

We compare the performance overhead of running a
single event handler with different shared storage enforce-
ment in Section 6.3.1. In Section 6.3.2, we compare the
performance of composing multiple event handlers and
show that the performance improves (while providing the
same guarantees) when using a combination of enforce-
ment mechanisms as opposed to a single enforcement
mechanism for all event handlers.

Execution
Mechanisms

Shared State
SMS FS TS

SME 12.69 13.24 12.51
MF 9.47 9.13 9.48
TT 7.72 7.79 7.35

TABLE 1: Time taken for different compositions for the
example shown in Listing 2, measured in milliseconds with

100 characters as input, by the user

Host Script
Exec. Mechanism

Third-party Script
Exec. Mechanism

SME MF TT
SME 28.73 27.87 26.32
MF 24.63 23.77 23.12
TT 21.57 21.28 20.07

TABLE 2: Time taken for different script compositions for the
examples shown in Listings 1 and 2, measured with secure

multi-storage DOM

6.3.1. Composing shared storage and script enforce-
ment. The execution times in milliseconds for all com-
positions are shown in Table 1. As expected, SME is less
performant because it executes event handlers multiple
times for publicly visible events. Our implementation does
not parallelize the L and H executions; prior work has
shown that parallelism helps SME’s performance consid-
erably [35]. MF’s performance is better than SME as there
are fewer commands that MF executes multiple times,
while TT is the fastest of the three. MF spends extra
time creating, projecting and removing facets in values,
depending on the context of the execution.

We also measure the total shared memory usage using
OCaml’s garbage collector API; they are 168 kB for SMS,
166.4 kB for FS and 165 kB for TS. These results match
our intuition. SMS stores multiple copies of data, so it
uses the most memory, followed by FS, which needs to
store additional data when facets are created, while TS
requires additional memory to store labels.

6.3.2. Composing script enforcement. The time taken
for different combinations of script enforcement mecha-
nisms with the SMS DOM are shown in Table 2. Down
each column and across each row from left to right, the
execution time decreases, as the enforcement mechanisms
run fewer copies of the code. Since the host page has
more scripts than third-party scripts, the script enforce-
ment mechanism of the host page is the dominating factor
of the execution time. The time taken for TT as the
host script’s enforcement mechanism and SME as the
third-party script’s enforcement mechanism is consider-
ably shorter when compared to SME being used for both.
Further, under the assumption that host page scripts are to
be trusted not to have malicious implicit leaks, the security
offered by the composition is similar to the one where
SME is used for all the scripts. More generally, it may
suffice to run trusted scripts with TT enforcement and
selected scripts from untrusted sources under SME and
MF to prevent malicious implicit leaks.

6.4. Security and Accuracy Evaluation

We evaluate the effects of different compositions on
security guarantees and accuracy where “accuracy” is

onKeyPress(k) : if k = 42 then l := k

onClick(c) : if l = 42 then o := 1;

output (L, o); output (H, o)

onMouseOver(c) : output(L, o)

Figure 12: Analytics script event handlers for comparing
security and precision. The keypress event is secret while click

and mouseover events are public.

Execution
Mechanisms

Shared State
SMS FS TS

SME
Secure

Accurate
Secure

Accurate
Weak Secrecy

Inaccurate

MF
Secure

Accurate
Secure

Accurate
Weak Secrecy

Inaccurate

TT
Secure

Inaccurate
Secure

Inaccurate
Weak Secrecy

Inaccurate

TABLE 3: Security and precision for different compositions for
the example shown in Figure 12.

comparing the behavior of the program with enforcement
to the behavior without enforcement4.

The execution traces of our case study shown in Fig-
ure 12 with different compositions of SME, MF and TT
with each of the stores are shown in Figures 13, 14 and 15
in the Appendix. The time taken for different compositions
are shown in Table 4 in the Appendix. The performance
numbers are similar to the numbers obtained above. The
security and accuracy between the various compositions
vary as shown in Table 3. In the table, “Secure” indicates
that the composition does not leak information through
the execution while “Weak Secrecy” indicates that some
information is leaked via implicit flows. Similarly, “Accu-
rate” means the execution produced correct outputs as per
the user expectation while “Inaccurate” means the output
is not consistent with what the user might have expected.

Summarizing results from Section 5, both SME and
MF guarantee progress-insensitive security with all stores
except for TS. For TS, we can show only weak secrecy,
as global upgrades may cause leaks. Interestingly TT
guarantees noninterference with SMS and FS storage, and
with lower overheads. This is because only public event
handlers can output to L channels and the only way
public event handlers can access a secret is through the
global store. SMS and FS replace secrets with dv in the
L context, so TT does not leak secrets, even implicitly.

Figures 13, 14 and 15 show that TT and TS affect
the accuracy of the outputs of program execution. While
SME and MF guarantee similar results in most scenarios,
SME is sometimes more accurate [22], illustrated by the
example below when x is secret and l is public:

l := 0; if x = 1 then l := 1 else l := 2; output(L, l)

While SME outputs either 1 or 2 (depending on the default
value of x), which are the possible values of l after the
branch, MF outputs 0 as the value of l to L channel
because the public part of the facet is 0 irrespective of

4. This is similar to “transparency” which says the behavior of non-
leaky programs should not be altered by enforcement, except, here, some
of the event handlers we evaluate do have leaks so we use the term
“accuracy”, instead.

which branch is taken. This makes SME apt for systems
where accuracy is critical. If a small loss of accuracy is
permissible, MF would be a more performant option.

7. Discussion

Declassification. The framework we have presented thus
far does not allow practical scenarios where some secret
information needs to be released to public channels (e.g.,
releasing the last four digits of a credit-card number).
Luckily, declassification [63] of secret information can be
incorporated into our framework without extensive modi-
fication. Based on prior work on stateful declassification
for SME [25], [48], [69], we can lift the declassification
components to the top-level of the framework so it applies
uniformly to all enforcement mechanisms, similar to the
way that we process inputs and outputs the same way for
each mechanism.

To allow the attacker’s knowledge to be refined due
to declassification, we would also define release knowl-
edge, similar to implicit knowledge, which distinguishes
between traces which perform different declassifications.
Definitions 1 and 3 would then be extended to include
an additional case for released events (similar to the
wkA condition for weak secrecy). Modified semantics and
security conditions which account for declassification may
be found in the Appendix.

Other reactive settings. Our framework can be applied
to different reactive settings, such as web apps with a
full DOM, OS processes [43], [74], mobile phone appli-
cations [33], [39], [55], and serverless computing [4]. We
consider only a few dynamic enforcement mechanisms,
but our framework could be easily extended to accom-
modate others. To add another event handler enforcement
mechanism, the local storage and output conditions would
need to be defined. Rules for interacting with the local
storage and any other special rules (for instance, for
switching executions in SME or branching on faceted
values in MF) would also need to be added. For global
variable storage, only the storage syntax and rules for
accessing the store would be necessary. The event handler
storage is by far the most involved, likely requiring both
new structures and rules.

The other reactive systems mentioned above typi-
cally have less sophisticated storage than the DOM and
more complex scheduling compared to JavaScript’s single-
threaded execution. We would need to modify the seman-
tics to accommodate different schedulers and ensure they
do not become a source of information leakage.

NSU semantics in reactive systems. Traditional taint
tracking upgrades the pc when branching on a tainted
value, whereas our semantics do not. We made this choice
for two reasons: First, this choice is consistent with prior
work on weak secrecy [65], [70]. Second, upgrading the
pc on tainted branches adds complexity to the semantics,
but still leaks information. No sensitive upgrade (NSU)
semantics that halt the execution of the entire page are
problematic, as discussed in Section 3. More flexible
variants of NSU, like permissive upgrades [9], or termi-
nating the execution of individual event handlers [60], or
simply skipping problematic assignments, can be adapted

to the reactive setting. Adapting these mechanisms for our
framework is straightforward: low-level rules for com-
mands need to be defined. Variants of NSU techniques
may achieve a stronger security guarantee, but run the
risk of altering the behavior of non-leaky programs if they
prevent upgrades to variables which never affect outputs
to public channels. The focus of our work is on the effect
of composition on security and we leave the investigation
of additional mechanisms to future work.

Compositional security. So far, we developed a composi-
tional framework to combine multi-execution techniques
(strong security guarantees) with taint tracking (weaker
security guarantees). One question that remains is whether
we can use a compositional definition and proof infrastruc-
ture of the form, “If A is secure and B is secure, then their
composition is secure”. This is challenging in our setting
because the security of event handlers often depends on
the security of the global store. Instead, we define com-
positional security based on the interfaces between event
handlers and global storage in a rely-guarantee style using
“requirements” on execution traces, variable storage, and
event handler storage.

Selecting desired composition. Decisions about which
enforcement mechanisms to use depend on the desired
trade-offs between security, accuracy, and performance:
the main factors considered for IFC. Our evaluation shows
that different compositions can guarantee different secu-
rity properties with varying overheads and accuracy. SMS
and FS provide the same security guarantees but because
SMS is complex and difficult to maintain in systems with
multiple security levels, FS might be a better choice. More
specifically, SME with FS could be used when accuracy is
important, while MF with FS/SMS can be used to balance
security, accuracy and performance. TT approaches are
useful in systems where accuracy is not as important; TT
could be composed with FS or SMS without incurring
high runtime overheads or sacrificing security but could
double the storage needed for shared structures.

8. Related Work

Information flow security has been explored exten-
sively for reactive systems. Prior work in this area, to the
best of our knowledge, has focused on the formalization
and enforcement of either IFC in scripts, IFC in DOM
or only one of the compositions described before. We
discuss three classes of closely related work: formalization
of information flow security properties in reactive settings,
enforcement of IFC in reactive systems, and composition
of security properties in (reactive) systems.

Austin and Flanagan proposed purely dynamic IFC for
dynamically-typed languages based on TT [8], [9] and,
later, using MF [10]. Subsequent work [11], [71] discusses
its extension to applications where the policy is specified
separately from the code. Ngo et al. [56] generalize MF to
multi-level lattices. Stefan et al. [67] present a dynamic
IFC approach for functional languages and propose the
LIO monad. Secure multi-execution [31] is another ap-
proach to enforce IFC in dynamic and reactive systems
at runtime. Our formalism uses these three approaches to
protect event handler execution.

Bielova and Rezk [22] point out the similarities and
differences between SME and MF enforcement, while
Zanarini et al. [73] have extended SME to be more precise.
Bohannon et al. [24] present a formalization of a reactive
system and introduce several definitions of reactive nonin-
terference, some of which we have used in our formalism.
Ngo et al. [57] study a different runtime enforcement for
reactive programs by treating the program as a black-
box and monitoring only the input and output events.
Recently, Algehed and Flanagan [1] proved the impos-
sibility of building a transparent and efficient black-box
runtime monitor. Our framework is quite different from
theirs because we are in the reactive setting. Moreover, we
handle declassification and do not treat the enforcement
mechanisms as black-boxes.

Schmitz et al. [64] combine MF with SME to pro-
vide better guarantees and performance and develop a
framework that is parametric and can provide MF, SME,
or MF − SME enforcement based on whether a program
may diverge to guarantee termination-sensitive noninter-
ference. Later, Algehed et al. [2] presented an approach
to optimize the data and performance overheads in the
earlier technique by joining or shrinking facets whenever
possible. Our work includes more diverse and general
composition of different enforcement mechanisms with
different shared states. It would be an interesting direction
for future research to incorporate into our framework the
option to switch enforcement mechanisms within an event
handler’s execution.

Declassification [63] in reactive systems is an inter-
esting problem. Various approaches have been proposed
for declassifying information in reactive systems that em-
ploy SME [25], [48], [59], [69] and TT with NSU [20].
Our declassification module in the Appendix uses some
of these formalisms to release information about secret
events to public scripts. While our current formalism does
not account for integrity and robust declassification [27],
[54], it is an interesting area of future work.

Our knowledge-based security definitions are based on
the gradual release property [7], which ensures that the
knowledge of the adversary stays unchanged outside of re-
leased events. Banerjee et al. [13] proposed a type system
for enforcing knowledge-based declassification defined as
conditioned gradual release. Askarov and Chong [5] fur-
ther define progress knowledge to reason about initial con-
figurations. Balliu [12] defines abstract knowledge-based
security, and studies the relationship between knowledge
and trace-based definitions.

Volpano [70] originally defined weak secrecy as a
means to formalize data-dependent flows as opposed to the
stronger property of noninterference. Schoepe et al. [65]
generalize this property as a knowledge-based property,
explicit secrecy, to adapt to different semantics used by
different languages. Our definition of weak secrecy is a
specific instance of the explicit secrecy and control-flow
gradual release property for the imperative language, and
is defined on traces of input and output events instead
of the complete state. Later work by Schoepe et al. [66]
improves the precision of TT by using faceted values in
the memory, which is similar in flavor to the composition
of TT with FS in this paper.

Many projects have developed IFC enforcement in
JavaScript and browsers. Most of the prior work on IFC in

JavaScript [10], [19], [28], [29], [32], [36]–[38], [40] use
dynamic or hybrid enforcements because of its dynamic
features. Several IFC approaches for browsers have been
proposed that build on top of these mechanisms [17],
[20], [30], [42], [44], [68] and allow information to be
declassified. The focus of that work is on composing
mechanisms and our composition includes TT and MF
from those works.

Prior work has also developed IFC enforcement mech-
anisms in the DOM and event-handling logic of the
browser [3], [21], [60], [61]. We reason about simpler
DOMs with essential functionality but consider multiple
enforcements that are reasoned about individually by prior
work. We additionally show how they compose with dif-
ferent IFC enforcement mechanisms of script executions.

Composition of information flow properties has been
studied in the setting of event-based systems [45], [49].
McCullough, further, defined the property of restrictive-
ness for security of systems [51] based on what a user
can infer about sensitive data, which is composable. Za-
kinthinos and Lee [72] showed important results about the
composition of generalized noninterference, which was
earlier proven to be not fully compositional [50]. Man-
tel [45] designed the modular assembly kit for security
properties (MAKS) framework for composing information
flow properties to reason about complex properties. Com-
positional methods for proving information flow proper-
ties of concurrent programs have also been extensively
studied [14], [26], [41], [46], [47], [52], [53], [62] given
the complexity that concurrency introduces. Bauereiss et
al. [18] verify the security of a distributed social media
platform by composition. Rafnsson and Sabelfeld [58]
explore the composition of PINI and progress-sensitive
noninterference in the context of interactive programs.
Similar to existing work, we explore the composition of
information flow security properties across various types
of mechanisms for event handlers and shared storage.
Because event handling and accesses to shared storage are
not symmetric, we stipulate requirements on each compo-
nent, but cannot directly compose them as homogeneously
defined secure components.

9. Conclusion

We develop a framework to enable the flexible compo-
sition of dynamic IFC enforcement mechanisms for reac-
tive programs with provable security guarantees. We use
a knowledge-based security condition to compare the rel-
ative security of different compositions. We extend weak
secrecy to reason about implicit flows of information due
to control flow decisions within as well as between event
handlers. Finally, we implement the framework in OCaml
to validate the semantic rules and show the tradeoffs of
different compositions.

Acknowledgement

This work was supported in part by the National
Science Foundation via grant CNS1704542, the CyLab
Presidential Fellowship at Carnegie Mellon University,
and the DST-INSPIRE Faculty grant. We would like to
thank our shepherd and the anonymous reviewers for their
feedback on our paper.

References

[1] M. Algehed and C. Flanagan. Transparent IFC enforcement:
Possibility and (in)efficiency results. In IEEE CSF, 2020.

[2] M. Algehed, A. Russo, and C. Flanagan. Optimising faceted secure
multi-execution. In IEEE CSF, 2019.

[3] A. Almeida-Matos, J. Fragoso Santos, and T. Rezk. An information
flow monitor for a core of DOM. In TGC, 2014.

[4] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv,
T. Schmitz, and K. Winstein. Secure serverless computing using
dynamic information flow control. In ACM OOPSLA, 2018.

[5] A. Askarov and S. Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In IEEE CSF,
2012.

[6] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In ESORICS,
2008.

[7] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi-
fication, encryption and key release policies. In IEEE SP, 2007.

[8] T. H. Austin and C. Flanagan. Efficient purely-dynamic informa-
tion flow analysis. In ACM PLAS, 2009.

[9] T. H. Austin and C. Flanagan. Permissive dynamic information
flow analysis. In ACM PLAS, 2010.

[10] T. H. Austin and C. Flanagan. Multiple facets for dynamic
information flow. In ACM POPL, 2012.

[11] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama. Faceted
execution of policy-agnostic programs. In ACM PLAS, 2013.

[12] M. Balliu. A logic for information flow analysis of distributed
programs. In NordSec, 2013.

[13] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In IEEE
SP, 2008.

[14] G. Barthe and L. P. Nieto. Formally verifying information flow
type systems for concurrent and thread systems. In ACM FMSE,
2004.

[15] I. Bastys, M. Balliu, and A. Sabelfeld. If this then what? controlling
flows in IoT apps. In ACM CCS, 2018.

[16] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking information flow
via delayed output. In NordSec, 2018.

[17] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian.
Run-time monitoring and formal analysis of information flows in
Chromium. In NDSS, 2015.

[18] T. Bauereiss, A. P. Gritti, A. Popescu, and F. Raimondi. CoSMeDis:
A distributed social media platform with formally verified confi-
dentiality guarantees. In IEEE SP, 2017.

[19] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information
flow control in WebKit’s JavaScript bytecode. In POST, 2014.

[20] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Hammer. WebPol:
Fine-grained information flow policies for web browsers. In
ESORICS, 2017.

[21] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive
non-interference for a browser model. In NSS, 2011.

[22] N. Bielova and T. Rezk. Spot the difference: Secure multi-
execution and multiple facets. In ESORICS, 2016.

[23] A. Bohannon and B. C. Pierce. Featherweight Firefox: Formalizing
the core of a web browser. In USENIX WebApps, 2010.

[24] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic. Reactive noninterference. In ACM CCS, 2009.

[25] I. Bolosteanu and D. Garg. Asymmetric secure multi-execution
with declassification. In POST, 2016.

[26] A. Bossi, C. Piazza, and S. Rossi. Compositional information flow
security for concurrent programs. Journal of Computer Security,
15(3), 2007.

[27] E. Cecchetti, A. Myers, and O. Arden. Nonmalleable information
flow control. In ACM CCS, 2017.

[28] A. Chudnov and D. A. Naumann. Inlined information flow moni-
toring for JavaScript. In ACM CCS, 2015.

[29] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged informa-
tion flow for JavaScript. In ACM PLDI, 2009.

[30] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flow-
Fox: a web browser with flexible and precise information flow
control. In ACM CCS, 2012.

[31] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In IEEE SP, 2010.

[32] M. Dhawan and V. Ganapathy. Analyzing information flow in
JavaScript-based browser extensions. In ACSAC, 2009.

[33] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In USENIX OSDI,
2010.

[34] J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages 11–
20, 1982.

[35] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Secure
multi-execution of web scripts: Theory and practice. Journal of
Computer Security, 22(4), 2014.

[36] D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security
for JavaScript and its APIs. Journal of Computer Security, 24(2),
2016.

[37] D. Hedin and A. Sabelfeld. Information-flow security for a core
of JavaScript. In IEEE CSF, 2012.

[38] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In ACM CCS, 2010.

[39] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken,
K. Fukushima, S. Kiyomoto, and Y. Miyake. Run-time enforcement
of information-flow properties on android (extended abstract). In
ESORICS, 2013.

[40] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information flow
analysis for JavaScript. In PLASTIC, 2011.

[41] A. Karbyshev, K. Svendsen, A. Askarov, and L. Birkedal. Com-
positional non-interference for concurrent programs via separation
and framing. In POST, 2018.

[42] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz. Towards precise and efficient information flow control
in web browsers. In TRUST, 2013.

[43] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In ACM SOSP, 2007.

[44] Z. Li, K. Zhang, and X. Wang. Mash-IF: Practical information-flow
control within client-side mashups. In IEEE/IFIP DSN, 2010.

[45] H. Mantel. On the composition of secure systems. In IEEE SP,
2002.

[46] H. Mantel and A. Sabelfeld. A unifying approach to the security
of distributed and multi-threaded programs. Journal of Computer
Security, 11(4), 2003.

[47] H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guaran-
tees for compositional noninterference. In CSF, 2011.

[48] M. McCall, H. Zhang, and L. Jia. Knowledge-based security of
dynamic secrets for reactive programs. In 2018 IEEE CSF, 2018.

[49] D. McCullough. Specifications for multi-level security and a hook-
up. In IEEE SP, 1987.

[50] D. McCullough. Noninterference and the composability of security
properties. In IEEE SP, 1988.

[51] D. McCullough. A hookup theorem for multilevel security. IEEE
Transactions on Software Engineering, 16(6), 1990.

[52] T. Murray, R. Sison, and K. Engelhardt. COVERN: A logic for
compositional verification of information flow control. In IEEE
EuroSP, 2018.

[53] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compo-
sitional verification and refinement of concurrent value-dependent
noninterference. In IEEE CSF, 2016.

[54] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust
declassification. In IEEE CSFW, 2004.

[55] A. Nadkarni, B. Andow, W. Enck, and S. Jha. Practical DIFC
enforcement on android. In USENIX Security, 2016.

[56] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo, and
T. Schmitz. A better facet of dynamic information flow control.
In WWW, 2018.

[57] M. Ngo, F. Massacci, D. Milushev, and F. Piessens. Runtime
enforcement of security policies on black box reactive programs.
In ACM POPL, 2015.

[58] W. Rafnsson and A. Sabelfeld. Compositional information-flow
security for interactive systems. In IEEE CSF, 2014.

[59] W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. Journal of Com-
puter Security, 24(1), 2016.

[60] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer. Information
flow control for event handling and the DOM in web browsers. In
IEEE CSF, 2015.

[61] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information
flow in dynamic tree structures. In ESORICS, 2009.

[62] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In IEEE CSFW, 2000.

[63] A. Sabelfeld and D. Sands. Declassification: Dimensions and
principles. Journal of Computer Security, 17(5), 2009.

[64] T. Schmitz, M. Algehed, C. Flanagan, and A. Russo. Faceted secure
multi execution. In ACM CCS, 2018.

[65] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit
secrecy: A policy for taint tracking. In IEEE EuroSP, 2016.

[66] D. Schoepe, M. Balliu, F. Piessens, and A. Sabelfeld. Let’s face
it: Faceted values for taint tracking. In ESORICS, 2016.

[67] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible
dynamic information flow control in Haskell. In Haskell, 2011.

[68] D. Stefan, E. Z. Yang, B. Karp, P. Marchenko, A. Russo, and
D. Mazières. Protecting users by confining JavaScript with COWL.
In USENIX OSDI, 2014.

[69] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk.
Stateful declassification policies for event-driven programs. In
IEEE CSF, 2014.

[70] D. M. Volpano. Safety versus secrecy. In SAS, 1999.

[71] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and
S. Chong. Precise, dynamic information flow for database-backed
applications. In ACM PLDI, 2016.

[72] A. Zakinthinos and E. S. Lee. The composability of non-
interference [system security]. In IEEE CSFW, 1995.

[73] D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of
confidentiality for reactive systems. In IEEE CSF, 2013.

[74] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In OSDI, 2006.

Global Stores SMS FS TS

Initial State σL[l 7→ 0; o 7→ 2]
σH [l 7→ 0; o 7→ 2]

σ[l 7→ 0; o 7→ 2] σ[l 7→ 0L; o 7→ 2L]

keypress k = 42 and no release to L; click; mouseover
L H L H L H

onKeyPress(k):
if k = 42 then l := k σH [l 7→ 42] σ[l 7→ 〈42|0〉] σ[l 7→ 42H]

onClick(c):
if l = 42 then o := 1; - σH [o 7→ 1] - σ[o 7→ 〈1|2〉] - σ[o 7→ 1H]
output (L, o); output (H, o) 2; • •; 1 2; • •; 1 2; • •; 1

onMouseOver(): output (L, o) 2 • 2 • dv •
keypress k 6= 42 and no release to L; click; mouseover

Execution Context L H L H L H
onKeyPress(k):

if k = 42 then l := k - - -
onClick(c):

if l = 42 then o := 1; - - - - - -
output (L, o); output (H, o) 2; • •; 2 2; • •; 2 2; • •; 2

onMouseOver(): output (L, o) 2 • 2 • 2 •

Figure 13: Execution of SME with different global shared states (Figure 12). L execution runs first; H execution second. The
keypress events are secret while click and mouseover events are public. Default values are indicated as dv in the outputs while •
indicates that the output is suppressed. The L outputs and public events are shown in the blue color while H outputs and events

are shown in red.

Global Stores SMS FS TS

Initial State σL[l 7→ 0; o 7→ 2]
σH [l 7→ 0; o 7→ 2]

σ[l 7→ 0; o 7→ 2] σ[l 7→ 0L; o 7→ 2L]

keypress k = 42 and no release to L; click; mouseover
onKeyPress(k):

if k = 42 then l := k σH [l 7→ 42] σ[l 7→ 〈42|0〉] σ[l 7→ 42H]
onClick(c):

if l = 42 then o := 1; σH [o 7→ 1] σ[o 7→ 〈1|2〉] σ[o 7→ 1H]
output (L, o); output (H, o) 2; 1 2; 1 dv; 1

onMouseOver(): output (L, o) 2 2 dv
keypress k 6= 42 and no release to L; click; mouseover

onKeyPress(k):
if k = 42 then l := k - - -

onClick(c):
if l = 42 then o := 1; - - -
output (L, o); output (H, o) 2; 2 2; 2 2; 2

onMouseOver(): output (L, o) 2 2 2

Figure 14: Execution of MF with global shared states and events (Figure 12). The keypress events are secret while click and
mouseover events are public. Default values are indicated as dv in the outputs. The L outputs are shown in the blue color while H

outputs are shown in red.

Execution
Mechanisms

Shared State
SMS FS TS

SME 0.184 ms 0.185 ms 0.179 ms
MF 0.142 ms 0.135 ms 0.140 ms
TT 0.135 ms 0.139 ms 0.130 ms

TABLE 4: Time taken for different compositions for the example shown in Figure 12, measured in ms

Global Stores SMS FS TS

Initial State σL[l 7→ 0; o 7→ 2]
σH [l 7→ 0; o 7→ 2]

σ[l 7→ 0; o 7→ 2] σ[l 7→ 0L; o 7→ 2L]

keypress k = 42 and no release to L; click; mouseover
onKeyPress(k):

if k = 42 then l := k σH [l 7→ 42] σ[l 7→ 〈42|0〉] σ[l 7→ 42H]
onClick(c):

if l = 42 then o := 1; σ[o 7→ 1L]
output (L, o); output (H, o) 2; 2 2; 2 1; 1

onMouseOver(): output (L, o) 2 2 1
keypress k 6= 42 and no release to L; click; mouseover

onKeyPress(k):
if k = 42 then l := k - - -

onClick(c):
if l = 42 then o := 1; - - -
output (L, o); output (H, o) 2; 2 2; 2 2; 2

onMouseOver(): output (L, o) 2 2 2

Figure 15: Execution of TT with global shared states and events (Figure 12). The keypress events are secret while click and
mouseover events are public. The L outputs are shown in the blue color while H outputs are shown in red.

Appendix A.
Syntax

Syntax for the compositional framework is shown in Figure 16. Syntax for processing the event handler queue and
running event handlers is shown in Figure 17. Syntax for variable storage is shown in Figure 18. The unstructured event
handler storage syntax is in Figure 19 and the tree-structured event handler storage syntax is in Figure 20. Finally, the
syntax for miscellaneous runtime constructs is shown in Figure 21. Annotations are not included in the semantics and
proofs when they are clear from the context. In αl, the label of the actions determines whether they are suppressed and
is useful for proofs. The label for intuts is determined by P , so the extra label is not necessary.

Standard label set: Ll ::= {L,H} with L v H
Compositional label set: L ::= {·, L,H} with · v L v H
Program counter: pcl ∈ Ll
Compositional program counter: pc ∈ L
Security label: l ∈ L

Event handler enforcement: V ∈ {SME,MF,TT}
Global storage enforcement: G ∈ {SMS,FS,TS}
Comp. global storage enforcement: G ::= GEH,Gg

Policy context P ::= (Γ,ml)
Initial IDs Γ ::= · |Γ, id
Release R ::= (ρ,D)
Released value r ::= none | some(ι, v)
Release Channel d ::= · | d, (ι, v)

Event: Ev ::= Click | ...
Event handler: eh ::= onEv(x){c}
Standard actions: α ::= id .Ev(vstd) | ch(vstd) | •
Labeled actions: αl ::= id .Ev(vstd) | (ch(vstd), l) | (•, l)

Compositional configuration: KG ::= R, d;σG; ks

Global state: σ(GEH,Gg) ::= σGEH
EH , σ

Gg
g

Figure 16: Framework syntax

Compositional framework syntax. The syntax for our compositional enforcement framework is managed by the top-
level semantics given by the judgement G,P ` KG

1
αl=⇒ KG

2 (complete semantics in Section C.1). The syntax for our
compositional framework is shown in Figure 16.

We organize our security labels, l, in a three-point security lattice which is the standard two-point security lattice
with an additional label ‘·’. At a high-level, · means “no (pc) context” and is neither public nor private, so we put it
at the bottom of the security lattice. The program context label indicates the context under which the event handlers
execute and is denoted pc. Sometimes the pc is restricted to a traditional label, in which case we denote pcl as a pc
which cannot be ·.

The enforcement mechanisms for event handlers is given by V . Here, we consider SME (SME), faceted execution
(MF), and taint tracking (TT). Global storage enforcement mechanisms are given by G. This might be SMS (SMS)
which stores everything twice, as in secure multi-execution, a faceted store (FS) which stores values influenced by
secrets as facets, like faceted execution, or a tainted store (TS), which stores everything with an associated label which
reflects the secrecy level of that data, as is done in taint tracking. The global variable store, Gg, and event handler
storage, GEH, may be enforced differently. Together, they form the compositional mechanism G.

The policy context P keeps track of the labels assigned to input events and output channels, and is also responsible
for deciding which events handlers run with which enforcement mechanism using ml. Using a technique from prior
work, we track the IDs of the elements in the event handler store using Γ so that we may prevent the dynamic
elements, which may have been added by the attacker, from influencing declassification. The release module R and
declassification channel d come from prior work on stateful declassification which maintains some internal state to
determine what to declassify and when. d maps locations, ι, to declassified values, while R determines whether or not
an event is declassified. Event handlers read from a location in d to receive declassified values, possibly aggregated over
time (e.g. declassify the average location of 10 clicks). Events released by R may have the same or different parameters
(e.g. declassify the approximate GPS location). The value released, r, may be none (nothing is declassified) or a value
at a particular location, some(ι, v).

Events Ev (including Click, Keypress) trigger relevant event handlers of the form onEv(x){c}. On triggering Ev ,
command c runs with input x. Actions emitted by the execution, α, include user-generated input events, outputs on
channels ch(v), and silent actions, denoted •. We use labeled actions αl in our semantics to make proofs easier.

The compositional configuration KG is a snapshot of the current state of the system. This includes the declassification
module and channel, R, d, shared storage σG which stores the event handlers as well as the variables shared between
event handlers, and a configuration stack ks which keeps track of which event handlers are about to run. The structure
of σG and ks depend on which enforcement mechanisms are composed in the framework. Their syntax is discussed in
more detail below.

Configuration stack: ks ::= · | (V;κV ; pc) :: ks
Execution state: s ::= P |C
Events: E ::= · |E, (id .Ev(vstd), l)

Expression: e ::= x | v | uop e | e1 bop e2 | ehAPIe(e1, · · · , en)
Command: c ::= skip | c1; c2 |x := e | id := e |while e do c | if e then c1 else c2

| output ch e |x := declassify(ι, e) | ehAPIc(e1, · · · , en)

Standard configuration: κstd ::= σstd, c, s, E
SME configuration: κSME ::= κstdH , κstdL
MF Configuration: κMF ::= σMF, c, s, E
TT Configuration: κTT ::= σTT, c, s, E

Figure 17: Syntax for event handler queue processing and running event handlers

Event handler syntax. The next 2 levels of our semantics are responsible for processing the event handler queue and
running the individual event handlers. The judgement for the first is G,V, d ` σG1 , κ

α−→pc σ
G
2 , ks (complete semantics

in Section C.2) and the second is G,V, d σG1 , σ
V
1 , c

std
1

α−→pc σ
G
2 , σ

V
2 , c2, E (complete semantics in Section C.3). The

syntax for both is shown in Figure 17.
The configuration stack ks keeps track of the event handlers which are about to run. The one at the top of the stack

runs first. Each event handler on the stack includes V , which determines the enforcement mechanism used to run the
event handler, κV , which is a snapshot of the current state of the event handler, and pc, which is the context the event
handler is running in. The enforcement mechanism used for a particular event handler is determined by the policy, P ,
and may be different for different event handlers.

Commands and expressions are mostly standard in our framework. The event handler APIs ehAPIe and ehAPIc
interact with the event handler store, and id := e updates the attributes in the event handler store. The declassification
command declassifies e at a given location, ι.

A standard configuration κstd contains a local store, σV , whose structure is determined by the enforcement mechanism
V , the command (event handler) being executed, the state of the execution (either Producer (P) or Consumer (C)),
and a list of any events triggered by that event handler, E. The structure of κ will differ slightly for each enforcement
mechanism. The SME configuration κSME has two standard configurations, one copy for the L context and one for
the H context. The MF configuration and TT configurations are similar to the standard configurations, except that the
structures of their local stores will differ. The variable storage for each of these configurations is described next.

Integer: n ∈ N
Boolean: b ::= true | false
Standard value: vstd ::= n | b | dv
Standard state: σstd ::= · |σstd, x 7→ vstd

SMS state: σSMS
g ::= σstd

H , σstd
L

Faceted value: vMF, vFS ::= vstd | 〈vstdH |vstdL 〉 | 〈·|vstdL 〉 | 〈vstdH |·〉
MF local state: σMF ::= · |σMF, x 7→ vMF

FS shared variable state: σFS
g ::= · |σFS

g , x 7→ vFS

Tainted value: vTT, vTS ::= (vstd, l)
TT local state: σTT ::= · |σTT, x 7→ vTT

TS shared variable state: σTS
g ::= · |σTS

g , x 7→ vTS

Figure 18: Syntax for variable storage

Variable storage syntax. Values include integers (n), booleans (b), and a pre-determined default value dv, which is
used to replace the public copy of private data in multi-execution techniques. A different default value can be assigned

to every value type; for simplicity we use a single default value. Values may be formatted differently depending on
the enforcement mechanism, “standard” value formats are annotated with std, as in vstd. SME (σSME for temporary
variables, local to a single event handler) and SMS (σSMS for variables which persist, to be accessible to multiple event
handlers) variable storage maps variables to standard values. For SME, each copy of the execution has its own (standard)
store, σstd. SMS shared variable storage involves multiple copies of the standard store: one for each security level.

Faceted storage (σMF for temporary variables, local to a single event handler, and σFS for persistent variables,
accessible to multiple event handlers) will involve faceted values, vMF, vFS, which may be a standard value (if the value
does not depend on a secret) or a value with multiple copies (if the value does depend on a secret. A faceted value
with two copies 〈vH |vL〉 is vH to privileged, H observers and vL to unprivileged, L observers. A value which does
not exist in a context has an empty facet (e.g., a variable with value 〈v|·〉 only exists in the H context). Tainted storage
(σTT for temporary variables, local to a single event handler, and σTS for persistent variables, accessible to multiple
event handlers) involves tainted values, vTT, vTS, which is a standard value annotated with a security label.

Standard event handler map: M ::= · |M,Ev 7→ {(eh1, pcl1), · · · , (ehk, pclk)}
Std. node: φSMS, φstd ::= (vstd,M) |NULL
Standard EH state: σstd

EH ::= · |σstd
EH , id 7→ φstd

SMS EH state: σSMS
EH ::= σstd

EH,H , σ
std
EH,L

Faceted EH map: MFS ::= · |MFS,Ev 7→ {(eh1, pc1), · · · (ehk, pck)}
FS node: φFS ::= (vFS,MFS) |NULL
FS EH state: σFS

EH ::= · |σFS
EH, id 7→ φFS

TS node: φTS ::= (vTS,M, l) |NULL
TS EH state: σTS

EH ::= · |σTS
EH, id 7→ φTS

Figure 19: Unstructured event hanlder storage syntax

Event handler storage syntax. In the unstructured event handler store, nodes are identified by a unique identifier (id)
and contain both an attribute (whose structure is determined by the type of enforcement) and an event handler map
(M), which maps events (Ev) to a list of event handlers (eh) and the context they were registered in (l) to prevent leaks
due to the existence of an event handler. M is the same for all enforcement mechanisms, except that event handlers in
FS may have any label in L (“·” means the event handler can be triggered by either L- or H-labeled events) but SMS
and TS event handlers may only be labeled L or H .

The unstructured SMS event handler storage has two copies. Privileged, H observers interact with the H copy of
the event handler store and likewise for unprivileged, L observers. Attributes are standard values (v). The unstructured
FS event handler store is a single structure whose attributes are duplicated when they have been influenced by secrets.
Here, attributes are standard when the value does not depend on a secret (v) or faceted values when the value appears
different to H observers than L observers (〈vH |vL〉). A node which has been added in only the H context will have
an attribute with an empty L facet (i.e., 〈v|·〉) and likewise for the H facet of a node added in only the L context.
The TS event handler store will associate labels with both attributes ((v, l)) and nodes ((vTS,M, l)). The label on the
node reflects the context the node was created in, while the label on the attribute reflects whether the attribute has been
influenced by a secret (l = H) or not (l = L).

Location: loc ∈ Address
Address: a ::= loc |NULL
Address of root: art ::= loc
Value: vstd ::= n | b | dv | a
Values (actions): vα ::= n | b | dv
Actions: α ::= id .Ev(vα) | ch(vα) | •
Address list: A ::= · | a :: A
Faceted address list: AFS ::= · | aFS :: AFS

Std. node: φSMS, φstd ::= (id , v,M, ap, A) |NULL
FS node: φFS ::= (id , vFS,MFS, aFSp , A

FS) |NULL
Standard EH state: σstd

EH ::= art 7→ φstd |σstd
EH , a 7→ φstd

Faceted EH state: σFS
EH ::= art 7→ φFS |σFS

EH, a 7→ φFS

SMS EH state: σstd
EH ::= σstd

EH,H , σ
std
EH,L

Figure 20: Tree-structured event handler storage syntax

In the tree-structured event handler store, the nodes (φ) are stored by reference (loc). Nodes have a unique identifier
(id), an attribute, and an event handler map, like in the unstructured event handler store. They also contain a pointer to

their parent (ap), and a list of pointers to their children (A) (if any). The root node is at art. The node at this address
cannot be replaced with another node, but its attribute may be updated and children can be added to it.

The tree-structured SMS event handler store has two copies and similar to the unstructured SMS event handler store.
The tree-structured FS event handler store supports faceted attributes, as well as a faceted parent pointer (aFS) and list
of faceted pointers to children (AFS). Because nodes are uniquely identified by their ID, a node may have a faceted
parent pointer, for instance, if a node is created as a child of φH in the H context and then a node with the same ID
is created as a child of φL in the L context. A node might have a faceted pointer in its list of children if a child is
added in the H context, but not the L context. In this case, if the child is at address a, the node would have 〈a|·〉 in
its list of children.

Single enforcement mechanism: i ::= V | G
Term: t ::= v | 〈vH |vL〉 |φstd | 〈φstdH |φstdL 〉
Runtime SME configuration: κSME ::= κstdH , κstdL |κstdH |κstdL
Runtime SME store: σSME ::= σstd

H |σstd
L

Labeled faceted actions: αMF
l ::= αl | 〈α|α′〉

Tainted actions: αTT ::= • | ch((vstd, l))
Faceted command: cMF ::= cstd | 〈cstdH |cstdL 〉

EH queue: C ::= · | C, (eh, pc)

Figure 21: Syntax for runtime semantics

Runtime syntax. We use i to refer to any enforcement mechanism (event handler or shared storage) and t to refer
to any term including values, faceted values, nodes, or faceted nodes. The runtime SME configuration and store are
useful for splitting the SME executions, since only one can run at a time. When an output command tries to output
a faceted value, we replace the action with a faceted action which outputs un-faceted values. This way, the channel
receives the value it expects (a standard, un-faceted value). The faceted action also lets us replace one of the actions
with • for the observer who does not actually receive the output. This is important for proofs. The tainted action is
an intermediate action that emitted by mid-level semantics which is ultimately changed to a traditional action αl if the
output is permitted (i.e., the channel has enough privilege to see the value (vstd, l)) or • if it is not. MF may produce a
faceted command if branching on a faceted value yields different commands. The mid-level event handling semantics
split a faceted command in the · context into two event handlers which run each facet in the L and H context. C is a
list of event handlers and the context they should run in, used by the event handler lookup semantics.

Appendix B.
Supporting Definitions

B.1. General Definitions

Value operations. valOf takes a value or node and returns a standard value by removing any attached labels. It is not
defined for faceted values or nodes. labOf takes a value or a node and a pc and returns the label on the value, if there
is one, or the pc if the value is not labeled.

valOf(v) =

v v is a standard value
v1 v = (v1, `)

undefined v = 〈v1|v2〉

labOf(v, pc) =

{
pc v is not a labeled value
` v = (v′, `)

valOf(φ) =

φ φ is a standard node
φ1 φ = (φ1, `)

undefined v = 〈φ1|φ2〉 ∨ φ is a faceted node

labOf(φ, pc) =

{
pc φ is a standard, SMS, or FS node
` φ = (φ, `)

State, G projection. σG ↓EH returns the event handler store from the shared storage, while σG ↓g returns the variable
store from the shared storage. G ↓EH returns the enforcement mechanism for the event handler storage and G ↓g returns
the enforcement mechanism for the shared variable storage.

σG = σGEH, σ
G′

g

σG ↓EH= σGEH

σG = σGEH, σ
G′

g

σG ↓g= σG
′

g

G = GEH,Gg
G ↓EH= GEH

G = GEH,Gg
G ↓g= Gg

consumer/producer. The consumer predicate holds for a compositional configuration if there are no event handlers
running (i.e., the configuration stack ks is empty). If there is at least one element in ks , the producer predicate holds.
The consumer predicate holds for a configuration stack if the configuration on the top of the stack is in consumer
state (i.e., the consumer(κ) predicate holds). Similarly, the producer predicate holds for a configuration stack if the
configuration on the top of the stack is in producer state (i.e., the producer(κ) predicate holds). For ks = ·, neither
predicate holds for ks .

K = R, d;σG; ·
consumer(K) = true

K = R, d;σG; (V;κ; pc) :: ks

producer(K) = true

ks = (V;κ; pc) :: ks ′ consumer(κ)

consumer(ks) = true consumer(·) = false

ks = (V;κ; pc) :: ks ′ producer(κ)

producer(ks) = true

producer(·) = false

κ = σ, c, C,E

consumer(κ) = true

κ = σ, c, P,E

producer(κ) = true

consumer(κH) consumer(κL)

consumer((κH ;κL)) = true

producer(κH) ∨ producer(κL)

producer((κH ;κL)) = true

B.2. Operations on Faceted Values

Updating/accessing facets. Set and get facet are for creating and updating faceted values. Note for getFacet and dv:
the type of the default value can be inferred from the other facet. To keep things simple, we use the same default value
for all types.

createFacet(v,H) = 〈v|·〉 createFacet(v, L) = 〈·|v〉 createFacet(v, ·) = v

vL = vo ↓L vH = getFacet(vn, H)

updateFacet(vo, vn, H) = 〈vH |vL〉
vL = vo ↓H vH = getFacet(vn, L)

updateFacet(vo, vn, L) = 〈vH |vL〉 updateFacet(vo, vn, ·) = vn

vH 6= vL

setFacetV(vH , vL) = 〈vH |vL〉 setFacetV(v, v) = v

φH = (vH ,MH) φL = (vL,ML)
vH 6= vL ∨MH 6= ML

setFacetN(φH , φL) = 〈φH |φL〉

φH = (v,M) φL = (v,M)

setFacetN(φH , φL) = φH

cH 6= cL

setFacetC(cH , cL) = 〈cH |cL〉 setFacetC(c, c) = c

getFacetV(v, ·) = v

v ↓pcl
= vl

getFacetV(v, pcl) = vl

v ↓pcl
= ·

getFacetV(v, pcl) = dv

αl ↓l= α

getFacetα(αl, l) = α

αl ↓l= ·
getFacetα(αl, l) = • getFacetA(a, ·) = a

a ↓pcl
6= ·

getFacetA(a, pcl) = a ↓pcl

a ↓pcl
= ·

getFacetA(a, pcl) = NULL

Optimization for faceted events. We merge locally triggered events in MF so that if the same event handler is triggered
in both the H and L context, it runs just once in the · context rather than running twice.

mergeEvs((id .Ev(v), H), (id .Ev(v), L)) = (id .Ev(v), ·)
MERGEEV-SAME

id 6= id ′ or Ev 6= Ev ′ or v 6= v′

mergeEvs((id .Ev(v), H), (id ′.Ev ′(v′), L)) = (id .Ev(v), H), (id ′.Ev ′(v′), L)
MERGEEV-DIFF

EH = · or EL = ·
mergeEvs(EH , EL) = EH :: EL

MERGEEV-S1

Faceted value projection. The L projection of a faceted value is the L facet and likewise for H . The projection of
standard values is the same value. Note that we use projection rather than getFacet for determining if two stores are
equivalent so if the projection produces · it means the value has not been initiated in that context. We return · to hide
that value instead of returning dv so that a store with a · facet and a store without the value at all will still be equivalent.
v ↓pc= v′

vstd ↓pc= vstd α ↓pc= α 〈 |vL〉 ↓L= vL 〈vH | 〉 ↓H= vH 〈 |α〉 ↓L= α 〈α| 〉 ↓H= α

〈 |·〉 ↓L= · 〈·| 〉 ↓H= ·

B.3. Operations on Event Handlers

We define two projection operations for event handlers. These are used by the event handler lookup semantics. ↓pc
returns all of the event handler with label visible to pc. When the pc = · we return all event handlers. @pc is the same
as ↓pc for pc v L, but when pc = H it returns only the H and · event handlers.
(eh), l) ↓pc

(id .Ev(v), l) ↓·= (id .Ev(v), l)

l 6v pcl
(id .Ev(v), l) ↓pcl

= ·
l v pcl

(id .Ev(v), l) ↓pcl
= (id .Ev(v), l)

(eh, l)@pc

pc v L l v L
(eh, l)@pc = (eh, l)

pc 6v L pc = l ∨ pc = ·
(eh, l)@pc = (eh, pc)

pc v L l 6v L
(eh, l)@pc = ·

pc 6v L pc = l ∨ pc = ·
(eh, l)@pc = (eh, pc)

B.4. Operations on SMS stores

getStore takes an SMS store and a pc and returns the copy of the store indicated by the pc. setStoreVar updates the
SMS shared variable storage. It takes a compositional store σG, a pc, and an updated copy of the SMS store indicated
by the pc. It updates σG so that the pc copy of the global variable store is updated to the given store. setStore does
something similar for the SMS EH store.

getStore((σH , σL), L) = σL
GETSTORE-L

getStore((σH , σL), H) = σH
GETSTORE-H

σG = ((σH , σL), σEH)

setStoreVar(σG, H, σ) = ((σ, σL), σEH)
SETSTOREVAR-H

σG = ((σH , σL), σEH)

setStoreVar(σG, L, σ) = ((σH , σ), σEH)
SETSTOREVAR-L

σG = (σg, (σH , σL))

setStore(σG, H, σ) = (σg, (σ, σL))
SETSTORE-H

σG = (σg, (σH , σL))

setStore(σG, L, σ) = (σg, (σH , σ))
SETSTORE-L

B.5. Well-formed Initial State

We say that an initial state is well-formed if all of the following are true:
• Every global variable has been initialized. We assume the set of global variables is static; no new variables are

created and the ones which exist in the initial state persist for the duration of the execution
• For the SMS event handler store, the event handlers in the H copy of the store only contains event handlers with

label H , and likewise for the event handlers in the L copy
• For the TS event handler store, tainted nodes may only contain event handlers with label H . Un-tainted nodes may

contain event handlers labeled L or H

Appendix C.
Semantics

G,P ` KG
1

αl=⇒ KG
2

P(id .Ev(v)) = H
D(ρ, id .Ev(v)) = (r, emp, ρ′) d′ = update(d, r) G,P, σ ` ·; lookupEHAll(id .ev(v)) ;H ks

G,P ` (ρ,D), d;σ; · id.Ev(v)
=⇒ (ρ′,D), d′;σ; ks

I-NR1

P(id .Ev(v)) = H∆ G,P, σ ` ·; lookupEHAll(id .ev(v)) ;H ks

G,P ` R, d;σ; · id.Ev(v)
=⇒ R, d;σ; ks

I-NR2

P(id .Ev(v)) = H D(ρ, id .Ev(v)) = (r, v′, ρ′) v′ 6= v d′ = update(d, r)
G,P, σ ` ·; lookupEHAt(id .ev(v′)) ;L ks G,P, σ ` ks; lookupEHAt(id .ev(v)) ;H ks ′

G,P ` (ρ,D), d;σ; · id.Ev(v)
=⇒ (ρ′,D), d′;σ; ks ′

I-R-DIFF

P(id .Ev(v)) = H
D(ρ, id .Ev(v)) = (r, v, ρ′) d′ = update(d, r) G,P, σ ` ·; lookupEHAll(id .ev(v)) ;· ks

G,P ` (ρ,D), d;σ; · id.Ev(v)
=⇒ (ρ′,D), d′;σ; ks

I-R-SAME

P(id .Ev(v)) = L G,P, σ ` ·; lookupEHAll(id .ev(v)) ;· ks

G,P ` R, d;σ; · id.Ev(v)
=⇒ R, d;σ; ks

I-L

G,P ` KG
1

αl=⇒ KG
2

producer(κ) G,P,V, d ` σ, κ ch(v)−→ pc σ
′, ks ′ outConditionV(P, ch(v), pc) αl = output(P, ch(v), pc)

G,P ` R, d;σ; ((V;κ; pc) :: ks)
αl=⇒ R, d;σ′, ks ′ :: ks

O

producer(κ) G,P,V, d ` σ, κ ch(v)−→ pc σ
′, ks ′ ¬outConditionV(P, ch(v), pc)

G,P ` R, d;σ; ((V;κ; pc) :: ks)
(•,pc)
=⇒ R, d;σ′, ks ′ :: ks

O-SKIP

producer(κ) G,P,V, d ` σ, κ α−→pc σ
′, ks ′ α 6= ch(v)

G,P ` R, d;σ; ((V;κ; pc) :: ks)
(α,pc)
=⇒ R, d;σ′, ks ′ :: ks

O-OTHER

consumer(κ)

G,P ` R, d;σ; ((V;κ; pc) :: ks)
(•,pc)
=⇒ R, d;σ, ks

O-NEXT

C.1. Framework Semantics

The top-most level for our compositional framework processes user input events and outputs to channels. These
rules govern how inputs trigger event handlers and how outputs are processed and use the judgement G,P ` K α

=⇒ K ′,
meaning the compositional configuration K can step to K ′ given input α or producing output α under the compositional
enforcement G and label context P .

Regardless of how the event handlers or global variables are stored, or how the policy determines to enforce IFC
on individual event handlers, the logic for looking up event handlers is the same. In each case, the label context, P ,
tells us whether the event is secret (H) or public (L). The release module is used to tell us whether or not an event
is declassified and the EH lookup semantics, given by the judgement G,P, σ ` ks; lookupEH(...) ;pc ks ′ return the
stack of event handlers to run.

I-NR1 handles the case where a secret input (P(id .Ev(v)) = H) is not released to a public event (the release event
given by D(id .Ev(v)) is emp). The declassification state (ρ) and channel (d) are updated. Similarly, I-NR2 handles a
secret input associated with a dynamic page element, which is never released to a public event, nor does it update the
declassification state/channel. In both cases, the appropriate event handlers are looked up using lookupEHAll in the H
context.

I-R-DIFF and I-R-SAME handle cases where a secret input is released to a public event. In the first case, the
released event is passed a different argument from the original event (v′ 6= v), in the second case, the arguments are

the same. When the released event is different, we run H event handlers with the original argument and the L event
handlers with the released argument, so we use lookupEHAt with in the H and L context, respectively. When the event
is the same, we run all event handlers in whichever context they were registered in, so we use lookupEHAll in the ·
context.

Public events (P(id .Ev(v)) = L) are handled by I-L. Public events do not need to be declassified, so the
declassification state/channel are not updated. Again, we use lookupEHAll in the · context to run all of the event
handlers in whichever context they were registered in.

Similar to the input rules, the output rules are the same regardless of the enforcement mechanism or event handler
storage. producer(κ) and consumer(κ) tell us whether the execution state of κ is producer or consumer (respectively).
When an event handler is currently running, the system is in producer state (O, O-SKIP, or O-OTHER) and when the
event handler has finished, the system is in consumer state (O-NEXT) and the current event handler can be popped off
ks . outConditionV(...) determines if an output should be allowed (O) or suppressed (O-SKIP) and output determines
what the final output is. O-OTHER applies when the action is not an output (such as a silent • step).

G,V, σG ` ks; lookupEhAPI(...) ;pc ks ′

C = lookupEhAPIG(σG, id .Ev(v), pc) ks ′ = createK(P, id .Ev(v), C)
G,P, σG ` ks; lookupEhAPI(id .Ev(v)) ;pc ks :: ks ′

LOOKUPEHAPI

ks = (V;κ; pc) :: C = lookupEHsG,V(σG, id .Ev(v), pc t l) ks ′ = createK(P, id .Ev(v), C)
G,P, σG ` ks :: ks ′; lookupEHs(E) ;pc ks ′′

G,P, σG ` ks; lookupEHs((id .Ev(v), l), E) ;pc ks ′′
LOOKUPEHS-R

G,P, σG ` ks; lookupEHs(·) ;pc ks
LOOKUPEHS-S

P(id .Ev(v), eh, pc) = V
createK(P, id .Ev(v), ((c, pc), C)) = crtKV(eh, v, pc) :: createK(P, id .Ev(v), C) createK(P, id .Ev(v), ·) = ·

crtKSME(eh, v, L) =
(SME; ((·, skip, C, ·); (·, eh(v), P, ·));L)

crtKSME(eh, v,H) =
(SME; ((·, eh(v), P, ·); (·, skip, C, ·));H)

crtKSME(eh, v, ·) = (SME; ((·, eh(v), P, ·); (·, eh(v), P, ·));L) crtKMF(eh, v, l) = (MF; (·, eh(v), P, ·); l)

l v L
crtKTT(eh, v, l) = (TT; (·, eh(v), P, ·);L)

l 6v L
crtKTT(eh, v, l) = (TT; (·, eh(v), P, ·);H)

Event handler lookup semantics. The event handler lookup semantics use the judgement G,V, σG `
ks; lookupEhAPI(...) ;pc ks ′. They take the global store and current configuration stack, ks , use a helper function
by the same name as the lookupEhAPI to look up a list of relevant event handlers and the context they should run
in (C). To turn this list into a configuration stack, createK looks up the enforcement mechanism, V , and formats the
configuration depending on which mechanism is used (crtKV(...)). The final result is another configuration stack, ks ′,
which is appended to the old one ks :: ks ′.

lookupEHAt runs event handlers labeled with given pc, or labeled with · using the @ operator. Once event handlers
are collected, they are run as follows, depending on the enforcement mechanism:

• SME: runs in matching execution only
• MF,TT: runs at given pc

lookupEHAll runs event handlers labeled at or below the given pc using the ↓ operator. Once event handlers are collected,
they are run as follows, depending on the enforcement mechanism:

• SME: run in H execution if label is at or below H, run in L execution if label is at or below L
• MF: run at the label (i.e. H, L, ·)
• TT: run at the label if the label is H or L, run at L if the label is ·

lookupEhAPIG(σG, pc, id .Ev(v)) = C

lookupG↓EH
(σ, pcl, id) = φ valOf(φ) 6= NULL

labOf(φ, pcl) = l C = (φ.M(Ev)@pcl) t pcl t l
lookupEHAtG(σ, pcl, id .Ev(v)) = mergeC(C)

LOOKUPEHAT

lookupG↓EH
(σ, pcl, id) = φ

valOf(φ) = NULL

lookupEHAtG(σ, pcl, id .Ev(v)) = ·
LOOKUPEHAT-S

lookupEHAtG(σ,H, id .Ev(v)) = CH
lookupEHAtG(σ, L, id .Ev(v)) = CL mergeC(CH , CL) = C

lookupEHAtG(σ, ·, id .Ev(v)) = C
LOOKUPEHAT-NC

lookupG↓EH
(σ, pcl, id) = φ

valOf(φ) 6= NULL labOf(φ, pcl) = l C = (φ.M(Ev) ↓pcl
) t pcl t l

lookupEHAllG(σ, pcl, id .Ev(v)) = mergeC(C)
LOOKUPEHALL

lookupG↓EH
(σ, pc, id) = φ valOf(φ) = NULL

lookupEHAllG(σ, pcl, id .Ev(v)) = ·
LOOKUPEHALL-S

lookupEHAllG(σ,H, id .Ev(v)) = CH lookupEHAllG(σ, L, id .Ev(v)) = CL
lookupEHAllG,V(σ, ·, id .Ev(v)) = mergeC(CH , CL)

LOOKUPEHALL-NC-MERGE

V 6= TT C = lookupEHAtG(σ, pc, id .Ev(v))

lookupEHsG,V(σ, pc, id .Ev(v)) = C
pc v L C = lookupEHAllG(σ, ·, id .Ev(v))

lookupEHsG,TT(σ, pc, id .Ev(v)) = C

pc 6v L C = lookupEHAllG(σ,H, id .Ev(v))

lookupEHsG,TT(σ, pc, id .Ev(v)) = C
mergeC merges all of the event handlers so that any duplicates will have label ·. If the event handler in C is unique,

it keeps its label. If there is another event handler in C, we use the operator ∧ to compute the new label:

l ∧ l = l

l 6= l′

l ∧ l′ = ·

(eh, l′) 6∈ C
mergeC((eh, l), C) = (eh, l),mergeC(C)

C = (C′, (eh, l′), C′′)
mergeC((eh, l), C) = mergeC((eh, l ∧ l′), C′, C′′)

lookupEHAt performs a join because the @ operation returns everything with label l ∈ {pc, ·}, but we want to run
them at pc. This is similar for all enforcement mechanisms, except SME because it has two executions.

lookupEHAll returns all event handlers visible at that pc and runs them at the join of their label with the pc. This
differs for every enforcement mechanism when pc = · because SME has multiple executions, and MF,TT only need
results merged sometimes.

lookupEHs returns the event handlers for a locally triggered event. Except for TT, this is the event handlers at
pc. For TT, this is all event handlers, run at pc t l (where l is the label of the value) joined with the label of the
event handler. (Note that the pc passed to lookupEHs is the triggering pc joined with the label of the value.) So, when
pct l v L, trigger all event handlers and run them at the label of the event handler. Otherwise, trigger all event handlers
at H .

mergeC merges any duplicate event handlers and runs them at the correct security level. SME does not require
merging. MF maps duplicate events to the no-context security level. TT runs duplicate events at L since L can output
to both L and H channels.

output(P, ch(v), pc) = αl

output(P, ch(vstd), pcl) = (ch(vstd), pcl) output(P, ch(vstd), ·) = (ch(vstd),P(ch))

v = 〈 | 〉 P(ch) = H

output(P, ch(v), ·) = 〈ch(getFacet(v,H))|•〉
v = 〈 | 〉 P(ch) = L

output(P, ch(v), ·) = 〈•|ch(getFacet(v, L))〉

outputConditionV(P, ch(v), pc) = b

P(ch) = pc

outConditionSME(P, ch(v), pc) = true

P(ch) 6= pc

outConditionSME(P, ch(v), pc) = false

P(ch) = pcl
outConditionMF(P, ch(v), pcl) = true

P(ch) 6= pcl
outConditionMF(P, ch(v), pcl) = false

v ↓P(ch) 6= ·
outConditionMF(P, ch(v), ·) = true

v ↓P(ch)= ·
outConditionMF(P, ch(v), ·) = false

pc t l v P(ch)

outConditionTT(P, ch((v, l)), pc) = true

pc t l 6v P(ch)

outConditionTT(P, ch((v, l)), pc) = false

Output and output conditions. Outputting a standard value is straightforward: if the pc is a standard label (i.e., L or
H), label the output with the pc. Otherwise (i.e., pc = ·), label the output with the label on the channel. If the value
is faceted, output a faceted action. The facet matching the label of the channel will contain the matching facet of the
value. The other facet will contain •.

The output condition for SME event handlers is that the pc matches the label on the channel (P(ch)) since SME
is only allowed to output to channels matching the execution. Similarly for MF, if the pc is a standard label (i.e., L or
H), the label on the channel must match the pc for the output to succeed. If the pc = ·, then we check that the value
being output is visible to the channel (i.e., v ↓P(ch) 6= ·). If it is, the output succeeds, otherwise, the output fails. Finally,
for TT, outputs succeed if the data is visible to the channel. This means that the data itself as well as the context the
data was generated in should both be visible to the channel (i.e., pc t l v P(ch)).

G,V, d ` σG1 , κ
α−→pc σ

G
2 , ks

E 6= · G,P,V, σG ` (V; (σ, skip, C, ·); pc); lookupEHs(E) ;pc ks

G,P,V, d ` σG, σ, skip, P, E
•−→pc σ

G, ks
LC

G,P,V, d ` σG, σ, skip, P, · •−→pc σ
G, (V; (σ, skip,C , ·); pc)

PTOC

G,V, d σG1 , σ1, c
std
1

α−→pc σ
G
2 , σ2, c

std
2 , E2

G,P,V, d ` σG1 , σ1, c
std
1 , P, E1

α−→pc σ
G
2 , (V; (σ2, c

std
2 , P, (E1, E2)); pc)

P

C.2. EH queue semantics

The mid-level semantics are of the form: G,P,V ` σG1 , κ
α−→pc σ

G
2 , ks and run a single event handler κ with the

given enforcement mechanism V and produce some output α.
While the current event handler is running (i.e., the system is in producer state, s = P), P allows the event handler

to make progress. When the current event handler has finished (i.e., the next command is skip), if there are any locally-
simulated events to process (i.e., the event queue is not empty, E 6= ·), LC switches the current event handler to
consumer state (i.e., s = C for the configuration at the top of the stack) and looks up the appropriate event handlers
for the local events and adds them to the configuration stack. If the current event handler has finished and there are
not any locally-simulated events (i.e., the event queue is empty E = ·), PTOC switches the current event handler to
consumer state.
G,V, d ` σG1 , κV

α−→pc σ
G
2 , ks

G,P,SME, d ` σG1 , κL
α−→L σ

G
2 , (SME;κ′L;L) :: ks ¬consumer(κ′L)

G,P,SME, d ` σG1 , κH ;κL
α−→L σ

G
2 , (SME; (κH ;κ′L);L) :: ks

SME-L

G,P,SME, d ` σG1 , κL
α−→L σ

G
2 , (SME;κ′L;L) :: ks consumer(κ′L)

G,P,SME, d ` σG1 , κH ;κL
α−→L σ

G
2 , (SME; (κH ;κ′L);H) :: ks

SME-LTOH

G,P,SME, d ` σG1 , κH
α−→H σG2 , (SME;κ′H ;H) :: ks

G,P,SME, d ` σG1 , κH ;κL
α−→H σG2 , (SME; (κ′H ;κL);H) :: ks

SME-H

G,MF, d σG1 , σ1, c
std α−→· σG2 , σ2, 〈cH |cL〉, E2

G,P,MF, d ` σG1 , σ1, c
std, P, E1

α−→· σG2 , (MF; (σ2, cL, P, (E1, E2));L) :: (MF; (σ2, cH , P, (E1, E2));H)
P-F

There are a few additional rules for processing some enforcement mechanisms. Recall that SME has multiple
executions. The pc tells us which execution to run. We run the L execution first. SME-L and SME-LTOH run the L
execution. If the system is still in producer state after taking a step (¬consumer(κ′L) as in SME-L), the pc remains L to
continue running the L execution. Otherwise, the low execution is in consumer state (consumer(κ′L) as in SME-LTOH)
and the pc switches to H to run the H execution. SME-H runs the H execution.

