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Abstract 
The latest boom of Machine Learning (ML) in the early-2010s has raised a new wave of 
interest among creative practitioners to explore the intersection of Art and Artificial 
Intelligence (AI), specifically Generative Machine Learning. A growing number of artists, 
designers, and architects appropriated these algorithms to make new tools for their creative 
practices.   

This dissertation introduces and documents a collaborative framework to make machine 
learning-based tools for creative practices. The framework embraces the idiosyncratic 
nuances and elements of the physical context of the creative practice. It takes a new point 
of view on data and data curation as the primary method of interacting with ML 
algorithms. The framework achieves this goal by utilizing small user-generated datasets, 
which are biased toward the creative practitioners’ personal preferences, subjective 
measures, and elements of the physical context of their practice. Through collaboration 
with machine learning expert toolmakers, the framework makes ML algorithms more 
accessible to these creative practitioners. It highlights the affordances of ML algorithms, 
specifically Conditional Variational AutoEncoders (C-VAE), that can be efficiently 
trained and overfit on small datasets to produce outcomes that are closely tied to the 
creative practitioners and their context.  

In the two case studies, the framework serves as a high-level blueprint to develop bespoke 
tools that support various stages of machine learning-based toolmaking for creative 
practitioners. In SecondHand, I collaborated with a group of participants to develop 
handwriting typeface generation tool. A dashboard, based on Dash Plotly, featuring 
interactive data visualization and data curation tools, was developed for this study. In 
ThirdHand, I collaborated with a musician to create a robotic tool to play santur, a 
traditional Persian musical instrument, using an ABB IRB 120 robotic arm and a real 
santur.  

The case studies demonstrated that the proposed collaborative framework meaningfully 
brings ML experts’ technical literacy to complement creative practitioners’ domain 
knowledge and skills to overcome the technical ML challenges, and help integrate various 
idiosyncratic aspects, elements of the physical context, and nuances of creative practice in 
the toolmaking process. 
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Glossary
Tool: An apparatus or instrument required in the practice of activity or profession (Merriam-Webster 
n.d.). In the context of this research, the word tool is used as a broad term referring to computational tools
used by creative practitioners.

Toolmaking: The process of studying, designing, and prototyping a tool for a specific activity. 

Toolmaker and ML Expert Toolmaker: In this thesis, the term machine learning expert toolmaker refers 
to an individual or group of people with experience in 1) computational design, computational toolmaking 
and 2) experience in various fields of machine learning, from theory to design and implementation of an 
end-to-end ML pipeline. The ML expert toolmaker collaborates with creative practitioners to design, 
implement, and refine the technical aspects of the meta-tool. Throughout this document, I use toolmaker 
and ML expert toolmaker interchangeably. 

Creative Practitioner: Individuals or groups of people who create ideas or artifacts in various fields, 
including, but not limited to, fine arts, music, composition, performance, design, architecture, or any other 
domain where creative engagement is a key element of the practice.1 

Creative Computing: refers to the inquiries into the intersection of creativity and computing by using 
computers to make novel creative work. It “seeks to reconcile the objective precision of computer systems 
(mathesis) with the subjective ambiguity of human creativity (aesthesis)” (Hugill and Yang 2013, 5). 

The Framework: In the context of this study, the framework refers to a high-level guideline for ML-
based toolmaking for creative practitioners, casting it as a collaboration between creative practitioners and 
ML-expert toolmakers. This framework focuses on integrating the idiosyncratic nuances and elements of
the physical context of creative practices into the toolmaking process and serves as a blueprint for
developing the meta-tools and defining collaborative toolmaking workflow.

1 The definition of creative practitioner is borrowed from Rebecca Fiebrink’s, a pioneer of Art and ML and senior 
lecturer at the Department of Computing at Goldsmiths University. She defines creative practitioners as “people 
creating ideas or artifacts in a broad set of domains. They include creators in the fine arts, music composition and 
performance, and theater and performance art, as well as creators of new indie games and “makers” of other hard-to-
pigeonhole artifacts and experiences.” She also defines creative domains as domains in which creative expression is 
a primary goal (Fiebrink 2019). 
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Meta-tool: The meta-tool—a term derived from Rebecca Fiebrink’s Meta-instrument—refers to the tool 
used to make another tool (2009; 2017), in this case, ML-based tool for creative practitioners. The meta-
tool provides a software/hardware platform for the ML expert toolmaker and the creative practitioner to 
collaborate on the tool development. It enables them to collect and process data, train the machine 
learning model, and fine-tune the results.  

Machine Learning: A subfield of artificial intelligence which studies algorithms that can complete a 
given job by observing a series of solution samples rather than explicitly programming the answer. 2 ML 
algorithms rely on statistical methods to gradually improve their performance through an iterative cycle of 
experiences. In this sense, experience may refer to observing an unlabeled data set (unsupervised 
learning), a labeled data set (supervised learning), a series of simulations (reinforcement learning), or a 
series of demonstrations (learning from demonstration).    

Generative Machine Learning Models: In machine learning, a generative model is a model that can be 
trained on an unlabeled subset of a distribution 𝑝𝑝data and learns an estimated representation of that 
distribution, 𝑝𝑝model. By drawing samples from this distribution, users can generate new instances that 
closely resemble those in the training set. In this regard, generative models differ from discriminative 
models, which map features to labels and have been widely used for tasks such as image classification.3 

Latent Space (in Generative Models): In generative models, latent space or latent feature space, or 
embedding space, refers to the machine learning model’s internal representation of the data set. 
Embedded in the hidden layers of the model, it represents the encoded learned features of the training 
data. For example, in a Variational Autoencoder, the latent space is the bottleneck layer. Navigating the 
latent space refers to the act of replacing the latent vector with different values to explore the outputs of 
the generative model. 

Interactive Machine Learning: Interactive machine learning refers to “algorithms that can interact with 
agents and can optimize their learning behavior through these interactions where the agents can also be 
human” (Holzinger 2016, 119). In iML, the training process is cast as human-computer interaction (HCI) 
(Dudley and Kristensson 2018), and the computer is a part of the human design process rather than the 
human being in the loop of an algorithmic process (Gillies et al. 2016). The user can iteratively add new 
learning samples to steer the learning direction until the desired outcome is achieved.

 
2 Tom Mitchel defines learning algorithms as "[a] computer program is said to learn from experience E with respect 
to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with 
experience E." (Mitchell 1997). 
3 There are other definitions of generative modeling, i.e., Doersch defines it as “… a broad area of machine learning 
which deals with models of distribution 𝑃𝑃(𝑋𝑋), defined over datapoints 𝑋𝑋 in some potentially high-dimensional space 
𝑋𝑋. Some researchers refer to the generative aspects of machine learning models as the unconventional application of 
ML. For example, Fiebrink describes unconventional applications, as the use of generative models to “produce new 
content that is “similar” to the training set” (Fiebrink 2019, 3). In contrast, she lists applications such as processing, 
reasoning, prediction, or classification of data as examples of conventional applications of ML. This research avoids 
this terminology, to prevent any confusion in the future. 
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Chapter 1. Introduction 
1.1 ML-Based Tools for Creative Practices1 

The latest boom of Machine Learning (ML) in the early 2010s has raised a new wave of interest among 
creative practitioners to explore the intersection of Art and Artificial Intelligence (AI), specifically 
Generative Machine Learning. A growing number of creative practitioners, such as artists, designers, and 
architects, appropriated these machine learning algorithms to make ML-based tools to support their 
creative practices. They tap on off-the-shelf online data sets, ready-to-use ML models, and powerful 
hardware to tame ML algorithms and create a variety of tools. These factors allowed creative practitioners 
to inquire into the application of ML in writing, visual arts, painting, music composition, game design, 
choreography, interactive installation, and architecture to name a few. They demonstrated that generative 
ML models can open new opportunities to make a new generation of tools for creative practices.2 

To fathom the unique affordance of generative machine learning algorithms, it is enlightening to compare 
them with conventional computational toolmaking that are based on the conception of knowledge as an 
object that can be acquired from the practitioner, embedded in algorithms, and transferred from one 
machine into another.3 Toolmaking procedures that are built on this conception require toolmakers to 
encode creative practitioners’ skill, knowledge, and creative process in algorithms.4 However, this is a 

1 This document uses the following stylistic guidelines: 
• The first-person singular form is used to express the author's point of view and personal remarks.
• The second-person plural form is used to reflect on the collaborative work with the creative practitioner(s).
• The third-person plural form is used as the third-person singular gender-neutral form when referring to a

generic person whose gender is unknown or irrelevant to the context.
2 It is worth mentioning that a considerable body of literature in ML-based tools for creative practices use 
discriminative models—i.e., classifying data and associating each data sample to a specific label. For instance, 
Fiebrink’s bow-gesture classifier (Fiebrink 2011) can observe a high-dimensional vector of input data from sensors—
accelerometers and pressure sensors—to map it into a one-dimensional vector that defines the gesture class.  
3 I thoroughly address the conception of skill as object and attainable Appendix II:  The Context.  
4 To delve deeper into the challenges of conventional computational toolmaking for creative practitioners, one can 
study parametric modeling, which is quite popular among architects and computational designers. In 2007, Rick 
Smith, who played a crucial role in developing Digital Project software at Gehry Technology in the 1990s and 2000s 
and worked on parametric modeling for decades (Davis 2013), wrote a technical note on using parametric modeling 
software. He lists several issues, most notably: 1) necessity of making many decisions upfront, or as he calls it 
upfronting, 2) necessity of anticipating future design changes, 3) incapability of dealing with major design changes, 
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challenging expectation as creative practitioners usually do not think algorithmically. They work on 
wicked problems which can be unique, ill-defined, and influenced by a vast array of parameters while 
having no definitive formulation, clear stopping rule, or ultimate test (Buchanan 1992). Quantifying 
success metrics for such wicked problems is a complex task. Even where there are established 
quantifiable measures of success, i.e., in architectural design, there is still a wide range of subjective and 
qualitative aspects corresponding to the creative elements of the practice that cannot be easily evaluated, 
quantified, and integrated into an algorithm. 

To overcome these challenges, computational toolmakers rely on abstraction, eliminating factors in favor 
of simplicity and reducing the computational complexity of their tools. While abstraction is a key concept 
in AI and a powerful tool that makes representing real-life problems in computers’ world possible, it is a 
double-edged sword. Excessive abstraction can eliminate the personal and subjective aspects of the 
practice, discard elements of the physical context, and “…factor out all aspects of perception and motor 
skills” (Brooks 1991b, 142). This can result in decontextualization, where the resulted tool barely 
represents the idiosyncratic and nuances of the practice or elements of its physical context.  

Another critical issue with conventional computational toolmaking approaches comes from their 
conception of knowledge and skill. The idea of encoding skill and knowledge of a practitioner into an 
algorithm, tool, or machine stems from the conception of knowledge as an object that can be extracted 
from people to be transferred and embedded in machines.5 However, toolmaking is beyond a mere 
technical endeavor; it is a critical step in a creative process that should be informed by personal 
preferences, subjective measures, elements of the physical context, users’ conception of the activity, and 
the proposed solution. Simultaneously, toolmaking informs the creative practitioners’ conception of the 
activity and affects the solution. This dynamic relationship is a crucial element in a creative process that 
should not be interrupted.6  

The promising proposition of machine learning algorithms to address these issues resides in their ability 
to automatically find the patterns by learning from a meticulously curated dataset and use them to 
generate novel samples that did not exist in the dataset. I found this a unique opportunity for creative 
practitioners as it liberates them from encoding their knowledge, skill, and creative processes into abstract 
algorithms. Instead, they can use ML algorithms, as their machinic surrogates while interfacing with them 
through what they are mastered in, providing instances of their practice in the context of their practice.7  

However, some challenges hinder creative practitioners’ ability to adopt machine learning algorithms in 
their tools. First, designing, implementing, training, and optimizing ML models is a technically complex 

 

4) challenge of foreseeing the effects of changes in one part of the model on the other parts, and 5) limitations on 
sharing and usability due to over-complicated models than cannot be comprehended by anybody other than the original 
designers (Smith 2007 cited in Davis 2013).  
5 In Appendix II: The Context, I argue how the social, technical, political, and economic turmoils of the past two 
centuries contributed to the conception of skill as an object or commodity that can be captured, stored, and transferred, 
rather than being situated in its social and physical context. 
6 The discussions on the dynamic relationship between humans and their tools are gaining more attention in the shadow 
of the recent AI advancement.  Iyad Rahwan, the director of the Center for Humans and Machines at the Max Planck 
Institute for Human Development, argues that humans and machines can inform, mold, and alter each other’s behavior 
in various ways. Humans change the machines’ behavior by engineering algorithms, actively providing training data, 
or being observed by data collection machines. On the other hand, machines affect our behavior, social fabric, and the 
political landscape through their omnipresent role in our routine decision-making procedures (Rahwan et al. 2019, 
483).  
7 I discussed the notion of machinic surrogates in (Bidgoli, Kang, and Cardoso Llach 2019).  
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process. The lion’s share of current ML-based toolmaking efforts for creative practitioners is developed 
based on frameworks primarily aimed at niche audiences, such as researchers and developers with prior 
exposure to machine learning (Roberts, Hawthorne, and Simon 2018). While creative practitioners are 
experts in their field of work, extensive knowledge of machine learning is a rarity among them. This lack 
of ML knowledge forces creative practitioners toward safe options, i.e., off-the-shelf datasets, pre-trained 
models, or black-box toolkits which push them toward deeper abstractions. A consequence of this issue is 
a detachment between these ML-based toolmaking and the idiosyncratic aspects, elements of the physical 
context, and nuances of creative practice, which is a reminiscence of the decontextualization that I 
discussed above.  

Breaking this technical barrier and going beyond these safe options will increase the odds of encountering 
technical problems that novice ML users cannot easily address. In Chapter 2, I will discuss how this issue 
reflects itself in the current state of ML-based toolmaking for creative practices, where contextual factors 
are generally neglected in favor of making ML-based tools more accessible. This missing context breaks 
the dynamic relationships between creative practitioners and their tools.8 

To address these challenges—technical barriers and missing context—I propose, implement, and 
document a collaborative framework to develop ML-based tools for creative practices. In this framework, 
the idiosyncratic aspects, and elements of the physical context of creative practices are taken into account 
in ways that generic tools or frameworks have so far neglected to do. Through close collaboration with 
ML expert toolmakers, this framework makes ML algorithms more accessible to creative practitioners 
without requiring them to directly engage with the complexities of the backend ML algorithms.  

The framework follows four principles:9 

1. Working with and from the context, the framework is built around the conception of skill and 
knowledge as situated in the context of its practice. It contrasts with conceptions of skill as an object, or 
as a commodity which has been prevalently used in the realm of AI and ML.  

2. Meaningful extended collaboration between creative practitioners and toolmakers, the framework 
makes ML algorithms more accessible to creative practitioners without requiring them to engage with the 
technical complexities of ML algorithms. 

3. Using data to interface with the machine learning algorithms, extending the prior efforts in 
interactive machine learning for toolmaking for creative practices, most notably (Fiebrink 2011), this 
framework utilizes real-time data visualizations, interactive data curation tools, fast-training machine 
learning algorithms, and interactive sampling tools to allow the creative practitioners to control the 
learning process. This approach to data offers a counterpoint to the currently dominant approach in 
creative machine learning, where 1) data is usually rigid, pre-determined, and externally sourced, and 2) 
the primary method of controlling the learning model is coding. 

 
8 This issue is rooted in a broader gap in the ML literature. A majority of efforts in the machine learning research 
community are focused on developing novel algorithms and improving efficiency (Simard et al. 2017), leaving fewer 
resources to inquire into integrating inputs from the user and the context into the process.  
9 In Chapter 3, The Framework, I will elaborate on these four principles and two case studies, where I collaborate with 
creative practitioners to make tools based on this framework, are documented in Chapter 4, The SecondHand and 
Chapter 5, The ThirdHandChapter 4.  
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4. Using generative machine learning models and taking advantage of overfitting on small datasets, 
the framework encourages using user-curated datasets, which are inevitably small, biased, and skewed 
toward those specific users. It suggests using machine learning algorithms that can be efficiently and 
quickly trained on a limited set of data that the creative practitioner can feasibly provide. 

1.2 Research Question 

The two primary questions of this research are: 

• How do interfaces for data generation and curation for generative machine learning offer new 
pathways for toolmaking for creative practitioners?  

• How can a collaborative approach mitigate the lack of technical machine learning experience 
among creative practitioners and help them to integrate the idiosyncratic aspects, elements of 
the physical context, and nuances of their creative practice in the toolmaking process? 

1.3 Hypothesis 

I hypothesize that interfaces for data generation that emphasize user-generated data to integrate elements 
of the physical context and users’ subjective preferences can reveal new potentials of generative machine 
learning to support creative practices. 

I hypothesize that a collaborative approach to developing ML-based tools for creative practices can 
meaningfully bring ML experts’ technical literacy to complement creative practitioners’ domain 
knowledge and skills, overcome the technical ML challenges, and help integrate various idiosyncratic 
aspects, elements of the physical context, and nuances of creative practice in the toolmaking process. 

1.4 Methodology Overview 

This thesis documents two case studies focused on the collaborative development of ML-based tools for 
creative practices. In the first study, the SecondHand, a group of students with an introductory knowledge 
of machine learning developed handwriting typeface generation tools based on their handwriting samples. 
The toolmaking process empowers them to interface the machine learning model not through code, but 
mostly through providing samples, curating the training dataset, and in some cases, playing with a 
handful of training parameters.  

In the second study, the ThirdHand, I collaborated with a musician to create a robotic tool to play santur, 
a traditional Persian musical instrument. The musician has no computer science, programming, or 
machine learning background. The study was a collaboration between me, the machine learning expert 
toolmaker, and them, the creative practitioner, where they provided data samples, evaluated the results, 
and provided feedback in the process. Meanwhile, my role was to oversee, develop and maintain the 
technicalities of the toolmaking process.  

The toolmaking process, dynamics between the toolmaker and creative practitioners, and the results were 
documented through digital field notes, video recordings, written reports, and unstructured interviews, 
collectively forming the basis for the discussions and conclusions on each case study. 

1.4.1 Framework and Meta-Tool 
The framework, as described earlier, is a high-level guideline to make ML-based tool for creative 
practices. The meta-tool—a term derived from Fiebrink’s Meta-instrument (Fiebrink, Trueman, and Cook 
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2009)10 —refers to an implementation of the framework designed and fine-tuned for a specific case study. 
It provides the software/hardware platforms for the ML expert toolmaker and the creative practitioner to 
collaborate on the tool development. The meta-tool allows them to: 

• Embrace creative practitioners’ subjective measures and personal aspects of their craft in the 
toolmaking process. This goal is achieved by: 

o Creating and curating bespoke datasets: The creative practitioner can generate data 
samples and curate hybrid datasets of user-generated samples. This process empowers 
them to introduce desired features to the learning model and steer the learning direction 
based on personal preferences and subjective assessments, 

o Enriching the evaluation loops: The creative practitioner can provide personal and 
subjective evaluation and feedback iteratively to supervise the toolmaking process, 

• Integrating elements of physical context of the craft in the toolmaking process through: 
o Physical involvement: The creative practitioner can introduce material behaviors and 

tool affordances by creating data samples in close-to-real-life demonstrations.  

1.5 Motivations and Importance 

During my Ph.D. studies, I have been studying the new opportunities that machine learning brings to 
creative practitioners, specifically by introducing new means of toolmaking. This interest is the primary 
motivation behind the major themes of this research: 

Examining how machine learning algorithms can help creative practitioners play a central role in 
the toolmaking process. I am curious to study how ML can help addressing the shortcomings of current 
ML efforts in creative fields, most notably decontextualization.11  

Making ML algorithms more accessible to creative practitioners. I am interested in examining a 
collaborative framework that brings ML experts’ technical literacy to complement creative practitioners’ 
domain knowledge and skills, which can potentially render ML-based toolmaking more accessible.   

Exploring new forms of dynamic collaboration between creative practitioners and ML experts, who 
otherwise work separately from each other.12 I have been curious to explore the unexpected 
interactions between the ML-expert toolmaker and creative practitioner using the proposed toolmaking 
framework. Across this research, I seek to design and create opportunities for such dynamic interactions 
and reflect on them, i.e., the unexpected event of an outlier sample in the training data set, a surprising, 
generated sample, or a never-seen-before design space. These unexpected incidents require the 
toolmaker’s intervention and help them iteratively refine the process and build a personal perception of 
the tool and its properties.  

Exploring new forms in which toolmakers interface with their ML-based toolmaking system. I look 
forward to testing how data can serve as the main means of interaction between the creative practitioners 

 
10 Fiebrink describes meta-instrument as “… an instrument for creating instruments” (Fiebrink 2017, 11). In this study, 
I opted for meta-tool as I use it not only in the realm of music, but in the broader realm of creative practices.  
11 I will discuss these shortcomings in more details in Chapter 2, ML-Based Toolmaking for Creative Practitioners. 
12 While not being a primary contribution of this dissertation, this framework can potentially help ML experts engage 
in creative activities using their custom-made tools. 
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and the ML model.13 This notion of data offers a counterpoint to the currently dominant approach in 
creative machine learning, where 1) data is usually rigid, pre-determined, and externally sourced, and 2) 
the primary method of controlling the learning model is coding. I investigate how trusting the creative 
practitioners to thoughtfully decide on the inclusion of contextual, subjective, and personal inputs allow 
them to interface with the learning algorithm and introduce elements of the physical and personal context 
of practice in the toolmaking process. Moreover, documenting and analyzing the shift from code to data 
as the main method of interfacing with the ML algorithm and its effects on the creative practitioner, its 
tool, and the craft is another motivation for this study. 

Contributing to the body of knowledge on using machine learning algorithms with small datasets 
for bespoke toolmaking. Machine learning research is generally associated with large-scale datasets that 
might be biased toward specific races, gender, geographic regions, or art genres. Generalizing the 
application of ML models trained on these data sets is a concerning matter and a source of debate. In 
contrast, this research explores the positive side of biased datasets and overfitting a machine learning 
model on them. I am interested in exploring the generative potential of bias that resides in each creative 
practitioner’s judgments and subjective metrics. I work with very small user-generated datasets, which are 
inevitably biased and skewed toward those specific users. The ML models trained on these datasets are 
prone to overfitting, and their outcomes are not generalizable, as they closely tied to the user and its 
context.14 

Finally, I envision this research to be an opportunity for creative practitioners to meaningfully get 
involved in the toolmaking process. For them, the benefit of this approach is twofold, on the one hand, it 
allows them to introduce various aspects of their experience and knowledge to the toolmaking process 
and to make better tools. On the other hand, this allows them to gain a better understanding of their tools 
and find inspiration to explore new frontiers of creativity that wasn’t in reach before. In that capacity, the 
primary aspiration for the creative practitioners will reside in the opportunity to create tools to help them 
explore new creative experiments. 

1.6 Novelty 

This research documents the development and evaluation of a novel framework for ML-based toolmaking 
that allows creative practitioners to collaborate with ML experts and introduce various idiosyncratic 
aspects, elements of the physical context, and nuances of creative practice. This research also explores 
novel approaches to make this process accessible for creative practitioners with limited technical literacy. 
As the body of literature in ML-based toolmaking for creative practices has been steadily growing in the 
past few years, other scholars have elaborated on some of the methods and approaches that I adopted in 

 
13 This notion of data is primarily inspired by the works of Rebecca Fiebrink on Training Data as Interface (2016) 
which is also elaborated and discussed in (Cardoso Llach 2017).  
14 Interestingly, this also helps defining ML-based tools with respect to the context and people—toolmakers and 
creative practitioners—rather than as stand-alone and autonomous agents. It is commonly believed that with the 
introduction of autonomous machines in manufacturing, these machines will take over certain jobs. At the same time, 
the current human labor force will shift to occupy newly created jobs, i.e., training, maintaining, and supervising these 
autonomous machines. However, most of the jobs that these machines will take over are the ones that require less 
training and experience. In most cases, workers in these jobs are the most vulnerable in the job market with the lowest 
wages. It is naïve to assume that these workers can smoothly prepare themselves for the new complex responsibilities 
of autonomous systems. These new jobs usually demand educated workers with longer training and more experience, 
which is a different demographic section than those who are losing their jobs. 
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this research. I acknowledge these prior efforts and build upon their contributions while distinguishing 
this research from the literature by: 

• Centering the creative practitioner in the toolmaking process and embracing the idiosyncratic 
aspects, elements of the physical context, and nuances of creative practice in the toolmaking 
process, 

• Developing and evaluating a framework for dynamic collaboration between the creative 
practitioner and the ML expert toolmaker and qualitative documentation of this process using 
qualitative and quantitative metrics, 

• Developing novel interfaces allowing creative practitioners to interactively collect, curate, and 
manipulate their user-generated data as a primary means of interacting with ML models, 

• Developing a series of generative machine learning models (C-VAE), optimized to train rapidly on 
small datasets for bespoke toolmaking. 

• Investigating the potentials of small user-generated datasets, which are inevitably biased and 
skewed toward those users, and documenting the generative potential of bias that resides in each 
creative practitioner’s judgments and subjective metrics. 

• Combining latent space exploration and data curation to control generative models’ behavior, 
• Developing a physical-to-digital-and-back-to-physical process around a generative ML model. 

1.7 Deliverables 

This research aims toward three final deliverables: 

• First, a framework for collaborative machine learning-based toolmaking for creative practices, 
• Second, two implementations of the framework: 

o The SecondHand meta-tool sets several key characteristics of a collaborative and 
interactive ML-based toolmaking workflow. Most notably, the real-time data 
visualizations and data curation tools, fast-training machine learning backend, and 
interactive sampling tools.  

o The ThirdHand meta-tool defines fundamental aspects of a ML-based toolmaking process 
that utilized two data modalities—sequence of motion and sound—including machine 
learning model, data pipeline for temporal six-degree-of-freedom data, the physical-to-
digital-and-back-to-physical pipeline, and the robotic implementation. 

• Third, thorough documentation and analysis of the two case studies, where the framework and 
derived meta-tools were put into practice. These two reports are guidelines for other researchers to 
explore the realm of ML-based toolmaking for creative practitioners.   

1.8 Contribution 

This research contributes to the field of ML-based toolmaking for creative practices in multiple ways:  

• Defining a framework for creative practitioners to collaborate with ML expert toolmakers to 
integrate ML in their toolmaking process, 

• Enabling creative practitioners to be at the center of the toolmaking process and establishing 
methods to introduce context to this procedure,  

• Expanding on the body of knowledge on using machine learning algorithms with user-generated 
small datasets for bespoke toolmaking, 

• Exploring the generative potential of bias in small user-generated datasets that reflect creative 
practitioners’ judgments and subjective metrics. 
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1.9 Thesis Structure 

This dissertation is organized into six chapters, including this introduction: 

Chapter 2, ML-Based Toolmaking for Creative , is a review of state-of-the-art machine learning in the 
realm of toolmaking. This chapter is organized into three sections: first, I briefly introduce some of the 
creative practitioners who have explored making bespoke tools with deep learning algorithms in the late 
2010s. This section aims to illustrate the landscape of independent efforts to work with AI/ML in creative 
practices. The chapter proceeds to discuss some of the technical barriers that stand in front of creative 
practitioners to harness ML algorithms in their tools. I investigate three major problems: lack of ML 
technical knowledge, data logistics, and evaluation challenges. Finally, I review the precedents in the 
literature which have considered context as their primary matter of study. 

Chapter 3, The Framework, introduces the framework for designing ML-based tools for creative 
practitioners. This framework allows creative practitioners to build their tools, for their specific physical 
and personal contexts, without requiring them to engage with the complexities of the backend ML 
algorithms. It aims to make ML models more accessible to these creative practitioners through close 
collaboration with ML expert toolmakers. This framework serves as a high-level guide to design and 
implement meta-tools in the two case studies. 

Chapter 4, The SecondHand, and Chapter 5, The ThirdHand, are comprehensive reports and 
documentation of two case studies which I conducted to test the hypothesis of this study. Each chapter 
encompasses its methodology section, followed by an in-depth discussion on the context, participants, 
research components, bespoke meta-tool implementation, and study progress. I conclude each chapter 
with a discussion.  

The first case study, The SecondHand, is a vehicle to investigate the potentials of bespoke data collection 
methods, interactive data curating tools, and generative models in machine learning-based creative 
toolmaking. It addresses a remote collaboration between a group of students from 48-770: Inquires into 
Machine Learning and Design and me to create a handwriting typeface generator. Through this study, I 
examine and document two primary subjects: 1) how creative practitioners interact with the meta-tool for 
curating their own data sets and 2) how the meta-tool helps with the accessibility of ML-based 
toolmaking for creative practitioners.   

The second case study, The ThirdHand, is a collaboration between a musician and me to develop a 
robotic musical instrument to play santur, a traditional Persian musical instrument. In addition to the 
subjects that I investigated in the first case study, this study delves deeper on 1) dynamic one-on-one 
collaboration between the creative practitioner and the toolmaker, and 2) working with data complexities, 
such as translating data from physical to digital and then reproduce them in physical world, and working 
with two different data modalities, one as six-degree-of-freedom motion sequence, and one as sound.  

Chapter 6, Conclusion, provides an in-depth discussion of the study, a summary of contributions, 
unaddressed challenges, and future steps.  

Appendix I: Conditional Variational AutoEncoders is a brief technical discussion on machine learning 
algorithms that are used in this study.  

Appendix II: The Context, is a discussion on the social, economic, and historical aspects of skill, learning, 
and toolmaking. Throughout this appendix, I walk back in time and revisit various conceptions of skill, as 
a form of knowledge, and explain how the mere act of toolmaking has long been a matter of political, 



9 
 

social, and economic debate. This brief context is a prelude to introducing ML-based toolmaking that 
centers the creative practitioners and elements of their physical context.15 

1.10 Delimitations  

To set this research within the boundaries of a Ph.D. dissertation, the scope of the proposed framework is 
narrowed down to focus on these subjects:  

The general domain of work: This study exclusively focuses on making tool for creative practices. It is 
not addressing computational creativity which advocates using computational methods to mimic human 
creative actions.  

Autonomy: The proposed framework helps creative practitioners execute their plans— predefined or 
exploratory—by utilizing the generated outcomes of the machine learning model. This research does not 
focus on the intermediator agent16 nor an autonomous generative system to serve as a so-called AI artist. 
It is the creative practitioners’ responsibility to utilize this tool to express their creative intentions. 

Activities: This framework focuses on the primary actions that creative practitioners can compose 
together to accomplish a more complex task. These actions can range from rough fabrication activities—
i.e., basic subtractive or additive manufacturing—to primary elements of performance art that can be 
actuated using robotic arms or generating stand-alone graphical elements. As illustrated in Figure 1, this 
research doesn’t address the process of generating novel creative pieces nor an autonomous process to 
plan a sequence of actions to embody such pieces. This thesis intentionally distances itself from these two 
phases, as they are more inclined toward autonomy and computer creativity. Instead, it focuses on 
providing a creative practitioner, who already has addressed these two steps, with a tool to embody its 
artistic expressions. 

Datatype: Based on the domains of activities defined for this thesis, the data types are limited to two 
categories that foster a wide range of applications in the field of design and performative art: 1) temporal 
three-dimensional data—i.e., motion capture streams, and 2) 2D images. 

Limitation: Considering the wide range of creative activities, it is virtually impossible to develop a 
universal framework to address them all. Accordingly, the framework’s scope of functionality is limited 
to specific activities adapted in the two case studies. 

 
15 While the discussion on context contributes to the understanding of a situated approach to toolmaking, the in-depth 
discussions in this appendix could disrupt the fellow of this dissertation. Accordingly, I found it more suited to include 
it as an appendix rather than a chapter within the body of this dissertation. 
16 In some use case scenarios, a stand-alone action is the goal of activity. For example, in cinematography a single 
camera motion is sufficient for the cinematographer. In some other activities, a sequence of actions leads to the 
activity’s goal. In such cases, an intermediator agent is required to convert the transition between the initial state and 
the final state into a series of discrete actions. For example, in painting an agent (the artist or an AI agent) should 
decide on the sequence of brush strokes to convert a blank canvas into a finished painting.  
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Note on the COVID-19 Pandemic Impact: The first case study, the SecondHand, was conducted during 
the peak period of the COVID-19 pandemic. In that period, in-person contact was strictly prohibited, and 
educational activities were limited to remote learning. That study was inevitably adjusted to accommodate 
these special circumstances. For instance, all activities were organized and conducted remotely, 
communications and discussions were transferred into Zoom video calls, and data collection methods 
were designed to utilize accessible and simple equipment. However, the other case study was conducted 
when the restrictions were partially removed, and in-person meetings were allowed. 

 

Figure 1. Scope of research concerning activities. 
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Chapter 2. ML-Based Toolmaking for 
Creative Practitioners 
In the previous chapter, I introduced major challenges ahead of using machine learning to 
make tools for creative practices. The missing context and lack of ML technical 
knowledge were the two topics that I found most relevant to the research questions of this 
thesis.  

In this chapter, I will review the collective efforts of creative practitioners, 
interdisciplinary researchers, and engineers to integrate ML algorithms into their 
toolmaking process and investigate the challenges that they face in their journey. 

This chapter is organized as follow: first, I briefly introduce some of the artists who have 
explored toolmaking with deep learning algorithms in the late 2010s. This section aims to 
illustrate the landscape of independent efforts to work with AI/ML in creative practices. 
Second, I discuss some of the technical challenges that stand in front of creative 
practitioners to harness ML algorithms in their toolmaking processes. I investigate three 
major problems: lack of ML technical knowledge, data logistics, and evaluation 
challenges. Third, I introduce frameworks, tools, and products that each aim to address a 
sub-section of these technical challenges. Following this, I focus on the efforts to address 
the missing context and examine this issue through the lens of researchers such as Rebeca 
Fiebrink, who recast the machine learning toolmaking as a human-computer interaction 
process with a strong emphasis on the user inputs and interactions, as well as Giulio 
Brugnaro, who developed a method to introduce elements from the physical context into 
the machine learning process. 

The purpose of this chapter is not to conduct an exhaustive review of the literature, but it 
aims to illustrate an overall image of the shortcomings in the current efforts and learn from 
their experience. Learning from this literature, I will lay out my own approach, which will 
be presented in Chapter 3, The Framework.  
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2.1 ML Artists  

Since the mid-2010s, alongside the new bloom of machine learning, a growing number of artists, 
scholars, and interdisciplinary teams have been exploring the new boundaries of ML and Art. Gene 
Kogan (Kogan n.d.), Memo Akten (Memo Akten n.d.), Mario Klingemann (Klingemann n.d.), Kyle 
McDonald (McDonald n.d.), Anna Ridler (Ridler n.d.) were just a few examples of a thriving community 
who adapted state-of-the-art ML algorithms to serve as a means of creative expression.1  

These artists used ML models such as Pix2Pix (Isola et al. 2017) and CycleGANs (Zhu et al. 2017) and 
modified them to create artworks. These ML models are generally available through public GitHub 
repositories or even open-source projects with flexible licensing that allows artists and developers to 
modify and repurpose them for their specific goals. For instance, in his ongoing series “Learning to See,” 
Memo Akten used various machine learning models, i.e., variations of GANs, on different bespoke 
datasets to analyze a camera feed. In one of his installations, these models were connected to a live feed 
from a camera pointed at a scene, where audiences could manipulate the items and observe the response 
from the model (Akten, Fiebrink, and Grierson 2019) (Figure 2, left).  Mario Klingemann, a German artist 
who has been actively exploring ML and art, explains that he used a chain of GANs models to create his 
work “Butcher’s Son.” He controlled the process by curating the training dataset, fine-tuning the 
hyperparameters, evaluating, and selecting one out of the thousands of generated variations (Klingemann 
2018) (Figure 2, middle).  Tom White, a New Zealand-based artist, and lecturer at the University of 
Wellington, developed a series of machine learning models to make a “perception engine,” which could 
generate abstract representations of various objects (Figure 2, right).  

 
1 I discussed a few examples of their works previously in (Bidgoli, Kang, and Cardoso Llach 2019). 

Figure 2. Left: Memo Akten, “Learning to See,” installation at "AI: More than Human", London, UK, 
2019. Image from (Akten n.d.). Middle: Mario Klingemann, “Butcher’s son.” Image from  

(Artamonovskaja 2021). Right: Tom White, “Cello,” from the “Perception Engines” series. Image from 
(White n.d.). All images belong to the artists, reproduced here under fair use. 

http://www.memo.tv/
http://quasimondo.com/
https://kylemcdonald.net/
https://kylemcdonald.net/
http://annaridler.com/


13 
 

2.2 Technical Barriers 

Despite the efforts that I briefly introduced here, the adoption of ML algorithms in creative toolmaking is 
not a trivial process. The creative practitioners that I mentioned above dedicated significant resources to 
curating the training datasets, fine-tuning the hyperparameters, proposing new user interaction models, 
tweaking the model’s architecture, or chaining models together. Adapting such ML algorithms that are 
originally geared toward the ML research community is a process that requires experience in computer 
programming, familiarity with ML algorithms, knowledge of data pipelines, and experience with methods 
to reliably evaluate the results.  

In this section, I will first introduce three major challenges that collectively hinder creative practitioners’ 
ability to work with ML algorithms in their toolmaking process. Then, I will introduce some of the efforts 
to address these challenges by reviewing the current state of ML-based toolmaking for creative practices. 

2.2.1 Lack of ML Technical Knowledge 
Creating tools for creative practitioners using machine learning algorithms is not new phenomenon 
(Bernardo, Grierson, and Fiebrink 2018). However, efforts to make these tools, with a few exceptions, 
rely on frameworks aimed at niche audiences such as researchers and developers with extensive prior 
exposure to machine learning (Roberts, Hawthorne, and Simon 2018).  

While creative practitioners and toolmakers are experts in their field of work, extensive knowledge of 
machine learning is a rarity among them. This lack of ML technical knowledge affects their ability to 
integrate machine learning algorithms into their toolmaking workflows. Thus, they are more inclined 
toward off-the-shelf toolkits, online public datasets, and pre-trained models. Moving beyond these safe 
options requires a steep learning curve and a significant level of computational resources, while 
increasing the odds of encountering technical problems and data challenges. These creative practitioners 
can still use ML models in their workflow; however, their flexibility is usually limited to feeding different 
datasets, combining pre-set features, or in the case of Natural Language Processing (NLP) models, 
crafting prompts. 

An interesting example of creative practitioners using ML in their work without getting deeply engaged 
with the technical side comes from the early days of Obvious, a Paris-based trio of French artists. When 
in 2018 they had one of their pieces sold in the Christie’s auction (Christie’s 2018), they did not need to 
go deep into the details of the ML model that they were using. What they found most suitable for their 
work was a public GitHub repository that allowed them to re-train a variation of DC-GAN (Radford, 
Metz, and Chintala 2015), named Art-DCGAN (Barrat 2017), with a dataset of classic portrait paintings 
to generate their piece Portrait of Edmond Belamy. When I reached out to the team, Hugo Caselles-Dupré 
confirmed that their role was limited to moderating the training data, from online datasets, and selecting 
the best ones among the pool of outputs.2, 3 

2.2.2 Data 
Machine learning algorithms run on data, either collected in the wild, or synthetically produced. Curating 
valid and reliable data is a delicate task that can easily go off the rails and undermine the credibility of the 
whole effort. In Appendix II: The Context, I thoroughly discuss how traditional methods of data 
collection are incapable of addressing different aspects of skill and, consequently, toolmaking. Here, I 

 
2 Hugo Caselles-Dupré, email message to author, April 4, 2019. 
3 I should assert that in their more recent works, the Obvious Art team demonstrated a drastically sophisticated 
technical literacy that signifies their development since then.     
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define the problem of data from a technical point of view to address two issues that are closely tied to the 
topic of this research: representativeness and scale.  

Representativeness 
Representativeness signifies if a dataset represents what it is intended to represent. This is especially 
critical when the subject has multiple independent factors involved. For instance, to create a 
representative dataset for a robotic wood carving system, Brugnaro and Hanna incorporated various data 
to account for the complexity of the physical context, i.e., tools and materials.  They captured the tool 
motions, torque level, type of wood, direction of wood grain, and carving results (Brugnaro and Hanna 
2017).4 Meanwhile, it should be noted that overloading the dataset with a flood of features from the 
physical context is not necessarily a reliable solution, and may overwhelm the ML algorithm.  

When it comes to toolmaking for an expert user, the physical context should be complemented with the 
information from the expert users’ inputs. It is impossible to capture or store tacit knowledge, hence the 
name tacit. Designing and curating a dataset to, even partially, represent a specific skill and its tacit 
aspects is not a trivial task. In such scenarios, an AI/ML expert alone cannot decide on which signals to 
pick and which ones to factor out. However, a close collaboration between the ML expert and knowledge 
domain experts can considerably facilitate the process. I will discuss this matter in more detail through the 
two case studies. 

Scale 
In some branches of ML, specifically deep learning—which is abundantly popular among the creative 
computing community—the scale of data overwhelmingly influences the process of data collection, 
labeling, and auditing. Deep learning models require large, diverse, and balanced datasets and should 
contain enough samples to allow data-intensive models, such as GANs, to learn hidden patterns in the 
dataset without overfitting. Powerful models tend to rapidly overfit on smaller datasets, introducing 
complex challenges into the training phase. Also, the datasets should be inclusive enough to cover a wide 
range of samples with a balanced distribution over all categories or clusters.5 

Scale is also a significant challenge issue when incorporating physical context into the machine learning 
process, where the costs associated with generating samples can snowball rapidly. Some researchers 
collect and process samples through a manual process. 6 For instance, Bard et al., at the Digital 

 
4 They used this dataset to train a machine learning model to predict the sequence of motions to carve a piece of wood 
using a robot-mounted chisel. 
5 To get a better grasp of this issue, it is enlightening to have a closer look at some of the recent research efforts on 
the intersection of ML and Computer-Aided Architectural Design (CAAD). The CAAD community has been actively 
exploring affordances of ML in architectural design, analysis, and simulation. A recurring issue in ML/CAAD 
literature is the negligence of curating a sufficiently large, diverse, and balanced dataset to begin with.  There are 
several samples of GANs models being trained on samples of 100 or less (Huang and Zheng 2018; Chan and Spaeth 
2020; Newton 2020; Cho et al. 2020). Researchers use pre-trained models or apply data augmentation to compensate 
for this issue. One exception in this category is (Nauata et al. 2020), where the authors developed an elaborated pre-
processing workflow to convert over 117,000 samples from the LIFULL HOME’s dataset (“Informatics Research 
Data Repository LIFULL HOME’S Dataset” n.d.) to train their model. Even in this case, the dataset is still biased 
toward a tiny section of possible data points. The dataset contains over 5 million plans of rental properties in Japan. 
Thus, it is already missing all the samples that are not for rent, are not located in Japan, and has not been surveyed.  
6 Building the research on a poorly curated dataset is a problematic issue, especially when creating new samples 
requires users’ participation, consuming materials, and time on the equipment. In one example, a dataset with a 
minimal size of samples was used to train a model, presumably due to the fact that creating new samples would require 
large metal sheets going through an incremental forming process (Rossi and Nicholas 2018). To mitigate this issue, 
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Fabrication Lab at Carnegie Mellon University, manually took pictures of rendered surfaces and assigned 
an appropriate label to each picture (2018). They utilized data augmentation methods (Perez and Wang 
2017) to increase the size of the dataset to train their model.  

In contrast, some researchers develop automated workflows to generate samples on scale. Notably, Luo et 
al. set up an automated pipeline using a robotic arm and a computer-vision post-processing pipeline to 
bend 34 plastic strips under various forces and record their transformations to generate a dataset of 360 
samples with 162 frames per sample (2018). Chen et al. developed a 3D printer setup to automatically 
print stand-alone curves made of polylactide (PLA) between two points in space. They leveraged this 
apparatus to print several samples and collected the data to create a sizable dataset to train and test 
different machine learning models (Chen et al. 2020). 

Some researchers adopt a hybrid approach. For example, Brugnaro and Hanna collected the initial dataset 
directly through user demonstrations. They collected multiple variables to form a dataset of 1500 samples 
directly from the user demonstrations. To increase the dataset size, they managed to apply some 
variations to the collected samples, replay them on a robotic arm, and record the cut made by the robot. 
The result was a larger dataset that could be expanded further without directly engaging the user 
(Brugnaro 2020).  

It is also possible to use a combination of physical demonstrations and reinforcement learning models to 
curate their training datasets. For example, (Liang, Kamat, and Menassa 2020) use Imitation Learning to 
train a robotic arm to perform quasi-repetitive tasks in construction setups. In this approach, the model 
only observes a limited number of samples from the user and then applies the reinforcement learning 
method to learn the policy. 

Scale is particularly challenging when working one-on-one with expert users to make tools for them. In 
such scenarios, it is not feasible to collect and curate a large dataset. This limitation determines which ML 
architectures can be used. Models that can be trained on smaller datasets, such as variational autoencoders 
(VAE), are more suitable for such scenarios. Moreover, we can be more forgiving about overfitting when 
training an ML model for a specific expert user with the sole goal of using it for that specific person and 
specific task. In such a scenario, overfitting the model over the small dataset is, in fact, the goal. In the 
next chapters, I will elaborate on these two points and explain how combining a small dataset, a bespoke 
ML model, and intentional overfitting can address the problem of scale.   