P-F handles the case where MF produces a faceted command. In this case, we split the execution to run the L
command with pc = L and the H command with pc = H . Note about MF semantics: similar to the original faceted
execution semantics, we split execution whenever we see faceted values, but unlike the semantics these rules are based
on, we never go back to a joint execution. Once the execution splits, it remains split until the event handler finishes
execution. We do this because the more efficient semantics are more complex and since this paper is not focused on
performance (it is focused on security), we opt for simpler semantics over better performance.

G,V, d σG1 , σ
V
1 , c

std
1

α−→pc σ
G
2 , σ

V
2 , c2, E

G,V, d σG, σV , skip; c
•−→pc σ

G, σV , c, ·
SKIP

G,V, d σG1 , σ
V
1 , c1

α−→pc σ
G
2 , σ

V
2 , c
′
1, E

G,V, d σG1 , σ
V
1 , c1; c2

α−→pc σ
G
2 , σ

V
2 , c
′
1; c2, E

SEQ

G,V, σG, σV ` e ⇓Vpc v valOf(v) = true

G,V, d σG, σV , if e then c1 else c2
•−→pc σ

G, σV , c1, ·
IF-TRUE

G,V, σG, σV ` e ⇓Vpc v valOf(v) = false

G,V, d σG, σV , if e then c1 else c2
•−→pc σ

G, σV , c2, ·
IF-FALSE

G,V, σG, σV ` e ⇓Vpc v valOf(v) = true

G,V, d σG, σV ,while e do c
•−→pc σ

G, σV , c; while e do c , ·
WHILE-TRUE

G,V, σG, σV ` e ⇓Vpc v valOf(v) = false

G,V, d σG, σV ,while e do c
•−→pc σ

G, σV , skip, ·
WHILE-FALSE

G,V, σG, σV ` e ⇓Vpc v

G,V, d σG, σV , output ch e
ch(v)−→ pc σ

G, σV , skip, ·
OUTPUT

read(d, ι) = v

G,V, d σG, σV , x := declassify(ι, e)
declassify(ι,v)−→ L σ

G, σV , x := v, ·
DECLASSIFY-L

G,V, d σG, σV , x := declassify(ι, e)
•−→H σG, σV , x := e, ·

DECLASSIFY-H

C.3. EH semantics

The lower-level semantic rules for evaluating individual event handlers are triggered by the mid-level semantics
in the “producer” state. The judgement for these rules is G,V, d σG1 , σ

V
1 , c

std
1

α−→pc σ
G
2 , σ

V
2 , c2, E. These rules are

mostly standard and enforcement-independent, except for interactions with the store. Note: these rules are meant to be
general enough to apply to any enforcement mechanism, which is why valOf appears in most rules.

G,V, d σG1 , σ
V
1 , c1

α−→pc σ
G
2 , σ

V
2 , c2, E

G,MF, d σG1 , σ
V
1 , c1

α−→· σG2 , σV2 , 〈cH |cL〉, E
G,MF, d σG1 , σ

V
1 , c1; c2

α−→· σG2 , σV2 , setFacetC(cH ; c2, cL; c2), E
SEQ-F

G,MF, σG, σV ` e ⇓MF
· v = 〈 | 〉 vH = getFacetV(v,H) vL = getFacetV(v, L)
cH = c1 if vH = true cH = c2 if vH = false
cL = c1 if vL = true cL = c2 if vL = false

G,MF, d σG, σV , if e then c1 else c2
•−→· σG, σV , setFacetC(cH , cL), ·

IF-F

G,MF, σG, σV ` e ⇓MF
· v = 〈 | 〉 vH = getFacetV(v,H) vL = getFacetV(v, L)

cH = c; while e do c if vH = true cH = skip if vH = false
cL = c; while e do c if vL = true cL = skip if vL = false

G,MF, d σG, σV ,while e do c
•−→· σG, σV , setFacetC(cH , cL), ·

WHILE-F

read(d, ι) = v

G,MF, d σG, σV , x := declassify(ι, e)
declassify(ι,v)−→ · σ

G, σV , setFacetC(x := e, x := v), ·
DECLASSIFY-NC

Faceted semantics. There are a few additional rules for dealing with faceted values. SEQ-F handles the case where the
first command in a sequence c1; c2 steps to a faceted command (〈cH |cL〉). We use setFacetC to create a new faceted
command where the H facet is the sequence cH ; c2 and the L facet is the sequence cL; c2. IF-F handles branching on
a faceted value and WHILE-F handles looping on a faceted value. In both cases, we evaluate the conditional for both
facets and produce a faceted command where the H facet is the command resulting from evaluating the H facet of the

condition, and the likewise for the L facet. Finally, when evaluating a declassification with pc = ·, we create a faceted
command where the command in the H facet performs the assignment directly, and the L facet assigns the declassified
value.

G,V, d σG1 , σ
V
1 , c

std
1

α−→pc σ
G
2 , σ

V
2 , c2, E

G,V, σG1 , σV1 ` e ⇓Vpc v x /∈ σG1 assignV(σV1 , pc, x, v) = σV2

G,V, d σG1 , σ
V
1 , x := e

•−→pc σ
G
1 , σ

V
2 , skip, ·

ASSIGN-L

G,V, σG1 , σV1 ` e ⇓G↓gpc v x ∈ σG1 assignG↓g (σG1 , pc, x, v) = σG2

G,V, d σG1 , σ
V
1 , x := e

•−→pc σ
G
2 , σ

V
1 , skip, ·

ASSIGN-G

assigni(σ, pc, x, v) = σ′

assignSME(σstd, H, x, v) = σstd[x 7→ v]
SME-ASSIGN-H

assignSME(σstd, L, x, v) = σstd[x 7→ v]
SME-ASSIGN-L

σ = getStore(σG ↓g, pcl) x ∈ σ σ′ = σ[x 7→ v]

assignSMS(σG, pcl, x, v) = setStoreVar(σG, pcl, σ
′)

SMS-ASSIGN

σ = getStore(σG ↓g, pcl) x 6∈ σ
assignSMS(σG, pcl, x, v) = σG

SMS-ASSIGN-S

σ′ = σ[x 7→ v]

assignMF(σ, ·, x, v) = σ′
MF-ASSIGN

vL = varMF(σ, L, x) v′ = setFacetV(getFacetV(v,H), vL)

assignMF(σ,H, x, v) = σ[x 7→ v′]
MF-ASSIGN-H

vH = varMF(σ,H, x) v′ = setFacetV(vH , getFacetV(v, L))

assignMF(σ, L, x, v) = σ[x 7→ v′]
MF-ASSIGN-L

x ∈ σ σ′ = σ[x 7→ v]

assignFS(σ, ·, x, v) = σ′
FS-ASSIGN

x ∈ σ vL = varFS(σ, L, x)
v′ = setFacetV(getFacetV(v,H), vL)

assignFS(σ,H, x, v) = σ[x 7→ v′]
FS-ASSIGN-H

x ∈ σ vH = varFS(σ,H, x)
v′ = setFacetV(vH , getFacetV(v, L))

assignFS(σ, L, x, v) = σ[x 7→ v′]
FS-ASSIGN-L

x 6∈ σ
assignFS(σ, pc, x, v) = σ

FS-ASSIGN-S

RIGHT=TT-ASSIGN

assignTT(σ, pc, x, (v, l)) = σ[x 7→ (v, l t pc)]

x ∈ σ
assignTS(σ, pc, x, (v, l)) = σ[x 7→ (v, l t pc)]

TS-ASSIGN

x 6∈ σ
assignTS(σ, pc, x, (v, l)) = σ

TS-ASSIGN-S

Variable assignment. The rules for variable assignment involve a function assign which performs the actual assignment

and whose behavior differs depending on the enforcement mechanism.
For SME, configurations keep track of each copy of the store with the execution, so assignments can be made

directly. On the other hand, to update a variable in an SMS store, we first pick the correct copy of the store using
getStore, which is the copy that matches the given pc. We make the assignment in this store, then update the SMS
store using setStoreVar to include the updated copy.

Assignments for MF and FS are very similar, except that x ∈ σ is a requirement for FS. If the variable does not
exist in the store, the assignment is skipped. Assignments when pc = · are straightforward. For a standard pc (i.e., L
or H), we first create a faceted value which combines the old value from the store with the value being assigned. If the
new value is faceted, getFacetV will get the correct facet and setFacetV will get the correct facet from the old value.
The facet matching the pc comes from the new value, and the other facet comes from the old value: this is the value
assigned to the store.

Assignments for TT and TS are similar, except that x ∈ σ is a requirement for TS. If the variable does not exist in
the store, the assignment is skipped. The value being assigned is labeled lt pc so that neither the value nor the context
it is assigned in cause any leaks.

G,V, σG, σV ` e ⇓ipc v

if x ∈ σG, then v = varG↓g (σG, pc, x) otherwise, v = varV(σV , pc, x) toDst(v, pc, i) = v′

G,V, σG, σV ` x ⇓ipc v′
VAR

G,V, σG, σV ` e1 ⇓ipc v1 G,V, σG, σV ` e2 ⇓ipc v2 v = v1 bop v2

G,V, σG, σV ` e1 bop e2 ⇓ipc v
BOP

C.4. Expression semantics

Note that the sub-expressions are converted to the same types in each rule. So, for BOP, this means that types will
not be mixed (e.g. (v, l) bop 〈vH |vL〉 is not possible). To keep top-level rules as separate as possible from mechanism-
specific details (like the structure of the values), we assume that bop well-defined for the various types of values (i.e.
standard, labeled, and faceted).

ehAPIe(G, σ, pc, id , v1, · · · , vn) = v

ehAPIeG(σ,H, id , getFacetV(v1, H), · · · , getFacetV(vn, H)) = vH
ehAPIeG(σ, L, id , getFacetV(v1, L), · · · , getFacetV(vn, L)) = vL

ehAPIe(G, σ, ·, id , v1, · · · , vn) = createFct(vH , vL)
EHAPI-NC

ehAPIeG(σ, pcl, id , v1, · · · , vn) = v

ehAPIe(G, σ, pcl, id , v1, · · · , vn) = v
EHAPI

Create facet (with conversion):

labOf(vL, L) v L
createFct(vH , vL) = setFacetV(valOf(vH), valOf(vL))

labOf(vL, L) 6v L
createFct(vH , vL) =

setFacetV(valOf(vH), dv)

Unstructured EH storage. These rules handle any special cases at the interface between different enforcement
mechanisms. The rules are similar for unstructured and tree-structure EH storage semantics; we describe the unstructured
EH storage rules here and the tree-structured rules next. Since the expression semantics convert the types of the attributes
to the format expected by G, we only need to consider the case where the no-context pc may be used. In this case,
we might see faceted values even for non-faceted stores (otherwise, we could lose some detail). We use EHAPI-NC to
split the context and compute both the H and L cases to make the result as accurate as possible. After computing both
the H and L case, we combine the results using createFct. Other than this case, the EH storage functions are called
directly.

ehAPIe(G, σ, pc, · · ·) = v

ehAPIeG(σ,H, getFacetV(v1, H), · · · , getFacetV(vn, H)) = vH
ehAPIeG(σ, L, getFacetV(v1, L), · · · , getFacetV(vn, L)) = vL

ehAPIe(G, σ, ·, v1, · · · , vn) = createFct(vH , vL)
EHAPI-NC

ehAPIeG(σ, pcl, v1, · · · , vn) = v

ehAPIe(G, σ, pcl, v1, · · · , vn) = v
EHAPI

Create facet (with conversion):

labOf(vL, L) v L
createFct(vH , vL) = setFacetV(valOf(vH), valOf(vL))

labOf(vL, L) 6v L
createFct(vH , vL) =

setFacetV(valOf(vH), dv)

Tree-structured EH storage. The rules for the tree-structured EH storage are similar except that the EH nodes are
passed by reference rather than passing an id .

dst ∈ {SME,SMS,MF,FS}
toDst(vstd, pc, dst) = vstd

MS
dst ∈ {TT,TS} pc v L

toDst(vstd, pc, dst) = (vstd, L)
MSTOT-L

dst ∈ {TT,TS} pc 6v L
toDst(vstd, pc, dst) = (vstd, pc)

MSTOT-H
dst ∈ {TT,TS}

toDst((vstd, l), pcl, dst) = (vstd, l t pcl)
T

dst 6∈ {TT,TS} l v pcl

toDst((vstd, l), pcl, dst) = vstd
TTOMS

dst 6∈ {TT,TS} l 6v pcl

toDst((vstd, l), pcl, dst) = dv
TTOMS-DV

toDst((vstd, L), ·, dst) = vstd
TTOMS-NC-L

toDst((vstd, H), ·, dst) = 〈vstd|dv〉
TTOMS-NC-H

v = 〈 | 〉
toDst(v, ·, dst) = v

NC

Type conversion rules. Because the shared variable storage, EH storage, and event handlers may all be enforced
differently from each other, computations involving different values from different enforcement mechanisms may need
to be converted to a different format. We include the destination enforcement mechanism (i) in the expression semantics
and convert the final result to whatever format is expected by this enforcement mechanism.

When converting data, we follow three high-level guidelines to ensure the composition is secure:
1. The pc context determines which copy to access in multi-storage. If a value is coming from SMS or FS, there

may be two copies to pick from. When the context (i.e., the pc) is H , we access the H copy, and likewise for L. If
the value does not exist in that copy of the store (in the case of SMS) or is an empty facet (in the case of FS), we use
a default value. This is handled by variable lookup rules, which are described in the next section.

2. The pc context and destination determines whether to replace a labeled value with a default value. If the value
is coming from TS, we need to decide if we take the actual value or use a default value. If the context is H , we take
the real value without leaking any information (rule TTOMS). If the context is L and the destination is a multi-storage
(SMS, FS) or multi-execution (SME, MF) technique, we replace tainted values (with label H) with a default value
since the L copy of the store/execution should never be influenced by a secret (rule TTOMS-DV). On the other hand,
if the destination is TS or TT, we use the original, tainted value, and propagate the taint through the resulting label
(rule T). The exception to this is when the pc is ·. If the value is not tainted, we return the (un-labeled) value (rule
TTOMS-NC-L). If the value is tainted, we create a faceted value with the (un-labeled) value in the H facet and a default
value in the L facet (rule TTOMS-NC-H).

3. The destination and pc context determines the ultimate format. Multi-storage and multi-execution techniques
use the context to determine which copy of the store/which facet to update. Rule MS converts a standard value to a
multi-storage format (which is also a standard value). If the pc is ·, a faceted value does not need to be converted since
pc = · only for MF and FS (rule NC). For taint tracking techniques, the context is also used to determine the final
label on the data. Rule MSTOT-L adds the label L to a standard value computed in a public context and MSTOT-H
adds the label H to a standard value computed in a secret context.

Binary operations, variable lookup. Binary operations are straightforward, except when they involve facets or tainted
values. Recall from our expression semantics that values in sub-expressions will be converted to the same format (i.e.,
binary operations won’t mix faceted values and labeled values). To perform a binary operation involving a faceted value
(rule BOP-FACET), split the faceted value(s) on the H and L facets, separately, then combine the results into a faceted
value. To perform a binary operation on two labeled (tainted) values (rule BOP-LABEL), perform the operation on the
values and assign the result a new label that is the join of the labels on the original values.

Variable lookup rules for SME are straightforward. Because each copy of the execution maintains its own store, we
simply look up the variable in the store (rule SME-VAR). If it is not found, we return a default value (rule SME-VAR-DV).
Looking up variables in SMS is similar to SME except that we first have to pick the correct copy of the store which
matches the pc context. We do this using getStore (rule SMS-VAR). If the variable is not found in the store, we return
a default value (rule SMS-VAR-DV).

Variable lookups for MF and FS stores are the same. If the lookup happens under a “standard” (i.e., L or H) pc,
then we use getFacetV to get the appropriate facet from that value in the store (rules MF-VAR and FS-VAR). getFacetV
returns the L or H facet of a faceted value (depending on the pc), or the value, unchanged, if it is not faceted (recall
that un-faceted values are visible to both L and H observers). Also note that uninitialized L or H facets will be ·.
getFacetV returns dv in this case. If the pc is ·, we perform the lookup in both the L and H context and create a faceted
value with the results using setFacetV (rules MF-VAR-F and FS-VAR-F). We split the execution rather than returning
whatever faceted/unfaceted value is in the store for two reasons. (1) this ensures that uninitialized · facets will have
dv rather than remaining empty, which is helpful for proofs. (2) it simplifies the semantics, especially if we wanted to
replace empty facets with dv without splitting the execution. As before, if the variable is not in the store, we return dv
(rules MF-VAR-DV and FS-VAR-DV).

vMF
1 bop vMF

2

v1 = 〈 | 〉 or v2 = 〈 | 〉
vH = (getFacetV(v1, H)) bop (getFacetV(v2, H)) vL = (getFacetV(v1, L)) bop (getFacetV(v2, L))

v1 bop v2 = setFacetV(vH , vL)
BOP-FACET

vTT1 bop vTT2

(v, l) bop (v′, l′) = (v bop v′, l t l′)
BOP-LABEL

Figure 22: Binary operations

varV(σV , pc, x) = v

varSME(σstd, pcl, x) = σstd(x)
SME-VAR

x 6∈ σstd

varSME(σstd, pcl, x) = dv
SME-VAR-DV

σl = getStore(σ, pcl)

varSMS(σ, pcl, x) = σl(x)
SMS-VAR

σl = getStore(σ, pcl) x 6∈ σl
varSMS(σ, pcl, x) = dv

SMS-VAR-DV

v = getFacetV(σ(x), pcl)

varMF(σ, pcl, x) = v
MF-VAR

x ∈ σ
vH = varMF(σ,H, x) vL = varMF(σ, L, x)

varMF(σ, ·, x) = setFacetV(vH , vL)
MF-VAR-F

x 6∈ σ
varMF(σ, pc, x) = dv

MF-VAR-DV

v = getFacetV(σ(x), pcl)

varFS(σ, pcl, x) = v
FS-VAR

x ∈ σ vH = varFS(σ,H, x) vL = varFS(σ, L, x)

varFS(σ, ·, x) = setFacetV(vH , vL)
FS-VAR-F

x 6∈ σ
varFS(σ, pc, x) = dv

FS-VAR-DV

varTT(σ, pcl, x) = σ(x)
TT-VAR

x 6∈ σ
varTT(σ, pcl, x) = (dv, H)

TT-VAR-DV

varTS(σ, pc, x) = σ(x)
TS-VAR

x 6∈ σ
varTS(σ, pc, x) = (dv, H)

TS-VAR-DV

Figure 23: Variable lookup rules

The rules for TT and TS are mostly straightforward. If the variable is in the store, we simply return the value (rules
TT-VAR and TS-VAR). If not, we always return a default value with label H , regardless of the pc (rules TT-VAR-DV
and TS-VAR-DV). If we labeled the default value with the pc, we would leak something to the attacker if the variable
did exist in the store and was tainted (because (dv, L) is distinguishable from (v,H)). To hide the possibility of the
variable holding a secret, we always taint the default value.

G,V, d σG1 , σ
V
1 , c

std
1

α−→pc σ
G
2 , σ

V
2 , c2, E

G,V, σG1 , σV1 ` e ⇓G↓EH
pc v assignG↓EH

(σG1 , pc, id , v) = σG2

G,V, d σG1 , σ
V
1 , id := e

•−→pc σ
G
2 , σ

V
1 , skip, ·

ASSIGN-D

G,V, σG1 , σV1 ` e ⇓G↓EH
pc v σG2 = createElemG↓EH(σG1 , pc, id , v)

G,V, d σG1 , σ
V
1 , create(id , e)

•−→pc σ
G
2 , σ

V
1 , skip, ·

CREATEELEM

σG2 = registerEHG↓EH
(σG1 , pc, id , eh)

G,V, d σG1 , σ
V
1 , register(id , eh)

•−→pc σ
G
2 , σ

V
1 , skip, ·

ADDEH

G,V, σG, σV ` e ⇓G↓EH
pc v E = triggerEHG↓EH

(σG, pc, id ,Ev , v)

G,V, d σG, σV , trigger(id ,Ev , e)
•−→pc σ

G, σV , skip, E
TRIGGER

Figure 24: Shared Unstructured EH storage command semantics

G,V, σG1 , σV1 ` e ⇓G↓EH
pc v assignG↓EH

(σG1 , pc, a, v) = σG2

G,V, d σG1 , σ
V
1 , a := e

•−→pc σ
G
2 , σ

V
1 , skip, ·

ASSIGN-D

G,V, σG, σV ` e ⇓G↓EH
pc v E = triggerEHG↓EH

(σG, pc, id ,Ev , v)

G,V, d σG, σV , trigger(id ,Ev , e)
•−→pc σ

G, σV , skip, E
TRIGGER

G,V, σG1 , σV1 ` e ⇓G↓EH
pc v σG2 = createChildG↓EH(σG1 , pc, id , ap, v)

G,V, d σG1 , σ
V
1 , createChild(id , ap, e)

•−→pc σ
G
2 , σ

V
1 , skip, ·

CREATECHILD

G,V, σG1 , σV1 ` e ⇓G↓EH
pc v σG2 = createSiblingG↓EH

(σG1 , pc, id , as, v)

G,V, d σG1 , σ
V
1 , createSibling(id , as, e)

•−→pc σ
G
2 , σ

V
1 , skip, ·

CREATESIBLING

σG2 = registerEHG↓EH
(σG1 , pc, a, eh)

G,V, d σG1 , σ
V
1 , register(a, eh)

•−→pc σ
G
2 , σ

V
1 , skip, ·

ADDEH

Figure 25: Shared Tree-structured EH storage command semantics

C.5. EH Storage semantics

Unstructured EH Storage command semantics. Here we describe the commands for interacting with the event handler
storage. Note: these rules are meant to be general enough to apply to any enforcement mechanism, which is why labOf
appears in most rules.

ASSIGN-D updates the attribute for a node with id id . CREATEELEM adds an empty node with id id and assigns
value determined by expression e. ADDEH registers a new event handler (eh) to a node given by id . TRIGGER triggers
the event handlers for the event Ev associated with a node (given by id) with parameter given by e. TRIGGER-T is
necessary for taint tracking because taint tracking assumes that the pc determines what security level to run the event
handlers at, not which event handlers to run.

Each of these rules uses a helper function with the type of enforcement (G ↓EH) as one of the parameters. These
functions will be described later in this section.

Tree-structured EH Storage command semantics. Note: these rules are meant to be general enough to apply to any
enforcement mechanism, which is why labOf appears in most rules.

TRIGGER triggers the event handlers for the event Ev associated with a node (given by id) with parameter given
by e. TRIGGER-T is necessary for taint tracking because taint tracking assumes that the pc determines what security
level to run the event handlers at, not which event handlers to run. CREATECHILD adds an empty node as the left-most
child of the node at location ap. The new node has id id and value given by expression e. The parent of the new node
is located at ap. If ap is NULL, the store is unchanged. CREATESIBLING adds an empty node as the right-hand sibling
of the node at location as. The new node has id id and value given by expression e. The parent of the new node is the

parent of as. If as or the parent of as is NULL, the store is unchanged. ADDEH registers a new event handler (eh) to
a node at address a.

Each of these rules uses a helper function with the type of enforcement (G ↓EH) as one of the parameters. These
functions will be described next.

lookupG(σ, pc, id) = φ

σ′ = getStoreSMS(σ, pcl) σ′(id) = φ

lookupSMS(σ, pcl, id) = φ
SMS-LOOKUP

σ′ = getStoreSMS(σ, pcl) id 6∈ σ′

lookupSMS(σ, pcl, id) = NULL
SMS-LOOKUP-S

σ(id) = φ φ.v ↓pcl
6= ·

lookupFS(σ, pcl, id) = φ
FS-LOOKUP

id 6∈ σ or σ(id).v ↓pcl
= ·

lookupFS(σ, pcl, id) = NULL
FS-LOOKUP-S

φH = lookupFS(σ,H, id) φL = lookupFS(σ, L, id)

lookupFS(σ, ·, id) = setFacetN(φH , φL)
FS-LOOKUP-F

σ(id) = φ

lookupTS(σ, pc, id) = φ
TS-LOOKUP

id 6∈ σ
lookupTS(σ, pc, id) = (NULL, H)

TS-LOOKUP-S

Figure 26: Rules for looking up a node in the unstructured EH storage

Unstructured EH Storage command semantics (helper functions). The rules in this section connect the framework
to the specific enforcement mechanisms protecting the shared EH storage. For each helper function, there is a set of
rules for each enforcement mechanism (SMS,FS,TS).

Node lookup. Figure 26 shows the rules for looking up a node in the unstructured EH storage. For the SMS store, this
is straightforward. Rule SMS-LOOKUP handles the case where the node is in the store, and rule SMS-LOOKUP-S handles
the case where a node with matching id doesn’t exist, in which case we return NULL. We use the pc to determine
which copy of the EH storage to use for the lookup.

Recall that for the faceted store, nodes may contain faceted values if they depend on a secret. The FS store also has
to check if the node is initialized in the context given by the pc. To do this, rule FS-LOOKUP checks if the attribute in
the node is initialized (i.e., whether φ.v ↓pc 6= ·). If a node with matching id does not exist in the store, or if the node
has not been initialized in the given context, rule FS-LOOKUP-S returns NULL. If the pc = ·, we split the execution and
perform the lookup in both the L and H contexts. We create a facet with the results using setFacetN.

The rules for looking up a node in the TS store are straightforward. If a node with matching id exists, TS-LOOKUP
is used to return the node directly. Otherwise, TS-LOOKUP-S returns a tainted NULL. We always label NULL as secret
in this case, regardless of the pc because we want it to be indistinguishable from a secret node (in case one exists in
an equivalent store).

Node attribute update. Figure 27 shows the rules for updating the attribute of a node. The SMS rules are similar to
the rules for looking up a node. SMS-ASSIGNEH handles the case where a node with matching id , SMS-ASSIGNEH-S
handles the case where there isn’t. SMS-ASSIGNEH-NC handles the case where the pc = ·. Here, we split the context
and make assignments to the L and H stores separately.

The rules for FS attribute updates directly replace the attribute in the store if the pc = · and a node with matching
id is found in the store (rule FS-ASSIGNEH) and do not change the store if no matching node is found or if the node is
not initialized in the given context (rule FS-ASSIGNEH-S). For a standard pc (i.e., it is L or H), we update the attribute
by using updateFacet (rule FS-ASSIGNEH-UPD). If the node is faceted (i.e., lookupFS returns a faceted value), then the
execution splits and performs the assignment in both the L and H context (rule FS-ASSIGNEH-NC).

The rules for the TS store are straightforward. If a node with matching id is found, we update the attribute to be the
label on the new value joined with the pc and the label on the node (rule TS-ASSIGNEH). If a node with a matching
id is not found, the store is not changed (rule TS-ASSIGNEH-S).

Triggering an event handler. Figure 28 contains rules for an event handler to trigger another event handler. For SMS,
SMS-TRIGGEREH handles the case where a node with matching id exists in the store. In this case, the event is triggered
in the given context (either L or H). If a node with matching id does not exist, SMS-TRIGGEREH-S does not trigger
any events. When the pc = ·, SMS-TRIGGEREH-NC splits the context to look up the event in both copies of the store.
If multiple events are generated, they are merged using mergeEvs (Section B.2).

Similarly, the rules for the FS store check if a node with matching id exists. If it does, FS-TRIGGEREH triggers a
new event in the given context. If it doesn’t, FS-TRIGGEREH-S does not trigger any events. If the node or argument

assignG(σ, pc, id , v) = σ′

σ = getStoreSMS(σG ↓EH, pcl) (v′,M) = σ(id) σ′ = σ[id 7→ (v,M)]

assignSMS(σG, pcl, id , v) = setStoreSMS(σG, pcl, σ
′)

SMS-ASSIGNEH

σ = getStoreSMS(σG ↓EH, pcl) id 6∈ σ
assignSMS(σG, pcl, id , v) = σG

SMS-ASSIGNEH-S

σG1 = assignSMS(σG, H, id , getFacet(v,H)) σG2 = assignSMS(σG1 , L, id , getFacet(v, L))

assignSMS(σG, ·, id , v) = σG2
SMS-ASSIGNEH-NC

(v′,M) = lookupFS(σ, ·, id)

assignFS(σ, ·, id , v) = σ[id 7→ (v,M)]
FS-ASSIGNEH

NULL = lookupFS(σ, pc, id)

assignFS(σ, pc, id , v) = σ
FS-ASSIGNEH-S

(v′,M) = lookupFS(σ, pcl, id)
v′′ = updateFacet(v′, v, pcl)

assignFS(σ, pcl, id , v) = σ[id 7→ (v′′,M)]
FS-ASSIGNEH-UPD

φ = lookupFS(σ, ·, id) = 〈 | 〉
σ′ = assignFS(σ,H, id , getFacet(v,H)) σ′′ = assignFS(σ′, L, id , getFacet(v, L))

assignFS(σ, ·, id , v) = σ′′
FS-ASSIGNEH-NC

(v′,M, l′) = σ(id)

assignTS(σ, pc, id , (v, l)) = σ[id 7→ (id , (v, l t pc t l′),M, l′)]
TS-ASSIGNEH

id 6∈ σ
assignTS(σ, pc, id , (v, l)) = σ

TS-ASSIGNEH-S

Figure 27: Rules for updating the attribute of a node in the unstructured EH storage

to the triggered event is faceted, then the execution splits in FS-TRIGGEREH-NC and triggers the event in both the H
and L context. The resulting events are merged using mergeEvs.

Again, for the TS store, we first check if a node with matching id exists. If it does, TS-TRIGGEREH triggers a new
event in the context given by the pc joined with the label on the node joined with the label on the argument to the
event. If a node with matching id does not exist, TS-TRIGGEREH-S does not trigger any events. If the pc = ·, then
TS-TRIGGEREH-NC splits the execution to trigger the event in both the L and H context.

Creating a new node. Figure 29 contains rules for creating a new EH node. To create a new node in the SMS store, we
first check if a node with the given id exists. If it does not, SMS-CREATE creates a new node with the given attribute
and no registered event handlers. The appropriate copy of the store is retrieved with getStore and updated with setStore.
If a node with the given id already exists, SMS-CREATE-U updates the node with the given attribute using assignSMS.
If the pc = ·, SMS-CREATE-NC splits the execution to create the node in both copies of the store.

Creating a new node in the FS store is straightforward. First we check if a node with the given id exists. If it does
not, FS-CREATE adds a new node to the store with the given attribute. The attribute is formatted using createFacet to
ensure that the attribute only exists in the given context. We also use getFacetV on the given attribute, to make the
proofs easier. FS-CREATE-U is used in case a node with the given id does already exist. In that case the attribute on
the existing node is updated using assignFS.

To create a new node in the TS store, we again first check if a node with the given id exists. If it does not,
TS-CREATE adds a new node to the store with the given attribute and label given by the context. If a node with the
given id does exist, we check the label on the node (given by l′). If the node is visible in the current context (i.e.,
l′ v pc), TS-CREATE-U1 updates the attribute. The new attribute has the label given by joining the label on the node,
pc, and the label on the attribute. If the node is not visible in the current context (i.e., l′ 6v pc), TS-CREATE-U2 updates
the attribute and the label on the node. The new attribute has the label given by joining the pc and the label on the
attribute. The new label on the nodes is the pc. We update the label on the node because leaving the old label on the
node would mean the node is still not visible in the current context, despite the node being created. This would leak
to the attacker that a secret node with the given id existed. Finally, if the pc = · TS-CREATE-NC creates the node in

triggerEHG(σ, pc, id ,Ev , v) = E

lookupSMS(σ, pcl, id) = φ 6= NULL

triggerEHSMS(σ, pclid ,Ev , v) = (id .Ev(v), pcl)
SMS-TRIGGEREH

φ = lookupSMS(σ, pcl, id) = NULL

triggerEHSMS(σ, pcl, id ,Ev , v) = ·
SMS-TRIGGEREH-S

EH = triggerEHSMS(σ,H, id ,Ev , getFacet(v,H))
EL = triggerEHSMS(σ, L, id ,Ev , getFacet(v, L))

triggerEHSMS(σ, ·, id ,Ev , v) = mergeEvs(EH , EL)
SMS-TRIGGEREH-NC

φ = lookupFS(σ, pc, id) 6= 〈 | 〉 6= NULL

triggerEHFS(σ, pc, id ,Ev , vstd) = (id .Ev(v), pc)
FS-TRIGGEREH

〈 | 〉 = lookupFS(σ, pc, id) ∨ v = 〈 | 〉
EH = triggerEHFS(σ,H, id ,Ev , getFacet(v,H))
EL = triggerEHFS(σ, L, id ,Ev , getFacet(v, L))

triggerEHFS(σ, ·, id ,Ev , v) = mergeEvs(EH , EL)
FS-TRIGGEREH-NC

lookupFS(σ, pc, id) = NULL

triggerEHFS(σ, pc, id ,Ev , vstd) = ·
FS-TRIGGEREH-S

lookupG(σ, pcl, id) = (, , lφ) l = labOf(v, pcl)

triggerEHG(σ, pcl, id ,Ev , v) = (id .Ev(v), pcl t lφ t l)
TS-TRIGGEREH

EH = triggerEHG(σ,H, id ,Ev , getFacetV(v,H))
EL = triggerEHG(σ, L, id ,Ev , getFacetV(v, L))

triggerEHG(σ, ·, id ,Ev , v) = mergeEvs(EH , EL)
TS-TRIGGEREH-NC

φ = lookupG(σ, pcl, id) = (NULL,)

triggerEHG(σ, pcl, id ,Ev , v) = ·
TS-TRIGGEREH-S

Figure 28: Rules for triggering an event in the unstructured EH storage

the L context. This is different from the other stores (which split the context and create the node twice) because the
given attribute is already formatted as a labeled value. If we were to create the node twice, it would create the node,
then overwrite the attribute with the same value anyway. Creating the node just once in the L context is more efficient
and does not leak anything because the existence of the node is not secret (since the pc = ·).

Registering a new event handler. Figure 30 contains rules for registering a new event handler. To register a new event
handler in the SMS store, we first look up the node with the given id . If the node exists, SMS-REGISTEREH adds the
new event handler to the event handler map with the label given by the pc. If a node with the given id does not exist,
SMS-REGISTEREH-S does not change the store. If the pc = ·, SMS-REGISTEREH-NC splits the execution and adds the
event handler in both the L and H context.

The rules for adding a new event handler to the FS store are similar. If a node with the given id exists, FS-
REGISTEREH updates the event handler map with the label given by the pc. If it does not exist, FS-REIGSTEREH-S
does not change the store. If the node with matching id is faceted, REGISTEREH-NC splits the execution to add the
event handler to both nodes in the facet.

The rules for adding a new event handler to the TS store are straightforward and are similar to the ones for the
SMS and FS stores. TS-REGISTEREH updates the node with matching id with the label given by the pc joined with
the label on the node. TS-REGISTEREH-S handles the case where a node with matching id cannot be found and the
store is not changed. If the pc = ·, TS-REGISTEREH-NC splits the execution and adds the event handler in both the L
and H context.

createElemG(σG1 , pc, id , v) = σG2

lookupSMS(σ, pcl, id) = NULL φ = (vstd, ·) σ′ = getStore(σ, pcl)

createElemSMS(σ, pcl, id , v) = setStore(σ, pcl, σ
′[id 7→ φ])

SMS-CREATE

lookupSMS(σ, pc, id) = φ 6= NULL σ′ = assignSMS(σ, pc, id , v)

createElemSMS(σ, pcl, id , v) = σ′
SMS-CREATE-U

σ′ = createElemSMS(σ,H, id , v) σ′′ = createElemSMS(σ′, L, id , v)

createElemSMS(σ, ·, id , v) = σ′′
SMS-CREATE-NC

lookupFS(σ, ·, id) = NULL v′ = getFacetV(v, pc) φ = (createFacet(v′, pc), ·)
createElemFS(σ, pc, id , v) = σ[id 7→ φ]

FS-CREATE

lookupFS(σ, ·, id) = φ 6= NULL σ′ = assignFS(σ, pc, id , v)

createElemFS(σ, pc, id , v) = σ′
FS-CREATE-U

lookupTS(σ, pcl, id) = (NULL,) φ = (v, ·, pcl)
createElemTS(σ, pcl, id , v) = σ[id 7→ φ]

TS-CREATE

lookupTS(σ, pc, id) = (v′,M, l′) l′ v pc σ′ = σ[id 7→ ((v, l t pc t l′),M, l′)]

createElemTS(σ, pc, id , (v, l)) = σ′
TS-CREATE-U1

lookupTS(σ, pc, id) = (v′,M, l′) l′ 6v pc σ′ = σ[id 7→ ((v, l t pc),M, pc)]

createElemTS(σ, pc, id , (v, l)) = σ′
TS-CREATE-U2

σ′ = createElemTS(σ, L, id , v)

createElemTS(σ, ·, id , v) = σ′
TS-CREATE-NC

Figure 29: Rules for creating a new node in the unstructured EH storage

registerEHG(σG1 , pc, id , eh) = σG2

(v,M) = lookupSMS(σ, pcl, id)
eh = onEv(x){c} M ′ = M [Ev 7→M(Ev) ∪ {(eh, pcl)}] σ′ = getStore(σ, pcl)

registerEHSMS(σ, pcl, id , eh) = setStore(σ, pcl, σ
′[id 7→ (v,M ′)])

SMS-REGISTEREH

NULL = lookupSMS(σ, pcl, id)

registerEHSMS(σ, pcl, id , eh) = σ
SMS-REGISTEREH-S

σ′ = registerEHSMS(σ,H, id , eh) σ′′ = registerEHSMS(σ′, L, id , eh)

registerEHSMS(σ, ·, id , eh) = σ′′
SMS-REGISTEREH-NC

(v,M) = lookupFS(σ, pc, id) eh = onEv(x){c} M ′ = M [Ev 7→M(Ev) ∪ {(eh, pc)}]
registerEHFS(σ, pc, id , eh) = σ[id 7→ (v,M ′)]

FS-REGISTEREH

〈φH |φL〉 = lookupFS(σ, pc, id)
σ′ = registerEHFS(σ,H, id , eh) σ′′ = registerEHFS(σ′, L, id , eh)

registerEHFS(σ, ·, id , eh) = σ′′
FS-REGISTEREH-NC

NULL = lookupFS(σ, pc, id)

registerEHFS(σ, pc, id , eh) = σ
FS-REGISTEREH-S

(v,M, l) = lookupTS(σ, pcl, id)
eh = onEv(x){c} M ′ = M [Ev 7→M(Ev) ∪ {(eh, pcl t l)}]

registerEHTS(σ, pcl, id , eh) = σ[id 7→ (v,M ′, l)]
TS-REGISTEREH

σ′ = registerEHTS(σ,H, id , eh) σ′′ = registerEHTS(σ′, L, id , eh)

registerEHTS(σ, ·, id , eh) = σ′′
TS-REGISTEREH-NC

φ = lookupTS(σ, pcl, id) valOf(φ) = NULL

registerEHTS(σ, pcl, id , eh) = σ
TS-REGISTEREH-S

Figure 30: Rules for registering a new event handler in the unstructured EH storage

lookupAG(σG , pc, id , A) = a

σ′ = getStore(σ, pcl) σ′(a).id = id

lookupASMS(σ, pcl, id , (a :: A)) = a
SMS-LOOKUPA

σ′ = getStore(σ, pcl) σ′(a).id 6= id lookupASMS(σ, pcl, id , (A :: σ′(a).A)) = a

lookupASMS(σ, pcl, id , (a :: A)) = a
SMS-LOOKUPA-R

lookupASMS(σ, pcl, id , ·) = NULL
SMS-LOOKUPA-S

σ(a).id = id φ.v ↓pcl
6= ·

lookupAFS(σ, pcl, id , (a :: A)) = a
FS-LOOKUPA

σ(a).id 6= id σ(a).v ↓pcl
6= ·

lookupAFS(σ, pcl, id , (A :: σ(a).A ↓pcl
)) = a′

lookupAFS(σ, pcl, id , (a :: A)) = a′
FS-LOOKUPA-R1

σ(a).v ↓pcl
= ·

lookupAFS(σ, pcl, id , A) = a′

lookupAFS(σ, pcl, id , (a :: A)) = a′
FS-LOOKUPA-R2

aH = lookupAFS(σ,H, id , A ↓H) aL = lookupAFS(σ, L, id , A ↓L)

lookupAFS(σ, ·, id , A) = setFacetA(aH , aL)
FS-LOOKUPA-F

lookupAFS(σ, pcl, id , ·) = NULL
FS-LOOKUPA-S

Figure 31: Rules for looking up the address of a node in the tree-structured EH storage

lookupG(σG , pcl, id , A) = φ

σ′ = getStore(σ, pcl) lookupASMS(σ, pcl, id , a
rt) = a 6= NULL σ′(a) = φ

lookupSMS(σ, pcl, id) = φ
SMS-LOOKUP

lookupASMS(σ, pcl, id , a
rt) = NULL

lookupSMS(σ, pcl, id) = NULL
SMS-LOOKUP-S

lookupAFS(σ, pcl, id , a
rt) = a 6= NULL σ(a) = φ

lookupFS(σ, pcl, id) = φ
FS-LOOKUP

lookupAFS(σ, pcl, id , a
rt) = NULL

lookupFS(σ, pcl, id) = NULL
FS-LOOKUP-S

Figure 32: Rules for looking up a node in the tree-structured EH storage

Tree-structured EH Storage command semantics (helper functions). The rules in this section connect the framework
to the specific enforcement mechanisms protecting the shared EH storage. For each helper function, there is a set of
rules for each enforcement mechanism (SMS,FS). Note that because we prove the unstructured TS store only satisfies
weak secrecy, we do not formalize the tree-structured TS store.

Node address lookup. Figure 31 contains rules for looking up the address of a node. lookupA looks up the address of
a node by traversing the EH tree store recursively. The biggest difference between SMS and FS is that the structure of
the nodes is different.

To traverse the SMS tree, we check if the “current” node matches the given id . We use getStore to check the
appropriate copy of the store. SMS-LOOKUPA handles the case where the id matches, so we return the address of the
current node. SMS-LOOKUPA-R handles the case where the current node does not match the given id . In this case, we
add the current node’s children to the list of nodes to check and we check the rest of the nodes in the list. Finally, once
we run out of nodes to check, SMS-LOOKUPA-S returns NULL.

Traversing the FS tree is similar. FS-LOOKUPA handles the case where the current node matches the given id . We

assignG(σG1 , pc, a, v) = σG2

σ = getStore(σ ↓EH, pcl) (v′,M, ap, A) = σ(a) σ′ = σ[a 7→ (v,M, ap, A)]

assignSMS(σ, pcl, a, v) = setStore(σ, pcl, σ
′)

SMS-ASSIGNEH

assignSMS(σ, pcl,NULL, v) = σ
SMS-ASSIGNEH-S

σ′ = assignSMS(σ,H, getFacet(a,H), getFacet(v,H))
σ′′ = assignSMS(σ′, L, getFacet(a, L), getFacet(v, L))

assignSMS(σ, ·, a, v) = σ′′
SMS-ASSIGNEH-NC

(id , v′,M, ap, A) = σ(a)

assignFS(σ, ·, a, v) = σ[a 7→ (id , v,M, ap, A)]
FS-ASSIGNEH

assignFS(σ, pcl,NULL, v) = σ
FS-ASSIGNEH-S

assignFS(σ,H, aH , getFacetV(v,H)) = σ′ assignFS(σ, L, aL, getFacetV(v, L)) = σ′′

assignFS(σ, ·, 〈aH |aL〉, v) = σ′′
FS-ASSIGNEH-NC

(id , v′,M, ap, A) = σ(a) v′′ = updateFacet(v′, v, pcl)

assignFS(σ, pcl, a, v) = σ[a 7→ (id , v′′,M, ap, A)]
FS-ASSIGNEH-UPD

Figure 33: Rules for updating the attribute of a node in the tree-structured EH storage

also have to check that the node is visible in the given context (i.e., φ.v ↓pcl
6= ·). If the current node does not match

the given id , but it is visible in the given context, FS-LOOKUPA-R1 adds the current node’s children (that are visible
in the given context, A ↓pcl

) to the recursive call. If the current node does not match the given id , and is not visible
in the given context, FS-LOOKUPA-R2 checks the rest of the nodes in the list but does not add the children of the
current node. If pc = ·, FS-LOOKUPA-F splits the execution to look for the address of the node in both the L and H
contexts. The result is made into a faceted address using setFacetA. Finally, if a node with matching id does not exist,
FS-LOOKUPA-S returns NULL.

Node lookup. Figure 32 contains rules for looking up nodes by id . This function works by looking up the address of
the node with matching id and then returning the node stored at that address.

For the SMS store, SMS-LOOKUP uses lookupASMS to get the address of the node. If the address is not NULL, we
look up the node using the address in the copy of the store returned by getStore. If the address is NULL, SMS-LOOKUP-S
returns NULL.

Similarly, for FS, FS-LOOKUP returns the node given by the address from lookupAFS. If the address is NULL,
FS-LOOKUP-S returns NULL. Note that lookup is only called with a standard label (i.e., L or H) so we don’t have a
rule for pc = ·.

Node attribute update. Figure 33 contains rules for updating the attribute of a node. One of the arguments to this
function is the address of the node being updated, so the node does not need to be looked up.

To update the attribute of an SMS node, SMS-ASSIGNEH first looks up the appropriate copy of the store using
getStore. The attribute in the node is updated, and the store is changed using setStore. If the address of the node to be
updated is NULL, SMS-ASSIGNEH-S leaves the store unchanged. If the pc = ·, we split the execution and update the
attribute in both copies of the store.

Note for FS we assume that we only have the address of valid nodes, visible at this context. To update the attribute of
an FS node, when pc = · FS-ASSIGNEH updates the attribute directly. If the pc 6= · (i.e., it is L or H), FS-ASSIGNEH-
UPD updates the attribute by using updateFacet which only changes the appropriate facet of the attribute. If the address
is NULL, FS-ASSIGNEH-S leaves the store unchanged. If the address is faceted, FS-ASSIGNEH-NC splits the execution
and performs the assignment to both addresses.

Triggering an event handler. Figure 34 contains rules for triggering an event handler. Unlike some of the other functions,
this one takes the id of the node so it does need to be looked up.

To trigger an event handler in the SMS store, we first look up the node with matching id . If one exists (i.e., the
address of the node is not NULL), then SMS-TRIGGEREH returns an event triggered in the given context. If a node
with matching id does not exist (i.e., the address of the node is NULL), then SMS-TRIGGEREH-S does not trigger any
events. If the pc = ·, then SMS-TRIGGEREH-NC splits the execution and we trigger the event in both the L and H
copy of the store. Finally, if more than one event is triggered, we merge them using mergeEvs (Section B.2).

triggerEHG(σG , pc, id ,Ev , v) = E

lookupASMS(σ, pcl, id , a
rt) 6= NULL

triggerEHSMS(σ, pcl, id ,Ev , v) = (id .Ev(v), pc)
SMS-TRIGGEREH

lookupASMS(σ, pcl, id , a
rt) = NULL

triggerEHSMS(σ, pcl, id ,Ev , v) = ·
SMS-TRIGGEREH-S

EH = triggerEHSMS(σ,H, id ,Ev , getFacet(v,H))
EL = triggerEHSMS(σ, L, id ,Ev , getFacet(v, L))

triggerEHSMS(σ, ·, id ,Ev , v) = mergeEvs(EH , EL)
SMS-TRIGGEREH-NC

a = lookupAFS(σ, pc, id , art) 6= 〈 | 〉 a 6= NULL

triggerEHFS(σ, pc, id ,Ev , vstd) = (id .Ev(v), pc)
FS-TRIGGEREH

〈 | 〉 = lookupAFS(σ, pc, id , art) ∨ v = 〈 | 〉
EH = triggerEHFS(σ,H, id ,Ev , getFacetV(v,H))
EL = triggerEHFS(σ, L, id ,Ev , getFacetV(v, L))

triggerEHFS(σ, ·, id ,Ev , v) = mergeEvs(EH , EL)
FS-TRIGGEREH-NC

lookupAFS(σ, pc, id , art) = NULL

triggerEHFS(σ, pc, id ,Ev , vstd) = ·
FS-TRIGGEREH-S

Figure 34: Rules for triggering the event handler in the tree-structured EH storage

Triggering an event in the FS store is similar. If a node with matching id exists in the store, FS-TRIGGEREH triggers
an event in the given context. If the node lookup produces a faceted value, FS-TRIGGEREH-NC splits the execution to
trigger the event in both the L and H context. The resulting events are merged using mergeEvs. If a node with matching
id does not exist in the store, FS-TRIGGEREH-S does not produce any event.

Adding a child to a node. Figure 35 contains rules for adding a child to an existing node. One of the arguments to this
function is the address of the parent node, so the node does not need to be looked up.

Adding a child to a node in the SMS store is straightforward. SMS-CREATEC looks up the given id to see if the
given node already exists. We also look up the parent node. We create a new node with given attribute, add it to the
store (at a fresh location), and also add a pointer to the new node to the list of children of the given parent node. If a
node with the given id already exists, or if the pointer to the parent node is NULL, SMS-CREATEC-S leaves the store
unchanged. If pc = ·, SMS-CREATEC-NC splits the execution to add the node to both copies of the store.

Adding a node to the FS store is more involved. FS-CREATEC looks up the given id to see if the given node already
exists. Note that we use pc = · for the lookup to see if the node exists in any context, not just the given context. If
the node does not exist, we also look up the parent node. We create a new node with given (faceted) attribute and
(faceted) parent, add it to the store (at a fresh location), and also add a faceted pointer to the new node to the list of
children of the given parent node. We create facets using createFacet (Section B.2). The new node will have a faceted
attribute and parent because it only exists in the given context, if a node with the same id is added later in a different
context, we will update the other facet of the attribute/parent appropriately. If a node with the given id already exists
in the given context, the parent node is not visible in the given context, or if the pointer to the parent node is NULL,
FS-CREATEC-S1 or FS-CREATEC-S2 (respectively) leaves the store unchanged. If pc = ·, FS-CREATEC-NC splits the
execution to add the node in both contexts.

Recall that we use the · context to see if a node with the given id already exists in the store. We do this to see
if the node already exists in the other context so that we can initialize the node in the new context. FS-CREATEC-UL
handles the case where the node already exists in the H context and is being added in the L context (and respectively
for FS-CREATEC-UH to add the node in the H context). In these cases, we get a faceted node when we look up the
node by id and the facet for the context we want to add the node in is NULL (meaning that the node does note exist
in that context yet). Instead of adding a new node, we update the existing node. We use updateFacet to update the
attribute and pointer to the parent.

Adding a sibling to a node. Figure 36 contains rules for adding a sibling to an existing node. One of the arguments to
this function is the address of the sibling node, so the node does not need to be looked up.

Adding a sibling to a node in the SMS store is similar to adding a child. First, SMS-CREATES looks up the given

createChildG(σG1 , pc, id , ap, v) = σG2

lookupASMS(σ, pcl, id , a
rt) = NULL σ′ = getStore(σ, pcl) a 6∈ σ′

(idp, v
′,M, a′p, A) = σ′(ap)

σ′′ = σ′[ap 7→ (idp, v
′,M, a′p, (a :: A))] σ′′′ = σ′′[a 7→ (id , vstd, ·, ap, ·)]

createChildSMS(σ, pcl, id , ap, v) = setStore(σ, pcl, σ
′′′)

SMS-CREATEC

σ′ = createChildSMS(σ,H, id , getFacetA(ap, H), getFacetV(v,H))
σ′′ = createChildSMS(σ′, L, id , getFacetA(ap, L), getFacetV(v, L))

createChildSMS(σ, ·, id , ap, v) = σ′′
SMS-CREATEC-NC

lookupASMS(σ, pcl, id , a
rt) 6= NULL ∨ ap = NULL

createChildSMS(σ, pcl, id , ap, v) = σ
SMS-CREATEC-S

lookupAFS(σ, ·, id , art) = NULL a 6∈ σ σ(ap) = (idp, vp,M, a′p, A) vp ↓pcl
6= ·

σ′ = σ[ap 7→ (idp, vp,M, a′p, (createFacet(a, pcl) :: A))]
σ′′ = σ′[a 7→ (id , createFacet(v, pcl), ·, createFacet(ap, pcl), ·)]

createChildFS(σ, pcl, id , ap, v) = σ′′
FS-CREATEC

lookupAFS(σ, ·, id , art) = 〈a|NULL〉
σ(a) = (id , v′,M, a′p, A) σ(ap) = (idp, vp,Mp, a

′′
p , Ap) vp ↓L 6= ·

σ′ = σ[ap 7→ (idp, vp,Mp, a
′
p, (createFacet(a, L) :: Ap))]

σ′′ = σ′[a 7→ (id , updateFacet(v′, v, L),M, updateFacet(a′p, ap, L), A)]

createChildFS(σ, L, id , ap, v) = σ′′
FS-CREATEC-UL

lookupAFS(σ, ·, id , art) = 〈NULL|a〉
σ(a) = (id , v′,M, a′p, A) σ(ap) = (idp, vp,Mp, a

′′
p , Ap) vp ↓H 6= ·

σ′ = σ[ap 7→ (idp, vp,Mp, a
′
p, (createFacet(a,H) :: Ap))]

σ′′ = σ′[a 7→ (id , updateFacet(v′, v,H),M, updateFacet(a′p, ap, H), A)]

createChildFS(σ,H, id , ap, v) = σ′′
FS-CREATEC-UH

σ′ = createChildFS(σ,H, id , getFacetA(ap, H), getFacetV(v,H))
σ′′ = createChildFS(σ, L, id , getFacetA(ap, L), getFacetV(v, L))

createChildFS(σ, ·, id , ap, v) = σ′′
FS-CREATEC-NC

lookupAFS(σ, ·, id , art) = a a ↓pcl
6= NULL ∨ σ(ap).v ↓pcl

= ·
createChildFS(σ, pcl, id , ap, v) = σ

FS-CREATEC-S1

createChildFS(σ, pcl, id ,NULL, v) = σ
FS-CREATEC-S2

Figure 35: Rules for adding a child to a node in the tree-structured EH storage

id to see if the node already exists, as well as the sibling whose address was given as an argument (as) and that node’s
parent (ap). A new node is created (at a fresh address) with the given attribute and ap as its parent. The new node
is added to the list of children under the node at ap. It is placed in the list to the right of as. If a node with the
given id already exists in the store, or if as = NULL, then SMS-CREATES-S1 leaves the store unchanged. Similarly,
if ap = NULL, then SMS-CREATES-S2 leaves the store unchanged. If the pc = ·, then SMS-CREATES-NC splits the
execution to add the node to both the L and H copy of the store.

The rules for adding a sibling to a node in the FS store are similar to the rules for adding a child to a node.
FS-CREATES looks up the given id to see if the given node already exists. Like the rules for adding a child to a node,
we use pc = · for the lookup to see if the node exists in any context, not just the given context. If the node does not
exist, we also look up the sibling node (as) and its parent (ap). We create a new node with given (faceted) attribute
and (faceted) parent, add it to the store (at a fresh location), and also add a faceted pointer to the new node to the
list of children of the given parent node. The node is added to the right of as in the list of children. We create facets
using createFacet (Section B.2). The new node will have a faceted attribute and parent because it only exists in the
given context, if a node with the same id is added later in a different context, we will update the other facet of the

createSiblingG(σG1 , pc, id , as, v) = σG2

lookupASMS(σ, pcl, id , a
rt) = NULL σ′ = getStore(σ, pcl) a 6∈ σ′

σ′(as).ap = ap (idp, v
′,M, a′p, (A :: as :: A′)) = σ′(ap)

σ′′ = σ′[ap 7→ (idp, v
′,M, a′p, (A :: as :: a :: A′))] σ′′′ = σ′′[a 7→ (id , vstd, ·, ap, ·)]

createSiblingSMS(σ, pcl, id , as, v) = setStore(σ, pcl, σ
′′′)

SMS-CREATES

σ′ = createSiblingSMS(σ,H, id , getFacetA(as, H), getFacetV(v,H))
σ′′ = createSiblingSMS(σ′, L, id , getFacetA(as, L), getFacetV(v, L))

createSiblingSMS(σ, ·, id , as, v) = σ′′
SMS-CREATES-NC

lookupASMS(σ, pc, id , art) 6= NULL ∨ as = NULL

createSiblingSMS(σ, pcl, id , asv) = σ
SMS-CREATES-S1

lookupASMS(σ, pcl, id , a
rt) = NULL σ′ = getStore(σ, pcl)

σ′(as).ap = NULL

createSiblingSMS(σ, pcl, id , as, v) = σ
SMS-CREATES-S2

lookupAFS(σ, ·, id , art) = NULL a 6∈ σ σ(as).v ↓pcl
6= ·

σ(as).ap ↓pcl
= ap σ(ap) = (idp, v

′,M, a′p, (A :: a′s :: A′)) a′s ↓pcl
= as v′ ↓pcl

6= ·
σ′ = σ[ap 7→ (idp, v

′,M, a′p, (A :: a′s :: createFacet(a, pcl) :: A′))]
σ′′ = σ′[a 7→ (id , createFacet(v, pcl), ·, createFacet(ap, pcl), ·)]

createSiblingFS(σ, pcl, id , as, v) = σ′′
FS-CREATES

lookupAFS(σ, ·, id , art) = 〈a|NULL〉
σ(a) = (id , v′,M, a′p, A) σ(as).v ↓L 6= · σ(as).ap ↓L= ap

σ(ap) = (idp, vp,Mp, a
′
p, (Ap :: a′s :: A′p)) a′s ↓L= as vp ↓L 6= ·

σ′ = σ[ap 7→ (idp, v
′,M, a′p, (A :: a′s :: createFacet(a, L) :: A′))]

σ′′ = σ′[a 7→ (id , updateFacet(v′, v, L), ·, updateFacet(a′p, ap, L), ·)]
createSiblingFS(σ, L, id , as, v) = σ′′

FS-CREATES-UL

lookupAFS(σ, ·, id , art) = 〈NULL|a〉
σ(a) = (id , v′,M, a′p, A) σ(as).v ↓H 6= · σ(as).ap ↓H= ap

σ(ap) = (idp, vp,Mp, a
′
p, (Ap :: a′s :: A′p)) a′s ↓H= as vp ↓H 6= ·

σ′ = σ[ap 7→ (idp, v
′,M, a′p, (A :: a′s :: createFacet(a,H) :: A′))]

σ′′ = σ′[a 7→ (id , updateFacet(v′, v,H), ·, updateFacet(a′p, ap, H), ·)]
createSiblingFS(σ,H, id , as, v) = σ′′

FS-CREATES-UH

σ′ = createSiblingFS(σ,H, id , getFacetA(as, H), getFacetV(v,H))
σ′′ = createSiblingFS(σ, L, id , getFacetA(as, L), getFacetV(v, L))

createSiblingFS(σ, ·, id , as, v) = σ′′
FS-CREATES-NC

lookupAFS(σ, ·, id , art) = a a ↓pcl
6= ·

createSiblingFS(σ, pcl, id , as, v) = σ
FS-CREATES-S1

as = NULL ∨ σ(as).ap ↓pcl
= NULL

createSiblingFS(σ, pcl, id , as, v) = σ
FS-CREATES-S2

σ(as).v ↓pcl
= · ∨ σ(as).ap ↓pcl

= · ∨ σ(σ(as).ap ↓pcl
).v ↓pcl

= ·
createSiblingFS(σ, pcl, id , as, v) = σ

FS-CREATES-S3

Figure 36: Rules for adding a sibling to a node in the tree-structured EH storage

registerEHG(σG1 , pc, a, eh) = σG2

σ′ = getStore(σ, pcl)
σ′(a) = (id , v,M, ap, A) eh = onEv(x){c} M ′ = M [Ev 7→M(Ev) ∪ {(eh, pcl)}]

registerEHSMS(σ, pcl, a, eh) = setStore(σ, pcl, σ
′[a 7→ (id , v,M ′, ap, A)])

SMS-REGISTEREH

σ′ = registerEHSMS(σ,H, getFacet(a,H), eh)
σ′′ = registerEHSMS(σ, L, getFacet(a, L), eh)

registerEHSMS(σ, ·, a, eh) = σ′′
SMS-REGISTEREH-NC

registerEHSMS(σ, pcl,NULL, eh) = σ
SMS-REGISTEREH-S

(id , v,M, ap, A) = σ(a)
v ↓pcl

6= · eh = onEv(x){c} M ′ = M [Ev 7→M(Ev) ∪ {(eh, pcl)}]
registerEHFS(σ, pcl, a, eh) = σ[id 7→ (id , v,M ′, ap, A)]

FS-REGISTEREH

σ′ = registerEHFS(σ,H, getFacet(a,H), eh) σ′′ = registerEHFS(σ′, L, getFacet(a, L), eh)

registerEHFS(σ, ·, a, eh) = σ′′
FS-REGISTEREH-NC

a = NULL ∨ σ(a).v ↓pcl
= ·

registerEHFS(σ, pcl, a, eh) = σ
FS-REGISTEREH-S

Figure 37: Rules for registering an event handler to a node in the tree-structured EH storage

attribute/parent appropriately. If a node with the given id already exists in the given context, or if the pointer to the
parent node is NULL, FS-CREATES-S1 or FS-CREATES-S2 (respectively) leaves the store unchanged. If as or ap are
not visible in the given context, FS-CREATES-S3 leaves the store unchanged. If pc = ·, FS-CREATEC-NC splits the
execution to add the node in both contexts.

Recall that we use the · context to see if a node with the given id already exists in the store. We do this to see
if the node already exists in the other context so that we can initialize the node in the new context. FS-CREATES-UL
handles the case where the node already exists in the H context and is being added in the L context (and respectively
for FS-CREATES-UH to add the node in the H context). In these cases, we get a faceted node when we look up the
node by id and the facet for the context we want to add the node in is NULL (meaning that the node does note exist
in that context yet). Instead of adding a new node, we update the existing node. We use updateFacet to update the
attribute and pointer to the parent.

Registering a new event handler. Figure 37 contains rules for registering an event handler to a node. One of the arguments
to this function is the address node being updated, so the node does not need to be looked up.

To register a new event handler in the SMS store, SMS-REGISTEREH looks up the node and adds the new event
handler to the event handler map with the given context as the label. getStore and setStore are used to ensure that we
interact with the correct copy of the SMS store. If the pc = ·, SMS-REGISTEREH-NC splits the execution and registers
the event handler in both copies of the store. If the node’s address is NULL, SMS-REGISTEREH-S leaves the store
unchanged.