2.2.3 Evaluation 
The other important challenge of machine learning in creative activities is the lack of explicit metrics to 
evaluate the performance of a model. Evaluating the outcomes of a machine learning model, specifically 
generative models, is a challenging task and has been a subject of study among machine learning 
researchers. Evaluation metrics in creative practices and crafts are primarily qualitative, which renders 
evaluation subjective and inconsistent. In general, there are two major factors that are needed to be 
assessed when evaluating the outcomes of a generative model, 1) the fidelity, which describes how 
closely the generated samples resemble the training data, and 2) the coverage, which explains what 
fraction of the training data is being represented by the generated samples. 

 

some researchers adopt data augmentation methods without considering the principles behind them. In one case, only 
eight samples were collected, then augmented to 8000 to retrain a Pix2Pix model (Ramsgaard Thomsen et al. 2020). 
Such poorly curated datasets result in overfitting and eventually weak generalizability of the models. This shows itself 
as a large gap between training and test errors. In the case mentioned above, these numbers were 94% and 75% for 
training and test accuracy, respectively. In such cases, the model is simply impractical for any further application. 
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Researchers suggest different methods to assess the outputs of generative models (Salimans et al. 2016), 
for example, using human users to check the outputs’ fidelity. It is a common practice to use crowd-
sourcing methods, such as Amazon Mechanical Turk, to accelerate and scale up the process. This 
approach is highly dependent on the subjective decisions of human evaluators. Therefore, the process is 
sensitive to evaluators’ demography, motivations, and background. This approach may return inconsistent 
results, however, researchers observed that auditing the results and providing feedback on the mistakes 
made by the evaluators can significantly enhance the reliability of the process (Salimans et al. 2016).  

Moreover, this approach is most effective when the subject of the study is commonly understandable by 
non-expert evaluators. For instance, evaluating the human faces generated by an ML model, or assessing 
the visual fidelity between the brushstrokes a human user has drawn and brushstrokes generated by an 
ML model (Bidgoli et al. 2020), or testing a model’s performance in detecting urban objects from aerial 
images (Koh and Huang 2019). However, in niche use cases, where evaluation requires expert-level 
knowledge, finding the right crowd is a concerning issue.  

The other method is based on using pre-trained discriminative models to detect the presence of 
meaningful objects and check the distribution of those objects over the training dataset. The intuition 
behind this method is that if the quality of outputs is good enough, then the classifiers trained on real 
images should be fooled by the generated samples and classify the synthesized results as real ones  (Isola 
et al. 2017). Using this method, users could evaluate a generative model’s ability to generate meaningful 
samples and compare the distribution of those samples over the training dataset. 

However, the state-of-the-art classifiers are designed, developed, and trained for very specific data types 
and tasks, i.e., face detection in images, semantic segmentation in 3D models, voice recognition in sound 
clips, etc. For a wide range of creative activities, there is no suitable classifier available.  

More importantly, in creative practices, toolmaking evaluation is a subjective procedure that is closely 
coupled with the expert users’ preferences and subjective measures. The current approaches that were 
mentioned above cannot pertain to these metrics. Thus, in this study, I will focus on methods to allow the 
expert user to collaborate in the toolmaking process and provides its subjective evaluation during various 
stages of the toolmaking process.  

2.3 Tools of Creative ML 

Computational artists and toolmakers have tried to compensate for the technical barriers and allow users 
with different levels of experience in machine learning to adopt ML-based tools to facilitate their 
workflow. They materialized their efforts in the form of simplified APIs and libraries, integrating ML 
libraries to popular software packages, designing user-friendly graphical user interfaces (GUI), 
simplifying the data pipelines, providing pre-trained models, integrating cloud computing services for 
faster computation, or in some cases, black boxing the backend ML models. 

These collective efforts resulted in toolkits, libraries, plug-ins, and APIs, including but not limited to, 
Magenta—and the family of tools based on Magenta, i.e., Magenta.js (Roberts, Hawthorne, and Simon 
2018), and Magenta Studio (Roberts, Engel, et al. 2019)—, ml5.js (“Ml5.Js: Friendly Machine Learning 
For The Web” n.d.)—and tools developed based on ml5.js such as Teachable Machines (“Teachable 
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Machine” n.d.)—, mlLib (Bullock and Momeni 2015), Unity ML-Agents (Juliani et al. 2018), Runway 
(RunwayML 2019), Wekinator (Fiebrink, Trueman, and Cook 2009; Fiebrink 2011) (Figure 3). 7 

 

Simplified APIs and libraries: Some of the tools mentioned in the previous section are targeted toward 
users with prior knowledge of programming and machine learning. Those are usually developed as 
libraries for programming languages that are already popular among the creative computing community. 
For instance, ml5.js and Magenta.js8 are two open-source libraries developed for JavaScript. The decision 
to use JavaScript is very interesting and deserves a closer look. First, it should be noted that JavaScript is 
a popular programming language in the creative computing community. This popularity makes it easier 
for Magenta.js and ml5.js to serve a broader range of audiences. Second, from a technical point of view, 
JavaScript is easy to set up and use. It allows users to run their code directly in the browser on a wide 
range of platforms and devices. Moreover, it helps users bypass the technical issues associated with other 
machine learning frameworks written for Python and C++, which require advanced setup procedures to 
leverage hardware integrations.  

APIs for popular software packages: Another approach is aimed toward bringing ML algorithms into 
environments that creative practitioners are already familiar and comfortable with. This would encourage 
and empower them to explore the potential of the ML in their workflow without getting deeply involved 
with complex backend problems (Roberts, Hawthorne, and Simon 2018).  It is common to see these tools 
accommodate integration with input/output protocols to interface with other software packages and 
various pieces of hardware. This is a significant incentive to make these tools more desirable for a 
specific group of creative practitioners, such as musicians, visual artists, and creative computing artists.  

 
7 Additionally, there is also a movement to inquire into machine learning and art, mostly focused image-based 
synthesis. A notable example of this movement is the Machine Learning for Art (ml4a) which is a collection of tools 
and educational resources which apply techniques from machine learning to arts and creativity developed and 
maintained by Gene Kogan (Kogan n.d.). 
8 Magenta.js is a simplified JavaScript API based on Tensorflow.js.  

Figure 3. The spectrum of ML-based tools geared towards creative practitioners. 
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Bullock and Momeni followed this approach while developing ml.lib, a cross-platform9 and open-source 
machine learning tool for Max and Pure Data (Bullock and Momeni 2015).10 Ml.lib is geared toward 
musicians with minimal prior knowledge of machine learning but eager to experiment with it in the 
context of interactive art.  

Another interesting example in this category is Unity ML-Agents. This toolkit is aimed to bring a handful 
of reinforcement learning algorithms to this popular game engine. Although Unity natively supports C# 
scripting, the ML-Agents library is written in Python, which is the language of choice for a wide range of 
ML researchers and enthusiasts. This resulted in a less-than-optimal workflow, forcing the user to switch 
back and forth between Unity’s native game development space and ML-Agents reinforcement learning 
algorithms. 

User-friendly GUI: A common theme among the machine learning toolkits for creative practitioners is to 
wrap ML algorithms, evaluation methods, and supporting tools with a user-friendly and simplified GUI. 
Such interfaces can improve the usability of machine learning-based tools and subsequently increase their 
adoption by creative practitioners in their workflows (Bernardo, Grierson, and Fiebrink 2018). Wekinator 
and Runway are two examples of this approach. Magenta Studio, developed based on the Magenta.js 
backend and wrapped in a minimal GUI, falls under this category too. It is developed as a plug-in for Max 
for Live for Ableton Live (Ableton n.d.)—a popular software package for music creation and live 
performance—but it is also available as a stand-alone application with its own GUI. 

Black box ML tools: Software packages such as Photoshop treat machine learning-based features as 
black boxes. Users can use them to achieve certain functionalities with close-to-no engagement with the 
underlying ML algorithm. This simplicity and ease of use come with a tradeoff; the user has no direct 
method to interface with the backend to curate data, retrain the model, or fine-tune it for novel use 
cases.11  

Simplified data pipelines: Simplifying the process of collecting, labeling, and auditing data is another 
effective approach to make ML tools more accessible to novice users. For instance, Teachable Machines  
(“Teachable Machine” n.d.) provides an intuitive interface to collect and label data samples in the 
browser, which allows the user to curate a data set in a few minutes. Wekinator is also a good example 
that supports various input formats and modalities to interactively curate a dataset.  

Pre-trained models: Training a machine learning model from scratch is a time-consuming and resource-
hungry process.12 One method to mitigate this issue is to provide the users with a pre-trained model and 
let them re-train the model based on a new dataset provided by the user. This is an efficient and effective 
method to re-purpose large and deep models in a relatively short time with less-capable hardware setups. 
Teachable Machines and Magenta Studio follow this approach and provide pre-trained models for image 
and sound classification, pose estimation in Teachable Machines, and music generation in Magenta 
Studio. 

 
9 ml.lib supports both x86 and ARM processors and works on Mac OS, GNU/Linux, and Windows. This range of 
supported platforms renders ml.lib accessible on a wide range of modern hardware and music devices. 
10 ml.lib is developed as a wrapper for the C++ library developed by Nicholas Gillian (Gillian and Paradiso 2014). 
11 Projects which are mostly designed as a tech-demo, fall under this category. A notable examples is GauGAN family, 
i.i.,  (“GauGAN2” n.d.), that are now integrated with NVIDIA Canvas (NVIDIA n.d.). 
12 Specifically, deep CNN and massive NLP models are extremely expensive to train. Training these models from 
scratch is not financially feasible nor environmentally sustainable.  
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Cloud-computing: As discussed earlier, training machine learning models is a computationally heavy 
task. It also requires installing various software packages and applying the necessary settings.13 Some 
toolkits tackled these two issues by integrating cloud-based computing services. In such cases, the 
training process is off-loaded into a cloud computing server, with all the required libraries and software 
packages pre-installed. For instance, Runway (RunwayML 2019) offers cloud computing services 
integrated into their app, and users can purchase time on their servers to train or use heavy models.  

2.3.1 Magenta 
Magenta is a free and open-source project that includes libraries and code snippets to help artists who 
work with deep learning based on the Tensorflow deep learning framework (Magenta n.d.; Abadi et al. 
2016). In 2016, the Google Brain team released the initial version of Magenta. Since then, several artists 
have used it as the backend library to train their ML-based musical tools, mostly over open-source 
datasets (Magenta n.d.). This was followed by the introduction of Magenta.js, based on Tenserflow.js, to 
allow users to run the models, or in limited cases train, their models in a web browser. 

Using Magenta requires a moderate background in ML and programming, and it is most suited to serve as 
the backend for other tools. Brain team later developed the Magenta project one step further and 
introduced Magenta Studio as an independent application and a series of deep learning-based plug-ins for 
the popular live music production software package, Max For Live for Ableton Live (Roberts, Engel, et 
al. 2019) (Figure 4).  

The researchers behind the Magenta project followed a series of design principles from (Kayacik et al. 
2019) to make the tools more desirable for the target users. They advanced toward this goal by designing 
a simplified UI with vocabulary that the users are already familiar with, simplifying the installation 
process on the operating systems and hardware, and designing modular components that could be chained 
together similar to musical instruments. Magenta has multiple plug-ins that were supported by deep 
learning models such as MusicRNN and MusicVAE (Roberts et al. 2018).14 The ML models used in 
Magenta Studio are pre-trained and the users can use them to produce desired results based on their taste.  

 
13 Virtual environments (for Python) and Dockers are some of the methods to eliminate the setup issues. However, 
they cannot address the hardware limitations. Another approach is to use cloud services such as Google CoLab, which 
is optimized to work with interactive Python Notebooks, has most of the useful libraries pre-installed, and provides 
different tiers of hardware over different tiers of subscription (Google, n.d.). 
14 There are other machine learning toolkits for creative practitioners, including but not limited to, XMM and Gesture 
Variation Follower which are not discussed in this section. For a closer look at these and other tools please look at 
(Bernardo et al. 2017; Caramiaux et al. 2014; Françoise, Schnell, and Bevilacqua 2013). 
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2.3.2 ML-Agents 
ML-Agents is a package for the Unity game engine that includes a library of RL tools written in PyTorch  
(Juliani et al. 2018) (Figure 5, left). 15 It taps on the extensive 3D capabilities and physics simulation 
engine of Unity to create environments to train its pre-defined RL models. The familiar environment of 
Unity, a widely popular engine among game developers worldwide, made this library accessible to a wide 
range of audiences with prior knowledge of design, 3D modeling, game development, and scripting.16 
Working with ML-Agents still requires a significant programming background to develop the game in 
Unity’s natively supported C#. However, it has reduced the machine learning technical interface into a 
simplified set of hyperparameter adjustments organized in a structured setup file.17  

2.3.3 Wekinator 
Wekinator is open-source software for interactive machine learning developed by Fiebrink in 2009 
(Fiebrink, Trueman, and Cook 2009) (Figure 5, middle). It is developed based on Weka, an open-source 
and free ML library written in Java (Witten and Frank 2002).  

 
15 Although Unity is primarily geared toward game developers, it is also well-received among researchers in other 
fields, such as robotics where RL is an active field of research.   
16 In 2020, when I was working on the early draft of this chapter, the ML-Agents repository on git-hub had seen a 
steady stream of updates and revisions. While the early versions were implemented with Tensorflow deep learning 
library, the latest versions are developed using PyTorch. The constant updates and changes of this toolkit negatively 
impacted its usability. As of 2022, the changes are less frequent, and the library is more stable.  
17 The library is designed to serve game developers’ purposes primarily. However, researchers in other fields such as 
architecture are also enthusiastically following its application in their practice (Hosmer and Tigas 2019). Unity's 
advantage resides in its ability to export the environments as stand-alone applications for desktop computers, mobile 
devices, and web-based apps, making it possible to run the machine learning model directly on a wide range of 
devices. From this point of view, it resembles some of the affordances of JavaScript-based libraries that were 
discussed earlier. 

Figure 4. Magenta, Magenta.js, and Magenta Studio, image from left to right from (“Hello Magenta” 
n.d.; “Making Music with Magenta.Js” n.d.; Roberts, Mann, et al. 2019). 
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Fiebrink describes Wekinator as a meta-instrument, an instrument that can be used to create other 
instruments. As a stand-alone app, it packs a handful of machine learning models with features for 
collecting training data samples, changing miss-classification costs, and changing the weights of each 
sub-model in an ensemble model. Wekinator also supports a wide range of input and output protocols. 
These features allow the users to curate their own dataset interactively and adjust the selected model’s 
behavior to steer its learning direction toward their desired direction (Bernardo, Grierson, and Fiebrink 
2018).  

2.3.4 Runway18 
Runway was initially started as a thesis project at the New York University and evolved into a creative 
machine learning platform with a graphical and user-friendly interface that closely resembles popular 
graphic design software packages that visual artists are already accustomed to (Figure 5, right).  Runway 
incorporates several open-source ML models developed either by the core team or the community of 
users. Models can run or train either on the Runway servers on the cloud or on the users’ local machines 
using a Ducker container.19 Following this approach, novice users can select a model from the library and 
start using it without complicated installation and setup procedures. The user interactions are also 
simplified and implemented in a familiar visual vocabulary of creative practitioners.  

For expert users, Runway provides a software development kit (SDK) to port custom machine learning 
models. These models can be designed, implemented, trained, and fine-tuned by the user, then interfaced 
through Runway’s GUI. The package is also equipped with various plug-ins/APIs to integrate with other 
popular toolkits among artists, such as Open Framework, Processing, Rhino, and Photoshop (RunwayML 
2019).  

 
18 What is discussed here as Runway, refers to the original product made by RunwayML company. As of now, summer 
2022, RunwayML has pivoted Runway from what is described in this thesis into an ML-based video editing tool.  
19 “A Docker container is a standard unit of software that packages up code and all its dependencies so the application 
runs quickly and reliably from one computing environment to another” (Docker n.d.). 

Figure 5. ML-Agents, Wekinator, and Runway interface, images from left to right from (Unity-
Technologies 2021), (Wekinator n.d.), and (Valenzuela 2019). 
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2.3.5 Teachable Machines 
Teachable Machines is a web-based tool developed based on ml5.js. It sports a simple and intuitive 
interface to curate datasets directly in the browser and a set of pre-trained machine learning models for 
image and audio classification as well as pose estimation (Figure 6, right). The trained models can be 
used directly in the browser, or they can be deployed on the cloud and accessed through a simplified API 
over the internet (Figure 6, left).  

The significant advantage of Teachable Machines is its clear and intuitive interface. Users can run it in a 
web browser without any setup and curate their dataset interactively without any engagement with 
technical details. Although some basic training hyperparameters for fine-tuning are provided, the default 
settings are quite sufficient for most cases, and users can train their models with a few clicks.20, 21  

 

 

 
20 I found Teachable Machine a valuable pedagogical tool to teach basic concepts of machine learning models to 
architecture students. For instance, in 2019, students of 48-755/48-755 Introduction to Architectural Robotics used 
Teachable Machines to make a voice control system for a robotic fabrication system without any prior ML experience.  
21 Finally, it is worth mentioning the absence of a prominent toolkit in the list, Grasshopper, the visual programming 
plug-in for the Rhinoceros modeling software package. Along with Dynamo, it is the most popular visual 
programming interface among architects. Although there are a few machine learning add-ons available for 
Grasshopper, their presence in the literature is very sparse in pedagogical (Khean et al. 2018) and research studies 
(Rossi and Nicholas 2019; Brugnaro 2020). 

Figure 6. ml5.js and Teachable Machines interfaces, screenshots from author’s projects. 
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2.3.6 Neural Filters 
Neural Filter is a set of learning-based image synthesis tools organized as a plug-in for Photoshop. The 
package contains several tools to apply visual style transfer, background removal, and object selection. 
The developers kept all the technical details inside a black box. Users have no means to directly provide 
data, train models, or customize the models. However, like other tools in Photoshop, it is possible to 
manipulate some input parameters to adjust and fine-tune the results (Figure 7).   

2.3.7 The Dawn of Text-to-Image Models 
The landscape of art and machine learning has changed in the past two years with the rapid development 
of multi-modal machine learning algorithms, specifically models than use a combination of natural 
language processing and computer vision. In January 2021, OpenAI introduced Dall.E, a transformer-
based language model that could translate text prompts into close-to-photo-realistic images (Ramesh et al. 
2021). Following that, projects such as Dall.E 2 (Ramesh et al. 2022), Imagen and Parti by Google 
(Saharia et al. 2022; Yu et al. 2022), and Midjourney by Midjourney lab (Midjourney Lab 2022) have 
become the face of AI-generated “art” (Figure 8). 

The machine learning algorithms behind these projects are mostly proprietary and closed source. 
Accessing them is usually through invitation-based programs.22 Training these models usually requires 
massive computational resources, only available to a handful of technology giants and state-level 
organizations. Accordingly, the possibility of adapting or fine-tuning these models for creative practices 
by individual artists is slim. However, some efforts to replicate their results have been made with different 
levels of success. For instance, to make Dall-E Mini, Dayma et al. used a down-sized model compared to 

 
22 At the time of writing this chapter, these projects are rapidly entering the public beta stage. The pace of development 
is so fast, that even between the revisions of this document, researcher managed to partially replicate some of these 
models and deploy them on platforms such as Hugging Face. 

Figure 7. Neural Filters interface in Photoshop, image by the author. 
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the one behind Dall-E and utilized pre-trained models instead of training the model from scratch (2022). 
It was a technically complex effort conducted by a group of ML experts.  

The primary interface between the users and these models is a prompt, a body of text that expresses what 
the user wants the model to generate. Once a batch of images is generated, users can either pick one and 
delve deeper in its direction or enhance the resolution of their choice. These models behave as black 
boxes; users cannot obtain any meaningful grasp of their internal workflow. Thus, crafting “the prompt” 
and navigating the results are the new skills that users are mastering through a trial-and-error process. 23 

 

2.3.8 Accessibility Dilemma 
The tools discussed above represent a spectrum of solutions to make ML tools accessibility to creative 
practitioners, which are summarized in Figure 9. They reduce the necessity of engagement with the 
technical details while focusing on exploring the process and the outputs. Thus, they allow creative 
practitioners to focus on the creative process rather than the technical challenges that working with ML 
models entails.  

However, better accessibility comes with the trade-off of losing flexibility and control over the machine 
learning algorithms. On one end of the spectrum sits Magenta and similar programming APIs that let the 
user have almost full control and flexibility over the models and training process. But they are best suited 
for seasoned users with adequate hands-on experience with programming and ML concepts. On the other 
end is Photoshop-like applications, which provide an easy and off-the-shelf solution to use ML in a 
creative workflow. However, they provide the least level of control over the underlying ML algorithm.  

Finding a sweet spot between these two extremes is a delicate task that requires a thorough understanding 
of the users and the specific use case scenario. Creative practitioners should have the option to create and 
customize their own learning systems by training the models themselves (Bernardo et al. 2017). Thus, a 
limited number of pre-trained models, simplified data pipelines, and restricted training fine-tuning might 
not be enough for all users.  

 
23 Some of these tools come with extra functionalities and editing tools as well. For instance, Dall.E 2 has some image 
editing functionalities. 

Figure 8. Left: Interface of craiyon, formerly known as Dall.E Mini, with the prompt: “artist making 
machine learning art tool.” Middle: Midjourney UI implemented as a Discord chat bot. Right: example 

of results with the same prompt. Right: Dall.E interface. Screenshots by the author. 
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Moreover, simplification for the sake of accessibility weakens creative practitioners’ understanding of 
their tool, which is a critical factor in users’ ability to control and harness their potentials (Rahwan et al. 
2019). Although these efforts help users with limited experience and technical knowledge to have the 
opportunity to modify existing models or, to some extent, develop and deploy their own models, this 
simplicity and accessibility are not always positive. Novice users who are not necessarily familiar with 
ML’s fundamental concepts are more likely to fall into the common pitfalls of machine learning. For 
instance, experienced users can easily detect and avoid issues such as misjudgment of a model’s 
performance based on the training results instead of test results, overfitting models in the training phase, 
or model-specific problems such as mode collapse in GAN models (Veloso et al. 2022).24  

 

2.4 The Missing Context 

While reviewing the literature on ML-based toolmaking for creative practitioners, it became clear that 
with a few exceptions, most of these efforts ignored the contextual relationships between creative 
practitioners, their tools, and their practices. As the lion’s share of efforts in machine learning 
communities is focused on developing novel algorithms and improving their efficiency, there are fewer 
resources dedicated to informing the design process and the results with inputs from the users and the 
contexts in which users will eventually use them (Simard et al. 2017).  

 
24 To reflect on this issue, I tap on the CAAD/ML literature again. A glance at the growing number of published 
papers and dedicated sessions to ML in CAAD conferences signifies the trend around the topic. However, a 
thorough review of the literature highlights fundamental issues, i.e., lack of a clear and transparent methodology or a 
comprehensive report about the process and results. In some cases, machine learning methods were developed to 
accomplish tasks that could be otherwise addressed efficiently without it, or confusion between machine learning 
and statistics. These issues signify the absence of a thorough understanding of machine learning paradigms and 
technical knowledge to design, conduct, and report ML-based research among the authors of such papers.  

Figure 9. Approaches to make ML tools accessible to creative practitioners in the literature. 
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To illustrate the potential role of context in the toolmaking process, it is helpful to mention one of the 
precedents at the CMU School of Architecture. In 2014, Bard et al. published their research on robotic 
surface rendering. Their approach entails capturing skilled workers’ hand motions and then replaying 
them with an articulated robotic arm (Figure 10, left). Later in 2019, a similar approach was practiced as 
part of the Human Robot Virtuosity class, where students collaborated with a group of local creative 
practitioners and skilled workers, including graffiti artists, wood printers, and plastering experts (Figure 
10, right).25 Although Bard did not use any ML algorithm in this research, the overarching theme of 
centering practitioners and allowing them to introduce their tools and methods helped them to incorporate 
various elements of context into the toolmaking process.  

  

2.5 ML and Embracing the Context 

2.5.1 Elements of Physical Context 
Returning to the literature of ML-based tools for creative practitioners, there are a few examples where 
researchers who have investigated methods to study the potentials of ML in working with material 
behavior and tool characteristics to improve robotic fabrication methods for wood carving and metal 
forming (Brugnaro and Hanna 2017; Rossi and Nicholas 2018). Giulio Brugnaro, by that time a Ph.D. 
researcher from the University College of London, developed a learning system to inform the robotic 
fabrication workflow on the material’s specific properties and behavior. In this system, an expert user 
demonstrates several samples of carving a wooden piece with a chisel (Figure 11). The demonstration is 
recorded as a sequence of motions in space with six degrees of freedom—representing both location and 
orientation of the tool at each timestamp. A series of machine-generated samples later augmented these 
examples to form a learning dataset. Brugnaro designed a neural network to map these chisel motions into 
the cut they made on wood pieces. The final ML models could predict the result of a chisel motion on a 
specific piece of wood, and inversely, predict the necessary chisel motion to create a given cut on the 
wooden piece. 

In his workflow, the robotic arm, fabrication system, data collection tools, and material feedback sensors 
are intertwined to inform the machine learning model about the expert user’s techniques, the tool, and the 
material in use. Brugnaro describes such systems as “… soft systems, both adaptable and continuously 

 
25 For more information, please refer to (Bard et al. 2014) and the web site of Human Machine Virtuosity course in 
Spring 2019 (“Human-Machine Virtuosity – An Exploration of Skilled Human Gesture and Design, Spring 2019.” 
n.d.). 

Figure 10. Robotic plastering (left) and graffiti (right), images from (Bard et al. 2014; Naseck, Ng, and 
Tsai 2019). 
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evolving, whose dynamism is constantly fed by a flow of information” (Brugnaro, Figliola, and Dubor 
2019).  

Despite its very interesting approach to physical context, this research touches close to the Taylorist point 
of view to AI.26 The authors describe it as “… a robotic fabrication system where the instrumental and 
material knowledge of skilled human craftsman is captured, transferred, robotically augmented and finally 
integrated into an interface that make this knowledge available to the designer” (Brugnaro, Figliola, and 
Dubor 2019, 151). 

 

2.5.2 Idiosyncratic Elements 
Brugnaro’s research, as discussed above, was focused chiefly on the material-tool behavior and leaves the 
personal or social context unaddressed. For instance, the evolution of toolmakers’ conception of the tool 
during the toolmaking process is not a primary focus.  The toolmaker’s subjective evaluations are also 
missing from this project. Once the learning samples are generated, the toolmaker loses its control and 
agency over the augmented samples, learning direction, or evaluation of the results. Meanwhile, other 
researchers have examined the possibility of including these factors in their toolmaking process. 

Rebecca Fiebrink, a computer scientist, pioneer of Art and ML, and currently a reader at Creative 
Computing Institutes at the University of the Arts London, has been working on machine learning not 
from a mere technical point of view but the human-machine interaction (HCI) point of view. Her work on 
interactive machine learning is one of the most interesting examples of allowing creative practitioners to 
engage with the toolmaking process and introducing their subjective measures and personal preferences in 
data curation, training, and evaluation.  

She developed Wekinator (Fiebrink, Trueman, and Cook 2009) to allow an artist to develop their tool in 
collaboration with an ML expert through an interactive supervised machine learning workflow (Fiebrink 
2011). In this scenario, Wekinator serves as an interface to the ML backend allowing the artist to focus on 
creating samples as well as evaluating and assessing the tool’s performance. Fiebrink, as the ML expert 
toolmaker, could focus on moderating the technical aspects of the process (Figure 12).  

As a case study, Fiebrink collaborated with a professional composer/cellist to make a classifier that was 
able to recognize standard bowing gestures for live performance or composition. Throughout this 
collaboration, the creative practitioner contributed in two major ways: 1) providing the learning samples 

 
26 From this point of view, human skill could be reduced into abstract data points, which then can be acquired, 
contained in databases, and eventually transferred. This conception of skill as data resonates with the knowledge 
decontextualization that I previously discussed. I discuss the Taylorist point of view to skill, and subsequently AI, 
with more detail in Appendix II:  The Context.  

Figure 11. Data collection apparatus, training samples, and execution of learned motions, image from   
(Brugnaro and Hanna 2017). 
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by playing her cello using a custom-made bow. They demonstrated a range of techniques on the real 
instrument and recorded them as a sequence of data by the sensory tools installed on the bow, 2) 
introducing their perception of the tool, personal feelings, and subjective assessments as a part of the 
evaluation and feedback process. 

This project is one of the few examples that manages to incorporate physical context alongside personal 
preferences and subjective measures of the creative practitioners in the toolmaking process.27 It also 
introduces a dynamic collaboration between the creative practitioner and the ML expert toolmaker, which 
has been a source of inspiration for my own work. I will revisit this form of collaboration and explain 
how this serves as a basis for the proposed toolmaking framework in Chapter 3. 

  

 

2.6 Discussion 

The review of literature signifies two major issues in the current state of ML-based toolmaking for 
creative practitioners. First, the technical barriers and second, the missing context. I discussed how the 
current methods of addressing technical barriers can reduce creative practitioners’ control over the 
toolmaking process and force them to use off-the-shelf solutions and subsequently forfeit their personal 
preferences, subjective measures, and elements of the physical context in favor of simplicity and 
accessibility.  

In the next chapter, I introduce a framework for ML-based toolmaking for creative practitioners that 
allows them to closely collaborate with ML-experts in various stages of the toolmaking process to 
integrate idiosyncratic aspects, elements of the physical context, and nuances of their creative practice in 
the toolmaking process. 

 

 

 
27 In her 2017 paper, “Machine Learning as Meta-Instrument: Human-Machine Partnerships Shaping Expressive 
Instrumental Creation,” Fiebrink elaborates the idea of using interactive machine learning as a meta-instrument. She 
discusses how supervised learning can be leveraged to design new tools in real-time for creative activities and 
emphasizes the relationship between the builder and the toolmaking procedures as a key factor in understanding the 
new instrument. She argues that this can result in “… an exploratory, playful, embodied, and expressive …” 
toolmaking process (Fiebrink 2017, 137). 

Figure 12. Interactive learning workflow in Wekinator, image from (Fiebrink 2017, 163). 
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Chapter 3. The Framework 
In the previous two chapters, I argued that the lack of attention to the context alongside the 
technical barriers are among the most critical challenges making AI/ML-based tools for 
creative practices. We observed that this phenomenon, with a few exceptions, reflected 
itself in the current state of ML-based tools. It became evident that the common methods 
to mitigate technical barriers come with the trade-off of losing control over the toolmaking 
process, reducing creative practitioners’ flexibility, and consequently detaching from the 
context of the practice.  

In this chapter, I propose a collaborative framework to make ML-based tools for creative 
practices that embraces the personal preferences and subjective measures of the 
practitioners as well as elements of the physical contexts of the practice. This framework 
will be used as a high-level guide to design and implement toolkits for the two case 
studies. 
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In this thesis, I present and discuss a collaborative framework to make ML-based tools for creative 
practices, the framework from here on. This framework aims to make ML models more accessible to 
creative practitioners to build bespoke tools tailored to their specific personal and physical context of 
practice without requiring them to engage with the complexities of the backend ML algorithms. 

The framework defines a collaborative effort between the creative practitioners and the ML expert 
toolmaker to achieve this goal. In the two case studies presented in the following chapters, I demonstrate 
how the framework serves as a blueprint for defining collaborative toolmaking workflow and developing 
meta-tools.  

The meta-tool—a term derived from Fiebrink’s Meta-instrument (Fiebrink, Trueman, and Cook 2009)—
refers to an implementation of the framework designed and fine-tuned for a specific case study. It 
provides the software/hardware platforms for the ML expert toolmaker and the creative practitioner to 
collaborate on the tool development (Figure 13). 

 

Figure 13. Framework, meta-tool, case studies 

3.1 Framework Principles 

This framework is designed in accordance with the two hypotheses of this research. First, it allows 
creative practitioners to utilize user-generated data to interface with the learning algorithm and integrate 
their subjective preferences and elements from the physical context to explore potentials of ML 
algorithms in supporting their creative practices. Second, it allows creative practitioners to collaborate 
with ML expert toolmakers and overcome the technical challenges in the toolmaking process.  

The goal of this framework is not to make a tool to replicate the creative practitioner in any given 
situation. It is poised to augment the creative users’ abilities and allow them to further explore their 
practice with this new tool. 

Working with and from the Context:  

The framework is built around the conception of skill, and knowledge, as situated in the context of its 
practice. This framework aims at centering creative practitioners in the toolmaking process. It also 
encourages data collection in the close-to-real-life context of the practice, with real tools and materials. 
The creative practitioner can introduce material behaviors and tool affordances by creating data samples 
in close-to-real-life demonstrations. For example, collecting hand gestures of a painter while they are 
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working on a painting with a brush, paint, and canvas, or recording the camera motions of a 
cinematographer on the set, or observing dancers’ motions in a performance or rehearsal. In each case, the 
user can improvise, repeat, modify, or remove samples to sculpt the dataset, one sample at a time. That is 
a departure from the conventional approach in which an ML expert would decide on these matters. I 
expect that this approach reduces the chance of critical data being ignored in favor of simplicity and 
abstraction. 

Meaningful Extended Collaboration between Creative Practitioner and Computational Toolmaker  

This framework helps make ML algorithms more accessible to creative practitioners by proposing a 
collaborative workflow that allows them to work with ML expert toolmakers to develop their ML-based 
tools. The framework acknowledges the critical role of a multidisciplinary expert with sufficient ML and 
computational toolmaking experience. This workflow opens new opportunities for novel forms of 
dynamic collaboration between creative practitioners and toolmaking experts, who otherwise work 
separately from each other. 

The framework suggests that the two parties engage in a dynamic collaboration to design, develop, and 
test the meta-tool. They collaboratively 1) engage in the development of the meta-tool, 2) decide on the 
inclusion or exclusion of data, 3) provide data samples, 3) curate the training dataset, and 4) evaluate the 
results. This process entails making various decisions over general aspects of work, data collection and 
curation workflows, user interfaces, modes of interaction, and implementations. This process helps both 
the creative practitioner and toolmaker gradually evolve their conception of the tool, based on a mutual 
understanding of each other’s work, the context, and the affordances of the meta-tool. Through iterative 
design, prototyping, and testing cycles, the two sides learn to adjust and improve their work to make the 
tool. 

The framework empowers the creative practitioner to introduce desired features to the learning model and 
steer the learning direction based on personal preferences and subjective assessments while the toolmaker 
addresses the technical aspects. Accordingly, the resulting tools are tailored to the specific creative 
practitioners and their creative activity, as they are shaped based on their experience, skills, personal 
judgments, preferences, and subjective measures.  

Using Data to Interface with the Machine Learning Algorithms 

In this framework, data is treated as a means of interaction with the ML model in the hands of creative 
practitioners.1 This notion of data offers a counterpoint to the currently dominant approach in creative 
machine learning, where 1) data is usually rigid, pre-determined, and externally sourced, and 2) the 
primary method of controlling the learning model is coding. This new form of design material helps users 
interface with the ML backend by generating, collecting, and curating training data and incrementally 
shaping the learner’s behavior.  

Using Generative Machine Learning Models and Taking Advantage of Overfitting on Small 
Datasets 

Machine learning research is generally associated with large-scale datasets that might be skewed and 
biased toward specific races, gender, geographic regions, or art genres. Generalizing the results of ML 
models trained on these datasets is one of the most complex challenges of ML in recent years. In contrast, 

 
1 This notion of data is primarily inspired by the works of Rebecca Fiebrink on Training Data as Interface (2016) 
which is also elaborated and discussed in (Cardoso Llach 2017).  
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this research explores the positive side of biased datasets and overfitting a machine learning model on 
them. 

The framework encourages using user-curated datasets, which are inevitably small, biased, and skewed 
toward those specific users. As creative practitioners play more with this new design material, their 
dataset becomes more skewed and biased toward their own special and unique tastes. The framework 
takes advantage of such curated datasets and suggests using machine learning algorithms that can be 
efficiently trained on a limited set of data. The model inevitably overfits the training samples. However, 
in this study, this is an intentional outcome, despite being a heretic in virtually any other field of machine 
learning.2 Working with such small datasets allows creative practitioners to explore the generative 
potential of bias that resides in each user’s judgments and subjective metrics.  

3.2 Machine Learning Models3 

The framework suggests using generative machine learning algorithms that can be trained efficiently and 
quickly on small datasets. Variational AutoEncoder (VAE) (Kingma and Welling 2013) is an optimal 
choice for this scenario. VAE is an architecture of generative models that uses an encoder-decoder 
architecture (Figure 14, left).  Encoding/decoding refers to mapping, or embedding, an input data into a 
latent representation, usually of lower dimension, then decoding it into the same or another 
representation. While the input and output of the model might be of the same modality, hence the name 
AutoEncoder, mapping between two different modalities is also quite common, i.e., from text to image.  

In a VAE, the encoder, usually denoted as 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥), trains on the input data 𝑥𝑥 to learn the features and 
encodes them in a latent representation space 𝑧𝑧 which is usually of lower dimension, referred to as the 
bottleneck. The latent space itself is a distribution, usually normal distribution, represented by two vectors 
for means and standard deviation. To generate a sample of the latent space 𝑧𝑧, we can draw a sample from 
this distribution. The decoder, denoted as 𝑝𝑝∅(𝑥𝑥|𝑧𝑧), is another network that receives the samples from 𝑧𝑧 
and outputs samples from the distribution of the 𝑥𝑥.  

While VAEs can generate random new samples by feeding with a random 𝑧𝑧 vector, for this study, the 
creative practitioners need to have control over what model generates. For this purpose, I opted to use 
Conditional VAEs, which share the same architecture as VAE plus a condition input before the decoder 
model (Figure 14, right).  

 

 
2 At the moment of writing this document, this approach is most notably utilized in NeRF (Neural Radiance Fields) 
for view synthesis (Mildenhall et al. 2020). A NeRF model can look at a handful of images from one single scene and 
learn to generate new images from the same scene, but from different directions. In this scenario, the model is trained 
on only one specific scene, using only a few images taken from different angles. After training, it will only work on 
the same scene it was trained on, but no other scene. In the case of ThirdHand, the musician is comparable to the 
scene, and new mezrab motions are equivalent of the new views. 
3 For an in-depth discussion on the machine learning technical details, please refer to Appendix I: Conditional 
Variational AutoEncoders. 
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In the training process, the encoder reduces the data dimension and embeds it in the latent space z. The 
decoder aims to get the latent representation and reconstruct the original input data. Inevitably, some 
pieces of information will be lost in the encoding process as the input is compressed into a lower 
dimension. When the decoder reconstructs the input from the latent representation, the outcome will not 
be identical to the input.  

The objective of VAE is to reduce the lost information between the input and the reconstructed output 
while keeping the latent space distribution as close as possible to the standard normal distribution. 
Accordingly, the loss function for a VAE consists of two parts, 1) a reconstruction loss that observes the 
decoder performance in reconstructing samples, and 2) a Kullback-Leibler Divergence (KLD) that 
describes how close the latent space distribution is to a standard normal distribution (Figure 15). 

 

We can use a C-VAE to generate new samples by feeding it with a latent vector and a deliberate condition 
signal. The regulated latent space of C-VAE makes it easier to create this latent vector by sampling from 
a multivariate standard normal distribution. The condition signal is usually a one-hot vector that can be 
concatenated to the latent vector before being fed to the decoder (Figure 16). The regulated latent space—
sanctioned by the KLD loss—renders this approach a viable solution to get meaningful results. The KLD 
loss forces the encoder model to map the input samples as close as possible to a standard normal 
distribution with 𝜇𝜇 = 0 and 𝛿𝛿 = 1. As such, we are sampling the latent vector randomly from a 
multivariate standard normal distribution will result in generating a meaningful sample.  

Figure 14. VAE (left), C-VAE (right) architecture. 

Figure 15. VAE loss function components. 
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As the data modality, size of the dataset, and purpose of case studies are different, for each of them a 
different C-VAE model is designed, implemented, and optimized. The specificity of each model is 
discussed in the corresponding chapter.  

3.3 Interactive Machine Learning 

While not strictly implemented in this thesis, the framework, as it is used in the SecondHand study, 
follows the basic guidelines of Interactive Machine Learning (iML).4 As such, it is necessary to briefly 
discuss iML in this chapter. 

Interactive machine learning—first introduced by Fails and Olsen (Fails and Olsen 2003)—refers to 
“algorithms that can interact with agents and can optimize their learning behavior through these 
interactions where the agents can also be human” (Holzinger 2016, 119). In iML, the training process is 
cast as human-computer interaction (HCI) process (Dudley and Kristensson 2018), and the computer is a 
part of the human design process rather than the human being in the loop of an algorithmic process 
(Gillies et al. 2016). The user can iteratively add new learning samples to steer the learning direction until 
the desired outcome is achieved. Thus, the "[i]ML workflow is inherently co-adaptive in that the user and 
the target model directly influence each other’s behavi[o]r" (Dudley and Kristensson 2018, 8:2).  

iML is particularly useful for creative applications and developing custom-made tools and shines the best 
when there is a user who can generate reliable training examples (Fiebrink 2019) and iteratively curate the 
training dataset and provide new samples until the desired results are achieved. Thus, it empowers the 
creative practitioner to be the primary driver of the training process and allows them to introduce their 
subjective measures and personal preferences into the learning process without requiring them to possess a 
comprehensive understanding of the underlying machine learning algorithm. While an expert ML 
toolmaker is required to develop the backend ML algorithm and support different parts of the ML pipeline, 
the training process can be handled by the creative practitioner. 

Scholars pointed out some of the challenges of iML, for instance, 1) users might be inconsistent across 
samples that they provide and their inputs might be different from their intentions, 2) the training process 
can be open-ended with no clear ending criteria, and 3) interacting with ML model is not straightforward 
and the responses might not be clearly conceived by the users (Dudley and Kristensson 2018). While 
these challenges can be problematic in general machine learning applications, they mostly work in favor 
of this research’s goals. The uncertainty and inconsistency in the user inputs are inherent characteristics of 

 
4 The SecondHand dashboard allowed the participants to interactively curate the dataset, retraining the learning 
algorithm, and evaluate the results, to achieve their desired results, from this point of view, it follows the basic 
principles of iML. However, in the ThirdHand, as I will discuss in detail, the almost-real-time feedback loop, which 
is critical in iML, could not be achieved. As such, I did not use iML in the ThirdHand study. 

Figure 16. Drawing samples from VAE (left) and C-VAE (right). 
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creative practices that I intend to acknowledge and embrace in the framework. Moreover, the open-ended 
nature of training would allow the creative practitioners to engage in an iterative cycle of train, feedback, 
correct, and finally to come up with their desired results. In such scenarios, it is the creative practitioner 
who will decide on the progress and success.5 

However, the last issue, interpreting the ML algorithm behavior and comprehending the causal 
relationships between users’ inputs and ML algorithm responses, is a particularly hard challenge to tackle. 
To compensate for this issue, the machine learning algorithm should complete the training process rapidly 
enough to allow the user to get feedback as quickly as possible (Fails and Olsen 2003).6 Moreover, the 
user interface should provide the users with means to understand the behavior of the learning algorithm. 
For instance, real-time interactive visualizations can help users understand the effect of inputs on the 
model’s behavior.  

Fails and Olsen also refer to overfitting as another issue with iML. Methods such as cross-validation, 
which are commonly used to mitigate overfitting, can increase the training time. Thus, iML relies on the 
user to intervene and provide samples to balance the dataset and correct the training process (2003). In the 
case of this study, bias in the data, as well as overfitting, are both intentionally considered as part of the 
process. 

Finally, it should be noted that iterative cycles of training in interactive learning may result in catastrophic 
forgetting, a condition in which the process of learning something new suddenly erases what the model 
has learned previously (French 1999; McCloskey and Cohen 1989). In this study, it was not necessary to 
implement methods to mitigate catastrophic forgetting as the datasets were relatively small with a low 
level of variance, and the number of iterative training cycles for each model was very limited. 

A note on the toolmaker 

Throughout this research, I wore different hats at various stages of each case study. My background in 
computational design, toolmaking, and machine learning came into play at every turn of this study and 
informed my decisions. Inevitably, I constantly had to change my hats, and at some points, I wore all 
three simultaneously. However, to keep this document concise and clear, I will refer to myself as the 
“toolmaker,” an umbrella term to include my computational design, toolmaking, and machine learning 
background. As the toolmaker, I collaborate with different creative practitioners to help them develop 
their machine learning-based tools without engaging with the complexities associated with machine 
learning algorithms. Instead, they provide the training samples, curate their desired datasets, and monitor 
the learning process to achieve their desired outcomes.  

  

 
5 Interestingly, Dudley and Kristensson specifically refer to the application of iML in craetive practices and 
exploratory applications, where the accuracy of the model or its performance are not the primary goal (2018). 
6  Fails and Olsen introduce a Fast and Focus UI principle for their iML system and argue that “[t]o be interactive the 
training part of the loop must take less than five seconds and generally much faster” (2003, 40). 
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Chapter 4. The SecondHand 
During the Spring and Fall semesters of 2021, in the middle of the COVID-19 pandemic, 
students of my class, 48-770: Learning Matters, participated in a toolmaking exercise 
integrated with one of the technical modules of the course. In the previous modules of this 
course, students worked with pre-collected and pre-processed data and used quantitative 
measures to assess and evaluate their machine learning models’ behavior. In this exercise, 
in contrast, they focused on creating bespoke datasets, using subjective measures, and 
using personal preferences to control the direction of the toolmaking process.  

In this chapter, I document this study, which serves as a pilot to investigate the potential of 
bespoke data collection methods, interactive data curating tools, and generative models in 
ML-based tools for creative practices.