Registering a new event handler in the FS store is similar. FS-REGISTEREH looks up the node and if the node is
visible in the given context (i.e., the attribute is not ·), it adds the new event handler to the event handler map with
the given context as the label. If the pc = ·, FS-REGISTEREH-NC splits the execution and registers the event handler
in both copies of the store. If the node’s address is NULL or if the node is not visible in the given context (i.e., the
attribute is ·), FS-REGISTEREH-S leaves the store unchanged.

G,V, σG, σV ` e ⇓ipc v

∀i ∈ [1, n], G,V, σG, σV ` ei ⇓G↓EH
pc vi ehAPIe(G ↓EH, σ

G, pc, id , v1, · · · , vn) = v toDst(v, pc, i) = v′

G,V, σG, σV ` ehAPIe(id , e1, · · · , en) ⇓ipc v′
EHAPI

getValG(σ, pc, id) = v

lookupSMS(σ, pcl, id) = φ 6= NULL

getValSMS(σ, pcl, id) = φ.v
SMS-GETVAL

lookupSMS(σ, pcl, id) = NULL

getValSMS(σ, pcl, id) = dv
SMS-GETVAL-S

lookupFS(σ, pcl, id) = φ 6= NULL

getValFS(σ, pcl, id) = getFacetV(φ.v, pcl)
FS-GETVAL

lookupFS(σ, pcl, id) = NULL

getValFS(σ, pcl, id) = dv
FS-GETVAL-S

lookupTS(σ, pcl, id) = φ
valOf(φ) 6= NULL lφ = labOf(φ, pcl) lv = labOf(φ.v, pc) v = valOf(φ.v)

getValTS(σ, pcl, id) = (v, lφ t lv)
TS-GETVAL

lookupTS(σ, pcl, id) = φ valOf(φ) = NULL

getValTS(σ, pcl, id) = (dv, H)
TS-GETVAL-S

Unstructured EH Storage expression semantics. For the unstructured EH store, we only have one expression which
is used to look up the attribute of a node: getValG . Similar to EH commands, we evaluate EH expressions using a
helper function. We first evaluate sub-expressions, then pass those results to the helper function, and finally use toDst
to convert the result to the appropriate format given by i.

To look up the attribute of an SMS node, we look up the node with the given id . If it exists, SMS-GETVAL returns
the attribute stored in the node. If it does not exist, SMS-GETVAL-S returns the default value.

Looking up the attribute of an FS node is similar. First, we look up the node with given id . If the node exists,
FS-GETVAL returns the attribute using getFacetV, which replaces empty facets with the default value, if the node is
not visible in the given context. If a node with matching id does not exist, FS-GETVAL-S returns the default value.

To look up the attribute of a TS node, we first look up the node with given id , like for SMS and FS. If the node
exists, TS-GETVAL returns the attribute. The return value attaches a new label that is the join of the label on the attribute
with the label on the node. If a node with the given id does not exist in the store, TS-GETVAL-S returns a tainted
default value. The label in this case is always H , regardless of the context. This is because we don’t want the attacker
to distinguish between a lookup of a tainted node (which would have label H) and a lookup of a node which doesn’t
exist.

G,V, σG, σV ` e ⇓ipc v

∀i ∈ [1, n], G,V, σG, σV ` ei ⇓G↓EH
pc vi ehAPIe(G ↓EH, σ

G, pc, a, v1, · · · , vn) = v toDst(v, pc, i) = v′

G,V, σG, σV ` ehAPIe(a, e1, · · · , en) ⇓ipc v′
EHAPI

moveXSMS(σSMS, pc, · · ·) = a

moveRootSMS(σ, pcl) = art
SMS-MOVEROOT

σ′ = getStore(σ, pcl)

moveUpSMS(σ, pcl, a) = σ′(a).ap
SMS-MOVEU

moveUpSMS(σ, pcl,NULL) = NULL
SMS-MOVEU-S

σ′ = getStore(σ, pcl)
σ′(a).A = a′ :: A

moveDownSMS(σ, pcl, a) = a′
SMS-MOVED

σ′ = getStore(σ, pcl)
σ′(a).A = ·

moveDownSMS(σ, pcl, a) = NULL
SMS-MOVED-S1

moveDownSMS(σ, pcl,NULL) =
NULL

SMS-MOVED-S2

σ′ = getStore(σ, pcl) σ′(a).ap = ap σ′(ap).A = A :: a :: a′ :: A′

moveRightSMS(σ, pcl, a) = a′
SMS-MOVER

σ′ = getStore(σ, pcl) σ′(a).ap = ap σ′(ap).A = A′p :: a

moveRightSMS(σ, pcl, a) = NULL
SMS-MOVER-S1

σ′ = getStore(σ, pcl) σ′(a).ap = NULL

moveRightSMS(σ, pcl, a) = NULL
SMS-MOVER-S2

moveRightSMS(σ, pcl,NULL) = NULL
SMS-MOVER-S3

Figure 38: Rules for navigating the tree-structured SMS EH storage

Tree-structured EH Storage expression semantics. For the tree-structured EH store, we have several expressions for
navigating the tree (moveX), and looking up the attribute (getVal) and children of a node (getChildren). We evaluate
EH expressions using a helper function. Using EHAPI, we first evaluate sub-expressions, then pass those results to a
helper function, and finally use toDst to ensure the results are appropriately formatted for the mechanism i.

Traversing the tree. We have several APIs for navigating the EH storage trees. moveRoot returns the root node (i.e.,
the top-most node in the tree). moveUp takes the address of a node and returns the node above it (i.e., its parent).
moveDown takes the address of a node and returns the first node below it (i.e., its first child). moveRight takes the
address of a node and returns the node to its right (i.e., its righthand sibling).

Figure 38 shows the rules for navigating the SMS tree. SMS-MOVEROOT returns the address of the root node in the
tree. Recall that the root node is always given by art. SMS-MOVEU takes the address of a node and returns its parent
and SMS-MOVEU-S handles the case where the given address is NULL (in which case we return NULL). SMS-MOVED
takes the address of a node and returns its first child. SMS-MOVED-S1 and SMS-MOVED-S2 handle the case where
the given node does not have any children, or the given node is NULL (respectively). In both cases we return NULL.
SMS-MOVER takes the address of a node (a), navigates to its parent (ap), and returns ap’s child following a. If there
is no child following a, SMS-MOVER-S1 returns NULL. If ap is NULL, SMS-MOVER-S2 returns NULL. If a is NULL,
SMS-MOVER-S3 returns NULL.

Figure 39 shows the rules for navigating the FS tree. FS-MOVEROOT returns the address of the root node in the
tree. Recall that the root node is always given by art. FS-MOVEU takes the address of a node and returns its parent if
it is visible in the given context (i.e., ap ↓pcl

6= ·). FS-MOVEU-S1 handles the case where the parent of the given node
is not visible in the given context (i.e., ap ↓pcl

= ·), in which case we return NULL. FS-MOVEU-S2 handles the case
where the given address is NULL, in which case we return NULL. FS-MOVED takes the address of a node and returns
the first child visible in the given context (i.e., the first child of A ↓pcl

). FS-MOVED-S1 and FS-MOVED-S2 handle the

moveXFS(σFS, pc, · · ·) = a

moveRootFS(σ, pcl) = art
FS-MOVEROOT

σ(a).ap ↓pcl
6= ·

moveUpFS(σ, pcl, a) = σ(a).ap ↓pcl

FS-MOVEU
σ(a).ap ↓pcl

= ·
moveUpFS(σ, pcl, a) = NULL

FS-MOVEU-S1

moveUpFS(σ, pcl,NULL) = NULL
FS-MOVEU-S2

σ(a).A ↓pcl
= a′ :: A′

moveDownFS(σ, pcl, a) = a′
FS-MOVED

σ(a).A ↓pcl
= ·

moveDownFS(σ, pcl, a) = NULL
FS-MOVED-S1

moveDownFS(σ, pcl,NULL) = NULL
FS-MOVED-S2

σ(a).ap ↓pcl
= ap σ(ap).A ↓pcl

= A′ :: a :: a′ :: A′

moveRightFS(σ, pcl, a) = a′
FS-MOVER

σ(a).ap ↓pcl
= ap σ(ap).A ↓pcl

= A′ :: a

moveRightFS(σ, pcl, a) = NULL
FS-MOVER-S1

σ(a).ap ↓pcl
= NULL ∨ σ(a).ap ↓pcl

= ·
moveRightFS(σ, pcl, a) = NULL

FS-MOVER-S2
moveRightFS(σ, pcl,NULL) = NULL

FS-MOVER-S3

Figure 39: Rules for navigating the tree-structured FS EH storage

getValG(σG , pc, a) = v

σ′ = getStore(σ, pcl) φ = σ′(a)

getValSMS(σ, pcl, a) = φ.v
SMS-GETVAL

getValSMS(σ, pcl,NULL) = dv
SMS-GETVAL-S

σ(a) = φ

getValFS(σ, pcl, a) = getFacetV(φ.v, pcl)
FS-GETVAL

getValFS(σ, pcl,NULL) = dv
FS-GETVAL-S

Figure 40: Rules for accessing the attribute of node in the tree-structured EH storage

getChildrenG(σG , pc, a) = v

σ′ = getStore(σ, pcl) φ = σ′(a)

getChildrenSMS(σ, pcl, a) = len(φ.A)
SMS-GETCHILDREN

getChildrenSMS(σ, pcl,NULL) = dv
SMS-GETCHILDREN-S

σ(a) = φ φ.v ↓pcl
6= ·

getChildrenFS(σ, pcl, a) = len(φ.A ↓pcl
)

FS-GETCHILDREN
σ(a).v ↓pcl

= · ∨ a = NULL

getChildrenFS(σ, pcl, a) = dv
FS-GETCHILDREN-S

Figure 41: Rules for returning the number children a node in the tree-structured EH storage has

case where the given node does not have any children visible in the given context (i.e., A ↓pcl
= ·), or the given node is

NULL (respectively). In both cases we return NULL. FS-MOVER takes the address of a node (a), navigates to its parent
(ap), and returns ap’s child following a. If there is no child following a, FS-MOVER-S1 returns NULL. If ap is NULL,
or not visible in the given context, FS-MOVER-S2 returns NULL. If a is NULL, FS-MOVER-S3 returns NULL.

Looking up attributes. Figure 40 shows the rules for looking up the attribute of a given node. To look up the attribute
of an SMS node, SMS-GETVAL looks up the given address in the relevant copy of the store and returns the node’s
attribute. If the given address is NULL, SMS-GETVAL-S returns a default value.

To look up the attribute of an FS node, FS-GETVAL looks up the given address and returns the appropriate facet of
the node. If the given address is NULL, FS-GETVAL-S returns a default value.

Number of children. Figure 41 shows the rules for looking up the number of children a node has. Note that we return
a default value instead of 0 for invalid or NULL nodes. This is to ensure that the attacker cannot tell the difference
between a node not existing and a node being hidden from the current context.

For an SMS node, SMS-GETCHILDREN first looks up the node in the relevant copy of the store. Then, it computes
the length of the node’s list of children. If the given address is NULL, SMS-GETCHILDREN-S returns a default value.

For an FS node, FS-GETCHILDREN looks up the node and, if it is visible in the current context (i.e., v ↓pcl
6= ·),

then it returns the length of the node’s list of children. If the given address is NULL or if the node is not visible in the
current context (i.e., v ↓pcl

= ·), then FS-GETCHILDREN-S returns the default value.

Appendix D.
Weak Secrecy Semantics

We differentiate weak from standard semantics by using w instead of , `w instead of `, assignW instead of
assign, etc., respectively.

Modifications to command semantics for tracking conditionals and global writes. IF-FALSE, WHILE-TRUE, and
WHILE-FALSE are similar to IF-TRUE.

G,TT, d w σG1 , σ
TT
1 , c1

α−→pc σ
G
2 , σ

TT
2 , c2, E

G,TT, σG, σ ` e ⇓TTpc (true, l) pc v L l 6v L

G,TT, d w σ
G, σ, if e then c1 else c2

br(true)−→ pc σ
G, σ, c1, ·

IF-TRUE-BR

G,TT, σG1 , σ ` e ⇓G↓gpc v x ∈ σG pc 6v L assignWG↓g (σG1 , pc, x, v) = (σG2 , α)

G,TT, d w σ
G
1 , σ1, x := e

α−→pc σ
G
2 , σ1, skip, ·

ASSIGN-G-H

G,TT, σG1 , σ ` e ⇓G↓EH
pc v pc 6v L assignWG↓EH

(σG1 , pc, id , v) = (σG2 , α)

G,TT, d w σ
G
1 , σ1, id := e

α−→pc σ
G
2 , σ1, skip, ·

ASSIGN-D-H

G,TT, σG1 , σ ` e ⇓G↓EH
pc v (σG2 , α) = createElemWG↓EH(σG1 , pc, id , v)

G,TT, d w σ
G
1 , σ1, create(id , e)

α−→pc σ
G
2 , σ1, skip, ·

CREATEELEM-H

For G 6= TS, all assignment functions return • for α. The modifications to TT,TS variable/EH node assignment
are shown below.

x ∈ σ l t pc v labOf(σ(x), pc)

assignWTS(σ, pc, x, (v, l)) = (σ[x 7→ (v, l t pc)], •)
TS-ASSIGN

x ∈ σ l t pc 6v labOf(σ(x), pc)

assignWTS(σ, pc, x, (v, l)) = (σ[x 7→ (v, l t pc)], gw(x))
TS-ASSIGN-GW

x 6∈ σ
assignWTS(σ, pc, x, (v, l)) = (σ, •)

TS-ASSIGN-S

(id , (v′, l′′),M, l′) = σ(id) l t pc v l′′ ∨ l′ 6v L
assignWTS(σ, pc, id , (v, l)) = (σ[id 7→ (id , (v, l t pc t l′),M, l′)], •)

TS-ASSIGNEH

(id , (v′, l′′),M, l′) = σ(id) l t pc 6v l′′ l′ v L
assignWTS(σ, pc, id , (v, l)) = (σ[id 7→ (id , (v, l t pc t l′),M, l′)], gw(id))

TS-ASSIGNEH-GW

id 6∈ σ
assignWTS(σ, pc, id , (v, l)) = (σ, •)

TS-ASSIGNEH-S

Modifications to EH APIs. This includes only the rules for TS. All other mechanisms return • for α. gw(id) is
emitted whenever a node is created in the H context or the value of the node is upgraded from L to H.

lookupTS(σ, pcl, id) = (NULL,) φ = (id , v, ·, pcl)
createElemWTS(σ, pcl, id , v) = (σ[id 7→ φ], •)

TS-CREATE

(σ′, α) = createElemWTS(σ, L, id , v)

createElemWTS(σ, ·, id , v) = (σ′, α)
TS-CREATE-NC

lookupTS(σ, pcl, id) = (id , (v′, l′),M, l′′)
l′′ v pcl l t pcl v l′ ∨ l′′ 6v L

σ′ = σ[id 7→ (id , (v, l t pcl t l′′),M, l′′)]

createElemWTS(σ, pcl, id , (v, l)) = (σ′, •)
TS-CREATE-U1

lookupTS(σ, pcl, id) = (id , (v′, l′),M, l′′)
l′′ v pcl l′′ v L l t pcl 6v l′

σ′ = σ[id 7→ (id , (v, l t pcl t l′′),M, l′′)]

createElemWTS(σ, pcl, id , (v, l)) = (σ′, gw(id))
TS-CREATE-U1-GW

lookupTS(σ, pcl, id) = (id , (v′, l′),M, l′′)
l′′ 6v pcl

σ′ = σ[id 7→ (id , (v, l t pcl),M, pcl)]

createElemWTS(σ, pc, id , (v, l)) = (σ′, •)
TS-CREATE-U2

Appendix E.
Security Definitions

E.1. Knowledge Definitions

Knowledge:
K(T, σG0 ,R,P) = {τi | ∃T ′ ∈ runs(σG0 ,R,P), T ≈L T ′ ∧ τi = in(T ′)}

Progress-insensitive knowledge:

Kp(T, σG0 ,R,P) = {τi | ∃T ′ ∈ runs(σG0 ,R,P), T ≈L T ′ ∧ τi = in(T ′) ∧ prog(T ′)}

where prog(T) iff T = G,P ` K0 =⇒∗ K and∃KC s.t. G,P ` K =⇒∗ KC and consumer(KC)

Progress-insensitive knowledge with release:

Krp(T, σG0 ,R,P, α) = {τi | ∃T ′ ∈ runs(σG0 ,R,P), T ≈L T ′ ∧ τi = in(T ′) ∧ prog(T ′)∧
α′ = (last(T)

α
=⇒ K)) ↓L, releaseT(T ′, α′))}

releaseT(T, α) =

T = G,P ` K0 =⇒∗ K ∧ ∃α′,K ′s.t., G,P ` K α′

=⇒ K ′

∧(G,P ` K α′

=⇒ K ′) ↓L= α α = rls()

T = G,P ` K0 =⇒∗ K ∧ ∃K ′s.t., G,P ` K α
=⇒ K ′ α = declassify(ι, v)

Progress-insensitive weak secrecy knowledge:

Kwp(T, σG0 ,R,P, α) = {τi | ∃T ′ ∈ runs(σG0 ,R,P), T ≈L T ′ ∧ τi = in(T ′) ∧ prog(T ′)∧
α′ = (G,P ` last(T)

α
=⇒ K)) ↓L,wkT(T ′, α′))}

wkT(T, α) =

T = G,P ` K0 =⇒∗ K ∧ ∃K ′ s.t. K =⇒ K ′ ∧ (G,P ` K =⇒ K ′) ↓L= α α = br(b)

T = G,P ` K0 =⇒∗ K ∧ ∃K ′, T ′ s.t. T ′ = G,P ` K =⇒∗ K ′ ∧ T ′ ↓L= · α = gw(x)

∧ ∃K ′′ s.t. G,P ` K ′ =⇒∗ K ′′ ∧ (G,P ` K ′ =⇒∗ K ′′) ↓L= α

T = G,P ` K0 =⇒∗ K α = id .Ev(v)

∧ ∃T ′,K ′ s.t. T ′ = G,P ` K =⇒∗ KC ∧ consumer(KC) ∧ T ′ ↓L= ·
T = G,P ` K0 =⇒∗ K α ∈ {•, ch(v)}
∧ ∃T ′,K ′ s.t. T ′ = G,P ` K =⇒∗ Klp ∧ lowProducer(Klp) ∧ T ′ ↓L= ·

¬consumer(K)
K = R, d, σG, (V;κ; pc) :: ks pc v L

lowProducer(K)

¬consumer(K)
K = R, d, σG, (V;κ; pc) :: ks pc 6v L

highProducer(K)

pc v L
lowContext((V;κ; pc) :: ks) = true

pc 6v L
lowContext((V;κ; pc) :: ks) = false

pc 6v L
highContext((V;κ; pc) :: ks) = true

pc v L
highContext((V;κ; pc) :: ks) = false

E.1.1. Trace Equivalence. T ≈L T ′

T ≈L T ′ iff T ↓L= T ′ ↓L

P(α) = l

Note that P(α) = · has a different interpretation than the · we have previously used. Here, it means “it has no
label”.

P(ch(v)) = P(ch)
LAB-O

P(declassify(ι, v)) = L
LAB-D

P(gw(x)) = L
LAB-GW

P(br(b)) = L
LAB-BR

α 6∈ {id .Ev(v), ch(v), declassify(ι, v), gw(x), br(b)}
P(α) = ·

LAB-S

T ↓L= τ

G,P ` K ↓L= ·
TP-BASE

P(id .Ev(v)) = L

(G,P ` K id.Ev(v)
=⇒ T ′) ↓L= id .Ev(v) :: T ′ ↓L

TP-LI

P(α) = L or l v L

(G,P ` K (α,l)
=⇒ T ′) ↓L= α :: T ′ ↓L

TP-L αl = 〈 | 〉
(G,P ` K αl=⇒ T ′) ↓L= getFacet(αl, L) :: T ′ ↓L

TP-F

rel(K) = R P(id .ev(v)) = H R(P, id .ev(v)) = α 6= •

(G,P ` K id.ev(v)
=⇒ T ′) ↓L= rls(α) :: T ′ ↓L

TP-HI-R

P(id .ev(v)) = H∆

(G,P ` K id.ev(v)
=⇒ T ′) ↓L= T ′ ↓L

TP-HI-NR1

rel(K) = R P(id .ev(v)) = H ∧R(P, id .ev(v)) = •

(G,P ` K id.ev(v)
=⇒ T ′) ↓L= T ′ ↓L

TP-HI-NR2
P(α) = H or α = •

(G,P ` K (α,H)
=⇒ T ′) ↓L= T ′ ↓L

TP-H

Figure 42: Projection of Traces to L Observation

R(P, id .ev(v)) = α

R = (ρ,D) D(ρ, id .Ev(v)) = (ρ′, r, v′,V)

R(P, id .Ev(v)) = (ρ′, r, id .Ev(v′))

R = (ρ,D) D(ρ, id .Ev(v)) = (ρ′, r, emp,V)

R(P, id .Ev(v)) = (ρ′, r, •)

R = (ρ,D) D(ρ, id .Ev(v)) = (ρ, none, •,V)

R(P, id .Ev(v)) = •

rlsA(G,P ` K α
=⇒ K ′) iff (G,P ` K α

=⇒ K ′) ↓L= rls(α′) or

(G,P ` K α
=⇒ K ′) ↓L= declassify(ι, v)

wkA(G,P ` K α
=⇒ K ′) iff (G,P ` K α

=⇒ K ′) ↓L,w= br(b) or

(G,P ` K α
=⇒ K ′) ↓L,w= gw(x) or

α ∈ in(G,P ` K α
=⇒ K ′) ∧ P(α) = L or

(G,P ` K α
=⇒ K ′) ↓L∈ {•, ch(v)}

E.2. Progress-Insensitive Security and Weak Secrecy

We say σG0 is well-formed if the initial EH store is defined and the global variables are initialized. The event handlers
in the EH store should agree on the names of the global variables.
Definition 1 (Progress-Insensitive Security). The compositional framework is progress-insensitive secure iff given any
initial global store σG0 and release policy R,P , it is the case that for all traces T , actions α, and configurations K
s.t. (G,P ` T α

=⇒ K) ∈ runs(σG0 ,P), then, the following holds
• If rlsA(G,P ` last(T)

α
=⇒ K):

K(G,P ` T α
=⇒ K,σG0 ,R) ⊇� Krp(T, σG0 ,R,P, α)

• Otherwise:
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kp(T, σG0 ,R,P)
Definition 3 (Progress-Insensitive Weak Security). The compositional framework satisfies progress-insensitive weak
secrecy in our framework iff given any initial global store, σG0 , and release policy R,P it is the case that for all traces
T , actions α, and configurations K s.t. (G,P ` T α

=⇒ K) ∈ runs(σG0 ,P), the following holds
• If rlsA(G,P ` last(T)

α
=⇒ K):

K(G,P ` T α
=⇒ K,σG0 ,R,P) ⊇� Krp(T, σG0 ,R,P, α)

• If wkA(G,P ` last(T)
α

=⇒ K):
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kwp(T, σG0 ,R,P, α)
• Otherwise:
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kp(T, σG0 ,R,P)

E.3. Progress-Insensitive Security and Weak Secrecy Requirements

Trace Requirements
Equivalent traces produce (T1) If T1 and T2 produce the same L-observable events and begin in L-equivalent states,

L-equivalent states then they should end in L-equivalent states.
Empty traces produce (T2) If T1 produces no L-observable events, then the start and end state of T1 should be

L-equivalent states L-equivalent.
H steps produce L-equivalent (T3) If T1 takes one or more steps in an H context, then the first and last state are

states and empty traces L-equivalent and T1 produces no L-observable events.
Strong one-step (T4) If T1 produces an L-observable event in one step, and T1 and T2 begin in

L-equivalent states, T2 should be able to take some step(s) to produce the same
L-observable event.

Weak one-step (T5) If T1 and T2 begin in L-equivalent states and produce the same L-observable events
in one step, they should end in L-equivalent states.

Expression Requirements
L-expressions are equivalent (E1) Evaluating L-equivalent expressions under L-observable pc’s result in (strong)

L-equivalent values.
Variable Requirements

L-lookups are equivalent (V1) Lookups of the same variable under L-observable pc’s in L-equivalent stores, result
in (strong) L-equivalent values.

H-assignments are unobservable (V2) Assignments under L-unobservable pc’s result in an L-equivalent store.
L-assignments are equivalent (V3) Assignments under L-observable pc’s of L-equivalent values to the same variable in

L-equivalent stores result in L-equivalent stores.
Event Handler Storage Requirements

L-lookups are equivalent (EH1) All lookup APIs of the same structure under L-observable pc’s in L-equivalent
EH stores result in (strong) L-equivalent values.

H EH lookups are unobservable (EH2) Event handler lookups under L-unobservable pc’s produce L-unobservable
commands.

H-updates are unobservable (EH3) Updates under L-unobservable pc’s result in an L-equivalent store.
L-updates are equivalent (EH4) Updates under L-observable pc’s of L-equivalent values to the same structures in

L-equivalent stores result in L-equivalent stores.
Figure 43: Requirements for Knowledge-Based Security

(Weak) Trace Requirements
Equivalent traces produce (WT1) If T1 and T2 produce the same L-observable events and begin in L-equivalent states,

L-equivalent states then they should end in L-equivalent states.
Empty traces produce (WT2) If T1 produces no L-observable events, then the start and end state of T1 should be

L-equivalent states L-equivalent.
Strong one-step (WT4) If T1 produces an L-observable event in one step, and T1 and T2 begin in

L-equivalent states, T2 should be able to take some step(s) to produce the same
L-observable event.

Weak one-step (WT5) If T1 and T2 begin in L-equivalent states and produce the same L-observable events
in one step, they should end in L-equivalent states.

(Weak) Expression Requirements
L-expressions are equivalent (WE1) Evaluating L-equivalent expressions under L-observable pc’s result in L-equivalent

values.
(Weak) Variable Requirements

L-lookups are equivalent (WV1) Lookups of the same variable under L-observable pc’s in L-equivalent stores, result
in L-equivalent values.

H-assignments are unobservable (WV2) Assignments under L-unobservable pc’s result in an L-equivalent store.
L-assignments are equivalent (WV3) Assignments under L-observable pc’s of L-equivalent values to the same variable in

L-equivalent stores result in L-equivalent stores.
(Weak) Event Handler Storage Requirements

L-lookups are equivalent (WEH1) All lookup APIs of the same structure under L-observable pc’s in L-equivalent
EH stores result in L-equivalent values.

H-updates are unobservable (WEH3) Updates under L-unobservable pc’s result in an L-equivalent store.
L-updates are equivalent (WEH4) Updates under L-observable pc’s of L-equivalent values to the same structures in

L-equivalent stores result in L-equivalent stores.
Figure 44: Requirements for Knowledge-Based Weak Secrecy

E.4. Supporting Equivalence Definitions

E.4.1. Configuration Equivalence. Equivalence for a the compositional configurations, K. Configurations are equivalent
if (1) their release modules R are in the same state, (2) the same values are on their release channels d, (3) their global
stores are equivalent σG, and (4) their current configuration stacks ks are equivalent.
K ≈L K ′

R1 = R2 d1 = d2 σG1 ≈L σG2 ks1 ≈L ks2

R1, d1;σG1 ; ks1 ≈L R2, d2;σG2 ; ks2

Equivalence for the configuration stack, ks . Equivalence is defined inductively from the top down; the publicly
visible (pc v L) configurations should be equivalent and the private configurations (pc 6v L) are ignored.
ks ≈L ks

· ≈L ·

pc1 v L ∧ pc2 v L
V1 = V2 κ1 ≈L κ2 ks1 ≈L ks2

((V1;κ1; pc1) :: ks1) ≈L ((V2;κ2; pc2) :: ks2)

pc1 6v L
ks1 ≈L ((V2;κ2; pc2) :: ks2)

((V1;κ1; pc1) :: ks1) ≈L ((V2;κ2; pc2) :: ks2)

pc2 6v L
((V1;κ1; pc1) :: ks1) ≈L ks2

((V1;κ1; pc1) :: ks1) ≈L ((V2;κ2; pc2) :: ks2)

Equivalence for single configurations, κ. Two configurations are low equivalent if (1) they have equivalent stores σ,
(2) they are executing the same command c, (3) they are in the same execution state s, and (4) their local events E are
low equivalent. (Note: the first rule is to help with induction for SME proofs)
κV1 ≈L κV2

κL = κ′L
κH ;κL ≈L κ′H ;κ′L

κ1 = σ1, c1, s1, E1 κ2 = σ2, c2, s2, E2

σ1 ≈L σ2 c1 = c2 s1 = s2 E1 ≈L E2

κ1 ≈L κ2

Event queue E equivalence and projection. Local events, E are low equivalent iff their low projections are the same.
The low projection keeps only the publicly visible events (l v L); the secret events (l 6v L) are ignored. Note that in our
semantics, tainted arguments to local events also taints the event itself. Also, facets never appear as event arguments:
instead they are split into separate events. So only the label on the event needs to be considered for the ↓L definition.

E ≈L E′ iff E ↓L= E′ ↓L

E ↓L= E′

pc v L
((id .Ev(v), pc), E) ↓L= id .Ev(v), E ↓L

pc 6v L
((id .Ev(v), pc), E) ↓L= E ↓L · ↓L= ·

Command c equivalence and projection. Commands c are low equivalent iff their low projections are the same. The
low projection of most commands c is the same command, c. The only exception is when the command is faceted
〈cH |cL〉. In that case, the low projection is the command in the low facet, cL.

c1 ≈L c2 iff c1 ↓L= c2 ↓L

c ↓L= c

cstd ↓L= cstd 〈cH |cL〉 ↓L= cL

EH queue C equivalence and projection. The EH queue is a runtime construct for building the configuration stack.
EH queues C are low equivalent if their low projections are the same. The low projection keeps the publicly visible
event handlers (pc v L). The secret event handlers (pc 6v L) are ignored.

C ≈L C′ iff C ↓L= C′ ↓L

C ↓L= C′

pc v L
((eh, pc), C) ↓L= eh, C ↓L

pc 6v L
((eh, pc), C) ↓L= C ↓L · ↓L= ·

E.4.2. Store equivalence. Local stores σV are low equivalent if their low projections are the same.

σV1 ≈L σV2 iff σV1 ↓L= σV2 ↓L

The low projection of a local store σV keeps the publicly visible variables and ignores the secret variables. Publicly
visible and secret depend on the enforcement mechanism, V . For MF, unfaceted vstd values are publicly visible, as well
as the low facet vL of faceted values 〈vH |vL〉. If a faceted value does not have a low facet, as in 〈v|·〉, the value is not
publicly visible. For , L-labeled values are publicly visible (i.e. v is visible in (v, L)) and H-labeled values are secret.
For SME, the L copy of the store is visible while the H copy is secret.
σV ↓L= σstd

· ↓L= ·
σV1 = σV2 , x 7→ 〈 |v〉 or σV1 = σV2 , x 7→ (v, L)

σV1 ↓L= x 7→ v, σV2 ↓L

σV1 = σV2 , x 7→ (v,H) or σV1 = σV2 , x 7→ 〈v|·〉
σV1 ↓L= σV2 ↓L

σMF
1 = σMF

2 , x 7→ vstd

σMF
1 ↓L= x 7→ vstd, σMF

2 ↓L
σSME = (σH , σL)

σSME ↓L= σL

Global stores (σg, σEH) are low equivalent if both their global variable stores σg and event handler stores σEH are
equivalent.

(σGg,1, σ
G′

EH,1) ≈L (σGg,2, σ
G′

EH,2) iff σGg,1 ≈L σGg,2 ∧ σG
′

EH,1 ≈L σ
G′

EH,2

Equivalence for global variable stores is defined the same as for local variable stores.

σGg,1 ≈L σGg,2 iff σGg,1 ↓L= σGg,2 ↓L

σGg ↓L= σstd

· ↓L= ·
σG1 = σG2 , x 7→ 〈 |v〉 or σG1 = σG2 , x 7→ (v, L)

σG1 ↓L= x 7→ v, σG2 ↓L

σG1 = σG2 , x 7→ (v,H) or σG1 = σG2 , x 7→ 〈v|·〉
σG1 ↓L= σG2 ↓L

σFS
1 = σFS

2 , x 7→ vstd

σFS
1 ↓L= x 7→ vstd, σFS

2 ↓L
σSMS = σH , σL

σSMS ↓L= σL

Event handler storage σEH low equivalence depends on the structure of the event handler storage. We consider an
unstructured EH storage and tree structured EH storage.

Unstructured EH storage. Two unstructured EH storages σEH are low equivalent if their low projections are the
same.

σGEH,1 ≈L σ
G
EH,2 iff σGEH,1 ↓L= σGEH,2 ↓L

The low projection of an unstructured EH storage is the publicly observable parts of publicly observable nodes
(secret nodes are ignored). The meaning of publicly observable and secret depends on the enforcement mechanism, G.
For SMS, the entire L copy of the EH storage is publicly observable, while the H copy is secret. In FS, a node is
visible if the value stored in the node is visible (i.e. v ↓L 6= ·). If the value is not visible (i.e. v ↓L= ·), the node is
considered secret. For TS, a node labeled L is publicly observable, while a node labeled H is secret. The definitions
for publicly observable parts of a node are shown in Section E.4.4.

σGEH ↓L= σstd
EH

σFS
1 = σFS

2 , id 7→ φ φ = (v,M) v ↓L 6= ·
σFS

1 ↓L= id 7→ φ ↓L, σFS
2 ↓L

σFS
1 = σFS

2 , id 7→ φ φ = (v,M) v ↓L= ·
σFS

1 ↓L= σFS
2 ↓L

σTS
1 = σTS

2 , id 7→ φ φ = (v,M, l) l v L
σTS

1 ↓L= id 7→ φ ↓L, σTS
2 ↓L

σTS
1 = σTS

2 , id 7→ (v,M, l) l 6v L
σTS

1 ↓L= σTS
2 ↓L (σH , σL) ↓L= σL

· ↓L= ·

Tree structured EH storage. Two tree structured EH storages σEH are low equivalent if the public view of the
tree is the same in both EH storage. The meaning of the public view of a tree depends on the enforcement mechanism,
G. For SMS, the entire L copy of the EH storage is the public view, so they are equivalent only if their L copies of the
EH storages are the same. For FS, the low copy of the EH storage is defined as the low projection of the tree, starting
at the root node, located at art. The low projection of the tree is defined below in Section E.4.4.
σGEH,1 ≈L σ

G
EH,2

σSMS
1 = (σH,1, σL,1) σSMS

2 = (σH,2, σL,2) σL,1(art1) ↓σL,1

L = σL,2(art2) ↓σL,2

L

σSMS
1 ≈L σSMS

2

σFS
1 (art1) ↓σ

FS
1

L = σFS
2 (art2) ↓σ

FS
2

L

σFS
1 ≈L σFS

2

E.4.3. Value equivalence and strong equivalence. Two values are low equivalent iff their low projections are the
same. We need a different definition for unstructured and tree-structured EH storages because for the tree-structured
EH storage values include locations in the EH store, while the unstructured EH storage can use a simpler equivalence
definition because it does not include references.

Unstructured EH storage.
v ≈L v′ iff v ↓L= v′ ↓L

The low projection of a standard value vstd is the same value vstd. The low projection of a faceted value 〈vH |vL〉
is the value in the low facet vL, or nothing (denoted ·) when the low facet is empty, as in 〈v|·〉. The low projection of
a labeled value (v, l) is the value v when the label is L, or nothing, otherwise.
v ↓L= v′

vstd ↓L= vstd 〈 |vL〉 ↓L= vL 〈 |·〉 ↓L= · (v, L) ↓L= v (v,H) ↓L= ·

Tree-structured EH storage.
v ≈σ1,σ2

L v′ iff v ↓σ1

L = v′ ↓σ2

L

The low projection of a standard value vstd is the same value vstd when the value is not a (non-NULL) location.
If the value is a location, the low projection is the public view of the node at that location. The low projection of a
faceted value 〈vH |vL〉 is the value in the low facet vL, if it is not a location, or nothing (denoted ·) when the low facet
is empty, as in 〈v|·〉. When the value in the low facet is a location, the low projection is the public view of the node
at that location. The low projection of a labeled value (v, l) is the value v when the label is L, or nothing, otherwise.
v ↓σL= v′

v ∈ {n, b, dv,NULL}
vstd ↓σL= vstd

φ = σ(a)

a ↓σL= φ ↓σL
vL ∈ {n, b, dv,NULL}
〈 |vL〉 ↓σL= vL

φ = σ(aL)

〈 |aL〉 ↓σL= φ ↓σL 〈 |·〉 ↓σL= ·

v ∈ {n, b, dv,NULL}
(v, L) ↓σL= v

φ = σ(a)

(a, L) ↓σL= φ ↓σL (v,H) ↓σL= ·

No-context projection is useful for proofs. It returns the same value.
v ↓·= v′

v ↓·= v

Value (strong) low-equivalence. Two values are (strong) low-equivalent when they are both low-equivalent and
have publicly observable interpretations. Having publicly observable interpretations has different meanings, depending
on the format of the value. Standard values and faceted values always have public interpretations: standard values are,
themselves, public, while faceted values have a public facet (or the default value). Tainted values only have public
interpretations if they themselves are publicly observable (i.e. their label is at or below L).

This distinction is important for the proofs, where tainted values might introduce secrets to the public context and
lead to implicit leaks, whereas standard and faceted values will not.

Unstructured EH storage
v1 'L v2

vI1 ≈L vI2 I ∈ {std,MF,FS}
vI1 'L vI2

(v1, l1) ≈L (v2, l2) l1 v L l2 v L
(v1, l1) 'L (v2, l2)

Tree-structured EH storage
v1 'σ1,σ2

L v2

vI1 ≈
σ1,σ2

L vI2 I ∈ {std,MF,FS}
vI1 '

σ1,σ2

L vI2

(v1, l1) ≈σ1,σ2

L (v2, l2) l1 v L l2 v L
(v1, l1) 'σ1,σ2

L (v2, l2)

E.4.4. Node equivalence. φ low-equivalence is defined differently depending on the structure of the EH storage.
Unstructured EH storage. Publicly observable nodes φ are low-equivalent in an unstructured EH storage if their

low projections (their publicly observable parts) are the same. The low-projection of a secret EH storage node is denoted
· since none of it is publicly observable.

φ ≈L φ′ iff φ ↓L= φ′ ↓L

The low projection of a node φ in an unstructured EH storage is defined differently for different enforcement
mechanisms, G. The publicly observable parts of a standard node φstd are its value and publicly observable event
handlers M ↓L. For a faceted node φFS, the publicly observable parts are the low projection of the value in the node
v ↓L, and the publicly observable event handlers M ↓L. If the value in the node is not publicly observable (i.e. v ↓L= ·),
then the entire node is considered secret. Finally, the public view of a tainted node φTS is the public view of its value
(v, l) ↓L and event handler map M ↓L. If the label on the node itself is H , the entire node is considered secret. If the
value in a public node is considered secret, it is replaced with a default value dv in the public view.
φG ↓L= φstd

φ = (v,M)

φstd ↓L= (v,M ↓L)

φ = (v,M) v ↓L 6= ·
φFS ↓L= (v ↓L,M ↓L)

φ = (v,M) v ↓L= ·
φFS ↓L= ·

φ = ((v, l),M, l′) l v L l′ v L
φTS ↓L= (v,M ↓L)

φ = ((v, l),M, l′) l 6v L l′ v L
φTS ↓L= (dv,M ↓L)

φ = (v,M, l) l 6v L
φTS ↓L= ·

NULL ↓L= NULL

l v L
(NULL, l) ↓L= NULL

l 6v L
(NULL, l) ↓L= ·

Tree structured EH storage. Denote N = (id , vstd,M, ID ,Ns) or · where ID is an id or ·, and Ns is an ordered
list of N ’s.

The public view of a tree-structured node given store σ, φ ↓σL, is defined inductively over the node’s children. For a
standard node φstd, the public view includes (1) the node’s id , (2) the value stored in the node v, (3) the public event
handlers M ↓L, (4) the id of the parent, and (5) an ordered list of the public view of each of its children A ↓σL. If the
node has no parent (ap = NULL), then ID in the public view is ·. The public view of a faceted node φFS includes (1)
the node’s id , (2) the public view of the value stored in the node v ↓L, (3) the public event handlers M ↓L, (4) the
id of the publicly observable parent, and (5) and ordered list of the public view of each of its children A ↓σL. If the
publicly observable parent is NULL (ap ↓L= NULL), then ID in the public view is ·. If there is no publicly observable
value (v ↓L= ·) or parent (ap ↓L= ·), then the node itself is not publicly observable.

φG ↓σL= N

φ = (id , v,M, ap, A) idp = σ(ap).id

φstd ↓σL= (id , v ↓σL,M ↓L, idp, A ↓σL)

φ = (id , v,M,NULL, A)

φstd ↓σL= (id , v ↓σL,M ↓L, ·, A ↓σL)

φ = (id , v,M, ap, A) ap ↓L 6= · idp = σ(ap ↓L).id v ↓L 6= ·
φFS ↓σL= (id , v ↓σL,M ↓L, idp, A ↓σL)

φ = (id , v,M, ap, A) ap = NULL ∨ ap ↓L= NULL v ↓L 6= ·
φFS ↓σL= (id , v ↓σL,M ↓L, ·, A ↓σL)

φ = (id , v,M, ap, A) v ↓L= · ∨ ap ↓L= ·
φFS ↓σL= · NULL ↓σL= NULL

The public view of a list of nodes A ↓σL from store σ is defined inductively on the structure of the list and produces
an ordered list of publicly observable nodes Ns . If the first element in the list is a standard address a (i.e. not faceted),
then the public view of the list is the public view of the node at that address φ ↓σL, followed by the public view of the
rest of the list. If the first address in the list is faceted aFS, then the public view of the list is public view of the node
φ ↓σL at the public view of the address a ↓L followed by the public view of the rest of the list. If the address is not
publicly visible (i.e. a ↓L= ·), then that address is ignored.
A ↓σL= Ns

φ = σ(a)

(a :: A) ↓σL= φ ↓σL:: A ↓σL

a ↓L 6= · φ = σ(a ↓L)

(aFS :: AFS) ↓σL= φFS ↓σL:: AFS ↓σL

a ↓L= ·
(aFS :: AFS) ↓σL= AFS ↓σL (·) ↓σL= ·

E.4.5. Event handler map projection. The low projection of an event handler map M is defined inductively over the
structure of the map. For one event Ev 7→ EH, it is defined as the low projection of the event handler sets EH for each
event Ev . Events which do not have publicly observable event handlers (i.e. EH ↓L= ∅) are ignored.

EH ↓L= EH′ 6= ∅
((Ev 7→ EH),M) ↓L= Ev 7→ EH′,M ↓L

EH ↓L= ∅
((Ev 7→ EH),M) ↓L= M ↓L · ↓L= ·

The low projection of an event handler set EH is the set of publicly observable event handlers in EH. An event
handler is public if it was registered under a public pc (i.e. pc v L). In the projected set, all publicly observable event
handlers have pc = L. Secret event handlers (i.e. pc 6v L) are ignored.

pc v L
({eh, pc} ∪ EH) ↓L= {eh, L} ∪ EH ↓L

pc 6v L
({eh, pc} ∪ EH) ↓L= EH ↓L ∅ ↓L= ∅

Appendix F.
Security and Weak Secrecy Proofs

F.1. Progress-Insensitive Security implies Weak Secrecy

Theorem 5 (Progress-Insensitive Security implies Weak Secrecy). If the composition of event handlers and global
storage enforcement are progress-insensitive secure, then they are also progress-insensitive weak secure.

Proof.
We want to show that the conditions for weak secrecy hold for any trace satisfying standard security.
Let V, G be progress-insensitive secure and σG0 be well-formed.
Let T, α,K be s.t. (G,P ` T α

=⇒ K) ∈ runs(σG0 ,R,P). Then,
(1) If rlsA(G,P ` last(T)

α
=⇒ K):

K(G,P ` T α
=⇒ K,σG0 ,R,P) ⊇� Krp(T, σG0 ,R,P, α)

(2) Otherwise:
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kp(T, σG0 ,R,P)

We examine each case of G,P ` T α
=⇒ K. For each case, we want to show that the corresponding condition for

weak secrecy holds.
Case I: rlsA(last(T)

α
=⇒ K)

This case follows from (1) since the corresponding case for release events is the same for weak secrecy as it is for
standard security.

Case II: wkA(last(T)
α

=⇒ K)
From the assumption, we want to show
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kwp(T, σG0 ,R,P, α)
By assumption and since visible, non-release events fall into the “other” category from (2),
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kp(T, σG0 ,R,P)
Then, it is sufficient to show that:
Kp(T, σG0 ,R,P) ⊇� Kwp(T, σG0 ,R,P, α)
i.e., for any τ ∈ Kwp(T, σG0 ,R,P, α),∃τ ′ ∈ Kp(T, σG0 ,R,P) s.t. τ � τ ′

Let
(II.1) τ ∈ Kwp(T, σG0 ,R,P, α)

From (II.1),
(II.2) ∃T ′ ∈ runs(σG0 ,R,P) s.t. T ≈L T ′ and
(II.3) τ = in(T ′)
(II.4) prog(T ′)

From (II.2)-(II.4),
(II.5) τ ∈ Kp(T, σG0 ,R,P)

Let
(II.6) τ ′ = τ

From (II.5) and (II.6),
τ ′ ∈ Kp(T, σG0 ,R,P)

From (II.6) and the definition of �,
τ � τ ′

Case III: ¬rlsA(last(T)
α

=⇒ K) and ¬wkA(last(T)
α

=⇒ K)
This case follows from (2) since the corresponding case for non-release events is the same for standard security as
it is for the non-release, non-visible events for weak secrecy.

F.2. Lemma dependency graph

Top-level theorems
PINI implies PI weak secrecy: Theorem 2

None!
Progress-insensitive Noninterference: Theorem 2

(T1) Lemma 7 Equivalent trace, equivalent state
(T4) Lemma 17 Strong One-Step

Weak Secrecy: Theorem 4
(WT1) Lemma 8 Equivalent trace, equivalent state (Weak Secrecy)

(WT4) Lemma 23 Strong One-Step (Weak Secrecy)

Trace Requirements
(T1) Lemma 7 Equivalent trace, equivalent state

(T5) Lemma 28 Weak One-Step
(T2) Lemma 9 Empty traces produce L-equivalent states

(WT1) Lemma 8 Equivalent trace, equivalent state (Weak secrecy)
(WT5) Lemma 31 Weak One-Step (Weak secrecy)
(WT2) Lemma 12 Empty traces produce L-equivalent states (Weak secrecy)

(T2) Lemma 9 Empty traces produce L-equivalent states
(V2) Lemma 41 H assignments are unobservable
(EH2) Lemma 66 H EH lookups are unobservable
(EH3) Lemma 73, Lemma 74 H updates are unobservable

(WT2) Lemma 12 Empty traces produce L-equivalent states (Weak secrecy)
(WV2) Lemma 42 H assignments are unobservable (Weak secrecy)
(EH2) Lemma 66 H EH lookups are unobservable
(WEH3) Lemma 76, Lemma 79 H updates are unobservable (Weak secrecy)

(T3) Lemma 15, Lemma 16 H steps produce L equivalent states and empty traces
(EH2) Lemma 66 H EH lookups are unobservable
(T2) Lemma 10 Empty traces produce L-equivalent states (mid-level)

(WT3) not required!
(T4) Lemma 17 Strong One-Step

(EH1) Lemma 56, Lemma 63 L lookups are equivalent
(T3) Lemma 15, Lemma 16 H steps produce L-equivalent states and empty traces
(EH2) Lemma 66 H EH lookups are unobservable
(E1) Lemma 36 L Lookups are equivalent
(V3) Lemma 44 L Assignments are equivalent
(EH4) Lemma 80, Lemma 81 L Updates are equivalent

(WT4) Lemma 23 Strong One-Step (Weak Secrecy)
(EH1) Lemma 56, Lemma 63 L lookups are equivalent
(WT2) Lemma 12 Empty traces produce L-equivalent states (Weak Secrecy)
(T4) Lemma 20, Lemma 22, and Lemma 21 Strong One-Step Lemma
(EH2) Lemma 66 H EH lookups are unobservable
(WE1) Lemma 37 L lookups are equivalent (Weak Secrecy)
(WV3) Lemma 45 L assignments are equivalent (Weak Secrecy)
(WEH4) Lemma 82, Lemma 83 L Updates are equivalent (Weak Secrecy)

(T5) Lemma 28 Weak One-Step
(EH1) Lemma 56, Lemma 63 L lookups are equivalent
(EH2) Lemma 66 H EH lookups are unobservable
(E1) Lemma 36 L lookups are equivalent
(V3) Lemma 44 L assignments are equivalent
(EH4) Lemma 80, Lemma 81 L updates are equivalent

(WT5) Lemma 31 Weak One-Step (Weak Secrecy)
(EH1) Lemma 56, Lemma 63 L lookups are equivalent
(EH2) Lemma 66 H EH lookups are unobservable
(WV1) Lemma 37
(WV2) Lemma 43 H assignments are unobservable
(WEH3) Lemma 75, Lemma 77, Lemma 78 H updates are unobservable

Expression Requirements
(E1) Lemma 36 L expressions are equivalent

(V1) Lemma 38, Lemma 39 L lookups are equivalent
(EH1) Lemma 46 L lookups are equivalent

(WE1) Lemma 37 L expressions are equivalent (Weak Secrecy)
(WV1) Lemma 40 L lookups are equivalent (Weak Secrecy)
(WEH1) Lemma 64 L lookups are equivalent (Weak Secrecy)

Variable Store Requirements
(V1) Lemma 38, Lemma 39 L lookups are equivalent

None!
(WV1) Lemma 40 L lookups are equivalent (Weak Secrecy)

None!
(V2) Lemma 41 H assignments produce L-equivalent states

None!
(WV2) Lemma 42, Lemma 43 H assignments produce L-equivalent states (Weak Secrecy)

None!
(V3) Lemma 44 L assignments are equivalent

None!
(WV3) Lemma 45 L assignments are equivalent (Weak Secrecy)

None!

EH storage Requirements
(EH1) Lemma 46, Lemma 48, Lemma 49, Lemma 56 L lookups are equivalent

(EH2) Lemma 66, Lemma 67, Lemma 69, Lemma 70, Lemma 71, Lemma 72 H EH lookups are unobservable
(WEH1) Lemma 64 L lookups are equivalent (Weak Secrecy)

(EH1) Lemma 48 (L lookups are equivalent)
(EH2) Lemma 66, Lemma 67, Lemma 69, Lemma 70, Lemma 71, Lemma 72 H EH lookups are unobservable

None!
(WE2) not required!
(EH3) Lemma 73, Lemma 74 H updates are unobservable

None!
(WEH3) Lemma 75, Lemma 76, Lemma 77, Lemma 78, Lemma 79 H updates are unobservable (Weak Secrecy)

None!
(EH4) Lemma 80, Lemma 81 L updates are equivalent

(EH1) Lemma 48, Lemma 49 L lookups are equivalent
(EH3) Lemma 73, Lemma 74 H updates are unobservable

(WEH4) Lemma 82, Lemma 83 L updates are equivalent (Weak Secrecy)
(EH1) Lemma 48 L lookups are equivalent

F.3. Top-Level Security and Weak Secrecy

Theorem 2 (Soundness - Security). If ∀id .Ev(v), eh, pc : P(id .Ev(v), eh, pc) ∈ {SME,MF} and Gg,GEH ∈ {SMS,FS}
and G = (Gg,GEH), then ∀R,P, σ0, T,K, αl s.t. G,P ` T αl=⇒ K ∈ runs(σG0 ,R,P, I), and σG0 is well-formed,
• If rlsA(last(T)

αl=⇒ K):
K(G,P ` T αl=⇒ K,σG0 ,R,P) ⊇� Krp(T, σG0 ,R,P, αl)

• Otherwise:
K(G,P ` T αl=⇒ K,σG0 ,R,P) ⊇� Kp(T, σG0 ,R,P)

Proof.
The proof is split between two cases depending on the action, shown below. In either case, we want to show that
∃τ ′ ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P) s.t. τ � τ ′ for τ defined below

Case I: rlsA(G,P ` last(T)
αl=⇒ K)

Let
(I.1) τ ∈ Krp(T, σG0 ,R,P, αl)
(I.2) α′ = (G,P ` last(T)

αl=⇒ K) ↓L
∃T1,K0,K1 s.t.

(I.3) T1 = G,P ` K0 =⇒∗ K1 and
(I.4) τ = in(T1)

From definition Krp(),
(I.5) T1 ≈L T
(I.6) prog(T1)
(I.7) release(T1, α

′)
From (I.7), ∃K ′1, αl,1 s.t.

(I.8) G,P ` T1
αl,1
=⇒ K ′1 with

(I.9) (G,P ` K1
αl,1
=⇒ K ′1) ↓L= α′

From (I.5),
(I.10) T ↓L= T1 ↓L

From (I.2), (I.9), (I.10), and the definition of ≈L,
(I.11) (G,P ` T αl=⇒ K) ≈L (G,P ` T1

αl,1
=⇒ K ′1)

From (I.11) and the definition of K(),
in(T1) :: in(G,P ` K1 =⇒ K ′1) ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

Let
(I.12) τ ′ = in(T1) :: in(G,P ` K1 =⇒ K ′1)

From (I.12), and (I.4),
τ � τ ′

Case II: ¬rlsA(G,P ` last(T)
αl=⇒ K)

Let
(II.1) τ ∈ Kp(T, σG0 ,R,P, αl)

∃T1,K0,K1,K2 s.t.
(II.2) T1 = G,P ` K0 =⇒∗ K1 and
(II.3) τ = in(T1)

(II.4) T = G,P ` K0 =⇒∗ K2 and
(II.5) G,P ` K2

αl=⇒ K
From definition Krp(),

(II.6) T1 ≈L T
(II.7) prog(T1)

From (II.6),
(II.8) T ↓L= T1 ↓L

Subcase i: (G,P ` last(T)
αl=⇒ K) ↓L= ·

By assumption,
(i.1) T ≈L (G,P ` T αl=⇒ K)

From (II.4) and (i.1),
(i.2) T1 ≈L (G,P ` T αl=⇒ K)

Let
(i.3) τ ′ = in(T1)

From (i.2) and (i.3),
τ ′ ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

From (II.3) and (i.3),
τ � τ ′

Subcase ii: (G,P ` last(T)
αl=⇒ K) ↓L 6= ·

From (II.2), (II.6), (II.4), and Lemma 7 (Requirement (T1)),
(ii.1) K1 ≈L K2

By assumption, (II.2), (II.4), (II.6), (ii.1), (II.5), (II.7), and Lemma 17 (Requirement (T4)),

(ii.2) ∃K ′1, τ ′′ s.t. G,P ` K1

τ ′′

=⇒∗ K ′1 and

(ii.3) (G,P ` K1

τ ′′

=⇒∗ K ′1) ≈L (G,P ` K2
αl=⇒ K)

By (II.6) and (ii.3),

(ii.4) (G,P ` T1

τ ′′

=⇒∗ K ′1) ≈L (G,P ` T αl=⇒ K)
By (ii.4) and the definition of K(),

(ii.5) in(T1) :: in(G,P ` K1

τ ′′

=⇒∗ K ′1) ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)
Let

(ii.6) τ ′ = in(T1) :: in(G,P ` K1

τ ′′

=⇒∗ K ′1)
By (ii.5) and (ii.6),
τ ′ ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

By (II.3) and (ii.6),
τ � τ ′

Theorem 4 (Soundness - Weak Secrecy). If ∀id .Ev(v), eh, pc : P(id .Ev(v), eh, pc) ∈ {SME,MF,TT} and Gg,GEH ∈
{SMS,FS,TS} and G = (Gg,GEH), then ∀R,P, σ0, T,K, αl s.t. G,P ` T αl=⇒ K ∈ runs(σG0 ,R,P, I), and σG0 is
well-formed,
• If rlsA(G,P ` last(T)

α
=⇒ K):

K(G,P ` T α
=⇒ K,σG0 ,R,P) ⊇� Krp(T, σG0 ,R,P, α)

• If wkA(G,P ` last(T)
α

=⇒ K):
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kwp(T, σG0 ,R,P, α)
• Otherwise:
K(G,P ` T α

=⇒ K,σG0 ,R,P) ⊇� Kp(T, σG0 ,R,P)

Proof.

The proof is split between two cases depending on the action, shown below. In either case, we want to show that
∃τ ′ ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P) s.t. τ � τ ′ for τ defined below

Case I: rlsA(G,P ` last(T)
αl=⇒ K)

Let
(I.1) τ ∈ Krp(T, σG0 ,R,P, αl)
(I.2) α′ = (G,P ` last(T)

αl=⇒ K) ↓L
∃T1,K0,K1 s.t.

(I.3) T1 = G,P ` K0 =⇒∗ K1 and
(I.4) τ = in(T1)

From definition Krp(),
(I.5) T1 ≈L T
(I.6) prog(T1)
(I.7) release(T1, α

′)
From (I.7), ∃K ′1, αl,1 s.t.

(I.8) G,P ` T1
αl,1
=⇒ K ′1 with

(I.9) (G,P ` K1
αl,1
=⇒ K ′1) ↓L= α′

From (I.5),
(I.10) T ↓L= T1 ↓L

From (I.2), (I.9), (I.10), and the definition of ≈L,
(I.11) (G,P ` T αl=⇒ K) ≈L (G,P ` T1

αl,1
=⇒ K ′1)

From (I.11) and the definition of K(),
in(T1) :: in(G,P ` K1 =⇒ K ′1) ∈ K(G,PPT αl=⇒ K,σG0 ,R,P)

Let
(I.12) τ ′ = in(T1) :: in(G,P ` K1 =⇒ K ′1)

From (I.12), and (I.4),
τ � τ ′

Case II: wkA(G,P ` last(T)
αl=⇒ K)

Let
(II.1) τ ∈ Kwp(T, σG0 ,R,P, αl)
(II.2) α′ = (G,P ` last(T)

αl=⇒ K) ↓L
∃T1,K0,K1,K2 s.t.

(II.3) T1 = G,P ` K0 =⇒∗ K1 and
(II.4) τ = in(T1)

(II.5) T = G,P ` K0 =⇒∗ K2

From definition Kwp(),
(II.6) T1 ≈L T
(II.7) prog(T1)
(II.8) wkT(T1, α

′)

Subcase i: α′ = br(b)
By assumption and from (II.8), ∃K ′1 s.t.

(i.1) G,P ` T1 =⇒ K ′1 with
(i.2) (G,P ` K1 =⇒ K ′1) ↓L= α′

From (II.6)
(i.3) T ↓L= T1 ↓L

From (II.2), (i.2), (i.3), and the definition of ≈L,
(i.4) (G,P ` T αl=⇒ K) ≈L (G,P ` T1 =⇒ K ′1)

From (i.4) and the definition of K(),
in(T1) :: in(G,P ` K1 =⇒ K ′1) ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

Let
(i.5) τ ′ = in(T1) :: in(G,P ` K1 =⇒ K ′1)

From (i.5) and (II.4),
τ � τ ′

Subcase ii: α′ = gw(x)
By assumption and from (II.8), ∃K ′1,K ′′1 s.t.

(ii.1) G,P ` T1 =⇒∗ K ′1 with

(ii.2) (G,P ` K1 =⇒∗ K ′1) ↓L= ·
(ii.3) (G,P ` K ′1 =⇒∗ K ′′1) ↓L= α′

From (II.6)
(ii.4) T ↓L= T1 ↓L

From (II.2), (ii.2)-(ii.4), and the definition of ≈L,
(ii.5) (G,P ` T αl=⇒ K) ≈L (G,P ` T1 =⇒ K ′1)

From (ii.5) and the definition of K(),
in(T1) :: in(G,P ` K1 =⇒ K ′′1) ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

Let
(ii.6) τ ′ = in(T1) :: in(G,P ` K1 =⇒ K ′′1)

From (ii.6) and (II.4),
τ � τ ′

Subcase iii: α′ = id .Ev(v) or α′ ∈ {•, ch(v)}
From (II.3), (II.5), (II.6), and Lemma 8 (Requirement (WT1)),

(iii.1) K1 ≈L K2

By assumption and from (II.3), (II.5), (iii.1), (II.2), (II.6)-(II.8), and Lemma 23 (Requirement (WT4)), ∃K ′1 s.t.
(iii.2) G,P ` K1 =⇒∗ K ′1 with
(iii.3) (G,P ` K2 =⇒ K) ≈L (G,P ` K1 =⇒ K ′1)

From (II.6) and (iii.3),
(iii.4) (G,P ` T1 =⇒∗ K ′1) ≈L (G,P ` T =⇒ K)

From (ii.4) and the definition of K(),

(iii.5) in(T1) :: in(G,P ` K1

τ ′′

=⇒∗ K ′1) ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)
Let

(iii.6) τ ′ = in(T1) :: in(G,P ` K1

τ ′′

=⇒∗ K ′1)
By (iii.5) and (iii.6),
τ ′ ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

By (II.4) and (iii.6),
τ � τ ′

Case III: ¬rlsA(G,P ` last(T)
αl=⇒ K) and ¬wkA(G,P ` last(T)

αl=⇒ K)
Let

(III.1) τ ∈ Kp(T, σG0 ,R,P, αl)
∃T1,K0,K1,K2 s.t.

(III.2) T1 = G,P ` K0 =⇒∗ K1 and
(III.3) τ = in(T1)

(III.4) T = G,P ` K0 =⇒∗ K2 and
(III.5) G,P ` K2

αl=⇒ K
From definition Krp(),

(III.6) T1 ≈L T
(III.7) prog(T1)

From (III.6),
(III.8) T ↓L= T1 ↓L

Subcase i: (G,P ` last(T)
αl=⇒ K) ↓L= ·

By assumption,
(i.1) T ≈L (G,P ` T αl=⇒ K)

From (III.4) and (i.1),
(i.2) T1 ≈L (G,P ` T αl=⇒ K)

Let
(i.3) τ ′ = in(T1)

From (i.2) and (i.3),
τ ′ ∈ K(G,P ` T αl=⇒ K,σG0 ,R,P)

From (III.3) and (i.3),
τ � τ ′

Subcase ii: (G,P ` last(T)
αl=⇒ K) ↓L 6= ·

By assumption, and from the definition of ↓L, αl is a release event, branch, global write, low input, or low

output. Then, rlsA(G,P ` last(T)
αl=⇒ K) or wkA(G,P ` last(T)

αl=⇒ K), which violates the assumption that
neither condition holds.
Therefore, this case holds vacuously.

F.4. Trace Requirements

Requirement (T1) Equivalent traces produce L-equivalent states

Lemma 7 (Equivalent Trace, Equivalent State). If T1 = G,P ` K1 =⇒∗ K ′1 and T2 = G,P ` K2 =⇒∗ K ′2 with
K1 ≈L K2 and T1 ≈L T2, then K ′1 ≈L K ′2
Proof.
By induction on len(T1) and len(T2)
By assumption,

(1) T1 = G,P ` K1 =⇒∗ K ′1
(2) T2 = G,P ` K2 =⇒∗ K ′2
(3) K1 ≈L K2

(4) T1 ≈L T2

Base Case I: len(T1) = 0 and len(T2) = n
By assumption and from (1),

(I.1) T1 = K1

(I.2) K1 = K ′1
From (I.1),

(I.3) T1 ↓L= ·
From (4) and (I.3),

(I.4) T2 ↓L= ·
From (I.4) and Lemma 9 (Requirement (T2)),

(I.5) K2 ≈L K ′2
From (3), (i.2), and (I.5),
K ′1 ≈L K ′2

Base Case II: len(T1) = n and len(T2) = 0
The proof is similar to Base Case I

Inductive Case III: len(T1) = n+ 1 and len(T2) = m+ 1
We assume the conclusion holds for len(T1) ≤ n and len(T2) ≤ m
By assumption and from (1) and (2),

(III.1) T1 = G,P ` K1 =⇒∗ K ′′1 =⇒ K ′1 with
(III.2) len(G,P ` K1 =⇒∗ K ′′1) = n

(III.3) T2 = G,P ` K2 =⇒∗ K ′′2 =⇒ K ′2 with
(III.4) len(G,P ` K2 =⇒∗ K ′′2) = m

Subcase i: (G,P ` K ′′1 =⇒ K ′1) ↓L= ·
By assumption and from (III.1),

(i.1) T1 ↓L= (G,P ` K1 =⇒∗ K ′′1) ↓L
From (i.1),

(i.2) T1 ≈L (G,P ` K1 =⇒∗ K ′′1)
From (4) and (i.2),

(i.3) T2 ≈L (G,P ` K1 =⇒∗ K ′′1)
From (3) and (i.3),

The IH may be applied on (G,P ` K1 =⇒∗ K ′′1) and T2

IH on (G,P ` K1 =⇒∗ K ′′1) and T2 gives
(i.4) K ′′1 ≈L K ′2

By assumption and from Lemma 9 (Requirement (T2)),
(i.5) K ′′1 ≈L K ′1

From (i.4) and (i.5),
K ′1 ≈L K ′2

Subcase ii: (G,P ` K ′′2 =⇒ K ′2) ↓L= ·
The proof is similar to Subcase i

Subcase iii: (G,P ` K ′′1 =⇒ K ′1) ↓L 6= · and (G,P ` K ′′2 =⇒ K ′2) ↓L 6= ·
By assumption and from (4),

(iii.1) (G,P ` K1 =⇒∗ K ′′1) ≈L (G,P ` K2 =⇒∗ K ′′2) and
(iii.2) (G,P ` K ′′1 =⇒ K ′1) ≈L (G,P ` K ′′2 =⇒ K ′2)

From (3) and (iii.1),
The IH may be applied to (G,P ` K1 =⇒∗ K ′′1) and (G,P ` K2 =⇒∗ K ′′2)

IH on (G,P ` K1 =⇒∗ K ′′1) and (G,P ` K2 =⇒∗ K ′′2) gives,
(iii.3) K ′′1 ≈L K ′′2

By assumption and from (iii.2), (iii.3), and Lemma 28 (Requirement (T5)),
K ′1 ≈L K ′2

Requirement (WT1) Equivalent traces produce L-equivalent states (Weak Secrecy)

Lemma 8 (Equivalent Trace, Equivalent State, Weak Secrecy). If T1 = G,P `w K1 =⇒∗ K ′1 and T2 = G,P `w
K2 =⇒∗ K ′2 with K1 ≈L K2 and T1 ≈L T2, then K ′1 ≈L K ′2
Proof (sketch): The proof is the same as for Lemma 7, except that it uses Lemma 12 (Req (WT2)) and Lemma 31
(Req (WT5))

Requirement (T2) Empty traces produce L-equivalent states

Lemma 9. If T = G,P ` K =⇒∗ K ′ and T ↓L= ·, then K ≈L K ′

Proof.
By induction on the length of T .
By assumption,

(1) T = G,P ` K =⇒∗ K ′
(2) T ↓L= ·

Base Case I: len(T) = 0
By assumption and from (1),

(I.1) T = K and
(I.2) K ′ = K

From (I.2),
K ≈L K ′

Inductive Case II: len(T) = n+ 1
By assumption and from (1),

(II.1) T = G,P ` K =⇒∗ K1 =⇒ K2

Want to show K ≈L K2

From (2) and (II.1),
(II.2) (G,P ` K =⇒∗ K1) ↓L= ·

IH on (G,P ` K =⇒∗ K1) gives
(II.3) K ≈L K1

Let T ′ = G,P ` K1 =⇒ K2

From (1),
(II.4) T ′ ↓L= ·

Therefore, from (II.3), want to show K1 ≈L K2

Subcase i: T ′ ends in I-NR1 or I-NR2
By assumption,

(i.1) σG1 = σG2
(i.2) κ1 = ·
(i.3) G,P, σG1 ` ks1; lookupEHAll(id .Ev(v)) ;H ks2

From (i.3) and Lemma 66 (Requirement (EH2)),
(i.4) ks1 ≈L ks2

From (i.1) and (i.4),
K1 ≈L K2

Subcase ii: T ′ ends in I-R-DIFF, I-R-SAME, or I-L,
By assumption and from the definition of ↓L for execution traces,

(ii.1) (G, ks ` K1 =⇒ K2) ↓L 6= ·
But (ii.1) contradicts (1), so this case holds vacuously

Subcase iii: T ′ ends in O, O-SKIP, or O-OTHER with pc v L
By assumption and from the definition of ↓L for execution traces,

(iii.1) (G, ks ` K1 =⇒ K2) ↓L 6= ·
But (iii.1) contradicts (1), so this case holds vacuously

Subcase iv: T ′ ends in O, O-SKIP, or O-OTHER with pc 6v L
The conclusion follows from our security lattice (i.e., pc must be H) and Lemma 10

Lemma 10. If G,P,V, d ` σG1 , κV
α−→H σG2 , ks , then σG1 ≈L σG2 and (V;κV ;H) ≈L ks

Proof.
By induction on the structure of E :: G,P,V, d ` σG1 , κ

α−→H σG2 , ks

Case I: E ends in LC
By assumption,

(I.1) ks ′ = V; (σV , skip, C, ·);H
(I.2) σG2 = σG1

(I.3) G,P, σG ` ks ′; lookupEHs(E) ;H ks
From Lemma 66 (Requirement (EH2)),

(I.4) ks ′ ≈L ks
From (I.1),

(I.5) ks ′ ≈L (V;κ;H)
From (I.4) and (I.5),

(V;κ;H) ≈L ks
From (I.2),
σG2 ≈L σG1

Case II: E ends in PTOC
By assumption,

(II.1) σG2 = σG1
(II.2) ks = V; (σV , skip, C, ·);H

From (II.1),
σG2 ≈L σG1

From (II.2),
(V;κ;H) ≈L ks

Case III: E ends in P
σG1 ≈L σG2 follows from Lemma 11
By assumption,

ks = (V; (σV2 , c2, P, (E1, E2));H)
Therefore,

(V;κ;H) ≈L ks

Case IV: E ends in SME-L, SME-LTOH, or P-F,
These cases contradict the assumption that pc = H , so these cases hold vacuously.

Case V: E ends in SME-H
By assumption,

(V.1) ∃E ′ :: G,P,SME, d ` σG1 , κH
α−→H σG2 , (SME;κ′H) :: ks ′

(V.2) ks = (SME; (κ′H ;κL);H) :: ks ′

IH on (V.1) gives
σG1 ≈L σG2
(V.3) (SME;κH ;H) ≈L ((SME;κ′H);H) :: ks ′

From (V.2) and (V.3),
(SME;κ;H) ≈L ks

Lemma 11. If G,V, d σG1 , σ
V
1 , c1

α−→H σG2 , σ
V
2 , c2, E, then σG1 ≈L σG2

Proof.
By induction on the structure of E :: G,V, d σG1 , σ

V
1 , c1

α−→H σG2 , σ
V
2 , c2, E

The cases where σG2 = σG1 and are trivial, the proofs for the other cases are shown below.

Base Case I: E ends in ASSIGN-G
By assumption and from Lemma 41 (Requirement (V2)), σG1 ≈L σG2

Unstructured EH storage:
Base Case U.I: E ends in ASSIGN-D

By assumption and from Lemma 73.U (Requirement (EH3)), σG1 ≈L σG2

Base Case U.II: E ends in CREATEELEM or ADDEH
By assumption and from Lemma 74.U (Requirement (EH3)), σG1 ≈L σG2

Tree-structured EH storage:
Base Case T.I: E ends in ASSIGN-D

By assumption and from Lemma 73.T (Requirement (EH3)), σG1 ≈L σG2

Base Case T.II: E ends in CREATECHILD, CREATESIBLING, or ADDEH

By assumption and from Lemma 74.T (Requirement (EH3)), σG1 ≈L σG2

Inductive Case: E ends in SEQ
The proof follows from the IH

Requirement (WT2) Empty traces produce L-equivalent states (Weak Secrecy)

Lemma 12. If T = G,P `w K =⇒∗ K ′ and T ↓L= ·, then K ≈L K ′

Proof (sketch): The proof is the same as for Lemma 9 (Requirement (T2)), except that it uses Lemma 13. The additional
assumption that α 6∈ {br(b), gw(x)} follows from T ↓L= ·.

Lemma 13. If G,P,V, d `w σG1 , κ1
α−→H σG2 , κ2 with α 6∈ {br(b), gw(x)}, then σG1 ≈L σG2 and κ1 ≈L κ2

Proof (sketch): The proof is the same as for Lemma 10 except that is uses Lemma 14, Note that Lemma 66 (Requirement
(EH2)) is also used.

Lemma 14. If G,V, d w σG1 , σ
V
1 , c1

α−→H σG2 , σ
V
2 , c2, E, with α 6∈ {br(b), gw(x)} then σG1 ≈L σG2 and σV1 ≈L σV2

and E ≈L ·
Proof (sketch): The proof is similar to the one for Lemma 11. The cases for ASSIGN-G and ASSIGN-D which involve
upgrades hold vacuously due to the assumption that α 6∈ {br(b), gw(x)}. Otherwise, this proof uses Lemma 42
(Requirement (WV2)) instead of Lemma 41 (Requirement (V2)) and Lemma 76 (Requirement (WEH3)) instead of
Lemma 73 (Requirement (EH3)), and Lemma 79 (Requirement (WEH3)) instead of Lemma 74 (Requirement (EH3)).

Requirement (T3) H steps produce L-equivalent states and empty traces

Lemma 15 (H Step Equivalence). If T = G,P ` K1 =⇒∗ K2 and ∀α ∈ τ, output(α) with K1 = R, d;σ1; ks1 and
ks1 ≈L ·, then, K1 ≈L K2 and T ↓L= ·

Proof.
By induction on len(T)
By assumption,

(1) ∀α ∈ τ, output(α) and
(2) ks1 ≈L ·

Base Case 1: len(T) = 0
By assumption,
T = K1 and K2 = K1

Then, K1 ≈L K2 and T ↓L= ·

Base Case 2: len(T) = 1

By assumption, T = G,P ` K1
αl=⇒ K2

Case I: E ends in an input rule
This contradicts (1), therefore this case holds vacuously

Case II: E ends in an output rule with pc v L
This contradicts (2), therefore this case holds vacuously

Case III: E ends in an output rule with pc 6v L
By assumption and from (2),

(III.1) pc = H
(III.2) E ends in O, O-SKIP, or O-OTHER

From (III.2),
(III.3) ∃E ′ :: G,P,V, d ` σG1 , κ −→H σG2 , ks

From (III.1), (III.2), and the definitions of outCondition and output,
T ↓L= ·

From (III.3) and Lemma 10 (Requirement (T2)),
(III.4) σG1 ≈L σG2
(III.5) (V;κ;H) ≈L ks

From (III.4) and (III.5),
K1 ≈L K2

Inductive Case: len(T) = n+ 1
By assumption,
T = G,P ` K1 =⇒∗ K ′1 =⇒ K2

IH on G,P ` K1 =⇒∗ K ′1 gives
K1 ≈L K ′1 and (G,P ` K1 =⇒∗ K ′1) ↓L= ·

From K1 ≈L K ′1 and (2),
The ks in K ′1 is ≈L ·

By the same argument as Base Case 2,
K ′1 ≈L K2 and (G,P ` K ′1 =⇒ K2) ↓L= ·

Therefore, the desired conclusion holds

Lemma 16 (High Step Equivalence - MF, TT). If T = G,P ` K1 =⇒∗ KC with consumer(KC), K1 = R, d;σ1; ks1

with ks1 6≈L ·, and highProducer(K1) then ∃K2 s.t. lowProducer(K2) and T = G,P ` K1 =⇒∗ K2 =⇒∗ KC with
K1 ≈L K2 and (G,P ` K1 =⇒∗ K2) ↓L= ·

Proof.
By induction on the length of T
By assumption,

(1) consumer(KC)
(2) ks1 6≈L ·
(3) highProducer(K1)

Base Case: len = 0

By assumption, T = K1 = KC . From this and (2), consumer(K1). But this contradicts (2) and (3), so this case
holds vacuously.

Base Case: len = 1
By assumption, E :: T = G,P ` K1 =⇒ KC . From this and the structure of the operational semantics, E must end
in O-NEXT with ks1 = (V;κ; pc) and consumer(κ).
But this contradicts (2), so this case holds vacuously.

Base Case: len = 2
By assumption,
T = G,P ` K1 =⇒ K2 =⇒ KC

Denote
D :: G,P ` K1 =⇒ K2

E :: G,P ` K2 =⇒ KC

Want to show lowProducer(K2), K1 ≈L K2, and (G,P ` K1 =⇒ K2) ↓L= ·

Case I: D ends in an input rule
By assumption, consumer(K1). But this contradicts (2) and (3), so this case holds vacuously.

Case II: D ends in O, O-SKIP, or O-OTHER
By assumption and from the structure of the operational semantics,

(II.1) ∃D′ :: G,P,V, d ` σG1 , κ
α−→pc σ

G
2 , ks

(II.2) ks1 = (V;κ; pc) :: κ′1
(II.3) ks2 = ks :: ks ′1

From (II.2), (2), and (3),
(II.4) pc = H
(II.5) ks ′1 6≈L ·

By assumption and from (II.4) and the definitions of outCondition and output,
(G,P ` K1 =⇒ K2) ↓L= ·

Subcase i: D ends in LC
By assumption and from (II.4),

(i.1) ∃D′′ :: G,P,V, σG1 ` (V; (σ, skip, C, ·);H); lookupEHs(E) ;H ks
From (i.1), (II.3), and the rules for lookupEHs, which put (V; (σ, skip, C, ·);H) at the top of the resulting ks ,

(i.2) ks2 = (V; (σ, skip, C, ·);H) :: ks ′ :: ks ′1
From (i.1), (3), and Lemma 66 (Requirement (EH2)),

(i.3) ks2 ≈L ks1

From (i.2),
(i.4) consumer(ks2)

From (i.4),
(i.5) E must end in O-NEXT

From (i.5), (i.2), and (II.5),
(i.6) ksC = (ks ′ :: ks ′1) 6= ·

From (i.6),
(i.7) ¬consumer(KC)

But (i.7) contradicts (1), so this case holds vacuously

Subcase ii: D ends in PTOC
By a similar argument to Subcase i:
ks2 = (V; (σ, skip, C, ·);H) :: ks ′1. Then, E must end in O-NEXT and ks ′1 6≈L · means ksC 6= · which
contradicts (1), so this case holds vacuously.

Subcase iii: D ends in P
By assumption, the resulting ks will be in H producer state. Then, E must end in O, O-SKIP, or O-OTHER,
which contradicts (1) since the only rule to shrink the ks is O-NEXT.

Subcase iv: D ends in SME-H
If the resulting κH is in consumer state, the rest of the proof is similar to Subcase i or Subcase ii. Otherwise,
the resulting κH is in producer state and the rest of the proof is similar to Subcase iii.

Subcase v: D ends in SME-L, SME-LTOH, or P-F
In all of these cases, pc v L, which contradicts (II.4), so these cases hold vacuously.

Case III: D ends in O-NEXT
By assumption,

(III.1) ks1 = (V;κ; pc) :: ks2

From (3) and (III.1),
(III.2) pc = H

By assumption and from (III.2),
(G,P ` K1 =⇒ K2) ↓L= ·

By assumption and from (III.1) and (III.2),
K1 ≈L K2

From (III.1), (III.2), and (2),
(III.3) ks2 6≈L ·

From (III.3),
(III.4) producer(K2)

From (III.4), either
lowProducer(K2), in which case the desired conclusion holds.
Otherwise, highProducer(K2), in which case the proof proceeds similarly to Case II.iii.

Inductive Case: len(T) = n+ 1 for n ≥ 2
By assumption,
T = G,P ` K1 =⇒ K =⇒∗ KC with
len(K =⇒∗ KC) = n

Denote
D :: K1 =⇒ K

Case I: D ends in an input rule or O-NEXT
By assumption, consumer(K1), but this contradicts (3), so this case holds vacuously

Case II: D ends in O, O-SKIP, or O-OTHER
By assumption and from the structure of the operational semantics,

(II.1) ∃D′ :: G,P,V, d ` σG1 , κ
α−→pc σ

G, ks ′

(II.2) ks1 = (V;κ; pc) :: κ′1
(II.3) ks = ks ′ :: ks ′1
(II.4) σG = σG1

From (II.2), (2), and (3),
(II.5) pc = H
(II.6) ks ′1 6≈L ·

By assumption and from (II.5) and the definitions of outCondition and output,
(II.7) (G,P ` K1 =⇒ K) ↓L= ·

From (II.2) - (II.4),
(II.8) K1 ≈L K

From (II.5) and by a similar argument as the subcases for Base Case II, above,
(II.9) highProducer(K)

From (II.9), (II.6), (II.3), and Lemma 66 (Requirement (EH2)), the IH may be applied on G,P ` K =⇒∗ KC

The conclusion follows from the IH and (II.7) and (II.8)

Case III: D ends in O-NEXT
By assumption and from the structure of the operational semantics,

(III.1) ks1 = (V;κ; pc) :: κ′1
(III.2) ks = ks ′1
(III.3) σG = σG1

From (III.1), (2), and (3),
(III.4) pc = H
(III.5) ks ′1 6≈L ·

By assumption and from (III.4),
(III.6) (G,P ` K1 =⇒ K) ↓L= ·

From (III.1) - (III.3),
(III.7) K1 ≈L K

From (III.2) and (III.5),
(III.8) producer(K)

Subcase i: lowProducer(K)

Then, let K2 = K and from (III.6) and (III.7), the desired conclusion holds

Subcase ii: highProducer(K)

Then, the IH may be applied on G,P ` K =⇒∗ KC and the desired conclusion follows from the IH and (III.6)
and (III.7)

Requirement (T4) Strong one-step

Lemma 17 (Strong One-step). If K1 ≈L K2, T1 = G,P ` K1
αl,1
=⇒ K ′1 with T1 ↓L 6= ·, ¬rlsA(T1), and prog(K2), then

∃K ′2, T2 s.t. T2 = G,P ` K2 =⇒∗ K ′2 with T1 ≈L T2 and K ′1 ≈L K ′2
Proof.
We examine each case of E :: T1 = G,P ` K1

αl,1
=⇒ K ′1

Denote Ki = (Ri, di, σi, ksi) for i ∈ {1, 2}
By assumption,

(1) T1 ↓L 6= ·
(2) ¬rlsA(T1)
(3) K1 ≈L K2

(4) prog(K2)
From (3),

(5) σ1 ≈L σ2

(6) ks1 ≈L ks2

Case I: E ends in I-NR1 or I-NR2
In both of these cases T1 ↓L= · or T1 ↓L= rls(...).
This contradicts (1) and (2), so this case holds vacuously.

Case II: E ends in I-R-DIFF or I-R-SAME
In both of these cases, rlsA(T1)
This contradicts (2), so this case holds vacuously.

Case III: E ends in I-L
By assumption,

(III.1) P(αl) = L
(III.2) σ′1 = σ1

(III.3) G,P, σ1 ` ·; lookupEH(id .Ev(v)) ;· ks
′
1

Subcase i: consumer(K2)
By assumption and from (III.1),

(i.1) I-L may be applied to K2 with input id .Ev(v), producing trace T2 = G,P ` K2
id.Ev(v)

=⇒ K ′2
From (i.1),

(i.2) G,P, σ2 ` ·; lookupEHAll(id .Ev(v)) ;· ks
′
2

(i.3) σ′2 = σ2

By assumption and from (III.1), (i.1), and projection for execution traces,
T1 ↓L= T2 ↓L

From (5), (III.2), and (i.3),
(i.4) σ′1 ≈L σ′2

From (III.3), (i.2), (5) and Lemma 56 (Requirement (EH1)),
(i.5) ks ′1 ≈L ks ′2

From (i.4) and (i.5),
K ′1 ≈L K ′2

Subcase ii: ¬consumer(K2)
From (4),

(ii.1) ∃T ′ s.t. T ′ = G,P ` K2

τ

=⇒∗ KC where
(ii.2) cstate(KC) and
(ii.3) ∀α ∈ τ, α ∈ output(τ)

By assumption and from (6),
(ii.4) ks2 ≈L ·

From (ii.1)-(ii.4) and Lemma 15 (Requirement (T3)),
(ii.5) KC ≈L K2 and
(ii.6) T ′ ↓L= ·

The rest of the proof proceeds the same as Subcase i

Case IV: E ends in O
By assumption,

(IV.1) ks1 = (V1;κ1; pc1) :: ks ′′1

(IV.2) ∃E ′ :: G,P,V1, d ` σ1, κ1
ch(v1)−→ pc1

, σ′1, ks
′′′
1

(IV.3) ks ′1 = ks ′′′1 :: ks ′′1
(IV.4) producer(κ1)
(IV.5) outConditionV1(P, ch(v1), pc1) = true
(IV.6) αl,1 = output(P, ch(v1), pc1)

From (IV.6) and the definition of output: if pc1 = H , then T1 ↓L= ·, which contradicts (1). Therefore,
(IV.7) pc1 v L

By assumption and from (IV.7) and (6),
(IV.8) ks2 = (V2;κ2; pc2) :: κ′′2

Subcase i: pc2 v L
By assumption and from (IV.1), (IV.8), (IV.7), and (6),

(i.1) V1 = V2

(i.2) κ1 ≈L κ2

(i.3) ks ′′1 ≈L ks ′′2
By assumption and from (i.1), (IV.2), (IV.7), (2), (5), (i.2), and Lemma 18,

(i.4) ∃D′ :: G,P,V2, d ` σ2, κ2
α2−→pc2

σ′2, ks
′′′
2 with

(i.5) pc2 v L
(i.6) σ′1 ≈L σ′2
(i.7) ks ′′′1 ≈L ks ′′′2
(i.8) α2 ≈L ch(v1)

From (i.7),
(i.9) α = ch(v2) with
(i.10) v1 ≈L v2

By assumption and from (IV.7), (i.10), (IV.5), (i.1), and Lemma 20,
(i.11) outConditionV2(P, ch(v2), pc2) = true

By assumption and from (i.3) and (i.11),
(i.12) O may be applied to K2, producing trace T2 = G,P ` K2

α2,l
=⇒ K ′2

From (i.12), (IV.8), and (i.4),
(i.13) ks ′2 = ks ′′′2 :: ks ′′2

From (IV.3), (i.13), (i.3), and (i.7),
(i.14) ks ′1 ≈L ks ′2

From (i.6), and (i.14),
K ′1 ≈L K ′2

From (i.12),
(i.15) αl,2 = output(P, ch(v2), pc2)

By assumption and from (i.10), (IV.7), (IV.6), (i.15), and Lemma 22,
(i.16) αl,1 ≈L αl,2

From (i.16) and the definition of equivalence for execution traces,
T1 ≈L T2

Subcase ii: pc2 6v L
From (4), ∃T ′,KC s.t.

(ii.1) T ′ = G,P ` K2 =⇒∗ KC

(ii.2) consumer(KC)
By assumption and from (IV.7), (ii.1), (ii.2), and Lemma 16 (Requirement (T3)), ∃K ′ s.t.

(ii.3) K2 =⇒∗ K ′ with
(ii.4) lowProducer(K ′)
(ii.5) K ′ ≈L K2 and
(ii.6) (G,P ` K2 =⇒∗ K ′) ↓L= ·

The rest of the proof proceeds the same as Subcase i. Trace equivalence uses (ii.6) and state equivalence uses
(ii.5).

Case V: E ends in O-SKIP
By assumption,

(V.1) ks1 = (V1;κ1; pc1) :: ks ′′1

(V.2) ∃E ′ :: G,P,V, d ` σ1, κ1
ch(v1)−→ pc1

, σ′1, ks
′′′
1

(V.3) producer(κ1)
(V.4) outConditionV(P, ch(v1), pc1) = false
(V.5) αl,1 = (•, pc1)

If pc1 = H , then T1 ↓L= ·, which contradicts (1). Therefore,
(V.6) pc1 v L

By assumption and from (V.6) and (6),
(V.7) ks2 = (V2;κ2; pc2) :: κ′′2

Subcase i: pc2 v L
By assumption and from (V.1), (V.6), (V.7), and (6),

(i.1) V1 = V2

(i.2) κ1 ≈L κ2

(i.3) ks ′′1 ≈L ks ′′2
By assumption and from (V.2), (V.6), (2), (5), (i.1), (i.2) and Lemma 18,

(i.4) ∃D′ :: G,P,V2, d ` σ2, κ2
α−→pc2

σ′2, ks
′′′
2 with

(i.5) pc2 v L
(i.6) σ′1 ≈L σ′2
(i.7) ks ′1 ≈L ks ′2
(i.8) α ≈L ch(v1)

From (i.8),
(i.9) α = ch(v2) with
(i.10) v1 ≈L v2

From (i.10), (V.4), (V.6), (i.5), and Lemma 21,
(i.11) outConditionV(P, ch(v2), pc2) = false or
(i.12) outConditionV(P, ch(v2), pc2) = true and v2 = 〈 | 〉

Subsubcase a: (i.11) is true
By assumption and from (i.4) and (i.11),

(a.1) O-SKIP may be applied to K2, producing trace T2 = G,P ` K2
(•,pc2)
=⇒ K ′2

From (i.6), (i.7), and (a.1),
K ′1 ≈L K ′2

From (a.1),
(a.2) αl,2 = (•, pc2)

From (V.5), (V.6), (i.5), (a.2), and the definition of equivalence for execution traces,
T1 ≈L T2

Subsubcase b: (i.12) is true
By assumption and from (i.4) and (i.12),

(b.1) O may be applied to K2, producing trace T2 = G,P ` K2
αl,2
=⇒ K ′2

From (i.6), (i.7), and (b.1),
K ′1 ≈L K ′2

From (V.4), (V.6), and the definition of output, either:
(b.2) pc1 = L and P(ch) = H or
(b.3) pc1 = · and v1 ↓P(ch)= ·

By assumption and from the structure of the operational semantics,
(b.4) pc2 = · and V2 = MF

If (b.2) is true, then from (b.4), (i.12), and the definition of output,
(b.5) output(P, ch(v2), pc2) = 〈ch(getFacet(v2, H))|•〉

If (b.3) is true, then from (b.4) and (i.12),
(b.6) P(ch) = H because otherwise outCondition would have been false

From (b.6) and by the same argument as (b.5),
(b.7) output(P, ch(v2), pc2) = 〈ch(getFacet(v2, H))|•〉

From (V.5), (V.6), (b.5), (b.7), and the definition of equivalence for execution traces,
T1 ≈L T2

Subcase ii: pc2 6v L
The proof for this case uses similar logic as Subcase IV.b to reach the assumptions for Subcase i, at which
point the proof proceeds the same as Subcase i.

Case VI: E ends in O-OTHER
The proof for this case is similar to Case V. α2 = • follows from Lemma 18, which tells us that α1 ≈L α2 and
α1 = • by assumption.

Case VII: E ends in O-NEXT
The proof for this case is straightforward. From (6), ks1 = (V1;κ1; pc1) :: ks ′′1 and ks2 = (V2;κ2; pc2) :: ks ′′2 with
V1 = V2 and κ1 ≈L κ2 and ks ′′1 ≈L ks ′′2 when pc2 v L. Then, from κ1 ≈L κ2, consumer(κ2), and O-NEXT can be

applied to K2, which gives T1 ≈L T2. K ′1 ≈L K ′2 follows from ks ′′1 ≈L ks ′′2 .
When pc2 6v L, the proof is similar to Case IV.b.

Lemma 18 (Strong One-Step - Single Execution Semantics). If G,P,V, d ` σG1 , κ1
α1−→pc1

σG3 , ks1 with pc1 v L,
α1 6= declassify(ι, v), σG1 ≈L σG2 , κ1 ≈L κ2, and pc2 v L, then G,P,V, d ` σG2 , κ2

α2−→pc2
σG4 , ks2 with σG3 ≈L σG4 ,

ks1 ≈L ks2, and α1 ≈L α2

Proof.
By induction on the structure of E :: G,P,V, d ` σG1 , κ1

α1−→pc1
σG3 , ks1

By assumption:
(1) pc1 v L
(2) α1 6= declassify(ι, v)
(3) σG1 ≈L σG2
(4) κ1 ≈L κ2

(5) pc2 v L

Case I: E ends in LC
By assumption,

(I.1) κ1 = σ1, skip, P, E1

(I.2) E1 6= ·
(I.3) σG3 = σG1
(I.4) G,P,V, σG1 ` (V; (σ1, skip, C, ·); pc1); lookupEHs(E1) ;pc1

ks1

(I.5) α1 = •
From (4) and (I.1),

(I.6) κ2 = σ2, skip, P, E2 with
(I.7) σ1 ≈L σ2 and
(I.8) E1 ≈L E2

Subcase i: E2 = ·
By assumption and from (4),

(i.1) E1 ≈L ·
From (i.1), (I.4), and Lemma 66 (Requirement (EH2)),

(i.2) ks1 ≈L (V; (σ1, skip, C, ·); pc1)
By assumption and from (I.6),

(i.3) PTOC may be applied, resulting in trace G,P,V, d ` σG2 , κ2
•−→pc2

σG2 , (V; (σ2, skip, C, ·); pc2)
From (i.3),

(i.4) σG4 = σG2
(i.5) α2 = •
(i.6) ks2 = (V; (σ2, skip, C, ·); pc2)

From (3), (I.3), and (i.4),
σG3 ≈L σG4

From (I.5) and (i.5),
α1 ≈L α2

From (1), (5), (i.2), (i.6), and (I.7),
ks1 ≈L ks2

Subcase ii: E2 6= ·
By assumption,

(ii.1) LC may be applied, resulting in trace G,P,V, d ` σG2 , κ2
•−→pc2

σG2 , ks2

From (ii.1),
(ii.2) σG4 = σG2
(ii.3) α2 = •
(ii.4) G,P,V, σG2 ` (V; (σ2, skip, C, ·); pc2); lookupEHs(E2) ;pc2

ks2

From (3), (I.3), and (ii.2),
σG3 ≈L σG4

From (I.5) and (ii.3),
α1 ≈L α2

From (1), (5), and (I.7),
(ii.5) (V; (σ1, skip, C, ·); pc1) ≈L (V; (σ2, skip, C, ·); pc2)

From (1), (5), (3), (ii.5), (I.8), (I.4), (ii.4), and Lemma 56 (Requirement (EH1)),
ks1 ≈L ks2

Case II: E ends in PTOC
The proofs for these cases are similar to Case I

Case III: E ends in P
By assumption,

(III.1) κ1 = σ1, c, P,E1

(III.2) G,V, d σG1 , σ1, c
α1−→pc1

σG3 , σ
′
1, c
′
1, E

′
1

(III.3) ks1 = (V; (σ′1, c
′
1, P, (E1, E

′
1)); pc1)

From (4),κ2 = σ2, c, P,E2 with
(III.4) σ1 ≈L σ2

(III.5) E1 ≈L E2

From (1)-(5), (III.4), (III.2), and Lemma 19,
(III.6) G,V, d σG2 , σ2, c

α2−→pc2
σG4 , σ

′
2, c
′
2, E

′
2 with

σG3 ≈L σG4
α1 ≈L α2

(III.7) σ′1 ≈L σ′2
(III.8) c′1 ≈L c′2
(III.9) E′1 ≈L E′2

Subcase i: c′2 6= 〈 | 〉
By assumption and from (III.6),

(i.1) LC may be applied , resulting in trace G,P,V, d ` σG2 , κ2
α2−→pc2

σG4 , ks2

From (III.6) and (i.1),
(i.2) ks2 = (V; (σ′2, c

′
2, P, (E2, E

′
2)); pc2)

From (1), (5), (III.3), (i.2), and (III.7)-(III.9),
ks1 ≈L ks2

Subcase ii: c′2 = 〈cH |cL〉
By assumption and from (III.6),

(ii.1) P-F may be applied , resulting in trace G,P,V, d ` σG2 , κ2
α2−→pc2

σG4 , ks2

From (III.6) and (ii.1),
(ii.2) ks2 = (V; (σ′2, cL, P, (E2, E

′
2));L) :: (V;σ′2, cH , P, (E2, E

′
2);H)

From (1), (III.3), (ii.2), and (III.7)-(III.9),
ks1 ≈L ks2

Case IV: E ends in SME-L or SME-LTOH
The conclusion follows from the IH

Case V: E ends in SME-H
This contradicts (1), so this case holds vacuously.

Case VI: E ends in P-L
The proof for this case is similar to Case III

Lemma 19 (Strong One-Step - Command Semantics). If pc1, pc2 v L and G,V, d σG1 , σ1, c
α1−→pc1

σG3 , σ
′
1, c1, E1,

with α1 6= declassify(ι, v), and σG1 ≈L σG2 , and σ1 ≈L σ2, then G,V, d σG2 , σ2, c
α2−→pc2

σG4 , σ
′
2, c2, E2 with

σG3 ≈L σG4 , σ′1 ≈L σ′2, α1 ≈L α2, c1 ≈L c2, and E1 ≈L E2.

Proof.
By induction on the structure of E :: G,V, d σG1 , σ1, c

α−→pc1
σG3 , σ2, c1, E1

By assumption,
(1) α1 6= declassify(ι, v)
(2) σG1 ≈L σG2
(3) σ1 ≈L σ2

(4) pc1, pc2 v L

Case I: E ends in SKIP
This case is straightforward.

Case II: E ends in SEQ or SEQ-F
The conclusion follows from the IH. If the result is faceted, SEQ-F is applied. Otherwise, SEQ is applied.

Case III: E ends in DECLASSIFY-L or DECLASSIFY-NC
By assumption, α1 = declassify(ι, v), which contradicts (3), so this case holds vacuously.

Case IV: E ends in DECLASSIFY-H
By assumption, pc1 = H , which contradicts (2), so this case holds vacuously.

Unstructured EH storage:
Case U.I: E ends in ASSIGN-L

By assumption,
(U.I.1) x 6∈ σG1
(U.I.2) σG3 = σG1
(U.I.3) c = x := e
(U.I.4) c1 = skip
(U.I.5) E1 = ·
(U.I.6) α1 = •
(U.I.7) G,V, σG1 , σ1 ` e ⇓Vpc1

v1

(U.I.8) σ′1 = assignV(σ1, pc1, x, v1)
From (3), (4), (U.I.7), and Lemma 36.U (Requirement (E1)),

(U.I.9) G,V, σG2 , σ2 ` e ⇓Vpc2
v2 with

(U.I.10) v1 'L v2

From U.I,
(U.I.11) x 6∈ σG2

Applying ASSIGN-L on (U.I.7) and (U.I.10) produces trace
(U.I.12) G,V, d σG2 , σ2, x := e

•−→pc2
σG4 , σ

′
2, skip, · where

(U.I.13) σ′2 = assignV(σ2, pc2, x, v2)
From (2), (4), (U.I.8), (U.I.13), and Lemma 44.U (Requirement (V3)),
σ′1 ≈L σ′2

From (U.I.12),
(U.I.14) σG4 = σG2
(U.I.15) α2 = •
(U.I.16) c2 = skip
(U.I.17) E2 = ·

From (2), (U.I.2), and (U.I.14),
σG3 ≈L σG4

From (U.I.6) and (U.I.15),
α1 ≈L α2

From (U.I.4) and (U.I.16),
c1 ≈L c2

From (U.I.5) and (U.I.17),
E1 ≈L E2

Case U.II: E ends in ASSIGN-G
The proof is similar to Case U.I

Case U.III: E ends in IF-TRUE
By assumption,

(U.III.1) c = if e then c′1 else c′2
(U.III.2) c1 = c′1
(U.III.3) E1 = ·
(U.III.4) σG3 = σG1
(U.III.5) σ′1 = σ1

(U.III.6) α1 = •
(U.III.7) G,V, σG1 , σ1 ` e ⇓Vpc1

v1 with
(U.III.8) valOf(v1) = true

From (2)-(4), (U.III.7), and Lemma 36.U (Requirement (E1)),
(U.III.9) G,V, σG2 , σ2 ` e ⇓pc2

v2 with
(U.III.10) v2 'L true

From (U.III.8) and (U.III.10),
(U.III.11) valOf(v2) = true or

(U.III.12) v2 = 〈 |true〉

Subcase i: (U.III.11) is true
Applying IF-TRUE produces trace

(i.1) G,V, d σG2 , σ2, x := e
•−→pc2

σG2 , σ2, c
′
1, ·

From (i.1),
(i.2) σG4 = σG2
(i.3) σ′2 = σ2

(i.4) c2 = c′1
(i.5) E2 = ·
(i.6) α2 = •

From (2), (U.III.4), and (i.2),
σG3 ≈L σG4

From (3), (U.III.5), and (i.3),
σ′1 ≈L σ′2

From (U.III.6) and (i.6),
α1 ≈L α2

From (U.III.2) and (i.4),
c1 ≈L c2

From (U.III.3) and (i.5),
E1 ≈L E2

Subcase ii: (U.III.12) is true
From (U.III.12) and since facets are only produced when the pc = ·, it must be the case that pc2 = ·
Applying IF-F produces trace G,V, d σG2 , σ2, x := e

•−→pc2
σG2 , σ2, 〈cH |c′1〉, ·

The rest of the proof proceeds similarly to Subcase i.

Case U.IV: E ends in IF-FALSE, WHILE-TRUE, WHILE-FALSE, IF-F, WHILE-F, IF-F, or WHILE-F
The proof for this case is similar to Case U.III

Case U.V: E ends in OUTPUT
The proof for this case is similar to previous cases. It uses Lemma 36.U (Requirement (E1)) to show that the
outputs are (strong) equivalent.

Case U.VI: E ends in ASSIGN-D
The proofs are similar to Case U.I except that Lemma 80.U (Requirement (EH4)) is used.

Case U.VII: E ends in CREATEELEM
The proof for this case is similar to previous cases. It uses Lemma 36.U (Requirement (E1)) to show that the
arguments are (strong) equivalent and Lemma 81.U (Requirement (EH4)) to show that σG3 ≈L σG4

Case U.VIII: E ends in ADDEH
The proof for this case is similar to previous cases. It uses Lemma 81.U (Requirement (EH4)) to show that
σG3 ≈L σG4

Case U.IX: E ends in TRIGGER
The proof for this case is similar to previous cases. It uses Lemma 36.U (Requirement (E1)) to show that the
arguments are (strong) equivalent and Lemma 63 (Requirement (EH1)) to show that E1 ≈L E2

Tree-structured EH storage:
Case T.I: E ends in ASSIGN-L

The proof for this case is similar to Case U.I except that Lemma 36.T is used to show that the values being
assigned are equivalent and Lemma 44.T is used to show that the stores are equivalent after assignment.

Case T.II: E ends in ASSIGN-G
The proof is similar to Case T.1

Case T.III: E ends in IF-TRUE
The proof for this case is similar to Case U.III except that Lemma 36.T is used to show that the branch is
equivalent.

Case T.IV: E ends in IF-FALSE, WHILE-TRUE, WHILE-FALSE, IF-F, WHILE-F, IF-F, or WHILE-F

The proof for this case is similar to Case T.III

Case T.V: E ends in OUTPUT
The proof for this case is similar to previous cases. It uses Lemma 36.T (Requirement (E1)) to show that the
outputs are (strong) equivalent.

Case T.VI: E ends in ASSIGN-D
The proofs are similar to Case T.I except that Lemma 80.T (Requirement (EH4)) is used for ASSIGN-D.

Case T.VII: E ends in CREATECHILD or CREATESIBLING
The proofs for these cases are similar to previous cases. They use Lemma 36 (Requirement (E1)) to show that the
arguments are (strong) equivalent and Lemma 81.T (Requirement (EH4)) to show that σG3 ≈L σG4

Case T.VIII: E ends in ADDEH
The proof for this case is similar to previous cases. It uses Lemma 81.T (Requirement (EH4)) to show that
σG3 ≈L σG4

Case T.IX: E ends in TRIGGER
The proof for this case is similar to previous cases. It uses Lemma 36 (Requirement (E1)) to show that the
arguments are (strong) equivalent and Lemma 63 (Requirement (EH1)) to show that E1 ≈L E2

Lemma 20. If v1 ≈L v2 and pc1, pc2 v L, with outConditionV(P, ch(v1), pc1) = true, then
outConditionV(P, ch(v2), pc2) = true

Lemma 21. If v1 ≈L v2 and pc1, pc2 v L, with outConditionV(P, ch(v1), pc1) = false, then either:
1) outConditionV(P, ch(v2), pc2) = false, or
2) outConditionV(P, ch(v2), pc2) = true and v2 = 〈 | 〉

Lemma 22. If v1 ≈L v2 and pc1, pc2 v L with αl,1 = output(P, ch(v1), pc1) and αl,2 = output(P, ch(v2), pc2), then
αl,1 ≈L αl,2

Requirement (WT4) Strong one-step (Weak Secrecy)

Lemma 23 (Strong One-step, Weak Secrecy). If K1 ≈L K2 and T1 = G,P ` K1
αl,1
=⇒ K ′1 with T1 ↓L= α′, ¬rlsA(T1),

and prog(K2), wkT(K2, α
′), then ∃K ′2, T2, αl,2 s.t. T2 = G,P ` K2 =⇒∗ K ′2 with T1 ≈L T2 and K ′1 ≈L K ′2

Proof.
We examine each case of E :: T ′1 = G,P ` K1

αl,1
=⇒ K ′1

By assumption,
(1) K1 ≈L K2

(2) T1 ↓L= α′

(3) ¬rlsA(T1)
(4) prog(K2)
(5) wkT(K2, α

′)
From (1),

(6) σ1 ≈L σ2

(7) ks1 ≈L ks2

Case I: E ends in I-NR1 or I-NR2
In both of these cases T1 ↓L= · or T1 ↓L= rls(...).
This contradicts (2) and (3), so this case holds vacuously.

Case II: E ends in I-R-DIFF or I-R-SAME
In both of these cases, rlsA(T1)
This contradicts (2), so this case holds vacuously.

Case III: E ends in I-L
By assumption,

(III.1) P(αl) = L
(III.2) σ′1 = σ1

(III.3) G,P, σ1 ` ·; lookupEH(id .Ev(v)) ;· ks
′
1

Subcase i: consumer(K2)
By assumption and from (III.1),

(i.1) I-L may be applied to K2 with input id .Ev(v), producing trace T2 = G,P ` K2
id.Ev(v)

=⇒ K ′2
From (i.1),

(i.2) G,P, σ2 ` ·; lookupEHAll(id .Ev(v)) ;· ks
′
2

(i.3) σ′2 = σ2

By assumption and from (III.1), (i.1), and projection for execution traces,
T1 ↓L= T2 ↓L

From (6), (III.2), and (i.3),
(i.4) σ′1 ≈L σ′2

From (III.3), (i.2), (6) and Lemma 56 (Requirement (EH1)),
(i.5) ks ′1 ≈L ks ′2

From (i.4) and (i.5),
K ′1 ≈L K ′2

Subcase ii: ¬consumer(K2)
From (5) and from αl,1 = id .Ev(v),

(ii.1) ∃T ′,Klp s.t. T ′ = G,P ` K2

τ

=⇒∗ KC where
(ii.2) cstate(KC) and
(ii.3) T ′ ↓L= ·

From (ii.1), (ii.3) and Lemma 12 (Requirement (WT2)),
(ii.4) K2 ≈L KC

The rest of the proof proceeds the same as Subcase i.

Case IV: E ends in O
By assumption,

(IV.1) ks1 = (V1;κ1; pc1) :: ks ′′1

(IV.2) ∃E ′ :: G,P,V1, d ` σ1, κ1
ch(v1)−→ pc1

σ′1, ks
′′′
1

(IV.3) ks ′1 = ks ′′′1 :: ks ′′1
(IV.4) producer(κ1)
(IV.5) outConditionV1(P, ch(v1), pc1) = true
(IV.6) αl,1 = output(P, ch(v1), pc1)

From (IV.6) and the definition of output: if pc1 = H , then T1 ↓L= ·, which contradicts (2). Therefore,
(IV.7) pc1 v L

By assumption and from (IV.7) and (7),
(IV.8) ks2 = (V2;κ2; pc2) :: ks ′′2

Subcase i: pc2 v L
By assumption and from (IV.1), (IV.8), (IV.7), and (7),

(i.1) V1 = V2

(i.2) κ1 ≈L κ2

(i.3) ks ′′1 ≈L ks ′′2
By assumption and from (5),

(i.4) wkK(κ2, α1)
By assumption and from (i.1), (IV.2), (IV.7), (3), (i.4), (6), (i.2), and Lemma 25,

(i.5) ∃D′ :: G,P,V2, d ` σ2, κ2
α2−→pc2

σ′2, ks
′′′
2 with

(i.6) pc2 v L
(i.7) σ′1 ≈L σ′2
(i.8) ks ′′′1 ≈L ks ′′′2
(i.9) α2 ≈L ch(v1)

From (i.8),
(i.10) α = ch(v2) with
(i.11) v1 ≈L v2

By assumption and from (IV.7), (i.11), (IV.5), (i.1), and Lemma 20 (Requirement (T4)),
(i.12) outConditionV2(P, ch(v2), pc2) = true

By assumption and from (i.3) and (i.11),
(i.13) O may be applied to K2, producing trace T2 = G,P ` K2

α2,l
=⇒ K ′2

From (i.14), (IV.8), and (i.5),
(i.14) ks ′2 = ks ′′′2 :: ks ′′2

From (IV.3), (i.14), (i.3), and (i.8),
(i.15) ks ′1 ≈L ks ′2

From (i.6), and (i.15),
K ′1 ≈L K ′2

From (i.13),
(i.16) αl,2 = output(P, ch(v2), pc2)

By assumption and from (i.11), (IV.7), (IV.6), (i.16), and Lemma 22 (Requirement (T4)),
(i.17) αl,1 ≈L αl,2

From (i.17) and the definition of equivalence for execution traces,
T1 ≈L T2

Subcase ii: pc2 6v L
From (5) and (IV.6), ∃T ′,Klp s.t.

(ii.1) T ′ = G,P ` K2 =⇒∗ Klp

(ii.2) lowProducer(Klp) and
(ii.3) T ′ ↓L= ·

From (ii.1), (ii.3) and Lemma 12 (Requirement (WT2)),
(ii.4) K2 ≈L Klp

The rest of the proof proceeds the same as Subcase i. Trace equivalence uses (ii.3) and state equivalence uses
(ii.4).

Case V: E ends in O-SKIP
By assumption,

(V.1) ks1 = (V1;κ1; pc1) :: ks ′′1

(V.2) ∃E ′ :: G,P,V, d ` σ1, κ1
ch(v1)−→ pc1

, σ′1, ks
′′′
1

(V.3) producer(κ)
(V.4) outConditionI(P, ch(v1), pc1) = false
(V.5) αl,1 = (•, pc1)

If pc1 = H , then T1 ↓L= ·, which contradicts (2). Therefore,
(V.6) pc1 v L

By assumption and from (V.6) and (7),
(V.7) ks2 = (V2;κ2; pc2) :: κ′′2

Subcase i: pc2 v L
By assumption and from (V.1), (V.6), (V.7), and (7),

(i.1) V1 = V2

(i.2) κ1 ≈L κ2

(i.3) ks ′′1 ≈L ks ′′2
By assumption and from (V.2), (V.6), (3), (6), (i.1), (i.2) and Lemma 18,

(i.4) ∃D′ :: G,P,V2, d ` σ2, κ2
α−→pc2

σ′2, ks
′′′
2 with

(i.5) pc2 v L
(i.6) σ′1 ≈L σ′2
(i.7) ks ′1 ≈L ks ′2
(i.8) α ≈L ch(v1)

From (i.8),
(i.9) α = ch(v2) with
(i.10) v1 ≈L v2

From (i.10), (V.4), (V.6), (i.5), and Lemma 21 (Requirement (T4)),
(i.11) outConditionI(P, ch(v2), pc2) = false or
(i.12) outConditionI(P, ch(v2), pc2) = true and v2 = 〈 | 〉

Subsubcase a: (i.11) is true
By assumption and from (i.4) and (i.11),

(a.1) O-SKIP may be applied to K2, producing trace T2 = G,P ` K2
(•,pc2)
=⇒ K ′2

From (i.6), (i.7), and (a.1),
K ′1 ≈L K ′2

From (a.1),
(a.2) αl,2 = (•, pc2)

From (V.5), (V.6), (i.5), (a.2), and the definition of equivalence for execution traces,
T1 ≈L T2

Subsubcase b: (i.12) is true
By assumption and from (i.4) and (i.12),

(b.1) O may be applied to K2, producing trace T2 = G,P ` K2
αl,2
=⇒ K ′2

From (i.6), (i.7), and (b.1),

K ′1 ≈L K ′2
From (V.4), (V.6), and the definition of output, either:

(b.2) pc1 = L and P(ch) = H or
(b.3) pc1 = · and v1 ↓P(ch)= ·

By assumption and from the structure of the operational semantics,
(b.4) pc2 = · and V2 = MF

If (b.2) is true, then from (b.4), (i.12), and the definition of output,
(b.5) output(P, ch(v2), pc2) = 〈ch(getFacet(v2, H))|•〉

If (b.3) is true, then from (b.4) and (i.12),
(b.6) P(ch) = H because otherwise outCondition would have been false

From (b.6) and by the same argument as (b.5),
(b.7) output(P, ch(v2), pc2) = 〈ch(getFacet(v2, H))|•〉

From (V.5), (V.6), (b.5), (b.7), and the definition of equivalence for execution traces,
T1 ≈L T2

Subcase ii: pc2 6v L
The proof for this case uses similar logic as Subcase IV.b to reach the assumptions for Subcase i, at which
point the proof proceeds the same as Subcase i.

Case VI: E ends in O-OTHER
The proof for this case is similar to Case V. α2 = • follows from Lemma 25, which tells us that α1 ≈L α2 and
α1 = • by assumption.

Case VII: E ends in O-NEXT
The proof for this case is straightforward. From (7), ks1 = (V1;κ1; pc1) :: ks ′′1 and ks2 = (V2;κ2; pc2) :: ks ′′2 with
V1 = V2 and κ1 ≈L κ2 and ks ′′1 ≈L ks ′′2 when pc2 v L. Then, from κ1 ≈L κ2, consumer(κ2), and O-NEXT can be
applied to K2, which gives T1 ≈L T2. K ′1 ≈L K ′2 follows from ks ′′1 ≈L ks ′′2 .
When pc2 6v L, the proof is similar to Case IV.b.

Definition 24. wkK(κ, α) for the mid-level semantics is similar to wkT for execution traces: it says that when α = br(b),
the mid-level semantics can take a step from κ producing the same action.

Lemma 25 (Strong One-Step - Single Execution Semantics, Weak Secrecy). If G,P,V, d `w σG1 , κ1
α1−→pc1

σG3 , ks1

with pc1 v L, α1 6= declassify(ι, v), σG1 ≈L σG2 , κ1 ≈L κ2, wkK(κ2, α1) and pc2 v L, then G,P,V, d `w
σG2 , κ2

α2−→pc2
σG4 , ks2 with σG3 ≈L σG4 , ks1 ≈L ks2, and α1 ≈L α2

Proof (sketch): The proof is the same as for Lemma 18 (Requirement (T4)) except that it uses Lemma 27 instead
of Lemma 19. The proof uses Lemma 66 (Requirement (EH2)) for the LC case. wkK(κ2, α1) is used to show
wkC(c2, σ

G
2 , σ2, α1) for the command semantics.

Definition 26. wkC(c, σG, σ, α) for the command semantics is similar to wkT for execution traces and wkK for mid-
level semantics: it says that when α = br(b), the command c can take a step under σG and σ, producing the same
action

Lemma 27 (Strong One-Step - Command Semantics, Weak Secrecy). If pc1, pc2 v L and G,V, d w σG1 , σ1, c
α1−→pc1

σG3 , σ
′
1, c1, E1, with α1 6= declassify(ι, v), wkC(c, σG2 , σ2, α1) and σG1 ≈L σ2, and σ1 ≈L σG2 , then G,V, d w

σG2 , σ2, c
α2−→pc2

σG4 , σ
′
2, c2, E2 with σG3 ≈L σG4 , σ′1 ≈L σ′2, α1 ≈L α2, c′1 ≈L c′2, and E1 ≈L E2.

Proof.
By induction on the structure of E :: G,V, d w σG1 , σ1, c

α1−→pc1
σG3 , σ

′
1, c1, E1,

The proof is similar to the one for Lemma 19 (Requirement (T4)). The most noteworthy differences are shown below:

By assumption,
(1) pc1, pc2 v L
(2) α1 6= declassify(ι, v)
(3) wkC(c, σG2 , σ2, α1)
(4) σG1 ≈L σ2

(5) σ1 ≈L σ2

Case I: E ends in IF-TRUE
The cases for IF-FALSE, WHILE-TRUE, and WHILE-FALSE when V = TT are similar.
The proofs for the cases where V 6= TT are the same as for Lemma 19 since the rules are unchanged in those cases.
By assumption,

(I.1) c = if e then c′1 else c′2

(I.2) c1 = c′1
(I.3) E1 = ·
(I.4) σG3 = σG1
(I.5) σ′1 = σ1

(I.6) α1 = brOutput((true, l1))
(I.7) G,V, σG1 , σ1 ` e ⇓TTpc1

(true, l1)
From (1), (4), (5), (I.7), and Lemma 37 (Requirement (WE1)),

(I.8) G,V, σG2 , σ2 ` e ⇓TTpc2
v2 with

(I.9) v2 ≈L (true, l1)
From (I.9),

(I.10) v2 = (true, l2) and l1 = l2 or
(I.11) v2 = (false, H) and l1 = H

Subcase i: (I.10) is true
Applying IF-TRUE produces trace

(i.1) G,V, d w σG2 , σ2, x := e
α2−→pc2

σG2 , σ2, c
′
1, ·

From (i.1),
(i.2) σG4 = σG2
(i.3) σ′2 = σ2

(i.4) c2 = c′1
(i.5) E2 = ·
(i.6) α2 = brOutput((true, l2))

From (4), (I.4), and (i.2),
σG3 ≈L σG4

From (5), (I.5), and (i.3),
σ′1 ≈L σ′2

From (I.10), (I.6), (i.6), and the definition of brOutput,
(i.7) If l1 = l2 = L, then α1 = α2 = •
(i.8) Otherwise, l1 = l2 = H and α1 = α2 = br(true)

From (i.7) and (i.8),
α1 ≈L α2

From (I.2) and (i.4),
c1 ≈L c2

From (I.3) and (i.5),
E1 ≈L E2

Subcase ii: (I.11) is true
Applying IF-FALSE produces trace

(ii.1) G,V, d σG2 , σ2, x := e
α2−→pc2

σG2 , σ2, c2, ·
From (ii.1) and (I.11),

(ii.2) α2 = brOutput((false, H))
From (I.11), (ii.2), (I.6), and the definition of brOutput,

(ii.3) α1 = br(true)
(ii.4) α2 = br(false)

But (ii.3) and (ii.4) contradicts (3), so this case holds vacuously

Case II: E ends in ASSIGN-G
The cases for ASSIGN-D and CREATEELEM when V = TT are similar to the case from Lemma 19
(Requirement (T4)), except that it uses Lemma 45 (Requirement (WV3)) instead of Lemma 44 (Requirement (V3))
for ASSIGN-G, Lemma 82 (Requirement (WEH4)) instead of
Lemma 80 (Requirement (EH4)) for ASSIGN-D, and Lemma 83 (Requirement (WEH4)) instead of Lemma 81
(Requirement (EH4)) for CREATEELEM.
The proofs for the cases where V 6= TT are the same as for Lemma 19 (Requirement (T4)) since the rules always
return • in those cases, meaning they are effectively the same rules.

Requirement (T5) Weak one-step

Lemma 28 (Weak One-Step). If T1 = G,P ` K1
αl,1
=⇒ K ′1 and T2 = G,P ` K2

αl,2
=⇒ K ′2, with T1 ≈L T2, K1 ≈L K2,

T1 ↓L 6= ·, and T2 ↓L 6= ·, then K ′1 ≈L K ′2
Proof.
We examine each case of E :: G,P ` K1

αl,1
=⇒ K ′1

Denote D :: G,P ` K2
αl,2
=⇒ K ′2

By assumption,
(1) K1 ≈L K2

(2) T1 ≈L T2

(3) T1 ↓L 6= ·
(4) T2 ↓L 6= ·

From (1),
(5) σ1 ≈L σ2

(6) ks1 ≈L ks2

(7) R1 = R2

(8) d1 = d2

Case I: E ends in I-NR1
By assumption,

(I.1) R1 = (ρ1,D) with
(I.2) D(ρ1, id .Ev(v)) = (ρ′1, r, •)
(I.3) d′1 = update(d1, r)
(I.4) R′1 = (ρ′1,D)
(I.5) G,P, σ1 ` ·; lookupEHAll(id .Ev(v)) ;H ks ′1
(I.6) σ′1 = σ1

From (I.1) and (3),
(I.7) T1 ↓L= rls(ρ′1, r, •)

From (2) and (I.7),
(I.8) D must end in I-NR1 with some input id ′.Ev ′(v′) producing declassification ρ′1, r, •

From (I.8),
(I.9) R2 = (ρ2,D) with
(I.10) D(ρ2, id .Ev(v)) = (ρ′1, r, •)
(I.11) d′2 = update(d2, r)
(I.12) R′2 = (ρ′1,D)
(I.13) G,P, σ2 ` ·; lookupEHAll(id ′.Ev ′(v′)) ;H ks ′2
(I.14) σ′2 = σ2

From (I.4) and (I.12),
(I.15) R′1 = R′2

From (8), (I.3), and (I.11),
(I.16) d′1 = d′2

From (5), (I.6), and (I.14),
(I.17) σ′1 = σ′2

From (I.5), (I.13), and Lemma 66,
(I.18) ks ′1 ≈L ·
(I.19) ks ′2 ≈L ·

From (I.18) and (I.19),
(I.20) ks ′1 ≈L ks ′2

From (I.15)-(I.17) and (I.20),
K ′1 ≈L K ′2

Case II: E ends in I-NR2
By assumption, T1 ↓L= ·, which contradicts (3), so this case holds vacuously.

Case III: E ends in I-R-DIFF
By assumption,

(III.1) R1 = (ρ1,D) with D(ρ1, id .Ev(v)) = (ρ′1, r, v
′)

(III.2) d′1 = update(d1, r)
(III.3) R′1 = (ρ′1,D)
(III.4) G,P, σ1 ` ·; lookupEHAt(id .Ev(v′)) ;L ks ′′1
(III.5) G,P, σ1 ` ks ′′1 ; lookupEHAt(id .Ev(v)) ;H κ′1
(III.6) σ′1 = σ1

From (III.1),
(III.7) T1 ↓L= rls(id .Ev(v′))

From (2) and (III.7),
(III.8) D must end in I-R-DIFF or I-R-SAME with input αl,2 s.t. T2 ↓L= rls(ρ′1, r, id .Ev(v′))

Subcase i: D ends in I-R-DIFF
By assumption,

(i.1) D(ρ2, id .Ev(v′)) = (ρ′1, r,)
(i.2) d′2 = update(d2, r)
(i.3) R′2 = (ρ′1,D)
(i.4) G,P, σ2 ` ·; lookupEHAt(id .Ev(v′)) ;L ks ′′2
(i.5) G,P, σ2 ` ks ′′2 ; lookupEHAt(αl,2) ;H κ′2
(i.6) σ′2 = σ2

From (III.3) and (i.3),
(i.7) R′1 = R′2

From (8), (III.2), and (i.2),
(i.8) d′1 = d′2

From (5), (III.4), (i.4), and Lemma 56 (Requirement (EH1)),
(i.9) ks ′′1 ≈L ks ′′2

From (III.5), (i.5), and Lemma 66 (Requirement (EH2)),
(i.10) ks ′′1 ≈L ks ′1
(i.11) ks ′′2 ≈L ks ′2

From (i.9)-(i.11),
(i.12) ks ′1 ≈L ks ′2

From (5), (III.6), and (i.6),
(i.13) σ′1 ≈L σ′2

From (i.7), (i.8), (i.12), and (i.13),
K ′1 ≈L K ′2

Subcase ii: D ends in I-R-SAME
By assumption,

(ii.1) D(ρ2, id .Ev(v′)) = (ρ′1, r,)
(ii.2) d′2 = update(d2, r)
(ii.3) R′2 = (ρ′1,D)
(ii.4) G,P, σ2 ` ·; lookupEHAll(id .Ev(v′)) ;· ks

′
2

(ii.5) σ′2 = σ2

From (III.3) and (ii.3),
(ii.6) R′1 = R′2

From (8), (III.2), and (ii.2),
(ii.7) d′1 = d′2

From (5), (ii.4), (III.4), and Lemma 56 (Requirement (EH1)),
(ii.8) ks ′′1 ≈L ks ′2

From (III.5), and Lemma 66 (Requirement (EH2)),
(ii.9) κ′′1 ≈L κ′1

From (ii.8) and (ii.9),
(ii.10) κ′1 ≈L κ′2

From (5), (III.6), and (ii.5),
(ii.11) σ′1 ≈L σ′2

From (ii.6), (ii.7), (ii.10), and (ii.11),
K ′1 ≈L K ′2

Case IV: E ends in I-R-SAME or I-L
The proof for these cases are similar to Case III

Case V: E ends in O
By assumption,

(V.1) ks1 = (V;κ1; pc1) :: κ′′1
(V.2) producer(κ1)

(V.3) G,P,V, d ` σ1, κ1
ch(v1)−→ pc1

σ′1, ks
′′′
1

(V.4) αl,1 = output(P, ch(v1), pc1)
(V.5) outConditionV(P, ch(v1), pc1) = true
(V.6) ks ′1 = ks ′′′1 :: ks ′′1

From (3) and the definition of trace projection,
(V.7) pc1 v L or
(V.8) P(ch) = L or
(V.9) αl,1 = 〈 | 〉 and getFacet(αl,1, L) 6= ·

If (V.8) is true, then from (V.3), (V.4), and the definition of output and outCondition: pc1 v L
If (V.9) is true, then from (V.3), (V.4), and the definition of output and outCondition: pc1 = ·

Then from (V.7)-(V.9),
(V.10) pc1 v L

From (6), (V.1), and (V.10),
(V.11) ks2 = (V2;κ2; pc2) :: ks ′′2

From the operational semantics, either
(V.12) D ends in O or
(V.13) αl,2 = (, pc2)

If (V.12) is true, then from (2) and by a similar argument to above: pc2 v L
If (V.13) is true, then from (4) and the definition of trace projection: pc2 v L

Then from (V.12) and (V.13),
(V.14) pc2 v L

From (6), (V.1), (V.11), (V.10), and (V.14),
(V.15) V2 = V
(V.16) κ1 ≈L κ2 and
(V.17) ks ′′1 ≈L ks ′′2

Subcase i: D ends in O
By assumption,

(i.1) ∃D′ :: G,P,V, d ` σ2, κ2
ch(v2)−→ pc2

σ′2, ks
′′′
2

(i.2) ks ′2 = ks ′′2 :: ks ′′′2
From (V.3), (i.1), (5), (V.16), and Lemma 29,

(i.3) σ′1 ≈L σ′2
(i.4) ks ′′′1 ≈L ks ′′′2

From (V.6), (i.2), (i.4), and (V.17),
(i.5) ks ′1 ≈L ks ′2

From (i.3) and (i.5),
K ′1 ≈L K ′2

Subcase ii: D ends in O-SKIP or O-OTHER
The proofs for these cases are similar to Subcase i.