As the ML expert toolmaker, I designed and implemented a meta-tool that allows 
participants to create and curate bespoke datasets, train the backend machine learning 
model, and navigate the latent spaces to create a handwriting typefaces generator based on 
their handwriting. The meta-tool provided data collection and curation tools and the 
necessary interactive visual interfaces which allowed the participants to utilize data to 
control the model’s training and manipulate the generation process. 

A primary objective of this study was to examine how students interact with the meta-tool 
to curate their own data sets. The other objective of this study stems from the question of 
the accessibility of ML-based toolmaking for creative practitioners. On this topic, my goal 
was twofold: 1) investigating the dynamics between the ML expert toolmaker (me), 
creative practitioners (participants), and the meta-tool, and 2) the possibility of utilizing 
data as the primary interface between the creative practitioners and the ML backend of the 
meta-tool.  
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4.1 Study Framework 

4.1.1 Hypothesis 
This study hypothesizes that interfaces for data generation that emphasize user-generated data to integrate 
elements of the physical context and users’ subjective preferences can reveal new potentials of generative 
machine learning to support creative practices. 

The hypothesis addresses the two primary topics of this research, 1) making machine learning-based tools 
accessible to creative practitioners and 2) embracing elements of the context in the toolmaking process. 
The validity of this hypothesis is investigated through a toolmaking practice conducted by a group of 
participants using a purpose-built meta-tool. In this study, participants created their machine learning-
based tool to generate handwriting typefaces. The provided meta-tool allowed them engage in an iterative 
cycle of a) data generation, b) data curation, 3) training, and 4) evaluation to create their tools with 
limited engagement with the technical details of the ML algorithm. 

4.1.2 Goals and Objectives 
A primary objective of this study was to examine how participants work with the meta-tool and observe 
the dynamics between them, toolmaker, elements from the physical context, and the underlying 
technology. 

This study also aimed to examine the potential of data as an interface to make ML-based toolmaking 
more accessible to creative practitioners.1 Participants in this study had a preliminary level of experience 
with computer programming and ML. However, prior to this study, they only worked with pre-processed 
datasets.2 In those experiences, participants did not engage in generating, preparing, or curating any 
dataset. Accordingly, their only means of interacting with the machine learning models was coding in 
interactive Python programming environments, such as Jupyter Notebooks. Observing this shift from 
code to data and its effects on the users’ experience is another objective of this study.  

I designed the toolmaking process to allow me, as the ML expert toolmaker, and the creative practitioners 
to engage in a series of dynamic interactions to iteratively refine the meta-tool and make it more 
accessible, transparent, and understandable. Investigating these interactions is another motivation behind 
this study.   

It is important to clarify that creating a handwriting typeface serves as a vehicle to put the research 
hypothesis to the test. Thus, this study’s primary measure of success is beyond creating visually appealing 
handwriting typefaces. This study seeks to identify the potential affordances of integrating elements of the 
context into the machine learning-based toolmaking process. Such affordances may crystalize in various 
forms, including, but not limited to:  

• Affordances of the machine learning-based meta-tools in allowing creative practitioners to engage 
elements of the physical context, such as specific tools and materials, in the toolmaking process, 

• Affordances of the machine learning-based meta-tools in reflecting the users’ personal context, i.e., 
subjective measures, personal preferences, specific personal style, and social contexts such as 
interactions with the toolmakers and colleagues, 

 
1 The notion of data as the interface is based on Rebecca Fiebrink’s long standing works (Rebecca Fiebrink 2016). 
2 In a previous module of Learning Matters, students worked with Bubble2Floor, a generative tool for converting 
adjacency bubble diagrams into architectural layout plans (Veloso et al. 2022). Bubble2Floor backend was a 
conditional GAN architecture based on Pix2Pix  model (Isola et al. 2017). In that process, the GANs model was trained 
on a synthetic dataset created by the instructors of the class and provided to the students as-it-is. 
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• Affordances of the proposed toolmaking process (meta-tool, data pipeline, machine learning model, 
interfaces, and user interactions) in helping creative practitioners understand the behavior of the 
machine learning model and align it with creative practitioners’ workflow.   

• Affordances of data as an effective interface between the creative practitioners and a machine 
learning model in the process of toolmaking, 

• Affordances of collective data curation among colleagues to enrich the toolmaking process. 

4.2 Relevant Work 

This study relies on two well-established research fields: 1) ML-based toolmaking for creative 
practitioners and 2) machine learning research on handwriting recognition and generation. The former has 
been discussed in Chapter 2. Here, I focus on the latter to put this study in the broader landscape of 
machine learning research. This introduction will help the reader distinguish between this study and state-
of-the-art handwriting recognition and generation.  

For decades, recognizing handwritten text has been an underlying technology behind many services 
around us. Mail services have utilized algorithms to read the handwritten addresses on envelopes at a 
fascinating pace in their sorting facilities. ATMs could read your deposit checks accurately well before 
the current machine learning boom. This range of practical applications attracted many governmental 
organizations, research institutions, and research teams to allocate resources to Handwritten Text 
Recognition (HTR) and to develop infrastructures for such research efforts, i.e., large datasets of 
handwritten text. These datasets later helped to boost the data-hungry machine learning research on HTR.  

One of the most popular datasets of handwritten text comes from The National Institute of Standards and 
Technology (NIST) databases. The widely popular dataset, dubbed MNIST,3 is very well-known among 
machine learning experts who work on computer visions, machine learning, and classification systems. 
The MNIST dataset contains 70K handwritten digits from 0 to 9 in the format of 28x28 pixel images. It 
has been extensively used as a benchmark to evaluate the performance of different machine learning 
models. Another variant of the full NIST dataset called Extended MNIST—or EMNIST for short—gained 
attention among machine learning researchers. This dataset has a significantly larger sample size of 
around 814K, covering both letters and numbers. It is organized in two variants: 1) the first one comprises 
62 classes to represent lowercase letters (26), upper-case letters (26), and digits (10). The other variant 
has ten classes for digits and only 37 classes for all the letters based on their visual similarities. As per 
NIST suggestion, the authors of EMNIST merged the samples for the letters C, I, J, K, L, M, O, P, S, U, 
V, W, X, Y, and Z (Figure 17 and Figure 18) (Cohen et al. 2017).4, 5  

 
3 The MNIST dataset was compiled from two different NIST datasets in the late 1990s by Yann LeCun, Corinna 
Cortes, and Christopher J.C. Burges. It contains 70K thousand images of handwritten digits split as 60K training 
samples and 10K test samples. MNIST also is a very popular dataset for entry-level tutorials on generative machine 
learning models regarding its standard format, having a limited number of classes, and ease of training models with 
acceptable results. 

4 This dataset is based on NIST Special Database 19, which contains all NIST handprinted data. Over 810K samples 
were collected from 3600 participants as separate digit, upper and lower case, and free text fields. The data was then 
processed and manually checked and labeled. (“NIST Special Database 19” n.d.) 
5 There are other popular datasets such as IAM (Marti and Bunke 2002) and CVL (Kleber et al. 2013). This list is by 
no means exhaustive, for instance there are handwritten datasets for different languages and different styles of writing 
which are not discussed here.  
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While HTR is a topic of interest for many research efforts on handwriting, some studies inquire into 
handwriting synthesis, which is concerned with the generation of handwriting for a given text. The 
motivation behind this practice might be purely technical. For instance, researchers have used the 
EMNSIT dataset to train a Data Augmenting GANs (DAGANs) model. This model could generate new 
handwritten samples for data augmentation, a method to increase the dataset size without collecting more 
real samples (Antoniou, Storkey, and Edwards 2018).  

Meanwhile, some studies treat handwritten text synthesis as a hybrid of engineering and creativity. In 
2016, Haines et al. from the University College of London published their paper "My text in your 
handwriting," where they introduced a model that could render a text closely resembling the style of a 
specific user. Their model could account for glyph selection, spacing, ligature, and text texture. They 
demonstrated their work by rendering quotes in the handwriting style of famous figures, such as Abraham 
Lincoln, Frida Kahlo, and Sir Arthur Conan Doyle (Figure 19) (Haines, Mac Aodha, and Brostow 2016).  

Figure 17. A handwriting sample form (HSF) from the NIST Special Database 19, source: (“NIST 
Special Database 19” n.d.). 

Figure 18. EMNIST by_merge dataset, notice the merger of upper- and lowercase letters for C, I, J, K, L, 
M, O, P, S, U, V, W, X, Y, and Z, source: (Cohen et al. 2017). 
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In another study named ScrabbleGAN, researchers used a semi-supervised learning approach to 
generating handwritten text (Fogel et al. 2020). The model, developed based on GANs architecture, can 
generate words with different lengths and manipulate the writing style. GANwriting, a model developed 
by Kang et al. and trained on a subset of the IAM dataset, can generate handwriting samples conditioned 
on calligraphic style as well as the textual context (Kang et al. 2020).   

The studies that are mentioned above all utilize image representation of handwriting samples. However, 
some researchers went one step further and studied the temporal representation of handwriting. Their 
models are based on machine learning architectures designed for sequential inputs, most notably 
Recurrent Neural Networks (RNN). For instance, Alex Grave used Long Short-term Memory (LSTM)—a 
variation of RNN—for handwriting synthesis (Graves 2013). Later on, Chung et al. developed a 
Variational RNN (VRNN) (Chung et al. 2015) and trained it on the IAM-OnDB dataset (Liwicki and 
Bunke 2005).6 Their model could capture the diversity of samples while keeping a consistent style during 
the generation phase.  

For these studies, handwriting samples should be collected in a particular format to represent time steps, 
which requires special hardware, i.e., a digital stylus pen. For instance, for the IAM-OnDB dataset, the 
researcher team utilized an eBeam interface. eBeam consisted of a special casing for a standard marker 
that could communicate with an infrared signal receiver installed on the corner of the whiteboard. This 
assembly could accurately register and record the coordinates of the tip of the marker at any point. Then 
this data was labeled to associate each data point with the corresponding drawing on the whiteboard.  

It is worth mentioning that using additional equipment to collect temporal representations of handwriting 
may affect the quality of collected samples. For instance, the eBeam system adds extra weight and 
momentum to the marker, changing one’s handwriting characteristics. However, the popularity of digital 
styluses and pen-like accessories for tablets has made collecting temporal data more accessible and less 
intrusive in recent years. 

4.3 Methodology 

To investigate the validity of this study’s hypothesis, I designed a toolmaking process where participants 
could use a meta-tool to generate new handwriting typefaces based on their bespoke datasets. This study 
can be summarized at a high level as follows: 1) participants provide sets of handwriting samples, 2) they 
use these samples for training a generative machine learning model, 3) this model was used as the 
backend of the handwriting typeface generator tool, 4) the typeface generator tool was used to create new 

 
6 The IAM On-Line Handwriting Database contains 13049 samples from 221 writers (Liwicki and Bunke 2005). The 
model was trained on sequences of (x, y) coordinates with the pen-on/pen-up label.  

Figure 19. Text rendered in the style of Abraham Lincoln (left) and Frida Kahlo (right) (bottom), based 
on the original samples of their handwriting (top), source: (Haines, Mac Aodha, and Brostow 2016). 



42 
 

handwriting typefaces. While developing their tools, participants worked with the meta-tool, engaged in 
discussions, provided feedback, and expressed their opinions, which were documented as video 
recordings and written reports. 

4.3.1 Study Context 
The study was designed in parallel with one of the four main modules of Learning Matters: Exploring 
Artificial Intelligence in Architecture and Design, 7 an introductory course to machine learning and 
creative practices with a special focus on architecture and design. Throughout the 16-week curriculum, 
students got familiar with the fundamental concepts of machine learning, gained hands-on experience 
with popular programming tools in ML, and developed their machine learning pipelines. This study was 
designed in tandem with the class’s second module, which focused on generative machine learning 
models, working with user-generated data, and utilizing Conditional Variational AutoEncoders (C-
VAE).8  

4.3.2 Scope 
For this case study, the scope is narrowed down, and some abstractions were implemented in four aspects: 
1) field of work, 2) data modality, 3) participants’ ML experience, and 4) level of details. Table 1 
summarizes the scoping, simplifications, and abstractions.  

When discussing the scope of this study, it is inevitable to address the context in which it was conducted. 
The Spring and Fall semesters of 2021 were at the peak of the COVID-19 pandemic. Students were still 
attending their classes remotely in accordance with the pandemic restrictions. This heavily influenced this 
study’s design and mostly reflected itself in the data type and data collection. It was not feasible to work 
with any form of data requiring advanced data collection hardware. I had to design the data collection 
setup, required hardware, and accompanying software tools with accessibility and availability for all 
students in mind. I chose to work with handwriting and pixel-based representation, which was accessible 
to all participants; a simple digital pen, or a printer and a digital camera would suffice for this study. 

Table 1. Scope of study, forces, and mitigation plans 

Field Decision Driving Factor Advantage 
Skill  Opting for handwriting  Skill must be shared 

among all participants 
 Data collection hardware 

should be available to all 

 All participants are familiar 
with this skill  

 Only minimum hardware 
was required to collect data 

Data modality  Opting for image-based 
rather than 6 DoF, temporal, 
or multi-modal 
representation 

 Unified data collection 
method for all participants 

 Remote data collection 
limitations 

 Unified data collection using 
off-the-shelf and widely 
available tools such as 
tablets, digital/mobile 
cameras, or scanners 

Prior exposure 
to ML 

 Introductory level of 
knowledge of ML 

 Students from the 48-770 
class was recruited 

 Limitation on remote 
moderation of study 

 Restriction on recruiting 
in the pandemic era 

 Compliance with safety 
regulation  

 Enhanced study moderation  

 
7 I developed and initiated 48-770 for the Spring 2021 with the generous support from the CMU School of 
Architecture.  Since then, I have been the lead instructor of this course. During its three iterations, my colleagues in 
the Ph.D. in Computational Design program Manuel Rodriguez Ladron De Guevara, Jinmo Rhee, and Pedro Veloso 
have taught their dedicated modules. Initially titled Learning Matters, the second and third iterations of this course 
were titled as Inquiries into Machine Learning and Design, and Introduction to Machine Learning and Design 
respectively. 
8 This study was reviewed and approved by CMU’s internal review board (IRB). Due to its integration with the 
curriculum of Learning Matters, it falls under IRB category-1 exemption.  



43 
 

Simplified details  Details such as half-spaces, 
kerning, and cursive 
handwriting were excluded 
for simplicity 

 Reducing the complexity 
of data collection  

 Creating a unified data 
collection method 

 The letters were collected 
using unified charts for each 
letter (iteration 1)  

 Letters were later collected 
in words (iteration 2) 

 

4.3.3 Study Procedure and Timeline 
The participants went through a three-step cycle (Figure 20):  

1- Data generation, preparation, and curation: 
The participants were asked to create raw data samples, process them, and prepare them for 
the machine learning model 

2- Training the generative machine learning model: 
The participants trained the machine learning model interactively through cycles of data 
curation, training the model, and observing the results. Thus, they steered the model’s 
behavior by manipulating the training data instead of the machine learning architecture or its 
hyperparameters. 

3- Generating new handwriting typefaces by drawing samples from the model. 

 

The participants repeated this cycle three rounds, as illustrated in Figure 21: 

Round one: This round was designed to familiarize the participants with the process from providing 
handwriting samples to generating new typefaces, 

Round two: The goal of this round was to allow participants to retrospectively review the first round and 
improve their workflow based on the experience gained during the first round, 

Round three: Participants were instructed to share their samples on a shared database and engage in a 
collective data curation activity. Each participant could use this database to curate their bespoke dataset, 
train the model, and generate a handwriting typeface. 

Figure 20. The iterative toolmaking cycles. 
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During the span of this study, participants were 1) introduced to the main concepts, tools, and platforms 
that were used in the study, 2) provided hands-on training to use them properly, 3) made their handwriting 
typeface generator tool, and eventually 4) presented their work.  

4.4 The SecondHand Meta-Tool 

Meta-tool collectively refers to the set of tools I developed to allow the participants to 1) collect, process, 
and curate data, 2) train the machine learning algorithm, and finally, 3) navigate its latent space to 
generate new handwriting typefaces. I iteratively refined and improved the SecondHand meta-tool to 
incorporate feedbacks from the participants. Moreover, the participants occasionally modified and 
adapted parts to match their specific workflow and requirements.  

 

 

Figure 21. Three-step toolmaking process. 

Figure 22. Activities and their corresponding components in the meta-tool implementation during the first 
and second iterations of the study. 
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While in the first iteration of this study, the meta-tool was organized as a series of Jupyter notebooks 
running on the Google CoLab (Google, n.d.)service as well as an early version of the interactive 
dashboard for data curation. This resulted in various issues regarding the interoperability of various meta-
tool components.  However, for the second iteration, I implemented the meta-tool as a web-based 
interactive dashboard, named SecondHand Dashboard, using Dash Plotly (Plotly 2022), except the data 
collection process that still relied on external tools such as CVAT (Figure 22).  

4.5 Meta-Tool Components 

The meta-tool consists of three main components: 1) data pipeline, 2) machine learning algorithm, and 3) 
generating interface. Figure 23 shows the three components as implemented in the SecondHand 
Dashboard. 

4.5.1 Data Pipeline 
The data pipeline was designed to support a unified workflow that all participants could reproduce at 
home using simple and accessible tools, such as a printer, a scanner, or a cell phone camera. The pipeline 
was also flexible enough to accommodate more advanced pieces of hardware, i.e., tablets, styluses, and 
digitizers. 

 

Figure 23. The integrated dashboard, as used in the second iteration of this study in Fall 2021, with data 
curation, training, and generation tools integrated into one platform. 



46 
 

As discussed earlier in this chapter, there are two approaches to handwriting representation: 1) temporal 
and 2) pixel based. The pixel-based approach has several advantages over the other one: 1) the data 
collection process is significantly easier as it only requires image representation of data instead of a 
sequence of steps, and 2) pixel-based data can be used with Convolutional Neural Networks (CNNs) 
while temporal data is more suited with recurrent machine learning models. The training process for non-
recurrent models is usually more efficient,9 as the samples can be generated at once, and the problems of 
learning long-range dependencies are avoided (Kang et al. 2020).  

Based on these advantages, I decided to use pixel-based representation and avoid temporal representation. 
This decision resulted in a simplified data collection pipeline to accommodate the requirements of this 
study. It made it possible to utilize a CNN-based machine learning model with very efficient training 
cycles.  

In the first iteration of this study, participants were provided with an 11-page set of grids with 36 cells for 
each letter of the English alphabet, totaling 1872 data entries. Participants could fill out the charts using a 
desired writing tool—pen, pencil, marker—and digitalize them using a scanner or a digital camera (Figure 
24, left). Participants had access to a data pre-processing CoLab notebook with the necessary functions 
and a detailed video demonstration to facilitate this process. Alternatively, participants could use a digital 
medium with stylus support to directly generate the data in digital format. In both cases, participants 
could use the same CoLab notebook to slice the input images, extract each letter, remove the boundaries, 
and format the results as NumPy arrays with pre-defined shapes and dimensions. 

Participants’ feedback from the first iteration of the study indicated that collecting handwriting samples 
using isolated cells negatively impacted their handwriting. Accordingly, I implemented a different data 
collection method to address this issue in the second round. This time, I asked the participants to write 
letters in words instead of writing each letter separately. One thousand words were selected and organized 
into 20 pages. Half of the words were written in capital letters, and the other half in lowercase. 
Participants could write each word in the blank space below each printed word (Figure 24, right). While 
closer to a typical writing setup, this method imposed different challenges. For instance, defining the 
boundary of each letter should be done manually;10 once the writing was over, participants had to use an 
online computer vision annotation tool to annotate the boundary of each letter. 11 

 

 

 
9 Recurrent neural networks are usually slower to train as they cannot take advantage of parallelism as much as 
convolutional neural network can.   
10 During the development of this phase, I tested various automated segmentation methods. However, the accuracy of 
these methods was not satisfactory and could add more challenge in the labeling process. 
11 For this part Computer Vision Annotation Tool (CVAT), an online free platform was used (“CVAT” n.d.). 
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Figure 24. Collecting samples using a digital pen and tablet: iteration one in separate cells (left), and 
iteration two, in words (right). Images courtesy of 48-770 students, reproduced here with permission. 

Figure 25. The data dashboard (left), UI elements (right). 
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4.5.2 Data Visualization/Curation Dashboard:12 
A series of interactive data visualizations were the core elements of the meta-tool’s data curation. These 
visualizations proved to be essential tools for the collective data curation process, where participants had 
to curate their training dataset from over 28000 shared samples which were created by other participants 
(Figure 25).  

To create these plots, the data samples were processed by the t-SNE algorithm (Van der Maaten and 
Hinton 2008) to reduce their dimensions from 64 × 64 to only two.13 Mapping a dataset of high-
dimension to a very low-dimension space is a common practice in data visualization. When used 
effectively, it helps users comprehend data distribution, hidden patterns, and relationships between the 
samples, which were otherwise hard to recognize.14 The resulting two-dimensional mapping was a 
distribution of samples based on their visual features. A color scheme representing the label of each 
sample—i.e., a, b, X, Q, …—was also applied to each plot. Users could hover over the two scatter plots 
to visually inspect them one by one or review them in bulk using the selection tools. 

The first plot—positioned on the top left side of the dashboard—visualizes the t-SNE distribution of 
samples based on their visual features (Figure 25, left). This plot made it easier for the participants to 
inspect the visual trends in the dataset and get more familiar with the sample space.  

The second plot—positioned on the top right side of the dashboard—combines two data modalities: 1) 
one of the two elements of the t-SNE manifold on the X-axis, and 2) labels on the Y-axis (Figure 25, left). 
This bi-modal representation helps participants conveniently explore the dataset based on visual features 
and labels. The benefits of this plot were later crystallized in the study. Several participants used it to 
select a subsection of the whole dataset while controlling the number of each label in the set.  

Hovering the mouse over a point in each of the two plots triggers a quick preview function. This function 
shows the hovered sample and the four samples before and after it in the dataset. Participants can also use 
click-drag gestures on both plots to select a subset of the dataset, using rectangle or lasso-style selection 
in real time and see the selected samples. These two options allow the participants to rapidly check any 
region of the t-SNE distribution and add/remove samples to curate the desired dataset. 

4.5.3 Machine Learning Backend15 
The Conditional Variational AutoEncoder used in this study follows the basic architecture of VAEs, an 
encoder, a variational sampling, and a decoder chained one after the other. The C-VAE architecture can 
disentangle the visual features of the input data from the label. It means that with the same label input, it 
is possible to manipulate the latent vector and generate different samples from the same label but with 

 
12 This dashboard as described here was only used in the first iteration of this study. In the second iteration, this 
dashboard, the training interface, and sample generation tools were all integrated in one unified dashboard that I will 
discuss in more details in section 4.6.3, Integrated Dashboard. 
13 In this study, I opted to use an implementation of t-SNE, called Open t-SNE (Poličar 2020). All samples were first 
converted to a vector of 1 × 4096 shape and then fed to the t-SNE algorithm to get mapped into a two-dimensional 
space as 1 × 2 vectors. 
14 It is worth mentioning that this method has also been used by several artists and researchers to visualize art 
collections, for a few interesting samples please visit project Pix Plot with a Uniform Manifold Approximation and 
Projection (UMAP) backend, (Duhaime 2017) and t-SNE Map that utilizes t-SNE algorithm (Diagne, Barradeau, and 
Doury 2018). 
15 For more information on the ML backend algorithm, please refer to please refer to Appendix I: Conditional 
Variational AutoEncoders and 3.2 Machine Learning Models sections. 
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different visual features. Similarly, with a fixed latent vector, it is possible to feed different label vectors 
to generate various glyphs with similar visual features.  

 

The encoder and the decoder models use a cascade of modular blocks (Figure 26, top). The encoder 
blocks consist of convolutional 2D layers, followed by max-pooling, batch normalization, and leaky 
ReLU activation function (Figure 26, bottom left). In the decoder model, the block uses a convolutional 
transpose to sample up the input, followed by batch normalization and leaky ReLU (Figure 26, bottom 
right). The only exceptions are the first module of the encoder—which skips the max pooling—and the 
last module of the decoder—which substitutes the leaky ReLU with sigmoid to keep the results in the 0.0 
to 1.0 range. The model’s architecture was fixed for all the participants, and a set of suggested 
hyperparameters were available to the participants (Table 2). However, the participants had the option to 
adjust a few training parameters, most notably the number of training epochs.  

Table 2. Suggested training parameters. 

Variable Default value 
Batch size 64 

Number of epochs 250 
Latent dimension 128 

Learning rate        1𝑒𝑒 − 3 
Validation to train ratio 0.1 

 

 

Figure 26. Architecture of the conditional variational autoencoder (top), the encoder block (bottom left), 
and the decoder block (bottom right), minor modification is applied. 
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Training 
In the first iteration of the study, the training process was implemented as a Jupyter Notebook running on 
Google’s CoLab server. The notebook contained the Python codes and supporting materials such as 
descriptions and guides. It was organized into six sections: 1) introduction, 2) code setup, 3) the C-VAE 
model, 4) training workflow, 5) analysis, and 6) generating typeface (Figure 27). Participants could load 
the data files from the pre-processing notebook or the data curation dashboard to this notebook, then train 
the model and monitor its progress through visualizations. During the next iterations of this study, the 
Jupyter notebook was revised and updated based on participants’ feedback and used in combination with 
the dashboard.  

The training notebook was designed to provide high-level control using hyperparameters and a series of 
visualizations to help with qualitative observations and quantitative evaluations. Most notably, it included 
a three-row plot to monitor the model’s performance during the training process (Figure 28). The first row 
of the plot shows a random set of samples from the validation dataset. The second row shows the same set 
of samples passing through the model, encoded to the latent space, and then decoded to get reconstructed. 
The third row shows the differences between the first and second rows; yellow regions indicate the most 
similarity, while red spots highlight the largest discrepancies. This combination of plots visualizes the 
model’s performance intuitively. Participants can make a qualitative evaluation based on the fuzziness of 
results on the second row and the smaller regions covered with red spots in the third row. Sharper results 
in the second row and fewer red regions in the third row were indicative of a better performance. The 
combination of the three-row plot and the classic loss-per-epoch plot provides the two means of 
supervising the training process.  

Figure 27. Training/generating notebook, the notebook structure with comments and notes. 
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In the second iteration, I implemented the training process as a tab in the integrated dashboard. The user 
interface provided participants with the same three-row plot and a simplified interface to adjust training 
parameters and monitor the process (Figure 29, left). In this setting, the model runs on the participants’ 
local devices rather than cloud servers. Accordingly, each participant’s experience could vary based on 
their hardware. 

Integrating the training process with the dashboard helped the participants interactively curate the training 
data set. By design, the data curation visualizations were always visible on the top half of the dashboard, 
even while working with the Train tab (Figure 29, right). In this workflow, participants could select a 
dataset, train the model for an arbitrary number of epochs, evaluate the model’s performance, revisit data 
selection, modify it, and continue training for more epochs.  

Figure 28.Training interface as it appeared on the Jupyter notebook (left), interface details (right), 
minor edits applied. 
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4.5.4 Latent Space Navigation and Sampling  
The last step in the iterative toolmaking cycle is navigating the latent space of the trained model and 
generating new samples to create a handwriting typeface. Participants could use interactive widgets to 
draw samples from the model’s latent space and generate new samples for each letter. Sampling from the 
latent space was implemented in two methods: 1) generating each glyph with refined control over the 
sampling distribution, and 2) generating the whole 52 glyphs of the alphabet at once—without any fine-
tuning (Figure 30, top). 

I iteratively revised and improved the sampling process to make it more intuitive, more understandable, 
and easier to navigate for the participants. For instance, in the early version—v.1 from now—the primary 
sampling method was complicated, and the interface was not communicating enough with the user. The 
over-simplified method to rapidly generate the “whole alphabet” with one click was intended to allow the 
participants to quickly generate the whole 52 glyphs in the alphabet and then come back and fine-tune 
each glyph individually using the other tools in the notebook.  

Figure 29. Training tools in the integrated dashboard. 
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In the revised notebook—v.3 from here after—I replaced this sampling method with a more efficient 
implementation16 accompanied by two series of visualization: 1) showing an array of generated samples 
to let the user inspect them in real-time, and 2) a list of generated glyphs to demonstrate the progress 
toward all 52 glyphs (Figure 30, bottom). The four sliders were responsible for selecting a specific glyph 
to work on, adjusting the mean and standard deviation of sampling distributions, and the number of 
samples to be generated for each glyph. To encourage the participants to play with the sampling 
parameters—instead of leaving the setting on default values and skipping through each glyph—the 
sampling parameters were intentionally defaulted to produce borderline results. The results submitted 
after these changes were noticeably improved compared to those created previously. 

 
16 The main change was the modification that were applied to the random distribution behind the sampling method. 
This resulted in generating visually more appealing samples while requiring fewer adjustments in the sampling 
parameters.  

 

Figure 30. The v.1 sampling interface with the "whole alphabet" method, note the poor quality of samples 
(top). Interactive sampling widgets in v.3, note the slight variations between the samples (bottom). 
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The last variable was designed to save a larger pool of samples for each glyph with the desired level of 
variations between them. This pool of samples for each glyph helped create a more natural text rendering 
at the end, similar to human handwriting; each glyph instance follows the same style but with slightly 
different details. In the last iteration of the study, this sampling method was integrated with the dashboard 
and let participants quickly generate the typeface and render sample text with it (Figure 31).  

 
Figure 31. Sampling methods as unified in the integrated dashboard 
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Eventually, participants could use the interactive rendering widgets to convert an input text to a 
handwriting form while adjusting the spacing between the letters and lines (Figure 32). The generated 
typeface is saved as a series of 2D images in NumPy array of dimension 52 ×  𝑛𝑛 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 were 
52 reflects the number of glyphs in the typeface, 𝑛𝑛 is the number of samples for each glyph, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
defines the number of pixels in each glyph width and height. The final NumPy array is then saved from 
being used later. 

 

 

4.6 Study Report 

This section is a comprehensive report on the two iterations of this study, which were conducted in the 
Spring and Fall semesters of 2021. It is based on my firsthand observations, conversations with the 
participants, and review of their submitted materials. During this study, the participants had several 
opportunities to share their thoughts and views on the process, their experiences, and the results. 
Discussions during class time, work sessions, office hours, and presentations were the main means of 
communication. Moreover, at the end of this study, participants submitted a brief report and an essay to 
reflect on their experience with the data collection process, using data as an interface, interacting with a 
generative model, and navigating its latent space using interactive tools.  

Figure 32.  The real-time text to handwriting toolkit. 

Figure 33. Charts filled using hand and Sharpie marker (left) and digital pen (right). Images courtesy of 
Learning Matters students, reproduced here with permission. 
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4.6.1 Data Collection Process 
The first step in this study was data collection, which proceeded with data preparation. One of the earliest 
decisions for each participant was to choose a platform for data collection. Participants could use pen and 
paper or any digital pen/stylus setup to generate their input data. Only three participants opted to use 
physical pen and paper, while the rest used different digital devices combined with a handful of software 
packages to post-process the samples (Table 3). 

Table 3. Mediums of data collection17 

 

 

 

 

 

Using digital pens helped the participant have a more flexible workflow, allowing them to zoom, rotate, 
and edit the written samples. The choice between pen and paper and digital tools was not merely 
associated with hardware availability. Interestingly, one participant found using a digital pen unnatural 
after testing it briefly and decided to use a physical pen and paper. They stated that using pen and paper 
results in messier samples and a less forgiving process, but it offers the most realistic examples of one’s 
handwriting.  

Some participants were curious to know the outcomes had they used different media. There were 
indications about the influence of the data collection medium on the quality of the samples. For instance, 
participant #8 mentioned that the different tiers of Adobe Acrobat software register and handle the edges 
noticeably differently, which was inconsistent with their original handwriting.18 Additionally, a few 
participants mentioned that using a digital medium helped them quickly update their samples and replace 
the undesired ones. This process could be more challenging with a traditional pen and paper or marker 
and paper. 

In the first iteration, the data collection procedure required the participants to write down around 1900 
individual letters, which equals two-thirds of a letter-sized page (Figure 33, Figure 34, Figure 35). Some 
participants considered this phase “straightforward” and “fun.” In contrast, some participants found this 
process more time-consuming than initially expected and sometimes “monotonous.” Participant #8 states 
that this specific data collection approach is “unnatural” and “time-consuming.” 

In the second iteration, where letters were organized in 1000 words rather than individual cells, 
participants could "… provide more natural inconsistencies"19 to the dataset while reflecting the 
participant’s "writing habits"20 (Figure 36). However, they find the process tedious and painstaking. The 
annotation was also time-consuming and prone to subtle mistakes that could trigger serious challenges 
down the road (Figure 37). Interestingly, participants managed to find impromptu solutions for these 

 
17 For more information about the software packages and pieces of hardware, please refer to developers’ or 
manufacturers’ websites (Apple 2022), (Wacom 2022), (GoodNotes 2022), (Adobe 2022b), (Adobe 2022a). 
18 Participant #8, reflection paper. 
19 Participant #10, reflection paper. 
20 Participant #12, reflection paper.   

Format Hardware Software Number of participants using 
(first/second iterations) 

Pen and paper Sharpies, pen - 2/1 

Digital tablets 
Apple iPad  GoodNotes and others 4/3 
Wacom tablets  Adobe Photoshop  2/0 
Other digitizers Adobe Acrobat  1/0 
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issues—notably, developing Python code to enhance pre-processing stage, manually editing labels, using 
Photoshop to correct their handwriting errors— and then communicated this solution among their fellow 
participants. Some of these solutions also helped me enhance the meta-tool and allowed me to fine-tune it 
for the next iteration. 

  

Figure 34. Samples of handwritten letters from the first iteration of study, after preprocessing. Note that 
the grid lines were also captured around many of the glyphs in round one (left) while in the second round 

this issue was corrected by the participant (right), images from 48-770 students, reproduced here with 
permission. 

Figure 35. Samples from the first iteration of study, after the initial preparations. The first round (left) 
contains letters that were not correctly aligned with the grid, this later produced undesirable artifacts in 

the results. In the second round (right) letters were organized and aligned more consistently. Images 
courtesy of participants, reproduced here with permission. 
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Figure 36. Sample collection in words for the second iteration, note that the samples are written in 
words rather than isolated letters. The left page is from the first round of data collection, while the page 
on the right is from the second round. Note the difference in spacing and thicknesses, images from 48-

770 students, reproduced here with permission. 

 

Figure 37. The segmentation and annotation process, writing the words (top-left), annotating each 
letter in CVAT (top-right), using the Python code to extract each letter as a fixed-size image (bottom). 
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Although the revised method felt more natural during the writing stage, some participants highlighted 
new issues. Most importantly, the tedious annotation and segmentation process to find and mark each 
letter individually. Spotting and addressing issues in the samples—common mistakes such as a missing 
letter or a typo (Figure 38)—became too challenging for the participants.   

All participants reported prolonged time spent on the first ten pages. Moreover, collecting the exact same 
number of letters using meaningful words is impossible. The frequency of some letters, i.e., e and a, is 
significantly larger than other letters, such as q and x. To compensate for this issue, a larger set of samples 
were collected, then the surplus samples were discarded while certain samples were duplicated to match 
the intended dataset size. For each letter with more than 36 samples, only 36 of them were randomly 
selected. But, for the letter with fewer than 36 samples available, the existing ones were duplicated to 
match the number of other letters. 

Another issue was the impact of the segmentation method on the participants’ handwriting. They had to 
modify their routine handwriting to accommodate the segmentation method. For instance, each letter had 
to be clearly spaced from the adjacent ones (Figure 39). Also, participants who routinely write letters 
slightly inclined had to straighten up their handwriting to let the letters fit inside the straight rectangles 
with no overlap. 

While discussing the data collection process with the participants, the most interesting discussions were 
probably formed around the relationship between the participants and the data. The process helped one 
participant to “…identify the relationship between each step [and] the influencing factors that potentially 
affect the results.”21 There were several positive reflections on the bonds between the participants and 
their datasets. For instance, some expressed their satisfaction with the level of familiarity with the data. 

 
21 Participant #13, reflection paper. 

Figure 38. Samples of common, but hard-to-catch mistakes, images from 48-770 students, reproduced 
here with permission. 

Figure 39. Sample of original handwriting of a participant (top), samples of the same participant's 
handwriting adapted to keep letters separated, image from 48-770 students, reproduced here with 

permission. 



60 
 

This satisfaction was partially derived from the level of control they had over the quality of samples, 
which could be out of their control when using datasets from external sources.   

The reflection papers also discussed the difference between a bespoke data collection approach and an 
off-the-shelf one. On the one hand, participants refer to the convenience of having a ready-to-use large 
and diverse dataset as an advantage of off-the-shelf datasets over a bespoke data pipeline. On the other 
hand, a common concern over the off-the-shelf approach was the lack of control over data quality and 
losing the agency over what was being fed to the learning model. For instance, participant #2 states that 
through the bespoke data collection process, “… I could control the quality of the dataset I was going to 
build … I would be very familiar with the dataset.”22 Another participant mentioned that the user-
generated data “…give[s] a lot of agenc[ies] in decision-making for the one making the dataset," while 
off-the-shelf datasets provide more variations with the tradeoff of less control.  

The other major area of discussion was devoted to different notions and understandings that participants 
gained through this process. Some participants found this bespoke data curation an enlightening process 
that helps them feel connected to the process and “makes things which may have seemed quite abstract 
much more tangible and ‘real.’” 23  

Some participants reported that they developed a notion about correlations between the decisions in the 
data curation process and how the machine learning model behaves. For instance, a deliberate choice of 
stroke thickness would eventually reflect in the sharpness of the results. Several participants referred to a 
similar causal relationship that they observed between the data collection process and the machine 
learning model behavior.  

The data collection experience not only allowed the participants to learn about an end-to-end machine 
learning pipeline but also to understand their skills and abilities better. An enlightening observation came 
from participant #7, who realized their handwriting was not precisely as perfect and persistent as they 
used to perceive: “I have a great deviation in a few characters, and that is where the generated data was 
inefficient.”24 They had to adjust their handwriting and data collection discipline to produce more uniform 
samples, making learning easier for the model.  

This was an important point. Despite my efforts toward making the data collection closer to real-life 
scenarios, there was still an inevitable level of detachment between the two. From the technical point of 
view, using more advanced handwriting recognition and automated segmentation methods could help 
address these issues, with the tradeoff of less transparency in the toolmaking workflow. However, from a 
broader perspective, this is an example of bi-directional dynamics between the meta-tool and the creative 
practitioner. The meta-tool empowers the creative practitioner, while the creative practitioner needs to 
embrace the affordances of its meta-tool and diverge from its routine workflow to achieve a greater goal. 

Other technical challenges and unexpected results were observed, especially in this study’s first iterations 
and early stages. An interesting result came from participant #5, where a wrong padding value resulted in 
a series of chopped-off, yet exciting, artifacts (Figure 40).  

 
22 Participant #2, reflection paper.   
23 Quotation marks inside the quote are from the participant. 
24 Participant #7, reflection paper. 

.   
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4.6.2 Data as Interface 
Interacting with the learning model and controlling its outputs by data helped participants understand the 
importance of a vetted and well-curated dataset in a machine learning procedure. It is also an informative 
way for both novice and expert users to interact with machine learning generative models. One participant 
described the “… rather creative effort [that] is required to compose a means to get useful data that can be 
trained by the machine …” compared to code which is a "…matter of experimentation and analyzing 
results."25 Another participant addressed the relationship they developed with the dataset through this 
process. They mentioned their prior experience with ML but “never had the opportunity to have such a 
close relationship with dataset before.” They then elaborated, “[t]he experience of manipulating models 
with data is a great way to understand the importance of a well[-]curated and robust dataset.” This helped 
them realize the sheer significance of data in the process. As they put it, “[t]his fact is reinforced and 
“lived” through this kind of “data-first” project, so I really commend the end[-]user impression and 
respect I’ve gained through this learning experience.”26 

One interesting participant observation was the possibility of combining data curation and parameter 
adjustments to control the learning procedure on different scales. Participants mentioned that working 
with data as an interface empowered them to steer the direction of outcomes significantly and let them 
take more significant steps toward desired results—or, as one participant described it, “coarse grain.”27 
Working with code and hyperparameters gave them granular control over the behavior of the model, fine-
tuning results, and making small improvements, or as the same participant put it, “fine grain.” 

Despite primarily positive opinions, one participant did not find the approach rewarding. While working 
on this project, participant #8 had multiple issues with the data pipeline and, consequently, the learning 
model. As a result, they could not observe any meaningful interaction between the data and the learning 
model and mentioned that they were unsure if they could control the model through data. Although they 
were optimistic about the affordances of data since “… it felt more engaging than tweaking arbitrary 

 
25 Participant #10, reflection paper.  
26 Participant #3, reflection paper. 
27 Participant #2, reflection paper.   

Figure 40. An unexpected artifact resulted from wrong padding parameters in the data pre-processing 
phase, images from 48-770 students, reproduced here with permission. 
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parameters,” they believed that writing code is a more “immediate” and “direct” way of controlling the 
model.28  

At the end of the semester, the same participant revisited the toolmaking process using the same dataset, 
but this time using the v.3 notebook. This time, the results were very satisfying. This was one of the 
biggest lessons of this study; proper tools and implementations that support user-friendly and real-time 
interactions can drastically change the user experience and the results.  

4.6.3 Integrated Dashboard 
Participants found the integrated dashboard a valuable tool in their process that gathered all three steps of 
the toolmaking process in one unified interface. The interactive data curation tools that helped them 
visualize and comprehend the diversity of samples in the dataset were received very well as a step beyond 
the widgets available in the CoLab notebooks. Some participants even found them helpful in inspecting 
their own datasets. As one participant put it: “the more I used the dashboard, the more intuitive it 
became.” The impact of the dashboard on participants’ intuition of data and its potential in ML went 
beyond my initial expectation: “…naturally, made clear by the dashboard, data in its vastness and 
diversity is what determines the code, rather than the other way around.”29 However, it was not the same 
experience for everyone. Some believed that the dashboard was more interactive than responsive and 
informative. 

The hovering overview was the favorite interaction on the data dashboard (Figure 41). Some participants 
indicated that the plot with both t-SNE and label distribution was more helpful than the plot with only the 
t-SNE distribution. It helped them understand the distribution of data by quickly hovering over the X-axis 
to see style changes and over the Y-axis to observe various glyphs in relatively similar shapes. The 
selection tools were also well-received by the participants. They appreciated the ability of the selection 
tool to quickly select and slice sub-sections of the dataset in a few clicks rather than applying 
cumbersome NumPy operations to split and select data (Figure 42).  

The organization of the dashboard as a one-page web app (Figure 23), with the data curation tools 
constantly available, made the overall process cleaner and smoother. While finding a specific function in 
the notebooks required constant scrolling and more attention, “… in the dashboard, [one] find[s] the 
buttons, labels, sliders without any effort; the interface on the dashboard [was] so clean.” One participant 
mentioned that “[t]he dashboard provides an unobstructed interface for training; users can entirely focus 
on selecting data, training models, designing fonts, and rendering paragraphs.” This user concluded that 
as novice ML user, they prefer the dashboard over the notebook.    

 
28 Participant #8, reflection paper.   
29 Participant #10, reflection paper.   
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There were suggestions to improve the dashboard. For instance, adding a brief description for each 
dashboard section was suggested. Although the data curation dashboard was accompanied by a 
comprehensive video tutorial where each functionality was discussed in detail, adding such descriptions 
as tooltips would provide participants with a quick refresher on each section’s functionality. 

Another suggestion was to replace the 2D plots with 3D plots. This idea was tested in the early stages of 
dashboard development. Despite the exciting visual appearance, it became clear that interacting with a 3D 
plot on a 2D screen is frustrating. Adding the extra dimension introduced several user interaction 
challenges while adding limited values. Accordingly, it was replaced by the current 2D plot in the final 
version.   

While most comments on the data dashboard were positive, some participants pointed out a fundamental 
issue with the dashboard workflow. One participant pointed out that while the visualizations were 

Figure 41. Dashboard’s user interactions: hovering preview (left), rectangle selection (center), lasso 
freeform selection (right). 

Figure 42. A data curation sample, note the effort to keep the samples visually close while covering the 
full range of glyphs using the t-SNE/Label plot (left), a view of 400 samples from the selection (right), 

image courtesy of Learning Matters students, reproduced here by permission. 
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interesting, it was unclear what kind of data should be selected to return good results. This is a critically 
valid issue. Each action on the dashboard was followed by a real-time response which would guide the 
user to adjust its subsequent decisions accordingly. However, since the training process was detached 
entirely from the dashboard, participants could not predict the consequences of their decisions on the 
training process and results. This issue was addressed in the second iteration of this study by integrating 
the training phase into the dashboard. Participants could add, remove, or completely change the training 
dataset after each designated number of epochs.  

It is worth mentioning that the C-VAE model used in this study is relatively shallow,30 and the dataset is 
very small. Therefore, the training process is quite fast. For more complex models with slower training 
processes, such integrations would not greatly benefit the user experience. In such cases, the time gap 
between the users’ decisions and their effects on the results can easily surpass any meaningful real-time 
interaction threshold.31 

Finally, I noticed that the data curation tool had a rather unexpected drawback. The tool was so easy to 
use that it encouraged participants to create wildly diverse datasets. To their disappointment, the C-VAE 
model could easily be overwhelmed with such diverse datasets, and the results were abysmal. As 
observed by one of the participants, compared with a regular dataset—coming from a single participant—
with the same sample size and the same number of epochs, a blend dataset would result in lower quality 
and less desirable results due to the limited capacity of the C-VAE model. 

4.6.4 Training Process  
As discussed earlier in this chapter, the training process was intentionally stripped to its barebones to let 
participants focus on the data pipeline. Participants used a pre-defined model with mostly fixed 
hyperparameters. Only playing with the number of epochs, participants tested a wide range between a few 
hundred and a few thousand epochs and eventually found values between 150 and 250 as the optimal 
range. 

The participants described the training process as “extremely quick”—compared to other machine 
learning architectures—notably GANs—and “straightforward.”32 As the provided model was optimized 
to train over a short period, its ability to learn complex data distributions was limited. A participant 
noticed this issue, highlighting that they had overestimated the model’s generalization ability. This forced 
them to return to the data generation phase and create a more uniform dataset that matched the model’s 
capacity.  

Multiple participants noticed that the dataset’s size, quality, and distribution significantly impacted their 
results. The model tends to overfit when training over large subsets of the shared dataset. Some 

 
30 Here, I use the term shallow in contrast with deep, as in deep learning. It is worth mentioning that referring to a 
model as deep is a subjective decision, based on the current state of the art in machine learning. The model that was 
used in this study, could be considered a deep model a decade ago. 
31 There were also a few references to the cosmetic issues in the dashboard implementation, i.e., the plot sizes. While 
the dashboard was designed to act responsive to different screen sizes, the visualizations were best viewed in large 
desktop screens, not mobile devices, nor laptops. In the second iteration, some level of responsiveness was added to 
the layout of the dashboard to compensate for this issue. 
32 It is worth mentioning that the two iterations of this study were conducted in two different stages of the class during 
the two semesters. In Spring 2021, this study followed the GAN module. Participants found the C-VAE model quick 
and straightforward after working with a derivation of Pix2Pix for three weeks. In contrast, during the Fall 2021 
semester, this study preceded the GAN module. Participants from this cohort did not find the model quick and 
straightforward as they only had the experience with simpler AutoEncoder models based on multi-layer perceptron. 
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participants adjusted the input data to overcome this issue, while others ignored that and used the 
overfitted model to generate their samples. Switching from thin to thicker strokes could also help the 
model achieve better results. Several participants noticed this point and took advantage of this finding, 
especially after it was brought up during the presentations by other participants. Such information 
exchanges between the participants became a habit across this study, allowing them to swiftly overcome 
challenges in their process. 

4.6.5 Latent Space Navigation 
Navigating the latent space of a C-VAE is slightly different from other types of AE and VAE models. The 
model could disentangle the labels from the visual characteristics through the conditioning method in the 
latent space. On the one hand, users should feed the label signals, and on the other hand, they should 
explore the latent space to find the most desirable style for the given label. Participants could use a series 
of interactive widgets to navigate the latent space and generate their desired typeface.33  

During the early stages of the first iteration of this study, some participants could not successfully train 
their model. Even though these participants could successfully curate their datasets, they had issues with 
the training process and generating new samples to create the typeface. Further observations and 
discussions with the participants clarified that the methods to draw samples from the latent space were 
quite hard to understand and use. Some participants reported the process to be tedious and complained 
that the sliders in the UI were either over-sensitive in some cases or almost ineffective in other cases. 

Several participants highlighted the widgets’ real-time visual feedback as an intuitive feature that helped 
them make their design decisions more efficiently. The tools helped participants visualize and explore the 
latent space without directly comprehending it: “Although we can’t see the actual latent space, changing 
the mean and standard deviation really gives me [an] understanding of how the letters cluster in the latent 
space…I could really see how different types of handwriting emerge with comparatively large standard 
deviation input.”34 The interactions made the latent space navigation more “tangible” and “visual” for 
users who only possess a high-level understanding of the workflow. One of the participants mentioned 
that “… there is a design agency in generating the font based on changing values of the latent space.”35 

There were also comments on the shortcomings of the interactive widgets; some participants were 
confused because the same input parameters could result in slightly different results. This is a direct result 
of the random algorithm behind the sampling method. Even with the same standard deviation and mean 
values, a virtually unique Z vector would be sampled each time. Thus, the generated samples would be 
different. From the users’ perspective, it means that if they move the widget sliders over a good example, 
they cannot reproduce that example by setting the sliders back to the same values, which can be very 
frustrating when going through 52 glyphs.  

 
33 As discussed earlier, the first version of these interactive widgets which were available through the training notebook 
v1 proved to be less effective and it was later replaced with a new set of widgets with supporting visualizations in 
notebook v3. The reflection papers were written based on the v3. 
34 Participant #9, reflection paper, all reflection papers are available in Appendix III. 
35 Participant #10, reflection paper.   
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Multiple participants mentioned that they could not clearly comprehend the effects of each variable on the 
results. For instance, the fact that changing the values in one direction would not necessarily improve the 
outcomes was challenging to comprehend for some participants. Participants came up with a range of 
suggestions to address this issue, most notably 1) adding a series of brief descriptions to each widget to 
clarify the variable’s effect on the results and 2) including some form of visualization to depict the effects 
of changing std and mean values on the sampling distributions.  

Meanwhile, some users managed to decipher some form of causalities between the variables and the 
results. Participants opted to set the variables to their extreme values and figure out their effect on the 
results, which helped some of them decide on variable combinations very quickly. One participant 
carefully observed the effects of variables on some letters and tried to draw a pattern of the relationships 
between variables and results through observation: “I believe, the greater the mean is, it allows for normal 
transitions of styles without distorting the letter much … when the mean slide[r] is in -1, it gave the ‘a’ 
character a gothic look, with the stretched pointy edges. And for the other side of the spectrum, the ‘a’ 
was just a little bit squished down but still looking like an ‘a’ character, which is difficult to spot from the 
lower mean value” (Figure 43).36 

In general, due to the stochastic nature of the process, it is not an easy task to standardize latent space 
navigation. While it is relatively easy to predict the general effect of each variable in the sampling 
process, fine-grain control is not available before careful observations and examination of each variable’s 
effect. One possible method to improve users’ experience in latent space navigation is using an existing 
sample as a “seed” to start with. In this scenario, the user selects a desired sample from the dataset and 
passes it through the encoder model to find its vicinity in the latent space. This latent representation can 
be the starting point for generating other glyphs and variations. In this scenario, the user starts from a 
visual sample, and then the sample helps find the abstract mediums (std, and mean values).  

The v.3 notebook followed the opposite approach: the sampling method would start with abstract 
variables (std and mean), then these variables would be used to generate visual results. In this method, 
users should start from random visual results and change the variables to find the desired solutions. On 

 
36 Participant #5, reflection paper.  

.   

Figure 43.  Exploring the latent space to find a desired set of glyphs using widgets in notebook v1, images 
from 48-770 students, reproduced here with permission. 
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the other method, users can pick the desired sample, or draw the desired sample, generate its 
corresponding variables, and continue exploring the vicinities of that sample in the latent space.  

4.6.6 The Three-Round Process 
The three-round process was executed in a two-week period. For the first round, participants had one 
week to get familiarized with the process and share their data with the cohort. They were given another 
week to work on the second and third rounds combined.  

Round one:  

The first round of data collection was a warmup and learning opportunity for the participants, and they 
had a week to finish this phase. It was the first experience in data generation, pre-processing, and curation 
for many of them and became a bumpy journey for some of them. Some of the common mistakes were 
prevalent among participants, including, but not limited to, 1) issues with the alignment of glyphs in the 
cells, 2) lack of consistency between the size of uppercase and lowercase letters, 3) discrepancies between 
the style of glyphs across the charts, and 4) some issues with the post-processing procedures. Moreover, 
some participants reported issues with glyph with close visual features, such a "c", "b", "d", "q", "p", "O", 
"Q". 

In the second iteration, where participants could write letters in words, the most common issues could be 
traced back to the annotation and segmentation process, as discussed earlier (Figure 38). Students 
completed ten pages, covering around 500 words. While this is a relatively small piece of writing, 
segmentation, annotation, post-processing, and checking the data took significantly more than the first 
method. Participants reported over 5-6 hours spent in this phase. 

Round two:  

For the second round, participants put the experience of the first round into practice and generated more 
consistent data with thicker strokes, clearer edges, and adjusted alignments to overcome the previously 
observed issues. Other techniques, such as applying different pre-processing steps and changing the 
software for data collection, were also used by participants to improve their toolmaking process (Figure 
44). Thus, many participants found the second round’s results superior to the first round’s due to these 
modifications in the dataset.  

Some participants also reported that the experience they gained in the first round helped them work with 
the interactive widgets with more dexterity and navigate the latent space more productively. However, 
one participant reported that they could not improve the results remarkably between the two rounds.37 

In the second iteration, participants were asked only to complete another five pages (250 words) rather 
than all ten remaining pages due to time constraints. Accordingly, instead of working with a completely 
new set of samples, they combined the data from the 15 pages. This did not increase the total number of 
samples in their training dataset, as the total number of samples was set to 1872. However, it helped them 
balance the number of samples for each letter. 

Round three:  

In the last round, participants engaged in a collective data curation activity, where each participant could 
tap on a pool of shared data samples, collectively made by all participants, to curate a new training and 
generate a fusion handwriting typeface. In several cases, students failed to create legible results on the 

 
37 This participant revisited the pipeline later in the semester and came back with very interesting results. 
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first try. Once they had access to the notebook v3, they combined it with the data curation dashboard and 
made very interesting results. 

Some participants managed to train their model with relatively small datasets—2x to 6x the size of a 
single dataset— while some others tried to mix all the available data at that point—up to 15x larger than a 
single dataset. The results were quite interesting, and some participants reported that it was the best 
outcome of the three. In contrast, some participants found that the results were not as consistent as they 
expected to the point that it was possible to see traces of multiple handwriting in the results. One 
participant tried a mixture of two completely different handwriting samples to create its typeface; the 
results were not visually appealing, and “it looks like a right-handed person trying to write with their left 
hand.”38 

 

 
38 Participant #5, reflection paper.   

Figure 44. First dataset (left column) and the second dataset (right column), notice the consistency in 
size and style of the second set compared to the variances of the first dataset (top row) and change of 

thickness (bottom row), images from 48-770 students, reproduced here with permission. 
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4.7 Discussions 

The study, in general, was a successful example of engaging users in the machine learning-based creative 
toolmaking workflow. The participants were profoundly engaged in the process, from creating their 
datasets to using the machine learning model for generating the typeface. In this section, it is enlightening 
to revisit the objectives set at the beginning of this study and reflect on them based on the results, 
observations, and participant feedback. 

4.7.1 Data as Interface 
One of the primary objectives of this study was to inquire about the affordances of data as an interface to 
interact with and control a machine learning model. Throughout the discussions and reflection papers, 
participants’ feedbacks were positive. They found data as a more intuitive interface than coding. Data 
allowed them to sense the relationship between the input data and the results. This made it easier to 
control the model and improve the quality of generated samples by taking course-grain steps toward the 

Figure 45. Typeface designed and generated by participant #2: round one (top), round two (middle), 
round three (bottom), notice the consistency of results on round one and two, where all the samples were 
generated by one user and round three where data was curated from different users’ inputs, images from 

48-770 students, reproduced here with permission. 
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desired results. One participant described the design of the data collection process as a “creative process 
in itself” through which users can “get into a conversation with the tool through the data.”39, 40 

4.7.2 Physical Context 
Another objective of this study was to investigate if the machine learning-based meta-tools allow the 
users to engage with elements of their physical contexts, such as specific tools and materials, in the 
toolmaking process. In several cases, participants referred to their medium of choice—pen and paper, 
tablets, digitizers—as well as the software packages that they used for data processing. It becomes clear 
from this repeated pattern that the data collection process, and subsequently the whole toolmaking 
process, were heavily affected by the medium and the software package. Even changes within the same 
medium turn out to have noticeable effects. For instance, one participant expressed satisfaction with the 
results when using thick Sharpie markers rather than thin pens. Another participant mentioned using 
Adobe Acrobat Pro instead of Adobe Acrobat Reader to have more desirable samples (Figure 46). These 
discussions prove one of the primary points of this study, the affordances of the toolmaking apparatus to 
capture and reflect elements of the physical context.  

 

The COVID-19 restrictions heavily influenced this study’s design mostly reflected in the data collection 
phase. As it was brought up in the reflection papers, the level of abstraction had impacted the participants’ 
natural workflow. Most notably, collecting samples in secluded cells introduced undesirable side effects, 
i.e., unnatural kerning.41 Several participants referred to kerning as a significant issue with their generated 
typeface. After observing the first round of presentations, participant #8 concluded that the best results—
probably the most legible and closest to the original dataset—are the outcomes of almost “robotic-
looking” and uniform samples. They continue to bring up a very interesting point: “…to really capture the 
individual style of a writer, woodworker, one would need to capture their movements and results when 
they are in a flow and operating without self-conscious manipulation of the tool.”42 Their point of view 
directly pointed at the abstract methods implemented for data collection.  

4.7.3 Idiosyncratic Elements 
Several participants reported that their generated typefaces were visually close to their handwriting. 
Participants generated samples based on their handwriting throughout the data collection process and 
adjusted the dataset based on their personal preferences. However, it must be noted that as they learned 
the model’s behavior, they gradually adjusted their samples to the affordances of the machine learning 
model. This bi-directional interaction was one of the most interesting observations of this study; 

 
39 Participant #8, reflection paper.   
40 It is worth mentioning that one participant described the process of controlling the model through code and 
hyperparameter as a type of “craft” that takes time and practice to achieve the expected results. This is an interesting 
observation that resonances the notion of craft in the realm of information technology (Mccullough 1996).  
41 Kerning is the adjusted space between two letters that can be different between specific pairs of letters. 
42 Participant #8, reflection paper.  

Figure 46. Effects of software used in the data collection on the samples, notice the way the 
software handles the corners in different samples, image from 48-770 students, reproduced 

here with permission. 
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participants molded the meta-tool to fit their workflow and concurrently adjusted their workflow to fit the 
meta-tool’s affordances.  

On the training side, the visualizations—most notably, the three-row plot—helped participants see beyond 
the classic machine learning plots and decide on the training progress based on their preferences. 
Additionally, the interactive widgets in the training notebook, with the real-time plots, allowed them to 
incorporate their personal preferences in the generative process. The same applies to the data curation 
dashboard, where they could select and train their model based on the desired dataset instead of an off-
the-shelf one. 

4.7.4 Understanding the Behavior of the Machine Learning Models and Aligning It with Creative 
Practitioners’ Workflow 

The three-round process was an eye-opening experience. One could observe the participants’ learning 
curves, starting from the bottom, learning from mistakes, and exploring the uncharted territories of other 
participants’ data. In every round, participants learned new lessons and faced new challenges, and they 
managed to improvise solutions to overcome them in the next round. Glyph alignments, size and style 
consistency, the model’s tendency to learn thicker strokes, and adjustments to improve the notebooks are 
only a few challenges that participants faced initially and solved successfully in the following rounds. I 
found the three-round approach one of the most successful components of this study. 

An objective of this study was to observe the affordances of collective data curation in the toolmaking 
process. The initial assumption was that the participants could improve their toolmaking process by 
enriching their data set with the samples provided by their fellow participants. The data curation 
dashboard was developed around this idea and let the users select a desired sub-section of the collective 
database to generate a new typeface. The data curation dashboard and its implantation in the integrated 
dashboard were also very well-received among the participants. The real-time interactions helped several 
participants select data, inspect their dataset, and explore the patterns and similarities in the dataset. The t-
SNE plots, specifically the t-SNE/label plot, with their real-time previews, were very helpful in this case. 

However, from the first presentation, it became clear that most participants did not fully comprehend its 
applications and potential in the data curation process. It was only after the presentation that participants 
learned more about the affordances of the dashboard from each other’s process and took advantage of it 
for the final submissions. It became clear that the users would not effectively adopt an abstract dashboard 
without concise yet engaging documentation and demonstration.   

During the study and after the first round of presentations, it was clear that this method of mix-and-
matching data introduces significant challenges to the learning model. To make the participants’ 
experience closer to a real-time design experience, the C-VAE model was optimized to reduce the 
training time. This approach resulted in a well-adapted model for small datasets with a low level of 
variance in the training samples. Some participants pushed the model to its limits by training it over a 
wide range of samples from multiple other participants at once. Upon facing a training dataset with such a 
wide range of variations, the model failed to learn the data distribution, and the results were far from 
legible. 

The fascinating part came after the first round of reviews; participants observed how the model collapsed 
in such cases for everyone and embraced this shortcoming. They switched gears to redefine their 
approach based on the affordances of their machine-learning model and opted for carefully curated 
datasets. Most participants successfully generated their handwriting typeface using smaller subsets of the 
shared database. A model with deeper architecture could potentially learn the data distribution in larger 
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datasets without overfitting. However, this achievement would come at a potentially steep increase in 
training time, which defies the goals of this study.   

While all the participants had prior exposure to the details of the machine learning model and the means 
to adjust various hyperparameters, only a few of them found it necessary to get engaged with the model’s 
details. In contrast, the others found the number of epochs the only parameter that needed further 
adjustments. Meanwhile, all participants got heavily engaged with the interactive widgets and real-time 
visualizations to explore the latent space and found it very helpful to generate desired results from the 
model. The widgets were not perfect, especially in the v1 of the notebook. However, changes I made to 
the v3 improved users’ experiences. 

Participants reported on their experience with the process of creating bespoke datasets, curating data, 
training a model, and making their typeface generator tools. They described this process as building a 
“real human-AI relationship” through “physical-to-virtual data conversion.” There were multiple 
indications of a common understanding about how specific visual features of some glyphs in the dataset 
can significantly improve the behavior of the learning model or which portions of the dataset will create 
the most challenging bottlenecks in the learning process. On a few occasions, participants mentioned what 
they learned from observing other participants’ datasets and workflows to enhance their own.  

4.8 Lessons from this Study 

As I reviewed the submissions and reflection papers, I realized that even though all the participants had an 
equal chance to receive training and supporting materials, it was only after the first presentation that 
almost all participants could accomplish all the objectives of this study. The leap from the presentations to 
the final submission can be credited partially to the improved tools and widgets. However, multiple 
participants highlighted that they learned from the other participants and then revisited their work and 
improved it. It is an interesting observation that resembles the TEA Set story (H. Collins 1974).43 
Accordingly, a series of one-on-one working and training sessions will be designed for the subsequent 
studies where the expert user and the researchers get engaged in a collaborative dialogue to learn from 
each other and develop different pieces of the meta-tool.44 

Interactive visualizations are critical elements for communicating with users with limited technical 
knowledge. These visual mediums help users intuitively correlate their decisions and the behavior of the 
machine learning model. Even for the users with prior exposure to machine learning, these visualizations 
were more effective than abstract activities such as coding.  

4.8.1 Participant, Toolmakers, Meta-Toolmaker 
Throughout this study, it became clear that my role is best described as a meta-toolmaker. I interfaced 
with the participants through the meta-tool and provided the underlying technology to allow them to 
create their handwriting typeface generator tool. I sculpted the meta-tool primarily based on my decisions 
and understanding of the study’s question. Indeed, the bi-directional dynamics between the participants 
and me enriched the process and smoothened the experience.  

 
43 TEA Set is a now-classic example of Collins studies on tacit knowledge. In The TEA Set: Tacit knowledge and 
scientific network (1974), he emphasizes the importance of tacit knowledge, even in cutting-edge scientific efforts. 
This study is mentioned earlier in Discussion on the .  
44 Building on the lessons learned in this study, I opted for one-on-one sessions with the participant on the second case 
study. 
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Meanwhile, participants were free agents who were exploring uncharted territories when it came to 
toolmaking. I was not in charge, but I guided them when they needed clarification. I provided the 
infrastructure and the meta-tool, and they built their tools and used the tool to generate several iterations 
of new typefaces. As such, they made their own handwriting typeface generator tool. 

In the next study, I examined a different approach to the meta-tool and toolmaking process. I aimed to 
blur the lines between the meta-tool and the tool and invited the expert user to engage directly in the 
toolmaking process. 

4.8.2 Limitations and Future Steps 
The scope of this study was narrowed down to individual letters. However, as mentioned by the 
participants, this data collection method forced them to deviate from their routine handwriting to satisfy 
the technical limitation of the data pipeline. Even in the second iteration, participants had to adjust their 
handwriting to match the data annotation method. This issue weakened the argument of this study to work 
with real data generated by the users. A potential next step for this study is to work on methods to address 
this issue.   

Another direction to expand this study is to explore different rendering approaches, such as rendering 
words or sentences instead of one letter at a time. This expansion requires integrating proper kerning and 
letter spacing. Also, the scope of this study can expand to include ligatures and try languages that use 
cursive scripts as the default form of writing, i.e., Persian scripts.  

Shifting from pixel-based representation into traces and vector-based representation is another area that 
can be explored further. This approach opens new opportunities to study the physical toolmaking aspects 
using computer-controlled actuators.   

A critical limitation of this study, specifically in its first iteration, was the lack of integration between the 
meta-tool’s components. Throughout the review process, I realized that the fragmentation of the machine 
learning pipeline and lack of interoperability45 was a potential bottleneck in making a comprehensible 
workflow. Interoperability hinders the design process, as switching between platforms for data curation, 
training, and generation phases is time-consuming and distracting (Veloso et al. 2022).  

In the first iteration of this study, the three main steps of the machine learning pipeline—data collection, 
data curation, and model training—were completely separated from each other. The second iteration 
partially addressed this issue by integrating the data curation, training, and sample generation phases.  
However, the data collection and annotation were still detached from the rest of the toolmaking process. 
When participants generate the learning samples, it will be more intuitive to see the model trained on the 
data in real time and provide instant feedback to the user, opening the way for an iterative loop of data 
curation, training, and generation.  

Integrating all phases of a machine learning pipeline—data collection, data curation, training, and 
generating new samples—and improving interoperability can help users oversee all elements of their 
toolmaking process as a unified system and comprehend how it works. An end-to-end toolmaking 
apparatus with readable and communicative visualizations can help users draw lines between their 
decisions through the data collection and outcomes and see the connections between their decisions and 

 
45 Interoperability is the ability of two or more software components to cooperate despite differences in language, 
interface, and execution platform (Wegner 1996, 285). 
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the results. This understanding of a complex system shapes a new form of tacit knowledge for the process 
of machine learning-based creative toolmaking.  

Working with C-VAE models helped this study in various ways. Most notably, I found the fast and 
reliable training process one of the biggest advantages of this architecture. Also, the trained models 
demonstrated good coverage of the training dataset. Finally, the model’s simplicity made it easier for the 
participants to understand how it works. However, the blurry results, a known characteristic of VAE 
models, were the main downside of using this architecture. Also, the model was designed to be light and 
fast to train, so its ability to learn complex data distributions was limited. Accordingly, another possible 
direction for future work is to explore other generative models that could learn more complex data 
distribution and generate sharp-looking results. 
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Chapter 5. The ThirdHand 
This chapter is a comprehensive report on the second case study of this thesis, where I 
collaborated with a musician to develop a robotic musical instrument to play santur, a 
traditional Persian musical instrument.  

Building on the lessons learned from the first case study, ThirdHand explores how a 
collaborative approach to machine learning can mitigate the lack of technical machine 
learning experience among creative practitioners and help them to integrate the 
idiosyncratic aspects, elements of the physical context, and nuances of creative practice in 
the toolmaking process. 

My experience and familiarity with santur were quite limited when conducting this study. 
Both of us were venturing into new worlds that we had not explored previously. For me, 
santur was a black box, and machine learning was a mystery for the musician. The process 
aims to bridge the two worlds through conversation, interaction, and collaboration.  

This chapter is organized into six sections: I will 1) introduce the framework of this case 
study, then, through the lens of other scholars and creative practitioners’ work, I will 
locate this study in the broader perspective of musical toolmaking. The proceeding section 
is an in-depth discussion of the 2) methodology and technical aspects of this research, 
followed by a thorough description of the 3) meta-tool and 4) early tests. Dividing the last 
three sections was a challenging task. As we worked collaboratively for several months, 
we iteratively revisited research methods and refined the tools based on the musician’s 
feedback, comments, and recommendations. This workflow, based on the research-by-
design approach, lasted during the entirety of the study, and gradually shaped the 
methodology toward its final form. Accordingly, most pieces of study reports found their 
homes between the lines of the methodology section. The final section reports on the 5) 
demonstration. I conclude the chapter with a 6) discussion of the study and its outcomes. 
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5.1 Study Framework 

This study addresses the two primary topics of this thesis: 1) accessibility of machine learning-based tools 
for creative practitioners and 2) embracing the idiosyncratic aspects, elements of the physical context, and 
nuances of creative practice in the toolmaking process. Compared with the first case study, this one delves 
deeper into the collaborative aspect of the toolmaking process between the musician and toolmaker.  

5.1.1 Question and Hypothesis 
The primary question in this study is: 

• How do interfaces for data generation and curation for generative machine learning offer new 
pathways for toolmaking for creative practitioners?  

The secondary question is: 

• How can a collaborative approach mitigate the lack of technical machine learning experience 
among creative practitioners and help them to integrate the idiosyncratic aspects, elements of the 
physical context, and nuances of their creative practice in the toolmaking process?? 

To answer these two questions, I hypothesize that: 

• Interfaces for data generation that emphasize user-generated data to integrate elements of the 
physical context and users’ subjective preferences can reveal new potentials of generative machine 
learning to support creative practices. 

• A collaborative approach to developing ML-based tools for creative practices can meaningfully 
bring ML experts’ technical literacy to complement creative practitioners’ domain knowledge and 
skills, overcome the technical ML challenges, and help integrate various idiosyncratic aspects, 
elements of the physical context, and nuances of creative practice in the toolmaking process. 

5.1.2 Goals and Objectives 
A primary objective of this study is to examine an approach to ML-based toolmaking process which 
embraces the bi-directional dynamics between 1) the social context—i.e., relationships and interactions 
between human agents—, 2) elements of the physical context—i.e., tools and instruments—, 3) the 
personal context, and 4) the underlying technology. 

Documenting and reflecting upon the collaboration between the toolmaker (me) and the creative 
practitioner are other goals. In this study, Mahtab Nadalian, the participating musician, had no prior 
exposure to computer programming, robotics, or machine learning. Therefore, her primary means of 
interacting with the machine learning models was through data and collaboration with me, the toolmaker. 
Thus, the proposed toolmaking process primarily relied on these dynamic interactions between us to 
iteratively refine the meta-tool and fine-tune it while keeping it accessible, transparent, and 
understandable.  

This study also aims to explore the potential of data as an interface to make ML-based toolmaking more 
accessible to creative practitioners. Observing this approach’s effects on the musician and its robotic 
musical instrument is another objective of this study.1  

The input data modality differs from the output in this study; the musician provides mezrab2 stroke 
samples, and the robotic musical instrument plays the notes on a santur to produce the notes. In such a 

 
1 The notion of data as the interface is based on (Rebecca Fiebrink 2016). 
 مِضراب  2
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setup, inspecting and curating data samples is not direct and explicit as I developed and implemented in 
the SecondHand study. Exploring the data curation methods and tool refinement in this scenario is 
another objective of this study. 

5.1.3 Context 
Robotic Musical Instruments 
Creating robotic musical instruments is by no means a new quest.3 It has been a topic of interest for at 
least two centuries. Barrel-operated stringed instruments, as well as roll-operated pianos, have been to 
some extent accessible in the market since the mid-19th century. Notably, “Pianista”—originally a 
pneumatically operated piano-playing machine by French innovator Fourneaux—was first patented in 
1863 and soon became the synonym for player instruments (Bowers 1972).  

At the dawn of the 21st century, the passion for making music-playing machines was still strong. Robotic 
musical instruments—sound-making devices that automatically create music with mechanical parts—to 
play piano, percussion, string instruments, wind instruments, and even turntable were not rare (Kapur 
2005, 1)  (Figure 47). While most of these machines were designed to mimic the way human musicians 
play instruments, some researchers went beyond the traditions and designed robotic systems to play 
instruments in novel ways to produce “… additional sonic variety and playability” (Weinberg et al. 2020, 
8). For example, the magnetic resonator piano, a hybrid acoustic-electronic instrument based on the grand 
piano, could directly manipulate the piano strings using electromagnetic actuators (McPherson 2010) 
(Figure 48).   

 

 
3 While not a topic of this study, creating machines to generate music is a subject of interest in the creative computing 
society. Inquiring into the affordances of artificial intelligence in music creation has also been a subject of interest for 
researchers since the mid-1950s. One of the earliest examples is Lejaren Hiller and Leonard Isaacson’s work published 
in the Journal of the Audio Engineering Society, titled “Musical Composition with a High-Speed Digital Computer” 
(1958). In that paper, they introduce the project they started as early as 1955 and discuss their technique for writing 
music using Illinois Automated Computer, better known as Illiac I. Fast forward to recent years, a significant body of 
literature on AI-assisted musical creation has been published. More recently, machine learning has become a vehicle 
for music generation research, as reflected in the current efforts of the Magenta team at Google (Chris Donahue, Ian 
Simon, and Sander Dieleman 2018). Handbook of Artificial Intelligence for Music (Miranda 2021) is a valuable 
resource in that matter for the eyes of interested readers. 

Figure 47.  Robotic musical instruments, from left to right: TibetBot and GuitarBot by LEMUR, images 
from (Singer et al. 2004), Hail on percussion and Shimon on marimba, images from (Weinberg et al. 

2020). 
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ML-Based Musical Instruments: 
Another approach to music toolmaking is crystalized through the works of Rebecca Fiebrink. While not 
incorporating a physical instrument to produce sound, she has developed a series of machine learning-
based musical tools in collaboration with musicians (Fiebrink 2011). For instance, she collaborated with a 
cellist, utilizing K-Bow4 and Wekinator5 to train a discriminative machine learning model. Once trained 
and evaluated by the artist, the model could classify seven different bow gestures performed by the artist. 
Fiebrink also worked with other artists to help them make their own machine learning-based musical 
tools, where an interactively trained machine learning model could recognize the signals from the artist 
and pass these prompts to a sound-producing algorithm (Figure 49).6  

 

 
4 K-Bow is a sensor-packed bow that could collect the data from the artist in real-time. Developed by Keith McMillen 
labs, KMI Labs, in early 2010s, it is described as a “… MIDI controller that takes information from the gestures and 
movements of a violin bow and translates it into MIDI Bluetooth controller data” (Keith McMillen Instruments 2020). 
5 Wekinator, as I introduced it in Chapter 2, ML-Based Toolmaking for Creative Practitioners is an open-source 
software for real-time interactive machine learning developed by Fiebrink in 2009 (Fiebrink, Trueman, and Cook 
2009). It is developed based on Weka, an open source Java ML library  (Witten and Frank 2002). 
6 Fiebrink’s Ph.D. thesis is a valuable resource for interactive machine learning for creative practices (Fiebrink 2011).  

Figure 48. The magnetic resonator piano, images from (McPherson 2010). 

Figure 49. The MARtLET instrument, by Michelle Nagai, using Wekinator developed by Rebecca 
Fiebrink, images from (Fiebrink 2011) 
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Motivations For Robotic Musical Instruments 7 
Artists and creators develop robotic musical instruments with different motivations in mind. While an 
external observer may interpret such efforts as a means toward automation, de-skilling, or replacing 
human musicians, they might be fueled by different goals and objectives in the creators’ minds. In the 
mid-2000s, Ajay Kapur—by then a Ph.D. student at the University of Victoria’s Music Intelligence and 
Sound Technology Interdisciplinary Centre and most recently the associate provost for creative 
technologies at California Institute of the Arts—interviewed some of the robotic musical instrument 
creators and inquired into their motivations. The spectrum of answers is interesting to explore; one artist 
expressed frustration in working with other artists and envisioned a band that they could play with 
forever. Another artist found the robotic musical instrument as a vehicle to overcome its allergy that 
barred them from playing any reed instruments (Kapur 2005). Researchers even developed a robotic 
prosthesis for an amputee artist to help them play drums again (Bretan et al. 2016) (Figure 50).  

Another motivation behind robotic musical instruments is rooted in the quest to supplement the creativity 
of human agents and enrich the creative practice instead of merely mimicking and replacing the artist. An 
example of such an approach is to make robotic musical instruments that allow musicians to perform 
passages that human players cannot produce. Such systems can be envisioned as extension and 
elaboration of musicians’ creative expression, not a vehicle to substitute human artists. The juxtaposition 
of a human artist with such capable machines “…establish[es] an environment in which human creativity 
can grow, thus, enriching human musical culture rather than replacing it” (Weinberg et al. 2020, 3). 

An interesting example of this approach is demonstrated by Mohammad Jafari and Gil Weinberg (2021). 
They developed a robotic instrument to play santur and augment the musician’s ability to play scores that 
were otherwise impossible to play. They designed a robotic arm for striking the strings with a mezrab. 

 
7 I intentionally left out the commercial efforts to create mechanical music-reproduction devices that are merely 
designed for music playback and/or entertainment. Instead, I focused on the artists, musicians, and makers who sought 
the creative aspects of robotic musical instruments. 

Figure 50. Robotic drumming prosthetic, image from (Weinberg et al. 2020). 
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Their demo video shows Mohammad and the robotic instrument playing the same instrument 
simultaneously but on two sides of the instrument (Figure 51).8 

While this list is by no means exhaustive, it signifies the possible range of motivations and goals that fuel 
the endeavors of robotic musical instruments. 

Question of authorship 
When recorded sound first made its debut in the cinema in the 1920s, it started a wave of skepticism. It 
was perceived as machines taking over humans’ role in creative practices. At the time, some musicians in 
the US formed a coordinated effort to stand against it under Music Defense League. In their ad campaign, 
the recorded music was referred to as “canned music” and “mechanical music,” among other names. The 
face of the ad campaign against the recorded sound was a soulless humanoid robot singing, “O, soul of 
my soul, I love thee, …” (Figure 52).  

Concerns about machinic music are still relevant today. Weinberg et al. cite multiple articles from Wired, 
Smithsonian, and New York magazine (Dutton 2012; Novak 2012; Morgan 2013) to reflect the popular 
media point of view toward machines getting into the realm of arts and creativity. This dissatisfaction 
with machinic music might be associated with different factors, notably the common belief that the 
growth of musical software programs will pose a credible threat to the human musicians’ livelihood 
through automation and de-skilling (Rowe 2001, 4). 

Automation and de-skilling are not the only topics that raise concerns toward robotic musicianship. There 
are other concerns that stem from the sentiment that mechanical machines, robots, or computers can be 
creative and make music on their own.  The question of human authorship in machinic musicianship is 
addressed by Steve Coons. In his handwritten notes on machine creativity, he argues that even if the 
computer program generates novel examples in the style of a human expert, “… the creative act has 
already been performed” (cited in Cardoso Llach 2015, 62). Although he specifically utilizes music 
generation in his notes, his conceptualization of human authorship in the digital age can be generalized to 
other aspects, potentially music performance.9 This case study aligns more with Coons’s point of view on 
authorship and creativity. 

 
8 This setup became a source of inspiration for the demo of this case study which I will introduce later in this chapter. 
9 I discussed this matter in another publication (Bidgoli, Kang, and Cardoso Llach 2019). 

Figure 51. Santur Bot by Mohammad Jafari, screen capture from the demo video (Jafari 2021). 
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5.1.4 Positioning the Study in the Context of Robotic Musical Instruments 
Building on the ideas discussed through the lens of Weinberg et al., this study proposes a framework for 
making robotic musical instruments to augment an artist’s capability to play santur. It is not destined to 
replace the artist, but it is an effort to explore the affordances of machine learning for musical toolmaking. 

This study distinguishes itself from the previously mentioned projects by focusing on the artist, its direct 
inputs, and feedback and embracing them as the centerpiece of their own toolmaking process. 
Collaborating with the toolmaker, the musician can directly influence the process by providing data 
samples and subjective evaluation. The musician can improvise, repeat, modify, or remove samples to 
sculpt the dataset, one sample at a time, to gradually shape the final tool. Following these steps, this study 
distances itself from the conception of skill and knowledge as commodity/object and builds on the notion 
of skill as situated in the context of its practice.10 

This study utilizes a dataset of six-degree-of-freedom motions provided by the musician as a vehicle to 
convey the specific idiom of the artist. The samples presented earlier in this chapter did not focus on this 
aspect. For instance, Santur Bot (Jafari and Weinberg 2021) utilizes a brushless direct current (BLDC) 
motor to actuate the strokes. The authors pre-designed various speeds and torque levels to produce 
different notes. Although their instrument is fine-tuned to create a desirable sound, it bears no variations 
based on the musician’s idiom. As such, while the physical contextual factors were embedded in the 
system, the subjective measures were not integrated into the process. 

Although this study is inspired by Rebecca Fiebrink’s works on interactive machine learning for musical 
toolmaking, I explore new frontiers that have not been addressed in Fiebrink’s work. The current research 

 
10 For further discussion on this topic, please refer to section 8.1. Skill. 

Figure 52. The soulless robot singing (left) and a robot grinding musical instruments (right) as published 
in the Smithsonian Magazine website (Novak 2012), originally published in Oelwein Daily Register on 

August 17th, 1930 (left) and Syracuse Herald November 3rd, 1930. 
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aims at playing music directly on a musical instrument. Instead of discriminative models for interpreting 
the musician’s signals, the machine learning model in this study is trained on user-generated samples and 
directly plays novel generated instances on the physical instrument. This aspect of research entails using 
generative machine learning models to produce high-dimensional mezrab strokes.  

Similar to Fiebrink’s Wekinator, I developed a meta-tool that can be adjusted and modified for specific 
use cases. However, the level of variations that comes with playing on a physical instrument requires 
developing a separate bespoke data collection and machine learning model for each use case. 
Accordingly, in contrast with Wekinator, which was later adopted by different creative practitioners, in 
my study, the generalizability of the meta-tool has not been a primary objective. 

5.1.5 Scope and Abstractions 
The scope of this study is narrowed down to developing a robotic musical instrument to play santur based 
on the samples provided by the participating musician. Accordingly, composing, generating, or 
improvising music is out of the scope of this study. The data modality is restricted to mezrab strokes, 
encoded as sequences of six-degree-of-freedom motions.  

Elements of this study were designed to avoid abstractions while maintaining the similarity between the 
study setup and the artist’s regular performances. For instance, we used an unmodified instrument and 
pairs of standard mezrabs for the data collection and demonstrations. The artist tuned the instrument to 
match hers, and the motion capture trackers were designed and integrated into the mezrabs to produce the 
least interference with her workflow. 

However, some degrees of abstraction were inevitably introduced to the study. These abstractions were 
examined to ensure that their effects on the workflow were negligible. For instance, after analyzing the 
collected samples, it became clear that the mezrab motions are not significantly influenced by the note 
being played. But they depend heavily on the playing technique and the hand that plays them. Thus, the 
focus of the study was shifted toward techniques and each hand’s strokes.  

5.1.6 Participant Artist 
During the summer of 2021, when this study was undergoing, the relaxation of COVID-19 precautions 
allowed me to change the gears from remote collaboration to in-person interactions. The new 
circumstances made it possible to collaborate with a musician in person, collect samples on a real 
instrument, and eventually showcase the instrument in an experimental demo session.  

The search to find a musician started in early summer by reaching out to the community of Persian artists. 
An ideal candidate for this study was an expert musician with limited machine learning and computer 
science knowledge. I was introduced to a Persian musician in Pittsburgh, Mahtab Nadalian, who met 
these criteria, and invited her for an initial interview. Mahtab holds a B.A. degree in santur performance 
from the University of Tehran, School of Fine Arts, and an associate degree in audio recording 
technology. She has been tutoring santur students for several years. She does not have any background in 
machine learning or computer programming. Her profile was a perfect match for this study, and I invited 
her to join this study. 

5.1.7 Santur11 
Santur is a traditional Persian stringed musical instrument with common roots with the hammered 
dulcimer (Figure 53). The instrument is usually played while putting stationary on an inclined platform. 

 
11 Other alternative forms such as santūr, santour, santoor are commonly used. However, the latter being used mostly 
to refer to the Indian instrument.  In Persian, the spelling is  َنتورس . 
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Its trapezoidal frame seats in front of the musician and provides a flat framework for its 72 strings. The 
strings are made of two different metal alloys, 1) steel (silver-colored wires) for lower pitches which 
require more tension in the strings, and 2) brass or copper for higher pitches, which require less tension. 
An array of metal hooks on the left side of the instrument holds the strings, while the tuning pegs on the 
other side help tune each string individually (Figure 54, bottom left and middle).  

Strings are organized in groups of four, each tuned to the same pitch, stretched horizontally over the 
instrument, and raised by a single wooden bridge called kharak12 (Figure 54, top left). The special 
arrangement of the wooden bridges allows every other set of strings to get elevated on the same side 
(Figure 54, top-right). The strings raised on the right side produce lower pitches, while the ones raised on 
the left side produce the higher ones. Strings are beaten by a pair of identical wooden hammers, or 
mallets, called mezrabs,13 held between the index and middle fingers and thumb. It is common to pad a 
mezrab’s tip with a piece of felt to soften the impact.  

Santur physical characteristics simplified the data collection implementation. The instrument remains 
stationary on a fixed inclined platform during the performance, eliminating challenges associated with 
pose tracking and transformation during the data collection and performance (Figure 55 and Figure 56). 
Moreover, the long and slim shape of mezrabs allows to accommodate motion capture trackers with 
enough space to incorporate variations on the trackers’ distribution on each mezrab. In comparison, a 
hand-held instrument played by bare hands, fingers, or a small pick, would pose significantly more 
complex data collection and robotic implementation challenges. 

  

 
 خَرَک  12
13 For a comprehensive study of historic background and musical-acoustic analysis of santur, please refer to the Shahab 
Mena’s studies at the University of Tehran (Mena 2006; 2010) as well as The Grove Dictionary of Musical Instruments 
under dulcimer (During, Hassan, and Dick 2001). 
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Figure 53. Top view of a Persian santur used in this study and its mezrabs. Note the motion capture 
spherical markers on the instrument and sticker markers on the mezrabs. Also, note the fine felt padding 

on mezrabs’ tips, image by the author. 

Figure 54. Strings elevated using wooden bridges (top row), tuning pegs, metal nails, and the vertical 
arrangement of strings (bottom row), images by the author. 
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Figure 55. Mahtab, photographed in her home studio, tuning her santur before a practice session, image by 
the author, edited for better visual quality. 

Figure 56. General santur posture, image by the author, edited for better visual quality and removing 
branding signs. 
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5.2 Methodology 

The case study design followed the principles of research by design, cast as design-led research. In this 
approach, design is both the object of study and the means of conducting the study through developing a 
project and inquiring about different design elements. The design process in this method is a pathway to 
create insight, knowledge, and products (Roggema 2016).  

This method dictates a non-linear approach that is not destined for a solid solution. The outcomes are 
documentation of the process rather than a conclusive result. “It is an exploration and testing of ideas by 
means of design” (ibid, 11). In research by design, the design process should embrace the context, allow 
unexpected exploration, and develop knowledge that serves broader audiences. New knowledge emerges 
through constant interaction between researchers and the participants who communicate through non-
textual materials.  

To adapt the research by design for this study, I introduced a twist to the framework; instead of using 
conventional design mediums, i.e., sketches, drawings, and models, I opted for computational 
implementation and physical prototyping. Thus, instead of sketching design ideas, we developed 
iterations of the meta-tool, instead of making models, we prototyped a functional musical instrument to 
play santur, and instead of visual presentation, we orchestrated a performance demonstration.  

Thinking and doing were intertwined in this process. We returned to the drawing board iteratively and 
revisited our decisions based on the new knowledge we gained at each step of this study. Every decision 
in the meta-tool development process and technical implementation detail was part of the research 
inquiry. We kept the design process as a conversation between me, the toolmaker, and the musician. We 
stayed flexible, explorative, and innovative, as we do in the design process, to explore different ways of 
addressing the research question. This allowed us to overcome the uncertainties of this research on the 
intersection of creativity and technology.  

The research method in this study followed a three-stage process (Roggema 2016) (Figure 57): 

1-  Analysis (pre-design) 
In this phase, I focused on defining the elements of this study and curating the research question 
and hypothesis. At this stage, I reached out to musicians, creative computing experts, and technical 
advisors who could guide me in developing the study. Once I decided on the primary elements of 
this study, most notably, the musical instrument and the participating musician, we proceeded with 
a thorough analysis of the task, context, and potential avenues for research and design. 

2- Projection (design) 
The projection was the core phase of this research method, where we aimed to address the research 
question using non-textual artifacts. Here, we worked closely to develop a meta-tool based on the 
framework and the knowledge gained through the analysis phase. We collaborated to create a 
robotic musical instrument and studied it in a demonstration. Throughout this phase, I iteratively 
revisited our previous decisions and revised them based on the musician’s feedback, comments, 
and assessments. I documented this process as digital field notes, video, audio, and motion captures. 

3- Synthesis (post-design) 
As the method’s name implies, it delivers two sets of outcomes, 1) the artifact of design, in this 
case, the robotic musical instrument, and 2) the research outcomes, in this case, a new 
understanding of collaborative ML-based toolmaking. During this final stage, I continued the 
conversation with the musician to reflect on the process and crystallized the results from both 
aspects of the outcomes. 
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Note on the Expectations 
Throughout this process, our conception of the tool gradually evolved as we gained a better understanding 
of each other’s workflow, santur, ML algorithms, and the available hardware. Learning from the first case 
study, this time, instead of making initial decisions by myself, I worked collaboratively with the musician 
from the beginning to shape a representation that reflects her perception of the tool. As I will elaborate in 
the following sections, during the early stages of this study, we were expecting to create a musical 
instrument to play santur with Mahtab’s idiom. During the final stages of this study, we developed a 
mutual understanding that the tool should be able to play santur in a way that Mahtab could use in 
experimental performance.  