Subcase iii: D ends in O-NEXT
By assumption, consumer(κ2)
But this contradicts (IV.2) and (IV.16), so this case holds vacuously.

Case VI: E ends in O-SKIP or O-OTHER
The proof for this case is similar to the proof for Case IV. The biggest difference is that pc1 v L follows from (3)
and the definition of trace projection.

Case VII: E ends in O-NEXT
By assumption,

(VII.1) ks1 = (V;κ1; pc1) :: ks ′1
(VII.2) consumer(κ1)
(VII.3) σ′1 = σ1

(VII.4) αl,1 = (•, pc1)
From (3), (VII.4), and the definition of trace projection,

(VII.5) pc1 v L
From (6), (VII.1), and (VII.5),

(VII.6) ks2 = (V2;κ2; pc2) :: ks ′′2
From the operational semantics, either

(VII.7) D ends in O or
(VII.8) αl,2 = (, pc2)

If (VII.7) is true, then from (2) and by a similar argument to the one in Case V: pc2 v L
If (VII.8) is true, then from (4) and the definition of trace projection: pc2 v L

Then, from (VII.7) and (VI.8),
(VII.9) pc2 v L

From (6), (VII.1), (VII.6), (VII.5), and (VII.9),
(VII.10) V2 = V
(VII.11) κ1 ≈L κ2

(VII.12) ks ′1 ≈L ks ′′2
From (VII.2) and (VII.11),

(VII.13) consumer(κ2)
From (VII.13),

(VII.14) D must end in O-NEXT
From (VII.14) and (VII.6),

(VII.15) σ′2 = σ2

(VII.16) ks ′2 = ks ′′2
From (5), (VII.3), and (VII.15),

(VII.17) σ′1 ≈L σ′2
From (6), (VII.12), and (VII.16),

(VII.18) ks ′1 ≈L ks ′2
From (VII.17) and (VII.18),
K ′1 ≈L K ′2

Lemma 29 (Weak One-Step - Single Execution Semantics). If G,P,V, d ` σG1 , κ1
α1−→pc1

σG3 , ks1, and G,P,V, d `
σG2 , κ2

α2−→pc2
σG4 , ks2 with pc1, pc2 v L, σG1 ≈L σG2 , and κ1 ≈L κ2, then σG3 ≈L σG4 and ks1 ≈L ks2

Proof.
By induction on the structure of E :: G,P,V, d ` σG1 , κ1,

α1−→pc1
σG3 , ks1

By assumption
(1) σG1 ≈L σG2
(2) κ1 ≈L κ2

(3) pc1, pc2 v L
From (2),

(4) σ1 ≈L σ2

(5) c1 = c2
(6) s1 = s2

(7) E1 ≈L E2

Denote
D :: G,P,V, d,` σG2 , κ2

α2−→pc2
σG4 , ks2

Case I: E ends in LC
By assumption,

(I.1) c1 = skip
(I.2) s1 = P
(I.3) E1 6= ·
(I.4) σG3 = σG1
(I.5) I,P,V, σG1 ` (V; (σ1, skip, C, ·); pc1); lookupEHs(E1) ;pc1

ks1

From (3), (5)-(7) and (I.1)-(I.3),
(I.6) c2 = c1 = skip
(I.7) s2 = s1 = P
(I.8) E2 ≈L E1

Subcase i: E2 = ·
By assumption,

(i.1) The last rule applied to D must have been PTOC
From (i.1),

(i.2) σG4 = σG2
(i.3) ks2 = (V; (σ2; skip, C, ·); pc2)

By assumption and from (I.8),
(i.4) E1 ≈L ·

From (i.4), (I.5), and Lemma 66 (Requirement (EH2)),
(i.6) ks1 ≈L (V; (σ1, skip, C, ·); pc1)

From (3), (4), (i.3), and (i.6),
ks1 ≈L ks2

From (1), (I.4), and (i.2),
σG3 ≈L σG4

Subcase ii: E2 6= ·
By assumption,

(ii.1) The last rule applied to D must have been LC
From (ii.1),

(ii.2) σG4 = σG2
(ii.3) G,P,V, σG2 ` (V; (σ2, skip, C, ·); pc2); lookupEHs(E2) ;pc2

ks2

From (1), (I.4), and (i.2),
σG3 ≈L σG4

From (1), (I.5), (ii.3), (4), (7), and Lemma 56 (Requirement (EH1)),
ks1 ≈L ks2

Case II: E ends in PTOC
The proof for this case is similar to Case I

Case III: E ends in P
By assumption and from the structure of the operational semantics,

(III.1) c1 6= skip
By assumption,

(III.2) s1 = P

(III.3) ∃E ′ :: G,P,V, d σG1 , σ1, c1
α1−→pc1

σG3 , σ
′
1, c
′
1, E

′′
1

(III.4) s′1 = P
(III.5) E′1 = (E1, E

′′
1)

(III.6) ks1 = (V; (σ′1, c
′
1, P, E

′
1); pc1)

From (3), (5), (6), (III.1), and (III.2),
(III.7) c2 6= skip
(III.8) s2 = P

From (III.7) and (III.8),
(III.9) D must end in P or P-F

From (III.9),
(III.10) ∃D′ :: G,P,V, d σG2 , σ2, c2

α2−→pc2
σG4 , σ

′
2, c
′
2, E

′′
2

From (1), (3)-(5), (III.3), (III.10), and Lemma 30,
σG3 ≈L σG4
(III.11) σ′1 ≈L σ′2
(III.12) c′1 ≈L c′2
(III.13) E′′1 ≈L E′′2

Subcase i: c′2 6= 〈 | 〉
By assumption,

(i.1) D must end in P
From (i.1),

(i.2) ks2 = (V; (σ′2, c
′
2, P, (E2, E

′′
2)); pc2)

From (III.6), (i.2), (III.11)-(III.13), and (III.5),
ks1 ≈L ks2

Subcase ii: c′2 = 〈cH |cL〉
By assumption and from (III.12),

(ii.1) cL = c′1
By assumption,

(ii.2) D must end in P-F
From (ii.2),

(ii.3) ks2 = (MF; (σ′2, cL, P, (E2, E
′′
2));L) :: (MF; (σ′2, cH , P, (E2, E

′′
2));H)

From (III.6), (ii.3), (III.11), (ii.1), (III.12), and (III.5),
ks1 ≈L ks2

Case IV: E ends in SME-L
By assumption,

(IV.1) ∃E ′ :: G,P,SME, d ` σG1 , κL,1
α1−→pc1

σG3 , κ
′
L,1

(IV.2) κ1 = κH,1, κL,1
(IV.3) ks1 = (SME; (κH,1;κ′L,1);L)
(IV.4) ¬consumer(κ′L,1)

From (2),
(IV.5) κ2 = κH,2, κL,2 with

(IV.6) κL,2 = κL,1
From (IV.6),

(IV.7) D ends in SME-L or SME-LTOH
From (IV.7),

(IV.8) ∃D′ :: G,P,SME, d ` σG2 , κL,2
α2−→pc2

σG4 , κ
′
L,2

IH on E ′, D′ gives
σG3 ≈L σG4
(IV.9) κ′L,1 ≈L κ′L,2

From (IV.9),
(IV.10) κ′L,1 = κ′L,2

From (IV.10) and (IV.4),
(IV.11) ¬consumer(κ′L,2)

From (IV.11),
(IV.12) D must end in SME-L

From (IV.12),
(IV.13) ks2 = (SME; (κH,2;κ′L,2);L)

From (IV.3) and (IV.13),
ks1 ≈L ks2

Case V: E ends in SME-LTOH
The proof for this case is similar to Case IV. The IH gives D must end in SME-LTOH.

Case VI: E ends in SME-H
By assumption, pc1 = H , which contradicts (3), so this case holds vacuously.

Case VII: E ends in P-L
The proof for this case is similar to Case III

Lemma 30 (Weak One-Step - Command Semantics). If G,V, d σG1 , σ1, c
α1−→pc1

σG3 , σ
′
1, c1, E1 and G,V, d

σG2 , σ2, c
α2−→pc2

σG4 , σ
′
2, c2, E2, with pc1, pc2 v L, σG1 ≈L σG2 , and σ1 ≈L σ2, then σG3 ≈L σG4 , σ′1 ≈L σ′2, c1 ≈L c2,

and E1 ≈L E2

Proof.
By induction on the structure of E :: G,V, d σG1 , σ1, c

α1−→pc1
σG3 , σ

′
1, c1, E1.

Denote D :: G,V, d σG2 , σ2, c
α2−→pc2

σG4 , σ
′
2, c2, E2

All of the cases are straightforward. We outline the proofs and show where additional lemmas are needed.

Case I: E ends in SKIP, OUTPUT
The proof for these cases are straightforward. No additional lemmas are used.

Case II: E ends in SEQ
D ends in SEQ if the resulting command is un-faceted, and SEQ-F if the command is faceted. The conclusion
follows from the IH, either way.

Case III: E ends in DECLASSIFY-H
By assumption, pc1 = H , which contradicts (2), so this case holds vacuously.

Unstructured EH storage:
Case U.I: E ends in ASSIGN-L or ASSIGN-G

The proofs for these cases use Lemma 36.U (Requirement (E1)) and Lemma 44.U (Requirement (V3)) to show
that the resulting stores are equivalent.

Case U.II: E ends in IF-TRUE, IF-FALSE, WHILE-TRUE, WHILE-FALSE, IF-F, or WHILE-F
Lemma 36.U (Requirement (E1)) gives that the expressions evaluate to (strong) equivalent values. If the result is
not faceted, D ends in the standard rule (IF-TRUE, IF-FALSE, etc.). Otherwise, if the value is faceted, D ends in
IF-F or WHILE-F.

Case U.III: E ends in DECLASSIFY-L or DECLASSIFY-NC
The proofs for these cases are similar to Case U.II. If pc2 = ·, then D must end in DECLASSIFY-NC. Otherwise, it
ends in DECLASSIFY-L. The equivalence of the resulting commands follows from the definition of setFacetC.

Case U.IV E ends in ASSIGN-D
The proofs for this case uses Lemma 36.U (Requirement (E1)) and Lemma 80.U (Requirement (EH4)) to show
that the resulting stores are equivalent.

Case U.V: E ends in CREATEELEM
The proof for this case uses Lemma 36.U (Requirement (E1)) and Lemma 81.U (Requirement (EH4)) to prove
that the resulting stores are equivalent.

Case U.VI: E ends in ADDEH
This case uses Lemma 81.U (Requirement (EH4)) to show that the resulting stores are equivalent.

Case U.VII: E ends in TRIGGER
This case uses Lemma 63 (Requirement (EH1)) to show that the event queues are equivalent and Lemma 36.U
(Requirement (E1)) to show that the arguments passed to the events are (strong) equivalent.

Tree structure EH storage:
Case T.I: E ends in ASSIGN-L or ASSIGN-G

The proofs for these cases use Lemma 36.T (Requirement (E1)) and Lemma 44.T (Requirement (V3))
to show that the resulting stores are equivalent.

Case T.II: E ends in IF-TRUE, IF-FALSE, WHILE-TRUE, WHILE-FALSE, IF-F, or WHILE-F
Lemma 36.T (Requirement (E1)) gives that the expressions evaluate to (strong) equivalent values. If the result is
not faceted, D ends in the standard rule (IF-TRUE, IF-FALSE, etc.). Otherwise, if the value is faceted, D ends in
IF-F or WHILE-F.

Case T.III: E ends in DECLASSIFY-L or DECLASSIFY-NC
The proofs for these cases are similar to Case T.II. If pc2 = ·, then D must end in DECLASSIFY-NC. Otherwise, it
ends in DECLASSIFY-L. The equivalence of the resulting commands follows from the definition of setFacetC.

Case T.IV E ends in ASSIGN-D
The proofs for this case uses Lemma 36.T (Requirement (E1)) and Lemma 80.T (Requirement (EH4)) to show that
the resulting stores are equivalent.

Case T.V: E ends in CREATECHILD or CREATESIBLING
The proofs for these cases use Lemma 36.T (Requirement (E1)) and Lemma 81.T (Requirement (EH4)) to prove
that the resulting stores are equivalent.

Case T.VI: E ends in ADDEH
This case uses Lemma 81.T (Requirement (EH4)) to show that the resulting stores are equivalent.

Case T.VII: E ends in TRIGGER
This case uses Lemma 63 (Requirement (EH1)) to show that the event queues are equivalent and Lemma 36.T
(Requirement (E1)) to show that the arguments passed to the events are (strong) equivalent.

Requirement (WT5) Weak one-step (Weak Secrecy)

Lemma 31 (Weak One-Step, Weak Secrecy). If T1 = G,P `w K1
αl,1
=⇒ K ′1 and T2 = G,P `w K2

αl,2
=⇒ K ′2, with

T1 ≈L T2, K1 ≈L K2, T1 ↓L 6= ·, and T2 ↓L 6= ·, then K ′1 ≈L K ′2

Proof.
We examine each case of E :: G,P `w K1

αl,1
=⇒ K ′1

Denote D :: G,P `w K2
αl,2
=⇒ K ′2

By assumption,
(1) K1 ≈L K2

(2) T1 ≈L T2

(3) T1 ↓L 6= ·
(4) T2 ↓L 6= ·

From (1),
(5) σ1 ≈L σ2

(6) ks1 ≈L ks2

Case I: E ends in an input rule

The proofs for these cases are the same as Lemma 28 (Requirement (T5)). They use Lemma 56
(Requirement (EH1)) and Lemma 66 (Requirement (EH2)).

Case II: E ends in and output rule and T1 ↓L= T2 ↓L= gw()
Note that the only rules to emit gw() are ASSIGN-G-H, ASSIGN-D-H, and CREATEELEM-H, which only run in
the H context. The proof for this case follows from Lemma 32.

Case III: E ends in an output rule O, O-SKIP, or O-OTHER and T1 ↓L= T2 ↓L 6= gw()
The proof for this case is similar to the output cases for Lemma 28 (Requirement (T5)). Note that all other visible
outputs still happen in the L context. These cases use Lemma 34 instead of Lemma 29.
The biggest difference here is that we need to show α1 = α2 when α1, α2 6= ch() to apply Lemma 34.

Denote E ′ :: G,P,V, d `w σ1, κ1
α1−→pc1

σ′1, ks1

D′ :: G,P,V, d `w σ2, κ2
α2−→pc2

σ′2, ks2

To show: α1 = α2 when α1, α2 6= ch()
Assume that α1, α2 6= ch()
When E or D end in O or O-SKIP,
α1 = ch() or α2 = ch()

Then, by assumption,
(III.1) E and D ends in O-OTHER

From (III.1),
(III.2) αl,1 = (α1, pc1) and
(III.3) αl,2 = (α2, pc2)

From (III.1), (III.2), and (III.3),
(III.4) αl,1, αl,2 6= 〈|〉
(III.5) αl,1, αl,2 6= id .Ev(v) and
(III.6) αl,1, αl,2 6= rls()

From (III.4)-(III.6), (3), (4), and the definition of trace projection,
(III.7) T1 ↓L= α1 and
(III.8) T2 ↓L= α2

From (2), (III.7), (III.8), and the definition of equivalence for traces,
α1 = α2

Case IV: E ends in O-NEXT
The proof for this case is the same as from Lemma 28 (Requirement (T5)).

Lemma 32 (Weak One-Step - Single Execution Semantics - H context, Weak secrecy). If G,P,V, d ` σG1 , κ1
α1−→H

σG3 , ks1, and G,P,V, d ` σG2 , κ2
α2−→H σG4 , ks2 with α1 = α2 = gw(), σG1 ≈L σG2 , then σG3 ≈L σG4 and ks1 ≈L ks2

Proof (sketch): By induction on the structure of both traces. The only cases where α1 = α2 = gw() is when the traces
end in P or SME-H. The first case uses Lemma 33 and the second uses the IH. Since the resulting ks is still in the H
context in both cases, showing ks1 ≈L ks2 is trivial. Lemma 33 is used to show that σG3 ≈L σG4
Lemma 33 (Weak One-Step - Command Semantics, Weak Secrecy). If G,V, d w σG1 , σ1, c1

α1−→H σG3 , σ
′
1, c1, E1 and

G,V, d w σG2 , σ2, c2
α2−→H σG4 , σ

′
2, c2, E2, with α1 = α2 = gw() and σG1 ≈L σG2 then σG3 ≈L σG4

Proof.
By induction on the structure of E :: G,V, d σG1 , σ1, c1

α1−→pc1
σG3 , σ

′
1, c1, E1.

Denote D :: G,V, d σG2 , σ2, c2
α2−→pc2

σG4 , σ
′
2, c2, E2

By assumption,
(1) α1 = α2 = gw()
(2) σG1 ≈L σG2

From (1) and the assumption that E and D are in the H context,
E and D must end in ASSIGN-G-H, ASSIGN-D-H, or CREATEELEM

Case I: E ends in ASSIGN-G-H
By assumption,

(I.1) assignWG↓g (σG1 , H, x, v1) = (σG3 , α1)
By assumption and from (1),

(I.2) α1 = gw(x)
From (1) and (I.2),

(I.3) α2 = gw(x)

From (I.3),
(I.4) D ends in ASSIGN-G-H

From (I.4),
(I.5) assignWG↓g (σG2 , H, x, v2) = (σG4 , α2)

From (2), (I.1)-(I.3), (I.5), and Lemma 43 (Requirement (WV2)),
σG3 ≈L σG4

Case II: E ends in ASSIGN-D-H
By assumption,

(II.1) assignWG↓EH
(σG1 , H, id , v1) = (σG3 , α1)

By assumption and from (1),
(II.2) α1 = gw(id)

From (1) and (II.2),
(II.3) α2 = gw(id)

From (II.3),
(II.4) D ends in ASSIGN-D-H or CREATEELEM

Subcase i: σG1 (id) = (id , v,M, l) with l v L
By assumption and from (2) and the definition of ≈L for EH stores,

(i.1) id ∈ σG2 (id)
From (i.1) and (II.4),

(i.2) D must end in ASSIGN-D-H
From (i.2),

(i.3) assignWG↓EH
(σG2 , H, id , v2) = (σG4 , α2)

From (2), (II.1)-(II.3), (i.3), and Lemma 75 (Requirement (WEH3)),
σG3 ≈L σG4

Subcase ii: σG1 (id) = (id , v,M, l) with l 6v L
By assumption and from (2) and the definition of ≈L for EH stores, either

(ii.1) id ∈ σG2 with σG2 (id) = (id , , , H) or
(ii.2) id 6∈ σG2

If (ii.1) is true, the proof is the same as Subcase i.
Otherwise, (ii.2) is true

From (ii.2),
(ii.3) D must end in CREATEELEM

From (ii.3),
(ii.4) assignWG↓EH

(σG2 , H, id , v) = (σG4 , α2)
From (2), (II.1), (ii.4), (II.2), (II.3), and Lemma 77 (Requirement (WEH3)),
σG3 ≈L σG4

Case III: E ends in CREATEELEM
The proof for this case is similar to Case II. It uses Lemma 78 (Requirement (WEH3)) instead of Lemma 75.

Lemma 34 (Weak One-Step - Single Execution Semantics, Weak Secrecy). If G,P,V, d `w σG1 , κ1
α1−→pc1

σG3 , ks1,
and G,P,V, d `w σG2 , κ2

α2−→pc2
σG4 , ks2 with pc1, pc2 v L, α1 = α2 when α1, α2 6= ch() σG1 ≈L σG2 , and κ1 ≈L κ2,

then σG3 ≈L σG4 and ks1 ≈L ks2

Proof (sketch): The proof is similar to the one for Lemma 29 (Requirement (T5)) except that it uses Lemma 35 instead
of Lemma 30. It uses Lemma 66 (Requirement (EH2)) and Lemma 56 (Requirement (EH1)).

Lemma 35 (Weak One-Step - Command Semantics, Weak Secrecy). If G,V, d w σG1 , σ1, c
α1−→pc1

σG3 , σ
′
1, c1, E1

and G,V, d w σG2 , σ2, c
α2−→pc2

σG4 , σ
′
2, c2, E2, with pc1, pc2 v L, α1 = α2 when α1, α2 6= ch(), σG1 ≈L σG2 , and

σ1 ≈L σ2, then σG3 ≈L σG4 , σ′1 ≈L σ′2, c1 ≈L c2, and E1 ≈L E2

Proof.
By induction on the structure of E :: G,V, d σG1 , σ1, c

α1−→pc1
σG3 , σ

′
1, c1, E1.

Denote D :: G,V, d σG2 , σ2, c
α2−→pc2

σG4 , σ
′
2, c2, E2

By assumption,
(1) pc1, pc2 v L
(2) α1 = α2 when α1, α2 6= ch()
(3) σG1 ≈L σG2
(4) σ1 ≈L σ2

For the most part, this proof is the same as the one for Lemma 30 (Requirement (T5)) except that Lemma 37
(Requirement (WE1)) is used instead of Lemma 36 (Requirement (E1)). It uses Lemma 63 (Requirement (EH1)) for
the TRIGGER case. We show the most interesting cases below.

Case I: E ends in IF-TRUE-BR
By assumption,

(I.1) V = TT
(I.2) c = if e then c′1 else c′2
(I.3) G,TT, σG1 , σ1 ` e ⇓TTpc1

(true, l1)
(I.4) l1 6v L
(I.5) α1 = br(true)
(I.6) c1 = c′1
(I.7) σG3 = σG1
(I.8) σ′1 = σ1

(I.9) E1 = ·
From (I.1) and (I.2),

(I.10) D must end in IF-TRUE-BR, IF-FALSE-BR, IF-TRUE, or IF-FALSE
From (I.10),

(I.11) G,TT, σG2 , σ2 ` e ⇓TTpc2
(b, l2)

From (1), (3), (4), (I.3), (I.11), and Lemma 37 (Requirement (WV1)),
(I.12) (true, l1) ≈L (b, l2)

From (I.4) and (I.12),
(I.13) l2 6v L

From (I.10) and (I.13),
(I.14) D must end in IF-TRUE-BR, IF-FALSE-BR

From (2) and (I.5),
(I.15) α2 = br(true)

From (I.14) and (I.15),
(I.16) D must end in IF-TRUE-BR

From (I.16),
(I.17) c2 = c′1
(I.18) σG4 = σG2
(I.19) σ′2 = σ2

(I.20) E2 = ·
From (3), (4), (I.6)-(I.9) and (I.17)-(I.20),
σG3 ≈L σG4 , σ′1 ≈L σ′2, c1 ≈L c2, and E1 ≈L E2

The proof for IF-FALSE-BR is similar to Case I
The proofs for IF-TRUE and IF-FALSE is similar to Case I. Lemma 37 is used to show that the labels on the branch
condition are v L.

F.5. Expression Requirements

Requirement (E1) Equivalent traces produce L-equivalent states

Lemma 36. If σG1 ≈L σG2 and σ1 ≈L σ2 with pc1, pc2 v L and G,V, σG1 , σ1 ` e ⇓ipc1
v1, then

Unstructured EH storage: G,V, σG2 , σ2 ` e ⇓ipc2
v2 with v1 'L v2

Tree-structured EH storage: G,V, σG2 , σ2 ` e ⇓ipc2
v2 with v1 'σ1,σ2

L v2

Proof.
By induction on the structure of E :: G,V, σG1 , σ1 ` e ⇓ipc1

v1 By assumption,
(1) σG1 ≈L σG2
(2) σ1 ≈L σ2,
(3) pc1, pc2 v L

Denote
D :: G,V, σG2 , σ2 ` e ⇓ipc2

v2

Unstructured EH storage:
Case U.I: E ends in VAR

By assumption,
(U.I.1) e = x
(U.I.2) if x ∈ σG1 , then v′1 = varG↓g (σG1 , pc1, x)
(U.I.3) otherwise, v′1 = varV(σ1, pc1, x)
(U.I.4) v1 = toDst(v′1, pc1, i)

From (U.I.1),
(U.I.5) The last rule applied to D must have been VAR

From (U.I.5),
(U.I.6) if x ∈ σG2 , then v′2 = varG↓g (σG2 , pc2, x)
(U.I.7) otherwise, v′2 = varV(σ2, pc2, x)
(U.I.8) v2 = toDst(v′2, pc2, i)

Recall that in our semantics, the set of global variables is static, so (U.I.2) is true iff (U.I.6) is true and (U.I.3)
is true iff (U.I.7) is true
From (1), (2), (U.I.2), (U.I.3), (U.I.6), (U.I.7) and Lemma 38.U (Requirement (V1)),

(U.I.9) v′1 'L v′2
From (2), (U.I.9), (U.I.4), (U.I.8), and Lemma 39.U (Requirement (V1)),
v1 'L v2

Case U.II: E ends in BOP
By assumption,

(U.II.1) e = e1 bop e2

(U.II.2) ∃E1 :: G,V, σG1 , σ1 ` e1 ⇓ipc1
v1,1

(U.II.3) ∃E2 :: G,V, σG1 , σ1 ` e2 ⇓ipc1
v2,1

(U.II.4) v1 = v1,1 bop v2,1

From (U.II.1),
(U.II.5) The last rule applied to D must have been BOP

From (U.II.5),
(U.II.6) ∃D1 :: G,V, σG2 , σ2 ` e1 ⇓ipc2

v1,2

(U.II.7) ∃D2 :: G,V, σG1 , σ1 ` e2 ⇓ipc2
v2,2

(U.II.8) v2 = v1,2 bop v2,2

IH on E1,D1 and E2,D2 gives
(U.II.9) v1,1 'L v1,2

(U.II.10) v2,1 'L v2,2

From (U.II.9), (U.II.10), (U.II.4), and (U.II.8),
v1 'L v2

Case U.III: E ends in EHAPI
By assumption,

(U.III.1) e = ehAPI(id , e1, · · · , en)
(U.III.2) ∀i ∈ [1, n],∃Ei :: G,V, σG1 , σ1 ` ei ⇓G↓EH

pc1
vi,1

(U.III.3) v′1 = ehAPIG↓EH(σG1 , pc1, id , v1,1, · · · , vn,1)
(U.III.4) v1 = toDst(v′1, pc1, i)

From (U.III.1),
(U.III.5) The last rule applied to D must have been EHAPI

From (U.III.5),
(U.III.6) ∀i ∈ [1, n],∃Di :: G,V, σG2 , σ2 ` ei ⇓I↓EH

pc2
vi,2

(U.III.7) v′2 = ehAPIG↓EH(σG2 , pc2, id , v1,2, · · · , vn,2)
(U.III.8) v2 = toDst(v′2, pc2, i)

IH on Ei,Di,∀i ∈ [1, n] gives
(U.III.9) ∀i ∈ [1, n], vi,1 'L vi,2

From (1), (2), (U.III.9), (U.III.3), (U.III.7), and Lemma 46.U (Requirement (EH1)),
v1 'L v2

Tree-structured EH storage:
Case T.I: E ends in VAR

By assumption,
(T.I.1) e = x
(T.I.2) if x ∈ σG1 , then v′1 = varG↓g (σG1 , pc1, x)
(T.I.3) otherwise, v′1 = varV(σ1, pc1, x)
(T.I.4) v1 = toDst(v′1, pc1, i)

From (T.I.1),
(T.I.5) The last rule applied to D must have been VAR

From (T.I.5),
(T.I.6) if x ∈ σG2 , then v′2 = varG↓g (σG2 , pc2, x)
(T.I.7) otherwise, v′2 = varV(σ2, pc2, x)
(T.I.8) v2 = toDst(v′2, pc2, i)

Recall that in our semantics, the set of global variables is static, so (T.I.2) is true iff (T.I.6) is true and (T.I.3) is
true iff (T.I.7) is true
From (1), (2), (T.I.2), (T.I.3), (T.I.6), (T.I.7) and Lemma 38.T (Requirement (V1)),

(T.I.9) v′1 '
σ1,σ2

L v′2
From (2), (T.I.9), (T.I.4), (T.I.8), and Lemma 39.T (Requirement (V1)),
v1 'σ1,σ2

L v2

Case U.II: E ends in BOP
By assumption,

(T.II.1) e = e1 bop e2

(T.II.2) ∃E1 :: G,V, σG1 , σ1 ` e1 ⇓ipc1
v1,1

(T.II.3) ∃E2 :: G,V, σG1 , σ1 ` e2 ⇓ipc1
v2,1

(T.II.4) v1 = v1,1 bop v2,1

From (T.II.1),
(T.II.5) The last rule applied to D must have been BOP

From (T.II.5),
(T.II.6) ∃D1 :: G,V, σG2 , σ2 ` e1 ⇓ipc2

v1,2

(T.II.7) ∃D2 :: G,V, σG1 , σ1 ` e2 ⇓ipc2
v2,2

(T.II.8) v2 = v1,2 bop v2,2

IH on E1,D1 and E2,D2 gives
(T.II.9) v1,1 'σ1,σ2

L v1,2

(T.II.10) v2,1 'σ1,σ2

L v2,2

From (T.II.9), (T.II.10), (T.II.4), and (T.II.8),
v1 'σ1,σ2

L v2

Case T.III: E ends in EHAPI
By assumption,

(T.III.1) e = ehAPI(id , e1, · · · , en)
(T.III.2) ∀i ∈ [1, n],∃Ei :: G,V, σG1 , σ1 ` ei ⇓G↓EH

pc1
vi,1

(T.III.3) v′1 = ehAPIG↓EH(σG1 , pc1, id , v1,1, · · · , vn,1)
(T.III.4) v1 = toDst(v′1, pc1, i)

From (T.III.1),
(T.III.5) The last rule applied to D must have been EHAPI

From (T.III.5),
(T.III.6) ∀i ∈ [1, n],∃Di :: G,V, σG2 , σ2 ` ei ⇓I↓EH

pc2
vi,2

(T.III.7) v′2 = ehAPIG↓EH(σG2 , pc2, id , v1,2, · · · , vn,2)
(T.III.8) v2 = toDst(v′2, pc2, i)

IH on Ei,Di,∀i ∈ [1, n] gives
(T.III.9) ∀i ∈ [1, n], vi,1 'σ1,σ2

L vi,2

From (1), (2), (T.III.9), (T.III.3), (T.III.7), and Lemma 46.T (Requirement (EH1)),
v1 'σ1,σ2

L v2

Requirement (WE1) Equivalent traces produce L-equivalent states (Weak Secrecy)

Lemma 37. If σ1 ≈L σ2, with pc1, pc2 v L and G,V, σG1 , σ1 ` e ⇓ipc1
v1, then G,V, σG2 , σ2 ` e ⇓ipc2

v2 with v1 ≈L v2

Proof (sketch): The proof is similar to the one for Lemma 36 (Requirement (E1)) except that it uses Lemma 40
(Requirement (WV1)) instead of Lemma 38 (Requirement (V1)) and Lemma 64 (Requirement (WEH1)) instead of
Lemma 46 (Requirement (EH1)).

F.6. Variable Storage Requirements

Requirement (V1) L lookups are equivalent

Lemma 38. If σ1 ≈L σ2 and pc1, pc2 v L, then for
Unstructured EH storage:
• varV(σ1, pc1, x) = v1 and varV(σ2, pc2, x) = v2 then v1 'L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 'L v2

Tree-structured EH storage:
• varV(σ1, pc1, x) = v1 and varV(σ2, pc2, x) = v2 then v1 'σ1,σ2

L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 'σ1,σ2

L v2

Proof.
Only cases for V 6= TT and G 6= TS are considered. The other cases are proven in the weak secrecy version: Lemma 40
(Requirement (WV1)).
By induction on the structure of E :: vari(σ1, pc1, x) = v1 and D :: vari(σ2, pc2, x) = v2

By assumption,
(1) σ1 ≈L σ2

(2) pc1, pc2 v L

Case I: V = SME
From (1) and (2),

(I.1) σ1 = σ2

Case i: E ends in VAR
By assumption,

(i.1) x ∈ σ1

(i.2) σ1(x) = vstd1

From (I.1) and (i.1),
(i.3) D ends in VAR

From (i.3),
(i.4) σ2(x) = vstd2

From (I.1), (i.2), and (i.4)
The desired conclusion holds

Case ii: D ends in VAR
The proof is similar to Case i

Case iii: E ends in VAR-DV
By assumption and from (2),

(iii.1) x 6∈ σ1

(iii.2) v1 = dv
From (I.1) and (iii.1),

(iii.3) D ends in VAR-DV
From (iii.3),

(iii.4) v2 = dv
From (iii.2) and (iii.4),

The desired conclusion holds

Case iv: D ends in VAR-DV
The proof is similar to Case iii

Case II: V = MF
Case i: E ends in VAR

By assumption,
(i.1) pc1 = L
(i.2) v1 = getFacetV(σ1(x), L)

From (i.2) and the definition of getFacetV,
(i.3) If σ1(x) ↓L= ·, then v1 = dv
(i.4) otherwise, v1 = σ(x) ↓L

Subcase a: D ends in VAR
By assumption,

(a.1) v2 = getFacetV(σ2(x), L)
From (2),

(a.2) If σ1(x) ↓L= ·, then σ2(x) ↓L= ·
(a.3) If σ1(x) ↓L 6= ·, then σ2(x) ↓L= σ1(x) ↓L 6= ·

If (a.2) is true, then from (i.3), (a.1), and the definition of getFacetV,
(a.4) v1 = v2 = dv

If (a.3) is true, then from (i.4), (a.1), and the definition of getFacetV,
(a.5) v1 = v2 = σ1(x) ↓L= σ2(x) ↓L

From (a.4), and (a.5),
the desired conclusion holds

Subcase b: D ends in VAR-F
Unstructured EH storage:
By assumption,

(U.b.1) pc2 = ·
(U.b.2) v2 = setFacetV(vH , vL) for
(U.b.3) vL = varMF(σ2, L, x)

IH on (U.b.2) gives
(U.b.4) v1 'L vL

From (U.b.1) and the definition of setFacetV,
(U.b.5) v2 'L vL

From (U.b.4) and (U.b.5),
the desired conclusion holds

Tree-structured EH storage:
By assumption,

(T.b.1) pc2 = ·
(T.b.2) v2 = setFacetV(vH , vL) for
(T.b.3) vL = varMF(σ2, L, x)

IH on (T.b.2) gives
(T.b.4) v1 'σ1,σ2

L vL
From (T.b.1) and the definition of setFacetV,

(T.b.5) v2 'σ2,σ2

L vL
From (T.b.4) and (T.b.5), and the definition of 'σA,σB

L
(T.b.6) v1 ↓σ1

L = vL ↓σ2

L = v2 ↓σ2

L
From (T.b.6),

(T.b.7) v1 ≈σ1,σ2

L v2

From (T.b.7) and from V = MF,
the desired conclusion holds

Subcase c: D ends in VAR-DV
By assumption,

(c.1) v2 = dv
From (i.3) and (c.1),

the desired conclusion holds

Case ii: D ends in VAR
The proof for this case is similar to Case i

Case iii: E ends in VAR-F
By assumption,

(iii.1) pc1 = ·
(iii.2) vL,1 = varMF(σ1, L, x)
(iii.3) v1 = setFacetV(vH,1, vL,1)

Subcase a: D ends in VAR-F
By assumption,

(a.1) pc2 = ·
(a.2) v2 = setFacetV(vH,2, vL,2) for
(a.3) vL,2 = varMF(σ2, L, x)

IH on (a.2) and (iii.2) gives
(a.4) vL,1 ≈L vL,2 (for the Unstructured EH storage)
(a.5) vL,1 ≈σ1,σ2

L vL,2 (for the Tree-structured EH storage)
From (a.4), (a.5), (iii.3), (a.2), and the definition of setFacetV,

the desired conclusion holds

Subcase b: D ends in VAR-DV
By assumption,

(b.1) x 6∈ σ2

(b.2) v2 = dv
IH on (iii.2) gives

(b.3) vL 'L v2 (for the Unstructured EH storage)
(b.4) vL 'σ1,σ2

L v2 (for the Tree-structured EH storage)
From (b.2)-(b.4) and the definition of setFacetV,

The desired conclusion holds

Case iv: D ends in VAR-F
The proof is similar to Case iii

Case v: E and D end in VAR-DV
By assumption,

(v.1) v1 = dv
(v.2) v2 = dv

From (v.1) and (v.2),
the desired conclusion holds

Case III: G = SMS
The proofs for this case are similar to Case I

Case IV: G = FS
The proofs for this case are similar to Case II

Lemma 39.
Unstructured EH storage: If v1 'L v2, with pc1, pc2 v L and toDst(v1, pc1, i) = v′1, then toDst(v2, pc2, i) = v′2

with v′1 'L v′2
Tree-structured EH storage: If v1 'σ1,σ2

L v2, with pc1, pc2 v L and toDst(v1, pc1, i) = v′1, then
toDst(v2, pc2, i) = v′2 with v′1 '

σ1,σ2

L v′2

Proof. This proof is by straightforward case analysis on the structure of v1 and v2.

Requirement (WV1) L lookups are equivalent (Weak Secrecy)

Lemma 40. If σ1 ≈L σ2 and pc1, pc2 v L, then for
Unstructured EH storage:
• varV(σ1, pc1, x) = v1 and varV(σ2, pc2, x) = v2 then v1 ≈L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 ≈L v2

Tree-structured EH storage:
• varV(σ1, pc1, x) = v1 and varV(σ2, pc2, x) = v2 then v1 ≈σ1,σ2

L v2

• varG(σ1, pc1, x) = v1 and varG(σ2, pc1, x) = v2 then v1 ≈σ1,σ2

L v2

Proof.
Only the cases for TT and TS are shown, since the other cases follow from Lemma 38 (Requirement (V1)).
By induction on the structure of E :: vari(σ1, pc1, x) = v1 and D :: vari(σ2, pc2, x) = v2

By assumption,
(1) σ1 ≈L σ2

(2) pc1, pc2 v L

Case I: V = TT

Case i: E ends in VAR
By assumption,

(i.1) v1 = σ1(x)

Subcase a: E ends in VAR
By assumption,

(a.1) v2 = σ2(x)
From (1), (i.1), and (a.1),
the desired conclusion holds

Subcase b: E ends in VAR-DV
By assumption,

(b.1) x 6∈ σ2

(b.2) v2 = (dv, H)
From (2), (b.1), and (i.1),

(b.3) v1 = (v,H)
From (b.2) and (b.3),

the desired conclusion holds

Case ii: D ends in VAR
The proof for this case is similar to Case i

Case iii: E and D end in VAR-DV
By assumption,

(iii.1) v1 = (dv, H)
(iii.2) v2 = (dv, H)

From (iii.1) and (iii.2),
the desired conclusion holds

Case II: G = TS
The proofs for this case are similar to Case I

Requirement (V2) H assignments are unobservable

Lemma 41. assignG(σ,H, x, v) ≈L σ

Proof.
Only cases for G 6= TS are considered. The other cases are proven in the weak secrecy version: Lemma 42
(Requirement (WV2))
By case analysis on G
Denote assigni(σ,H, x, v) = σ′

Want to show: σ ≈L σ′

Case I: V = SMS
By assumption,

(I.1) σ = σH , σL
From the definition of getStoreSMS,

(I.2) getStore(σ,H) = σH

Case i: x ∈ σ
By assumption,

(i.1) ASSIGN was applied
From (i.1),

(i.2) σ′H = σH [x 7→ v]
(i.3) σ′ = setStoreVarSMS(σ,H, σ′H)

From (i.3) and the definition of setStoreVarSMS,
σ ≈L σ′

Case ii: x 6∈ σ
By assumption,

(ii.1) ASSIGN-S was applied
From (ii.1),

(ii.2) σ′ = σ
From (ii.2),
σ ≈L σ′

Case II: V = FS
Case i: x ∈ σ

By assumption,
(i.1) ASSIGN-H was applied

From (i.1),
(i.2) vL = varFS(σ, L, x)
(i.3) v′ = setFacetV(getFacet(v,H), vL)
(i.4) σ′ = σ[x 7→ v′]

By assumption and from (i.2),
(i.5) vL = getFacetV(σ(x), L)

From (i.5) and the definition of getFacet,
(i.6) vL ≈L σ(x)

From (i.6), (i.3), and the definition of setFacetV,
(i.7) v′ ≈L σ(x)

From (i.4) and (i.7),
σ ≈L σ′

Case ii: x 6∈ σ
By assumption,

(i.1) ASSIGN-S was applied
From (i.1),

(i.2) σ′ = σ
From (i.2),
σ ≈L σ′

Requirement (WV2) H assignments are unobservable (Weak Secrecy)

Lemma 42. If assignWG(σ,H, x, v) = (σ′, •), then σ ≈L σ′

Proof.

Only cases for G = TS are shown, since the other cases follow from Lemma 41 (Requirement (V2)).
By assumption,

(1) assignWG(σ,H, x, v) = (σ′, α) with α = •

Case I: x ∈ σ
By assumption and from (1),

(I.1) the last rule applied was ASSIGN
From (I.1),

(I.2) v = (v′, l) and
(I.3) l tH v labOf(σ(x), H)

From (I.3) and our security lattice,
(I.4) labOf(σ(x), H) = H

From (I.1) and (I.2),
(I.5) σ′ = σ[x 7→ (v′, l tH)]

From (I.4) and (I.5),
σ ≈L σ′

Case II: x 6∈ σ
By assumption and from (1),

(II.1) the last rule applied was ASSIGN-S
From (II.1),

(II.2) σ′ = σ
From (II.2),
σ ≈L σ′

Lemma 43. If σ1 ≈L σ2 and assignWG(σ1, H, x, v) = (σ′1, gw(x)), and assignWG(σ2, H, x, v) = (σ′2, gw(x)) then
σ′1 ≈L σ′2
Proof.
Denote D :: assignWG(σ1, H, x, (v1, l1)) = (σ′1, α1)
E :: assignWG(σ2, H, x, (v2, l2)) = (σ′2, α2)

By assumption,
(1) α1 = α2 = gw(x)
(2) σ1 ≈L σ2

From (1) and since only the TS semantics can produce gw(),
(3) D and E end in ASSIGN-GW

From (3),
(4) σ′1 = σ1[x 7→ (v1, l1 tH)]
(5) σ′2 = σ2[x 7→ (v2, l2 tH)]

From our security lattice,
(6) l1 tH = H and l2 tH = H

From (2) and (4)-(6)
σ′1 ≈L σ′2

Requirement (V3) L assignments are equivalent

Lemma 44. If σ1 ≈L σ2 and pc1, pc2 ∈ {L, ·}, with
Unstructured EH storage: v1 ≈L v2, then assigni(σ1, pc1, x, v1) ≈L assigni(σ2, pc2, x, v2)
Tree-structured EH storage: v1 ≈σ1,σ2

L v2, then assigni(σ1, pc1, x, v1) ≈L assigni(σ2, pc2, x, v2)

Proof.
By case analysis on i
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 ∈ {L, ·}
(3) v1 ≈L v2 (for the Unstructured EH storage)
(4) v1 ≈σ1,σ2

L v2 (for the Tree-structured EH storage)
Denote
D :: assigni(σ1, pc1, x, v1) = σ′1
E :: assigni(σ2, pc2, x, v2) = σ′2

Want to show:
σ′1 ≈L σ′2

Case I: V = SME
By assumption and from (1), (2), and ≈L for SME stores,

(I.1) σ1 = σ2

(I.2) σ′1 = σ1[x 7→ v1]
(I.3) σ′2 = σ2[x 7→ v2]

From (I.1)-(I.3) and (3) (for the Unstructured EH storage), and (4) (for the Tree-Structured EH storage),
(I.4) σ′1 = σ′2

From (I.4) and ≈L for SME stores,
σ′1 ≈L σ′2

Case II: V = MF
Subcase i: pc1 = ·

By assumption,
(i.1) D ends in MF-ASSIGN

From (i.1),
(i.2) σ′1 = σ1[x 7→ v1]

Subsubcase a: pc2 = ·
By assumption,

(a.1) E ends in MF-ASSIGN
From (a.1),

(a.2) σ′2 = σ2[x 7→ v2]
From (1), (3) (for the Unstructured EH storage) and (4) (for the Tree-structured EH storage), (i.2), and (a.2),
σ′1 ≈L σ′2

Subsubcase b: pc2 = L
Unstructured EH storage:
By assumption,

(U.b.1) E ends in MF-ASSIGN-L
From (U.b.1),

(U.b.2) vL = getFacet(v2, L)
(U.b.3) v′2 = setFacetV(, vL)
(U.b.4) σ′2 = σ2[x 7→ v′2]

From (3) and (U.b.2) and the definition of getFacet,
(U.b.5) vL ≈L v1

From (U.b.3) and (U.b.5) and the definition of setFacet,
(U.b.6) v′2 ≈L v1

From (1), (U.b.6), (i.2), and (U.b.4),
σ′1 ≈L σ′2

Tree-structured EH storage:
By assumption,

(T.b.1) E ends in MF-ASSIGN-L
From (T.b.1),

(T.b.2) vL = getFacet(v2, L)

(T.b.3) v′2 = setFacetV(, vL)
(T.b.4) σ′2 = σ2[x 7→ v′2]

From (4) and (T.b.2) and the definition of getFacet,
(T.b.5) v1 ≈σ1,σ2

L vL
From (T.b.3) and (T.b.5) and the definition of setFacet,

(T.b.6) v1 ≈σ1,σ2

L v′2
From (1), (T.b.6), (i.2), and (T.b.4),
σ′1 ≈L σ′2

Subcase ii: pc1 = L
By assumption,

(ii.1) E ends in MF-ASSIGN-L
From (ii.1),

(ii.2) vL,1 = getFacet(v1, L)
(ii.3) v′1 = setFacetV(, vL,1)
(ii.4) σ′1 = σ1[x 7→ v′1]

Subsubcase a: pc2 = ·
The proof is similar to Subsubcase i.b.

Subsubcase b: pc2 = L
Unstructured EH storage:
By assumption,

(U.b.1) E ends in MF-ASSIGN-L
From (U.b.1),

(U.b.2) vL,2 = getFacet(v2, L)
(U.b.3) v′2 = setFacetV(, vL,2)
(U.b.4) σ′2 = σ2[x 7→ v′2]

From (3), (ii.2), (U.b.2), and the definition of getFacet,
(U.b.5) vL,1 ≈L vL,2

From (U.b.5), (ii.3), (U.b.3), and the definition of setFacet,
(U.b.6) v′1 ≈L v′2

From (1), (U.b.6), (ii.4), and (U.b.4),
σ′1 ≈L σ′2

Tree-structured EH storage:
By assumption,

(T.b.1) E ends in MF-ASSIGN-L
From (T.b.1),

(T.b.2) vL,2 = getFacet(v2, L)
(T.b.3) v′2 = setFacetV(, vL,2)
(T.b.4) σ′2 = σ2[x 7→ v′2]

From (4), (ii.2), (T.b.2), and the definition of getFacet,
(T.b.5) vL,1 ≈σ1,σ2

L vL,2
From (T.b.5), (ii.3), (T.b.3), and the definition of setFacet,

(T.b.6) v′1 ≈
σ1,σ2

L v′2
From (1), (T.b.6), (ii.4), and (T.b.4),
σ′1 ≈L σ′2

Case III: V = TT
Unstructured EH storage:
By assumption,

(U.III.1) v1 = (v′1, l1)
(U.III.2) v2 = (v′2, l2)
(U.III.3) σ′1 = σ1[x 7→ (v′1, l1 t pc1)]
(U.III.4) σ′2 = σ2[x 7→ (v′2, l2 t pc2)]

From (3), (U.III.1), and (U.III.2),
(U.III.5) l1, l2 v L with v′1 = v′2 or
(U.III.6) l1, l2 6v L

From (U.III.5), (U.III.6), and (2),
(U.III.7) (v′1, l1 t pc1) ≈L (v′2, l2 t pc2)

From (1), (U.III.3), (U.III.4), and (U.III.7),
σ′1 ≈L σ′2

Tree-structured EH storage:
By assumption,

(T.III.1) v1 = (v′1, l1)
(T.III.2) v2 = (v′2, l2)
(T.III.3) σ′1 = σ1[x 7→ (v′1, l1 t pc1)]
(T.III.4) σ′2 = σ2[x 7→ (v′2, l2 t pc2)]

From (4), (T.III.1), and (T.III.2),
(T.III.5) l1, l2 v L with v′1 = v′2 or
(T.III.6) l1, l2 6v L

From (T.III.5), (T.III.6), and (2),
(T.III.7) (v′1, l1 t pc1) ≈σ1,σ2

L (v′2, l2 t pc2)
From (1), (T.III.3), (T.III.4), and (T.III.7),
σ′1 ≈L σ′2

Case IV: G = SMS
The proof for this case is similar to Case I except that there is an extra case for x 6∈ σ, which produces the same
store, so the resulting stores are equivalent (from (1)).

Case V: G = FS
The proof for this case is similar to Case II except that there is an extra case for x 6∈ σ, which produces the same
store, so the resulting stores are equivalent (from (1)).

Case VI: G = TS
The proof for this case is similar to Case III except that there is an extra case for x 6∈ σ, which produces the same
store, so the resulting stores are equivalent (from (1)).

Requirement (WV3) L assignments are equivalent (Weak Secrecy)

Lemma 45. If σ1 ≈L σ2 and pc1, pc2 ∈ {L, ·}, with v1 ≈L v2, then for (σ′1, α1) = assignWi(σ1, pc1, x, v1) and
(σ′2, α2) = assignWi(σ2, pc2, x, v2), σ′1 ≈L σ′2 and α1 = α2

Proof.
Only the cases for i ∈ {TT,TS} are shown, since the other cases always produce α1 = α2 = •, so their proofs follow
from Lemma 44 (Requirement (V3)). We show the proofs for I = TS since the cases for I = TT are similar.
By case analysis on D :: (σ′1, α1) = assignWi(σ1, pc1, x, (v1, l1))
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 ∈ {L, ·}
(3) (v1, l1) ≈L (v2, l2)

Denote E :: (σ′2, α2) = assignWi(σ2, pc2, x, (v2, l2))

Case I: D ends in TS-ASSIGN
By assumption,

(I.1) l1 tH v labOf(σ1(x), H)
(I.2) σ′1 = σ1[x 7→ (v1, l1 tH)]
(I.3) α1 = •

From (I.1) and our security lattice,
(I.4) labOf(σ1(x), H) = H

From (1) and (I.4),
(I.5) x ∈ σ2 and labOf(σ2(x), H) = H or
(I.6) x 6∈ σ2

Subcase i: (I.5) is true
From (I.5) and our security lattice,

(i.1) l2 tH v labOf(σ2(x), H)
From (i.1),

(i.2) E ends in TS-ASSIGN
From (i.2),

(i.3) σ′2 = σ2[x 7→ (v2, l2 tH)]
(i.4) α2 = •

From (I.3) and (i.4),
α1 = α2

From (1), (I.2) and (i.3),
σ′1 ≈L σ′2

Subcase ii: (I.6) is true
From (I.6),

(ii.1) E ends in TS-ASSIGN-S
From (ii.1),

(ii.2) σ′2 = σ2

(ii.3) α2 = •
From (I.3) and (ii.3),
α1 = α2

From (I.4) and (I.2),
(ii.4) σ′1 ≈L σ1

From (1), (ii.2),a nd (ii.4),
σ′1 ≈L σ′2

Case II: D ends in TS-ASSIGN-S
The proof for this case is similar to the one for Case I.

Case III: D ends in TS-ASSIGN-GW
By assumption,

(III.1) l1 tH 6v labOf(σ1(x), H)
(III.2) σ′1 = σ1[x 7→ (v1, l1 tH)]
(III.3) α1 = gw(x)

From (III.1) and our security lattice,
(III.4) labOf(σ1(x), H) = L

From (1) and (III.4),
(III.5) x ∈ σ2 and labOf(σ2(x), H) = L

From (III.5),
(III.6) E ends in TS-ASSIGN-GW

From (III.6),
(III.7) σ′2 = σ2[x 7→ (v2, l2 tH)]
(III.8) α2 = gw(x)

From (III.3) and (III.8),
α1 = α2

From (1), (III.2), and (III.7),
σ′1 ≈L σ′2

F.7. Event Handler Storage Requirements

Requirement (EH1) L lookups are equivalent

Lemma 46. If σ1 ≈L σ2 and pc1, pc2 v L and
Unstructured EH storage: ∀i ∈ [1, n], vi,1 'L vi,2 with v1 = ehAPIe(G, σ1, pc1, id , v1,1, · · · , vn,1) and v2 =

ehAPIe(G, σ2, pc2, id , v1,2, · · · , vn,2), then v1 'L v2

Tree-structured EH storage: ∀i ∈ [1, n], vi,1 'σ1,σ2

L vi,2 with v1 = ehAPIe(G, σ1, pc1, a1, v1,1, · · · , vn,1) and
v2 = ehAPIe(G, σ2, pc2, a2, v1,2, · · · , vn,2), then v1 'σ1,σ2

L v2

Proof.
By induction on the structure of E :: v1 = ehAPIe(...) and D :: v2 = ehAPIe(...).
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 v L

Unstructured EH storage:
By assumption,

(U.1) ∀i ∈ [1, n], vi,1 'L vi,2
(U.2) E :: v1 = ehAPIe(G, σ1, pc1, id , v1,1, · · · , vn,1)
(U.3) D :: v2 = ehAPIe(G, σ2, pc2, id , v1,2, · · · , vn,2)

Case U.I: E or D ends in EHAPI-NC
Without loss of generality, assume E ends in EHAPI-F. The case for D and both E and D ending in EHAPI-F
are similar.
By assumption,

(U.I.1) pc1 = ·
(U.I.2) ∃E1 :: vH,1 = ehAPIe(G, σ1, H, id , getFacetV(v1,1, H), · · · , getFacetV(vn,1, H))
(U.I.3) ∃E2 :: vL,1 = ehAPIe(G, σ1, L, id , getFacetV(v1,1, L), · · · , getFacetV(vn,1, L))
(U.I.4) v1 = createFct(vH,1, vL,1)

From (U.1) and the definition of getFacet,
(U.I.5) ∀i ∈ [1, n], getFacet(vi,1, L) 'L vi,2

From (U.I.5), (U.I.3), and (U.3),
(U.I.6) the IH may be applied on E2 and D

From (U.I.6) and applying the IH on E2 and D,
(U.I.7) vL,1 'L v2

From (U.I.7), (U.I.4), and the definition of setFacet,
v1 'L v2

Case U.II: E and D end in EHAPI
By assumption,

(U.II.1) v1 = ehAPIeG(σ1, pc1, id , v1,1, · · · , vn,1)
(U.II.2) v2 = ehAPIeG(σ2, pc2, id , v1,2, · · · , vn,2)
(U.II.3) pc1 = pc2 = L

From (1), (U.II.1)-(U.II.3), and Lemma 47.U,
The desired conclusion holds

Tree-structured EH storage:
By assumption,

(T.1) ∀i ∈ [1, n], vi,1 'σ1,σ2

L vi,2
(T.2) E :: t1 = ehAPIe(G, σ1, v1,1, · · · , vn,1)
(T.3) D :: t2 = ehAPIe(G, σ2, v1,2, · · · , vn,2)

Case T.I: E or D ends in EHAPI-NC
Without loss of generality, assume E ends in EHAPI-F. The case for D and both E and D ending in EHAPI-F
are similar.
By assumption,

(T.I.1) pc1 = ·
(T.I.2) ∃E1 :: vH,1 = ehAPIe(G, σ1, H, getFacetV(v1,1, H), · · · , getFacetV(vn,1, H))
(T.I.3) ∃E2 :: vL,1 = ehAPIe(G, σ1, L, getFacetV(v1,1, L), · · · , getFacetV(vn,1, L))
(T.I.4) v1 = createFct(vH,1, vL,1)

From (T.1) and the definition of getFacet,
(T.I.5) ∀i ∈ [1, n], getFacet(vi,1, L) 'σ1,σ2

L vi,2
From (T.I.5), (T.I.3), and (T.3),

(T.I.6) the IH may be applied on E2 and D
From (T.I.6) and applying the IH on E2 and D,

(T.I.7) vL,1 'σ1,σ2

L v2

From (T.I.7), (T.I.4), and the definition of setFacet,
v1 'σ1,σ2

L v2

Case T.II: E and D end in EHAPI
By assumption,

(T.II.1) v1 = ehAPIeG(σ1, pc1, v1,1, · · · , vn,1)
(T.II.2) v2 = ehAPIeG(σ2, pc2, v1,2, · · · , vn,2)
(T.II.3) pc1 = pc2 = L

From (1), (T.II.1)-(T.II.3), and Lemma 47.T,
The desired conclusion holds

Lemma 47. If σ1 ≈L σ2 and pcl,1, pcl,2 v L, then
Unstructured EH storage: if ∀i ∈ [1, n]vi,1 'L vi,2, then ehAPIeG(σ1, pc1, id , v1,1, · · · , vn,1) 'L

ehAPIeG(σ2, pc2, id , v1,2, · · · , vn,2)
Tree-structured EH storage: if ∀i ∈ [1, n]vi,1 'σ1,σ2

L vi,2, then ehAPIeG(σ1, pc1, id , v1,1, · · · , vn,1) 'σ1,σ2

L
ehAPIeG(σ2, pc2, id , v1,2, · · · , vn,2)

Proof (sketch): There are additional lemmas for each event handler API.
Unstructured EH storage: The conclusion follows from Lemma 50.U when ehAPIe is getVal.
Tree-structured EH storage: The conclusion follows from Lemma 50.T when ehAPIe is getVal, Lemma 51 when
ehAPIe is getChildren, Lemma 52 when ehAPIe is moveRoot, Lemma 53 when ehAPIe is moveUp, Lemma 54 when
ehAPIe is moveDown, and Lemma 55 when ehAPIe is moveRight.

Lemma 48. If σ1 ≈L σ2 and pc1, pc2 v L then
Unstructured EH storage: lookupG(σ1, pc1, id) ≈L lookupG(σ2, pc2, id)
Tree-structured EH storage: lookupG(σ1, pc1, id) ≈σ1,σ2

L lookupG(σ2, pc2, id)

Proof.
By induction on the structure of E :: lookupG(σ1, pc1, id) and D :: lookupG(σ2, pc2, id)
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 v L

G = SMS
Unstructured EH storage:
Case U.I: E ends in SMS-LOOKUP

By assumption,
(U.I.1) σ′1 = getStoreSMS(σ1, pc1)
(U.I.2) σ′2 = getStoreSMS(σ2, pc2)
(U.I.3) pc1, pc2 6= ·
(U.I.4) σ′1(id) = φ1

From (2) and (U.I.3),
(U.I.5) pc1 = pc2 = L

From (U.I.5), (U.I.1), (U.I.2), and the definition of getStoreSMS and ≈L for EH storage,
(U.I.6) σ′1 = σ′2

From (U.I.6) and (U.I.4),
(U.I.7) σ′2(id) = φ1

From (U.I.7),
(U.I.8) D ends in SMS-LOOKUP
From (U.I.8),
(U.I.9) σ′2(id) = φ2

From (U.I.7) and (U.I.9),
φ1 ≈L φ2

Case U.II: E ends in SMS-LOOKUP-S
By assumption,

(U.II.1) σ′1 = getStoreSMS(σ1, pc1)
(U.II.2) σ′2 = getStoreSMS(σ2, pc2

(U.II.3) pc1, pc2 6= ·
(U.II.4) id 6∈ σ′1
(U.II.5) φ1 = NULL

From (2) and (U.II.3),
(U.II.6) pc1 = pc2 = L

From (U.II.6), (U.II.1), (U.II.2), and the definition of getStoreSMS and ≈L for EH storage,
(U.II.7) σ′1 = σ′2

From (U.II.4) and (U.II.7),
(U.II.8) id 6∈ σ′2

From (U.II.8),
(U.II.9) D ends in SMS-LOOKUP-S
From (U.II.9),
(U.II.10) φ2 = NULL

From (U.II.5) and (U.II.10),
φ1 ≈L φ2

Tree-structured EH storage:
Case T.I: D ends in SMS-LOOKUP

By assumption,
(T.I.1) lookupASMS(σ1, pc1, id , a

rt
1) = a1 6= NULL

(T.I.2) σ′1(a1) = φ1

From (1),
(T.I.3) art1 ≈

σ1,σ2

L art2
From (1), (2), (T.I.3), (T.I.1), and Lemma 49,

(T.I.4) lookupASMS(σ2, pc2, id , a
rt
2) = art2 with

(T.I.5) a1 ≈σ1,σ2

L a2

From (T.I.4), (T.I.5), and (T.I.1),
(T.I.6) E ends in SMS-LOOKUP

From (T.I.6),
(T.I.7) φ2 = σ′2(a2)

From (T.I.5), (T.I.2), and (T.I.7),
φ1 ≈σ1,σ2

L φ2

Case T.II: D ends in SMS-LOOKUP-S
By assumption,

(T.II.1) lookupASMS(σ1, pc1, id , a
rt
1) = NULL

(T.II.2) φ1 = NULL
From (1),

(T.II.3) art1 ≈
σ1,σ2

L art2
From (1), (2), (T.II.3), and Lemma 49,

(T.II.4) lookupASMS(σ2, pc2, id , a
rt
2) = a2 with

(T.II.5) a1 ≈σ1,σ2

L a2

From (T.II.4), (T.II.5), and (T.II.1),
(T.II.6) E ends in SMS-LOOKUP-S

From (T.II.6),
(T.II.7) φ2 = NULL

From (T.II.2) and (T.II.7),
φ1 ≈L φ2

G = FS
Unstructured EH storage:
Case U.I: E or D ends in FS-LOOKUP-F

Without loss of generality, assume that E ends in LOOKUP-F. The cases for D or both E and D ending in
FS-LOOKUP-F are similar.
By assumption,

(U.I.1) ∃E ′ :: φL = lookupFS(σ1, L, id)
(U.I.2) 〈 |φL〉 = setFacetN(, φL)

IH on E ′ and D gives
(U.I.3) φL ≈L φ2

From (U.I.2) and (U.I.3),
〈 |φL〉 ≈L φ2

Case U.II: E ends in FS-LOOKUP
By assumption,

(U.II.1) σ1(id) = φ1

(U.II.2) φ1.v ↓pc1
6= ·

From (1), (U.II.1) and the definition of ≈L for EH stores,
(U.II.3) σ2(id) ≈L φ1

From (2), (U.II.3) and (U.II.2),
(U.II.4) σ2(id).v ↓pc2

6= ·
If pc2 = ·, then Case U.I applies. Otherwise, from (2),

(U.II.5) pc2 = L
From (U.II.3) - (U.II.5),

(U.II.6) D ends in FS-LOOKUP
From (U.II.6),

(U.II.7) σ2(id) = φ2

From (U.II.3) and (U.II.7),
φ1 ≈L φ2

Case U.III: E ends in FS-LOOKUP-S
By assumption,

(U.III.1) id 6∈ σ1 or
(U.III.2) σ1(id).v ↓pc1

= ·
(U.III.3) φ1 = NULL

From (1), (2), (U.III.1), (U.III.2), and the definition of ≈L for EH stores,
(U.III.4) id 6∈ σ2 or
(U.III.5) σ2(id).v ↓pc2

= ·
If pc2 = ·, then Case U.I applies. Otherwise, from (2),

(U.III.6) pc2 = L
From (U.III.4)-(U.III.6),

(U.III.7) D ends in FS-LOOKUP-S
From (U.III.7),

(U.III.8) φ2 = NULL
From (U.III.3) and (U.III.8),
φ1 ≈L φ2

Tree-structured EH storage:
Case T.I: D ends in FS-LOOKUP

By assumption,
(T.I.1) lookupAFS(σ1, pc1, id , a

rt
1) = a1 6= NULL

(T.I.2) σ′1(a1) = φ1

From (1),
(T.I.3) art1 ≈

σ1,σ2

L art2
From (1), (2), (T.I.3), (T.I.1), and Lemma 49,

(T.I.4) lookupAFS(σ2, pc2, id , a
rt
2) = a2 with

(T.I.5) a1 ≈σ1,σ2

L a2

From (T.I.4), (T.I.5), and (T.I.1),
(T.I.6) E ends in FS-LOOKUP

From (T.I.6),
(T.I.7) φ2 = σ2(a2)

From (T.I.5), (T.I.2), and (T.I.7),
φ1 ≈σ1,σ2

L φ2

Case T.II: D ends in FS-LOOKUP-S
By assumption,

(T.II.1) lookupAFS(σ1, pc1, id , a
rt
1) = NULL

(T.II.2) φ1 = NULL
From (1),

(T.II.3) art1 ≈
σ1,σ2

L art2
From (1), (2), (T.II.3), and Lemma 49,

(T.II.4) lookupAFS(σ2, pc2, id , a
rt
2) = a2 with

(T.II.5) a1 ≈σ1,σ2

L a2

From (T.II.4), (T.II.5), and (T.II.1),
(T.II.6) E ends in FS-LOOKUP-S

From (T.II.6),
(T.II.7) φ2 = NULL

From (T.II.2) and (T.II.7),
φ1 ≈L φ2

G = TS
Note: for G = TS only unstructured EH storage rules exist
Case I: E ends in TS-LOOKUP

By assumption,
(I.1) σ1(id) = φ1

Subcase i: labOf(φ1) v L
From (1), (I.1) and the definition of ≈L for EH stores,

(i.1) id ∈ σ2 and
(i.2) σ2(id) ≈L φ1

By assumption and from (i.1) and (i.2),
(i.3) D ends in TS-LOOKUP

From (i.3),
(i.4) σ2(id) = φ2

From (i.2) and (i.4),
φ1 ≈L φ2

Subcase ii: labOf(φ1) 6v L
By assumption and from (I.2), either

(ii.1) labOf(σ2(id)) 6v L or
(ii.2) id 6∈ σ2

Subsubcase a: (ii.1) is true
The proof for this case is similar to Subcase i.