Note on Toolmaker 
As I mentioned earlier in Chapter 3, The Framework, in this study, I wore different hats at various stages 
of the study development. My background in computational design, toolmaking, and machine learning 
came into play at every turn of this study and informed my decisions. Inevitably I constantly had to 
exchange my hats, and I wore all three simultaneously at some points. However, to keep this document 
concise and clear, I will refer to myself as the “toolmaker,” an umbrella term to include my computational 
design, toolmaking, and machine learning background. 

5.3 Meta-Tool 

The meta-tool allowed me and the musician to collaborate on the tool development. It enabled us to 
collect and process data, train the machine learning model, and implement and fine-tune our robotic 
musical instrument (Figure 58 and Figure 59).  

Figure 57. Research method schematic diagram. 
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5.3.1 Data Pipeline 
The data pipeline collectively refers to all software and hardware pieces of the meta-tool that support data 
collection, data processing, and data curation activities. The pipeline details were developed in 
collaboration with the musician (Figure 59).14 The data collection process was designed and implemented 
to have the least interference with her regular performance. For instance, the instrument used in the data 
collection was purchased based on the musician’s recommendation, and each modification to the 
instrument was reviewed and approved by her.  

The primary data modality in this study was motion, represented as sequences of six degrees of freedom 
data points. Here motion serves as a vehicle to convey the musician’s idioms to the robotic musical 
instrument. I used an OptiTrack Flex 13 motion capture system, a medium-volume motion capture camera 
system with sub-millimeter precision, and tailored software tools to process the captured data. The motion 
capture system recorded the musician’s mezrab motions to record samples in her specific idiom of 
playing. 

 
14 Throughout this chapter, I will discuss several cases of such interactions and decisions that we collaboratively made 
to adjust our workflow with the technological framework and adjust the technological framework to match the 
musician’s preferences. This form of bi-directional interaction was one of the most eye-opening experiences of this 
study. 

Figure 58. Meta-tool schematic diagram. 

Figure 59.  Contribution of the toolmaker and the musician in the collaborative toolmaking process. 
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Data Collection Sessions 
Between July and August 2021, we conducted three data collection sessions in my home office equipped 
with the motion capture setup (Figure 60, top). Each session lasted between 30 to 90 minutes and 
included initial setup, discussions on the session’s objectives, data collection, and debriefing. Each 
session was recorded alongside a screen capture of the Motive software (Figure 60, bottom).  

Figure 60. A snapshot from the video recordings during the second data collection session. The video 
feed (top) is accompanied by the Motive interface (bottom left) and notes being played (bottom right). 
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We dedicated the first session to communicating the technical points of the data collection schema to 
ensure that it matches her playing method. During this session, we identified some technical issues, i.e., 
problems with tracker marker arrangements and low sampling rate for specific techniques. Learning from 
the first session, I had the opportunity to adjust and improve the motion capture setup. During the next 
sessions, we iteratively improved the process based on the lessons we learned and the mutual 
understanding of each other’s workflow. Eventually, we shaped a data pipeline where she could 
demonstrate samples of her choice on a standard santur, using a set of minimally modified mezrabs, in an 
environment like her at-home rehearsal environment.  

In the first session, we had multiple rounds of data collection, each dedicated to one specific playing 
technique. The rationale behind this decision was twofold. First, it was a trivial task to manually segment 
and annotate the resulting data stream. This allowed me to use this subset of data as a toy dataset and 
sketch various data post-processing methods. Second, the special techniques we collected in this phase are 
not as common as the basic strokes. Having them collected separately helped us make a more balanced 
dataset. During the second and third sessions, she curated a library of mezrab strokes in her idiom of 
santur playing. The samples were provided in the context of seven short songs she has chosen from santur 
exercise books based on her experience teaching santur to novice learners. In total, we collected over 
1400 samples of mezrab strokes played different notes, with different techniques, played by both hands  

Motion Capture Setup 
A motion capture system tracks a given object by locating a series of markers installed on the object. 
Designing a reliable array of trackers is the first step in a motion capture pipeline. Trackers can be active, 
which uses special LEDs to emit light, or retro-reflective (passive), which are coated with reflective 
materials. Passive trackers come in different geometries, such as spherical, circular, and square-shaped. 
The trackers must stay fixed on the object to ensure consistent and reliable capture. 

The main factors influencing the quality of capture are the number of trackers, their placement on the 
object, and their physical properties (size, shape, and reflectivity). The motion capture system needs to 
see a tracker with at least three of its cameras to triangulate its position in space accurately. Larger 
trackers are easier to spot over longer distances. However, they are unsuitable for delicate motions—i.e., 
facial tracking and fine hand gestures. Smaller markers can improve accuracy. But they also introduce 
other challenges, most notably, the higher chance of occlusion and loss of tracking over long distances 
from the cameras. Sphere-shaped trackers can be tracked from a wide range of angles; in contrast, flat 
trackers, made of reflective tape, are best tracked when directly facing the motion capture cameras.  

The arrangement of trackers is also a critical factor in motion capture accuracy and consistency. The 
motion capture software uses the spatial relationship between the markers to identify the tracked objects 
from each other and calculate their locations and orientations in the 3D space. Motive,15 the preparatory 
OptiTrack software package, needs at least three trackers to form a rigid body that can be tracked. 
Increasing the number of trackers and distributing them at larger distances from each other and in 
different planes will increase the chance of accurate measurements. Motive also uses the trackers as a 
pseudo-fingerprint to automatically identify rigid bodies. When there are multiple objects in a scene, i.e., 
two mezrabs, it is essential to have different tracker placements on each object to allow the software to 
distinguish them from each other (OptiTrack n.d.). 

Early tests aimed at comparing various arrangements of markers using both spherical and flat trackers. 
While the tracking consistency with spherical markers was higher, installing three or more trackers was 

 
15 Motive is the optical motion capture software, developed by OptiTrack (OptiTrack 2022). 
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impossible without adversely affecting the physical features of the mezrabs. Santur mezrabs are feather-
weight wooden pieces with very slim stems (Figure 61, left), and we wanted to find a solution that could 
maintain these characteristics (Figure 62). This eliminates the use of spherical markers as an option since 
their weight negatively impacts the user experience. 

One solution for this issue was to design and fabricate custom-made mezrabs with thicker stems and 
enough flat surfaces to install spherical or flat markers (Figure 61, right). As a benchmark, three spherical 
trackers were installed on a custom-made mezrab and tested (Figure 63, left). When these prototypes were 
presented to the musician, she found them usable but far from ideal. Testing them for a few minutes, she 
highlighted the different sound signatures of these prototypes, stemming from their thick head compared 
with the delicate heads of standard mezrabs. Accordingly, these prototypes were only used as the 
benchmark to assess the trackability of other alternatives. 

 

 

Figure 61. A standard mezrab (left), custom-made mezrabs cut from 1/4" balsa sheet, with retro-
reflective flat markers (right). 

Figure 62. The musician comparing the markers on her own mezrab (left) and her unmarked 
mezrab(right) by holding them in a standard idle position during an initial data collection session. 
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Switching to flat trackers slightly reduced the consistency and accuracy of tracking. However, an increase 
in the number of trackers could compensate for this issue. The latest iteration of mezrabs equipped with 
flat trackers was on par with the one with spherical ones (Figure 63, right) while keeping the feather-
weight status of the mezrab intact.  

The next iterations were based on a pair of mezrabs crafted by an expert in Iran (Figure 65, right). The 
trackers were cut from a retro-reflective one-sided tape and attached to the mezrab in various locations. 
The tape was cut into 1 8�  inch and 1 4�  inch strips and wrapped around various spots on each mezrab. 
Patches of 1 4�  inch squares are added to the mezrabs’ heads to gain maximum distance between the 
markers. The pattern of trackers on each mezrab was designed slightly differently, allowing the Motive 
software to distinguish between the two.   

 

 

Figure 63. Left: Capture results for two mezrab tracking designs. Spherical trackers (magenta) vs. flat 
trackers (green). The missing segments in the green trace show where the cameras are missing the 

trackers. Right: Revised flat trackers comparison: six trackers made of thin strips and square patches 
(orange) vs. five thicker trackers (magenta). 

Figure 64. Flat retro-reflective trackers on the mezrab (left), corresponding registered ones in the Motive 
app (right). 
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Figure 64, left, shows these trackers as they were registered by Motive.16 During the early tests, this 
combination of trackers resulted in smooth and consistent tracking. Figure 64, right, depicts a snapshot of 
the motion capture software. The lower panels’ green and yellow bars visualize the tracking history on 
each tracker. The blank marks on each track indicate the missing data points.  

A closer look at the tracks in Figure 64 shows that the ratio of missing data points is negligible compared 
with all collected points. The tracks with the highest rate of missing samples correspond to the markers on 
the rear handle close to the gripping point. This might be due to a higher chance of occlusion behind the 
musician’s fingers or opposite hand. In the final marker arrangement, these markers were omitted in favor 
of more markers on the stem of mezrabs (Figure 65, right). Motive registers the missing data points as 
empty placeholder rows marked with the corresponding time stamp. This makes it easier to find them in 
the post-processing phase. These missing data placeholders later get filled to bridge the gap between the 
previous and next available data point. 

Another observation in the initial data collection sessions was the problem with trackers located close to 
each other. The motive algorithm could not confidently identify closely located trackers on the same 
mezrab. In the revised versions, the spaces between markers were increased. The musician did not face 
any issues after this design refinement and could play her notes without adjusting her finger placement. 

Based on these tests, feedback from the musician, and several iterations, we settled on a pair of standard 
mezrabs with flat markers (Figure 65, right). These mezrabs were almost identical to those she used 
routinely (Figure 65, left). Nevertheless, the musician pointed out a remarkably interesting point about a 
well-crafted mezrab: it is suggested that a mezrab should have consistent color across its length to prevent 
vision fatigue. From this point of view, the flat trackers on the stem of the mezrab may introduce some 
fatigue in long-term use. Using this mezrab for short data collection sessions renders this fatigue 
negligible. 

Data Processing 
Decisions on data cleaning methods, filters, and data segmentation significantly influence the following 
steps down the stream. I, as the toolmaker, took the most responsibility in this phase. However, we 
communicated the process to ensure data processing and annotation correctness. We assigned multiple 
labels and vectors to each data point: 1) mezrab motions (including position and rotation), 2) playing 
hand, 3) note being played, and 4) technique.  

 
16 In the snapshot, captured from the first data collection session, one tracker is not correctly labeled to the mezrab, 
marked with the dark orange, and dotted line. 

Figure 65. Early retro-reflective marker arrangement (left) and revised version (right), notice the slight 
differences between the marker arrangement on each pair of mezrabs. 
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The Motive software provided algorithms and tools to clean the motion data and fill the gaps or missing 
trackers. It could also automatically identify the left and right mezrab and organize the motion data in 
separate channels. The other features, notes and techniques, were manually annotated and added to the 
dataset later. 

Each recorded session had to be broken down into single mezrab strokes associated with corresponding 
labels to prepare them for the training pipeline. Thus, each motion capture stream was broken down into 
smaller sections corresponding to each song and stored as .csv files.17 The filtering method was 
implemented in Python 3 using the GH_CPython add-on in Grasshopper. The .csv files were fed into the 
Python script, and the outputs were passed to Grasshopper components in real-time to generate 3D 
visualizations which could be easily interpreted (Figure 66).  

While all the data pre-processing steps were implemented in Python, it was the easy-to-use and flexible 
visualization tools of Grasshopper that allowed me to swiftly inspect the data, find edge cases, and update 
the Python code to address them. This real-time feedback loop allowed me to adjust the hyperparameter 
easily and fine-tune the process beyond what I could achieve by other methods, i.e., Python static plots, 
Jupyter Notebooks, or customized interactive data dashboards. 

 

 
17 Comma-Separated Values, more commonly referred to as csv, is a common format to store tabular data in plain 
text.  

Figure 66. Fifty motion samples, recorded during the first data collection session. Each sample is 
illustrated as a curve interpolating across 272 points. Each point represents a frame of motion capture 

stream (1.94 sec). The red rectangles show the XY boundaries of each motion. 
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Data Segmentation/Annotation 
The first step in the data processing pipeline was to break down a stream of data into single motions. This 
process begins with finding the frame in each stroke where the mezrab hits the strings—the touching 
frame from here on—and using it to slice each mezrab stroke. The touching frame occurs where the 𝑧𝑧 
value of a data point is at its minimum. However, finding the exact touching frame is not straightforward. 
Due to the nuance motions of the musician’s hands, several local minimums between two touching frames 
might be flagged as false touching frames. 

Upon further analysis of data visualizations in Grasshopper, a repeated pattern emerged: the artist always 
moves the mezrabs higher than the resting position right before moving them down rapidly to hammer the 
strings. This vertical hike was the most pronounced and consistent among all motion signals before each 
touching frame (Figure 67). Accordingly, instead of searching for the touching frame, I shifted the focus 
to spotting the peak points on the z channel to find the touching frames that proceed them accurately. 

Several hyperparameters were used to filter out the false high peaks and false touching frames. First, two 
hyperparameters, tresh_h and tresh_l, set the threshold for the peak amplitude. These two parameters 
helped eliminate any peak that is not strong enough within a specific neighborhood. One parameter, dist, 
is solely dedicated to finding the true top peaks by limiting the minimum acceptable distance between two 
high peaks. The other hyperparameter, peak_dist, is responsible for removing false low peaks by setting 
the maximum distance between a high peak and the following touching frame. The last hyperparameter 
checks the ratio between 𝑧𝑧 and 𝑦𝑦 to distinguish between touching frames and the short rest after that. This 
hyperparameter works because true touching frames are always followed by some rapid z motions. In 
contrast, the resting phases are usually followed by swing motions in the horizontal plane. The value for 
each hyperparameter was determined through a series of tests and observations in the Rhinoceros 
3D/Grasshopper environment (Table 4, Figure 68, and Figure 69). 

Table 4. Data filtering hyperparameters. 

Hyperparameter Effect Value 
tresh_l Eliminating weak local minimums (false touching frames) 0.289 

tresh_h Eliminating weak local maximums (false high peaks)  0.408 

dist Eliminating the false touching frames which are too far from a high peak 15 

peak_dist Eliminating the high peaks that are located too close to each other 50 

motion_fix_length Defining the number of frames in each motion sequence 30 

 

  

Figure 67. The z value for one mezrab over 60 seconds, playing the same note. Notice the repeated 
patterns and slight variation over time. 
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Figure 68. Signal segmentation process. 
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Figure 69. Results of data processing and segmentation method applied to streams of motions. 
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We collected samples for various techniques of combining the mezrab strokes with two hands: simple 
right or left, Dorrab (right, left, right), Tekkieh (left, right), Joft (left and right at the same time), Riz18 to 
name a few (Figure 70).  We found riz19 and dorrab the most challenging techniques as they are fast-
paced or follow unequal timing between their elements. In such cases, the importance of hyperparameter 
fine-tuning was even more pronounced.  

In a stream of data, most frames represent the period in which the mezrab is in its resting position before 
or after playing a note. These frames bear non-essential information and can be trimmed from each 
sequence’s beginning and end. Thus, a fixed length is set as the hyperparameter for all motions, with ½ of 
the frames lined up before the touching frame and the rest after—including the touching frame (Figure 
71). As the last touch, any sequence of motion with low variance in 𝑧𝑧 was also discarded as it most likely 
represents the resting position of a mezrab rather than a strike. 

 

 
18 Dorrab:  دُرّاب, Tekkieh:  ّتکِیھ, Joft: جُفت, Riz:  ریز 
19 Riz technique is the repetition of the same note in a rapid pace, like tremolo. The number of notes being played 
depends on the performer’s convenient pace. In the scores we chose for data collection, each riz note was denoted 
for 7-9 strokes. Mezrab’s motions in this technique are quite fast to the point that the number of registered steps per 
motion was not adequate for motion processing or automatically isolating it from the neighbor notes.  

Figure 70. Santur playing techniques as presented in Faramarz Payvar’s Santur workbook. Cover page 
(left), techniques (middle), techniques used in this study (right) ( 1359 وریپا ) 

Figure 71. Samples from the left and right hand, distributed on the real touching points (left pair) and 
moved to a fixed touching point (right pair). The red color indicates the beginning of the sequence. 
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A closer visual analysis of recorded motion revealed some interesting facts. In all cases, the speed of 
mezrab moving down toward the strings is faster than retrieving. While both hands gain similar speed to 
hit the string, there is a significant difference between the left and right hands regarding retraction (Figure 
72). The right-hand bounces back faster than the left hand, and the variation in its final position is more 
significant. Such pronounced differences render the classification based on hand an easy task. Once the 
segmentation of motions from the data stream was done, each sample was formatted as a 20 × 9 vector, 
representing the 20 poses in space, each defined by a point and two vectors (Figure 73). 

𝑿𝑿𝒕𝒕 = [𝒙𝒙𝟎𝟎,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝟏𝟏𝟏𝟏] 

𝒙𝒙𝒊𝒊 = �𝑝𝑝𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑦𝑦𝑖𝑖 ,𝑝𝑝𝑧𝑧𝑖𝑖 , 𝑣𝑣𝑥𝑥𝑥𝑥𝑖𝑖 ,𝑣𝑣𝑥𝑥𝑦𝑦𝑖𝑖 ,𝑣𝑣𝑥𝑥𝑧𝑧𝑖𝑖 , 𝑣𝑣𝑦𝑦𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑦𝑦𝑦𝑦𝑖𝑖 , 𝑣𝑣𝑦𝑦𝑧𝑧𝑖𝑖� 

The point component of each motion is measured in meters, following the Motive application units. 
Accordingly, these values range between positive and negative, possibly beyond the range of (-1, 1). 
Meanwhile, the vector components do not have any units and have different ranges. To facilitate the 
learning process, some data pre-processing methods were applied: 1) the strokes were moved in 3D space 
to have their lowest point located on the origin of the coordination system, 2) the stroke data was scaled 
on each feature to map them between 0 and 1 (Figure 74). 

 

Figure 72. Analysis of mezrab’s velocity, red parts represent the fastest sections of each motion. Note that 
the time of each motion is fixed. Accordingly, the longer curves represent faster motions. 

Figure 73. Stroke representation as a 20×9 vector. 
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Figure 74. All recorded motions, in the original scale (top-left), scaled to 0 and 1 (top-right), 
centralized based on the touching point (bottom-right), and scaled-centralized (bottom-left). The 

gradient signifies the sequence (purple represents the early frames. 
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5.3.2 Machine learning backend 20 
Like the previous study, the machine learning backend was built around the Variational AutoEncoder 
architecture. The sequential nature of motion data renders it suitable for Recurrent Neural Networks 
(RNN), i.e., Long Short-Term Memory (LSTM). However, CNNs have also been tested for sequence-to-
sequence tasks in combination with RNNs or pure CNN encoder-decoder architectures. What makes CNN 
layers a suitable choice for this study is the temporal-spatial relationship between the data points. Li et al. 
proposed a CNN-based encoder-decoder architecture for human dynamics in 3D, a complex spatial and 
sequential data type (2018). They argue that the hierarchical structure of CNNs renders them powerful 
tools to capture such temporal-spatial patterns, which RNNs cannot properly learn. Moreover, as 
discussed in the previous chapter, RNNs are slower in the training phase and less efficient compared with 
CNNs. Accordingly, I chose to use CNN layers to capture the spatial and temporal features of the dataset.  

While training the machine learning model, I intentionally left the model to overfit the training dataset. In 
many fields of machine learning, this practice is frowned upon. However, in this specific scenario, we 
wanted to have the model overfit on the relatively small and quite biased dataset. There was no intention 
to make a generalizable model. In contrast, it was trained to serve one specific task: generating novel 
samples based on the dataset collected from one specific person. 

In this architecture, the convolutional filters process each pose at time step 𝑡𝑡 and its neighbors at {𝑡𝑡 −
(2𝑛𝑛 + 1) … , 𝑡𝑡 + (2𝑛𝑛 + 1)}, where 2𝑛𝑛 + 1 is the convolution filter size, to find the correlations between 
them.21 The one-dimensional convolutional filters span nine features and stride over the 20 frames in each 
stroke (Figure 75). 

 

Encoder-Decoder Models 
A Conditional Variational AutoEncoder (C-VAE) model with One-Dimensional Convolutional layers in 
both the encoder and decoder was used for this study (Figure 76). The encoder uses multiple CNN blocks 
to map the input motion into a latent representation. Each CNN block in the encoder includes a Conv1d 

 
20 For an in-depth discussion on the machine learning technical details, please refer to Appendix I: Conditional 
Variational AutoEncoders. 
21 For more complex and diverse datasets, finding a solution for both short-term and long-term dependencies is 
essential. For instance, Li et al. designed different CNN layers for short-term and long-term mapping and concatenated 
their latent representation (2018). For this study, the dataset has significantly smaller variances and does not require 
such complex solutions. 

Figure 75. One-dimensional convolution filter striding over the sequence of data with a stride value 1. 
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layer followed by batch normalization, ReLu activation function, and a Dropout layer. It is worth noting 
that the input dimension is of shape 20 × 9, but the latent dimension could be as high as 256. In this 
scenario, the main purpose of having a latent representation is not mere dimension reduction; its value 
resides in the generative capabilities of the model.22 

The decoder model’s role is to collect the latent vector 𝑧𝑧 from the variational latent space and the 
conditioning signal to reconstruct the motions. Throughout the model design stage, it became clear that 
stacking any layer on top of the deconvolutional layer will adversely affect the decoder’s ability to 
reconstruct the motions. Accordingly, the decoder model only uses PyTorch’s convolutional transpose 1d 
layers. 

 

Loss Function 
The loss function in VAE architecture consists of two elements, 1) reconstruction loss and 2) KLD loss. 
The former calculates the difference between the input data and the model’s output, using L1 or L2 loss. 
The KLD loss determines the difference between the learned latent distribution and a multivariant 
standard normal distribution. It regulates the latent distribution by penalizing the model if the learned 
latent distributions differ from a normal distribution with a mean of zero and standard deviation of one 
(µ = 0, 𝜎𝜎 = 1).  

It is also possible to improve the model’s behavior by fine-tuning the balance between the reconstruction 
loss and KLD loss by adding a weight value to one of them, usually KLD. Applying higher weights to 
KLD will increase its impact on the learning process and results in a more regulated latent space, with the 
tradeoff of reducing the reconstruction accuracy. I tested different configurations of reconstruction loss—
L1 and L2—, deduction method—sum and average—and weights of KLD loss to optimize the model.   

Hyperparameter Fine-Tuning 
In the previous study, the SecondHand, I provided the participants with an almost-fixed machine learning 
model. It was an informed decision to accommodate a specific expert user-ML toolmaking expert 

 
22 The encoder does not map the motions into an unregulated latent space, as per variational autoencoder definition, 
the encoder maps the input data over a series of normal distributions. For an in-depth discussion on the VAEs, please 
refer to Appendix I: Conditional Variational AutoEncoders. 

Figure 76. The schematic diagram of the C-VAE model. 
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interaction. In this study, I took the same approach and tailored the model based on the dataset that the 
musician and I curated during the data collection phase.  

During the fine-tuning process, different values for variables such as kernel size, number of filters per 
layer, dropout rate, depth of model, and latent space dimension were tested. I utilized an automated 
hyperparameter optimization tool to accelerate ML model development. Hundreds of AE, VAE, and C-
VAE models were tested and fine-tuned using WandB’s Sweep toolkit to find a range of optimal models 
(WandB 2020) (Figure 77). 

Eventually, a simple yet efficient model was selected; a C-VAE model with two layers of 1D-CNN 
blocks in the encoder and the decoder models and a latent space of size 256. Training the model for 150 
epochs took around 27 seconds, and it took 22 seconds more to get into 300 epochs (Figure 78).23 
However, the results on the 150 epochs were quite satisfying, and further training was not necessary 
(Figure 79). 

 

Table 5. Range of hyperparameters for optimization 

Hyperparameter Tested values Used for the model 
Depth of encoder/decoder model 2, 3, 4 E: 2, D: 1 
Filters in the first encoder layer  25, 26, 27, 28, 29, 210 𝟐𝟐𝟗𝟗 

Latent dimension 24, 25, 26, 27, 28 𝟐𝟐𝟖𝟖 
Kernel size  3, 5  5 

Dropout rate 1e-1, 2e-1, 3e-1, 4e-1, 5e-1 1e-1 
Reconstruction loss function L1, L2 L1 

Reconstruction loss function reduction Sum, Average Sum 
KLD weight 1e-1, 1, 1e+1 1e-1 

Learning rate 1e-2, 1e-3, 1e-4 1e-4 
 

 
23 All the trainings were conducted on a local machine, using a NVIDIA 2080Ti GPU.  

Figure 77.Hyperparameter fine-tuning for the C-VAE model: 200 different combinations of parameters were 
tested. Failed cases and models with eval_loss over 4500 are omitted for clarity. 
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To generate new samples, the encoder model (𝑝𝑝𝜃𝜃) was fed with a randomly selected motion from the 
dataset 𝑥𝑥 as the seed to find its latent vector 𝑧𝑧. Then a range of random noise vectors was generated and 
added to create 𝑧𝑧′. These new vectors were passed to the decoder model (𝑞𝑞∅) to generate a range of new 
motions 𝑥𝑥′: 

Figure 78. Training loss vs. validation loss for the C-VAE model: the x-axis represents the number of 
epochs, and the y-axis (logarithmic scale) represents the loss (weighted KLD + reconstruction loss). 

Figure 79. Reconstruction of the validation samples during the training process over 300 epochs. Plots 
depict a random validation sample. Only the three first values representing the location are visualized. 

Figure 80. Samples of generated motions (teal) and the initial seed (magenta gradient). 
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𝑧𝑧 = 𝑝𝑝𝜃𝜃(𝑥𝑥) 

𝑧𝑧′ = 𝑧𝑧 + 𝒩𝒩(µ , Σ) 

𝑥𝑥′ = 𝑞𝑞∅(𝑧𝑧′) 

Figure 80 presents three sets of generated motions. Comparing the seed motion (rendered in magenta/pink 
gradient) with the generated samples (rendered in teal) shows a close resemblance between the samples, 
with slight variations resulting from the noise function. 

5.3.3 Robotic Implementation 
The robotic implementation resulted from a close collaboration between Mahtab and me. Through dry 
runs and demonstration sessions, the robot/santur setup, audio recording tools, and the actuation methods 
were all adjusted and fine-tuned based on her feedback and comments. 

Hardware Setup 
The robotic implementation was designed around an ABB IRB-120 articulated six-degree-of-freedom 
industrial robotic arm with 580 mm horizontal reach and a maximum load of 3.5kg (ABB Robotics 
2022)(Table 6 and Table 7).  While there were three robotic arms available at the School of Architecture 
dFab Lab, the smallest of the squad, was more agile and better suited for this specific task. The hardware 
setup included the robotic arm, an adjustable adapter to hold the mezrab, and the santur (Figure 81, Figure 
82, and Figure 83).  

The robot was programmed using ABB’s proprietary language, RAPID. Converting the motion 
sequences—either collected by motion capture or generated using the machine learning model—into 
robot-executable RAPID code followed this process: 1) converting the targets into Grasshopper plane 
objects, 2) converting the planes into HAL targets, 3) generating and processing RAPID code, 4) adding 
supporting motions and UI in RAPID, 5) uploading the code to the robot controller (Figure 84). 

 Figure 81. Schematic diagram of the robotic setup. 
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Figure 82. Mezrab holder, detailed view (left), installed on the robot (right). 

Figure 83. Robotic setup details. 
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Table 6. ABB IRB 120 General Specifications (ABB robotics 2021). 

Specification Value 
Max Payload 3kg 

Max Reach Span 0.58m 
Number of Axis 6 

Max TCP Velocity 6.2 m/s  
Max TCP Acceleration 28 m/s² 

 0-1 m/s Acceleration  0.07 s 
 

Table 7. ABB IRB 120 Movement Specifications (ABB robotics 2021). 

Axis Movement Rotation Range Velocity 
Axis 1 +165° to -165° 250°/s  

Axis 2 Arm  +110° to -110° 250 °/s  
Axis 3 Arm  +70° to -110° 250 °/s  

Axis 4 Wrist  +160° to -160° 320 °/s  
Axis 5 Bend  +120° to -120° 320 °/s  
Axis 6 Turn  +400° to -400° 420 °/s  

 

Control and Path Planning 
While developing the robotic implementation, it became clear that a mere accurate reconstruction of 
strokes would not help us create the robotic instrument for Mahtab. We understood that fine-tuning the 
model to meet her expectation of sound quality is what we should aim at. To achieve this, I revised the 
pipeline to achieve: 1) accurate motion reconstruction while 2) collaborating with the musician to fine-
tune the results during the test sessions.  

To address the first goal, it was essential to address two factors: 1) accurate recreation of poses in six 
degrees of freedom and 2) maintaining the correct velocity throughout each sequence. Accurate 
positioning is a routine and trivial task in industrial robotic arm programming. Standard programming 
procedures are sufficient to meet that goal. However, maintaining the accurate velocity while passing 
through closely located targets was a challenge and mandated a tradeoff between accuracy and speed. 

Figure 84. Schematic diagram of generating motion for robotic actuation. 
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Timing  
To meet the exact timing of each motion, a special feature of ABB robotic arms was used to enforce a 
constant timing between each target point.24 The following tests revealed that the robot could not 
accurately keep up with the acceleration required for this study. Specifically, the robotic arm could not 
rapidly bounce back after the touching frame. This issue was exacerbated when all six robot joints were 
engaged in the motion.  

To improve the robot’s agility, with the tradeoff of losing some accuracy, the motions were programmed 
to fly by targets; the robot did not need to touch the targets, but it was satisfactory to get close enough to 
each target before proceeding to the next ones. The threshold of fly-by is independently adjustable for 
each target by zone value; if the tool center of the robot gets closer than the zone value to the target, then 
it has the green light to proceed to the next ones. The fly-by moves result in smoother motions, which was 
more desirable for this project.25 For this study, I defined a zone range of 50 mm for all the targets, except 
for the touching frame set at 0.3 mm.26 

Reduction 
During the motion capture process, the samples were collected at 120 frames per second. Accordingly, 
each target point corresponds to a period of 1/120 second (Figure 85, left). Forcing the robotic arm to 
process 120 targets per second can potentially overload the robot controller and result in software failure.  

To compensate for this issue, two different methods were tested: 1) downsampling the number of targets 
during the execution time; reducing the number of targets by keeping every 𝑛𝑛th target helps keep up with 
the 𝑛𝑛/120  of second time stamps (Figure 85, center), and 2) reducing the number of targets by truncating 
steps before and after the touching moment; during the replay tests we realized that reducing the motions 
for each note to five steps before and two-three steps after the touch, will not significantly affect the 
outputs (Figure 85, right). This reduction also helps reduce noise as it demands a shorter travel distance 
per note.  

Motion type 
Another critical factor in robot programming is how the robot travels between the targets. While each 
target represents the pose of the mezrab’s tip at each time stamp, it is also important to adjust the 
trajectory the robot follows between these targets. A smooth and seamless motion requires the robot to 

 
24 As the target points were all captured on a constant frame rate (120Hz) the robot had to traverse the distance between 
the two targets in a fixed time. 
25 In contrast, the robot can be directed to strictly touch a target and then steer toward the next. This approach to path 
planning inevitably renders the robot more sensitive to noisy paths and results in jittery motions and vibration. 
26 RAPID language has two different z values with a 0 mm radius 1) fine, which forces the robot to touch the target 
and hold on to that position for a fraction of a second, and 2) z0, which applies a 0.3 mm zone value with no 
enforced short stop. For this study, the z0 is used to keep up with speed and prevent any adverse effect on the 
produced sound. 

Figure 85. Sample reduction methods. 
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rotate all six joints simultaneously. Between multiple motion types available for ABB robotic arms, the 
MoveJ method can accommodate this study’s requirements. MoveJ method gives the robot the flexibility 
to calculate and follow any deliberate combination of joint rotations to traverse between the targets. 
Simultaneously, it can synchronize the six joints to arrive at the designated target on time. This movement 
results in a smooth motion and helps avoid singularity and joint rotation limit issues that may occur in a 
linear motion. Moreover, the strict timing method helps keep up with the time stamp and follow the 
musician’s pace. Table 8 presents a summary of motion planning details. 

Table 8. Robotic motion tuning 

Factor Primary method RAPID Method 
Accuracy Assigning different zone values for trail and touch z values 

Consistent Velocity Down-sampling / truncating motions 
Enforcing time limit for each move t flag 

Motion smoothening Using joint-based motion MoveJ 
 

Motion Sample Variations 
During the early discussions, Mahtab pointed out that each stroke, regardless of hand and note, should be 
the same. However, a closer analysis revealed slight differences between each stroke sample that she 
provided. Upon closer inspection of the collected data, I noticed that the left-hand strokes and the right-
hand ones are quite different and easily distinguishable. However, the differences between strokes with 
different notes are barely noticeable, and classification methods had a tough time classifying them.  

While working on this study, I had the opportunity to discuss my work with Mohammad Jafari, the 
researcher behind the Santur Bot project at Georgia Tech Center for Music Technology (2021). When I 
discussed this observation with him, Mohammad provided an interesting explanation. He mentioned that 
the reason behind this observation is twofold. He explained that the almost-indistinguishable strokes for 
different notes is possibly associated with the modern style of playing santur. This style encourages 
musicians to apply the same force on both hands for all notes and keep the strokes uniform. Meanwhile, 
he elaborated, right-handed artists play the notes on their dominant hand louder and more pronounced, 
making the difference between the two hands noticeable.  

His explanations confirmed what I had observed during the early data visualizations; while left-hand 
motions were shorter and more diverged, the right-hand strokes were more converged, longer, and faster 
(Figure 71). After discussing these points with Mahtab, we concluded that the differences between notes 
are negligible, and we can focus on the technique and hands as the labels for the strokes.  

5.4 Preliminary tests 

We calibrated the robotics system and evaluated its basic characteristics at the CMU dFab lab (Figure 86). 
During these test and demo sessions, we had the opportunity to debug the system, adjust the robot/santur 
setup, test various sound recording arrangements, and test different noise reduction methods.  

Before using the physical machine, I used RobotStudio, ABB’s modeling and simulation software, to 
simulate the process. The simulations were critical to catching common robot programming bugs such as 
collisions, singularities, and reachability issues. During these simulations, I developed and tested a user 
interface to control the operation using the robot’s teaching pendant.  
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After this phase, a series of tests were conducted on the real robot to examine all system components, 
specifically the sound recording setup.27 The musician iteratively evaluated the quality of the results 
based on her experience and personal preferences. Meanwhile, I focused on designing and implementing 
methods to accommodate her inputs. Mahtab’s inputs were essential to achieving her desired sound 
characteristics through adjustments, modifications, and fine-tuning of the robot-santur setup.  

5.4.1 Motion Studies  
We tested the robotic system with three sets of motion samples:  

1. Single-joint strokes actuated using only the sixth joint of the robotic arm, serving as a 
benchmark for sound signature and actuation, 

2. Strokes samples randomly selected from the motion capture data28 to examine the robotic 
setup’s ability to reproduce notes. 

3. Strokes generated by the C-VAE model to examine the machine learning model’s ability to 
generate valid motion data. 

The three sets of tests allowed us to improve the physical setup, debug the robotic programming pipeline, 
and, last but not least, evaluate the sound signature and noise level in each type of motion. 

The single-joint motions were the most trivial ones to program, debug, and test. These strokes were 
simple, repetitive, and strictly consistent. The robot was programmed to rotate the sixth joint 20 degrees 
clockwise and then counterclockwise. Since only the smallest motor of the robot was engaged during 
these motions, it emitted the lowest noise level. However, the outcomes were repetitive, monotone, and of 
low amplitude. 

For the replay tests, a set of random samples was picked from the dataset. For tests on the generated 
samples, a set of strokes was generated by sampling from the C-VAE model, conditioned on the right 
hand. The following steps were similar between these two tests. All strokes were passed to  

 
27 The robot was set to operate at its peak speed in automated mode to keep its pace with the stoke samples. Special 
safety precautions were in place to guarantee the safety of the users. Following the safety guidelines, all individuals 
in the room were kept out of the robot’s working envelope. 
28 Accordingly, the tests at this stage are also called replay tests. 

Figure 86. Testing sound recording setup (left), tuning santur for the demo (right), images by the author. 
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Grasshopper/HAL29 definition to generate the RAPID code and then passed to RobotStudio for 
simulation. Some strokes that resulted in singularity or reachability issues were flagged and removed. On 
each set of successful samples, one was selected and inserted into the RAPID code on the robot controller 
for the tests and play. These motions were used to play notes where we could observe the robot’s 
behavior and sound characteristics. During these tests, we applied various adjustments to the robotic 
setup, path planning process, sound recording system, and santur’s tune. 

Replaying mezrab motions at the correct pace pushes the robotic arm to its acceleration limits.30 Such 
vigorous accelerations echoed as a barrage of noises over various frequencies and amplitudes. Motors, 
joints, vibrations, and the cooling fans in the controller cabinet all contributed to the noise. Therefore, the 
produced sound was a mixture of santur sound and various mechanical noises.  

Eliminating undesired noise from the recordings was a complicated challenge. We implemented several 
methods to compensate for this issue, 1) using mezrabs with no felt tip to increase the amplitude of 
generated sound, 2) testing various microphones to isolate santur sound and reduce ambient noises, 3) 
isolating the microphone and santur from the robot framework, 4) applying noise reduction in post-
processing, and 5) fine-tuning an equalizer to cut certain frequencies. Despite all these measures, some 
level of robotic noise is still present in the final recordings.  

5.5 Demonstration 

While working on this study, we developed a better intuition of the toolmaking process and the robotic 
musical instrument we were making. It gradually became clear to both of us what could be done and what 
fell beyond the capacity of this tool. This mutual understanding became the keystone for designing the 
demonstration, where Mahtab could play a score of her choice alongside the robotic musical instrument.  

 

We sketched ideas about treating the robotic instrument as the musician’s augmented third hand. She 
proposed modifying an existing score and elaborating on it by adding decorative notes, where playing 
them with two hands was virtually impossible. The original score, a Kurdish piece named Pepoo 
Soleimani, included a repetitive pattern of F notes played with riz technique on the left side of the 
instrument on white strings. She proposed to complement these notes with decorative F notes played on 

 
29 HAL is a framework for programming industrial robotic arm, with powerful add-on for Rhino/Grasshopper 
(Schwartz 2013; HAL Robotics 2022). 
30 The RAPID code was adjusted to manually override the default acceleration limits on the robot’s joints to keep up 
with mezrabs motions.  

Figure 87. Distribution of notes played by the musician (blue) and the decorative notes played by the 
robotic arm (green). 
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the opposite side of santur on yellow strings. The original song was perfectly fine without these 
decorations, but adding these matching notes could elevate it to another level. In this scenario, the robotic 
musical instrument was responsible for playing the decorative notes and keeping the tempo. 

As riz technique occupies both hands, playing another note, especially on the other side of the instrument, 
is a demanding, if not impossible, task (Figure 87). This is where the robotic arm serves as the third hand 
and plays the decorative note. In this scenario, the role of the tool is to complement the musician’s 
performance, in contrast with the automation approach, where the goal is to replace the musician. She 
described this scenario as the human playing the “delicate details” while the robotic instrument was 
tasked to place “pleasing” notes between them. 

We framed the interactions between the musician and the robotic tool by a fixed shared musical context 
that included 1) the modified score and 2) a set tempo. We intentionally left more advanced models of 
interaction, i.e., improvisation, variable timing, and imperfect tempo, to focus on the main topic of this 
study. In this scenario, the musician and the instrument followed the shared musical context while 
contributing to the higher-level musical outcome: the robotic instrument keeps the beat and plays the 
decorative notes while the musician plays the main notes (Figure 88).  

Mahtab decided on the notes being played, her role in the demonstration, and tasks that she gave the 
robotic musical instrument (i.e., keeping the beat, playing the base note, and playing solo notes (Bretan et 
al. 2016)). Her decisions about tempo and techniques, which were highly dependent on the technical 
aspects of the robotic arm, were informed by our mutual understanding of the system’s affordances and 
limitations. For instance, during the initial stages of data curation, we noticed the hardware limitation of 

Figure 88. Artist and its robotic musical instrument during the demonstration, images by the author. 
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our motion capture and robotic setup to handle riz technique. Thus, we collectively decided not to use this 
technique on the robotic instrument. 

5.5.1 Discussions on the demonstration 
The demo session was set in the dFab Lab at the School of Architecture, Carnegie Mellon University. The 
room was packed with different pieces of hardware, tools, models, and samples from other ongoing 
research projects, and three robotic arms. The two larger robots were stationary on the other side of the 
room, giving us just enough space to set our impromptu studio space. The ABB-120 robot was installed 
on a portable cart, making it easy to move around the room. The aluminum frame around it allowed us to 
install a black drape around the robot, reducing visual clutters and subtle noises around the setup.  

Initial Setup 
Before starting, Mahtab tuned both santurs. We fixed the test santur and the microphone on a tool cabinet 
in front of the robot cart and organized the sound recording hardware on another table. The other santur 
was placed on a stool in front of the robot (Figure 88). 

I ran the robot for a couple of test runs.  “The sound has changed since the last time. The noises [are 
different],” 127F

31 said Mahtab immediately after listening to the robot replaying her mezrab motions on the 
monitor headphones. She had adjusted the recording setup during the last test session, and now she could 
notice the slight change in the sound signature and the robot noises. She was right; I had made a few 
changes to the robot motion planning and managed to reduce vibrations. Also, I just swapped the original 
microphone with a new one based on her suggestion.128F

32  

The early tests—that we conducted prior to this demo—were quite helpful in revealing challenges in 
sound recording and acoustic characteristics of the produced sound. As Mahtab mentioned, santur, by 
design, is a challenging instrument for sound engineers to record. In this study, it became even more 
challenging due to the noises generated by the robot.  

Motion Types and Reduction Methods 
Once she was on board with the adjustments, she started playing the modified song alongside the robot, 
and we worked together to test various motion types and reduction methods. She carefully monitored the 
instrument’s sound signature on different motion types and reduction methods, trying to produce a sound 
signature that could meet her bar. 

The behavior of the robotic arm and the sound signature when playing generated strokes were adequately 
close to the replaying tests, with the same noise level. Upon further review, Mahtab could not distinguish 
between the replay sets and the generated motions. Assessing only the motion generation, it was a 
successful test.  

Although it was reassuring to find such a close resemblance between the sound signature of the two tests, 
it was not clear if she would feel the same under a better sound recording condition. Using down-
sampling and truncation methods helped reduce the noise level significantly. Mahtab preferred the 
truncation method as it emitted noise in shorter bursts than the downsampling method.  

After these tests, I played some notes using only the robot’s 6th joint. After several rounds of full 6-joint 
motions, listening to the robot playing only with the sixth joint was a surprise for her. “The sound is much 

 
31 Sound recordings of the demo session, 0:50 time stamp, Dec. 21st, 2021.  
32 The first microphone was a Shure SM57-LC cardioid instrument microphone, like the one she was using at her 
home studio. The new one was Shure PGA98H-XLR cardioid condenser gooseneck instrument microphone. 
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better!” she reacted when hearing the robot playing the three count off notes.33, 34 This holds with our 
expectations; the sixth joint of the robot is considerably quieter than the other joints, and its motion makes 
the least noise, resulting in a crisper sound. Nevertheless, this was a repetitive mechanical motion with no 
variation rendering it the least desirable outcome.  

Sound Signature and Noise 
I was curious to know Mahtab’s opinion on the test. Later, during the debriefing interview, I asked her if 
the robotic musical instrument that we made could pass her bar. She was affirmative. The sound signature 
was on par with her expectations. I was confused as the recordings were flooded with various noises, but 
she was fine with that. She clarified, “[…] at that moment, my effort was to only listen to the strokes 
being played. This happens in the human brain naturally. But when you record the sound, it is different 
from what you hear.” At that point, by applying “… noise reduction, it can produce the sound that is 
expected,” she asserted.35  

Mahtab’s remark was quite interesting. As a person with limited experience in music, my criteria and 
success measures were quite different from hers. While I was completely distracted by the technical 
challenges and the surrounding noises, she could isolate the notes from the background noise in her mind, 
forming a unique perception of the instrument and its performance in her mind. However, beyond that 
point, we needed to utilize post-processing and noise reduction methods to flesh out those notes from the 
flood of noises.  

 

Figure 89. Recording Spectral Frequency before (top) after (bottom) applying noise reduction and 
removing unwanted frequencies. 

Machinic [In]accuracy 
We rehearsed the song several times with different motion types and reduction methods and documented 
the process. She played her notes on the white strings and the robotic instrument was tasked to play the 
decorative notes precisely after her, but on the yellow strings on the opposite side of the instrument. After 
several attempts with different reduction methods, Mahtab put off her pair of headphones and nodded her 
head in approval. I put on the headphone and listened to the recording for a few seconds. “Is it synced?” I 
asked. She was affirmative, “It is correct. It plays correctly. It is supposed to play at the end of my 
note.”36  

 
33 Count off, or count in, is a verbal or instrumental cue which helps musician, in a performance or recording session, 
start at the right time with the right tempo. 
34 Demonstration video recordings, December 21st, 2022. 
35 Mahtab Nadalian, debriefing interview by author, February 5th, 2022. 
36 Demonstration video recordings, December 21st, 2022.  
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It was the first time the robot played the notes at the exact time she had composed. However, for several 
rounds, the timing was not correct. Upon closer inspection of the recorded footage, I noticed that the 
robot’s timing was incorrect. I tracked down the issue to the closely-timed notes, i.e., quarter notes. When 
actuating a stroke without downsampling, the robot could not finish the stroke in the designated time slot, 
dragging them into the next bar. Since the robot was programmed to use a global timer, it could fade these 
subtle drags during the rest periods and prevent them from accumulation. Accordingly, the overall timing 
was correct, but individual close notes were slightly dragged. 

I programmed the robot to count off by playing three beats at the beginning of the song. As the robot 
could not catch up with the pace of these three count off beats, each beat was slightly skewed. However, it 
was enough to confuse Mahtab, making it challenging for her to keep up with these subtle fluctuations. 
When we watched the videos of two different runs side-by-side, it became obvious that the robot’s 
skewed tempo had affected her timing and performance throughout the song. 

It took her by surprise when I mentioned this issue in our debriefing session. Her perception of the robot 
as a mechanical system gave her the impression that it could keep up with the tempo perfectly and any 
rush or drag was from her side. She elaborated that “… I still think that when you order a robot to do 
something, it can repeat that task several times [with no variation]. But a human cannot do that. This is 
the difference between electronic or computer [generated] music and an orchestra.”37 She trusted the 
mechanical system to the extent that she attributed all errors to herself.  

5.6 Discussion 

Research by design is a dynamic process nurtured by non-textual artifacts and the constant realignment of 
objectives and approaches. In such a non-linear process, the outcomes contribute to form documentation 
of the process rather than a conclusive report on a specific solution (Roggema 2016, 11). In this study, the 
framework, meta-tool, robotic musical instrument, and demonstration were all vehicles for a research 
effort, which helped us to inquire about ML-based machine learning toolmaking for creative practitioners. 
Thus, I organized this section as a discussion on the process, the musician’s experience, the inclusion of 
the context, and the dynamics between the musician and the meta-tool.  

5.6.1 Musician’s Role in the Toolmaking Process 
One of the primary objectives of this study was to examine a toolmaking approach that embraces the 
dynamics between the social context—i.e., relationships and interactions between people —, the physical 
context—i.e., instruments—, personal context, and the underlying technology.  

My approach to embracing the musician’s personal and subjective measures was to actively engage her in 
various stages of the project, from purchasing the instruments to fine-tuning the robotic setup and 
adjusting the sound engineering details. Our dialogues shaped different elements of this study and guided 
us through design, implementation, and demonstration. 

This dynamic and collaborative toolmaking process was a new experience for the musician and 
understanding her point of view was critically important. During the debriefing interview, I asked Mahtab 
about her journey. She mentioned that at the beginning, she was curious to learn what can the robotic 
instrument do as a stand-alone agent and what type of problems it would face. As we proceeded in the 
study, she directed her questions beyond mere technical aspects: “what can this instrument convey?” “Is it 
capable of conveying the same feeling and aspirations as she does just by replicating her hand motions?” 

 
37 Mahtab Nadalian, debriefing interview by author, February 5th, 2022.  
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“Having only one robotic arm available, how is it possible to achieve the complexity that comes with two 
hands?” and “if the robotic instrument successfully produces notes, will audiences recognize this?”38  

Our discussion continued into her sense of engagement in the process. She clearly drew a line between 
two periods: 1) the data collection and 2) the demonstration. She felt more engaged when we started to 
work in the lab with a physical robot in the room. She became cognizant of the “interactive” work that she 
was doing with my help to make a robotic tool to play music. “… [D]uring the data collection phase, I felt 
I was just playing, and someone was just recording. Your explanations were clear, but what would happen 
at the end was not foreseeable or tangible. But when the robot started to play, I realized and felt what was 
happening.”39   

The first part of her statement was enlightening. I tried to limit the level of intervention in the data 
collection phase and keep the musician in an environment and workflow as close as possible to her 
working environment. In practice, the process was so close to her routine workflow that she could not feel 
any difference. To my surprise, this approach came at a price; she felt less engaged in the preliminary 
stages. However, she regained her sense of engagement upon the introduction of the robotic instrument 
and moving to the robotic lab. She mentioned that for her, the lab environment was an “experimental 
space,” and she was there for a new experience, not to stay, create, and work for a long time. Having that 
mindset, she found herself comfortable in the lab environment for the brief period of this study.40  

5.6.2 Real-time Interaction with ML Model and Data Curation  
A pivotal moment in this study was when we realized that it is impossible to form a meaningful real-time 
interaction between the musician and the machine learning model. This issue derived from the data 
modalities we worked with, motion and sound. As discussed earlier, motion was merely a vehicle to 
convey the musician’s idiom into the robotic musical instrument. The mismatch between the two 
modalities made it impossible to directly associate the motion samples and the sound created by the robot. 
In this situation, we could not rely on the real-time interactions I previously utilized in the SecondHand 
study.41 

Thus, we went back to the drawing board and revised the way the musician could interface with the meta-
tool. In the revised plan, the musician focused on 1) data generation, i.e., making decisions on samples, 
techniques, and notes to be collected, 2) supervising the robotic apparatus fine-tuning, and 3) contributing 
to the sound recording and post-processing. As the toolmaker, I took over the training phase and trained 
the model to maximize the resemblance between the collected samples and the generated ones. This pivot 
allowed us to explore a different form of a collaborative toolmaking process.  

This challenge resembled the issues I faced in the first iteration of the SecondHand study, where 
participants could not comprehend the direct impact of their decisions on the outcomes. In the second 
iteration, I integrated the data curation and generation phase in one unified interface, where they could 
observe the results in real time. Following the same line of thought, in future efforts, it might be possible 

 
38 ibid. 
39 ibid.  
40 However, she also expressed some of her concerns about the lab environment. She pointed out that the lab space 
was too large for sound recording, and its environment was hard to control with all the mechanical equipment running 
around the room. 
41 In the SecondHand study, the input and output data were both images. Participants could observe and comprehend 
the results of their data curation decisions almost in real-time. They had the opportunity to update their decisions and 
steer the learning process in their desired direction. 
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to integrate the training process with the robotic instrument and observe the results of data curation in real 
time with the robot replays.  

5.6.3 Contributions, Limitations, and Future Works 
The key contributions of this study are: 1) introducing a framework for ML-based musical robotic 
toolmaking integrating the user inputs, preferences and subjective measures, as well as aspects of physical 
context, i.e., musical instrument, 2) developing an implementation of the framework as a meta-tool and its 
main components: a) data pipeline, b) machine learning model, c) hardware implementation, 3) 
demonstrating the affordances of a collaborative toolmaking process to render machine learning-based 
toolmaking accessible to creative practitioners.  

The meta-tool developed for this study is designed around the specific use case and tailored for the 
musician and her instrument. However, the framework provides a blueprint for further explorations and 
can serve as the underlying principle for making bespoke meta-tools for other musicians and their 
instruments. A keen researcher can expand this approach to other musical instruments or other creative 
practices with adequate modifications and adaptations. This requires further efforts to find the proper 
machine learning model, pick the right data modalities, develop a matching data collection method, and 
make a suitable robotic setup.  

An underlying assumption of this study was that six-degree-of-freedom motion is sufficient to learn the 
artist’s idiom of playing, as we developed the robotic instrument, it became clear that with the current 
hardware available, it is not possible to test this assumption. A potential direction for further investigation 
is to have the machine learning model adjusted to incorporate other forms of sensory data, such as 
torque—for better representation of motions. Testing other machine learning algorithms to study other 
characteristics of playing santur—such as timing—is another technical challenge that can be tackled in 
the future. 

Integrating the robotic instrument in the data collection phase is also an interesting field of research. For 
instance, making a real-time bridge between the data collection pipeline and the robotic instrument is one 
in this direction. This will help the musician instantly evaluate samples in real time by replaying them on 
the robot. The robotic instrument can also help augment the dataset by playing slightly changed motions 
and allowing the musician to evaluate them. Another possible avenue of research is integrating various 
real-time fine-tuning methods for robotic actuation and motion generation. Such real-time interactions can 
allow the musician to tune the tool—like how they tune their instrument. 

This study signified some of the technical challenges that physical actuation will bring to the equation. 
Throughout this study, the robot’s mechanical limitations were quite challenging. Keeping up with the 
velocity and acceleration of mezrab pushed the robot to its limits while producing undesired noises. 
Developing a bespoke robotic system to match mezrab motions and potentially provide control over the 
torque is another field to explore further. 



Chapter 6. Conclusion 
The final chapter of this thesis reflects on the objectives of this research, the questions, and 
my journey to answer them. It includes a summary of lessons I learned from each case 
study and the concluded results. Throughout this chapter, I will put these outcomes in the 
broader picture of computational toolmaking for creative practices. Finally, I will 
propound the next steps and the directions that future research can take. 
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6.1 Research Summary  

This thesis started with the question of how creative practitioners can harness the power of machine 
learning algorithms in their tools. In chapter one, I explained how the latest bloom of machine learning in 
the mid-2010s has raised a new wave of interest among creative practitioners to explore the intersection 
of art and artificial intelligence. We observed how a growing number of creative practitioners, such as 
artists, designers, and architects, are actively exploring ML affordances in creating tools that support their 
creative practices. 

The literature review revealed that the current efforts to create tools for creative practitioners using 
machine learning could not meaningfully integrate the idiosyncratic aspects, elements of the physical 
context, and nuances of creative practice into the toolmaking process, leaving creative practitioners with 
limited options. Through this discussion, it became clear that although the recent wave of ML-based tools 
promises a bright future for creative practitioners, the path toward this future is inevitably riddled with 
challenges. I explained how creative practitioners’ lack of ML technical knowledge in computer 
programming and ML had confined them to off-the-shelf options. I proceeded to open the discussion on 
how this issue contributed to the detachment of the toolmaking process from its physical and personal 
context.  

This led to formalizing the two primary questions of this research:  

• How do interfaces for data generation and curation for generative machine learning offer new 
pathways for toolmaking for creative practitioners?  

• How can a collaborative approach mitigate the lack of technical machine learning experience 
among creative practitioners and help them to integrate the idiosyncratic aspects, elements of 
elements of the physical context, and nuances of their creative practice in the toolmaking process? 

To address these questions, I hypothesize that interfaces for data generation that emphasize user-
generated data to integrate elements of the physical context and users’ subjective preferences can reveal 
new potentials of generative machine learning to support creative practices. 

Following this, I also hypothesize that a collaborative approach to developing ML-based tools for creative 
practices can meaningfully bring ML experts’ technical literacy to complement creative practitioners’ 
domain knowledge and skills, overcome the technical ML challenges, and help integrate some 
idiosyncratic aspects, elements of the physical context, and nuances of creative practice in the toolmaking 
process. The two case studies explored these two hypotheses. 

In Chapter 2, ML-Based Toolmaking for Creative Practitioners, I reviewed the recent efforts in ML and 
toolmaking for creative practitioners. I identified that a combination of lack of ML technical knowledge, 
limitation on data, and challenges in evaluation renders ML-based tools inaccessible for many creative 
practitioners. I proceeded to review various methods to bridge these technical barriers and audited some 
of the tools and software packages that adopted these methods. It became clear that applying those 
methods to mitigate the technical barriers comes with the trade-off of losing control over the toolmaking 
process, increased chance of making technical mistakes, and getting confined to the already available 
options, and crucially missing the personal and physical context of the practice. 

To overcome the technical barrier, I suggested a collaborative approach to toolmaking between 
toolmakers and creative practitioners and using data as a primary means to interface the ML algorithm. 
To address the missing context, I worked toward incorporating elements of the context in the toolmaking 
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process for creative practices: being physical, i.e., tools and materials, personal, i.e., user’s subjective 
measures and personal preferences, or social, i.e., interactions with peers and other experts.  

In chapter 3, I proposed a framework for making collaborative ML-based tools for creative practices by 
combining the two approaches. I designed this framework to embrace the pivotal role of the creative 
practitioners and the context in the toolmaking process, evoking new means to avoid decontextualization 
and abstraction. It centers creative practitioners in the toolmaking process and embraces data collection in 
the close-to-real context of the practice.  

This framework supports a dynamic collaboration between creative practitioners and ML expert 
toolmakers to overcome the technical barriers and render ML algorithms more accessible. It encourages 
them to collaborate on creating bespoke data curation workflows to integrate data in the actual context of 
practice. Decisions over the inclusion or exclusion of factors are governed by creative practitioners, based 
on the context and the task at hand, and by the toolmaker based on technical limitations and affordances. 

Moreover, this framework sought to allow the creative practitioners to use data to interface with the ML 
backend by generating, collecting, and curating training datasets to incrementally shape the learner’s 
behavior. 

I investigated the validity of the hypotheses through two case studies, SecondHand and ThirdHand. For 
each, I developed a meta-tool based on the proposed framework and collaborated with creative 
practitioners in the toolmaking process. Chapter 3 and Chapter 4 were comprehensive reports on these 
case studies.  

In SecondHand, I investigated one of the hypotheses of this research: interfaces for data generation that 
emphasize user-generated data to integrate elements of the physical context and users’ subjective 
preferences can reveal new potentials of generative machine learning to support creative practices. I 
collaborated with a group of participants to create their machine learning-based tools to generate 
handwriting typefaces. I investigated how creative practitioners worked with the meta-tool and 
documented the bi-directional dynamics between the human agent, physical context, and the underlying 
technology. This study also attempted to evaluate the potential of data as a form of interface to make ML-
based toolmaking more accessible to creative practitioners. 

I observed that the participants were profoundly engaged in the process, from creating their datasets to 
using the machine learning model for generating the typeface. Several participants expressed how the 
choice of medium or software package to process the data have changed their results. It becomes clear 
from this repeated pattern that the data collection process and the whole toolmaking process were heavily 
influenced by the medium and the software package. 

Participants also reported that their generated typefaces were visually close to their handwriting. 
However, it was also interesting to know that many of them gradually changed their data samples to 
match the affordances of the meta-tool. This bi-directional interaction was one of the most interesting 
observations of this study; participants molded the tool to fit their workflow and concurrently adjusted 
their workflow to fit the meta-tool’s affordances.  

Throughout the discussions and reflection papers, participants also mentioned that they found data to be a 
more intuitive interface than coding. Data, and its representation as interactive visualizations in the 
dashboard, allowed them to sense the relationship between the input data and the results. This made it 
easier to control the model and to improve the quality of generated samples by taking course-grain steps 
toward the desired results.  
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Also, they mentioned that the data visualization widgets in the meta-tool helped them to introduce their 
personal preferences and subjective measures in the data curation, training, and drawing samples. The 
three-round process was a window to observe each participant’s learning process. In every round, 
participants found new lessons and faced new challenges, and they managed to improvise solutions to 
overcome them in the next round. 

This study made it clear that there is a fine balance between the complexity of the machine learning 
algorithm, its training time, and the scale/variance in the training dataset. Participants reported that the 
mix-and-match strategy to make hybrid handwriting typefaces from very large or high-variance and 
diverse datasets was beyond the capacity of the provided model. Increasing the complexity of the model 
to mitigate this issue could increase the training time and reduce the usability of the meta-tool. As such, 
participants came up with creative solutions, i.e., adjusting their data to match the ML model and averting 
complex data combinations. 

In the second case study, ThirdHand, I collaborated with Mahtab Nadalian, a seasoned musician and 
professional santur player. We collaboratively developed a bespoke meta-tool, including the robotic 
hardware and corresponding software tools, to make a robotic musical instrument for her. This case study 
validated the first hypothesis of this study: interfaces for data generation that emphasize user-generated 
data to integrate elements of the physical context and users’ subjective preferences can reveal new 
potentials of generative machine learning to support creative practices. It also backed the second 
hypothesis: a collaborative approach to developing ML-based tools for creative practices can 
meaningfully bring ML experts’ technical literacy to complement creative practitioners’ domain 
knowledge and skills, overcome the technical ML challenges, and help integrate various idiosyncratic 
aspects, elements of the physical context, and nuances of creative practice in the toolmaking process. 

I designed this case study based on the principles of research by design, cast as design-led research. It 
allowed me to examine the dynamic and bi-dimensional interactions between me as the toolmaker and the 
musician. I narrowed down the scope of this case study to developing a robotic musical instrument to play 
santur based on the samples provided by the participating musician and actively avoided topics such as 
composing, generating, or improvising music.  

I also took ThirdHand as an opportunity to further integrate elements of the physical context into the 
toolmaking process. I introduced a physical-to-digital-and-back-to-physical process into the meta-tool. 
Working with Mahtab, we tried eradicating any interference in the data curation phase, using a minimally 
modified pair of mezrabs and a real santur. Our dialogues shaped different elements of this study and 
guided us through design, implementation, and demonstration. The meta-tool allowed us to collect and 
curate her mezrab motion samples in an environment that closely resembled her routine practice sessions. 

As we were working on this study, it became evident that we could not create a meaningful real-time 
interaction between the musician and the machine learning model. It was a challenging endeavor, as the 
inputs and outputs of the meta-tool were of two different modalities, motion, and sound.1 The mismatch 
between the two modalities made it impossible to directly associate the motion samples and the sound 
created by the robot. This challenge prevented us from having a meaningful real-time interaction between 
Mahtab’s demonstrations and the meta-tool outputs. We embraced her personal and subjective measures, 

 
1 To illustrate some of the challenges, I can refer to data visualization for the ThirdHand study. It was visually 
overwhelming to represent both time and 6DoF motion sequences on a 2D screen. Even more problematic was to 
represent sound, time, and 6DoF data as 2D visualizations.  
 



123 
 

and she was actively engaged in various stages of the project, from purchasing the instruments to 
adjusting the robotic setup and the sound engineering details. Then I trained a machine learning model 
based on the dataset to produce novel examples of mezrab strokes and play them on a real santur by a 
robotic arm.  

We curated a demonstration to showcase the robotic instrument. The blueprint was to let Mahtab play a 
score of her choice alongside the robotic musical instrument. She personally decided on what she wanted 
to do, what tasks were assigned to the instrument, and the notes being played. During the performance, 
the robot was tasked to play the assigned notes and keep the tempo while she was playing her notes.  

It became clear that translating data from physical to digital and then back to physical introduces 
significant challenges to the process. At the initial stages of this study, I assumed that six-degree-of-
freedom motions are sufficient to represent the artist’s idiom of playing. Due to the robotic arm’s 
mechanical limitations, we could not accurately reproduce her idiom of playing. As such, I could not back 
this assumption. However, we focused on other aspects of the toolmaking process. Fine-tuning the robotic 
and santur setup, selecting proper sound equipment, and sound post-processing were all executed based 
on Mahtab’s inputs, and the demonstration made it clear that Mahtab was satisfied with the final sound 
signature. 

During the debriefing, I realized that the data collection process was so close to her regular practice 
sessions that Mahtab almost lost his sense of engagement with the process. She felt more engaged when 
we started to work in the lab with a physical robot in the room and became cognizant of the “interactive” 
work she was doing with my help in making a robotic tool to play music. 

Another interesting observation of this study was the musician’s perception of the robotic instrument. She 
perceived the robotic arm as an accurate mechanical system with an extreme level of accuracy. This gave 
her the impression that any imperfection, such as rush or drag in the performance, was from her side. 
However, it was a bug in the programming and, indeed, an issue with the robotic system.   

The meta-tool developed for this study was designed around the specific use case and tailored for the 
musician and her instrument. It is not directly applicable to any other instrument or artist. However, the 
collaborative research and design process described above provides a blueprint for further explorations 
and can serve as the underlying principle for making bespoke meta-tools for other musicians and their 
instruments.  

6.2 Discussion 

6.2.1 Abstraction 
This study made it clear that abstraction is still an inevitable step in making a practically feasible 
representation. A researcher can find methods to mitigate its effects but eliminating all forms of 
abstraction is a Herculean task. The adverse effects of abstraction were quite tangible in the SecondHand 
study, where I had to work remotely with two cohorts of participants. In that study, I made the initial 
decisions on various forms of abstractions, then revisited my decisions based on the feedback from the 
participants. This iterative workflow gradually shaped the polished meta-tool that was used at the end of 
the second iteration.    

This experience guided me throughout the ThirdHand study. This time, instead of making the initial 
decision by myself, I worked collaboratively with the musician from the beginning to shape a 
representation that could reflect her perception of the tool. At this point, the notion of referring to the real 
world and the immediate context evolved into referring to the expert and the physical context. We 
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managed to limit the abstractions and intervention to the point that the data collection sessions felt like an 
imitation of her routine practice sessions.  

Nevertheless, some of the decisions on abstraction were not this successful. Abstracting the idiom of 
playing into sequences of six-degree-of-freedom motions was an example of such cases. It was only 
toward the end of this study, when we tried to actuate the motions on the robotic arm, that we realized that 
it might not be sufficient.  

6.2.2 Personal Context 
In 2018, when I was working with my fellow Ph.D. student, Pedro Veloso, on the project DeepCloud 
(2018), we examined the power of machine learning algorithms in data-rich domains. It was fascinating to 
see how users can observe the real-time effects of their inputs on the outcomes. Users could truly see a 
cloud of points morphing from an SUV to a sedan, or anything in between, in real time. They could pick 
one, or thousands, based on their personal preferences and subjective measures. 

Nevertheless, DeepCloud was rigid and inflexible. Neither users nor we had much control over what 
could be done with it. Pedro and I downloaded an off-the-shelf dataset, borrowed an ML model, retrained 
it, and wrapped it in a web-based interface for this use-case scenario. However, in this thesis, I invited the 
users to be active collaborators who sit behind the wheel and steer the toolmaking process by their 
subjective measures and personal preferences at every corner. My goal was to embrace their skill and 
knowledge.  

I observed how the users used the meta-tools to serve their goals and simultaneously learned its behavior 
and gradually managed to adjust their own work to the affordances of the meta-tool. These bi-directional 
and dynamic interactions were some of the most interesting observations of this study; participants 
molded the meta-tool to fit their workflow and concurrently adjusted their workflow to fit the meta-tool’s 
affordances. 

Despite working remotely, participants of the SecondHand study found various ways to collaborate with 
each other. They mixed and matched data created by their fellow participants and shared their experiences 
to improve their work. As such, each outcome was not only the result of an individual’s work, but to 
some extent, the result of the whole cohort’s efforts. It was fascinating to see this social context being 
reflected in the outcome. Even for the ThirdHand study, the close collaboration between me and Mahtab 
is found its footprint in all stages of the project.  

I found the real-time response and communicative visualizations as the two key factors that allowed the 
SecondHand participants to assess their progress based on their subjective measures. The interactive 
widgets in the dashboard for data curation, training, and generation of samples allowed them to measure 
the process against their subjective metrics iteratively. In the ThirdHand study, we substituted this form of 
visual signals with physical and auditory ones. Mahtab could listen to the notes on the robotic instrument 
to fine-tune her tool based on her measures. Observing and documenting this transition from pure digital 
representation on the screen to notes being played on a real instrument was a novel experience for me. 

6.2.3 Physical Context 
I have discussed the physical context in chapters Chapter 4 and Chapter 5 in detail. Here, I would like to 
open the discussion on one aspect of physical context that I believe deserves more attention. While 
designing the SecondHand study, I allowed the participants to decide on their medium of choice, pen and 
paper, or digital stylus and tablet. Participants mentioned how this choice of physical tool affected their 
process and results. On the one hand, there were several indications of achieving better results by using 
thick Sharpie markers rather than thin pens. On the other hand, participants mentioned how using Adobe 
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Acrobat Pro instead of Adobe Acrobat Reader resulted in cleaner and better handwriting samples. I found 
these notes as a sign of success, as they could successfully use the meta-tool to capture and represent 
some aspects of the physical context, i.e., the writing tool, as well as the software that they used. At the 
very same time, these were signals for me to revisit the definition of context. Reviewing the reflection 
papers, I realized that limiting the physical context to physical tools and materials was insufficient. I 
should have also considered the digital/software context. Participants’ software packages to scan and edit 
their handwriting samples were as influential as physical mediums. One could see how the choice 
between two versions of Adobe Acrobat could result in different results. In the ThirdHand study, we 
utilized Adobe Audition to post-process the recorded session, and it left its footprint on the sound 
signature. These software packages were part of the context that I should have taken into consideration.  

6.2.4 Data as Interface 
In 2016, Dr. Rebecca Fiebrink visited Studio for Creative Inquiry at CMU to deliver a workshop on ML 
and Art. By then, I had close-to-no experience with ML, but I still managed to make my first ML-based 
tool in a few minutes using Wekinator. It was my first encounter with interactive ML and using data as 
interface, and it stayed with me while working on this research. 

Throughout the SecondHand study, participants found data curation as a more intuitive interface than 
coding. Data let them sense the relationship between the input data and the results. This made it easier to 
control the model and to improve the quality of generated samples by taking course-grain steps toward the 
desired results. It was interesting to read a reflection paper where a participant described the design of the 
data collection process as a creative process in itself through which users can get into a conversation with 
the tool through data. 

In the ThirdHand, we could not completely replicate the same experience. The difference between input 
and output data modalities and the digital-to-physical translation were the barriers in front of us. 
Nevertheless, we utilized data as the means to steer the training process: Mahtab focused on data 
generation, and I took over the training phase. This pivot allowed us to explore a different form of a 
collaborative toolmaking process. 

6.3 Benefits for the Creative Practitioners 

In the introduction of this thesis, I called this research an opportunity for creative practitioners to 
meaningfully get involved in the toolmaking process. I argued that the benefit of this approach is twofold, 
for one, I expected this collaborative toolmaking process to allow them to introduce various aspects of 
their experience and knowledge to the toolmaking process and to make better tools. Moreover, I expected 
it to allow creative practitioners to develop a better understanding of the tool and find inspiration to 
explore new frontiers of creativity that wasn’t in reach before. In that capacity, the primary aspiration for 
the creative practitioners was the opportunity to make tools to serve their creative experiments. 

While working on the ThirdHand study, these expectations materialized. The collaborative workflow 
allowed Mahtab to be an active part of the toolmaking process. Meanwhile, it was also interesting to see 
how the conversations that helped us form the toolmaking process also helped Mahtab develop a better 
image of the tool’s affordances which later reflected in her demonstration performance. She 
comprehended the robotic instrument not as a replicator or a replacement for herself, but an experimental 
tool, an extension of her body, to perform a musical experiment which otherwise she couldn’t conduct 
without help from another musician. This sentiment was well-aligned with my initial expectation of this 
research. 
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On the Secondhand study, I observed another form of this experimental creative exploration. Participants, 
who already had prior exposure to generative ML algorithms, utilized the toolkit to develop an 
understanding of the C-VAE model and took advantage of this new information to push the ML model to 
its limits. While some of their efforts ended up in gibberish glyphs, they learned from these and kept on 
experimenting to find the right direction. I found their efforts to create new typefaces from large 
conglomerate of data samples as the best representative of my vision for this research. 

6.4 Limitations and Future Steps 

Before discussing the limitations of this study, I would like to reemphasize the nature of this research that 
ties it to the specificities of the participants and the context. As each meta-tool was tailored for its unique 
context, any utilization of it or the results by a different person or for a different purpose defies its original 
intentions. As such, this research is not directly scalable or generalizable. I do not believe that it is a 
limitation of this research, but it is its inherent characteristics of it. Nevertheless, the methodology and the 
implementations that I developed can serve as blueprints for further research efforts. 

As we went through a unique situation between 2020 and 2021, external limitations became determining 
factors in this research. I concluded this research with the two case studies presented here. However, I 
would prefer to explore other territories as well. I initially intended to collaborate with craftsmen and 
skilled workers and make tools for skilled trades. For that matter, I reached out to the Pittsburgh Glass 
Center to collaborate with them on one of the case studies dedicated to hot glass sculpting. Another 
domain that I wanted to inquire into was choreography. I envisioned that case study to explore a new 
realm of natural language prompts, motion sequences, and complex relationships between choreographers 
and performers to push my conception of toolmaking to another level. Both opportunities suddenly 
vanished with the outburst of the COVID-19 pandemic. 

I have already discussed the next steps for each case study inChapter 4 and Chapter 5. Here, I would like 
to focus on the bigger picture and highlight the challenges that are open to further investigation. The 
following topics are not limitations but challenges that I could not address with the resources at my 
disposal. 

First, I found bridging the digital/physical barrier a particularly critical issue. In retrospect, when 
comparing the two case studies, the leap from mere digital presentation to real-world physical recreation 
brought a barrage of technical challenges to the equation. If it was not for the close collaboration with 
Mahtab and the mutual understanding of the mechanical system limitations, the ThirdHand study could 
not be concluded.  

A potential next step in this field is to explore bridging the digital/physical barrier. I believe that the 
solution does not reside in better robotic systems or more sophisticated mechanical contraptions, but we 
may find it in a different form of collaboration between human agents and machines. We may not need to 
offload the execution into machines but allow creative practitioners to interpret and execute them. The 
choreography case study that I mentioned earlier was aimed at addressing this topic. I envisioned the 
meta-tool allowing the choreographer to translate her expressive prompts into a series of motions, which 
could facilitate communication between her and the performers. There was a strong case for physical to 
digital and back to physical in that proposal, but the execution was eventually left on the shoulders of the 
performers, not a set of mechanical contraptions. Unfortunately, the restrictions of the pandemic forced 
me to put that idea down. 
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I limited the scope of this research to the atomic actions that form basic tasks. It was a deliberate choice 
that stemmed from the nature of this research, which values the users’ agency over the algorithm’s 
autonomy. A potential field for future investigation is to go beyond these atomic actions while preserving 
creative practitioners’ authority over the process.2 

In the two case studies, I chose the machine learning models based on what was available at the time, 
both on the ML algorithms and the hardware side. With the almost daily progress in this field, more 
powerful models with close to real-time training are getting more accessible to researchers. I am eager to 
see new frontiers being explored with these new models. I am specifically excited about the affordances 
that Natural Language Processing (NLP) and learning-based image synthesis methods can bring to the 
table for creative practitioners, specifically the text-to-image models. The ability to express concepts and 
prompts in plain words and map them to the latent space of a deep learning model is an exciting 
opportunity for creative practitioners to interact with their tools. I am curious to see how researchers 
combine this new opportunity with data-as-interface to let creative practitioners interact more intuitively 
with their ML-based tools.  

In the two case studies, I focused on toolmaking for creative practitioners. However, I see an untouched 
landscape to explore in the craftsmanship and skilled labor domain. Creating tools for craftspeople with 
them is a domain with considerable social and economic impact, and I am looking forward to seeing 
researchers take on that field from a human-centered point of view. I should reiterate that I see the most 
potential in developing tools that assist craftspeople in their work rather than a stand-alone robotic system 
that can accomplish a given task.  

Finally, collaborative toolmaking between multiple creative practitioners and craftsmen is another 
territory that I would like to explore. This will allow future researchers to explore different social aspects 
of toolmaking within the communities of practice. 

6.5 Contributions 

I believe that the key contribution of this thesis resides in the framework for ML-based toolmaking for 
creative practitioners. I articulated this approach as a high-level guide for further inquiries in creative-
computing toolmaking where the creative practitioner can: 

1. collaborate with ML expert toolmakers to integrate ML into their toolmaking process, 
2. be at the center of the toolmaking process and establish methods to introduce context to this 

procedure.  

The second contribution of my research is the qualitatively detailed documentation of collaborative ML-
based toolmaking for creative practices. This documentation can guide keen readers to comprehend this 
toolmaking approach in its proper context.3 

 
2 This is a very sensitive territory to navigate. The realm of AI and ML is saturated with promises of an autonomous 
future, where machines take over the tasks that humans once used to fulfill. A consequence of this situation is the 
skepticism toward any attempts to create ML-based tools due to the fear of replacing people with machinic 
counterparts. An inquiry geared toward more autonomy in ML-based toolmaking for creative practices may inevitably 
spark questions about replacing creative practitioners with “creative machines.” 
3 I would like to reiterate Collins’ point on the tacit aspect of knowledge, even in scientific and highly technical fields 
by referring the reader to (H. Collins 1974).  
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The third contributions of this research are the two implementations of the meta-tool. These are blueprints 
that guide future researchers to design their meta-tools, machine learning algorithms, data pipelines, and 
user interfaces for collaborative and ML-based toolmaking for creative practitioners. 

This research also contributes to the body of knowledge on using generative machine learning algorithms 
with user-generated small datasets for bespoke toolmaking. It also further contributes to the literature on 
the generative potential of bias in such datasets that reflect creative practitioners’ judgments and 
subjective metrics. 
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Appendix I: Conditional 
Variational AutoEncoders (VAEs) 
This chapter is a detailed discussion of the machine learning architecture that is used as the 
backend for the two case studies. The code and implementation for both case studies will 
be available on the GitHub repositories https://github.com/Ardibid/SecondHand and 
https://github.com/Ardibid/ThirdHand.1 

1 The two repositories will be publicly available at the end of the embargo period. 

https://github.com/Ardibid/SecondHand
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7.1 Deep Generative Machine Learning Models 

A generative model (GM) in machine learning refers to a model that can be trained on an unlabeled subset 
of the distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and learns an estimates representation of that distribution, 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.2 We can draw 
novel samples from 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, which did not exist in the distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, but closely resemble them. 
From this point of view, generative models differ from the discriminative models that map features to 
labels and have been widely used for tasks like image classification. GMs are specifically useful for 
working with high-dimensional data distribution, i.e., images, and multi-modal data spaces, i.e., natural 
language and images. Moreover, they can also be used for model-based reinforced learning and making 
predictions with missing inputs when trained with missing data (I. Goodfellow 2016).  

While there are various general architectures for generative models (Figure 90), in this thesis, I will focus 
on machine learning deep generative models based on maximum likelihood. These models can be 
categorized based on the method by which they approximate the likelihood. One branch of models can 
explicitly estimate 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and generate samples directly from it; the other can only generate samples from 
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (I. Goodfellow 2016). A handful of deep generative architectures have a track record of 
compelling synthesis of images, text, and other data formats in various fields: 1) Variational 
AutoEncoders (VAE) (Kingma and Welling 2013), 2) Autoregressive models (Aäron Van Den Oord et al. 
2016), and 3) Generative Adversarial Networks (GANs) (I. I. Goodfellow et al. 2014).3 Among these 
architectures, this research focuses on VAEs and specifically conditioned VAEs (C-VAEs). 

 

 
2 There are other definitions for generative modeling, i.e., Doersch defines it as “… a broad area of machine learning 
which deals with models of distribution 𝑃𝑃(𝑋𝑋), defined over datapoints 𝑋𝑋 in some potentially high-dimensional space 
𝑋𝑋” (2016, 1). 
3 In the summer of 2022, when I was working on the final versions of this document, deep generative models based 
on Diffusion (Ho, Jain, and Abbeel 2020) and Attention (Vaswani et al. 2017), best-known by the project such as 
Dall-E (Ramesh et al. 2022) and Midjourney (Midjourney Lab 2022) were the center of attention, not only among the 
researchers, but also public. 

Figure 90. Deep generative models categorization (I. Goodfellow 2016). 
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7.2 Encoder/Decoder Architecture  

Before introducing VAEs, getting familiar with the Encoder/Decoder architecture and one of its 
commonly used examples, AutoEncoders (AE), is enlightening. Encoding/decoding refers to mapping or 
embedding an input data into a latent representation, then decoding it into the same or another 
representation. The input and output of the system might be of the same modality, i.e., from image to 
image, or of two different modalities, i.e., from text to image. AutoEncoder models form a subcategory of 
encoder/decoder architecture that is designed to receive a data point, map it to a latent dimension, and 
then reconstruct it back to the original format as accurately as possible.  

An interesting feature of AutoEncoders is their latent representation of data distribution. Once the model 
is trained, the decoder can be tricked with synthesized latent representations to generate novel examples 
that resemble the original data distribution. For instance, Bidgoli and Veloso utilized an AutoEncoder to 
create an early stage-of-design prototyping tool with point cloud data (Bidgoli and Veloso 2018). The 
latent representation in an AE is not regulated, and data distribution can be quite sparse. This means that 
drawing an acceptable sample from the latent can be difficult.  

7.3 Variational Autoencoders 

Variational Autoencoders (Kingma and Welling 2013) is an architecture of generative models that 
leverage explicit representation of the likelihood. While the VAE architecture resembles Autoencoder 
architecture, they are not identical (Figure 91). Like AEs, VAEs have encoder and decoder networks. The 
encoder, usually denoted as 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥), trains on the input data 𝑥𝑥 to learn the features and encodes them in a 
latent representation space 𝑧𝑧 which is usually of lower dimension, referred to as the bottleneck. In a VAE, 
this latent space itself is a distribution, usually normal distribution 𝑝𝑝(𝑧𝑧) =  𝑁𝑁(0, 𝐼𝐼), represented by two 
vectors for means and standard deviation. To generate a sample of the latent space 𝑧𝑧, we can draw a 
sample from this distribution. The decoder, denoted as 𝑝𝑝∅(𝑥𝑥|𝑧𝑧), is another network that receives the 
samples from 𝑧𝑧 and outputs samples from the distribution of the 𝑥𝑥.  

 

In the training process, the encoder reduces the data dimension and embeds it in the latent space z. The 
decoder aims to get the latent representation and reconstruct the original input data. Some data will be lost 
in the encoding process as the input is compressed into a lower dimension. When the decoder reconstructs 
the input from the latent representation, the outcome will not be identical to the input. The objective of 
VAE is to reduce the lost data between the input and the reconstructed output while keeping the latent 
space distribution as close as possible to the standard normal distribution.   

Figure 91. Autoencoder (left), VAE (middle), C-VAE (right) architecture. 
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Accordingly, the loss function for a VAE consists of two parts, 1) a reconstruction loss which observes 
the decoder performance in reconstructing samples, and 2) a Kullback-Leibler Divergence (KLD) that 
describes how close 𝑞𝑞 is to 𝑝𝑝 (Equation 1 and Figure 92).  

 𝑙𝑙𝑖𝑖(𝜃𝜃,∅) =  − 𝐸𝐸𝑧𝑧~𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥)[log𝑝𝑝∅(𝑥𝑥𝑖𝑖�𝑧𝑧)] + 𝐾𝐾𝐾𝐾(𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥)||𝑝𝑝(𝑧𝑧)) 1 
 
 
 

  

 

VAEs can be trained with gradient descent. The goal is to optimize the loss w.r.t. encoder and decoder 
parameters ∅ and 𝜃𝜃. However, in training, it is necessary to sample from the distribution, which blocks the 
gradient descent. To overcome this problem, a reparameterization trick is applied using 𝑧𝑧 =  𝜇𝜇 +  𝜎𝜎. 𝜀𝜀 where  
𝜀𝜀 ~𝑁𝑁(0,1). 𝜀𝜀 adds stochastic to the model, but since we do not need to optimize it, it will not block the 
gradient descent.  

VAEs have been used for image processing, namely generating handwriting digits, faces, house numbers, 
etc., denoising images, segmentation, physical simulation, segmentation, inpainting, generating captions 
for images (Pu et al. 2016), image colorization (Deshpande et al. 2017), forecasting from static image 
(Walker et al. 2016), interpolating between sequence of drawings (Ha, Jongejanl, and Johnson 2017), and 
large-scale image generation (Razavi, Van den Oord, and Vinyals 2019) (Figure 93). 

 

Figure 92. VAE loss function components. 

Figure 93. Variational Autoencoder used for large-scale image generation: class-conditional 256x256 
image samples from a VQ-VAE-2 model trained on ImageNet. Images from (Razavi, Van den Oord, and 

Vinyals 2019). 
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7.4 Computational Complexity 

In VAEs the data likelihood can be calculated with this equation: 

 𝑝𝑝𝜃𝜃(𝑥𝑥) =  �𝑝𝑝𝜃𝜃(𝑧𝑧)𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧)𝑑𝑑𝑑𝑑 2 

To do so, it is necessary to 1) define the latent variable to capture the latent information and 2) handle the 
integral over 𝑧𝑧, which is intractable. It is assumed that the samples can be drawn from a simple 
distribution, like a normal distribution, and later map them by a complex function to overcome the first 
problem. 

The second problem is more challenging, as the equation is intractable, it is not possible to compute 
𝑝𝑝(𝑥𝑥|𝑧𝑧) for every possible 𝑧𝑧. Accordingly, the posterior density is intractable. To overcome this issue, we 
need to define an additional encoder 𝑞𝑞∅(𝑧𝑧|𝑥𝑥) to approximate the decoder 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥). This trick allows us to 
calculate a lower bound of the data likelihood, which is tractable and can be optimized. It can be 
demonstrated that after this trick, the log-likelihood can be arranged as: 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃�𝑥𝑥(𝑖𝑖)� = 𝐸𝐸𝑧𝑧�𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃�𝑥𝑥(𝑖𝑖)|𝑧𝑧�� −    𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞∅�𝑧𝑧|𝑥𝑥(𝑖𝑖)� ∥ 𝑝𝑝∅(𝑧𝑧)) +  𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞∅�𝑧𝑧|𝑥𝑥(𝑖𝑖)� ∥ 𝑝𝑝∅�𝑧𝑧|𝑥𝑥(𝑖𝑖)�) 3 

Only the third one is intractable among the three terms on the right side, but we know that it is always 
greater or equal to zero. So, this can be rearranged as an inequation: 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃�𝑥𝑥(𝑖𝑖)�  ≥ 𝐸𝐸𝑧𝑧�𝑙𝑙𝑜𝑜𝑔𝑔𝑝𝑝𝜃𝜃�𝑥𝑥(𝑖𝑖)|𝑧𝑧�� −    𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞∅�𝑧𝑧|𝑥𝑥(𝑖𝑖)� ∥ 𝑝𝑝∅(𝑧𝑧)) 4 

Thus, the variational lower bound is: 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃�𝑥𝑥(𝑖𝑖)� ≥ ℒ (𝑥𝑥(𝑖𝑖),𝜃𝜃,∅) 5 

And for training, we need to maximize the lower bound: 

 𝜃𝜃∗,∅∗ = arg max 𝜃𝜃,∅�ℒ (𝑥𝑥(𝑖𝑖),𝜃𝜃,∅)
𝑁𝑁

𝑖𝑖=1

 6 

 

7.5 Conditional VAEs 

Kingma et al. discussed the possibility of using a conditional approach in generative models. They 
propose that conditioning can be utilized as a tool to “explore the underlying structure of data” (Kingma 
et al. 2014, 3587). Their paper reports on two demonstrations of the affordances of conditional models as 
a tool to explore the latent space of generative models and the possibility of content/style separation 
through fixing the label (y) and navigating the latent space. 

In the demonstrations, they utilized a C-VAE model with a simple 2-D latent space trained on the MNIST 
dataset. In the first demo, they navigated the latent space—with values between -5 and 5 while feeding 
the model with a fixed label. They observed that nearby regions of the latent space corresponded to a 
similar handwriting style while the content, the letter, was constant (Figure 94). In the second demo, the 
authors passed a sample to the encoder network and produced the latent representation vector 𝑧𝑧. Then 
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they passed this z vector with various label vectors to the decoder model.  The results show that the 
generated samples corresponded to the style of the original sample, while the generated number was 
associated with the label vector, demonstrating a dismantlement of style and content (Figure 95).  

 

  

7.6 Navigating the Latent Space of VAE and C-VAE 

We can use a VAE to generate new samples by feeding it with a latent vector. The regulated latent space 
of VAE makes it easier to create this latent vector by sampling from a multivariate standard normal 
distribution. In VAEs, the enforced regulation on the latent space—sanctioned by the KLD loss—renders 
this approach a viable solution to get meaningful results. The KLD loss forces the encoder model to map 
the input samples as close as possible to a standard normal distribution with 𝜇𝜇 = 0 and 𝛿𝛿2 = 1.4 As such, 

 
4 Gaussian distribution is a deliberate choice in this case, but it might be possible to replace it with other distributions 
too. 

Figure 94. Navigating the latent space with a fixed label, in each plot, the label (2, 3, and 4 from left to 
right) where kept fixed while the latent vector (z) was changing, image from (Kingma et al. 2014, 3588). 

Figure 95. Original samples used to create z vectors (left), the samples generated based on the z vectors 
and various label vectors (right), image from (Kingma et al. 2014, 3588). 
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we are sampling the latent vector randomly from a multivariate standard normal distribution will result in 
generating a meaningful sample. 5 

While the mere generation of a valid sample might be satisfying for a general-purpose generative model, 
the user needs to generate samples with special prior conditions in the case of this study. For instance, 
while generating a handwriting typeface, a user needs to generate a specific glyph—i.e., a, A, g, or ?—
rather than generating a random glyph each time it taps on the generative model. 

Extracting the latent vector from a given sample can partially mitigate this challenge. This sampling 
method utilizes the encoder model to map a given input 𝑥𝑥 to the latent space and find the corresponding 𝑧𝑧 
vector. Users can use this vector as a starting point. For an observation 𝑥𝑥, 𝑧𝑧 is drawn from the prior 
distribution 𝑞𝑞θ (𝑧𝑧|𝑥𝑥) (Equation 7). The user can apply a deliberate sequence of latent space arithmetic on 
𝑧𝑧 to create a new vector 𝑧𝑧′ (Equation 8). The new sample 𝑥𝑥� can be generated by feeding 𝑧𝑧′through the 
decoder model 𝑝𝑝θ(𝑥𝑥�|𝑧𝑧′) (Equation 9). 