Subsubcase b: (ii.2) is true
From (ii.2),

(b.1) D ends in TS-LOOKUP-S
From (b.1),

(b.2) φ2 = (NULL, H)
By assumption and from (b.2),
φ1 ≈L φ2

Case II: E ends in TS-LOOKUP-S
By assumption,

(II.1) id 6∈ σ1

(II.2) φ1 = (NULL, H)
From (1), (II.1) and the definition of ≈L for EH stores,

(II.3) id 6∈ σ2 or
(II.4) σ2(id) = φ with φ ↓L= ·

Subcase i: (II.3) is true
From (II.3),

(i.1) D ends in TS-LOOKUP-S
From (i.1),

(i.2) φ2 = (NULL, H)
From (II.2) and (i.2),
φ1 ≈L φ2

Subcase ii: (II.4) is true
From (II.4),

(ii.1) D ends in TS-LOOKUP
From (ii.1),

(ii.2) φ2 = σ2(id)
From (II.2), (II.4), and (ii.2),
φ1 ≈L φ2

Lemma 49. If σ1 ≈L σ2, pc1, pc2 v L and A1 ≈σ1,σ2

L A2, then lookupAG(σ1, pc1, id , A1) ≈σ1,σ2

L
lookupAG(σ2, pc2, id , A2)

Proof.
Note that lookupA is only defined for the tree-structured EH storage.
By induction on the structure of E :: lookupAG(σ1, pc1, id , A1) and D :: lookupAG(σ2, pc2, id , A2)

By assumption,
(1) σ1 ≈L σ2

(2) pc1, pc2 v L
(3) A1 ≈σ1,σ2

L A2

G = SMS
Denote
E :: lookupAG(σ1, pc1, id , A1) = a1 and D :: lookupAG(σ2, pc2, id , A2) = a2

Case I: E ends in SMS-LOOKUPA
By assumption,

(I.1) A1 = (a′1 :: A′1)
(I.2) σ′1(a′1).id = id
(I.3) a1 = a′1

From (I.2),
(I.4) a′1 6= NULL

From (3), (I.1), and (I.4),
(I.5) A2 = (a′2 :: A′2) with
(I.6) a′1 ≈

σ1,σ2

L a′2 and
(I.7) a′2 6= NULL

From (I.2), (I.6), and (I.7),
(I.8) σ′2(a′2).id = id

From (I.5) and (I.8),
(I.9) D ends in SMS-LOOKUPA

From (I.9),
(I.10) a2 = a′2

From (I.3), (I.10), and (I.6),
a1 ≈σ1,σ2

L a2

Case II: E ends in SMS-LOOKUPA-R
By assumption,

(II.1) A1 = (a′1 :: A′1)
(II.2) σ′1(a′1).id = id ′ with
(II.3) id ′ 6= id
(II.4) σ′1(a′1).A = A′′1
(II.5) E ′ :: a1 = lookupSMS(σ1, pc1, id , (A

′
1 :: A′′1))

From (II.5),
(II.6) a′1 6= NULL

From (3), (II.1), and (II.6),
(II.7) A2 = (a′2 :: A′2) with
(II.8) A′1 ≈

σ1,σ2

L A′2
(II.9) a′1 ≈

σ1,σ2

L a′2 and
(II.10) a′2 6= NULL

From (II.2), (II.9), and (II.10),
(II.11) σ′2(a′2).id = id ′

From (II.3) and (II.11),
(II.12) D ends in SMS-LOOKUPA-R

From (II.12),
(II.13) D′ :: a2 = lookupSMS(σ2, pc2, id , (A

′
2 :: A′′2)) for

(II.14) A′′2 = σ′2(a′2).A
From (II.9), (II.4), and (II.14),

(II.15) A′′1 ≈
σ1,σ2

L A′′2
From (II.5), (II.13), (II.8), and (II.15),

IH may be applied on E ′ and D′
From IH on E ′ and D′,
a1 ≈σ1,σ2

L a2

Case III: E ends in SMS-LOOKUPA-S
By assumption,

(III.1) A1 = ·
(III.2) a1 = NULL

From (3), (III.2), and the definition of ≈σ,σ
′

L for A,

(III.3) A2 ≈σ2,σ1

L ·
From (III.3) and the definition of ↓σL for φstd,

(III.4) A2 = ·
From (III.4),

(III.5) D ends in SMS-LOOKUPA-S
From (III.5),

(III.6) a2 = NULL
From (III.2) and (III.6),
a1 ≈σ1,σ2

L a2

G = FS
Case I: E or D ends in FS-LOOKUPA-F

Without loss of generality, assume that E ends in FS-LOOKUPA-F. The cases for D or both E and D ends in
FS-LOOKUPA-F are similar.
By assumption,

(I.1) ∃E ′ :: aL = lookupFS(σ1, L, id , A1 ↓L
(I.2) a1 = setFacet(, aL)

IH on E ′ and D gives
(I.3) aL ≈σ1,σ2

L a2

From (I.2), (I.3), and the definition of setFacet,
a1 ≈σ1,σ2

L a2

Case II: E ends in FS-LOOKUPA
By assumption,

(II.1) A1 = (a′1 :: A′1) and
(II.2) σ1(a′1).id = id with
(II.3) σ1(a′1).v ↓pc1

6= ·
(II.4) a1 = a′1

If pc2 = ·, then Case I applies. Otherwise, from (2),
(II.5) pc2 = L

From (3), (II.1), and the definition of ≈σ,σ
′

L for A,
(II.6) A2 = (a′2 :: A′2) with either
(II.7) a′1 ≈

σ1,σ2

L a′2 or
(II.8) A1 ≈σ1,σ2

L A′2

Subcase i: (II.7) is true
From (II.7) and (II.2),

(i.1) σ2(a′2).id = id
From (II.5) and (i.1),

(i.2) D ends in FS-LOOKUPA
From (i.2),

(i.3) a2 = a′2
From (II.4), (i.3), and (II.7),
a1 ≈σ1,σ2

L a2

Subcase ii: (II.8) is true
From (II.8) and (3),

(ii.1) σ2(a2) ↓pc2
= ·

From (II.5) and (ii.1),
(ii.2) D ends in FS-LOOKUPA-R2

From (ii.2),
(ii.3) D′ :: a2 = lookupFS(σ2, pc2, id , A

′
2)

From (II.8),
IH may be applied on E and D′

From IH on E and D′,
a1 ≈σ1,σ2

L a2

Case III: E ends in FS-LOOKUPA-R
By assumption,

(III.1) A1 = (a′1 :: A′1) and
(III.2) σ1(a′1).id 6= id with
(III.3) σ1(a′1).v ↓pc1

6= ·

(III.4) E ′ :: a1 = lookupFS(σ1, pc1, id , (list
′
1 :: σ1(a′1).A ↓pc1

))
If pc2 = ·, then Case I applies. Otherwise, from (2),

(III.5) pc2 = L

From (3), (III.1), and the definition of ≈σ,σ
′

L for A,
(III.6) A2 = (a′2 :: A′2) with either
(III.7) a′1 ≈

σ1,σ2

L a′2 and
(III.8) A′1 ≈

σ1,σ2

L A′2, or
(III.9) A1 ≈σ1,σ2

L A′2

Subcase i: (III.7) and (III.8) is true
From (III.7) and (III.2),

(i.1) σ2(a′2).id 6= id
From (III.5) and (i.1),

(i.2) D ends in FS-LOOKUPA-R
From (i.2),

(i.3) D′ :: a2 = lookupFS(σ2, pc2, id , (A
′
2 :: σ2(a′2).A ↓pc2

))
From (III.7),

(i.4) σ1(a′1).A ≈σ1,σ2

L σ2(a′2).A
From (2), (i.4) and the definition of ≈σ1,σ2

L for A,
(i.5) σ1(a′1).A ↓pc1

≈σ1,σ2

L σ2(a′2).A ↓pc2

From (III.4), (i.3), (III.8), and (i.5),
IH may be applied on E ′ and D′

From IH on E ′ and D′,
a1 ≈σ1,σ2

L a2

Subcase ii: (III.9) is true
From (3), (III.6), and (III.9),

(ii.1) σ1(a′2).v ↓pc2
= ·

From (ii.1) and (III.5),
(ii.2) D ends in FS-LOOKUPA-R2

From (ii.2),
(ii.3) D′ :: a2 = lookupFS(σ2, pc2, id , A

′
2)

From (III.9),
IH may be applied on E and D′

From IH on E and D′,
a1 ≈σ1,σ2

L a2

Case IV: E ends in FS-LOOKUPA-R2
The proof for this case is similar to Subcase III.ii.

Case V: E ends in FS-LOOKUPA-S
By assumption,

(V.1) A1 = ·
(V.2) a1 = NULL

If pc2 = ·, then Case I applies. Otherwise, from (2),
(V.3) pc2 = L

From (3), (V.1), and the definition of ≈σ,σ
′

L for A
(V.4) A2 ≈σ2,σ1

L ·
From (V.4), either

(V.5) A2 = · or
(V.6) A2 = a′2 :: A′2 with
(V.7) σ2(a′2).v ↓pc2

= · and
(V.8) A′2 ≈

σ2,σ1

L ·

Subcase i: (V.5) is true
From (V.3) and (V.5),

(i.1) D ends in FS-LOOKUPA-S
From (i.1),

(i.2) a2 = NULL
From (V.2) and (i.2),
a1 ≈σ1,σ2

L a2

Subcase ii: (V.6)-(V.8) are true
From (V.3) and (V.6)-(V.8),

(ii.1) D ends in FS-LOOKUPA-R2
From (ii.1),

(ii.2) D′ :: a2 = lookupFS(σ2, pc2, id , A
′
2)

From (V.1) and (V.8),
(ii.3) IH may be applied on E and D′

From IH on E and D′,
a1 ≈σ1,σ2

L a2

Lemma 50. If σ1 ≈L σ2 and pc1, pc2 v L, then
Unstructured EH storage: getValG(σ1, pc1, id) 'L getValG(σ2, pc2, id)
Tree-structured EH storage: if a1 ≈σ1,σ2

L a2 getValG(σ1, pc1, a1) 'σ1,σ2

L getValG(σ2, pc2, a2)

Proof.
Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy version: Lemma 65
(Requirement (WE1)).
We examine each case of G
Denote D :: getValG(σ1, pc1, id) = v1 and
E :: getValG(σ2, pc2, id) = v2 for the unstructured EH storage, and

Denote D :: getValG(σ1, pc1, a1) = v1 and
E :: getValG(σ2, pc2, a2) = v2 for the tree-structured EH storage

By assumption,
(1) pc1, pc2 v L
(2) σ1 ≈L σ2

G = SMS
Unstructured EH storage
Case U.I: D ends in SMS-GETVAL

By assumption,
(U.I.1) lookupSMS(σ1, pc1, id) = φ1 6= NULL
(U.I.2) v1 = φ1.v

From (1), (2), (U.I.1), and Lemma 48.U,
(U.I.3) lookupSMS(σ2, pc2, id) = φ2

(U.I.4) φ1 ≈L φ2

From (U.I.1) and (U.I.4),
(U.I.5) φ2 = φ1 6= NULL

From (U.I.3) and (U.I.5),
(U.I.6) E ends in SMS-LOOKUP

From (U.I.6),
(U.I.7) v2 = φ2.v

From (U.I.2), (U.I.7), and (U.I.5),
The desired conclusion holds

Case U.II: D ends in SMS-GETVAL-S
By assumption,

(U.II.1) lookupSMS(σ1, pc1, id) = NULL
(U.II.2) v1 = dv

From (1), (2), (U.I.1), and Lemma 48.U,
(U.II.3) lookupSMS(σ2, pc2, id) = φ2

(U.II.4) φ1 ≈L φ2

From (U.II.1) and (U.II.4),
(U.II.5) φ2 = φ1 = NULL

From (U.II.5),
(U.II.6) E ends in SMS-GETVAL-S

From (U.II.6),
(U.II.7) v2 = dv

From (U.II.2) and (U.II.7),
The desired conclusion holds

Tree-structured EH storage
By assumption,

(T.1) a1 ≈σ1,σ2

L a2

Denote
σ′1 = getStore(σ1, pc1)
σ′2 = getStore(σ2, pc2)

Case T.I D ends in SMS-GETVAL
By assumption,

(T.I.1) φ1 = σ′1(a1)
(T.I.2) v1 = φ1.v

From (T.1), T (T.I.1),
(T.I.3) φ2 = σ′2(a2) and
(T.I.4) φ1 ≈σ1,σ2

L φ2

From (T.I.3),
(T.I.5) E ends in SMS-GETVAL

From (T.I.5),
(T.I.6) v2 = φ2.v

From (T.I.2), (T.I.6), and (T.I.4),
The desired conclusion holds

Case T.II D ends in SMS-GETVAL-S
By assumption,

(T.II.1) a1 = NULL
(T.II.2) v1 = dv

From (T.1) and (T.II.1),
(T.II.3) a2 = NULL

From (T.II.3),
(T.II.4) E ends in SMS-GETVAL-S

From (T.II.4),
(T.II.5) v2 = dv

From (T.II.2) and (T.II.5),
v1 ≈σ1,σ2

L v2

G = FS
Unstructured EH storage
Case U.I: D ends in FS-GETVAL,

By assumption,
(U.I.1) lookupFS(σ1, pc1, id) = φ1 6= NULL
(U.I.2) v1 = getFacetV(φ1.v, pc1)

From (1), (2), (U.I.1), and Lemma 48.U,
(U.I.3) φ1 ≈L φ2

From (U.I.1) and (U.I.3),
(U.I.4) φ2 6= NULL

From (U.I.4),
(U.I.5) E ends in FS-GETVAL

From (U.I.5),
(U.I.6) v2 = getFacetV(φ2.v, pc2)

From (U.I.3), (1), and the definition of getFacetV,
The desired conclusion holds

Case U.II: D ends in FS-GETVAL-S
By assumption,

(U.II.1) lookupFS(σ1, pc1, id) = NULL
(U.II.2) v1 = dv

From (1), (2), (U.I.1), and Lemma 48.U,
(U.II.3) φ1 ≈L φ2

From (U.II.1) and (U.II.3),
(U.II.4) φ2 = NULL

From (U.II.4),
(U.II.5) E ends in FS-GETVAL-S

From (U.II.5),
(U.II.6) v2 = dv

From (U.II.2) and (U.II.6),
The desired conclusion holds

Tree-structured EH storage
By assumption,

(T.1) a1 ≈σ1,σ2

L a2

Case T.I: D ends in FS-GETVAL
By assumption,

(T.I.1) σ1(a1) = φ1

(T.I.2) v1 = getFacetV(φ1.v, pc1)
From (T.1) and (T.I.1),

(T.I.3) σ2(a2) = φ2 with
(T.I.4) φ1 ≈σ1,σ2

L φ2

From (T.I.3),
(T.I.5) E ends in FS-GETVAL

From (T.I.5),
(T.I.6) a2 = getFacetV(φ2.v, pc2)

From (T.I.2), (T.I.6), and (T.I.4),
The desired conclusion holds

Case T.II: D ends in FS-GETVAL-S
By assumption,

(T.II.1) a1 = NULL
(T.II.2) v1 = dv

From (T.1) and (T.II.1),
(T.II.3) a2 = NULL

From (T.II.3),
(T.II.4) E ends in FS-GETVAL-S

From (T.II.4),
(T.II.5) v2 = dv

From (T.II.2) and (T.II.5),
The desired conclusion holds

Lemma 51. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2

L a2, then getChildrenG(σ1, pc1, a1) 'σ1,σ2

L
getChildrenG(σ2, pc2, a2)

Proof.
Note that getChildren is defined only for the tree-structured EH storage.
We examine each case of G
Denote D :: getChildrenG(σ1, pc1, a1) = v1 and
E :: getChildrenG(σ2, pc2, a2) = v2

By assumption,
(1) pc1, pc2 v L
(2) σ1 ≈L σ2

(3) a1 ≈σ1,σ2

L a2

G = SMS
Denote
σ′1 = getStore(σ1, pc1)
σ′2 = getStore(σ2, pc2)

Case I: D ends in SMS-GETCHILDREN
By assumption,

(I.1) φ1 = σ′1(a1)
(I.2) v1 = len(φ1.A)

From (3) and (I.1),
(I.3) φ2 = σ′2(a2) with
(I.4) φ1 ≈σ1,σ2

L φ2

From (I.3),
(I.5) E ends in SMS-GETCHILDREN

From (I.5),
(I.6) v2 = len(φ2.A)

From (I.4), (I.2), and (I.6),
v1 'σ1,σ2

L v2

Case II: D ends in SMS-GETCHILDREN-S
By assumption,

(II.1) a1 = NULL
(II.2) v1 = dv

From (3) and (II.1),
(II.3) a2 = NULL

From (II.3),
(II.4) E ends in SMS-GETCHILDREN-S

From (I.5),
(II.5) v2 = dv

From (II.2) and (II.5),
v1 'σ1,σ2

L v2

G = FS
Case I: D ends in FS-GETCHILDREN

By assumption,
(I.1) φ1 = σ′1(a1)
(I.2) φ1.v ↓pc1

6= ·
(I.3) v1 = len(φ1.A ↓pc1

)
From (3) and (I.1),

(I.4) φ2 = σ′2(a2) with
(I.5) φ1 ≈σ1,σ2

L φ2

From (1), (I.2), and (I.5),
(I.6) φ2.v ↓pc2

6= ·
From (I.4) and (I.6),

(I.7) E ends in FS-GETCHILDREN
From (I.7),

(I.8) v2 = len(φ2.A ↓pc2
)

From (I.3), (I.8), and (I.5),
v1 'σ1,σ2

L v2

Case II: D ends in FS-GETCHILDREN-S
By assumption,

(II.1) σ1(a1).v ↓pc1
= · or

(II.2) a1 = NULL
(II.3) v1 = dv

From (3), if (II.1) is true,
(II.4) σ2(a2).v ↓pc2

= · or
From (3), if (II.2) is true,

(II.5) a2 = NULL
From (II.4) and (II.5),

(II.6) E ends in FS-GETCHILDREN-S
From (I.6),

(II.7) v2 = dv
From (II.3) and (II.7),
v1 'σ1,σ2

L v2

Lemma 52. If σ1 ≈L σ2 and pc1, pc2 v L, then moveRootG(σ1, pc1) 'σ1,σ2

L moveRootG(σ2, pc2)

Proof.
Note that moveRoot is defined only for the tree-structured EH storage.
We examine each case of G
Denote D :: moveRootG(σ1, pc1) = a1 and
E :: moveRootG(σ2, pc2) = a2

By assumption,
(1) pc1, pc2 v L
(2) σ1 ≈L σ2

G = SMS
Denote
σ′1 = getStore(σ1, pc1)
σ′2 = getStore(σ2, pc2)

Case I: D and E ends in SMS-MOVEROOT
By assumption,

(I.1) a1 = art1
(I.2) a2 = art2

From (2),
(I.3) σ′1(art1) ≈σ1,σ2

L σ′2(art2)
From (I.1)-(I.3),
a1 ≈σ1,σ2

L a2

G = FS
Case I: D and E ends in FS-MOVEROOT

By assumption,
(I.1) a1 = art1
(I.2) a2 = art2

From (2),
(I.3) σ1(art1) ≈σ1,σ2

L σ2(art2)
From (I.1)-(I.3),
a1 ≈σ1,σ2

L a2

Lemma 53. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2

L a2, then moveUpG(σ1, pc1, a1) 'σ1,σ2

L moveUpG(σ2, pc2, a2)

Proof.
Note that moveUp is defined only for the tree-structured EH storage.
We examine each case of G
Denote D :: moveUpG(σ1, pc1, a1) = a′1 and
E :: moveUpG(σ2, pc2, a2) = a′2

By assumption,
(1) pc1, pc2 v L
(2) σ1 ≈L σ2

(3) a1 ≈σ1,σ2

L a2

G = SMS
Denote
σ′1 = getStore(σ1, pc1)
σ′2 = getStore(σ2, pc2)

Case I: D ends in SMS-MOVEU
By assumption,

(I.1) a′1 = σ′1(a1).ap
From (I.1) and (3),

(I.2) a2 ∈ σ′2
From (I.2),

(I.3) E must end in SMS-MOVEU
From (I.3),

(I.4) a′2 = σ′2(a2).ap
From (2), (I.1), and (I.4),

(I.5) σ′1(a′1).id = σ′2(a′2).id
From (2), (I.5), and since id ’s are unique,
a′1 ≈

σ1,σ2

L a′2

Case II: D ends in SMS-MOVEU-S
By assumption,

(II.1) a1 = NULL
(II.2) a′1 = NULL

From (3) and (II.1),
(II.3) a2 = NULL

From (II.2),
(II.4) E ends in SMS-MOVEU-S

From (II.4),
(II.5) a′2 = NULL

From (II.2) and (II.5),
a′1 ≈

σ1,σ2

L a′2

G = FS
From the structure of the operational semantics, pc1, pc2 is not ·

Case I: D ends in FS-MOVEU
By assumption,

(I.1) a′1 = σ′1(a1).ap ↓pc1

From (I.1) and (3),
(I.2) a2 ∈ σ′2

From (I.2),
(I.3) E must end in FS-MOVEU

From (I.3),
(I.4) a′2 = σ′2(a2).ap ↓pc2

From (2), (I.1), and (I.4),
(I.5) σ′1(a′1).id = σ′2(a′2).id

From (2), (I.5), and since id ’s are unique,
a′1 ≈

σ1,σ2

L a′2

Case II: D ends in FS-MOVEU-S1
By assumption,

(II.1) σ(a1).ap ↓pc1
= ·

(II.2) a′1 = NULL
From (3) and (II.1),

(II.3) σ(a2).ap ↓pc2
= ·

From (II.3),
(II.4) E ends in FS-MOVEU-S1

From (II.4),
(II.5) a′2 = NULL

From (II.2) and (II.5),
a′1 ≈

σ1,σ2

L a′2

Case III: D ends in FS-MOVEU-S2
By assumption,

(III.1) a1 = NULL
(III.2) a′1 = NULL

From (3) and (III.1),
(III.3) a2 = NULL

From (III.2),
(III.4) E ends in FS-MOVEU-S2

From (II.4),
(III.5) a′2 = NULL

From (III.2) and (III.5),
a′1 ≈

σ1,σ2

L a′2

Lemma 54. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2

L a2, then moveDownG(σ1, pc1, a1) 'σ1,σ2

L
moveDownG(σ2, pc2, a2)

Proof.
Note that moveDown is defined only for the tree-structured EH storage.
We examine each case of G
Denote D :: moveDownG(σ1, pc1, a1) = a′1 and
E :: moveDownG(σ2, pc2, a2) = a′2

By assumption,
(1) pc1, pc2 v L
(2) σ1 ≈L σ2

(3) a1 ≈σ1,σ2

L a2

G = SMS
Denote
σ′1 = getStore(σ1, pc1)
σ′2 = getStore(σ2, pc2)

Case I: D ends in SMS-MOVED
By assumption,

(I.1) a′′1 :: A1 = σ′1(a1).A
(I.2) a′1 = a′′1

From (I.1) and (3),
(I.3) a′′2 :: A2 = σ′2(a2).A with
(I.4) (a′′1 :: A1) ≈σ1,σ2

L (a′′2 :: A2)
From (I.4),

(I.5) E must end in SMS-MOVED
From (I.3) and (I.5),

(I.6) a′2 = a′′2
From (I.4), (I.2), (I.6), and the definition of ≈σ,σ

′

L for A,
a′1 ≈

σ1,σ2

L a′2

Case II: D ends in SMS-MOVED-S1
By assumption,

(II.1) σ′1(a1).A = ·
(II.2) a′1 = NULL

From (I.1) and (3),
(II.3) σ′2(a2).A = ·

From (II.3),
(II.4) E ends in SMS-MOVED-S1

From (II.4),
(II.5) a′2 = NULL

From (II.2) and (II.5),
a′1 ≈

σ1,σ2

L a′2

Case III: D ends in SMS-MOVED-S2
By assumption,

(III.1) a1 = NULL
(III.2) a′1 = NULL

From (3) and (III.1),
(III.3) a2 = NULL

From (III.2),
(III.4) E ends in SMS-MOVED-S2

From (III.4),
(III.5) a′2 = NULL

From (III.2) and (III.5),
a′1 ≈

σ1,σ2

L a′2

G = FS
From the structure of the operational semantics, pc1, pc2 is not ·

Case I: D ends in FS-MOVED
By assumption,

(I.1) a′′1 :: A1 = σ′1(a1).A ↓pc1

(I.2) a′1 = a′′1
From (I.1) and (3),

(I.3) a′′2 :: A2 = σ′2(a2).A ↓pc2
with

(I.4) (a′′1 :: A1) ≈σ1,σ2

L (a′′2 :: A2)
From (I.4),

(I.5) E must end in FS-MOVED
From (I.3) and (I.5),

(I.6) a′2 = a′′2
From (I.4), (I.2), (I.6), and the definition of ≈σ,σ

′

L for AFS,
a′1 ≈

σ1,σ2

L a′2

Case II: D ends in FS-MOVED-S1
By assumption,

(II.1) σ′1(a1).A ↓pc1
= ·

(II.2) a′1 = NULL
From (I.1) and (3),

(II.3) σ′2(a2).A ↓pc2
= ·

From (II.3),

(II.4) E ends in MOVED-S1
From (II.4),

(II.5) a′2 = NULL
From (II.2) and (II.5),
a′1 ≈

σ1,σ2

L a′2

Case III: D ends in FS-MOVED-S2
By assumption,

(III.1) a1 = NULL
(III.2) a′1 = NULL

From (3) and (III.1),
(III.3) a2 = NULL

From (III.2),
(III.4) E ends in FS-MOVED-S2

From (III.4),
(III.5) a′2 = NULL

From (III.2) and (III.5),
a′1 ≈

σ1,σ2

L a′2

Lemma 55. If σ1 ≈L σ2, pc1, pc2 v L, and a1 ≈σ1,σ2

L a2, then moveRightG(σ1, pc1, a1) 'σ1,σ2

L
moveRightG(σ2, pc2, a2)

Proof.
Note that moveRight is defined only for the tree-structured EH storage.
We examine each case of G
Denote D :: moveRightG(σ1, pc1, a1) = a′1 and
E :: moveRightG(σ2, pc2, a2) = a′2

By assumption,
(1) pc1, pc2 v L
(2) σ1 ≈L σ2

(3) a1 ≈σ1,σ2

L a2

G = SMS
Denote
σ′1 = getStore(σ1, pc1)
σ′2 = getStore(σ2, pc2)

Case I: D ends in SMS-MOVER
By assumption,

(I.1) ap,1 = σ′1(a1).ap
(I.2) A1 :: a1 :: a′′1 :: A′1 = σ′1(ap,1).A
(I.3) a′1 = a′′1

From (I.1) and (3),
(I.4) ap,2 = σ′1(a2).ap with
(I.5) ap,1.id = ap,2.id

From (2), (I.5), and since id ’s are unique,
(I.6) ap,1 ≈σ1,σ2

L ap,2
From (I.2) and (I.6),

(I.7) A2 :: a2 :: a′′2 :: A′2 = σ′2(ap,2).A with
(I.8) (A1 :: a1 :: a′′1 :: A′1) ≈σ1,σ2

L (A2 :: a2 :: a′′2 :: A′2)
From (I.4) and (I.7),

(I.9) E must end in SMS-MOVER
From (I.7) and (I.9),

(I.10) a′2 = a′′2
From (I.8), (I.3), (I.10), and the definition of ≈σ,σ

′

L for A,
a′1 ≈

σ1,σ2

L a′2

Case II: D ends in SMS-MOVER-S1
By assumption,

(II.1) ap,1 = σ′1(a1).ap
(II.2) A1 :: a1 = σ′1(ap,1).A
(II.3) a′1 = NULL

From (II.1) and (3),
(II.4) ap,2 = σ′1(a2).ap with
(II.5) ap,1.id = ap,2.id

From (2), (II.5), and since id ’s are unique,
(II.6) ap,1 ≈σ1,σ2

L ap,2
From (II.2) and (I.6),

(II.7) A2 :: a2 = σ′2(ap,2).A with
From (II.4) and (II.7),

(II.8) E must end in SMS-MOVER-S1
From (II.8),

(II.9) a′2 = NULL
From (II.3) and (II.9),
a′1 ≈

σ1,σ2

L a′2

Case III: D ends in SMS-MOVER-S2
By assumption,

(III.1) NULL = σ′1(a1).ap ∨ σ(a).ap ↓pcl
= ·

(III.2) a′1 = NULL
From (III.1) and (3),

(III.3) NULL = σ′1(a2).ap ∨ σ(a).ap ↓pcl
= ·

From (III.3),
(III.4) E must end in SMS-MOVER-S2

From (II.4),
(III.5) a′2 = NULL

From (III.2) and (III.5),
a′1 ≈

σ1,σ2

L a′2

Case IV: D ends in SMS-MOVER-S3
By assumption,

(IV.1) a1 = NULL
(IV.2) a′1 = NULL

From (3) and (IV.1),
(IV.3) a2 = NULL

From (IV.2),
(IV.4) E ends in SMS-MOVER-S3

From (IV.4),
(IV.5) a′2 = NULL

From (IV.2) and (IV.5),
a′1 ≈

σ1,σ2

L a′2

G = FS
From the structure of the operational semantics, pc1, pc2 is not ·

Case I: D ends in FS-MOVED
By assumption,

(I.1) ap,1 = σ′1(a1).ap ↓pc1

(I.2) A1 :: a1 :: a′′1 :: A′1 = σ′1(ap,1).A ↓pc1

(I.3) a′1 = a′′1
From (I.1) and (3),

(I.4) ap,2 = σ′1(a2).ap ↓pc2
with

(I.5) ap,1.id = ap,2.id
From (2), (I.5), and since id ’s are unique,

(I.6) ap,1 ≈σ1,σ2

L ap,2
From (I.2) and (I.6),

(I.7) A2 :: a2 :: a′′2 :: A′2 = σ′2(ap,2).A ↓pc2
with

(I.8) (A1 :: a1 :: a′′1 :: A′1) ≈σ1,σ2

L (A2 :: a2 :: a′′2 :: A′2)
From (I.4) and (I.7),

(I.9) E must end in FS-MOVER
From (I.7) and (I.9),

(I.10) a′2 = a′′2
From (I.8), (I.3), (I.10), and the definition of ≈σ,σ

′

L for A,
a′1 ≈

σ1,σ2

L a′2

Case II: D ends in FS-MOVER-S1
By assumption,

(II.1) ap,1 = σ′1(a1).ap ↓pc1

(II.2) A1 :: a1 = σ′1(ap,1).A ↓pc1

(II.3) a′1 = NULL
From (II.1) and (3),

(II.4) ap,2 = σ′1(a2).ap ↓pc2
with

(II.5) ap,1.id = ap,2.id
From (2), (II.5), and since id ’s are unique,

(II.6) ap,1 ≈σ1,σ2

L ap,2
From (II.2) and (I.6),

(II.7) A2 :: a2 = σ′2(ap,2).A ↓pc2
with

From (II.4) and (II.7),
(II.8) E must end in FS-MOVER-S1

From (II.8),
(II.9) a′2 = NULL

From (II.3) and (II.9),
a′1 ≈

σ1,σ2

L a′2

Case III: D ends in FS-MOVER-S2
By assumption,

(III.1) NULL = σ′1(a1).ap ↓pc1

(III.2) a′1 = NULL
From (III.1) and (3),

(III.3) NULL = σ′1(a2).ap ↓pc2
with

From (III.3),
(III.4) E must end in FS-MOVER-S2

From (II.4),
(III.5) a′2 = NULL

From (III.2) and (III.5),
a′1 ≈

σ1,σ2

L a′2

Case IV: D ends in FS-MOVER-S3
By assumption,

(IV.1) a1 = NULL
(IV.2) a′1 = NULL

From (3) and (IV.1),
(IV.3) a2 = NULL

From (IV.2),
(IV.4) E ends in FS-MOVER-S3

From (IV.4),
(IV.5) a′2 = NULL

From (IV.2) and (IV.5),
a′1 ≈

σ1,σ2

L a′2

Lemma 56. If σ1 ≈L σ2 and ks1 ≈L ks2 with E1 ≈L E2 and pc1, pc2 v L, and one of the following:
1) When G,P, σ1 ` ks1; lookupEHAt(id .Ev(v)) ;pc1

ks ′1, and G,P, σ2 ` ks2; lookupEHAt(id .Ev(v)) ;pc2
ks ′2,

2) When G,P, σ1 ` ks1; lookupEHAll(id .Ev(v)) ;pc1
ks ′1, and G,P, σ2 ` ks2; lookupEHAll(id .Ev(v)) ;pc2

ks ′2,
3) When G,P, σ1 ` ks1; lookupEHAt(id .Ev(v)) ;L ks ′1 and G,P, σ2 ` ks2; lookupEHAll(id .Ev(v)) ;· ks

′
2, or

4) When G,P, σ1 ` ks1; lookupEHs(E1) ;pc1
ks ′1, and G,P, σ2 ` ks2; lookupEHs(E2) ;pc2

ks ′2,
then ks ′1 ≈L ks ′2

Proof.
By induction on the structure of D :: G,P, σ1 ` ks1; lookupEHAPI(...) ;pc1

ks ′1 and
E :: G,P, σ2 ` ks2; lookupEHAPI(...) ;pc2

ks ′2
By assumption,

(1) σ1 ≈L σ2

(2) ks1 ≈L ks2

(3) pc1, pc2 v L
(4) E1 ≈L E2

Case I: D and E end in LOOKUPEHAPI
C1 ≈L C2 follows from Lemma 59, Lemma 60, or Lemma 61, depending on the APIs.
The conclusion follows from (2) and Lemma 57

Case II: D ends in LOOKUPEHS-S
By assumption,

(II.1) E1 = ·
(II.2) ks ′1 = ks1

Subcase i: E2 = ·
By assumption,

(i.1) E ends in LOOKUPEHS-S
From (i.1),

(i.2) ks ′2 = ks2

From (2), (II.2), and (i.2),
ks ′1 ≈L ks ′2

Subcase ii: E2 6= ·
By assumption,

(ii.1) E ends in LOOKUPEHS-R
From (4) and (II.1),

(ii.2) E2 ≈L ·
From (ii.1),

(ii.3) G,P, σ2 ` ks2; lookupEHs(E2) ;pc2
ks ′2

From (ii.2), (ii.3), and Lemma 66 (Requirement (EH2)),
(ii.4) ks2 ≈L ks ′2

From (2), (II.2), and (ii.4),
ks ′1 ≈L ks ′2

Case III: E ends in LOOKUPEHS-S
The proof for this case is similar to Case II.

Case IV: D ends in LOOKUPEHS-R
By assumption,

(IV.1) E1 = (id .Ev(v), l1), E′1
(IV.2) ks1 = (V; ; pc1)
(IV.3) C1 = lookupEHsG,V(σ1, id .Ev(v), pc1 t l1)
(IV.4) ks ′′1 = createK(P, id .Ev(v), C1)
(IV.5) D′ :: G,P, σ1 ` ks1 :: ks ′′1 ; lookupEHs(E′1) ;pc1

ks ′1

Subcase i: l1 v L
By assumption and from (4),

(i.1) E2 = (id ′.Ev ′(v′), l2), E′2
From (i.1),

(i.2) E ends in LOOKUPEHS-R
From (i.2), (2), and (3),

(i.3) ks2 = (V; ; pc2)
(i.4) C2 = lookupEHsG,V(σ2, id

′.Ev ′(v′), pc2 t l2)
(i.5) ks ′′2 = createK(P, id ′.Ev ′(v′), C2)
(i.6) E ′ :: G,P, σ2 ` ks2 :: ks ′′2 ; lookupEHs(E′2) ;pc2

ks ′2

Subsubcase a: l2 v L
By assumption and from (4),

(a.1) id ′.Ev ′(v′) = id .Ev(v) and
(a.2) E′1 ≈L E′2

By assumption and from (3),
(a.3) pc1 t l1 v L and pc2 t l2 v L

From (1), (IV.3), (i.4), (a.1), (a.3), and Lemma 62,
(a.4) C1 ≈L C2

From (a.4), (IV.4), (i.5), (a.1), and Lemma 57,
(a.5) ks ′′1 ≈L ks ′′2

From (2) and (a.5),

(a.6) (ks1 :: ks ′′1) ≈L (ks2 :: ks ′′2)
From (1), (3), (a.6), (a.2), (IV.5), and (i.6),

(a.7) IH may be applied on D′ and E ′
From (a.7) and the IH on D′ and E ′,

ks ′1 ≈L ks ′2

Subsubcase b: l2 6v L
By assumption and from our security lattice,

(b.1) pc2 t l2 = H
(b.2) E2 ≈L E′2

From (b.1), (i.4), and Lemma 69 (Requirement (EH2)),
(b.3) C2 ≈L ·

From (b.3), (i.5), and Lemma 70 (Requirement (EH2)),
(b.4) ks ′′2 ≈L ·

From (b.4),
(b.5) (ks2 :: ks ′′2) ≈L ks2

From (b.2) and (4),
(b.6) E1 ≈L E′2

From (b.5) and (2),
(b.7) ks1 ≈L (ks2 :: ks ′′2)

From (1), (3), (b.7), (b.6), and (i.6),
(b.8) IH may be applied on D and E ′

From (b.8),
ks ′1 ≈L ks ′2

Subcase ii: l1 6v L
The proof for this case is similar to Subsubcase i.b. The conclusion follows from applying the IH on D′ and E .

Case V: E ends in LOOKUPEHS-R
The proof for this case is similar to the one for Case IV.

Lemma 57. If C1 ≈L C2 and ks1 = createK(P, id .Ev(v), C1) and ks2 = createK(P, id .Ev(v), C2), then ks1 ≈L ks2

Proof (sketch): The proof is by straightforward induction on the structure of D :: createK(P, id .Ev(v), C1) and E ::
createK(P, id .Ev(v), C2). It uses Lemma 58 for L event handlers and Lemma 71 (Requirement (EH2)) for any H event
handlers.

Lemma 58. If pc1, pc2 v L and ks1 = crtKV(eh, v, pc1) and ks2 = crtKV(eh, v, pc2), then ks1 ≈L ks2

Proof (sketch): This proof is straightforward. It uses the definition of ≈L for κ.

Lemma 59. σ1 ≈L σ2 with pc1, pc2 v L, then lookupEHAllG(σ1, pc1, id .Ev(v)) ≈L lookupEHAllG(σ2, pc2, id .Ev(v))

Proof.
By induction on the structure of
E :: C1 = lookupEHAllG(σ1, id .Ev(v), pc1) and
D :: C2 = lookupEHAllG(σ2, id .Ev(v), pc2)
Want to show C1 ≈L C2

By assumption,
(1) σ1 ≈L σ2

(2) pc1, pc2 v L

Case I: D ends in LOOKUPEHALL-S
By assumption,

(I.1) lookupG↓EH
(σ1, pc1, id) = φ1

(I.2) valOf(φ1) = NULL
(I.3) C1 = ·

Subcase i: pc2 = L
From (1), (2), (I.1), and Lemma 48.U (for the unstructured EH storage),

(i.1) lookupG↓EH
(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ2, pc2) = L or

(i.2) lookupG↓EH
(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ2, pc2) = H

From (1), (2), (I.1), and Lemma 48.T (for the tree-structured EH storage),

(i.3) lookupG↓EH
(σ2, pc2, id) ≈σ2,σ1

L φ1

Subsubcase a: (i.1) or (i.3) are true
From (i.1) (for the unstructured EH storage) and (i.3) (for the tree-structured EH storage),

(a.1) E ends in LOOKUPEHALL-S
From (i.3),

(a.2) C2 = ·
From (I.3) and (a.2),
C1 ≈L C2

Subsubcase b: (i.2) is true
From (i.2),

(b.1) C1 ≈L ·
(b.2) E ends in LOOKUPEHALL or
(b.3) E ends in LOOKUPEHALL-S

If (b.2) is true, then from (i.2),
(b.4) C2 ≈L ·

If (b.3) is true,
(b.5) C2 = ·

From (b.1), (b.40, and (b.5),
C1 ≈L C2

Subcase ii: pc2 = ·
By assumption,

(ii.1) E ends in LOOKUPEHALL-NC-MERGE
From (ii.1),

(ii.2) ∃E ′ :: lookupEHAllG(σ2, H, id .Ev(v)) = CH
(ii.3) ∃E ′′ :: lookupEHAllG(σ2, L, id .Ev(v)) = CL
(ii.4) C2 = mergeC(CH , CL)

From (ii.2) and Lemma 67 (Requirement (EH2)),
(ii.5) CH ≈L ·

IH on D and E ′′ gives
(ii.6) CL ≈L C1

From (ii.4)-(ii.6) and the definition of mergeC,
C1 ≈L C2

Case II: E ends in LOOKUPEHALL-S
The proof for this case is similar to Case I.

Case III: E ends in LOOKUPEHALL
By assumption,

(III.1) lookupG↓EH
(σ1, pc1, id) = φ1

(III.2) valOf(φ1) 6= NULL
(III.3) labOf(φ1, pc1) = l1
(III.4) C1 = (φ1.M(Ev) ↓pc1

) t pc1 t l1
(III.5) pc1 = L

From (1), (2), (III.1), and Lemma 48.U (for the unstructured EH storage),
(III.6) lookupG↓EH

(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ1, pc2) = L
(III.7) lookupG↓EH

(σ2, pc2, id) = φ2 ≈L φ1 with labOf(φ1, pc1) = labOf(φ1, pc2) = H
From (1), (2), (III.1), and Lemma 48.T (for the tree-structured EH storage),

(III.8) lookupG↓EH
(σ2, pc2, id) ≈σ2,σ1

L φ1

Subcase i: pc2 = L and (III.6) or (III.8) is true
From (III.6) and (III.8),

(i.1) E ends in LOOKUPEHALL
From (i.1),

(i.2) labOf(φ2, pc2) = l2
(i.3) C2 = (φ2.M(Ev) ↓pc2

) t pc2 t l2
(i.4) pc2 = L

From (III.7), (III.3), and (i.2),
(i.5) l1 = l2 = L

From (III.6), (III.8), (III.5), (i.4), (III.4), (i.3), and the definition of ↓L for M (which projects L- and ·-labeled

event handlers to be labeled with L),
(i.6) C1 = φ1.M(Ev) ↓L
(i.7) C2 = φ2.M(Ev) ↓L

From (III.6), (III.8), (i.6), (i.7), and the definition of ↓L for M ,
C1 ≈L C2

Subcase ii: pc2 = ·
From (III.8),

(ii.1) E ends in LOOKUPEHALL-NC-MERGE
The rest of the proof is similar to Subcase I.ii.

Subcase iii: (III.7) is true
The proof for this case is similar to Subcase I.i.b.

Case IV: D ends in LOOKUPEHALL
The proof for this case is similar to the one for Case III.

Case V: E ends in LOOKUPEHALL-NC-MERGE
By assumption,

(V.1) E ′ :: CH = lookupEHAllG(σ1, H, id .Ev(v))
(V.2) E ′′ :: CL = lookupEHAllG(σ1, L, id .Ev(v))
(V.3) C1 = mergeC(CH , CL)

From (V.1) and Lemma 67 (Requirement (EH2)),
(V.4) CH ≈L ·

IH on D and E ′′ gives
(V.5) CL ≈L C1

From (V.3)-(V.5) and the definition of mergeC,
C1 ≈L C2

Case VI: D ends in LOOKUPEHALL-NC-MERGE
The proof is similar to Case V

Lemma 60. σ1 ≈L σ2 and pc1, pc2 v L, then lookupEHAtG(σ1, pc1, id .Ev(v1)) ≈L lookupEHAtG(σ2, pc2, id .Ev(v2))

Proof (sketch): The proof is similar to the proof for Lemma 59. The biggest difference is that lookupEHAt uses the
@ operator instead of the ↓ operator to build up C. But (M(Ev)@L) tL returns the same thing as M(Ev) ↓L, so this
does not matter.

Lemma 61. σ1 ≈L σ2, then lookupEHAtG(σ1, L, id .Ev(v)) ≈L lookupEHAllG(σ2, ·, id .Ev(v))

Proof (sketch): The proof for this case is similar to Lemma 59 and uses the fact that (M(Ev)@L) t L returns the
same thing as M(Ev) ↓L and Lemma 67 (Requirement (EH2)) is used to show that lookupEHAllG(σ2, ·, id .Ev(v)) ≈L
lookupEHAllG(σ2, L, id .Ev(v)).

Lemma 62. σ1 ≈L σ2 and pc1, pc2 v L, then lookupEHsG(σ1, pc1, id .Ev(v)) ≈L lookupEHsG(σ2, pc2, id .Ev(v))

Proof (sketch): Follows from Lemma 59 and Lemma 60.

Lemma 63. If σ1 ≈L σ, pc1, pc2 v L, and v1 ≈L v2 then triggerEHG(σ1, pc1, id ,Ev , v1) ≈L
triggerEHG(σ2, pc2, id ,Ev , v2)

Proof.
By induction on the structure of E :: triggerEHG(σ1, pc1, id ,Ev , v1) and D :: triggerEHG(σ2, pc2, id ,Ev , v2)
Denote

triggerEHG(σ1, pc1, id ,Ev , v1) = E1

triggerEHG(σ2, pc2, id ,Ev , v2) = E2

Want to show E1 ≈L E2

By assumption,
(1) σ1 ≈L σ2

(2) pc1, pc2 v L,
(3) v1 ≈L v2

G = SMS
Unstructured EH storage:
Case U.I: E or D ends in SMS-TRIGGEREH

Without loss of generality, assume D ends in SMS-TRIGGEREH. The proof for E ending in SMS-TRIGGEREH is similar.

By assumption,
(U.I.1) φ1 = lookupG↓EH

(σ1, pc1, id) 6= NULL
(U.I.2) E1 = (id .Ev(v1), pc1)

From (1), (2), (U.I.1), and Lemma 48.U,
(U.I.3) φ2 = lookupG↓EH

(σ2, pc2, id) with
(U.I.4) φ1 ≈L φ2

From (U.I.1) and (U.I.4),
(U.I.5) φ2 6= NULL

From (U.I.3) and (U.I.5),
(U.I.6) E ends in SMS-TRIGGEREH

From (U.I.6),
(U.I.7) E2 = (id .Ev(v2), pc2)

From (3), (U.I.2), and (U.I.7),
E1 ≈L E2

Case U.II: E or D ends in SMS-TRIGGEREH-S
Without loss of generality, assume D ends in SMS-TRIGGEREH-S. The proof for E ending in SMS-TRIGGEREH-S is
similar.
By assumption,

(U.II.1) φ1 = lookupG(σ1, pc1, id) = NULL
(U.II.2) E1 = ·

From (1), (2), (U.II.1), and Lemma 48.U,
(U.II.3) φ2 = lookupG↓EH

(σ2, pc2, id) with
(U.II.4) φ1 ≈L φ2

From (U.II.1) and (U.II.4),
(U.II.5) φ2 = NULL

From (U.II.3) and (U.II.5),
(U.II.6) E ends in SMS-TRIGGEREH-S

From (U.II.6),
(U.II.7) E2 = ·

From (U.II.2) and (U.II.7),
E1 ≈L E2

Case U.III: E or D ends in SMS-TRIGGEREH-NC
Without loss of generality, assumeD ends in SMS-TRIGGEREH-NC. The proof for E ending in SMS-TRIGGEREH-NC is
similar.
By assumption,

(U.III.1) EH,1 = triggerEHSMS(σ1, H, id ,Ev , getFacet(v1, H))
(U.III.2) D′ :: EL,1 = triggerEHSMS(σ1, L, id ,Ev , getFacet(v1, L))
(U.III.3) E1 = mergeEvs(EH , EL)

From the definition of getFacet,
The IH may be applied on D′ and E

From IH on D′ and E ,
(U.III.4) EL,1 ≈L E2

From (U.III.1) and Lemma 72 (Req (EH2)),
(U.III.5) EH,1 ≈L ·

From (U.III.3)-(U.III.5) and the definition of mergeEvs,
E1 ≈L E2

Tree-structured EH storage:
Denote
σ1 = σH,1, σL,1 and
σ2 = σH, 2, σL,2

From (1),
(T.1) σL,1(art1) ≈σ1,σ2

L σL,2(art2)

Case T.I: E or D ends in SMS-TRIGGEREH
Without loss of generality, assume D ends in SMS-TRIGGEREH. The proof for E ending in SMS-TRIGGEREH is similar.
By assumption,

(T.I.1) a1 = lookupAG↓EH
(σ1, pc1, id , a

rt
1) 6= NULL

(T.I.2) E1 = (id .Ev(v1), pc1)
From (1), (2), (T.1), (T.I.1), and Lemma 49,

(T.I.3) a2 = lookupAG↓EH
(σ2, pc2, id , a

rt
2) with

(T.I.4) a1 ≈σ1,σ2

L a2

From (T.I.1) and (T.I.4),
(T.I.5) a2 6= NULL

From (T.I.3) and (T.I.5),
(T.I.6) E ends in SMS-TRIGGEREH

From (T.I.6),
(T.I.7) E2 = (id .Ev(v2), pc2)

From (3), (T.I.2), and (T.I.7),
E1 ≈L E2

Case T.II: E or D ends in SMS-TRIGGEREH-S
Without loss of generality, assume D ends in SMS-TRIGGEREH-S. The proof for E ending in SMS-TRIGGEREH-S is
similar.
By assumption,

(T.II.1) a1 = lookupAG(σ1, pc1, id , a
rt
1) = NULL

(T.II.2) E1 = ·
From (1), (2), (T.1), (T.II.1), and Lemma 49,

(T.II.3) a2 = lookupAG↓EH
(σ2, pc2, id , a

rt
2) with

(T.II.4) a1 ≈σ1,σ2

L a2

From (T.II.1) and (T.II.4),
(T.II.5) a2 = NULL

From (T.II.3) and (T.II.5),
(T.II.6) E ends in SMS-TRIGGEREH-S

From (T.II.6),
(T.II.7) E2 = ·

From (T.II.2) and (T.II.7),
E1 ≈L E2

Case T.III: E or D ends in SMS-TRIGGEREH-NC
Without loss of generality, assumeD ends in SMS-TRIGGEREH-NC. The proof for E ending in SMS-TRIGGEREH-NC is
similar.
By assumption,

(T.III.1) EH,1 = triggerEHSMS(σ1, H, id ,Ev , getFacet(v1, H))
(T.III.2) D′ :: EL,1 = triggerEHSMS(σ1, L, id ,Ev , getFacet(v1, L))
(T.III.3) E1 = mergeEvs(EH , EL)

From the definition of getFacet,
The IH may be applied on D′ and E

From IH on D′ and E ,
(T.III.4) EL,1 ≈L E2

From (T.III.1) and Lemma 72 (Req (EH2)),
(T.III.5) EH,1 ≈L ·

From (T.III.3)-(T.III.5) and the definition of mergeEvs,
E1 ≈L E2

G = FS
Unstructured EH storage:
Case U.I: D ends in FS-TRIGGEREH

By assumption,
(U.I.1) φ1 = lookupFS(σ1, pc1, id) 6= 〈 | 〉 6= NULL
(U.I.2) E1 = (id .Ev(v1), pc1)

From (1), (2), (U.I.1), and Lemma 48.U,
(U.I.3) φ2 = lookupFS(σ2, pc2, id) with
(U.I.4) φ1 ≈L φ2

From (U.I.1) and (U.I.4), either
(U.I.5) φ2 = 〈 | 〉 or v2 = 〈 | 〉
(U.I.6) φ2 6= 〈 | 〉 and φ2 6= NULL and v2 6= 〈 | 〉

Subcase i: (U.I.5) is true
From (U.I.5),

(i.1) E ends in FS-TRIGGEREH-NC
From (i.1),

(i.2) EH = triggerEHFS(σ2, H, id ,Ev , getFacetV(v,H))
(i.3) ∃E ′ :: EL = triggerEHFS(σ2, L, id ,Ev , getFacetV(v, L))
(i.4) E2 = mergeEvs(EH , EL)

From (1), (2), and the definition of getFacetV,
the IH may be applied to D and E ′

From IH on D and E ′,
(i.5) E1 ≈L EL

From (i.2) and Lemma 72 (Req (EH2)),
(i.6) EH ≈L ·

From (i.4)-(i.6), and the definition of mergeEvs,
E1 ≈L E2

Subcase ii: (U.I.6) is true
From (U.I.6),

(ii.1) E ends in FS-TRIGGEREH
From (ii.1),

(ii.2) E2 = (id .Ev(v2), pc2)
From (3), (U.I.2), and (ii.2),
E1 ≈L E2

Case U.II: D ends in FS-TRIGGEREH-NC
By assumption,

(U.II.1) EH = triggerEHFS(σ1, H, id ,Ev , getFacetV(v,H))
(U.II.2) ∃D′ :: EL = triggerEHFS(σ1, L, id ,Ev , getFacetV(v, L))
(U.II.3) E1 = mergeEvs(EH , EL)

From (1), (2), and the definition of getFacetV,
the IH may be applied to D′ and E

From IH on D′ and E ,
(U.II.4) EL ≈L E2

From (U.II.1) and Lemma 72 (Req (EH2)),
(U.II.5) EH ≈L ·

From (U.II.3)-(U.II.5), and the definition of mergeEvs,
E1 ≈L E2

Case U.III: D ends in FS-TRIGGEREH-S
By assumption,

(U.III.1) lookupFS(σ1, pc1, id) = NULL
(U.III.2) E1 = ·

From (1), (2), (U.III.1), and Lemma 48.U,
(U.III.3) φ2 = lookupFS(σ2, pc2, id) with
(U.III.4) NULL1 ≈L φ2

From (U.III.1) and (U.III.4), either
(U.III.5) φ2 = 〈 | 〉 or v2 = 〈 | 〉
(U.III.6) φ2 = NULL and v2 6= 〈 | 〉

Subcase i: (U.III.5) is true
From (U.III.5),

(i.1) E ends in FS-TRIGGEREH-NC
From (i.1),

(i.2) EH = triggerEHFS(σ2, H, id ,Ev , getFacetV(v,H))
(i.3) ∃E ′ :: EL = triggerEHFS(σ2, L, id ,Ev , getFacetV(v, L))
(i.4) E2 = mergeEvs(EH , EL)

From (1), (2), and the definition of getFacetV,
the IH may be applied to D and E ′

From IH on D and E ′,
(i.5) E1 ≈L EL ≈L ·

From (i.2) and Lemma 72 (Req (EH2)),
(i.6) EH ≈L ·

From (U.III.2), (i.4)-(i.6), and the definition of mergeEvs,
E1 ≈L E2

Subcase ii: (U.III.6) is true
By assumption,

(ii.1) E ends in FS-TRIGGEREH-S
From (ii.1),

(ii.2) E2 = ·
From (U.III.2) and (ii.2),
E1 ≈L E2

Tree-structured EH storage
From (1),

(T.1) σL,1(art1) ≈σ1,σ2

L σL,2(art2)

Case T.I: D ends in FS-TRIGGEREH
By assumption,

(T.I.1) a1 = lookupAFS(σ1, pc1, id , a
rt
1) 6= 〈 | 〉 6= NULL

(T.I.2) E1 = (id .Ev(v1), pc1)
From (1), (2), (T.1), (T.I.1), and Lemma 49,

(T.I.3) a2 = lookupAFS(σ2, pc2, id , a
rt
2) with

(T.I.4) a1 ≈σ1,σ2

L a2

From (T.I.1) and (T.I.4), either
(T.I.5) a2 = 〈 | 〉 or v2 = 〈 | 〉
(T.I.6) a2 6= 〈 | 〉 and a2 6= NULL and v2 6= 〈 | 〉

Subcase i: (T.I.5) is true
From (T.I.5),

(i.1) E ends in FS-TRIGGEREH-NC
From (i.1),

(i.2) EH = triggerEHFS(σ2, H, id ,Ev , getFacetV(v,H))
(i.3) ∃E ′ :: EL = triggerEHFS(σ2, L, id ,Ev , getFacetV(v, L))
(i.4) E2 = mergeEvs(EH , EL)

From (1), (2), and the definition of getFacetV,
the IH may be applied to D and E ′

From IH on D and E ′,
(i.5) E1 ≈L EL

From (i.2) and Lemma 72 (Req (EH2)),
(i.6) EH ≈L ·

From (i.4)-(i.6), and the definition of mergeEvs,
E1 ≈L E2

Subcase ii: (T.I.6) is true
From (T.I.6),

(ii.1) E ends in FS-TRIGGEREH
From (ii.1),

(ii.2) E2 = (id .Ev(v2), pc2)
From (3), (T.I.2), and (ii.2),
E1 ≈L E2

Case T.II: D ends in FS-TRIGGEREH-NC
By assumption,

(T.II.1) EH = triggerEHFS(σ1, H, id ,Ev , getFacetV(v,H))
(T.II.2) ∃D′ :: EL = triggerEHFS(σ1, L, id ,Ev , getFacetV(v, L))
(T.II.3) E1 = mergeEvs(EH , EL)

From (1), (2), and the definition of getFacetV,
the IH may be applied to D′ and E

From IH on D′ and E ,
(T.II.4) EL ≈L E2

From (T.II.1) and Lemma 72 (Req (EH2)),
(T.II.5) EH ≈L ·

From (T.II.3)-(T.II.5), and the definition of mergeEvs,
E1 ≈L E2

Case T.III: D ends in FS-TRIGGEREH-S
By assumption,

(T.III.1) lookupAFS(σ1, pc1, id , a
rt
1) = NULL

(T.III.2) E1 = ·

From (1), (2), (T.III.1), (T.1), and Lemma 49,
(T.III.3) a2 = lookupAFS(σ2, pc2, id , a

rt
2) with

(T.III.4) NULL ≈σ1,σ2

L a2

From (T.III.1) and (T.III.4), either
(T.III.5) a2 = 〈 | 〉 or v2 = 〈 | 〉
(T.III.6) a2 = NULL and v2 6= 〈 | 〉

Subcase i: (T.III.5) is true
From (T.III.5),

(i.1) E ends in FS-TRIGGEREH-NC
From (i.1),

(i.2) EH = triggerEHFS(σ2, H, id ,Ev , getFacetV(v,H))
(i.3) ∃E ′ :: EL = triggerEHFS(σ2, L, id ,Ev , getFacetV(v, L))
(i.4) E2 = mergeEvs(EH , EL)

From (1), (2), and the definition of getFacetV,
the IH may be applied to D and E ′

From IH on D and E ′,
(i.5) E1 ≈L EL ≈L ·

From (i.2) and Lemma 72 (Req (EH2)),
(i.6) EH ≈L ·

From (T.III.2), (i.4)-(i.6), and the definition of mergeEvs,
E1 ≈L E2

Subcase ii: (T.III.6) is true
By assumption,

(ii.1) E ends in FS-TRIGGEREH-S
From (ii.1),

(ii.2) E2 = ·
From (T.III.2) and (ii.2),
E1 ≈L E2

G = TS
Note that only the unstructured EH storage is defined for the tainted store.