 𝑧𝑧~ 𝑞𝑞∅ (𝑧𝑧|𝑥𝑥) 7 

 𝑧𝑧′ =  𝑧𝑧 + 𝑎𝑎,   𝑧𝑧,𝑎𝑎 ∈  ℝ𝑁𝑁 8 

 𝑥𝑥� ~ 𝑝𝑝θ (𝑥𝑥, 𝑧𝑧’) 9 

An interesting feature of this approach is the possibility of conditioning the generative process on 
multiple input samples as the starting seeds. This feature allows the user to start from a deliberate set of 
samples, navigate the latent space between them, and observe the results in real time until it lands on a 
satisfying solution (Equations 10-12, Figure 96 middle).6   

 
5 One of the main challenges if using an AE as a generative model is that such sampling methods cannot always return 
acceptable results. Due to AutoEncoder’s unregulated way of mapping inputs to the latent space, valid samples can 
be unevenly distributed at virtually any point in the n-dimensional latent space. Even an arbitrary point in the proximity 
of a legitimate sample might not be associated with a new valid sample. 
6 These methods are not exclusive to VAEs. AE models can also take advantage of these latent space 
navigation methods. Project DeepCloud (Bidgoli and Veloso 2018) takes advantage of both workflows 
with its AutoEncoder backend. In one mode, users could start from a sample, find its latent representation, 
and traverse the latent space by manipulating each element of the latent vector individually. The 
observations were quite interesting, i.e., when working on a dataset of chairs, an element of the latent 
vector was primarily responsible for growing handles, while another could control the number of legs. As 
an unsupervised generative workflow, this approach wasn’t guaranteed to automatically find such 
interesting elements in the latent vectors. Consequently, users had to manually inspect the effects of each 
element of the latent vector to spot the interesting ones.   

In its other mode, DeepCloud could map multiple input samples 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 } to the latent space 
and create the latent vectors 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 }. DeepCloud interface provides the user with tools to 
apply latent space arithmetic to interpolate between the latent representations of the inputs and create a 
new latent vector 𝑧̂𝑧. In DeepCloud, the authors implemented this process by multiplying each latent 
vector by 𝛾𝛾 coefficients that apply deliberate weights to each latent vector individually. Users manually 
adjust 𝛾𝛾 coefficients for each latent vector 𝑧𝑧 by changing sliders and knobs on a KORG midi controller. 
deck—a ubiquitous piece of hardware among musicians. This interpolated latent vector is then passed to 
the decoder model to generate novel hybrid instances. 
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 𝑍𝑍 ~ 𝑞𝑞∅(𝑍𝑍|𝑋𝑋) 10 

 𝑧̂𝑧 =  �
𝛾𝛾𝑖𝑖𝑧𝑧𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=0

,   𝑧𝑧𝑖𝑖 ∈ 𝑍𝑍,ℝ𝑁𝑁, 𝛾𝛾𝑖𝑖 ∈  ℝ 11 

 𝑥𝑥� ~𝑝𝑝θ (𝑥𝑥�|𝑧̂𝑧) 12 

Another approach to gain some control over the generative process is to incorporate the conditioning 
signals into the model and the training phase. Conditional generative models—such as C-GANs (Isola et 
al. 2017; Mirza and Osindero 2014) and C-VAEs (Aaron van den Oord et al. 2016; Kingma et al. 2014)—
have proven the effectiveness of this approach through condition the sampling process to a piece of prior 
information.  In general, a C-VAE works with pairs of data (𝑋𝑋,𝑌𝑌) = {(𝑥𝑥1,  𝑦𝑦1), … , (𝑥𝑥𝑁𝑁 ,  𝑦𝑦𝑁𝑁)} where 𝑥𝑥𝑖𝑖  ∈
 ℝ𝐷𝐷 is the 𝑖𝑖𝑡𝑡ℎ sample of data and 𝑦𝑦𝑖𝑖  ∈ {1, … , 𝐿𝐿} is its designated label.  

While C-VAEs do not need a starting observation to serve as a seed, they can still take advantage of the 
seeding method by drawing the 𝑧𝑧 vector from  𝑞𝑞θ (𝑧𝑧|𝑥𝑥) and then generate a new sample 𝑥𝑥, conditioned on 
this latent vector and a deliberate 𝑦𝑦 signal 𝑝𝑝θ (𝑥𝑥�|𝑦𝑦, 𝑧𝑧) (Equations 13-15, Figure 96 right). 

 𝑧𝑧~ 𝑞𝑞∅ (𝑧𝑧|𝑥𝑥) 13 

 𝑧𝑧′ =  𝑧𝑧 + 𝑎𝑎,   𝑧𝑧,𝑎𝑎 ∈  ℝ𝑁𝑁 14 

 𝑥𝑥� ~ 𝑝𝑝θ (𝑥𝑥�|𝑦𝑦, 𝑧𝑧) 15 

   

 

7.7 VAE vs. GAN 

It is common to compare VAEs and GANs as the two architectures of deep generative models. GANs are 
generally the preferred choice for ML tasks that involve natural-looking images, and there is a growing 
body of literature on using complex GAN architectures to generate photo-realistic, high-resolution, and 
sharp-looking images. Moreover, GANs only need one pass through the model to generate new samples, 
which results in quicker time-to-response (I. I. Goodfellow et al. 2014). 

However, without a clear objective function, the training process is not stable and straightforward. GANs 
training process is prone to mode collapse, where the model concentrates on a limited region of the 
training set and fails to present other regions. This will result in clusters of similar instances among a pool 
of outputs. Another issue is that vanilla GANs cannot scale up in pixel resolution, and even with the 
modified architectures, they may start generating fractal artifacts. Finally, the lack of a well-structured 
latent space means optimization methods should be used to find the latent representation of a specific 
input signal.   

Figure 96. Drawing samples from AE, VAE, C-VAE. 
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In contrast, training a VAE model is usually faster, easier, and more stable, especially with small datasets. 
One obstacle in developing deep generative models is the notoriously challenging training process. It is 
common to see methods that rely on 1) assumptions on the structures in the data, 2) excessive 
approximation, or 3) computationally expensive inference models to overcome this issue. The application 
of Neural Networks as a powerful function approximation method, combined with the use of 
backpropagation to train them, helped address some of these issues and led to significant progress in GMs 
(Doersch 2016). A major advantage of VAE architecture is that it does not rely on strong assumptions 
about the data structure, and the model can be trained fast using backpropagation (Doersch 2016).  

Moreover, VAEs are not prone to problems such as mode collapsing and spotting general training issues 
such as overfitting is trivial. They provide a regularized latent space that can be used to generate novel 
samples and apply latent space arithmetic. Accordingly, when more precise control over the generation 
process is critical, VAEs provide more control over the generation process.  

With all the advantages of VAEs over GANs, it should be noted that VAEs generally produce blurry 
results compared to GANs, mostly because the inference model they rely on for training is not expressive 
enough to capture details of the distribution (Mescheder, Nowozin, and Geiger 2017). This issue can also 
be associated with the MSE element in the loss function (Karras et al. 2017). MSE usually results in 
blurry outcomes that may miss subtle but critical details, i.e., details of complex geometries. It also may 
fail to detect objects that are not big or bold enough in a given scene. 

7.8 C-VAE Models Used for Case Studies 

The C-VAE model used in the SecondHand and ThirdHand studies—based on the model introduced by 
Kingma et al. (2014), generates the samples based on a latent vector 𝑧𝑧 as well as a latent label variable 𝑦𝑦 
(Figure 97 and Figure 98). It generates sample 𝑥𝑥� from the conditional distribution with 𝑝𝑝θ (𝑥𝑥�|𝑦𝑦, 𝑧𝑧), where 
𝑦𝑦 is a conditioning label vector, and 𝑧𝑧 is the latent vector. The main advantage of this approach lies in the 
𝑦𝑦 signal, which can be a vector representing the one-hot-encoding of labels, an embedded signal, or other 
forms of information. This powerful yet flexible conditioning capability was a major derive behind 
choosing it as the backend for this study. 
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Figure 97. C-VAE model used in the SecondHand study. Notice the different blocks used in the encoder 
and decoder as well as the condition vector concatenated to the latent space output. 

Figure 98. C-VAE model used in the ThirdHand study. Note the shallow encoder and single-layer 
decoder networks. 
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Appendix II:  The Context 
This chapter is a discussion on the underlying context of this thesis: the social, economic, 
and historical aspects of skill, learning, and toolmaking. Throughout this appendix, I walk 
back in time and revisit various conceptions of skill, as a form of knowledge, and explain 
how the mere act of toolmaking has long been a matter of political, social, and economic 
debate.   

This brief context is a prelude to introducing situated ML-based toolmaking for creative 
practitioners that stands on two pillars, the creative practitioner, and elements of the 
physical context. While it contributes to the understanding of situated approach to 
toolmaking, the in-depth discussions that are presented here may disrupt the fellow of this 
dissertation. Accordingly, I found it more suited to be presented as an appendix rather than 
a chapter within the main body of this dissertation.  



153 
 

8.1 Skill 

A tool without its user is a dormant object. What transforms a tool is the craftsman and their skill. In this 
section, I will introduce three conceptions of skill in their historical and social contexts 1 to answer three 
primary questions: 

Why codifying skills in tools and automating work have been enticing yet, elusive for centuries? 
How have attempts to codify and automate work reconfigured conceptions of learning and skill? 
How have these attempts influenced toolmaking procedures?  

8.1.1 Skill Situated in its Context 
According to American sociologist Richard Sennet, medieval workshops were the epitome of 
craftsmanship. A young apprentice would spend years practicing among a community of colleagues who 
follow the same goal, to elevate in the professional hierarchy (Sennett 2008). The journey began with 
trivial tasks, and the apprentice could gradually progress in the workshop organization to become a 
journeyman and eventually a master. In this context, the learning process did not rely on a pre-defined 
curriculum. Instead, the learners could learn by observing masters, interacting with pupils, and achieving 
hands-on experience while accomplishing various tasks. Direct interactions with the master, being in the 
physical context of the trade, and learning through time were inseparable elements of the apprenticeship 
model of learning. These three elements are also the pillars of situated learning theory that gained 
popularity in the late 1980s and 1990s through the works of Jean Lave, Etienne Wenger, John S. Brown, 
and Allan Collins. Jean Lave, an anthropologist at Berkley, and Etienne Wenger, a computer scientist, 
educational theorist, and practitioner, described the structure of a situated learning framework in their 
book Situated learning: Legitimate peripheral participation (1991). They argue that learning is a social 
activity deeply integrated with its social context. Situated learning suggests that learning relies on three 
essential elements: 1) time, 2) master-apprentice relationship, and 3) being situated in the community of 
practice—where the profession thrives. 

They question the common belief of the superiority of verbal communication over direct demonstration 
(ibid, 22) and criticize the notion of knowledge decontextualization in pedagogy (ibid, 40). Lave and 
Wenger argue that mastery does not reside in the master itself but is embedded in a social structure that 
the master belongs to, referred to as the community of practice. They emphasize the importance of 
learning by thriving in such an environment and gradually proceeding through opportunities in the actual 
context of that practice.2 From being assigned to trivial tasks to eventually being accountable for the 
critical ones, a journeyman builds the identity of a master. 

Other scholars also profoundly contributed to the foundations of the situated theory. Notably, John Seely 
Brown,3 Allan Collins, and Paul Duguid published an influential piece of literature in this field: “Situated 

 
1 Hereby I should clarify that the despite the order of these three conceptions of skill in the text, there is no intention 
to establish a chronological sequence among the three.  
2 A side benefit of this approach is the gradual growth in the level of responsibilities. In the early stages of learning, 
the learner repeatedly faces safe failures with no severe consequences. As the apprentice proceeds in the hierarchy, it 
shifts from the sideline to the center and gains more responsibility while constantly learning from the master and 
colleagues (Chernova and Thomaz 2014).  
3 John S. Brown is now a visiting scholar and advisor to the Provost at the University of Southern California. However, 
back in the day (1986-2002), he was the chief scientist and the director of the legendary Xerox Corporation’s Paolo 
Alto Research Center, better known as Xerox PARC. Paul Duguid, who is now an adjunct full professor at the School 
of Information at Berkeley, was also a member of the Xerox PARC family between 1989 and 2001. Allan M. Collins 
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Cognition and the Culture of Learning” (Brown, Collins, and Duguid 1989). The paper opens with a bold 
statement criticizing, by that time, the standard teaching practices that assume conceptual knowledge can 
be detached from the context in which it is learned, practiced, and thrived.  

Throughout the paper, the authors scrutinize this notion and criticize how knowledge was understood and 
treated as an independent substance that can be decontextualized and transferred, advocating the notion of 
knowledge as situated. They emphasize the interwoven relationships between knowledge and its context. 
From their point of view, knowledge is a partial “product of the activity, context, and the culture in which 
it is developed and used” (ibid, 32), and as such, it is inseparable from the physical, personal, and social 
context.4  

Other scholars assert this notion. For instance, William Clancey—by that time a member of the Institute 
for Research on Learning (IRL) and a computer scientist with a particular interest in cognitive science and 
AI5—argues that human thoughts and actions are both adapted to the surrounding environment because 
“what people perceive, how they conceive of their activity, and what they physically do develop together” 
(Clancey 1997, 343).6 

These bounds between knowledge and its context result in various forms of interactions between the 
people, procedures, and the physical, personal, and social context. Such interactions allow each agent to 
evolve through time. The progressive improvement of situated knowledge is a critical factor in this 
discourse.  Interestingly, Brown et al. tap on the concept of tool to clarify the situatedness and progressive 
nature of knowledge. They draw an analogy between conceptual knowledge and a set of tools, as “[t]hey 
can only be fully understood through use, and using them entails both changing the user’s view of the 
world and adopting the belief system of the culture in which they are used” (Brown, Collins, and Duguid 
1989). Their analogy implies that, like tools, knowledge iteratively improves in time through activities 
instead of being rigid or particular.7 

 

is a professor emeritus at Northwestern University. During his academic career, he worked on psychology, AI, and 
education. Specifically, his work on situated learning in education is a subject of interest in this thesis. 
4 Collins, Brown, and Holum later proposed a model of instruction that they named “Cognition Apprenticeship” with 
roots in the apprenticeship traditions while holdings elements of schooling and could be practiced in the current 
educational platforms of the U.S. (A. Collins, Brown, and Holum 1991).  
5 Interestingly Xerox has yet another appearance in this section; Clancy was one of the founding members of the 
Institute for Research on Learning (IRL) in Menlo Park, California. The institution was a non-profit research 
organization which was initially supported with a grant provided by Xerox Foundation. 
6 Italics are from the source.  
7 There is a quoted paragraph, allegedly from a 1991 publication by Jean Lave, which I could not track to any of her 
works. The paragraph reads like this: “Lave (1991, p.84) clarifies:” Situated” does not imply that something is 
concrete and, or that it is not generalizable, or not imaginary. It implies that a given social practice is multiply 
interconnected with other aspects of ongoing social processes in activity systems at many levels of particularity and 
generality.”  This paragraph appears in the Handbook of Educational Theories (2012) as well as a paper titled 
“Situated Cognition in Theoretical and Practical Context” by Wilson and Myers, which is published as a chapter of 
Theoretical Foundation of Learning Environment (2012). The latter references the quote to page 84 of Lave’s 1991 
paper “Situated learning in communities of practice” and referenced as “Lave, J. (1991). Situated learning in 
communities of practice. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds). Perspectives on socially shared 
cognition (pp. 63-82). Washington, DC: American Psychological Association.” The paper finishes on page 82, and 
the quote cannot be from page 84. Upon further inspection, I realized that this quote does not appear in that paper. 
However, a simple search on the internet shows that this exact quote has been requoted in several other places.  
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While situated cognition was initially conceived in the realm of education theory, it has broader 
implications beyond only education. It spans the social, behavioral, and neural aspects of knowledge and 
action (Clancey 1997). Researchers and scholars such as Phoebe Sengers inquired into the potentials of 
situatedness theory in AI and proposed three primary characteristics for a situated AI agent: 1) an AI 
agent should be evaluated with respect to its physical, personal, and social context, 2) the agent should be 
designed with a focus on its dynamics with the socio-physical context, and 3) it should be representative 
of its actual context (1996, 71). 

Drawing on the ideas that I introduced above, in this dissertation, I take skill to be a form of knowledge 
that is best described in relation to its physical, personal, and social context. This conception of skill is in 
harmony with Lave and Wanger’s social approach and Brown and Collins’s physical point of view. It also 
reflects on Lucy Suchman’s situated action that “comprises necessarily ad hoc responses to the actions of 
others and to the contingencies of particular situations” (1985) and the dynamic interactions with the 
social fabrics and the physical environment in which it thrives. It also resonates with the “Socially 
Situated AI” sentiment (Sengers 1996).8 

8.1.2 Skill as Object/Commodity 
Alongside the conception of skill as situated in its context, there are other schools of thought that treat 
skill as an object, a collectible substance that can be captured, transferred, or stored. From a historical 
point of view, one can argue that the social, industrial, and political changes of the late 18th and early 19th 
centuries facilitated the emergence of this conception of skill.9,10 In this section, I will discuss how, in this 
context, the conception of skill as a managerial commodity and as data emerged.  

Skill as Commodity 
The last decade of the 19th century remarked a turning period in the social and political definition of work 
and skill. Jeffery Haydu, a professor of Sociology at UCS who has been focused on the historical aspects 
of labor and employer movements in the US, provides us with a detailed view of this transitional era 
through the lens of his comparative studies on the state of the US and British steel industry in the late 19th 
century (1988).  

By that time, the apprenticeship was a de facto model for educating, regulating, and balancing the 
availability of the workforce in the metalworking market. This dominance granted craftsmen significant 
control over the workshop affairs. Between the 1890s and the 1920s, the newly emerging managerial 
practices challenged the craftsmen’s dominance over the workshop affairs, aiming to break down works 
into specialized tasks and embedding skills in machines (ibid). 

 
8 In an early version of this thesis, I used “socio-materially situated secret” to refer to this conception of skill. The 
term “secret” reflects on the Japanese tradition of craftsmanship practice. In the Japanese craftsmanship tradition, 
masters were destined to guard their craft secrets even from the most gifted pupils. Apprentices must spend years 
observing the masters, mimicking their slightest moves, and replicating every nuance trick to gradually enrich their 
skillsets. Eventually, they will gain what they have invested their lives in, stealing the masters’ secrets to become a 
master (Singleton, 1989 cited in Collins, 2010, p. 93). Additionally, I borrowed and alternated it from Jeanne Gamble, 
a researcher at the University of Cape Town who had been focused on vocational and professional education, describes 
tacit knowledge as a “manual mystery” while addressing the tacit aspects of craft (2001, 186). I eventually decided to 
drop “secret” for simplicity.  
9 To read more on the historical, political, economic, and in this specific case, military causes that initiated these new 
inceptions, please read (Schaffer 1994) and (Haydu 1988). 
10 It is critical to acknowledge the interactions between these two conceptions of skill, which is not the subject of this 
thesis and requires further discussion. 
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The forces behind this transition can be explained through the theories formulated by Frederick W. 
Taylor, an influential early 20th-century theoretician and a key figure in scientific management. He 
believed that “[the] management must know better than every workman in our place” (Bahnisch 2000, 
62). He advocated the appropriation of workers’ skills and reducing their role solely to accomplishing 
tasks assigned by the management. He suggested that the management must choreograph workers’ actions 
in harmony with the manufacturing line and precise timing rather than autonomous acts (ibid, 54). 

Applying this level of control was challenging as it could raise significant resistance from skilled workers 
who mastered their practice through years of apprenticeship. Thus, any effort to disturb this traditional 
order could face severe resistance. The transformation of the Portsmouth dockyard from a traditional 
workshop into the first Royal Navy site equipped with automatic machines between 1795 and 1807 
(Schaffer 1994, 210) is an example of such conflict between skilled workers and managerial outreach. 
Simon Schaffer, a historian, and philosopher of science at the University of Cambridge, provides a 
detailed image of the Portsmouth dockyard transition by Charles Babbage.11 The craftsmen and workers 
in the dockyard were protective of their skill, and resisted managers’ efforts to observe and document 
their practice or use of tools. Subsequently, they attempted to keep their craft skills away from the 
managerial inspectors (Schaffer 1994, 214). 

Nevertheless, workers’ skills eventually have been eroded in favor of Taylor’s scientific management 
practices. In the process of “deskilling,” procedures that demanded skilled workers were replaced by 
pieces of machinery or menial tasks that could be operated or executed by less-skilled workers, with 
lower wages and shorter training periods. Taylor’s approach resulted in detaching the conception of work 
from its execution, eliminating the cognitive and social tissues that were tying them together, eventually 
“dislocate[ing] the crafts skills from its original collective social base” (Gamble 2001, 190). Workers 
became alienated from their work, feeling powerless in the workspace, believing their own decisions and 
behavior will not determine the outcomes that they are looking for (Seeman 1959). The master-apprentice 
relationship and the hierarchy of “master, journeyman, apprentice” were replaced by “skilled, semi-
skilled, unskilled” demarcation (Gamble 2001, 190).  

Taylor’s work was not the first effort to dethrone the craftsmen’s control over the workshop floors. It was 
preluded by a century of preparation. Prior to Taylor, other scholars, economists, and philosophers have 
eroded its pillars. In 1776 Adam Smith, the famous Scottish economist, suggested the concept of division 
of labor as a critical factor in growth (1776). In The Wealth of Nations, he emphasizes the importance of 
breaking down works into smaller components and training workers to become experts in an isolated and 
specific task to improve their efficiency. Building on those ideas, Babbage proposed a set of principles 
that suggests breaking down work into separate procedures that each requires a different skill level, then 
hiring workers with a matching level of skill that is required for each task. This approach helped 
managers to “purchase exactly that precise quantity of [skilled and novice workers] which is necessary 
for each process” (Babbage 1835, p.175 cited in Schaffer, 1994, p. 209). 

These efforts redefined the skilled labor market, where skill was attainable by managers at the precise 
amount needed at the moment (Schaffer 1994). It was a historical transition that also facilitated the 
transfer of production control from skilled workers to managers. By the 20th century in the United States, 
the craft was pushed to the side as a "secondary means of organizing work" (Barely and Orr 1997, 2) and 
was substituted by technical work, and technicians. Technical work entails a new type of formal 

 
11 Charles Babbage is the British mathematician, philosopher, and engineer who is also the designer of one of the 
earliest known instances of automatic computing engines. 
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education, reducing the role of long-term practice and distances from the traditional apprenticeship model 
(1997, 4–11). 

Skill as Data 
The conception of skill as a commodity, which I discussed above, implies that skill can be traded as an 
object, separated from its context, tools, and the skilled workers who are practicing it. This assumption is 
a cornerstone of the data-driven approach to skill. One of the earliest tracks of the conception of skill as 
data can be traced back to the early years of the 20th century. In 1907, in his influential work, “Lecture on 
Management,” Fredrick Taylor proposed that every action and movement of workers could be captured as 
data for scientific management studies (Bahnisch 2000, 62). He proceeded to distinguish the concept of 
work from its execution, facilitating the systematical analysis of workers’ actions as a prelude to the 
scientific process of finding the best way of performing a task, or in today’s terms, optimization.  

Taylor was one of the first authors to adopt the word ‘data’ in its current meaning. He repeatedly uses 
“data” throughout his 1911 book Principles of scientific management and utilizes it as a possible means to 
depict a precise image of “… what really constitutes a proper day’s work for a workman.” From Taylor’s 
point of view, such a data-driven image could help to tune harmonious cooperation between managers 
and workers (Taylor 1911, 42–43).12  

The underlying assumption behind Taylor’s proposition was that human skill could be reduced into 
abstract data points, which then can be acquired, contained in databases, and eventually transferred. This 
conception of skill as data resonates with the knowledge decontextualization that I previously discussed. 

The last decade of the 20th century became the most thriving era of Taylor’s point of view on skill, when 
it resurfaced as a cornerstone of artificial intelligence efforts and configured a Taylorist approach to AI.13 
Phoebe Sengers, a professor of Information Science and Science & Technology Studies at Cornell 
University, asserts that in the 1990s, AI was a reincarnation of Taylorism’s human engineering and 
control practices (1998, 62). What helped this process was the leap in computing infrastructure of the late 
20th century which made it possible to process large datasets and facilitate the conception of "information 
as an economic good" (Barely and Orr 1997, 9).14 The dataset “owner” claims the ownership of skill and 
trades it at the desired cost. If in skill-as-commodity conception, an organization could acquire skills 
through human resource efforts, this conception offers raw datasets or off-the-shelf programs for quick 
implementation.  

Fueled by optimism, some AI proponents were promising human-level intelligence “embedded” in 
computer programs. Several scholars reported on this promise. For example, Diana Forsyth—an 
anthropologist and science and technology studies (STS) scholar who devoted her short scholarly career 
to the domain of artificial intelligence and informatics—15 observes that AI visionaries believe 

 
12 Taylor worked in the Midvales Steel Company for several years, started as a machine shop worker in 1870s and 
gradually proceeded to the top. He persuaded the owner of the company to fund a study about the time required to 
perform various tasks by the workers. It is interesting to know that according to Taylor, the owner was not convinced 
that the scientific study that he authorized would eventually return any valuable results, nevertheless he proceeded to 
support it. 
13 Asada and Liu cited several efforts has been focused on measuring and quantifying human dexterity and skill in 
working with tools as early as the 1970s (1991). 
14 Interestingly, “information as an economic good” makes a very well-suited segue between skill-as-commodity and 
skill-as-data conceptions. 
15 After her unfortunate death in an accident during a hiking trip in 1997, her unfinished works and essays were 
published in 2001 book, Studying those who study us by her colleagues. 
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“…computers will increasingly be able to duplicate human expertise”(2001, 35). It was generally 
accepted among the AI advocates that by collecting millions of data points about an object, we could even 
address the common sense knowledge problem (Dreyfus 2007)16 or derive models to “elucidate” human 
skill and human actions from these datasets and transfer them to machines using artificial neural networks 
(Asada and Liu 1991, 2442–43). While Taylor’s focus was centralized around optimizing the human labor 
force, Asada’s work aimed to treat skill as a transferable substance from humans to machines. 

The latest bloom of machine learning (ML) in the early 2010s, advancements in computer processing 
hardware, and the availability of large datasets resulted in several efforts to extract this new type of 
goods. Researchers have leveraged different methods to “acquire” this commodity by processing the 
available datasets, i.e., medical records (Esteva et al. 2017), conducting a large number of virtual 
simulations or real experiences (Levine et al. 2018), direct demonstrations by a human “teacher” (Argall 
et al. 2009).  

Treating skill as an object is a common practice in the current state of the AI/ML economy. Here it is 
enlightening to review some examples of this phenomenon. Amazon.com, the e-commerce, cloud 
computing, and AI giant, offers two interesting services Mechanical Turk and Rekognition. Amazon 
Mechanical Turk (MTurk), is described as a “crowdsourcing marketplace” where employers can 
outsource tasks to “distributed workforce”s (Amazon.com n.d.). This closely resembles the conception of 
skill as a managerial asset, where managers can hire, and fire, the workforce on-demand for atomic tasks 
without the challenges of working with the craftsmen.  

While MTurk is designed to hire workers, Rekognition is advertised as a quickly deployable image 
recognition service promising a substitute for skilled users in tasks that require visual inspection. As per 
Amazon’s account, clients “… pay only for what [they] use … [Amazon] charges [them] only for the 
images processed, minutes of video processed, and faces stored” (Amazon.com n.d.). The same applies to 
a myriad of AI/ML services that take over tasks that were once dominated by skilled workers.  

Comparing these two services crystalizes a key difference between the two forms of skill as object 
conception. In MTurk, which reflects the conception of skill as commodity, we observe the detachment of 
workers from the conception and understanding of their work. The hired workers are not completely 
aware of their employer or the broader goals of the task they are conducting. In Rekognition we see the 
tendency to detach the workforce from the execution of work and skill is presented as data embedded in 
computer vision algorithms. 

8.1.3 Discussion on the Contrasts between the Two Conceptions of Skill 
Reducing skill into abstracted data is an appealing concept in the realm of skill transfer and discourses on 
codifying skills into machines. However, this conception has several flaws that cannot be overlooked, 
specifically when it comes to embracing the context. First, I argue that the skill as object conception 
requires a perfect vehicle to encapsulate and transfer skill. Through the lens of Reddy’s Conduit Metaphor 
and Toolmaker Paradigm, I reason that such a vehicle does not exist, and skill is woven into its physical, 
personal, and social context. Then I will explain how the skill as object conception is incapable of 
addressing the physical, personal, and social context, nor the tacit aspects of skill.  

 
16 Common sense problem refers to the challenge of recognizing and embedding facts, details, and underlying 
assumptions that a typical user is expected to know. While trivial for a human, it has been a hard challenge for AI 
experts. 
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The Impossible Perfect Vehicle  
Thinking of knowledge as a transferable object inevitably implies that there exists a container, or vehicle, 
to capture and codify skill and effortlessly transfer it between individuals, or machines. This closely 
reminds us of Michael Reddy’s Conduit Metaphor (1979) where he explains how linguistic structures 
trick us into making the same assumption about thoughts, as objects that can be captured, contained in 
linguistic expression, and then transferred through communication. In both skill as a commodity and skill 
as data, a similar mindset is prevalent (Table 9). 

 

Table 9. Mapping Conduit Metaphor on skill as a commodity and skill as data 

 Conduit Metaphor Skill as a Commodity Skill as Data 
Source Author Craftsman Craftsman 

Object Thoughts Skill Skill 

Vehicle Linguistic expressions Managerial Methods Data 

Transfer Communication Mechanization Programming 

Target Audience Mechanical machines/Workers Computers 

 

Reddy, already aware of these mind tricks and their consequences, introduces the toolmaker paradigm. He 
argues that one’s thoughts are isolated from the others and informed by the context it has flourished in. 
Thus, communication between individuals is not an effortless task as it is assumed in the conduit 
metaphor, but it entails an imperfect method of communication that urges constant efforts by both sides to 
overcome its shortcomings. Thus, any communication is prone to interpretation and subjective 
assumptions, which tie messages into each person’s thoughts and the context. 

Although Reddy does not directly address human-machine communication or AI in general, the 
toolmaker paradigm helps expose some of the shortcomings of efforts to codify human skills into the 
machine’s language and mapping of skills between humans and machines. Following his logic, we can 
extrapolate the limitations of conduit metaphor to the conception of skill as object. First, the context plays 
a significant role in the process, being physical elements, social factors, or personal preferences in the 
conception of skill as data, context is reduced and abstracted, as I will discuss in the next section. 
Moreover, when it comes to transferring skills to machines, it is essential to consider the fact that humans 
and machines are inherently different, and they do not share the same physical context or intellectual 
characteristics (if we consider any intellectual power for machines). Finally, there is no perfect 
communication method, not between humans and machines nor among the machines. Thus, it is virtually 
impossible to directly map human capabilities into machine tasks due to such differences. 

Representation of physical, Personal, and Social Context 
The other prevalent issue of the conception of skill as an object stems from the representation of the 
context. Efforts to capture and codify knowledge require methods to reduce the complex context into a 
finite set of variables. We can observe this phenomenon in the AI discourses of the late 20th century, 
where some researchers believed that representation is the key to a successful AI. However, to achieve 
such representation, AI researchers needed to implement an abstraction schema, factoring out all aspects 



160 
 

they determined as non-critical and only including the relevant details to simplify the problems.17 This 
form of abstraction is the cornerstone of many AI studies.  

However, abstraction proved to be a problematic issue. An abstract representation of the context tends to 
factor out the dynamic coupling between the system and its world and eliminates various aspects of a 
creative practitioner’s perception and motor skills. Thus, it is not as valuable as constantly referring to the 
real world and the immediate context. 18 

The downside of abstraction in representation is reflected in the efforts to extract knowledge from domain 
experts to build expert systems in the 1990s. Forsyth explains how AI researchers’ were occupied with 
achieving this goal by leveraging knowledge acquisition methods— i.e., surveys, interviews, and 
observations (2001). Throughout this process, she observed a strong tendency to detach the expert users 
from the process. A consequence of this approach is the ignorance of expert users’ personal inputs, social 
ties among the experts, as well as information about the physical context of their practice.19, 20  

Tacit Knowledge 
Another shortcoming of treating knowledge as an object arises when addressing the tacit aspects of 
knowledge.21 Forsyth and Collins have observed and documented several instances of these issues, the 
efforts that shared the skill as an object conception.   

Michael Polanyi, the Hungarian-British chemist, who later became a professor of Social Sciences at the 
University of Manchester and an influential figure in social science and philosophy, envisions tacit 
knowledge “… as a way to know more than we can tell” (Polanyi 1966b, 17–18). He elaborates further, 
stating that “… tacit knowledge can be discovered, without our being able to identify what it is that we 

 
17 At a closer look, it becomes clear that abstraction is a key concept behind the conduit metaphor, as it treats 
knowledge as a detached object from its surrounding context that can be transmitted from one point to another without 
any loss. 
18 I borrowed this idea from Rodney Brooks and his influential paper “Intelligence without Representation” (1991b). 
Brooks, an Australian roboticist and scholar, who is best-known for his years at MIT as the head of CSAIL, explains 
situatedness as a central idea for behavior-base robotic systems: “The robots are situated in the world, they do not deal 
with abstract description, but with the “here” and “now” of the environment that directly influences the behavior of 
the system” (Brooks 1991a, 1227). Although Brooks in this paper specifically discusses the robotic systems, his 
reasoning is also valid in the context of AI and toolmaking.  Outside the academic world, we might be familiar with 
Brooks through his contributions to the consumer-grade robots. He is one of the three co-founders of iRobot, the 
company that, among a myriad of defense contracts, popularized robotic home vacuum cleaners by introducing 
Roomba. Needless to say, these vacuum robots constantly use their sensors to sense the environment and react to the 
context they work in. 
19 From a broader point of view, this problem is another consequence of ignoring the tacit aspect of knowledge in the 
1990s era AI culture. 
20 Even more recent efforts, for example, ML models, which are usually trained on large datasets that have been 
collected and prepared through crowdsourcing, are prone to biased dataset flaws. Several researchers demonstrated 
that such datasets could be pre-loaded with assumptions and convey social and contextual biases, which will eventually 
be encoded to the trained models.  
For example, Zhao et al. demonstrated that two popular visual semantic role labeling datasets contain significant 
gender bias. They highlight that “… the activity cooking is over 33% more likely to involve females than males in a 
training set, and a trained model further amplifies the disparity to 68% at test time”(Zhao et al. 2017). Similarly, some 
of the popular datasets for human face detection studies are heavily weighted on lighter-skinned subjects. They also 
evaluated three commercial systems and observed that they perform significantly better when the test sample is a 
lighter-skin male vs. a darker-skinned female (Buolamwini and Gebru 2018). When creative practitioners repurpose 
these tools in their work, these issues bleed into their creative process and intensify the situatedness gap. 
21 The Latin origin of “tacit” means “silent” and “unspoken. “Tacit” also means “secret.” In “tacit knowledge,” it is 
bears both meaning (Csikszentmihalyi 2002). 
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have come to know” (Polanyi 1966a, 5). One may possess tacit knowledge, which can be crystallized as a 
particular skill, but not be able to easily express or codify it.  

Polanyi describes tacit knowledge by describing its distance from explicit knowledge: “… while tacit 
knowledge can be possessed by itself, explicit knowledge must rely on being tacitly understood and 
applied” (ibid, 7). A classic example of tacit knowledge is bicycle riding. One can possess this skill, but it 
is not easy to teach another person to do so just through verbal clues or even identify the steps to maintain 
balance while riding. Polanyi associates this with the fact that we are “… only subsidiarily aware of these 
things,” which might not be enough to make the thing identifiable (ibid, 5).   

Tacit knowledge plays an essential role in the master-apprentice pedagogical model and is one of the 
factors that urges a newcomer to spend years forging their own identity as a master. Harry Collins, a 
sociologist of science, has observed and documented numerous cases of tacit knowledge in different 
fields. A now-classic example of his studies is The TEA Set: Tacit knowledge and scientific network 
(1974), where he emphasizes the importance of tacit knowledge, even in cutting-edge scientific efforts. 
He elaborates an example of knowledge diffusion in a network of experts trying to reproduce a specific 
laser system. The experts were trying to replicate a series of experiments first successfully conducted in 
another research lab. Collins reports that only those who relied on direct human-to-human 
communications could eventually accomplish the task, while those who solely focused on formal written 
mediums, i.e., peer-reviewed publications, failed to achieve the same goal.22 

Collins explains that tacit knowledge cannot be formally instructed and cannot be achieved through 
practice. The learner should gain it through demonstration, guided instruction, personal contact, and 
socialization with others who master it (ibid, 99). Accordingly, skill is not merely learned or transferred, 
but it is reconstructed by the learner, situated in a specific context. Tacit knowledge and the skills it 
entails may vanish if the face-to-face master-apprentice relationship fails, even for a brief period (Polanyi 
2005, 55). 

There are several factors that give tacit knowledge such a unique characteristic.23 While some of these 
factors are inherent properties of knowledge, some are factors derived from the context, individuals, and 
relationships among them.  For instance, individuals who master a domain of knowledge might not be 
aware of its importance or even its existence and, accordingly, cannot express or describe it. This 
phenomenon is known as unrecognized knowledge. 24 

Another complex yet interesting aspect of tacit knowledge is ostensive knowledge. It refers to the 
knowledge which is significantly easier to obtain through observation of an apparatus or practice rather 
than verbal communication or scripted guides. In such cases, the spoken explanation would be too 

 
22 It is worth mentioning that from the perspective of skill as a commodity, tacit knowledge is very well recognized, 
but it is treated as a commodity that is carried by individuals. This is best reflected in Collin’s brief discussion on how 
experts in economics and knowledge management practices approach tacit knowledge. In this field, tacit knowledge 
is considered as an asset that can be acquired by hiring people who possess that knowledge or even acquiring the 
whole business in which it has been developed (H. Collins 2010, 3). 
23 For a comprehensive discussion on this topic, please refer to (H. Collins 2010). 
24 It also contributes to the importance of the time factor and mimicking in the master-apprentice learning process. 
Through time, an apprentice starts to copy every delicate detail of the master’s action. Some of these unrecognized 
skills can evolve into unexplained rituals; practitioners are committed to observing them without being aware of their 
importance. 



162 
 

complex compared to watching the performance. Riding a bicycle is a classic example of ostensive 
knowledge: one will find it impossible to explain in words but easy to demonstrate. 

Finally, one who masters a skill may assume that the audience also has a specific set of understanding, 
assumptions, and skills, which they may not have. In such cases, the two agents’ isolated minds do not 
share the same context and common ground, and the communication methods can not effectively convey 
the message. This phenomenon is known as mismatched salience.25 

These characteristics explain why learning tacit knowledge requires a prolonged period of time and living 
in the community of practice. It also signifies why conventional data collection methods, i.e., surveys and 
interviews, are prone to overlooking such nuances of tacit knowledge. These methods are incapable of 
recording unrecognized skills since the subject is unaware of their existence, or cannot verbally express 
them, or the audience does not have the common ground to understand them. 

Interestingly, these characteristics also allow tacit aspects of knowledge to reside in any artifact made by 
human agents, even when the goal is to intentionally wipe them out. Thanks to Forsyth’s work, we have 
well-documented examples of intentional efforts to eliminate the tacit aspects of knowledge in the 1990s’ 
AI culture (2001). Through the lens of her work, we can observe how AI researchers tried to decouple the 
social and cultural aspects of knowledge from the expert system that they were trying to develop. Forsyth 
indicates their promise was not credible, and the resulting expert systems were not value-free, as they 
incorporated researchers’ tacit assumptions about the nature of knowledge and work (ibid). 

8.1.4 Discussion 
Conceptualizing skill as an object, or as a commodity, can lead to problems. Notably, it can mislead us to 
overlook the contextual and tacit aspects of skill. Through the lens of Polanyi’s work, we observe that 
even recognizing nuance and intangible aspects of tacit knowledge is a challenging task, let alone 
capturing, storing, and transferring them. The conception of skill as an object is fundamentally built 
around decontextualization and abstraction from the context. It assumes that knowledge is transferable 
from people and the physical, personal, and social context in which it thrives, into a machine. However, 
the contextual nature of knowledge ties it to the characteristics of its context and cannot be reproduced in 
a machine. Even though one can try to build a system based the conception of skill as an object, the 
outcomes will be the bearer of tacit knowledge of people who have contributed to the development of its 
components.  

A review of literature on the intersection of design and machine learning26 suggests that, with a few 
exceptions, most of these efforts ignored the contextual relationships between toolmakers, tools, and the 
creative task they are addressing. Addressing this issue requires a different perspective on AI and ML for 
toolmaking for creative practitioners. In this thesis, I suggest methods of toolmaking that embrace 
knowledge as it is situated in the physical, personal, and social context. In Chapter 3, The Framework, I 
discussed this approach in detail. 

I would like to close this section with reference to Donald A. Schön, American philosopher and professor 
of urban planning at MIT. He opens his article, Designing as reflective conversation with the materials of 
a design situation, with a few propositions which help us understand the state of research on AI and 

 
25 The three characteristics that are mentioned here, unrecognized knowledge, ostensive knowledge, and mismatched 
saliences are only a few examples to demonstrate the complexity of tacit knowledge. A keen reader can refer to (H. 
Collins 2010) for further discussion on this topic. 
26 For this review, please refer to chapter 2, ML-Based Toolmaking for Creative Practitioners.  
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design with respect to the tacit aspects of knowledge at that time. The first proposition is that design 
research, from an AI point of view, “is an attempt to capture design knowledge by embodying it in 
procedures expressable in a computer program” (1992, 131), which reminds us of the conception of skill 
as an object. However, in the second proposition, Schön states that design knowledge is mostly tacit, and 
it is expressed in and by actual design, a hint to the situatedness of design knowledge in its context. Schön 
points out a few characteristics of tacit knowledge that reflect in designers, i.e., they know more than 
what they can tell, they cannot accurately describe what they know, and they can best represent their 
knowledge when they put it into practice.  

In the third proposition, Schön argues that the efforts to embed design in symbolic and procedural 
representations are incomplete and inadequate. His opening ends with a critical question: is it even 
possible to use AI and ML to create tools for creative practitioners, and in this case, designers? Schön 
argues that it depends on the purpose of such tool. Creating a tool to generate design output without 
specifically presenting the solution and replacing a human designer with a “functional equivalent” might 
be an extremely hard problem to tackle. But making tools that assist and facilitate these creative 
practitioners in their workflow is an achievable objective. 

 



Appendix III: Supporting Documents 
Supporting materials for the case studies. 



 
 

 

 

 

 

 

 

 

9.1 SecondHand Study Reflection Papers 

  



The data collection process: 

I think the data collection process for interactive machine learning is based on user’s input. When I was 
writing the letters, sometimes I would erase the letters that I thought not good as an input for the 
dataset I would build. By doing so, I could control the quality of the dataset I was going to build and I 
would be very familiar with the dataset. Compared with the off-the-shelf approach, I think I would not 
be that familiar with the dataset from the off-the-shelf approach and I may concern about its quality. 
But I think the off-the-shelf approach saves user’s time of collecting data and it can provide more 
diverse data to cover various situations instead of the data only collected by a user. I think if the idea is 
to create a unique or small dataset, I would prefer to collect data by myself, otherwise, I think I will use 
the off-the-shelf approach. 

 Your experience with the training process through providing various sets of data instead of only 
changing the architecture and hyperparameters: 

I trained several sets of data and created according fonts. My first font is from my first data set which 
has a thick line weight. As a result, I got a font with thick line weight. Then I was thinking what if I create 
a set of data with light line weight and use it to train the model? As expected, I got a font with light line 
weight. Compared with the approach that only changes the architecture and hyperparameters, I think 
providing various sets of data can have total different outcomes. The outcomes may not be very 
different when using a single data set and changing the architecture and hyperparameters. I think if I am 
happy with the training result and only wants to improve it a little bit, I will change the architecture and 
hyperparameters because it is very close to the result I want. If I think the training result is way much 
away from what I expected, I will change the data set because it is easier to get the result I want.  

Your experience with the navigation of the latent space using interactive widgets in the CoLab notebook: 

I think it is easier to know what is the result of changing the number of mean/std value. The interactive 
widgets provide a visual representation of the result which helps me to identify the whether I accept the 
result of not. It is very easy to use and can show the result quickly. If the notebook does not have the 
widgets, I think it is really hard to tell whether I can accept the result and what is the difference when I 
slightly change the mean/std value. But I also find that when I change the mean/std value back to the 
previous one, the result is different.  

Your experience with the data viewer/selection dashboard: 

I am interested in the right part of the dash data view. I think the left one also provides many 
meaningful information, the right one clearly shows me how the letter changes when I sweep the mouse 
from left to right. But sometimes I will find another letter presents in the letter that I am focusing on. I 
am looking at the letter of ‘c’, but some ‘b’s also present (shown in the following image). When sweep 
the mouse from bottom to top, I think the letters in the path share some similarities which I find quite 
interesting because I do not think about that when I was writing the letters. 

Participant #2



How was your experience with using data as a method of controlling an ML model compared with your 
experience of using code to modify an ML model? 

I think the data collecting process is very important when using data as a method of controlling an ML 
model. Using code to modify an ML model may be seen as a craftsmanship, user has to change the 
values many many times to get the expected result and even cannot get the result if the data is not 
ideal. Using data as a method of controlling an ML model can quickly get the needed result (coarse 
grain), but in order to get a better result (fine grain), user has to either improve the quality of the data of 
modify the architecture/hyperparameters of the model. 