Case I: D ends in TS-TRIGGEREH
By assumption,

(I.1) (, , lφ,1) = lookupTS(σ1, pc1, id)
(I.2) l1 = labOf(v1, pc1)
(I.3) E1 = (id .Ev(v1), pc1 t lφ,1 t l1)

From (2) and our security lattice,
(I.4) (pc1 t lφ1 t l1) = (lφ1 t l1)

From (1), (2), (I.1), and Lemma 48.U,
(I.5) φ2 = lookupTS(σ2, pc2, id) with
(I.6) φ2 ≈L (, , lφ,1)

Subcase i: lφ1 v L and l1 v L and pc2 = L
By assumption and from (3),

(i.1) l2 = labOf(v2) and l2 v L
By assumption and from (I.6),

(i.2) φ2 = (, , lφ,2) with
(i.3) lφ,2 v L

By assumption and from (i.1) and (i.2),
(i.4) E ends in TS-TRIGGEREH

From (i.4),
(i.5) E2 = (id .Ev(v2), pc2 t lφ,2 t l2)

By assumption and from (i.1), (i.3), and our security lattice,
(i.6) lφ1

t l1 = L and
(i.7) pc2 t lφ,2 t l2 = L

From (I.3), (i.5), (I.4), (i.6), and (i.7),
E1 ≈L E2

Subcase ii: lφ1
v L and l1 6v L and pc2 = L

By assumption and from (3),

(ii.1) l2 = labOf(v2) and l2 6v L
By assumption and from (I.6),

(ii.2) φ2 = (, , lφ,2) with
(ii.3) lφ,2 v L

By assumption and from (ii.1) and (ii.2),
(ii.4) E ends in TS-TRIGGEREH

From (ii.4),
(ii.5) E2 = (id .Ev(v2), pc2 t lφ,2 t l2)

By assumption and from (ii.1), (ii.3), and our security lattice,
(ii.6) lφ1

t l1 = H and
(ii.7) pc2 t lφ,2 t l2 = H

From (I.3), (ii.5), (I.4), (ii.6), and (ii.7),
E1 ≈L E2

Subcase iii: lφ1
6v L and pc2 = L

By assumption and from (I.6),
(iii.1) φ2 = (, , H) or
(iii.2) φ2 = (NULL, H)

By assumption and from (I.3),
(iii.3) E1 = (id .Ev(v1), H)

Subsubcase a: (iii.1) is true
By assumption and from (iii.1),

(a.1) E ends in TS-TRIGGEREH
From (a.1), (iii.1), and our security lattice,

(a.2) E2 = (id .Ev(v2), H)
From (a.2) and (iii.3),
E1 ≈L E2

Subsubcase b: (iii.2) is true
By assumption and from (iii.2),

(b.1) E ends in TS-TRIGGEREH-S
From (b.1),

(b.2) E2 = ·
From (b.2) and (iii.3),
E1 ≈L E2

Subcase iv: pc2 = ·
By assumption,

(iv.1) E ends in TS-TRIGGEREH-NC
From (iv.1),

(iv.2) EH = triggerEH(σ2, H, id ,Ev , getFacetV(v2, H))
(iv.2) E ′ :: EL = triggerEH(σ2, L, id ,Ev , getFacetV(v2, L))
(iv.3) E2 = mergeEvs(EH , EL)

From (3) and the definition of getFacetV,
the IH may be applied on D and E ′

From IH on D and E ′,
(iv.4) E1 ≈L EL

From (iv.2) and Lemma 72 (Req (EH2)),
(iv.5) EH ≈L ·

From (iv.3)-(iv.5), and the definition of mergeEvs,
E1 ≈L E2

Case II: D ends in TS-TRIGGEREH-NC
The proof for this case is similar to Subcase I.iv.

Case III: D ends in TS-TRIGGEREH-S
By assumption,

(III.1) lookupTS(σ1, pc1, id) = (NULL, l1)
(III.2) E1 = ·

From (1), (2), (III.1), and Lemma 48.U,
(III.3) φ2 = lookupTS(σ2, pc2, id) with
(III.4) φ2 ≈L (NULL, l1)

Subcase i: l1 v L and pc2 = L
By assumption and from (III.4),

(i.1) φ2 = (NULL, l2)
From (i.1),

(i.2) E2 = ·
From (III.2) and (i.2),
E1 ≈L E2

Subcase ii: l1 6v L and pc2 = L
By assumption and from (III.4),

(i.1) φ2 = (NULL, l2) or
(i.2) φ2 = (, , l2)

Subsubcase a: (i.1) is true
The proof for this case is similar to Subcase i.

Subsubcase b: (i.2) is true
The proof for this case is similar to Subcase I.iii.

Subcase iii: pc2 = ·
The proof for this case is similar to Subcase I.iv.

Requirement (WEH1) L lookups are equivalent

Lemma 64. If σ1 ≈L σ2 and pc1, pc2 v L and ∀i ∈ [1, n], vi,1 ≈L vi,2 with vi,1 ↓pc1
= vi,1, vi,2 ↓pc2

= vi,2, and
t1 = ehAPII(σ1, pc1, id , v1,1, · · · , vn,1) and t2 = ehAPII(σ2, pc2, id , v1,2, · · · , vn,2), then t1 ≈L t2
Proof (sketch): The proof is similar to the one for Lemma 46 (Requirement (EH1)). It uses Lemma 48 (Requirement
(EH1)) and Lemma 65 instead of Lemma 50.

Lemma 65. If pc1, pc2 v L and φ1 ≈L φ2, with getValGG(pc1, φ1) = v1 and getValGG(pc1, φ2) = v2, then v1 ≈L v2

Proof.
Only the cases for G = TS are considered. The other cases follow from Lemma 50 (Requirement (EH1)).
Denote D :: getValGG(pc1, φ1) = v1 and E :: getValGG(pc1, φ2) = v2

We examine each case of D
By assumption,

(1) pc1, pc2 v L
(2) φ1 ≈L φ2

Case I: D ends in TS-GETVALG
By assumption,

(I.1) valOf(φ1) 6= NULL
(I.2) lφ,1 = labOf(φ1, pc1)
(I.3) lv,1 = labOf(φ1.v, pc1)
(I.4) v′1 = valOf(φ1.v)
(I.5) v1 = (v′1, lφ,1 t lv,1)

From (2) and (I.1), either
(I.6) valOf(φ2) 6= NULL and labOf(φ1, pc1), labOf(φ2, pc2) v L or
(I.7) labOf(φ1, pc1) = labOf(φ2, pc2) = H

Subcase i: (I.6) is true
From (I.6),

(i.1) E ends in TS-GETVALG
From (i.1),

(i.2) lφ,2 = labOf(φ2, pc2)
(i.3) lv,2 = labOf(φ2.v, pc2)
(i.4) v′2 = valOf(φ2.v)
(i.5) v2 = (v′2, lφ,2 t lv,2)

From (I.6), (I.2), and (i.2),
(i.6) lφ1 , lφ,2 v L

From (i.6), (I.5), (i.5), and our security lattice,
(i.7) v1 = (v′1, lv,1) and v2 = (v′2, lv,2)

From (i.7), (I.3), (I.4), (i.3), and (i.4),
(i.8) v1 = φ1.v and v2 = φ2.v

From (2), (i.8), and the definition of ≈L for φ,
v1 ≈L v2

Subcase ii: (I.7) is true and valOf(φ2) 6= NULL
By assumption,

(ii.1) E ends in TS-GETVALG
From (ii.1),

(ii.2) lφ,2 = labOf(φ2, pc2)
(ii.3) lv,2 = labOf(φ2.v, pc2)
(ii.4) v′2 = valOf(φ2.v)
(ii.5) v2 = (v′2, lφ,2 t lv,2)

From (I.7), (I.2), and (ii.2),
(ii.6) lφ1

, lφ,2 = H
From (ii.6), (I.5), (ii.5), and our security lattice,
v1 ≈L v2

Subcase iii: (I.7) is true and valOf(φ2 = NULL
By assumption,

(iii.1) E ends in TS-GETVALG-S
From (iii.1),

(iii.2) v2 = (dv, H)
From (I.7) and (I.2),

(iii.3) lφ,1 = H
From (iii.2), (I.5), (iii.3), and our security lattice,
v1 ≈L v2

Case II: D ends in TS-GETVALG-S
By assumption,

(II.1) valOf(φ1) = NULL
(II.2) v1 = (dv, H)

From (2) and (II.1), either
(II.3) labOf(φ1, pc1) = labOf(φ2, pc2) = H or
(II.4) valOf(φ2 = NULL and labOf(φ1, pc1), labOf(φ2, pc2) v L

Subcase i: (II.3) is true and valOf(φ2) 6= NULL
By assumption,

(i.1) E ends in TS-GETVALG
From (i.1),

(i.2) lφ,2 = labOf(φ2, pc2)
(i.3) lv,2 = labOf(φ2.v, pc2)
(i.4) v′2 = valOf(φ2.v)
(i.5) v2 = (v′2, lφ,2 t lv,2)

From (II.3), and (i.2),
(i.6) lφ,2 = H

From (i.6), (II.2), (i.5), and our security lattice,
v1 ≈L v2

Subcase ii: (II.3) is true and valOf(φ2) = NULL
By assumption,

(ii.1) E ends in TS-GETVALG-S
From (ii.1),

(ii.2) v2 = (dv, H)
From (II.2) and (ii.2),
v1 ≈L v2

Subcase iii: (II.4) is true
The proof for this case is similar to Subcase ii.

Requirement (EH2) H EH lookups are unobservable

Lemma 66. If any of the folllowing:
1) G,P, σ ` ks; lookupEHAll(id .Ev(v)) ;H ks ′ or
2) G,P, σ ` ks; lookupEHAt(id .Ev(v)) ;H ks ′ or
3) G,P, σ ` ks; lookupEHs(E) ;H ks ′ or
4) G,P, σ ` ks; lookupEHs(E) ;pc ks ′

then ks ≈L ks ′

Proof.
By induction on the structure of E :: G,P, σ ` ks; lookupEHAPI(...) ;pc ks ′

Case I: E ends in LOOKUPEHAPI with pc = H
The proof follows from Lemma 67 (Requirement (EH2)), Lemma 68 and Lemma 70.

Case II: E ends in LOOKUPEHS-R with pc = H
Follows from Lemma 69 (Requirement (EH2)), Lemma 70, and the IH.

Case III: E ends in LOOKUPEHS-R with E ≈L ·
The assumption that E ≈L · allows us to apply Lemma 69 (Requirement (EH2)). Then, the proof is similar to
Case II.

Case IV: E ends in LOOKUPEHS-S
Follows from assumption that ks ′ = ks .

Lemma 67. lookupEHAllG(σ, id .Ev(v), H) ≈L ·
Proof (sketch): The case for LOOKEHALL follows from our security lattice (everything is joined with the pc which
is H , here). The case for LOOKEHALL-S is straightforward. The pc = · in LOOKUPEHALL-NC-MERGE, so this case
holds vacuously.

Lemma 68. lookupEHAtG(σ, id .Ev(v), H) ≈L ·
Proof (sketch): The case for LOOKEHAT follows from our security lattice (everything is joined with the pc which is
H , here). The case for LOOKEHAT-S is straightforward. The pc = · in LOOKUPEHAT-NC-MERGE, so this case holds
vacuously.

Lemma 69. lookupEHsG(σ, id .Ev(v), H) ≈L ·
Proof (sketch): The proof follows from Lemma 67 (Requirement (EH2)) and Lemma 68

Lemma 70. If C ≈L · and ks = createK(P, id .Ev(v), C) then ks ≈L ·
Proof (sketch): This proof is by straightforward induction on the structure of D :: createK(P, id .Ev(v), C). It uses
Lemma 71.

Lemma 71. If ks = crtKV(eh, v,H) then ks ≈L ·
Proof (sketch): This proof is straightforward and follows directly from the assumption that the pc = H .

Lemma 72. triggerEHG(σ,H, id ,Ev , v) ≈L ·

Proof.
By induction on the structure of E :: triggerEHG(σ,H, id ,Ev , v) = E
Want to show E ≈L ·
Note that the rules are very similar for each enforcement mechanism and EH storage, so we do not consider them
separately.

Case I: E ends in TRIGGEREH
By assumption, and from our security lattice, E = (id .Ev(v), H), therefore E ≈L ·

Case II: E ends in TRIGGEREH-S
By assumption, E = ·, therefore E ≈L ·

Case iii: E ends in TRIGGEREH-NC
By assumption, pc = ·, but we only want to consider cases where pc = H , so this case holds vacuously.

Requirement (EH3) H updates are unobservable

Lemma 73.
Unstructured EH storage: assignG(σ,H, id , v) ≈L σ
Tree structure EH storage: assignG(σ,H, a, v) ≈L σ

Proof (sketch): Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy version:
Lemma 75 and Lemma 76 (Requirement (WEH3)). The proof is straightforward. We examine each case of E ::
assignG(σ,H, id , v) (for the unstructured EH storage) and E :: assignG(σ,H, a, v) (for the tree-structured EH storage)
for each G. In every case, only the H view is changed, so the resulting store is equivalent.

Lemma 74. For any G, all of the following hold:
Unstructured EH storage:
• createElemG(σ,H, id , v) ≈L σ
• registerEHG(σ,H, id , eh) ≈L σ
Tree structure EH storage:
• createChildG(σ,H, id , ap, v) ≈L σ
• createSiblingG(σ,H, id , as, v) ≈L σ
• registerEHG(σ,H, a, eh) ≈L σ

Proof.
For createElem, only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy version:
Lemma 78 and Lemma 79 (Requirement (WEH3)).

Unstructured EH storage
We examine each case of E for E :: createElemG(σ,H, id , v) = σ′

Want to show σ ≈L σ′

Case I: G = SMS
Case i: E ends in SMS-CREATE

By assumption,
(i.1) σH = getStore(σ,H)
(i.2) σ′ = setStore(σ,H, σ[id 7→ (id , v, ·)])

From (i.1), (i.2), and the definition of getStore, setStore, and ≈L for SMS stores,
σ ≈L σ′

Case ii: E ends in SMS-CREATE-U
The proof follows from Lemma 73 (Requirement (EH3)).

Case iii: E ends in SMS-CREATE-NC
We only consider cases where pc = H , so this case holds vacuously.

Case II: G = FS
Case i: E ends in FS-CREATE

By assumption,
(i.1) φ = (id , getFacetV(v,H), ·)
(i.2) σ′ = σ[id 7→ φ]

From (i.1) and the definition of ↓L for FS nodes,
(i.3) φ ↓L= ·

From (i.2) and (i.3),
σ ≈L σ′

Case ii: E ends in FS-CREATE-U
The proof follows from Lemma 73 (Requirement (EH3)).

Case iii: E ends in FS-CREATE-NC
We only consider cases where pc = H , so this case holds vacuously.

We examine each case of E for E :: registerEHG(σ,H, id , eh) = σ′

Want to show σ ≈L σ′

Case I: G = SMS

Case i: E ends in SMS-REGISTEREH
By assumption,

(i.1) σH = getStore(σ,H)
(i.2) σ′ = setStore(σ,H, σH [id 7→ (id , v,M [Ev 7→ · · ·])])

From (i.1), (i.2), and the definition of getStore, setStore, and ≈L for SMS stores,
σ ≈L σ′

Case ii: E ends in SMS-REGISTEREH-S
By assumption, σ′ = σ, therefore σ ≈L σ′.

Case iii: E ends in SMS-REGISTEREH-NC
We only consider cases where pc = H , so this case holds vacuously.

Case II: G = FS
Case i: E ends in FS-REGISTEREH

By assumption,
(i.1) σ′ = σ[id 7→ (id , v,M [Ev 7→M(eh) ∪ {(eh, H)}])]

From (i.1),
σ ≈L σ′

Case ii: E ends in FS-REGISTEREH-S
By assumption σ′ = σ, therefore σ ≈L σ′.

Case iii: E ends in FS-REGISTEREH-NC
We only consider cases where pc = H , so this case holds vacuously.

Case III: G = TS
Case i: E ends in TS-REGISTEREH

By assumption,
(i.1) (id , v,M, l) = lookupTS(σ,H, id)
(i.2) eh = onEv(x){c}

By assumption and from (i.1), (i.2), and our security lattice (which gives H t l = H),
(i.3) σ′ = σ[id 7→ (id , v,M [Ev 7→M(eh) ∪ {(eh, H)}])]

From (i.3),
σ ≈L σ′

Case ii: E ends in TS-REGISTEREH-S
By assumption, σ′ = σ, therefore σ ≈L σ′.

Case iii: E ends in TS-REGISTEREH-NC
We only consider cases where pc = H , so this case holds vacuously.

Tree-structured EH storage
We examine each case of E for E :: createChildG(σ,H, id , ap, v) = σ′

Want to show σ ≈L σ′

G = SMS
Case I: E ends in SMS-CREATEC

By assumption,
(I.1) σH = getStore(σ,H)
(I.2) σ′H = σH [a 7→ (id , v, ·, ap, ·)]
(I.3) σH(ap) = (idp, v

′,M, a′p, A)
(I.4) σ′′H = σ′H [ap 7→ (idp, v

′,M, a′p, (a :: A))]
(I.5) σ′ = setStore(σ,H, σ′′H)

From (I.1)-(I.5) and the definition of setStore,
σ ≈L σ′

Case II: E ends in SMS-CREATEC-S
By assumption, σ′ ≈L σ

Case III: E ends in SMS-CREATEC-NC
By assumption, pc = H , so this case holds vacuously.

G = FS
Case I: E ends in FS-CREATEC

By assumption,
(I.1) a 6∈ σ
(I.2) σ(ap) = (idp, vp,M, a′p, A)
(I.3) σ′′ = σ[ap 7→ (idp, vp,M, a′p, (createFacet(a,H) :: A))]
(I.4) σ′ = σ′′[a 7→ (id , createFacet(v,H), ·, createFacet(ap, H), ·)]

From the definition of createFacet,
(I.5) (createFacet(a,H) :: A) ≈σ

′,σ
L A

From (I.2), (I.3), (I.5), and the definition of ↓L for nodes,
(I.6) σ ≈L σ′′

From the definition of createFacet,
(I.7) createFacet(v,H) ↓L= · and
(I.8) createFacet(ap, H) ↓L= ·

From (I.1), (I.4), (I.7), (I.8), and the definition of ↓L for nodes,
(I.9) σ′′ ≈L σ′

From (I.6) and (I.9),
σ ≈L σ′

Case II: E ends in FS-CREATEC-UH
By assumption,

(II.1) σ(a) = (id , v′,M, a′p, A)
(II.2) σ(ap) = (idp, vp,Mp, a

′′
p , Ap)

(II.3) σ′′ = σ[ap 7→ (idp, vp,Mp, a
′
p, (createFacet(a,H) :: Ap))]

(II.4) σ′ = σ′′[a 7→ (id , updateFacet(v′, v,H), ·, updateFacet(a′p, ap, H), ·)]
From the definition of createFacet,

(II.5) (createFacet(a,H) :: Ap) ≈σ
′,σ
L Ap

From (II.2), (II.3), (II.5), and the definition of ↓L for nodes,
(II.6) σ ≈L σ′′

From the definition of updateFacet,
(II.7) updateFacet(v′, v,H) ≈σ

′,σ
L v′

(II.8) updateFacet(a′p, ap, H) ≈σ
′,σ
L a′p

From (II.1), (II.4), (II.7), (II.8), and the definition of ↓L for nodes,
(II.9) σ′′ ≈L σ′

From (II.6) and (II.9),
σ ≈L σ′

Case III: E ends in FS-CREATEC-S1 or CREATEC-S2
By assumption, σ′ = σ.

Case IV: E ends in FS-CREATEC-NC or CREATEC-UL
By assumption, pc = H , so this case holds vacuously.

We examine each case of E for E :: createSiblingG(σ,H, id , as, v) = σ′

Want to show σ ≈L σ′

G = SMS
Case I: E ends in SMS-CREATES

By assumption,
(I.1) σH = getStore(σ,H)
(I.2) σ′H = σH [a 7→ (id , v, ·, ap, ·)]
(I.3) σH(ap) = (idp, v

′,M, a′p, A :: as :: A′)
(I.4) σ′′H = σ′H [ap 7→ (idp, v

′,M, a′p, (A :: as :: a :: A′))]
(I.5) σ′ = setStore(σ,H, σ′′H)

From (I.1)-(I.5) and the definition of setStore,
σ ≈L σ′

Case II: E ends in SMS-CREATES-S1 or SMS-CREATES-S2
By assumption, σ′ = σ.

Case III: E ends in SMS-CREATES-NC
By assumption, pc = H , so this case holds vacuously.

G = FS
Case I: E ends in FS-CREATES

By assumption,
(I.1) a 6∈ σ
(I.2) σ(ap) = (idp, vp,M, a′p, (A :: a′s :: A′) for ap = σ(as).ap ↓H and a′s ↓H= as
(I.3) σ′′ = σ[ap 7→ (idp, vp,M, a′p, (A :: a′s :: createFacet(a,H) :: A′))]
(I.4) σ′ = σ′′[a 7→ (id , createFacet(v,H), ·, createFacet(ap, H), ·)]

From the definition of createFacet,
(I.5) (createFacet(A :: a′s :: a,H) :: A) ≈σ

′,σ
L (A :: a′s :: A′)

From (I.2), (I.3), (I.5), and the definition of ↓L for nodes,
(I.6) σ ≈L σ′′

From the definition of createFacet,
(I.7) createFacet(v,H) ↓L= · and
(I.8) createFacet(ap, H) ↓L= ·

From (I.1), (I.4), (I.7), (I.8), and the definition of ↓L for nodes,
(I.9) σ′′ ≈L σ′

From (I.6) and (I.9),
σ ≈L σ′

Case II: E ends in FS-CREATES-UH
By assumption,

(II.1) σ(a) = (id , v′,M, a′p, A)
(II.2) σ(ap) = (idp, vp,Mp, a

′′
p , (Ap :: a′s :: A′p)) for ap = σ(as).ap ↓H and a′s ↓H= as

(II.3) σ′′ = σ[ap 7→ (idp, vp,Mp, a
′
p, (Ap :: a′s :: createFacet(a,H) :: A′p))]

(II.4) σ′ = σ′′[a 7→ (id , updateFacet(v′, v,H), ·, updateFacet(a′p, ap, H), ·)]
From the definition of createFacet,

(II.5) (Ap :: a′s :: createFacet(a,H) :: A′p) ≈
σ′,σ
L (Ap :: a′s :: A′p)

From (II.2), (II.3), (II.5), and the definition of ↓L for nodes,
(II.6) σ ≈L σ′′

From the definition of updateFacet,
(II.7) updateFacet(v′, v,H) ≈σ

′,σ
L v′

(II.8) updateFacet(a′p, ap, H) ≈σ
′,σ
L a′p

From (II.1), (II.4), (II.7), (II.8), and the definition of ↓L for nodes,
(II.9) σ′′ ≈L σ′

From (II.6) and (II.9),
σ ≈L σ′

Case III: E ends in FS-CREATES-S1, CREATES-S2, or FS-CREATES-S3
By assumption, σ′ = σ.

Case IV:E ends in FS-CREATES-NC or FS-CREATES-UL
By assumption, pc = H , so this case holds vacuously.

We examine each case of E for E :: registerEHG(σ,H, a, eh) = σ′

Want to show σ ≈L σ′

G = SMS
Case I: E ends in SMS-REGISTEREH

By assumption,
(I.1) σH = getStore(σ,H)
(I.2) σ′ = setStore(σ,H, σ′H)

From (I.1) and (I.2) and the definition of setStore,
σ′ ≈L σ

Case II: E ends in SMS-REGISTEREH-S
By assumption, σ′ = σ.

Case III: E ends in SMS-REGISTEREH-NC
By assumption, pc = H , so this case holds vacuously.

G = FS
Case I: E ends in FS-REGISTEREH

By assumption,
(I.1) σ(a) = (id , v,M, ap, A)
(I.2) M ′ = M [Ev 7→M(Ev) ∪ {(eh, H)}] for eh = onEv(x){c}
(I.3) σ′ = (id , v,M ′, ap, A)

From (I.2),
(I.4) M ≈L M ′

From (I.1), (I.3), and (I.4),
σ ≈L σ′

Case II: E ends in FS-REGISTEREH-S
By assumption, σ′ = σ.

Case III: E ends in FS-REGISGTEREH-NC
By assumption, pc = H , so this case holds vacuously.

Requirement (WEH3) H updates are unobservable (Weak Secrecy)

Lemma 75. If σ1 ≈L σ2 and assignWG(σ1, H, id , (v1, l1)) = (σ′1, gw(x)) and assignWG(σ2, H, id , (v2, l2)) =
(σ′2, gw(x)), then σ′1 ≈L σ′2
Proof. Only the cases for G = TS are considered. The other cases are not considered since TS is the only one which
emits gw() events.
Denote D :: assignWG(σ1, H, id , (v1, l1)) and E :: assignWG(σ2, H, id , (v2, l2)).

From the assumption that D and E produce gw(x), D and E must end in TS-ASSIGN-GW
By assumption and from our security lattice, σ′1 = σ1[x 7→ (v1, H)] and σ′2 = σ2[x 7→ (v2, H)].
Therefore, from the assumption that σ1 ≈L σ2, σ′1 ≈L σ′2.

Lemma 76. If assignWG(σ,H, id , (v, l)) = (σ′, •),then σ ≈L σ′

Proof.
Only the cases for G = TS are considered. The other cases follow from Lemma 73 (Requirement (EH3)).
We examine each case of E :: assignWG(σ,H, id , (v, l))

Case I: E ends in TS-ASSIGN
By assumption and from our security lattice,

(I.1) H v labOf(σ(x), H)
(I.2) σ′ = σ[x 7→ (v,H)]

From (I.1) and (I.2) and the definition of ≈L for values,
σ ≈L σ′

Case II: E ends in TS-ASSIGN-S
By assumption, σ′ = σ. Therefore, σ ≈L σ′.

Case III: E ends in TS-ASSIGN-GW
We only consider cases which emit •, therefore this case holds vacuously.

Lemma 77. If σ1 ≈L σ2, and assignWG(σ1, H, id , (v1, l1)) = (σ′1, gw(id)) and createElemWG(σ2, H, id , (v2, l2)) =
(σ′2, gw(id)) then σ′1 ≈L σ′2
Proof.
Only the cases for G = TS are considered. The other cases are not considered since TS is the only one which emits
gw() events.
Denote D :: assignWG(σ1, H, id , (v1, l1)) = (σ′1, gw(id)) and E :: createElemWG(σ2, H, id , (v2, l2)) = (σ′2, gw(id))
From the assumption that D and E produce gw(id),

(1) D must end in TS-ASSIGNEH-GW
By assumption,

(2) σ1 ≈L σ2

From (1) and our security lattice,
(3) σ1(id) = (id , ,M, lφ)
(4) σ′1 = σ1[id 7→ (id , (v1, H),M, lφ)]

We examine each case of E

Case I: E ends in TS-CREATE-U1-GW
By assumption and from our security lattice,

(I.1) lookupTS(σ2, H, id) = (id , v′,M, l′)
(I.2) φ2 = (id , (v2, H),M, l′)
(I.3) σ′2 = σ2[id 7→ φ2]

From (I.1)-(I.3), (2)-(4), and since the node labels do not change in either case,
σ′1 ≈L σ′2

Case II: E ends in TS-CREATE-NC
We only consider cases where pc = H so this case holds vacuously.

Case III: E ends in TS-CREATE, TS-CREATE-U1, or TS-CREATE-U2
We only consider rules which emit gw(id) so these cases hold vacuously.

Lemma 78. If σ1 ≈L σ2 and createElemWG(σ1, H, id , (v1, l1)) = (σ′1, gw(x)) and
createElemWG(σ2, H, id , (v2, l2)) = (σ′2, gw(x)), then σ′1 ≈L σ′2

Proof.
Only the cases for G = TS are considered. The other cases are not considered since TS is the only one which emits
gw() events.
Denote D :: createElemWG(σ1, H, id , (v1, l1)) = (σ′1, gw(id)) and
E :: createElemWG(σ2, H, id , (v2, l2)) = (σ′2, gw(id))

We examine each case of D
By assumption,

(1) σ1 ≈L σ2

Case I: D ends in TS-CREATE-U1-GW
By assumption and from our security lattice,

(I.1) lookupTS(σ1, H, id) = (id , ,M1, lφ,1)
(I.2) σ′1 = σ1[id 7→ (id , (v1, H),M1, lφ,1)

From the assumption that E emits gw(id) and runs in the H context,
(I.3) E ends in TS-CREATE-U1-GW

From (I.3)
(I.4) lookupTS(σ2, H, id) = (id , ,M2, lφ,2)
(I.5) σ′2 = σ2[id 7→ (id , (v2, H),M2, lφ,2)

From (1), (II.1), (I.4), and the definition of ≈L for TS nodes, either
(I.6) lφ1 = lφ2 = H or
(I.7) lφ1 = lφ2 = L and M1 ≈L M2

From (1), (II.2), and (I.5)-(I.7),
σ′1 ≈L σ′2

Case II: D ends in TS-CREATE, TS-CREATE-U1, or TS-CREATE-U2
We only consider rules which emit gw(id) so these cases hold vacuously.

Case III: D ends in TS-CREATE-NC
We only consider cases where pc = H so this case holds vacuously.

Lemma 79. If createElemWG(σ,H, id , (v, l)) = (σ′, •), then σ ≈L σ′

Proof.
Only the cases for G = TS are considered. The other cases follow from Lemma 74 (Requirement (EH3)).
We examine each case of D :: createElemWG(σ,H, id , v) = (σ, gw(id))

Case I: D ends in TS-CREATE

By assumption,
(I.1) lookupTS(σ,H, id) = (NULL,)
(I.2) σ′ = σ[id 7→ (id , (v, l), ·, H)]

From (I.1) and the definition of lookup for TS,
(I.3) id 6∈ σ

From (I.2) and (I.3),
σ ≈L σ′

Case II: D ends in TS-CREATE-U1
By assumption and from our security lattice,

(II.1) lookupTS(σ,H, id) = (id , (v′, l′),M, lφ)
(II.2) σ′ = σ1[id 7→ (id , (v,H),M, lφ)
(II.3) H v l′

From (II.1)-(II.3),
σ ≈L σ′

Case III: D ends in TS-CREATE-U2
By assumption, lookupTS(σ,H, id) = (id , v′,M, l′) with l′ 6v H
But from our security lattice, such an l′ does not exist. So this case holds vacuously.

Case IV: D ends in TS-CREATE-U1-GW
We only consider rules which emit • so this case holds vacuously.

Case V: D ends in TS-CREATE-NC
We only consider cases where pc = H so this case holds vacuously.

Requirement (EH4) L updates are equivalent

Lemma 80. If σ1 ≈L σ2, pc1, pc2 v L, then
Unstructured EH storage: if v1 ≈L v2, then assignG(σ1, pc1, id , v1) ≈L assignG(σ2, pc2, id , v2)
Tree structure EH storage: if v1 ≈σ1,σ2

L v2, and a1 ≈σ1,σ2

L a2, then assignG(σ1, pc1, a, v1) ≈L
assignG(σ2, pc2, a, v2)

Proof.
Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy version: Lemma 82.
By induction on the structure of D :: assignG(σ1, pc1, id , v1) = σ′1 and E :: assignG(σ2, pc2, id , v2) = σ′2
Want to show σ′1 ≈L σ′2
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 v L

Unstructured EH storage
By assumption,

(U.1) v1 ≈L v2

G = SMS
Case I: D ends in SMS-ASSIGNEH

By assumption and from (2),
(I.1) pc1 = L

By assumption and from (I.1),
(I.2) σL,1 = getStore(σ1, L)
(I.3) (v′,M) = σL,1(id)
(I.4) σ′1 = setStore(σ1, L, σL,1[id 7→ (v1,M)])

Subcase i: pc2 = L
Let

(i.1) σL,2 = getStore(σ2, L)
From (1), (I.2), (i.1), and the definition of getStore,

(i.2) σL,1 = σL,2
From (I.3) and (i.2),

(i.3) (v′,M) = σL,2(id)
By assumption and from (i.3),

(i.4) E ends in SMS-ASSIGNEH
From (i.3) and (i.4),

(i.5) σ′2 = setStore(σ2, L, σL,2[id 7→ (v2,M)])
From (U.1), (I.4), (i.5), and (i.2),

(i.6) σL,1[id 7→ (v1,M)] = σL,2[id 7→ (v2,M)])
From (i.6), (I.4), (i.5), and the definition of setStore,
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
By assumption,

(ii.1) ∃E ′ :: σ′′2 = assignSMS(σ2, H, id , getFacet(v2, H))
(ii.2) ∃E ′′ :: σ′2 = assignSMS(σ′′2 , L, id , getFacet(v2, L))

From (ii.1) and Lemma 73.U (Requirement (EH3)),
(ii.3) σ′′2 ≈L σ2

From (1) and (ii.3),
(ii.4) σ1 ≈L σ′′2

From (U.1), (ii.2), (ii.4), and the definition of getFacet,
the IH may be applied on D and E ′′

From (ii.2) and the IH on D and E ′′,
σ′1 ≈L σ′2

Case II: E ends in SMS-ASSIGNEH
The proof for this case is similar to Case I.

Case III: D or E ends in SMS-ASSIGNEH-S
By assumption and from (1), σ′1 = σ1 and σ′2 = σ2 and the conclusion follows from (1).

Case IV: D or E ends in SMS-ASSIGN-NC

Without loss of generality, assume D ends in SMS-ASSIGN-NC. The proof for E is similar.
By assumption,

(IV.1) ∃D′ :: σ′′1 = assignSMS(σ1, H, id , getFacet(v1, H))
(IV.2) ∃D′′ :: σ′1 = assignSMS(σ′′1 , L, id , getFacet(v1, L))

From (IV.1) and Lemma 73.U (Requirement (EH3)),
(IV.3) σ′′1 ≈L σ1

From (1) and (IV.3),
(IV.4) σ2 ≈L σ′′1

From (U.1), (IV.2), (IV.4), and the definition of getFacet,
the IH may be applied on D′′ and E

From (IV.2) and the IH on D′′ and E ,
σ′1 ≈L σ′2

G = FS
Case I: D ends in FS-ASSIGNEH

By assumption,
(I.1) pc1 = ·
(I.2) (v′1,M1) = lookupFS(σ1, ·, id)
(I.3) σ′1 = σ1[id 7→ (v1,M1)]

From (1), (2), (I.2), and Lemma 48.U,
(I.4) (v′1,M1) ≈L lookupFS(σ2, pc2, id) = φ2

From (I.4), and the definition of ↓L for FS nodes,
(I.5) φ2 ↓L 6= NULL

From (I.5) and (2),
E ends in FS-ASSIGNEH-UPD, FS-ASSIGNEH, or FS-ASSIGNEH-NC

Subcase i: E ends in FS-ASSIGNEH-UPD
By assumption and from (2),

(i.1) (v′2,M2) = lookupFS(σ2, pc2, id)
(i.2) v′′2 = updateFacet(v′2, v2, L)
(i.3) σ′2 = σ[id 7→ (v′′2 ,M2)]

From (i.1), (U.1) and the definition of updateFacet,
(i.4) v1 ≈L v′′2

From (I.4) and (i.1),
(i.5) M1 ≈L M2

From (1), (I.3), and (i.3)-(i.5),
σ′1 ≈L σ′2

Subcase ii: E ends in FS-ASSIGNEH
By assumption,

(ii.1) σ′2 = σ[id 7→ (v2,M2)]
From (I.4) and (ii.1),

(ii.2) M1 ≈L M2

From (1), (I.3), (ii.1), (U.1), and (ii.2),
σ′1 ≈L σ′2

Subsubcase iii: E ends in FS-ASSIGNEH-NC
By assumption,

(iii.1) σ′′2 = assignFS(σ2, H, id , v2)
(iii.2) E ′ :: σ′2 = assignFS(σ′′2 , L, id , v2)

From (iii.1) and Lemma 73.U (Requirement (EH3)),
(iii.3) σ2 ≈L σ′′2

From (iii.2), (iii.3), and (1),
(iii.4) IH may be applied on E ′ and D

From (iii.4) and IH on E ′ and D,
σ′1 ≈L σ′2

Case II: E ends in FS-ASSIGNEH
The proof is similar to Case I.

Case III: D ends in FS-ASSIGNEH-UPD
By assumption and from (2),

(III.1) pc1 = L

(III.2) (v′1,M1) = lookupFS(σ1, L, id)
(III.3) v′′1 = updateFacet(v′1, v1, L)
(III.4) σ′1 = σ1[id 7→ (v′′1 ,M1)]

From (III.3) and the definition of updateFacet,
(III.5) v1 ≈L v′′1

From (1), (2), (III.2), and Lemma 48.U,
(III.6) (v′1,M1) ≈L lookupFS(σ2, pc2, id) = φ2

From (III.6), and the definition of ↓L for FS nodes,
(III.7) φ2 ↓L 6= NULL

From (III.7) and (2),
E ends in FS-ASSIGNEH-UPD, FS-ASSIGNEH, or FS-ASSIGNEH-NC

Subcase i: E ends in FS-ASSIGNEH-UPD
By assumption and from (2),

(i.1) (v′2,M2) = lookupFS(σ2, L, id)
(i.2) v′′2 = updateFacet(v′2, v2, L)
(i.3) σ′2 = σ2[id 7→ (v′′2 ,M2)]

From (III.6) and (i.1),
(i.4) (v′1,M1) ≈L (v′2,M2)

From (i.2) and the definition of updateFacet,
(i.5) v2 ≈L v′′2

From (1), (III.4), (i.3), (i.4), and (i.5),
σ′1 ≈L σ′2

Subcase ii: E ends in FS-ASSIGNEH
This proof is covered by Case II.

Subcase iii: E ends in FS-ASSIGNEH-NC
By assumption,

By assumption,
(iii.1) σ′′2 = assignFS(σ2, H, id , v2)
(iii.2) E ′ :: σ′2 = assignFS(σ′′2 , L, id , v2)

From (iii.1) and Lemma 73.U (Requirement (EH3)),
(iii.3) σ2 ≈L σ′′2

From (iii.2), (iii.3), and (1),
(iii.4) IH may be applied on E ′ and D

From (iii.4) and IH on E ′ and D,
σ′1 ≈L σ′2

Case IV: D ends in FS-ASSIGNEH-NC
By assumption,

(IV.1) σ′′1 = assignFS(σ1, H, id , v1)
(IV.2) ∃D′ :: σ′1 = assignFS(σ′′1 , L, id , v1)

From (IV.1) and Lemma 73.U (Requirement (EH3)),
(IV.3) σ′′1 ≈L σ1

From (IV.2), (IV.3), and (1),
(IV.4) IH may be applied on D′ and E

From (IV.4) and IH on D′ and E gives
σ′1 ≈L σ′2

Case V: E ends in FS-ASSIGNEH-NC
The proof for this case is similar to Case IV.

Case VI: D ends in FS-ASSIGNEH-S
By assumption,

(VI.1) lookupFS(σ1, pc1, id) = NULL
(VI.2) σ′1 = σ1

From (1), (2), (VI.1), and Lemma 48.U,
(VI.3) lookupFS(σ2, pc2, id) = NULL or
(VI.4) lookupFS(σ2, pc2, id) = 〈 |NULL〉

Subcase i: (VI.3) is true
By assumption,

(i.1) E ends in FS-ASSIGNEH-S
From (i.1),

(i.2) σ′2 = σ2

From (1), (VI.2), and (i.2),
σ′1 ≈L σ′2

Subcase ii: (VI.4) is true
By assumption, E ends in FS-ASSIGNEH-NC.
This case is covered by Case V.

Tree-structured EH storage:
By assumption,

(T.1) v1 ≈σ1,σ2

L v2

(T.2) a1 ≈σ1,σ2

L a2

G = SMS
Case I: D or E ends in SMS-ASSIGNEH

Without loss of generality, assume that D ends in ASSIGNEH. The proof for E is similar.
By assumption,

(I.1) σL,1 = getStore(σ1, L)
(I.2) σL,1(a1) = (id , v′1,M1, ap,1, A1)
(I.3) σ′L,1 = σL,1[a1 7→ (id , v1,M1, ap,1, A1)]
(I.4) σ′1 = setStore(σ1, L, σ

′
L,1)

Subcase i: pc2 = ·
By assumption,

(i.1) E ends in SMS-ASSIGNEH-NC
From (i.1),

(i.2) σ′′2 = assignSMS(σ2, H, getFacet(a2, H), getFacet(v2, H))
(i.3) E ′ :: σ′2 = assignSMS(σ′′2 , L, getFacet(a2, L), getFacet(v2, L))

From (i.2) and Lemma 73.U (Requirement (EH3)),
(i.4) σ′′2 ≈L σ2

From (i.4) and (1),
(i.5) σ1 ≈L σ′′2

From (i.5), (i.3), (T.1), (T.2), and the definition of getFacet,
(i.6) IH may be applied on D and E ′

From (i.6) and the IH on D and E ′,
σ′1 ≈L σ′2

Subcase ii: pc2 = L
Denote

(ii.1) σL,2 = getStore(σ2, L)
From (1), (T.2), and (I.2),

(ii.2) σL,2(a2) = (v′2,M2, ap,2, A2) with
(ii.3) (id , v′1,M1, ap,1, A1) ≈σ1,σ2

L (id , v′2,M2, ap,2, A2)
By assumption and from (ii.2),

(ii.4) E ends in SMS-ASSIGNEH
From (ii.4),

(ii.5) σ′L,2 = σL,2[a2 7→ (v2,M2, ap,2, A2)]
(ii.6) σ′2 = setStore(σ2, L, σ

′
L,2)

From (ii.3) and (T.1),
(ii.7) (v1,M1, ap,1, A1) ≈σ1,σ2

L (v2,M2, ap,2, A2)
From (1), (I.3), (ii.5), (I.4), (ii.6), (ii.7), and the definition of setStore,
σ′1 ≈L σ′2

Case II: D ends in SMS-ASSIGNEH-S
Without loss of generality, assume that D ends in SMS-ASSIGNEH-S. The proof for E is similar.
By assumption,

(II.1) a1 = NULL
(II.2) σ′1 = σ1

From (T.2) and (II.1), either

(II.3) a2 = NULL or
(II.4) pc2 = · and a2 = 〈 |NULL〉

Subcase i: (II.3) is true
From (II.3),

(i.1) E ends in SMS-ASSIGNEH-S
From (i.1),

(i.2) σ′2 = σ2

From (1), (II.2), and (i.2),
σ′1 ≈L σ′2

Subcase ii: (II.4) is true
The proof for this case is similar to Subcase I.i.

Case III: D ends in SMS-ASSIGNEH-NC
Without loss of generality, assume that D ends in SMS-ASSIGNEH-NC. The proof for E is similar.
By assumption,

(III.1) σ′′1 = assignSMS(σ1, H, getFacet(a1, H), getFacet(v1, H))
(III.2) D′ :: σ′1 = assignSMS(σ′′1 , L, getFacet(a1, L), getFacet(v1, L))

From (III.1) and Lemma 73.U (Requirement (EH3)),
(III.3) σ′′1 ≈L σ1

From (III.3) and (1),
(III.4) σ1 ≈L σ′′2

From (III.4), (III.2), (T.1), (T.2), and the definition of getFacet,
(III.5) IH may be applied on D′ and E

From (III.5) and the IH on D′ and E ,
σ′1 ≈L σ′2

G = FS
Case I: D ends in FS-ASSIGNEH

Without loss of generality, assume that D ends in FS-ASSIGNEH. The proof for E is similar.
By assumption,

(I.1) σ1(a1) = (id , v′1,M1, ap,1, A1)
(I.2) σ′1 = σ1[a1 7→ (id , v1,M1, ap,1, A1)

From (1), (T.2), and (I.1), either
(I.3) σ2(a2) ≈σ2,σ1

L σ1(a1) or
(I.4) a2 = 〈 | 〉

Subcase i: (I.3) is true and pc = ·
By assumption and from (I.3),

(i.1) E must end in FS-ASSIGNEH
From (i.1),

(i.2) σ2(a2) = (id , v′2,M2, ap,2, A2)
(i.3) σ′2 = σ2[a2 7→ (id , v2,M2, ap,2, A2)]

From (I.1)-(I.3), (i.2), (i.3), and (T.1),
σ′1 ≈L σ′2

Subcase ii: (I.3) is true and pc = L
By assumption and from (I.3),

(ii.1) E must end in FS-ASSIGNEH-UPD
By assumption and from (ii.1),

(ii.2) σ2(a2) = (id , v′2,M2, ap,2, A2)
(ii.3) v′′2 = updateFacet(v′2, v2, L)
(ii.4) σ′2 = σ2[a2 7→ (id , v′′2 ,M2, ap,2, A2)

From (1), (I.1)-(I.3), (ii.2)-(ii.4), and the definition of updateFacet,
σ′1 ≈L σ′2

Subcase iii: (I.4) is true
From (I.4),

(iii.1) E must end in FS-ASSIGNEH-NC
(iii.2) a2 = 〈aH |aL〉

From (iii.1),
(iii.3) σ′′2 = assignFS(σ2, H, aH , getFacetV(v2, H))

(iii.4) E ′ :: σ′2 = assignFS(σ′′2 , L, aL, getFacetV(v2, L))
From (iii.3) and Lemma 73.T (Requirement (EH3)),

(iii.5) σ2 ≈L σ′′2
From (T.2) and (iii.5),

(iii.6) σ1 ≈L σ′′2
From (1), (2), (T.1), (iii.6), and the definition of getFacetV,

(iii.7) IH may be applied on D and E ′
From (iii.7) and IH on D and E ′,
σ′1 ≈L σ′2

Case II: D ends in FS-ASSIGNEH-NC
Without loss of generality, assume that D ends in FS-ASSIGNEH-NC. The proof for E is similar.
By assumption,

(II.1) σ′′1 = assignFS(σ1, H, aH , getFacetV(v1, H))
(II.2) D′ :: σ′1 = assignFS(σ′′1 , L, aL, getFacetV(v1, L))

From (II.1) and Lemma 73.T (Requirement (EH3)),
(II.3) σ1 ≈L σ′′1

From (T.2) and (II.3),
(II.4) σ′′1 ≈L σ2

From (1), (2), (T.1), (II.4), and the definition of getFacetV,
(II.5) IH may be applied on D′ and E

From (II.5) and IH on D′ and E ,
σ′1 ≈L σ′2

Case III: D ends in FS-ASSIGNEH-UPD
Without loss of generality, assume that D ends in FS-ASSIGNEH-UPD. The proof for E is similar.
By assumption and from (2),

(III.1) σ1(a1) = (id , v′1,M1, ap,1, A1)
(III.2) v′′1 = updateFacet(v′1, v1, L)
(III.3) σ′1 = σ1[a1 7→ (id , v′′1 ,M1, ap,1, A1)

From (1), (T.2), and (III.1), either
(III.4) σ2(a2) ≈σ2,σ1

L σ1(a1) or
(III.5) a2 = 〈 | 〉

Subcase i: (III.4) is true and pc = ·
This case is covered by Case I

Subcase ii: (III.4) is true and pc = L
By assumption and from (III.4),

(ii.1) E ends in FS-ASSIGNEH-UPD
By assumption and from (ii.1),

(ii.2) σ2(a2) = (id , v′2,M2, ap,2, A2)
(ii.3) v′′2 = updateFacet(v′2, v2, L)
(ii.4) σ′2 = σ2[a2 7→ (id , v′′2 ,M2, ap,2, A2)

From (T.1), (T.2), (III.1)-(III.3), (ii.2)-(ii.4), and the definition of updateFacet,
σ′1 ≈L σ′2

Subcase iii: (III.5) is true
This case is covered by Case II

Case IV: D ends in FS-ASSIGNEH-S
Without loss of generality, assume that D ends in FS-ASSIGNEH-S. The proof for E is similar.
By assumption,

(IV.1) a1 = NULL
(IV.2) σ′1 = σ1

From (T.2) and (IV.1), either
(IV.3) a2 = NULL or
(IV.4) a2 = 〈 |NULL〉

Subcase i: (IV.3) is true
By assumption,

(i.1) E ends in FS-ASSIGNEH-S
From (i.1),

(i.2) σ′2 = σ2

From (1), (IV.2), and (i.2),
σ′1 ≈L σ′2

Subcase ii: (IV.4) is true
The proof for this case is covered by Case II.

Lemma 81. If σ1 ≈L σ2, pc1, pc2 v L, then
Unstructured EH storage: If v1 ≈L v2, then
• createElemG(σ1, pc1, id , v1) ≈L createElemG(σ2, pc2, id , v2)
• registerEHG(σ1, pc1, id , eh) ≈L registerEHG(σ2, pc2, id , eh)

Tree structure EH storage: If v1 ≈σ1,σ2

L v2, ap,1 ≈σ1,σ2

L ap,2, as,1 ≈σ1,σ2

L as,2, and a1 ≈σ1,σ2

L a2, then
• createChildG(σ1, pc1, id , ap,1, v1) ≈L createChildG(σ2, pc2, id , ap,1, v2)
• createSiblingG(σ1, pc1, id , as,1, v1) ≈L createSiblingG(σ2, pc2, id , as,2, v2)
• registerEHG(σ1, pc1, a1, eh) ≈L registerEHG(σ2, pc2, a2, eh)

Proof.
By induction on the structure of D and E
By assumption,

(1) σ1 ≈L σ
(2) pc1, pc2 v L

D :: createElemG(σ1, pc1, id , v1)
E :: createElemG(σ2, pc2, id , v2)
Denote
σ′1 = createElemG(σ1, pc1, id , v1)
σ′2 = createElemG(σ2, pc2, id , v2)

Want to show σ′1 ≈L σ′2
Only the cases for G 6= TS are considered. The other cases are proven in the weak secrecy version: Lemma 83.

Unstructured EH storage:
By assumption,

(U.1) v1 ≈L v2

G = SMS
Case I: D ends in SMS-CREATE

By assumption,
(I.1) NULL = lookupSMS(σ1, pc1, id)
(I.2) σL,1 = getStore(σ1, pc1)
(I.3) σ′1 = setStore(σ1, pc1, σL,1[id 7→ (v1, ·)])

Subcase i: pc2 = L
From (1), (2), (I.1), and Lemma 48.U,

(i.1) NULL = lookupSMS(σ2, pc2, id)
By assumption and from (i.1),

(i.2) E ends in SMS-CREATE
From (i.2),

(i.3) σL,2 = getStore(σ2, pc2)
(i.4) σ′2 = setStore(σ2, pc2, σL,2[id 7→ (v2, ·)])

From (1), (I.2), (i.3), and the definition of getStore,
(i.5) σL,1 = σL,2

From (i.5), (I.3), (i.4), and the definition of setStore,
σ′1 ≈L σ′2

Subcase ii: pc = ·
By assumption,

(ii.1) E ends in SMS-CREATE-NC
From (ii.1),

(ii.2) σ′′2 = createElemSMS(σ2, H, id , v2)
(ii.3) E ′ :: σ′2 = createElemSMS(σ′′2 , L, id , v2)

From (ii.2) and Lemma 74.U (Requirement (EH3)),
(ii.4) σ2 ≈L σ′′2

From (1) and (ii.3),
(ii.5) IH may be applied on D and E ′

From (ii.5) and IH on D and E ′,
σ′1 ≈L σ′2

Case II: D ends in SMS-CREATE
The proof is similar to Case I

Case III: D ends in SMS-CREATE-U
By assumption,

(III.1) lookupSMS(σ1, pc1, id) 6= NULL
(III.2) σ′1 = assignSMS(σ1, pc1, id , v1)

Subcase i: pc2 = L
From (1), (2), (III.1), and Lemma 48.U,

(i.1) lookupSMS(σ2, pc2, id) 6= NULL
From (i.1),

(i.2) E ends in SMS-CREATE-U
From (i.2),

(i.3) σ′2 = assignSMS(σ2, pc2, id , v2)
From (1), (2), (U.1), (III.2), (i.3), and Lemma 80.U (Requirement (EH4)),
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
The proof for this case is similar to the one for Subcase I.ii.

Case IV: E ends in SMS-CREATE-U
The proof is similar to Case III.

Case V: D ends in SMS-CREATE-NC
By assumption,

(V.1) σ′′1 = createElemSMS(σ1, H, id , v1)
(V.2) D′ :: σ′1 = createElemSMS(σ′′1 , L, id , v1)

From (V.1) and Lemma 74.U (Requirement (EH3)),
(V.3) σ1 ≈L σ′′1

From (1) and (V.3),
(V.4) IH may be applied on D′ and E

From (V.4) and IH on D′ and E
σ′1 ≈L σ′2

Case VI: E ends in SMS-CREATE-NC
The proof is similar to Case V.

G = FS
Case I: D ends in FS-CREATE

By assumption,
(I.1) NULL = lookupFS(σ1, pc1, id)
(I.2) σ′1 = σ1[id 7→ (getFacetV(v1, pc1), ·)]

Subcase i: pc2 = L
From (1), (2), (I.1), and Lemma 48.U (Requirement (EH1)),

(i.1) NULL = lookupFS(σ2, pc2, id)
By assumption and from (i.1),

(i.2) E ends in FS-CREATE
From (i.2),

(i.3) σ′2 = σ2[id 7→ (getFacetV(v2, pc2), ·)]
From (1), (U.1), (I.2), (i.3), and the definition of getFacetV,
σ′1 ≈L σ′2

Subcase ii: pc = ·
By assumption,

(ii.1) E ends in FS-CREATE-NC
From (ii.1),

(ii.2) σ′′2 = createElemFS(σ2, H, id , v2)
(ii.3) E ′ :: σ′2 = createElemFS(σ′′2 , L, id , v2)

From (ii.2) and Lemma 74.U (Requirement (EH3)),
(ii.4) σ2 ≈L σ′′2

From (1) and (ii.3),
(ii.5) IH may be applied on D and E ′

From (ii.5) and IH on D and E ′,
σ′1 ≈L σ′2

Case II: E ends in FS-CREATE
The proof is similar to Case I.

Case III: D ends in FS-CREATE-U
By assumption,

(III.1) lookupFS(σ1, pc1, id) = φ1 6= NULL
(III.2) σ′1 = assignFS(σ1, pc1, id , v1)

From (1), (2), (III.1), and Lemma 48.U (Requirement (EH1)),
(III.3) lookupFS(σ2, pc2, id) ≈L φ1

Subcase i: lookupFS(σ2, pc2, id) 6= 〈 | 〉
By assumption and from (III.1) and (III.3),

(i.1) E ends in FS-CREATE-U
From (i.1),

(i.2) σ′2 = assignFS(σ2, pc2, id , v2)
From (1), (2), (U.1), (III.2), (i.2), and Lemma 80.U (Requirement (EH4)),
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
The proof for this case is similar to the one for Subcase I.ii.

Case IV: E ends in FS-CREATE-U
The proof is similar to Case III.

Case V: D ends in FS-CREATE-NC
By assumption,

(V.1) σ′′1 = createElemFS(σ1, H, id , v1)
(V.2) D′ :: σ′1 = createElemFS(σ′′1 , L, id , v1)

From (V.1) and Lemma 74.U (Requirement (EH3)),
(V.3) σ1 ≈L σ′′1

From (1) and (V.2),
(V.4) IH may be applied on D′ and E

From (V.4) and IH on D′ and E ,
σ′1 ≈L σ′2

Case VI: E ends in FS-CREATE-NC
The proof is similar to Case V.

D :: registerEHG(σ1, pc1, id , v1)
E :: registerEHG(σ2, pc2, id , v2)
Denote
σ′1 = registerEHG(σ1, pc1, id , eh)
σ′2 = registerEHG(σ2, pc2, id , eh)

Want to show σ′1 ≈L σ′2

G = SMS
Case I: D ends in SMS-REGISTEREH

By assumption,
(I.1) pc1 = L
(I.2) (v,M) = lookupSMS(σ1, L, id)
(I.3) eh = onEv(x){c}
(I.4) M ′ = M [Ev 7→M(Ev) ∪ {(eh, L)}]

(I.5) σL,1 = getStore(σ1, L)
(I.6) σ′1 = setStore(σ1, L, σL,1[id , v,M ′])

Subcase i: pc2 = L
From (1), (2), and (I.2), and Lemma 48.U (Requirement (EH1)) and the definition of ≈L for SMS nodes,

(i.1) (v,M) = lookupSMS(σ2, L, id)
By assumption and from (i.1),

(i.2) E ends in SMS-REGISTEREH
From (i.2) and (I.4),

(i.3) σL,2 = getStore(σ2, L)
(i.4) σ′2 = setStore(σ2, L, σL,2[id , v,M ′])

From (1), (I.5), and (i.3),
(i.5) σL,1 = σL,2

From (i.5), (I.6), (i.4), and the definition of setStore,
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
By assumption,

(ii.1) E ends in SMS-REGISTEREH-NC
From (ii.1),

(ii.2) σ′′2 = registerEHSMS(σ2, H, id , eh)
(ii.3) E ′ :: σ′2 = registerEHSMS(σ′′2 , L, id , eh)

From (ii.2) and Lemma 74.U (Requirement (EH3)),
(ii.4) σ2 ≈L σ′′2

From (1) and (ii.4),
(ii.5) IH may be applied to D and E ′

From (ii.5) and IH on D and E ′,
σ′1 ≈L σ′2

Case II: E ends in SMS-REGISTEREH
The proof is similar Case I.

Case III: D ends in SMS-REGISTEREH-S
By assumption,

(III.1) lookupSMS(σ1, L, id) = NULL
(III.2) σ′1 = σ1

Subcase i: pc2 = L
From (1), (2), and (III.2), and Lemma 48.U (Requirement (EH1)) and the definition of ≈L for SMS nodes,

(i.1) NULL = lookupSMS(σ2, L, id)
By assumption and from (i.1),

(i.2) E ends in SMS-REGISTEREH-S
From (i.2),

(i.3) σ′2 = σ2

From (1), (III.2), and (i.3),
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
The proof for this case is similar to Subcase I.ii.

Case IV: E ends in SMS-REGISTEREH-S
The proof is similar to Case III.

Case V: D ends in SMS-REGISTEREH-NC
By assumption,

(V.1) σ′′1 = registerEHSMS(σ1, H, id , eh)
(V.2) D′ :: σ′1 = registerEHSMS(σ′′1 , L, id , eh)

From (V.1) and Lemma 74.U (Requirement (EH3)),
(V.3) σ1 ≈L σ′′1

From (1) and (V.3),
(V.4) the IH may be applied on D′ and E

From (V.4) and the IH on D′ and E ,
σ′1 ≈L σ′2

Case VI: E ends in SMS-EGISTEREH-NC
The proof is similar to Case V.

G = FS
Case I: D ends in FS-REGISTEREH

By assumption,
(I.1) (v1,M1) = lookupFS(σ1, L, id)
(I.2) eh = onEv(x){c}
(I.3) M ′1 = M1[Ev 7→M1(Ev) ∪ {(eh, pc1)}]
(I.4) σ′1 = σ1[id 7→ (v1,M

′
1)]

From (1), (2), and (I.1), and Lemma 48.U (Requirement (EH1)) and the definition of ≈L for FS nodes,
(I.5) φ2 = lookupFS(σ2, pc2, id) with φ2 ≈L (v1,M1) or
(I.6) 〈 |φ2〉 = lookupFS(σ2, pc2, id) with φ2 ≈L (v2,M1)

From (I.5) and (I.6), E ends in FS-REGISTEREH or FS-REGISTEREH-NC

Subcase i: E ends in FS-REGISTEREH
By assumption and from (I.5),

(i.1) (v2,M2) = lookupEHFS(σ2, pc2, id)
(i.2) M ′2 = M2[Ev 7→M2(Ev) ∪ {(eh, pc2)}]
(i.3) σ′2 = σ2[id 7→ (v2,M

′
2)]

From (I.5) and (i.1),
(i.4) M1 ≈L M2

From (2), (i.4), (I.3), and (i.2),
(i.5) M ′1 ≈L M ′2

From (I.5), (I.1), and (i.1),
(i.6) v1 ≈L v2

From (1), (I.4), (i.3), (i.5), and (i.6),
σ′1 ≈L σ′2

Subcase ii: E ends in FS-REGISTEREH-NC
By assumption,

(ii.1) σ′′2 = registerEHFS(σ2, H, id ,Ev)
(ii.2) E ′ :: σ′2 = registerEHFS(σ′′2 , L, id ,Ev)

From (ii.1) and Lemma 74.U (Requirement (EH3)),
(ii.3) σ2 ≈L σ′′2

From (1) and (ii.3),
(ii.4) IH may be applied on D and E ′

From (ii.4) and IH on D and E ′,
σ′1 ≈L σ′2

Case II: E ends in FS-REGISTEREH
The proof is similar Case I.

Case III: D ends in FS-REGISTEREH-S
By assumption,

(III.1) lookupFS(σ1, pc1, id) = NULL
(III.2) σ′1 = σ1

From (1), (2), and (I.1), and Lemma 48.U (Requirement (EH1)) and the definition of ≈L for FS nodes,
(III.3) φ2 = NULL or
(III.4) 〈 |NULL〉

From (III.3) and (III.4), E ends in FS-REGISTEREH-S or FS-REGISTEREH-NC

Subcase i: E ends in FS-REGISTEREH-S
By assumption,

(i.1) σ′2 = σ2

From (1), (III.2), and (i.1),
σ′1 ≈L σ′2

Subcase ii: E ends in FS-REGISTEREH-NC
The proof is similar to Subcase I.ii.

Case IV: E ends in FS-REGISTEREH-S

The proof is similar to Case III.

Case V: D ends in FS-REGISTEREH-NC
By assumption,

(V.1) σ′′1 = registerEHFS(σ1, H, id , eh)
(V.2) D′ :: σ′1 = registerEHFS(σ′′1 , L, id , eh)

From (V.1) and Lemma 74.U (Requirement (EH3)),
(V.3) σ1 ≈L σ′′1

From (1) and (V.3),
(V.4) IH may be applied on D′ and E

From (V.4) and IH on D′ and E
σ′1 ≈L σ′2

Case VI: E ends in FS-REGISTEREH-NC
The proof is similar to Case V.

G = TS
Case I: D ends in TS-REGISTEREH

By assumption and from our security lattice,
(I.1) (v1,M1, l1) = lookupTS(σ1, L, id)
(I.2) eh = onEv(x){c}
(I.3) M ′1 = M1[Ev 7→M1(Ev) ∪ {(eh, l1)}]
(I.4) σ′1 = σ1[id 7→ (v1,M

′
1, l1)]

From (1), (2), and (I.1), and Lemma 48.U (Requirement (EH1)) and the definition of ≈L for TS nodes,
(I.5) (v2,M2, l2) = lookupFS(σ2, pc2, id) with l1, l2 v L and v1 ≈L v2, M1 ≈L M2 or
(I.6) φ2 = lookupFS(σ2, pc2, id) with l1, labOf(φ2,) 6v L

From (2), (I.5), and (I.6), E may end in TS-REGISTEREH, TS-REGISTEREH-NC, or TS-REGISTEREH-S

Subcase i: E ends in TS-REGISTEREH
By assumption and from our security lattice,

(i.1) (v2,M2, l2) = lookupTS(σ2, L, id)
(i.2) eh = onEv(x){c}
(i.3) M ′2 = M2[Ev 7→M2(Ev) ∪ {(eh, l2)}]
(i.4) σ′2 = σ2[id 7→ (v2,M

′
2, l2)]

From (I.5) and (I.6), either
(i.1) l1, l2 v L and v1 ≈L v2, M1 ≈L M2 or
(i.2) l1, l2 6v L

Subsubcase a: (i.1) is true
By assumption and from (I.3), (i.3), and our security lattice,

(a.1) M ′1 = M1[Ev 7→M1(Ev) ∪ {(eh, L)}]
(a.2) M ′2 = M2[Ev 7→M2(Ev) ∪ {(eh, L)}]

From (i.1), (a.1), and (a.2),
(a.3) M ′1 ≈L M ′2

From (1), (I.4), (i.4), (i.1), and (a.3),
σ′1 ≈L σ′2

Subsubcase b: (i.2) is true
By assumption and from (1), (I.4), and (i.4),
σ′1 ≈L σ′2

Subcase ii: E ends in TS-REGISTEREH-S
By assumption,

(ii.1) σ′2 = σ2

By assumption and from (I.1), (I.6) must be true
From (I.4) and (I.6),

(ii.2) σ′1 ≈L σ1

From (1), (ii.1), and (ii.2),
σ′1 ≈L σ′2

Subcase iii: E ends in TS-REGISTEREH-NC
By assumption,

(iii.1) σ′′2 = registerEHTS(σ2, H, id , eh)

(iii.2) E ′ :: σ′2 = registerEHTS(σ′′2 , L, id , eh)
From (iii.1) and Lemma 74.U (Requirement (EH3)),

(iii.3) σ′′2 ≈L σ2

From (1) and (iii.3),
(iii.4) IH may be applied on D and E ′

From (iii.4) and IH on D and E ′,
σ′1 ≈L σ′2

Case II: E ends in TS-REGISTEREH
The proof is similar Case I.

Case III: D ends in TS-REGISTEREH-S
By assumption,

(I.1) (NULL, l1) = lookupTS(σ1, L, id)
(I.2) σ′1 = σ1

From (1), (2), and (I.1), and Lemma 48.U (Requirement (EH1)) and the definition of ≈L for TS nodes,
(I.3) (NULL, l2) = lookupFS(σ2, pc2, id) with l1, l2 v L or
(I.4) φ2 = lookupFS(σ2, pc2, id) with l1, labOf(φ2,) 6v L

From (2), (I.3), and (I.4), E may end in TS-REGISTEREH, TS-REGISTEREH-NC, or TS-REGISTEREH-S

Subcase i: E ends in TS-REGISTEREH
By assumption,

(i.1)(v2,M2, l2) = lookupTS(σ2, L, id)
(i.2) eh = onEv(x){c}
(i.3) M ′2 = M2[Ev 7→M2(Ev) ∪ {(eh, l2)}]
(i.4) σ′2 = σ2[id 7→ (v2,M

′
2, l2)]

From (i.1), (I.3), and (I.4), (I.4) must be true
From (I.4) and (i.4),

(i.5) σ2 ≈L σ′2
From (1), (I.2), and (i.5),
σ′1 ≈L σ′2

Subcase ii: E ends in TS-REGISTEREH-S
By assumption,

(ii.1) σ′2 = σ2

From (1), (I.2), and (ii.1),
σ′1 ≈L σ′2

Subcase iii: E ends in TS-REGISTEREH-NC
The proof for this case is similar to Subcase I.iii.

Case IV: E ends in TS-REGISTEREH-S
The proof is similar to Case III.

Case V: D ends in TS-REGISTEREH-NC
By assumption,

(V.1) σ′′1 = registerEHTS(σ1, H, id , eh)
(V.2) D′ :: σ′1 = registerEHTS(σ′′1 , L, id , eh)

From (V.1) and Lemma 74.U (Requirement (EH3)),
(V.3) σ1 ≈L σ′′1

From (1) and (V.3),
(V.4) IH can be applied on D′ and E

From (V.4) and IH on D′ and E ,
σ′1 ≈L σ′2

Case VI: E ends in TS-REGISTEREH-NC
The proof is similar to Case V.

Tree-structured EH storage:
By assumption,

(T.1) v1 ≈σ1,σ2

L v2

(T.2) ap,1 ≈σ1,σ2

L ap,2
(T.3) as,1 ≈σ1,σ2

L as,2
(T.4) a1 ≈σ1,σ2

L a2

From (1),
(T.5) art1 ≈

σ1,σ2

L art2

D :: σ′1 = createChildG(σ1, pc1, id , ap,1, v1)
E :: σ′2 = createChildG(σ2, pc2, id , ap,1, v2)
Want to show σ′1 ≈L σ′2

G = SMS
Denote
σL,1 = getStore(σ1, L)
σL,2 = getStore(σ2, L)

Case I: D or E ends in SMS-CREATEC
Without loss of generality, assume that D ends in SMS-CREATEC. The proof for E is similar.
By assumption,

(I.1) lookupASMS(σ1, pc1, id , a
rt
1) = NULL

(I.2) a1 6∈ σL,1
(I.3) σL,1(ap,1) = (idp,1, vp,1,M1, a

′
p,1, A1)

(I.4) σ′L,1 = σL,1[ap,1 7→ (idp,1, vp,1,M1, a
′
p,1, (a1 :: A1))

(I.5) σ′′L,1 = σ′L,1[a1 7→ (id , v1, ·, ap,1, ·)
(I.6) σ′1 = setStore(σ1, L, σ

′′
L,1)

Subcase i: pc2 = L
By assumption and from (1), (2), (I.1), (T.5), and Lemma 49 (Requirement (EH1)) and the definition of ≈L
for SMS nodes, either

(i.1) lookupASMS(σ2, pc2, id , a
rt
2) = NULL

From (T.2) and (I.3),
(i.2) σL,2(ap,2) ≈σ2,σ1

L σL,1(ap,1)
From (I.3) and (i.2),

(i.3) σL,2(ap,2) = (id , vp,2,M2, a
′
p,2, A2)

From (i.1) and (i.3),
(i.4) E ends in SMS-CREATEC

From (i.4),
(i.5) a2 6∈ σL,2
(i.6) σ′L,2 = σL,2[ap,2 7→ (idp,2, vp,2,M1, a

′
p,2, (a2 :: A2))

(i.7) σ′′L,2 = σ′L,2[a2 7→ (id , v2, ·, ap,2, ·)
(i.8) σ′2 = setStore(σ2, L, σ

′′
L,2)

From (1), (I.4), and (i.6),
(i.9) σ′L,1 ≈L σ′L,2

From (i.9), (I.5), and (i.7),
(i.10) σ′′L,1 ≈L σ′′L,2

From (I.6), (i.8), (i.10), and the definition of setStore,
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
By assumption,

(ii.1) E ends in SMS-CREATEC-NC
From (ii.1),

(ii.2) σ′′2 = createChildSMS(σ2, H, id , getFacetA(ap,2, H), getFacetV(v2, H))
(ii.3) E ′ :: σ′2 = createChildSMS(σ′′2 , L, id , getFacetA(ap,2, L), getFacetV(v2, L))

From (ii.2) and Lemma 74.T (Requirement (EH3)),
(ii.4) σ2 ≈L σ′′2

From (1) and (ii.4),
(ii.5) σ1 ≈L σ′′2

From (ii.5), (2), (T.1), (T.2), and the definition of getFacetA and getFacetV,
(ii.6) the IH may be applied on D and E ′

From (ii.6) and the IH,
σ′1 ≈L σ′2

Case II: D or E ends in SMS-CREATEC-NC
Without loss of generality, assume that D ends in SMS-CREATEC-NC. The proof for E is similar.
By assumption,

(II.1) σ′′1 = createChildSMS(σ1, H, id , getFacetA(ap,1, H), getFacetV(v1, H))
(II.2) E ′ :: σ′1 = createChildSMS(σ′′1 , L, id , getFacetA(ap,1, L), getFacetV(v1, L))

From (II.1) and Lemma 74.T (Requirement (EH3)),
(II.3) σ1 ≈L σ′′1

From (1) and (II.3),
(II.4) σ′′1 ≈L σ2

From (II.4), (2), (T.1), (T.2), and the definition of getFacetA and getFacetV,
(II.5) the IH may be applied on D′ and E

From (II.5) and the IH,
σ′1 ≈L σ′2

Case III: D or E ends in SMS-CREATEC-S
Without loss of generality, assume that D ends in SMS-CREATEC-S. The proof for E is similar.
By assumption,

(III.1) lookupASMS(σ1, pc1, id , a
rt
1) 6= NULL or

(III.2) ap,1 = NULL
(III.3) σ′1 = σ1

Subcase i: pc2 = ·
The proof for this case is covered by Case II.

Subcase ii: pc2 = L
If (III.1) is true, then by assumption and from (1), (2), (T.5), (III.1) and Lemma 49 (Requirement (EH1)),

(ii.1) lookupASMS(σ2, pc2, id , a
rt
2) 6= NULL

If (III.2) is true, then from (T.2),
(ii.2) ap,2 = NULL

Whether (ii.1) or (ii.2) is true,
(ii.3) σ′2 = σ2

From (1), (III.3), and (ii.3),
σ′1 ≈L σ′2

G = FS
Case I: D or E ends in FS-CREATEC

Without loss of generality, assume that D ends in FS-CREATEC. The proof for E is similar.
By assumption,

(I.1) lookupAFS(σ1, ·, id , art1) = NULL
(I.2) a1 6∈ σ1

(I.3) σ1(ap,1) = (idp, vp,1,M1, a
′
p,1, A1)

(I.4) vp,1 ↓pc1
6= ·

(I.5) σ′′1 = σ1[ap,1 7→ (idp, vp,1,M1, a
′
p,1, (createFacet(a1, pc1) :: A1))]

(I.6) σ′1 = σ′′1 [a1 7→ (id , createFacet(v1, pc1), ·, createFacet(ap,1, pc1), ·)]
From (1), (I.1), (T.5), and Lemma 49 (Requirement (EH1)),

(I.7) lookupAFS(σ2, ·, id , art2) = NULL or
(I.8) lookupAFS(σ2, ·, id , art2) = 〈a2|NULL〉

From (T.2) and (I.3),
(I.9) σ2(ap,2) = (idp, vp,2,M2, a

′
p,2, A2) with

(I.10) (idp, vp,1,M1, a
′
p,1, A1) ≈σ1,σ2

L (idp, vp,2,M2, a
′
p,2, A2)

From (I.4) and (I.10),
(I.11) vp,2 ↓pc2

6= ·

Subcase i: (I.7) is true and pc2 = L
By assumption and from (I.7), (I.9), and (I.11),

(i.1) E ends in FS-CREATEC
From (i.1),

(i.2) a2 6∈ σ2

(i.3) σ′′2 = σ2[ap,2 7→ (idp, vp,2,M2, a
′
p,2, (createFacet(a2, pc2) :: A2))]

(i.4) σ′2 = σ′′2 [a2 7→ (id , createFacet(v2, pc2), ·, createFacet(ap,2, pc2), ·)]
From (T.1), (T.2), (I.5), (i.3), and the definition of createFacet,

(i.5) (id , createFacet(v1, pc1), ·, createFacet(ap,1, pc1), ·) ≈σ
′
1,σ

′
2

L
(id , createFacet(v2, pc2), ·, createFacet(ap,2, pc2), ·)

From (1), (I.10), (I.5), (i.3), (i.5), and the definition of createFacet,
(i.6) σ′′1 ≈L σ′′2

From (i.6), (I.2), (i.2), (I.6), (i.4), and (i.5),
σ′1 ≈L σ′2

Subcase ii: (I.8) is true and pc2 = L
By assumption and from (I.8), (I.9), and (I.11),

(ii.1) E ends in FS-CREATEC-UL
From (ii.1),

(ii.2) σ2(a2) = (id , v′2,M
′
2, a
′′
p,2, A

′
2)

(ii.3) σ′′2 = σ2[ap,2 7→ (idp, vp,2,M2, a
′
p,2, (createFacet(a2, pc2) :: A2))]

(ii.4) σ′2 = σ′′2 [a2 7→ (id , updateFacet(v′2, v2, L),M ′2, updateFacet(a′′p,2, ap,2, L), A′2)]
From (T.1), (T.2), (I.5), (ii.3), (ii.4), and the definitions of createFacet and updateFacet,

(ii.5) (id , createFacet(v1, pc1), ·, createFacet(ap,1, pc1), ·) ≈σ
′
1,σ

′
2

L
(id , updateFacet(v′2, v2, L),M ′2, updateFacet(a′′p,2, ap,2, L), A′2)

From (1), (I.10), (I.5), (ii.3), (ii.5), and the definition of createFacet,
(ii.6) σ′′1 ≈L σ′′2

From (ii.6), (I.2), (ii.2), (I.6), (ii.4), and (ii.5),
σ′1 ≈L σ′2

Subcase iii: pc2 = ·
By assumption,

(iii.1) E ends in FS-CREATEC-NC
From (iii.1),

(iii.2) σ′′2 = createChildFS(σ2, H, id , getFacetA(ap,2, H), getFacetV(v2, H))
(iii.3) E ′ :: σ′2 = createChildFS(σ′′2 , L, id , getFacetA(ap,2, L), getFacetV(v2, L))

From (iii.2) and Lemma 74.T (Requirement (EH3)),
(iii.4) σ2 ≈L σ′′2

From (1) and (iii.4),
(iii.5) σ1 ≈L σ′′2

From (iii.5), (2), (T.1), (T.2), (iii.3), and the definition of getFacetA and getFacetV,
(iii.6) IH may be applied on D and E ′

From (iii.6) and the IH,
σ′1 ≈L σ′2

Case II: D or E ends in FS-CREATEC-UL
Without loss of generality, assume that D ends in FS-CREATEC-UL. The proof for E is similar.
By assumption,

(II.1) lookupFS(σ1, ·, id , art1) = 〈a1|NULL〉
(II.2) σ1(a1) = (id , v′1,M1, a

′
p,1, A1)

(II.3) σ1(ap,1) = (idp, v
′′
1 ,M

′
1, a
′′
p,1, A

′
1)

(II.4) vp,1 ↓L 6= ·
(II.5) σ′′1 = σ1[ap,1 7→ (idp, v

′′
1 ,M

′
1, a
′′
p,1, (createFacet(a1, L) :: A′1))

(II.6) σ′1 = σ′′1 [a1 7→ (id , updateFacet(v′′1 , v1, L),M1, updateFacet(a′p,1, ap,1, L), A1)]
From (1), (II.1), (T.5), and Lemma 49 (Requirement (EH1)),

(II.7) lookupAFS(σ2, ·, id , art2) = NULL or
(II.8) lookupAFS(σ2, ·, id , art2) = 〈a2|NULL〉

From (T.2) and (II.3),
(II.9) σ2(ap,2) = (idp, vp,2,M2, a

′
p,2, A2) with

(II.10) (idp, vp,1,M1, a
′
p,1, A1) ≈σ1,σ2

L (idp, vp,2,M2, a
′
p,2, A2)

From (II.4) and (II.10),
(II.11) vp,2 ↓pc2

6= ·

Subcase i: (II.7) is true and pc2 = L
By assumption and from (II.7), (II.9), and (II.11), E ends in FS-CREATEC. This case is covered by Case I.

Subcase ii: (II.8) is true and pc2 = L

By assumption and from (II.8), (II.9), and (II.11),
(ii.1) E ends in FS-CREATEC-UL

From (ii.1),
(ii.2) σ2(a2) = (id , v′2,M

′
2, a
′′
p,2, A

′
2)

(ii.3) σ′′2 = σ2[ap,2 7→ (idp, vp,2,M2, a
′
p,2, (createFacet(a2, pc2) :: A2))]

(ii.4) σ′2 = σ′′2 [a2 7→ (id , updateFacet(v′2, v2, L),M ′2, updateFacet(a′′p,2, ap,2, L), A′2)]
From (T.1), (T.2), (II.5), (ii.3), (ii.4), and the definition of updateFacet,

(ii.5) (id , updateFacet(v′′1 , v1, L),M1, updateFacet(a′p,1, ap,1, L), A1) ≈σ
′
1,σ

′
2

L

(id , updateFacet(v′2, v2, L),M ′2, updateFacet(a′′p,2, ap,2, L), A′2)
From (1), (II.10), (II.5), (ii.3), (ii.5), and the definition of createFacet,

(ii.6) σ′′1 ≈L σ′′2
From (ii.6), (II.2), (ii.2), (II.6), (ii.4), and (ii.5),
σ′1 ≈L σ′2

Subcase iii: pc2 = ·
The proof for this case is similar to Subcase I.iii

Case III: D or E ends in FS-CREATEC-NC
Without loss of generality, assume that D ends in FS-CREATEC-NC. The proof for E is similar.
By assumption,

(III.1) σ′′1 = createChildFS(σ1, H, id , getFacetA(ap,1, H), getFacetV(v1, H))
(III.2) D′ :: σ′1 = createChildFS(σ1, L, id , getFacetA(ap,1, L), getFacetV(v1, L))

From (III.1) and Lemma 74.T (Requirement (EH3)),
(III.3) σ1 ≈L σ′′′1

From (1) and (III.3),
(III.4) σ′′1 ≈L σ2

From (III.4), (2), (T.1), (T.2), (III.2), and the definition of getFacetA and getFacetV,
(III.5) IH may be applied on D′ and E

From (III.5) and the IH,
σ′1 ≈L σ′2

Case IV: D or E ends in FS-CREATEC-S1
Without loss of generality, assume that D ends in FS-CREATEC-S1. The proof for E is similar.
By assumption,

(IV.1) lookupAFS(σ1, ·, id) = a1 with
(IV.2) a1 ↓pc1

6= NULL
(IV.3) σ′1 = σ1

Subcase i: pc2 = ·
The proof for this case is similar to Subcase I.iii.

Subcase ii: pc2 = L
From (1), (IV.1), (T.5), and Lemma 49 (Requirement (EH1)),

(ii.1) lookupAFS(σ2, ·, id , art2) = a2 6= NULL or
(ii.2) lookupAFS(σ2, ·, id , art2) = a2 = 〈NULL|a′2〉

By assumption and from (ii.1) and (ii.2),
(ii.3) a2 ↓pc2

6= NULL
From (ii.1)-(ii.3),

(ii.4) E ends in FS-CREATEC-S1
From (ii.4),

(ii.5) σ′2 = σ2

From (1), (IV.3), and (ii.5),
σ′1 ≈L σ′2

Case V: D or E ends in FS-CREATEC-S2
Without loss of generality, assume that D ends in FS-CREATEC-S2. The proof for E is similar.
By assumption,

(V.1) ap,1 = NULL
(V.2) σ′1 = σ1

Subcase i: pc2 = ·
The proof for this case is similar to Subcase I.iii.

Subcase ii: pc2 = L
By assumption and from (V.1) and (T.2),

(ii.1) ap,2 = NULL
From (ii.1),

(ii.2) E ends in FS-CREATEC-S2
From (ii.2),

(ii.3) σ′2 = σ2

From (1), (V.2), and (ii.3),
σ′1 ≈L σ′2

Case VI: D or E ends in FS-CREATEC-UH
We assume that pc1, pc2 v L, so this case holds vacuously.

D :: σ′1 = createSiblingG(σ1, pc1, id , as,1, v1)
E :: σ′2 = createSiblingG(σ2, pc2, id , as,2, v2)
Want to show σ′1 ≈L σ′2

G = SMS
Denote
σL,1 = getStore(σ1, L)
σL,2 = getStore(σ2, L)

Case I: D or E ends in SMS-CREATES
Without loss of generality, assume that D ends in SMS-CREATES. The proof for E is similar.
By assumption,

(I.1) lookupASMS(σ1, pc1, id , a
rt
1) = NULL

(I.2) a1 6∈ σL,1
(I.3) a′p,1 = σL,1(as,1).ap
(I.4) σL,1(a′p,1) = (idp, vp,1,M1, a

′′
p,1, (A1 :: as,1 :: A′1))

(I.5) σ′L,1 = σL,1[a′p,1 7→ (idp, vp,1,M1, a
′′
p,1, (A1 ::: as,1 :: a1 :: A′1))

(I.6) σ′′L,1 = σ′L,1[a1 7→ (id , v1, ·, a′p,1, ·)
(I.7) σ′1 = setStore(σ1, L, σ

′′
L,1)

Subcase i: pc2 = L
By assumption and from (1), (2), (I.1), (T.5), and Lemma 49 (Requirement (EH1)) and the definition of ≈L
for SMS nodes,

(i.1) lookupASMS(σ2, pc2, id , a
rt
2) = NULL

From (T.3) and (I.3),
(i.2) σL,2(as,2) ≈σ2,σ1

L σL,1(as,1)
From (i.2),

(i.3) σL,1(as,1).ap ≈σ1,σ2

L σL,2(as,2).ap
From (1), (i.3), (I.3), and since node id ’s are unique,

(i.4) σL,1(a′p,2) = (idp, vp,2,M2, a
′′
p,2, (A2 :: as,2 :: A′2))

From (i.1), (i.3), and (i.4),
(i.5) E ends in SMS-CREATES

From (i.5),
(i.6) a2 6∈ σL,2
(i.7) σ′L,2 = σL,2[a′p,2 7→ (idp, vp,2,M1, a

′′
p,2, (A2 :: as,2 :: a2 :: A′2))

(i.8) σ′′L,2 = σ′L,2[a2 7→ (id , v2, ·, a′p,2, ·)
(i.9) σ′2 = setStore(σ2, L, σ

′′
L,2)

From (1), (I.4), (i.4), (I.5), and (i.7),
(i.10) σ′L,1 ≈L σ′L,2

From (T.1), (i.10), (I.6), (I.5), (i.8), and (i.7),
(i.11) σ′′L,1 ≈L σ′′L,2

From (I.7), (i.9), (i.11), and the definition of setStore,
σ′1 ≈L σ′2

Subcase ii: pc2 = ·

By assumption,
(ii.1) E ends in SMS-CREATES-NC

From (ii.1),
(ii.2) σ′′2 = createSiblingSMS(σ2, H, id , getFacetA(as,2, H), getFacetV(v2, H))
(ii.3) E ′ :: σ′2 = createSiblingSMS(σ′′2 , L, id , getFacetA(as,2, L), getFacetV(v2, L))

From (ii.2) and Lemma 74.T (Requirement (EH3)),
(ii.4) σ2 ≈L σ′′2

From (1) and (ii.4),
(ii.5) σ1 ≈L σ′′2

From (ii.5), (2), (T.1), (T.3), and the definition of getFacetA and getFacetV,
(ii.6) the IH may be applied on D and E ′

From (ii.6) and the IH,
σ′1 ≈L σ′2

Case II: D or E ends in SMS-CREATES-NC
Without loss of generality, assume that D ends in SMS-CREATES-NC. The proof for E is similar.
By assumption,

(II.1) σ′′1 = createSiblingSMS(σ1, H, id , getFacetA(as,1, H), getFacetV(v1, H))
(II.2) D′ :: σ′1 = createSiblingSMS(σ′′1 , L, id , getFacetA(as,1, L), getFacetV(v1, L))

From (II.1) and Lemma 74.T (Requirement (EH3)),
(II.3) σ′′1 ≈L σ1

From (1) and (II.3),
(II.4) σ′′1 ≈L σ2

From (II.4), (2), (T.1), (T.3), and the definition of getFacetA and getFacetV,
(II.5) the IH may be applied on D′ and E

From (II.5) and the IH,
σ′1 ≈L σ′2

Case III: D or E ends in SMS-CREATES-S1
Without loss of generality, assume that D ends in SMS-CREATES-S1. The proof for E is similar.
By assumption,

(III.1) lookupASMS(σ1, pc1, id , a
rt
1) 6= NULL or

(III.2) as,1 = NULL
(III.3) σ′1 = σ1

Subcase i: pc2 = L
If (III.1) is true, then by assumption and from (1), (T.5), and Lemma 49 (Requirement (EH1)) and the
definition of ≈L for SMS nodes,

(i.1) lookupASMS(σ2, pc2, id , a
rt
2) 6= NULL

If (III.2) is true, then by assumption and from (T.3),
(i.2) as,2 = NULL

By assumption and from (i.1) and (i.2),
(i.3) E ends in SMS-CREATES-S1

From (i.3),
(i.4) σ′2 = σ2

From (1), (III.3), and (i.4),
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
By assumption, E ends in SMS-CREATES-NC. This case follows from Case II

Case IV: D or E ends in SMS-CREATES-S2
Without loss of generality, assume that D ends in SMS-CREATES-S2. The proof for E is similar.
By assumption,

(IV.1) lookupASMS(σ1, pc1, id , a
rt
1) = NULL

(IV.2) σL,1(as,1).ap = NULL
(IV.3) σ′1 = σ1

Subcase i: pc2 = L
By assumption and from (1), (IV.1), (T.5), and Lemma 49 (Requirement (EH1)) and the definition of ≈L
for SMS nodes,

(i.1) lookupASMS(σ2, pc2, id , a
rt
2) = NULL

From (IV.2) and (T.3),

(i.2) σL,2(as,2).ap = NULL
By assumption and from (i.1) and (i.2),

(i.3) E ends in SMS-CREATES-S2
From (i.3),

(i.4) σ′2 = σ2

From (1), (IV.3), and (i.4),
σ′1 ≈L σ′2

Subcase ii: pc2 = ·
By assumption, E ends in SMS-CREATES-NC. This case follows from Case II.

G = FS
Case I: D or E ends in FS-CREATES-NC

Without loss of generality, assume that D ends in FS-CREATES-NC. The proof for E is similar.
By assumption,

(I.1) σ′′1 = createSiblingFS(σ1, H, id , getFacet(as,1, H), getFacet(v1, H))
(I.2) D′ :: σ′1 = createSiblingFS(σ′′1 , L, id , getFacet(as,1, L), getFacet(v1, L))

From (I.1) and Lemma 74.T (Requirement (EH3)),
(I.3) σ′′1 ≈L σ1

From (1) and (I.3),
(I.4) σ′′1 ≈L σ2

From (I.4), (2), (T.1), (T.3), and the definition of getFacetA and getFacetV,
(I.5) the IH may be applied on D′ and E

From (I.5) and the IH,
σ′1 ≈L σ′2

Case II: D or E ends in FS-CREATES
Without loss of generality, assume that D ends in FS-CREATES. The proof for E is similar.
By assumption,

(II.1) lookupAFS(σ1, ·, id , art1) = NULL
(II.2) a1 6∈ σ1

(II.3) σ1(as,1).v ↓pc1
6= ·

(II.4) σ1(as,1).ap ↓pc1
= a′p,1

(II.5) σ1(a′p,1) = (idp, vp,1,M1, a
′′
p,1, (A1 :: a′s,1 :: A′1)) where

(II.6) a′s,1 ↓pc1
= as,1

(II.7) vp,1 ↓pc1
6= ·

(II.8) σ′′1 = σ1[ap,1 7→ (idp, vp,1,M1, a
′
p,1, (A1 :: a′s,1 :: createFacet(a1, pc1) :: A′1))]

(II.9) σ′1 = σ′′1 [a1 7→ (id , createFacet(v1, pc1), ·, createFacet(ap,1, pc1), ·)]

Subcase i: pc2 = ·
The proof for this case is covered by Case I.

Subcase ii: pc2 = L
From (1), (II.1), (T.5), and Lemma 49 (Requirement (EH1)),

(ii.1) lookupAFS(σ2, ·, id , art2) = NULL or
(ii.2) lookupAFS(σ2, ·, id , art2) = 〈a2|NULL〉

From (T.3), (II.3), and (II.4),
(ii.3) σ2(as,2).v ↓L 6= ·
(ii.4) σ2(as,2).ap ↓L= a′p,2 with
(ii.5) σ1(a′p,1).id = σ2(a′p,2).id

From (1), (ii.5), and since id ’s are unique,
(ii.6) σ2(a′p,2) = (idp, vp,2,M2, a

′
p,2, (A2 :: a′s,2 :: A′2)) with

(ii.7) a′s,2 ↓L= as and
(ii.8) (idp, vp,1,M1, a

′
p,1, (A1 :: a′s,1 :: A′1)) ≈σ1,σ2

L (idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: A′2))

From (II.7) and (ii.8),
(ii.9) vp,2 ↓L 6= ·

Subsubcase a: (ii.1) is true
From (ii.1), (ii.3), (ii.4), (ii.6), and (ii.9),

(a.1) E ends in FS-CREATES
From (a.1),

(a.2) a2 6∈ σ2

(a.3) σ′′2 = σ2[a′p,2 7→ (idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: createFacet(a2, L) :: A′2))]

(a.4) σ′2 = σ′′2 [a2 7→ (id , createFacet(v2, L), ·, createFacet(a′p,2, L), ·)]
From (T.1), (II.8), (a.3), and the definition of createFacet,

(a.5) (id , createFacet(v1, pc1), ·, createFacet(ap,1, pc1), ·) ≈σ
′
1,σ

′
2

L
(id , createFacet(v2, L), ·, createFacet(a′p,2, L), ·)

From (ii.8), (a.5), (II.9), (a.4), and the definition of createFacet,
(a.6) (idp, vp,1,M1, a

′
p,1, (A1 :: a′s,1 :: createFacet(a1, pc1) :: A′1)) ≈σ

′
1,σ

′
2

L

(idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: createFacet(a2, L) :: A′2))

From (1), (II.8), (a.3), (a.5), and (a.6),
(a.7) σ′′1 ≈L σ′′2

From (II.9) and (a.4)-(a.7),
σ′1 ≈L σ′2

Subsubcase b: (ii.2) is true
From (ii.2)-(ii.4), (ii.6), and (ii.9),

(b.1) E ends in FS-CREATES-UL
From (b.1),

(b.2) σ2(a2) = (id , v′2,M
′
2, a
′′
p,2, A

′′
2)

(b.3) σ′′2 = σ2[a′p,2 7→ (idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: createFacet(a2, L) :: A′2))]

(b.4) σ′2 = σ′′2 [a2 7→ (id , updateFacet(v′2, v2, L), ·, updateFacet(a′′p,2, a
′
p,2, L), ·)]

From (T.1), (II.8), (b.3), and the definitions of createFacet and updateFacet,
(b.5) (id , createFacet(v1, pc1), ·, createFacet(ap,1, pc1), ·) ≈σ

′
1,σ

′
2

L
(id , updateFacet(v′2, v2, L),M ′2, updateFacet(a′′p,2, a

′
p,2, L), A′′2)

From (ii.8), (b.5), (II.9), (b.4), and the definition of createFacet,
(b.6) (idp, vp,1,M1, a

′
p,1, (A1 :: a′s,1 :: createFacet(a1, pc1) :: A′1)) ≈σ

′
1,σ

′
2

L

(idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: createFacet(a2, L) :: A′2))

From (1), (II.8), (b.3), (b.5), and (b.6),
(b.7) σ′′1 ≈L σ′′2

From (II.9) and (b.4)-(b.7),
σ′1 ≈L σ′2

Case III: D or E ends in FS-CREATES-UL
Without loss of generality, assume that D ends in FS-CREATES-UL. The proof for E is similar.
By assumption,

(III.1) lookupAFS(σ1, ·, id , art1) = 〈a1|NULL〉
(III.2) σ1(a1) = (id , v′′1 ,M

′
1, a
′′
p,1, A

′
1)

(III.3) σ1(as,1).v ↓pc1
6= ·

(III.4) σ1(as,1).ap ↓pc1
= a′p,1

(III.5) σ1(a′p,1) = (idp, vp,1,M1, a
′′
p,1, (A1 :: a′s,1 :: A′1)) where

(III.6) a′s,1 ↓pc1
= as,1

(III.7) vp,1 ↓pc1
6= ·

(III.8) σ′′1 = σ1[ap,1 7→ (idp, vp,1,M1, a
′
p,1, (A1 :: a′s,1 :: createFacet(a1, pc1) :: A′1))]

(III.9) σ′1 = σ′′1 [a1 7→ (id , updateFacet(v′1, v1, pc1),M ′1, updateFacet(a′′p,1, ap,1, pc1), A′1)]

Subcase i: pc2 = ·
The proof for this case is covered by Case I.

Subcase ii: pc2 = L
From (1), (II.1), (T.5), and Lemma 49 (Requirement (EH1)),

(ii.1) lookupAFS(σ2, ·, id , art2) = NULL or
(ii.2) lookupAFS(σ2, ·, id , art2) = 〈a2|NULL〉

The proof for when (ii.1) is true is covered by Case II, so we consider the case where (ii.2) is true
From (T.3), (II.3), and (II.4),

(ii.3) σ2(as,2).v ↓L 6= ·
(ii.4) σ2(as,2).ap ↓L= a′p,2 with
(ii.5) σ1(a′p,1).id = σ2(a′p,2).id

From (1), (ii.5), and since id ’s are unique,
(ii.6) σ2(a′p,2) = (idp, vp,2,M2, a

′
p,2, (A2 :: a′s,2 :: A′2)) with

(ii.7) a′s,2 ↓L= as and
(ii.8) (idp, vp,1,M1, a

′
p,1, (A1 :: a′s,1 :: A′1)) ≈σ1,σ2

L (idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: A′2))

From (II.7) and (ii.8),
(ii.9) vp,2 ↓L 6= ·

From (ii.2)-(ii.4), (ii.6), and (ii.9),
(ii.10) E ends in FS-CREATES-UL

From (ii.10),
(ii.11) σ2(a2) = (id , v′2,M

′
2, a
′′
p,2, A

′′
2)

(ii.12) σ′′2 = σ2[a′p,2 7→ (idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: createFacet(a2, L) :: A′2))]

(ii.13) σ′2 = σ′′2 [a2 7→ (id , updateFacet(v′2, v2, L), ·, updateFacet(a′′p,2, a
′
p,2, L), ·)]

From (T.1), (II.8), (ii.12), and the definitions of updateFacet,
(ii.14) (id , updateFacet(v′1, v1, pc1),M ′1, updateFacet(a′′p,1, ap,1, pc1), A′1) ≈σ

′
1,σ

′
2

L

(id , updateFacet(v′2, v2, L),M ′2, updateFacet(a′′p,2, a
′
p,2, L), A′′2)

From (ii.8), (ii.14), (II.9), (ii.13), and the definition of createFacet,
(ii.15) (idp, vp,1,M1, a

′
p,1, (A1 :: a′s,1 :: createFacet(a1, pc1) :: A′1)) ≈σ

′
1,σ

′
2

L

(idp, vp,2,M2, a
′
p,2, (A2 :: a′s,2 :: createFacet(a2, L) :: A′2))

From (1), (II.8), (ii.12), (ii.14), and (ii.15),
(ii.16) σ′′1 ≈L σ′′2

From (II.9) and (ii.13)-(ii.16),
σ′1 ≈L σ′2

Case IV: D or E ends in FS-CREATES-S1
Without loss of generality, assume that D ends in FS-CREATES-S1. The proof for E is similar.
By assumption,

(IV.1) lookupFS(σ1, ·, id , art1) = a1

(IV.2) a1 ↓pc1
6= NULL

(IV.3) σ′1 = σ1

Subcase i: pc2 = ·
The proof for this case is covered by Case I.

Subcase ii: pc2 = L
From (1), (IV.1), (IV.2), (T.5), and Lemma 49 (Requirement (EH1)),

(ii.1) lookupAFS(σ2, ·, id , art2) = a2 or
(ii.2) lookupAFS(σ2, ·, id , art2) = 〈 |a2〉 with
(ii.3) a2 6= NULL

From (ii.1)-(ii.3),
(ii.4) E ends in FS-CREATES-S1

From (ii.4),
(ii.5) σ′2 = σ2

From (1), (IV.3), and (ii.5),
σ′1 ≈L σ′2

Case V: D or E ends in FS-CREATES-S2
Without loss of generality, assume that D ends in FS-CREATES-S2. The proof for E is similar.
By assumption,

(V.1) as,1 = NULL or
(V.2) σ1(as,1).ap ↓pc1

= NULL
(V.3) σ′1 = σ1

Subcase i: pc2 = ·
The proof for this case is covered by Case I.

Subcase ii: pc2 = L
From (T.3), (V.1), and (V.2), either

(ii.1) as,2 = NULL or
(ii.2) σ2(as,2).ap ↓L= NULL

From (ii.1) and (ii.2),
(ii.3) E ends in FS-CREATES-S2

From (ii.3),
(ii.4) σ′2 = σ2

From (1), (V.3), and (ii.4),
σ′1 ≈L σ′2

Case VI: D or E ends in FS-CREATES-S3
Without loss of generality, assume that D ends in FS-CREATES-S3. The proof for E is similar.
By assumption,

(V.1) σ1(as,1).v ↓pc1
= · or

(V.2) σ1(as,1).ap ↓pc1
= · or

(V.3) σ1(σ1(as,1).ap ↓pc1
).v ↓pc1

= ·
(V.4) σ′1 = σ1

Subcase i: pc2 = ·
The proof for this case is covered by Case I.

Subcase ii: pc2 = L
From (T.3) and (V.1)-(V.3), either

(ii.1) σ2(as,2).v ↓L= · or
(ii.2) σ2(as,2).ap ↓L= · or
(ii.3) σ2(σ2(as,2).ap ↓L).v ↓L= ·

From (ii.1)-(ii.3),
(ii.4) E ends in FS-CREATES-S3

From (ii.4),
(ii.5) σ′2 = σ2

From (1), (V.4), and (ii.5),
σ′1 ≈L σ′2

Case VII: D or E ends in FS-CREATES-UH
We assume that pc1, pc2 v L, so this case holds vacuously.

D :: σ′1 = registerEHG(σ1, pc1, a1, eh)
E :: σ′2 = registerEHG(σ2, pc2, a2, eh)
Want to show that σ′1 ≈L σ′2

G = SMS
Denote
σL,1 = getStore(σ1, L)
σL,2 = getStore(σ2, L)

Case I: D or E ends in SMS-REGISTEREH-NC
Without loss of generality, assume that D ends in SMS-REGISTEREH-NC. The proof for E is similar.
By assumption,

(I.1) σ′′1 = registerEHSMS(σ1, H, getFacet(a1, H), eh)
(I.2) D′ :: σ′1 = registerEHSMS(σ′′1 , L, getFacet(a1, L), eh)

From (I.1) and Lemma 74.T (Requirement (EH3)),
(I.3) σ′′1 ≈L σ1

From (1) and (I.3),
(I.4) σ′′1 ≈L σ2

From (I.4), (2), (T.4), and the definition of getFacet,
(I.5) the IH may be applied on D′ and E

From (I.5) and the IH,
σ′1 ≈L σ′2

Case II: D or E ends in SMS-REGISTEREH
Without loss of generality, assume that D ends in SMS-REGISTEREH. The proof for E is similar.
By assumption,

(II.1) σL,1(a1) = (id , v1,M1, ap,1, A1)
(II.2) M ′1 = M [Ev 7→M(Ev) ∪ {(eh, pc1)}] for
(II.3) eh = onEv(x){c}
(II.4) σ′L,1 = σL,1[a1 7→ (id , v1,M

′
1, ap,1, A1)

(II.5) σ′1 = setStore(σ1, L, σ
′
L,1

Subcase i: pc2 = ·

This case is covered by Case I.

Subcase ii: pc2 = L
From (T.4) and (II.1),

(ii.1) σL,2(a2) = (id , v2,M2, ap,2, A2) with
(ii.2) v1 ≈σ1,σ2

L v2

(ii.3) M1 ≈L M2

(ii.4) A2 ≈σ1,σ2

L A2

From (ii.1),
(ii.5) E ends in SMS-REGISTEREH

From (ii.5),
(ii.6) M ′2 = M [Ev 7→M(Ev) ∪ {(eh, L)}]
(ii.7) σ′L,2 = σL,2[a2 7→ (id , v2,M

′
2, ap,2, A2)

(ii.8) σ′2 = setStore(σ2, L, σ
′
L,2

From (II.2), (II.4), (II.5), (ii.2)-(ii.4), (ii.6)-(ii.8), and the definition of setStore,
σ′1 ≈L σ′2

Case III: D or E ends in SMS-REGISTEREH-S
Without loss of generality, assume that D ends in SMS-REGISTEREH-S. The proof for E is similar.
By assumption,

(III.1) a1 = NULL
(III.2) σ′1 = σ1

Subcase i: pc2 = ·
This case is covered by Case I.

Subcase ii: pc2 = L
From (T.4) and (III.1),

(ii.1) a2 = NULL
From (ii.1),

(ii.2) E ends in SMS-REGISTEREH-S
From (ii.2),

(ii.3) σ′2 = σ2

From (1), (III.2), and (ii.3),
σ′1 ≈L σ′2

G = FS
Case I: D or E ends in FS-REGISTEREH-NC

Without loss of generality, assume that D ends in FS-REGISTEREH-NC. The proof for E is similar.
By assumption,

(I.1) σ′′1 = registerEHFS(σ1, H, getFacet(a1, H), eh)
(I.2) D′ :: σ′1 = registerEHFS(σ′′1 , L, getFacet(a1, L), eh)

From (I.1) and Lemma 74.T (Requirement (EH3)),
(I.3) σ′′1 ≈L σ1

From (1) and (I.3),
(I.4) σ′′1 ≈L σ2

From (I.4), (2), (T.4), and the definition of getFacet,
(I.5) the IH may be applied on D′ and E

From (I.5) and the IH,
σ′1 ≈L σ′2

Case II: D or E ends in FS-REGISTEREH
Without loss of generality, assume that D ends in FS-REGISTEREH. The proof for E is similar.
By assumption,

(II.1) σ1(a1) = (id , v1,M1, ap,1, A1)
(II.2) v1 ↓pc1

6= ·
(II.3) M ′1 = M [Ev 7→M(Ev) ∪ {(eh, pc1)}] for
(II.4) eh = onEv(x){c}
(II.5) σ′1 = σ1[a1 7→ (id , v1,M

′
1, ap,1, A1)

Subcase i: pc2 = ·
This case is covered by Case I.

Subcase ii: pc2 = L
From (T.4) and (II.1),

(ii.1) σ2(a2) = (id , v2,M2, ap,2, A2) with
(ii.2) v2 ↓pc2

6= ·
(ii.3) v1 ≈σ1,σ2

L v2

(ii.4) M1 ≈L M2

(ii.5) A2 ≈σ1,σ2

L A2

From (ii.1) and (ii.2),
(ii.6) E ends in FS-REGISTEREH

From (ii.6),
(ii.7) M ′2 = M [Ev 7→M(Ev) ∪ {(eh, L)}]
(ii.8) σ′2 = σ2[a2 7→ (id , v2,M

′
2, ap,2, A2)

From (II.2), (II.5), (ii.3)-(ii.5), (ii.7), (ii.8), and the definition of setStore,
σ′1 ≈L σ′2

Case III: D or E ends in FS-REGISTEREH-S
Without loss of generality, assume that D ends in FS-REGISTEREH-S. The proof for E is similar.
By assumption,

(III.1) a1 = NULL or
(III.2) σ1(a1).v ↓pc1

= ·
(III.3) σ′1 = σ1

Subcase i: pc2 = ·
This case is covered by Case I.

Subcase ii: pc2 = L
From (T.4), (III.1), and (III.2), either

(ii.1) a2 = NULL or
(ii.2) σ2(a2).v ↓L= ·

From (ii.1) and (ii.2),
(ii.3) E ends in FS-REGISTEREH-S

From (ii.3),
(ii.4) σ′2 = σ2

From (1), (III.3), and (ii.4),
σ′1 ≈L σ′2

Requirement (WEH4) L updates are equivalent (Weak Secrecy)

Lemma 82. If σ1 ≈L σ2, pc1, pc2 v L, v1 ≈L v2, and α1 = α2, then for assignG(σ1, pc1, id , v1) = (σ′1, α1) and
assignG(σ2, pc2, id , v2) = (σ′2, α2), σ′1 ≈L σ′2
Proof.
Only the cases for G = TS are considered. The other cases are not considered since they follow from Lemma 80
We examine each case of D :: assignG(σ1, pc1, id , v1) = (σ′1, α1)
Denote E :: assignG(σ2, pc2, id , v2) = (σ′2, α2)
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 v L
(3) v1 ≈L v2

From G = TS and (3),
(4) v1 = (v′1, l1) and v2 = (v′2, l2) with
(5) (v′1, l1) ≈L (v′2, l2)

Case I: D ends in TS-ASSIGNEH
By assumption,

(I.1) σ1(id) = (id , (v′′1 , l
′′
1),M1, l

′
1)

(I.2) σ′1 = σ1[id 7→ (id , (v′1, l1 t pc1 t l′1),M1, l
′
1)]

(I.3) α1 = •
(I.4) l1 t pc1 t l′1 v l′′1

From (I.4) and (2) our security lattice, and since TS stores do not contain ·,
(I.5) l1 v l′′1

Subcase i: l′1 v L
By assumption and from (1),

(i.1) σ2(id) = (id , (v′′2 , l
′′
2),M2, l

′
2) with

(i.2) l′2 v L
(i.3) (v′′1 , l

′′
1) ≈L (v′′2 , l

′′
2)

(i.4) M1 ≈L M2

From (i.1),
(i.5) E ends in TS-ASSIGNEH

From (i.5), (I.5), (4), (5), and (i.2),
(i.6) l2 v l′′2 (because otherwise, l2 = H and l′′2 = L, so either (i.1) is not true, or (i.4) or (5) are not true)

From (2), (i.3), (i.7), and our security lattice,
(i.7) l2 t pc2 v l′′2

From (i.8) and (i.6),
(i.8) E ends in TS-ASSIGNEH

From (i.8),
(i.9) σ′2 = σ2[id 7→ (id , (v′2, l2 t pc2 t l′2),M2)]
(i.10) α2 = •

From (1), (2), (5), (i.4), (I.2), and (i.9),
σ′1 ≈L σ′2

From (I.3) and (i.10),
α1 = α2

Subcase ii: l′1 6v L
By assumption and from (I.2), (I.5) and our security lattice,

(ii.1) l′′1 = H
(ii.2) σ′1 ≈L σ′2

If id 6∈ σ2, then from TS-ASSIGNEH-S,
(ii.3) σ′2 = σ2

(ii.4) α2 = •
Then from (1), (ii.2), and (ii.3),
σ′1 ≈L σ′2

And from (I.3) and (ii.4),
α1 = α2

Otherwise, id ∈ σ2, and by assumption and from (1),
(ii.5) σ2(id) = (id , (v′′2 , l

′′
2),M2, l

′
2) with

(ii.6) l′2 6v L
From (ii.5) and (ii.6),

(ii.7) E ends in TS-ASSIGNEH
From (ii.7),

(ii.8) σ′2 = σ2[id 7→ (id , (v′2, l2 t pc2 t l′2),M2, l
′
2)]

(ii.9) α2 = •
By assumption and from (ii.6), (I.2), and (ii.8),
σ′1 ≈L σ′2

From (I.3) and (ii.9),
α1 = α2

Case II: D ends in TS-ASSIGNEH-S
By assumption,

(II.1) id 6∈ σ1

(II.2) σ′1 = σ1

(II.3) α1 = •
From (1) and (II.1), either

(II.4) id 6∈ σ2 or
(II.5) labOf(σ2(id),) = H

If (II.4) is true, then E ends in TS-ASSIGNEH-S and
(II.6) σ′2 = σ2

(II.7) α2 = •
From (1), (II.2), and (II.6),
σ′1 ≈L σ′2

From (II.3) and (II.7),
α1 = α2

Otherwise, (II.5) is true
From (II.5), E ends in TS-ASSIGNEH and

(II.8) σ′2 = σ2[id 7→ (id , (v, l2 t pc2 tH), σ2(id).M,H)]
(II.9) α2 = •

From (II.5) and (II.8),
(II.10) σ2 ≈L σ′2

From (1), (II.2), and (II.10),
σ′1 ≈L σ′2

From (II.3) and (II.9),
α1 = α2

Case III: D ends in TS-ASSIGNEH-GW
By assumption,

(III.1) σ1(id) = (id , (v′′1 , l
′′
1),M1, l

′
1) with

(III.2) l′1 v L and
(III.3) l1 t pc1 6v l′′1
(III.4) σ′1 = σ1[id 7→ (id , (v′1, l1 t pc1 t l′1),M1, l

′
1)]

(III.5) α1 = gw(id)
From (1) and (III.1),

(III.6) σ2(id) = (id , (v′′2 , l
′′
2),M2, l

′
2) with

(III.7) l′2 v L and
(III.8) M1 ≈L M2

(III.9) (v′′1 , l
′′
1) ≈L (v′′2 , l

′′
2)

From (III.3), (2), our security lattice, and since TS never uses · as a label,
(III.10) l1 = H and l′′1 = L

From (5) and (III.10),
(III.11) l2 = H

From (III.9) and (III.10),
(III.12) l′′2 = L

From (2), (III.6), (III.7), (III.11), (III.12), and our security lattice,
(III.13) E must end in TS-ASSIGNEH-GW

From (III.13),
(III.14) σ′2 = σ2[id 7→ (id , (v′2, l2 t pc2 t l′2),M2, l

′
2)]

(III.15) α2 = gw(id)
From (III.10), (III.11), and our security lattice,

(III.16) (v′1, l1 t pc1 t l′1) ≈L (v′2, l2 t pc2 t l′2)
From (III.4), (III.14), (III.16), (III.8), (III.2), and (III.7),
σ′1 ≈L σ′2

From (III.5) and (III.15),
α1 = α2

Lemma 83. If σ1 ≈L σ, and pc1, pc2 v L and v1 ≈L v2, then for (σ′1, α1) = createElemG(σ1, pc1, id , v1) and
(σ′2, α2) = createElemG(σ2, pc2, id , v2), σ′1 ≈L σ′2 and α1 = α2

Proof.
Only the cases for G = TS are considered. The other cases are not considered since they follow from Lemma 81
By induction on the structure of D :: createElemG(σ1, pc1, id , v1) = (σ′1, α1) and
E :: createElemG(σ2, pc2, id , v2) = (σ′2, α2)
By assumption,

(1) σ1 ≈L σ2

(2) pc1, pc2 v L
(3) v1 ≈L v2

From G = TS and (3),
(4) v1 = (v′1, l1) and v2 = (v′2, l2) with
(5) (v′1, l1) ≈L (v′2, l2)

Case I: D ends in TS-CREATE
By assumption,

(I.1) lookupTS(σ1, L, id) = (NULL,)
(I.2) σ′1 = σ1[id 7→ (id , (v′1, l1), ·, L)]
(I.3) α1 = •

From (1), (2), (I.1) and Lemma 48 (Requirement (EH1)),
(I.4) lookupTS(σ2, L, id) ≈L (NULL,)

From (I.4), either
(I.5) lookupTS(σ2, L, id) = (NULL,) or

(I.6) lookupTS(σ2, L, id) = (id , (v′′2 , l
′′
2),M,H)

Subcase i: (I.5) is true
From (I.5),

(i.1) E must end in TS-CREATE
From (i.1),

(i.2) σ′2 = σ2[id 7→ (id , (v′2, l2), ·, L)]
(i.3) α2 = •

From (1), (5), (I.2), and (i.2),
σ′1 ≈L σ′2

From (I.3) and (i.3),
α1 = α2

Subcase ii: (I.6) is true
From (I.6) and (2),

(ii.1) E ends in TS-CREATE-U2
From (ii.1) and (I.6),

(ii.2) lookupTS(σ2, L, id) = (id , (v′′2 , l
′′
2),M2, H)

(ii.3) σ′2 = σ2[id 7→ (id , (v′2, l2),M2, L)
(ii.4) α2 = •

From Lemma 84,
(ii.5) M2 ≈L ·

From (1), (I.2), (ii.3), (5), and (ii.5),
σ′1 ≈L σ′2

From (I.3) and (ii.4),
α1 = α2

Subcase iii: pc2 = ·
The proof for this case follows from applying the IH on D and the premise of E .

Case II: E ends in TS-CREATE
The proof is similar to Case I.

Case III: D ends in TS-CREATE-U1
By assumption,

(III.1) lookupTS(σ1, L, id) = (id , (v′′1 , l
′′
1),M1, l

′
1)

(III.2) l′1 v L
(III.3) l1 t L v l′′1 or l′1 6v L
(IIII.4) σ′1 = σ1[id 7→ (id , (v′1, l1 t L t l′1),M1, l

′
1)]

(III.5) α1 = •
From (III.2) and since TS never contains ·,

(III.6) l′1 = L
From (III.6), (III.3), and from our security lattice,

(III.7) l1 v l′′1
From (1), (III.1), (III.2), and Lemma 48 (Requirement (EH1)),

(III.8) lookupTS(σ2, L, id) = (id , (v′′2 , l
′′
2),M2, l

′
2) with l′2 v L, (v′′1 , l

′′
1) ≈L (v′′2 , l

′′
2) and M1 ≈L M2

Subcase i: pc2 = L
By assumption and from (III.8),

(i.1) E ends in TS-CREATE-U1 or TS-CREATE-U1-GW
From (5) and (III.8),

(i.2) l′′1 = l′′2 and l1 = l2
From (i.2) and (III.7),

(i.3) l2 v l′′2
From (i.1) and (i.3),

(i.4) E ends in TS-CREATE-U1
From (i.4),

(i.5) σ′2 = σ2[id 7→ (id , (v′2, l2 t L t l′2),M2, l
′
2)]

(i.6) α2 = •
From (1), (III.4), (i.5), (5), (III.2), and (III.8),
σ′1 ≈L σ′2

From (III.5) and (i.6),
α1 = α2

Subcase ii: pc2 = ·
The proof for this case follows from applying the IH on D and the premise of E .

Case IV: E ends in TS-CREATE-U1
The proof is similar to Case III.

Case V: D ends in TS-CREATE-U1-GW
By assumption,

(V.1) lookupTS(σ1, L, id) = (id , (v′′1 , l
′′
1),M1, l

′
1)

(V.2) l′1 v L
(V.3) l1 t L 6v l′′1
(V.4) σ′1 = σ1[id 7→ (id , (v′1, l1 t L t l′1),M1, l

′
1)]

(V.5) α1 = gw(id)
From (1), (V.1), (V.2), and Lemma 48 (Requirement (EH1)),

(V.6) lookupTS(σ2, L, id) = (id , (v′′2 , l
′′
2),M2, l

′
2) with l′2 v L (v′′1 , l

′′
1) ≈L (v′′2 , l

′′
2) and M1 ≈L M2

From (V.3) and our security lattice and since TS never contains ·,
(V.7) l1 = H and l′′1 = L

Subcase i: pc2 = L
By assumption and from (V.6),

(i.1) E ends in TS-CREATE-U1 or TS-CREATE-U1-GW
From (V.7), (5), and (V.6),

(i.2) l2 = H and l′′2 = L
From (i.1) and (i.2),

(i.3) E ends in TS-CREATE-U1-GW
From (i.3),

(i.4) σ′2 = σ2[id 7→ (id , (v′2, l2 t L t l′2),M2, l
′
2)]

(i.5) α2 = gw(id)
From (1), (V.4), (i.4), (5), (V.6), and our security lattice,

(i.6) σ′1 ≈L σ′2
From (V.5) and (i.5),
α1 = α2

Subcase ii: pc2 = ·
The proof for this case follows from applying the IH on D and the premise of E .

Case VI: E ends in TS-CREATE-U1-GW
The proof is similar to Case V.

Case VII: D ends in TS-CREATE-U2
By assumption,

(VII.1) lookupTS(σ1, L, id) = (id , (v′′1 , l
′′
1),M1, l

′
1)

(VII.2) l′1 6v L
(VII.3) σ′1 = σ1[id 7→ (id , (v′1, l1 t L),M1, L)]
(VII.4) α1 = •

From (VII.2) and our security lattice,
(VII.5) l′1 = H

From (1), (VII.1), (VII.5), and Lemma 48 (Requirement (EH1)), either
(VII.6) lookupTS(σ2, L, id) = (id , (v′′2 , l

′′
2),M2, l

′
2) with l′2 = H or

(VII.7) lookupTS(σ2, L, id) = (NULL, H)

Subcase i: (VII.6) is true
From (VII.6),

(i.1) E ends in TS-CREATE-U2
From (VII.5), (VII.6), and Lemma 84,

(i.2) M1 ≈L M2 ≈L ·
From (i.1),

(i.3) σ′2 = σ2[id 7→ (id , (v′2, l2 t L),M2, L)]
(i.4) α2 = •

From (1), (VII.3), (i.3), (5), and (i.2),
σ′1 ≈L σ′2

From (VII.4) and (i.4),

α1 = α2

Subcase ii: (VII.7) is true
From (VII.7),

(ii.1) E ends in TS-CREATE
From (ii.1),

(ii.2) σ′2 = σ2[id 7→ (id , (v′2, l2), ·, L)]
(ii.3) α2 = •

From (VII.5) and Lemma 84,
(ii.4) M1 ≈L ·

From (1), (VII.3), (ii.2), (5), and (ii.4),
σ′1 ≈L σ′2

From (VII.4) and (ii.3),
α1 = α2

Subcase iii: pc2 = ·
The proof for this case follows from applying the IH on D and the premise of E .

Case VIII: E ends in TS-CREATE-U2
The proof is similar to Case VII.

Case IX: D ends in TS-CREATE-NC
The proof for this case follows from applying the IH on the premise of D and E .

Case X: E ends in TS-CREATE-NC
The proof is similar to Case XI.

Lemma 84. If φ = (id , v,M,H) were produced by our operational semantics starting in a well-formed state, then
M ≈L ·
Proof (sketch): Starting in a well-formed state, the invariant holds, since all event handlers registered to H nodes are
labeled H. New nodes created with label H also satisfy the invariant since they are created with an empty event handler
map.
The only way to register new event handlers is through one of the registerEH rules. TS-REGISTEREH adds the event
handler to the event handler map and performs a join with the label of the node; thus, any new event handler will have
label H if the label of the node is H.
The only rule which changes the label of a node is TS-CREATE-U2. This rule changes the label of the node to match
the pc only when the label is above the pc; i.e. it changes the label from H to L. Therefore, the invariant that tainted
nodes never have publicly visible event handlers is maintained by our semantics.

Appendix G.
Securing TT

Theorem 6 (Soundness (TT)). If event handlers are enforced with V ∈ {TT,SME,MF} and the global storage is
enforced with G ∈ {SMS,FS}, then the composition of these event handlers and global stores in our framework
satisfies progress-insensitive security.
Proof (sketch): The proof follows the same format as the proof for Theorem 2. We consider two cases: one where
the last event was a declassification, and another where it wasnt. In the case that the last event was a declassification,
the proof follows from the definition of Krp(). When the last event was not a declassification, the proof follows from
Lemma 7 (Requirement (T1)) and Lemma 17 (Requirement (T4)).

Recall that we strucutre our requirements to be extensible and easily updated. Here, we outline all of the supporting
lemmas for proving Theorem 6 and highlight the ones which need updates to prove compositions with TT secure.

Trace Requirements. The proof for Requirement (T1) does not need to be changed to prove PINI for TT. It follows
from Lemma 9 (Requirement (T2)) and Lemma 28 (Requirement (T5)).

The proof for Requirement (T2) does not need to be changed to prove PINI for TT. It follows from Lemma 66
(Requirement (EH2)), Lemma 41 (Requirement (V2)), Lemma 73 (Requirement (EH3)), and Lemma 74 (Requirement
(EH3)).

The proof for Requirement (T3) does not need to be changed to prove PINI for TT. It follows from Lemma 10
(Requirement (T2)) and Lemma 66 (Requirement (EH2)).

The proof for Requirement (T4) does not need to be changed to prove PINI for TT. It follows from Lemma 56 and
Lemma 63 (Requirement (EH1)), Lemma 15 and Lemma 16 (Requirement (T3)), Lemma 66 (Requirement (EH2)),
Lemma 36 (Requirement (E1)), Lemma 44 (Requirement (V3)), and Lemma 80 and Lemma 81 (Requirement (EH4)).

The proof for Requirement (T5) does not need to be changed to prove PINI for TT. It follows from Lemma 56
and Lemma 63 (Requirement (EH1)), Lemma 66 (Requirement (EH2)), Lemma 36 (Requirement (E1)), Lemma 44
(Requirement (V3)), and Lemma 80 and Lemma 81 (Requirement (EH4)).
Expression Requirements. The proof for Requirement (E1) does not need to be changed to prove PINI for TT. It
follows from Lemma 38 and Lemma 39 (Requirement (V1)) and Lemma 46 (Requirement (EH1)).
Variable Store Requirements. The proofs for Requirement (V1) need to be updated to prove TT is secure, but the
proofs for Requirements (V2) and (V3) (global variable storage and variable assignment, respectively) do not need to
be changed, nor do they depend on any other requirements. We outline the changes for Requirement (V1) below.

Note that we also don’t need to add/change any proofs to say that assignments do not leak anything. This is because
assignments in the H context can only leak through the global store, which is already proven secure by Requirement
(V2) for multi-storage techniques. Intuitively, assignments from TT would either change the H copy of the store (which
does not leak anything), or would be replaced with a default value in the L copy of the store (which also does not leak
anything).

EH storage Requirements. None of the proofs for the event handler storage requirements need to be changed to prove
that TT satisfies PINI security, nor do they depend on any other requirements that need to be changed.

Note: When we compose TT with a multi-storage technique, the TT event handlers in the L context no longer
receive secrets (i.e., none of the values become tainted). So, there is also no reason to taint default values. We change
TT-VAR-DV so that it returns dv labeled with the pc. This also helps maintain the invariant that the local TT store does
not have any tainted values when the pc = L (Lemma 86).

Lemma 85. If σ1 ≈L σ2 and pc1, pc2 v L, then for varTT(σ1, pc1, x) = v1 and varTT(σ2, pc2, x) = v2 then v1 'L v2

Proof.
By induction on the structure of E :: varTT(σ1, pc1, x) = v1 and D :: varTT(σ2, pc2, x) = v2

By assumption,
(1) σ1 ≈L σ2

(2) pc1, pc2 v L
From Lemma 86,

(3) ∀x ∈ σTT
1 , labOf(x,) = L

(4) ∀x ∈ σTT
2 , labOf(x,) = L

From (1)-(4),
(5) σ1 = σ2

Case I: E ends in TT-VAR
By assumption and from (3),

(I.1) x ∈ σ1

(I.2) σ1(x) = (v1, L)
From (I.1) and (5),

(I.3) D ends in TT-VAR
From (I.3) and (5),

(I.4) σ2(x) = (v2, L)
From (5), (I.2), and (I.4)

The desired conclusion holds

Case II: D ends in TT-VAR
The proof is similar to Case I

Case III: E ends in TT-VAR-DV
By assumption and from (2),

(III.1) x 6∈ σ1

(III.2) v1 = (dv, L)
From (5) and (III.1),

(III.3) x 6∈ σ2

From (III.3),
(III.4) D ends in TT-VAR-DV

From (2) and (III.4),
(III.5) v2 = (dv, L)

From (III.2) and (III.5),
The desired conclusion holds

Case iv: D ends in TT-VAR-DV
The proof is similar to Case III

Lemma 86. Whenever a public event handler is running, ∀x ∈ σTT, labOf(x,) = L

Proof (sketch): To prove that the local store only contains public values while public event handlers are running, we
need to show that the condition holds when the event handler begins, and is maintained until the event handler finishes.

When the event handler begins running, the local store is empty, so the condition holds trivially.
As the event handler runs, the store is changed by ASSIGN-L. The value assigned is given by the expression

semantics. From the assumption that the local store only contains public values, and from Lemma 36 (for expressions
involving shared variables), the value being assigned is also public. Therefore, the condition is maintained throughout
the event handler execution.

	Introduction
	Background
	Reactive programming
	Noninterference and Weak secrecy
	Standard IFC Enforcement Mechanisms

	Motivating Example
	Compositional Enforcement Framework
	Syntax
	Framework Semantics
	Shared storage

	Security and Weak Secrecy
	Attacker Observation
	Progress-Insensitive Security
	Weak Secrecy
	Securing TT

	Prototype Implementation and Evaluation
	Prototype Implementation
	Evaluation Setup
	Performance Evaluation
	Composing shared storage and script enforcement
	Composing script enforcement

	Security and Accuracy Evaluation

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Syntax
	Appendix B: Supporting Definitions
	General Definitions
	Operations on Faceted Values
	Operations on Event Handlers
	Operations on SMS stores
	Well-formed Initial State

	Appendix C: Semantics
	Framework Semantics
	EH queue semantics
	EH semantics
	Expression semantics
	EH Storage semantics

	Appendix D: Weak Secrecy Semantics
	Appendix E: Security Definitions
	Knowledge Definitions
	Trace Equivalence

	Progress-Insensitive Security and Weak Secrecy
	Progress-Insensitive Security and Weak Secrecy Requirements
	Supporting Equivalence Definitions
	Configuration Equivalence
	Store equivalence
	Value equivalence and strong equivalence
	Node equivalence
	Event handler map projection

	Appendix F: Security and Weak Secrecy Proofs
	Progress-Insensitive Security implies Weak Secrecy
	Lemma dependency graph
	Top-Level Security and Weak Secrecy
	Trace Requirements
	Expression Requirements
	Variable Storage Requirements
	Event Handler Storage Requirements

	Appendix G: Securing TT