The overall process: 

High mean value works better sometimes, low mean value does not work sometimes. 

Adjust mean value affects greatly of the result, adjust std value changes slightly of the result. 

The same mean and std value will have different results when changing them to a value first and 
changing them back to the previous value. 

The third data set I use is the combination of the my first (thick line weight) and second (light line 
weight) data sets. I was expecting the result would have a median line weight, but actually not (shown in 
the following images).   



mean 0.18, std 0.20 

mean 0.20, std 0.20 

mean 0.19, std 0.20 



The final results of the fonts I generated.  

It is very interesting to train the model and generate my own font. 
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DATA COLLECTION PROCESS

Manual vs. Off-The-Shelf

TRAINING PROCESS EXPERIENCE

Multiple Training Datasets

LATENT SPACE NAVIGATION

Pros and Cons

DATA VIEWER/SELECTION DASHBOARD

My Experience

EXPERIENCE THROUGH DATA

Data vs. Code?

OVERALL PROCESS

Pros and Cons

Latent space navigation was unforately fairly unintuitive and 
hard to understand even after extended use.  Though the “mean” 
and “standard deviation” are terms I understand and can imag-
ine, the navigation GUI could have benefited from a graphic rep-
resentation of the current state of the normal curve as effect-
ed by user changes.  This normal curve could change with user 
manipulation of the sliders and help visualize what is being 
done and how the curve and samples taken from it are being ef-
fected.  Finally, the navigation GUI could have benefited from a 
brief explanation of what each control does and how exactly it 
effects the synthesized output letter.  Again, even after much 
use and playing around, I still did not generally understand 
how the outputs were effected to the accuracy that I had hoped.  
As a result, latent space navigation was not as smooth as I had 
hoped.  Finally, the character selector was overly sensitive 
and made it hard to change from letter to letter.  For example, 
if I wanted to switch from “a” to “b”, I would typically end 
up going to “c” or “d” by mistake.  This made naviation quite 
difficult. 

Training the model multiple times with multiple types and siz-
es of datasets allows a user to really understand the value 
of high quality, consistent and large datasets and its direct 
impact on the quality of synthesized output imagery, or in 
this case text.  Even though the first dataset took quite some 
time to create by hand (32 minutes), it was clearly not robust 
enough to result in a well trained model.  Perhaps if I were to 
have trained the model for additional iterations, my results 
may have improved.  Nonetheless, the second training set with 3 
times the amount of data ensured me that dataset quantity rath-
er than an increase of epoch can have a quite positive effect 
on output quality instead.  The third and final training data-
set used was the class dataset which contained 15x more data 
than the 1st set, and approx. 5x more data than the second set 
resulted in arguablly the best results in terms of consistent 
legibility.  However, I do have to say that this improvement 
may simply be due to the fact that my own lowercase handwrit-
ing is not particularily legible.  That being said, the third 
dataset did not appear to be 6x better than the second.  This 
may have been due to the disparity of styles included in the 
set as it was made up of approx. 10 student’s handwriting.  The 
algorithm may have had difficulty defining a consistent pattern.  
Nevertheless, training the model with multiple datasets was an 
extremely beneficial process as it helped me understand the im-
portance of volume and consistency. 

Manually creating data was a very successful and fun process 
overall.  The act of writing out each letter by hand slowed the 
data collection down and required physical labour, pain and 
sweaty hands to complete.  Though somewhat arduous, a manu-
al collection process allows you to physically understand the 
amount of data required for machine learning algorithms re-
quire for learning, and you also become very cognisant of the 
type and consistency of training material you need to pro-
vide.  Writing out letters allows you to do this as each pen 
stroke is signifier and representation of data being fed into 
the model.  This notion heightened my awareness and made me 
feel much more connected to the process, and in a sense, highly 
engrained within a human-computer system, something which I’ve 
never experienced before.  I believe this physical - computa-
tional connected really changes your view and overall impres-
sion of AI / ML systems and makes things which may have seemed 
quite abstract much more tangible and “real”.  As a result, it 
becomes much easier to imagine how other “real world” things 
(singing, painting, moving, etc) can fluidly transport from the 
“real” world into the artificial through its breakdown through 
quantitative & computational digestion as conveyed through this 
project.

Reflecting on this project was a great opportunity to stop and really 

think about the values I’ve gained from the experience.  Though its 

easy to say “oh, this is easy, I didn’t even have to write much code 

to make it work!”, it is clear that this exercise provided something 

much more valuable than learning a couple numpy tricks or some cool 

new neural net architecture.  In the end, it was a fantastic way to 

build a real human-AI relationship through hands-on data creation, 

physical-to-virtual data conversion and training.  As previously 

mentioned, this intimate relationship between physical and virtual 

through dataset creation recognizes the importance that AI and ML 

is not just a computational process that exists virtually, but is 

rather a tool that can interact with real things, connect to real 

people, and have real effects on our physical world.  In a sense, it 

links the real world to the virtual, which is a thing that typical 

ML / AI projects rarely do.  That being said, I’d make hand-writ-

ten datasets a requirement as I believe that “physical-virtual” 

relationship is the most important aspect of this project.  After 

showing my wife the model in action creating writing in my own hand-

written style, she immediately wanted me to make a dataset of hers!  

We then went on and discussed created datasets for other things like 

her painting style, crocheting style, and so on.  I don’t think the 

same discussion would have arisen if I had created a dataset on my 

computer and not by hand.

Using data as a method of controlling an ML model compared with 
using code to modify an ML model is an extremely beneficial way 
to work with ML / Generative models for both novices and ex-
perts alike.  As I’ve been working with ML models for nearly 
two years, I’ve never had the opportunity to have such a close 
relationship with dataset before.  The experience of manipulat-
ing models with data is a great way to understand the impor-
tance of a well curated and robust dataset.  Though coding can 
improve models in their own way, it is widely agreed that the 
dataset is often the most important and significant contribu-
tor to a successful model.  This fact is reinforced and “lived” 
through this kind of “data-first” project, so I really commend 
the end user-impression and respect I’ve gained through this 
learning experience. 

The data viewer and dashboard were great tools to help visual-
ize the datasets and understand the variety of samples with-
in. It was also a good tool to get a quick overview of your 
datasets after processing.  Selecting particular data to sam-
ple from was also easy and straight forward. However, it did 
take some time to understand how to interact with the dash-
board and what the various buttons did.  I’d suggest adding in 
a brief explanation above.  Finally, I would recommend making 
this dashboard larger as I found everything too small given the 
amount of visible datapoints.  As said on the Miro dashboard, a 
3d rotation function would be great.

Participant #3







Data collection


This data collection process was really interesting and enlightening for me, because I wrote 

all of the letters by hand twice and it made me realize how convenient is to have digital data 

instead. Yet, there was some magic of doing the handwriting on paper, specially when I saw 

how the digital versions of the other students worked out. Understanding that the average of 

the pixels covered and learned by the model were working better on bold characters was 

something I realized after I trained the class dataset. So, I’m glad I took a more conservative 

approach and that I wrote everything with a sharpie, it turned out looking great.


Additionally the first time I trained the model with my first 

dataset, it was a little bit squished and almost spray-looking. 


I thought it was because the characters weren’t cleaned up 

correctly from the data pre-processing notebook, and because 

the letters weren’t all aligned in the center. 


So I corrected that in my second batch of data collection, which 

was more uniform and centered, which made the pre-processing 

easier and allowed for clean cut characters.  In the end, I believe 

the second batch was better and I did it based on the experience 

from the first one.


Participant #5



For the third dataset from the class, I purposely picked one 

that looked different to mine, just because I wanted to train 

the model with a thinner handwriting, and curiously I worked 

terribly. 


As I described it, it looks like a right-handed trying to write 

with their left hand, yet it was fascinating to see this result 

compared to my earlier tries. Made me wonder if others had the same result. But yeah, the 

best training I saw was on my first 2 fonts, instead of the last one from the class dataset, 

which made think about how this is still just picking up pixels, and making a mean out of it, so 

the less pixels you give per character, the less it can work with, making it harder to learn. 


Navigation of latent space 


When I first trained the model, I only looked at the alphabet image, instead of the character 

mode where the sliders of latent space could be worked. But after the presentation I 

explored some of the possible options in my font, the one that had more difference between 

the mean slider was the first font (the grungy one), because as Ardavan mentioned in the 

presentation… my second font was so consistent that there was no room for change, but the 

first one showed really interesting results. 


The original character is the one on the far left, and when the mean slide is in -1, it gave the 

“a” character a gothic look, with the stretched pointy edges. And for the other side of the 

spectrum, the “a” was just a little bit squished down but still looking as an “a” character, which 

is something that is difficult to spot from the lower mean value. I believe, the greater the 

mean is, it allows for normal transitions of styles without distorting the letter much. 




Selection Dashboard


For the selection dashboard, I 

didn’t have any problem 

installing the selection app in the 

terminal. And something I highly  

appreciated was that the 

selection already came all 

cleaned up and there was no pre-

processing required. 


It was super easy to use and 

work with, I really liked this 

selection tool, I loved how it 

previewed the selection and the 

data points. It was an amazing 

interface.


Data as ML model control instead of code


I think what I saw different from the last hw, was the variety of outputs you could have, since 

everyone’s handwriting is different, there is a ton of possibilities of font mix n’match, which 

makes it fascinating, but still you need to have people willing to put the effort to build a 

dataset of 18K characters. So, I did like this exploration of working dataset instead of 

working the model’s code to get different results, it makes it easy to control and improve it if 

necessary. 


Overall process


Overall, I learned a ton from this process, it was 

really interesting to work through all the ML 

pipeline, from the data collection to touching up the 

results. Something I found really funny, was during 

the data pre-processing where I didn’t changed the 

row and col steps based on my sheets width and 

height, so when I ran that notebook, I got this 

beautiful image. 


It looks like something that needs to be deciphered, 

I loved it, and found it really funny. 




Furthermore, I was really amazed by the results of the other students during their 

presentation, at some point I thought why did they go for less than the default 500 training 

epochs. I mean, most of them were working with <400, which made me think that maybe I 

was doing it wrong but after their results, I just realized that wasn’t it. So I showed my work, 

which apparently everyone enjoyed.


Something interesting was how the training loss of the third font dropped (as shown in the 

image below) after the 600 epoch, almost like it was not converging, but I realized it wasn’t 

only my problem, because many of the other students shared the same issue.  




In the end, I really enjoyed this assignment and I was amazed by the results and accuracy of 

the created font which does looks a lot like mine. So thanks for this. 




A S S I G N M E N T   2   | T H E   S E C O N D H A N D

O V E R V I E W

This assignment focuses on practicing  the basics of situated machine learning and
interactive machine learning. It uses a conditional variational autoencoder (CVAE) to
generate a handwriting generator, based on the handwriting data created by users.
The main idea is to create a data pipeline to manipulate the input data to train the
model.

D A T A   C O L L E C T I O N

The provided worksheets were to be populated with our one’s own handwriting
samples. The handwriting data was generated using an iPad Pro 3rd Generation and
Apple Pencil 1st Generation in the Goodnotes App. To process this data further, Adobe
Photoshop was used for cropping and resizing. This creates the necessary raw data
required for the model.

Figure 1. Left: Hardware used - Ipad, Apple Pencil; Right: Applications used - GoodNotes, Photoshop

Data preprocessing involves cropping the entire alphabet into labeled data wherein
every letter is cropped and labeled with its corresponding textual alphabet. In this
entire project - three kinds of datasets are used: 01 Created by me, 02 Created by me,
03 Created by Entire class, 04 Combination of datasets 01 and 02.
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Figure 2. Left: Handwriting dataset 01; Right: Handwriting dataset 02

Figure 3. Left: Handwriting dataset 01; Right: Handwriting dataset 02

I always believed that my handwriting is pretty uniform, but this assignment proved me 
wrong. I have a great deviation in a few characters and that is where the generated 
data was inefficient. The first dataset I created did not recognize letters such as ‘c’ or

IDENTIFIABLE DATA REMOVED



‘q’ or ‘Q’ that well. These observations were noted and the new dataset was made
bearing in mind these changes. The letters in the first dataset were getting cropped in
the data preprocessing stage. Centering all letters and being mindful of the sizes of
letters was also an additional note in the second dataset. This off the shelf data
collection technique proves to be helpful in this scenario as the user somewhat has
direct control over the data,and has the ability to manipulate it based on desired
requirements.
(View: Creating the data, testing it, making changes in the data as feedback and then
testing again is exciting. It is a good feeling to have (somewhat) control over the results
of the model through my inputs.)

The project files also include this interactive dashboard app that lets the user
interactively select data from the entire dataset. I believe this kind of visual
communication with data is really helpful for one to visualise the features of data and
create a dataset of their desire. Figure 03 shows data selected using the lasso tool from
the entire dataset which was used as my final training data.

T R A I N I N G   P R O C E S S - R E S U L T S

The training process is pretty straightforward. While training with the first dataset
keeping all settings at default at 250 epochs, the results were not quite desirable - a
few letters had been cropped more than required thus generating unclear letters.
Letters that had a higher value of standard deviation in the samples naturally generated
blurred samples.This was a prompt for having better data samples for training. A
thicker brush stroke, clearer letters with minimum deviation within samples, and
centering the letters in the worksheet provided were the points noted while making the
new handwriting samples. These new samples were trained for about 270 epochs,
keeping all other settings at default and the results were significantly better.

Figure 4. Left: Handwriting dataset 01; Right: Handwriting dataset 02

IDENTIFIABLE DATA REMOVED



The above plots indicate the data samples and it is observed that the data is quite
diverse. Seen below are training plots from all three runs. The first try with 250 epochs
seemed a good amount of training as 270 was overfitting the model. The second
image is from the improved handwriting samples trained for 270 epochs and finally the
third dataset that was run for 250 epochs as well.The model starts overfitting at about
40 epochs.

Figure 5. From left to right: Training plots for first to third datasets

For testing the model, “fake” text was generated using the GPT-02. The results were
quite amusing! The images below show the rendered images for the following text:

“Does Architecture need software developers?

Figure 6. Top to bottom: Handwriting 01 Generated, Handwriting 02 Generated, Handwriting 03 Generated

Capital letters seemed to have a greater latency for some reason in my datasamples
and they were tougher to optimize. Curvy letters such as “s”, “c”,”o”, “q”, etc also
had a greater standard deviation. A thicker stroke automatically generates very clear
characters.

IDENTIFIABLE DATA REMOVED



Figure 7. Alphabet Catalogue

C H A L L E N G E S   |   B O T T L E N E C K S

Creating the data samples is an extremely important step in this workflow but can get a 
little monotonous. Using the first file for training the model was quite inefficient. The 
tuning of individual characters is really frustrating and seemed to be ineffective to me 
in the first place. The results of the entire data set was initially quite disappointing - the 
characters were extremely blurry. With the new notebook and being able to choose 
data within the code, the data processing pipeline was simplified a lot. The character 
tuning also had prompts in this one and was way more efficient. The dashboard is a 
great visualisation tool but is not super intuitive in deciding what kind of data to select.

D I S C U S S I O N

This assignment was exciting to me because I was a direct stakeholder in the machine 
learning process. I wish I had access to this tool when I was in undergrad school -
would save hours spent in note taking. It is interesting to think how this assignment 
would have an extended use case within the field of architecture and what sort of 
labelled images could be used to generate new ones.

IDENTIFIABLE DATA REMOVED



IDENTIFIABLE DATA REMOVED

Learning Matter Homework 2 - Reflection

March 6, 2021

I used an XP-Pen StarG640 digitizer and both Adobe Acrobat Reader and Adobe Acrobat Pro to create the

data. The line thickness was set at 2 pt. The software created vector representations of the characters.

Therefore, it sometimes created unwanted artifacts at sharp corners of the character outline. In general, I

deleted those characters  and recreated them. Sometimes, the eraser tool allowed me to trim off the

unwanted area of the character, but the tool was imprecise and often did not produce satisfactory results. I

don’t have much experience with a digitizer so the feel of the pen in my hand and the feel of the pen on the

tablet negatively impacted my penmanship quality. While I think the system I used was a bit frustrating and

did not capture my script well,  it was still a worthwhile experience. In fact the frustration highlights an

interesting paradox of capturing data in this way. From the presentations today it was evident that the best

results came from very uniform, almost robotic character creation. For most people this is an unnatural and

very self-conscious way to work. It seems to me that to really capture the individual style of a writer,

woodworker, etc., one would need to capture their movements and results when they are in a flow and

operating without self-conscious manipulation of the tool.

Images showing how the vector graphics processing modified the shape of the characters. Note the elongated

corners and squared line caps.

The results from my first data set did not provide me with any clues on what to do differently when creating

the second set. Perhaps more specifically, I was not able to recognize any of the clues that were probably in

the results.  I imagine that an intuition could be built if this tool or workflow was used frequently. The chance

to build skill and judgement with the tool could make it a potentially rich way of working. So overall, the idea

is very intriguing. However, as I mentioned above, the process of creating the data is unnatural and time

consuming. That dissuaded me from exploring by creating more and different data. Since I did not know

what specifically would improve the results, for the second set I focused on making the characters more

uniform in size, shape and position in the frame. I was  also more strict about recreating misshapen

characters or those with the artifacts mentioned above. For this set I used Adobe Acrobat Pro which seemed

to perform slightly better. Using a large collection of data created by others could be one way to lessen the

task of data creation. But, my sense is that it then becomes a different pipeline and loses some of the

Participant #8



qualities that make self-generated data so unique. That is not a comment on the quality of the results, just

that I feel it becomes a different tool.

My second set of characters did produce better results than the first.  As will be explained below, I did not

use the class data to create a third font. The results of those experiments were on par with the quality of the

results of the second data set alone.

Results from  data sets 1 (left) and 2 (right)

I was not able to markedly improve the character shape using the interactive widgets. At most I was able to

improve the contrast or remove a white or black blob from the character. If the character was poorly shaped

at the start, adjusting the sliders did not recover it. The concept of navigating the latent space sounds

promising and I guess I wanted it to be like the videos of faces and shapes transforming the latent space is

transversed. However, it was difficult to predict what effect the sliders would have on the character. It

almost seemed random because moving the slider in a single direction did not seem to change the character

in a progressive way. For the combined data set, I attempted to adjust each letter but gave up at ‘f’ because it

felt like a lot of effort with little result.

Although I seemed to always find a way for it to not work, when I did get it working I found it to be helpful

and a potentially powerful part of the pipeline. I did not try to use the t-SNE representation for selection. It

seemed too likely that I would miss a whole letter or two. It was interesting to play with and see how

characters were grouped.  The graph with the characters in rows was more useful to me. Instead of using the

whole class dataset, I combined my own two data sets and only visualized those. Then I selected a column of

characters to train the model. Based on the results presented in class by others today, I felt that this might be

a way to avoid the problems of a too varied data set. By selecting only a column I thought I might avoid some

outlying characters and thereby improve the model training. My results were not as good as I hoped but they

were better than the results of a combined data set without selection.



Images showing the column of characters selected from the combination of the two data sets I created.

Results from combined data set (left) and selection from combined data set (right)

I am not sure that I was actually able to control the process with the data. It was definitely fun to try though.

It felt more engaging than tweaking arbitrary parameters. Like I said above, I sense that one could get into a

conversation with the tool through the data. That could be enjoyable. A less tedious data collection process

would definitely help. I can see the design of the data collection being a creative process in itself. Of course,

writing code is more immediate and direct and that has its value too.

My results were disappointing, but seeing [retracted]’s amazing results proves that legible results are

possible. However, it was mentioned in class that exploration of her latent space did not actually give her the



ability to tweak her characters and fonts. Since that is the promise of the tool, it needs to be addressed

somehow. Does the latent space actually allow for search and exploration of different font types? Is there a

better way to navigate the space?

Work notes:

I changed the padding in the image processing code to 10 because the characters were being cut off.

All models were trained to 250 epochs and not other parameters were changed. Training on the combined

data set took significantly longer than training on a single set of 52 characters. Below is the training plot for

selected data, but all of the training plots looked similar.

Before I saved each character in the font array, I removed all gray values. I used a threshold of 0.8. Pixel

values below the threshold became 0. Pixel values equal or above became 1. I think this improved the clarity

of the font. I also adjusted the ‘squeeze’ value to give each character more white space between them. I

believe this improved the legibility. Finally, I wrote a script that loaded the numpy font array and converted it

to a dictionary so that the provided render methods could be used to print examples using the saved fonts.

The provided render methods had to be modified to ignore punctuation and any character not in the 52

character font.



Font 2 before and after gray removal



Paragraph created with GPT-2 website:

However, there is also another issue that is important. The American people must remember that we have

an opportunity to develop a very different kind of country that can become better and better. My mind is

always occupied by this. I wonder if we have a chance to build a nation that is more prosperous than the rest

of the world, and that we will become better. That would be something. Anyway, this is probably enough to

allow us to move forward.

Sincerely,

GPT-2

Paragraph rendered with Font 1 (data set 1)



Paragraph rendered with Font 2 (data set 2)

Paragraph rendered with Font 3 (combined data set)

Paragraph rendered with Font 4 (selection from combined data set)



HM2 Reflection IDENTIFIABLE DATA REMOVED

Process:

In the first iteration, I just used a different number of epochs to train the model so as to get

familiar with the pipeline.

In the  second iteration, I use four different datasets and 3 different numbers of epochs to figure

out the best number of epochs.

In the final interaction, I deliberately use 3 different datasets to train the model. The number of

epochs is chosen based on the previous experience. The first dataset uses only the second

dataset I created. The second dataset combines the two datasets I created. The third dataset

uses all the ten datasets.

Reflection:

1. The data collection process:

Compared to using an off-the-shelf approach, the data collection process really helps in

understanding how the data collection would influence the training result, especially

after knowing how other people collect and process the dataset differently.

At the very beginning, I am not aware of this kind of difference. I kind of overestimated

the generalization learning ability of the model. Thus, I deliberately write the letter in

different sizes and different ways, hoping the model could generalize and learn from

them. However,  the result is not promising. In the next stage of the design, I try to

control the size and shape. The result is way better.

Participant #9



First Dataset Second Dataset

Besides, I use the IPAD + Goodnotes as the working platform for data collection, which

save a lot of post processing time.

2. Your experience with the training process through providing various sets of data

instead of only changing the architecture and hyperparameters.

In addition to deliberately controlling the size of the letter in the second set of data in

order to improve the training result. I have also used some image preprocessing to

improve the training result.  Although the background is clean enough from human

perspective, the training result is clearly improved using the pre-processing dataset.

In the presentation, I am so surprised to see my classmates deliberately use the bold

letter to improve the training result. I also show my process of using a different number

of dataset to influence the training. I use one set, two sets, five sets and ten sets

separately with 200,500,1000 epochs to train the model. For two sets of data, it seems

that 1000 epochs are definitely enough. While for 10 sets of data, the generated letter

still has some features from other letters and is not clear enough.



3. Your experience with the navigation of the latent space using interactive widgets in the

CoLab notebook.

Navigating the latent space using interactive widgets is so interesting, especially while

you are using a big dataset. Although we can’t see the actual latent space, changing the

mean and standard deviation really gives me understanding of how the letters cluster in

the latent space. And while using a large dataset to train the model, I could really see

how different types of handwriting emerge with comparatively large standard deviation

input.



4. Your experience with the data viewer/selection dashboard.

It is good to have the data viewer/selection dashboard. The program is easy to use for

merging data and label data selection. Moreover, while the size of data is relatively

small, the t-SNE method could correctly visualize the data in 2d space, which makes the

selection of similar dataset easier. However, while the size of data goes bigger, the 2d

space is not enough for visualizing and it is hard to visually explain why part of the

dataset is concentrated in the same place.

5. How was your experience with using data as a method of controlling an ML model

compared with your experience of using code to modify an ML model?

Using data to control the ML model is more intuitive that you can clearly sense the

relationship between the dataset and the result. It is so amazing that while using the

large dataset, not only the generated letters themselves, but also their position tends to

be better.

However, it is also a little boring since a lot of time is spent on making the dataset and

personally speaking, I enjoy the process of finding logical relationships between

different parameters and the training result.

6. Some suggestion to the model and pipeline

a. Some code could be added to load the saved font to generate the paragraph.

b. The domain of the mean at the interaction part could be smaller for more

precisely controlling the number.

c. Code for implementing the training and saving could be separated into two

parts since the plot will be cleaned when you just load an existing trained model.



IDENTIFIABLE DATA REMOVED
Ardavan Bigdoli
Inquiry into Machine Learning and Design 
10/22/21

The Second Hand: Reflection

Data Collection

Providing the data for our model required fifteen pages of handwritten words that were
selected to fulfill an ample diversity of letters. Given the previous semester’s process of filling
out a specified number of the same letter in a grid, this semester’s approach differed in that as a
reaction to the individually handwritten letters, in an attempt to capture the essence and organic
characteristics of handwritten letters in a word, extra effort was taken not only to fully write out
words but to also have to go into the CVAT online tool and manually identify, in sequential order,
the bounding box of the individual letters. This approach was tedious, though highly warranted,
as letters written in a word provide more natural inconsistencies than just printed letters in a box.

With the option to utilize a digital tablet or manually write with pen and paper, this was
already a significant factor in determining the final outcome of my dataset. I chose to do paper
and pen almost without choice, whereas my classmates had the option to use a tablet due to
owning one or borrowing one. Though I could have used a Wacom tablet, I found the process
unnatural given initial attempts and concluded to create my dataset by hand for practical
purposes and to capture my handwriting in the truest sense.

Comparing the digital written set of my classmates to my own handwritten scans, there
are some key visual differences that affected the data set. Firstly, on a tablet, the writing software
naturally smooths your written gestures as well as tries rendering your writing to look a certain
style. In the case of using pen and paper, I found my writing to be relatively messier in
appearance, and the thinner pen not blurring any of my linework. Too, my scans were noticeable
of varying contrast to that of the black and white nature of writing digitally. Lastly, another
noticeable differentiation between a digital set vs my handwritten set was that my words often
did not fit and had to be written on other parts of the paper, whereas digitally, one can zoom into
the page and write with correct and consistent spacing.

The above steps naturally give a lot of agency in decision-making for the one making the
data set. I believe that this offers the most realistic example of trying to capture one’s own
handwriting in the case of training a machine, though with that being said, the many variables
that can create variety in the data mean that more data would need to be collected than what we
alone were able to produce. In that case, off-the-shelf data provides that much more convenience
and access to that large amount of data. That being said, there is a lot one might not know about
the data being collected and where it comes from, given all the potential for biases.
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The last point touch on is the CVAT online tool itself, which was the most demanding
task in our data collection process. I do speculate if there are more automated approaches to this
step, but naturally, to be precise the human eye is best in this scenario. But the CVAT tool itself
did export the labels in illogical ordering at times and that did tamper with the training process.
Though a script that ordered the labels by x,y coordinates would have been a solution, I myself
fit words wherever I can on the page in order for my handwriting to fit, which meant such a
script would not work; classmates that used digital writing tools would not have this problem.
Perhaps this small consideration of how one designs sheet we write on can go to lengths to make
this manual process more efficient.

Training Process

The three sets of data that I have trained were pages 0-10, pages 0-15, and the thinner
lettering of the collective class data. I naturally embraced that I was looking at results with
thematic similarities rather than creating something very different between fonts and allowed this
to be a greater point of comparison.

Comparing the results of the first font to the second was intended to identify the visual
difference when providing more training data. The training loss charts had similar tendencies,
which made logical sense. The final results also had a pretty expected outcome, where the
fidelity of the font trained with 15 pages, was noticeably crisper. This is seen most in some of the
letters I provide more inconsistent results for, reflecting in a blurrier type for the final font. This
is in particular for my letter ‘g’, where ‘g’ in the second font looks noticeably more defined than
the first.

The collective data from the class results, generated using the selection dashboard, had
noticeably more inconsistencies in results. This is likely due to the great variety of styles in
handwriting data. It is clear to me that when more variables are in place for training, more data is
needed to supplement that. Interestingly, the font made from the collective class data of thin
letters seemed to have a closer resemblance to my own handwriting than expected.

Notebook Interaction

The interactive widgets in the CoLab notebook helped me understand the way the model
and its latent space operate more intuitively. By being a responsive graphical user interface, it
was easier to create and observe the results of the reproduced letters. Generating fixing the font
with sliders representing the mean value for the sampling and the standard deviation was
intriguing to see visually effect-wise, though honestly I still have lengths to go to understand the
mathematics behind these values.



My biggest takeaway from the interactive widgets is how it makes me reflect on machine
learning being a more visual and tangible process that can be integrated with people like my
current self who understand the process at a higher level. There is a design agency in generating
the font based on changing values of the latent space and I find that that is not something a
graphic designer would typically consider but now can.

Selection Dashboard

It being my first time using an Anaconda environment, I certainly saw the benefits of
how a package manager can be useful in developing tools that can also be shared with the class,
like this dashboard. As a user interface, I think it builds even further on the ideas discussed in the
interactive widgets on CoLabs, though my critique is that it is more interactive than it is
responsive and informative (though that does not lessen the potential for what it can be). I
enjoyed seeing it as an all-encompassing tool for data selection and directly data processing and
learning to that of exporting. Though I did have some personal issues, like when resetting the
model it did not always work for retraining, and I had to restart the app. That being said, the app
felt generally very intuitive and with more visual cues could see itself realized as a great app for
training data.

Data vs Code

The data itself and its creation, the way it is labeled and collected, all play a large
determining factor to the ML model, I’d argue, more than the code itself, at least to my current
knowledge. My reasoning is that there is a seemingly infinite amount of possibilities to the
training data itself, and a rather creative effort is required to compose a means to get useful data
that can be trained by the machine.

In our previous assignment with the paintbrush strokes where we had to adjust the layers
and code of the neural network, I find the process was a matter of experimentation and analyzing
results. Of course, experience and knowledge are important too, but these things become learned
and prescribed as a process.

In contrast, data collection itself seems to be a unique problem to be addressed given the
desired objective of the model. There is a far greater amount of concern and possibility related to
creating a data set. What are the biases in the data? How varied should the data be and is that
something we striving for? Naturally, made clear by the dashboard, data in its vastness and
diversity is what determines the code, rather than the other way around.



Overall Process

Data collection:

Above is the photo of one of my
hand written sheets. Things to observe is
that I used a scanning app on my phone,
which loses contrast and is not necessarily
fixed as a dimension. There are also some
discrepancies within shadows and
greyscaling. Also errors and awkward fitting
remains in the data set.

Using CVAT was difficult - despite
outlining letters in the correct order, it would
export as a text file in weird ordering. I
manually had to rerun the CoLabs script and
calculate mentally how to edit the text file,
represented on the left, to correspond with
the correct order of the words.



Training Evaluation:

The above two charts represent the training and evaluation loss throughout the
150 epochs. The top chart is from Font 1, pages 0-10, the second chart from Font 2, pages
0-15. Interestingly about the model and dataset is the large spikes that occur between
epochs 100 - 120. I wonder if this has to do with some of the more varied examples of
letters (like ‘g’), when the model begins to overfit and get more specific.

Here is the raw font sets, the above being Font 1, below Font 2. Font 2 is slightly
crisper and less fuzzy in letters like ‘g’ or ‘Z’, but having the progression is interesting to



observe when using greater amount of data that is relatively similar and cohesive, as I did
not change how I wrote for pages 11-15, contrary to my peers.

Dashboard:

Utilizing the
dashboard to create a third
font that utilized the greater
class dataset was fairly
intuitive, and more
straightforward than the
notebook process. During
the notebook process, my
own misunderstanding of
the size of the data as
intended meant I had to
change the code to suit my
size of data (0-15 pages was
not the intention). The
dashboard took all that
possibility away and
streamlined that process.

For my own selection of fonts, as illustrated above, I stuck to the collective thinner font
to observe against my own writing style.

Post-Processing:

Using the scripts from the CoLab rendered results at high fidelity. As a result, I did not
need to edit those results in Photoshop. The dahsbaord instead, outputted the paragraph texts at
very low fidelity, and it was hard to discern the nature of the handwriting unless one was to
individually zoom into the text and stitch together screenshots.



To the left is the
post-processing
underwent for the
paragraph output of the
dashboard font. The
dashboard font had a
grey background around
each word and the
dimension of the image
makes it difficult to
discern the actually font.



The first step, and the most fundamental yet painstaking one, is 
data collection. In this part, I finished two rounds of English words 
handwritings. In the first round, I wrote ten pages of words with 50 
words on each, 500 words in total. I exported the blank word sheets into 
ten PNG files with a dimension of 4400 by 3400 and sent them to my 
iPad, enabling me to write with Apple pencil on the app Sketchbook. 
The reason for choosing Sketchbook is its clean and handy interface 
and better file managing method, which could read files from google 
drive and share the completed writings to my Mac by Airdrop (Figure 
1).

I experimented with different stroke weights and letter sizes to avoid 
over-similar samples, left enough space between each of the letters 
because I knew I should annotate them afterward. It took me around 
three hours to finish the first ten pages.  

However, annotating those letters is even more time-consuming. I spent 
around two hours drawing rectangles over each of the letters on the 
website CVAT before realizing the disordered indices problem. When 
I was trying to process the first-round handwriting with the CoLab 
notebook, I found most of the handwriting letters didn’t match the 
labels from the 1000 words TXT file, because the indices exported from 
that website sometimes do not follow the order of my annotations.

The initial solution for this problem is exporting the annotations right 
after I finish it. Unfortunately, this method has only an 80% success 
rate, which means I’ll still get two pages of incorrect annotations in 
ten. It is also time-consuming because I should annotate the wrong 
page again and again. So, for the productivity of my second round of 
handwriting data collection, I wrote a sorting program in Grasshopper 
in Rhinoceros 7 by taking advantage of the high interactivity of the 
software’s Panel node.(Figure 2) The sorting logic is: first to sort the 
rectangles according to their Y-coordinate, put them into different 
rows, then in each row, sort rectangles by X-coordinate. This program 
functions flawlessly to correct the disordered indices. (Figure 3, 4)

Based on the experience from the first ten sheets of handwriting, the 

Figure 1: Preparing Handwriting sample

Figure 2: GH program

Figure 3: Disordered letters

Figure 4: Fixed letters

Figure 5: Samples of the first round writing

48-770 Inquiry into Machine Learning and Design
Homework 2 - The Second Hand
[Identifiable Data Removed]

Reflection of The Second Hand
The Second-Hand assignment provides me with a chance to experience the complete process of a simple Ma-
chine Learning project, from data collection to training, then generating some rendered texts as project out-
comes. The valuable part for me in this assignment is not only understanding how to create auto-generated texts 
from training my hand scripts but also how each step is interrelated with others. For example, a minor change, 
or defect, in the dataset, model, or parameter causes impacts on the training result. Therefore, I organized this 
reflection paper according to the steps of the assignment, narrated my methods of reaching goals and my experi-
ences throughout the whole process.

Data Collection

1. Handwritings:
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second round went faster and fluently. I only wrote five pages, 250 
words in total, and I tried to make the stroke thicker and write each 
letter as large as possible, hoping to provide clear samples for the 
machine to train. (Figure 5, 6)

2. Samples:

Because of English’s language feature, the total of 750 words 
containing more samples of the letter “e(E),” “a(A),” and “i(I),” while 
only including insufficient samples of “b(B),” “j(J),” and “m(M).” 
With the help of the CoLab notebook provided by the class’s instructor 
Ardavan Bidgoli, I standardized the sample size to 64 for each letter; 
the identical sample size ensures a less biased training result. 

3. Thoughts:

It is the best way to get handwriting samples by writing 750 words for now, and I think this method reflects my 
writing habit because I wrote in the context of words instead of single letters. From the training and paragraph 
rendering result, this method reflects my way of wiring every single letter but does not really show my way of 
writing words and texts; I prefer to connect letters in each word in regular writings, but I purposely separate 
letters for a better annotating outcome during data collection. 

Another limit of getting natural generative hand scripts comes from my method of collecting samples. Using 
an iPad to do the writing makes my data collection easier, but my handwriting samples became overly refined 
because I can rotate, zoom the sheet, and redo each stroke. The samples would look wilder but natural if I wrote 
on actual papers with actual pens.

Training:

1. My Datasets:

The first two training rounds were based on my samples; I used the first 
ten sheets of handwriting in the first round and the other five ones in the 
second round. Unfortunately, the unmatched data structure between my 
sample and label files prevented me from entering the training process. 
The handwriting sample’s structure is (52, 36, 64, 64), where 52 means 
total English letters (lowercase and uppercase), 36 means the sample 
number for each letter, and 64 * 64 indicates sample dimensions. On the 
other hand, the labels’ structure is (1872, 52), which is very different 
from the samples’ structure. (Figure 7)

According to the knowledge from the previous classes, I got to know that the label.npy file is one-hot-vectors, 
which means in (1872, 52), 1872 indicates the total sample size, and 52 represents the labels in a one-hot way. 
So, visiting back to the (52, 36, 64, 64) structure, if I multiply 52 with 36, the result is 1872, identical to the 
label’s sample size. So, I added one line of code in the file import function, X = np.reshape(X, (1872, 64, 64)), 
to match both numpy files’ structures. (Figure 8) After this simple modification of the code, the machine started 
training without encountering any issues.

To find an efficient number of epochs, I did some test training ahead of formal training. The default epoch 
is 150, which is enough for the machine to yield a clear result. But when I observed the training loss and 
evaluation loss graphs of the 150 epochs, I figured out that the evaluation curve became jaggy around and 
after 110 epochs; this feature might indicate the machine started remembering the existing data instead of kept 
training. So, I reduced the epochs to 120 and trained the machine again. The result was a bit surprised that the 

Figure 6: Samples of the second round writing

Figure 7: Mismatched datastructure

Figure 8: Reshape code



fewer training epochs generated a clear result than the more epochs. (Figure 9, 10) Of course, this surprising 
phenomenon could merely be a coincidence; it still indicated that 120 epochs were enough for training my 
handwriting samples, so I trained both rounds of my writings with the epoch of 120.

2. Latent Space:

The mean value changed the letter’s appearance; the far the value 
away from zero, the less the letter looked like what it was. So, for 
instance, as I’m designing my ‘m,’ if I change the mean value to 0.6, it 
no longer looks like an ‘m,’ but something deformed and similar to the 
combination of two different letters. The standard deviation controls the 
variety of my font set. When I played with the letter ‘f,’ I set the item 
number as 6, which generated 36 ‘f’s. If I set the STD as 0, all the 36 
letters look the same; the higher the STD, the more varied the 36 letters.
(Figure 11)

3. Combined Samples:

In the third round of training, I tried to get rid of a single handwriting 
source and was willing to train the machine with a combination of my 
and other classmates’ hand script samples. I picked [retracted] and 
[retracted]’s first 10-page samples, the only two available datasets then. 

It was a pity that I wasn’t very confident in reforming the label data to 
match the new combination; I tried to keep the labels unchanged and 
matched the combination’s data structure as the standard one, (52, 36, 64, 64). To do this, I randomly picked 
12 samples from each letter from each person’s dataset, and the filtered data’s shape was (52, 12, 64, 64). Thus, 
when combining my, [retracted]’s, and [retracted]’s filtered data, I got a new sample set structured as (52, 36, 
64, 64), identical to the previous training rounds.

As the new dataset has more varied samples, I decided to increase the training epoch to get a better and reliable 
result. I didn’t do some test training but just arbitrarily set the epoch to 180. From training experiences, I believe 
this number is enough for the machine to yield a highly recognizable result. And it works.

4. Thoughts:

Three pieces of paragraph renderings from three training rounds look clear; that might be due to well-formatted 
samples and enough training epochs. But the product from the latter two training rounds appeared fuzzier 
than the one from the first round. (Figure 12, 13, 14) I attributed such phenomenon to insufficient samples; I 
only wrote five pages in the second data collection, and the combined dataset only included one-third of each 
person’s hand scripts.

A noticeable defect of the renderings is the letters’ size and positions: upper-case letters are in the same size as 

Figure 9: Training data Figure 10: Training Samples

Figure 11: Playing with latent space



lower-case ones, and there’s no position shift for the letter “j,” “y.” Because during the annotation process, I 
tried to wrap each letter as tight as possible, hoping to make each sample appear as large as possible to increase 
the training precision. The result looked cumbersome, not natural enough.

I think there might be two ways to address the size and position issues. The first one is to refine the annotating 
process: require the annotate person to leave more headspace for shifted letters and white space surrounding 
the lower-case letters. However, implementing these rules undoubtedly adds to the data collector’s workload. 
Another solution is to write some functions in the program to tell the computer to change the size or lower-case 
letters and change the position for special ones.

Experiences from Different Interfaces

The dashboard provides me with a completely different training experience. When working on the dashboard, 
every step is very intuitive and has less visual burden than the notebook one. On the CoLab file, the traveling 
distance between each step is long and requires more attention; I should go through many many lines of 
functions to locate the executing code of each step. But in the dashboard, I find the buttons, labels, sliders 
without any effort; the interface on the dashboard is so clean. (Figure 15, 16, 17, 18)

I think the dashboard and the CoLab notebook are created for different purposes. In the CoLab notebook, 
everything is changeable. It’s a perfect place for developers to refine the program and models. The dashboard 
provides an unobstructed interface for training; users can entirely focus on selecting data, training models, 
designing fonts, and rendering paragraphs. As a freshman in the field of Machine Learning, I prefer working 
with the dashboard, because the developer already did everything for me in the background; if I grew as a 
developer, I would like to work on the notebook files to keep refining each step of the whole project. Yeah, at 
that time, I should learn to create a dashboard for others

Figure 12: Paragraph from first training Figure 13: Paragraph from second training Figure 14: Paragraph from third training

Figure 15: Dashboard interface 1 Figure 16: Dashboard interface 2 Figure 17: Dashboard interface 3

Figure 18: Paragraph from dashboard



Reflection upon data collection and CVAE training 

The secondhand data collection exercise is a thorough project to understand the 
process of data collection, training and generation. Particularly it helps identify the 
relationship between each step, the influencing factors that potentially affect the results, 
and how latent spaces play an important role in the post training process. 

Data collections 
Through my experience and presentation by other students, I’ve noticed that writing 
style, the media used, and the size of letters are the 3 key factors throughout this stage. 
My daily handwriting habits differs greatly from what would be desired by the clarity of 
data collection: ‘f’ would share the same stroke if it is repeated twice, ‘a’ and ‘t’ would be 
connected if they are neighboring to each other, and ‘g’, ‘y’ would have their tails under 
the previous letters. In order for better resolution by square annotation, all letters are 
totally separated, while tails are trimmed. Below are illustrations of how data is different 
from daily handwriting. 

During the annotation phase, the most common problem occurred is the missing letters 
in a long word or shuffled index of square annotations. ‘I’ in a word that contains a lot of 
letters are often missing and hard to spot.  Therefore using editable platforms like 
Photoshop give a strong support to workflow when corrections are needed, whereas 
handwriting would take significantly longer to adjust. 

The Training phase  
The CVAE model focuses on the accuracy and clarity of generative results. This is the 
part where the amount of data and its characteristics affects the training process 
heavily. The first set that contains 500 words was able to contribute abundant samples 
even in uncommon letters. Therefore the edge of the model it produced is shaper and 
hardly contains any stroke inconsistencies. However 250 words displayed many 
recognition errors during the equal distribution phase of post processing, thus its 
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generative model has a more grainy and coarse texture. In the third set of data I’ve 
sliced Mitchell’s lowercase letters and concatenate it with Terrence’s uppercase letters. 
After training I’ve found that different datasets exhibit strong personality depending on 
style and tools that can be easily identified while typing.  

Viewing retrospectively at the optimized sample letters, I found stretching letters like ‘y’, 
‘g’, ‘Q’ have less sharp edges than compact letters like ‘a’, ‘w’ ,‘x’, etc. In addition, by 
comparing the model trained with 10 pages of word and 5 pages, stroke discontinuity is 
more significant in enclosed letters like ‘D’ and ‘B’. 

The latent space is an important step in the post training phase for me to create a 
desirable font. With a dataset that contains deficient samples, The change of means is 
important for the typeface output: by randomly sliding back and forth between (-0.3,0.3), 
desirable renderings can show up spontaneously for every letter. 

In terms of data adjustment, the most commonly encountered problem is about 
matching labels with samples, and reorganizing the sample with correct shape. I’ve 
gained valuable experience with understanding the shape of data and the ways to 
compile data through code tracing. Laterly after the training of all three fonts, I reflect 
that the performance of training can be improved by reducing the number of Epochs 
(from 150 to 120 instead of 150 to 200) so that the model would not be overtrained 
based on the graphics of evaluation and training loss.  



 
 
 

The Dashboard  
The Interface is a more versatile tool for data selection than notebook, it provides 
immediate identification upon selecting letters with similarities and stroke thickness. To 
do these manually through coding might take significantly longer and come up with a 
less desirable set of selection. It is a very useful tangible window to test various 
combinations. I was trying to come up with oblique selection with lasso that contains 
thinner strokes in lowercase letters and increases the thickness based on ascii orders. 
However there is one quality difference about training with a mix of groups of data 
rather than a single set: speculatively, due the nature of different individual’s writing 
style, letters with similar thickness may still exhibit contrasting organization. Therefore 
compared to a regular set training, training on dashboard selection with similar numbers 
of data (eg, 1810 vs 1872) and with the same epochs(eg, 200) will still result in lower 
resolution of generative clarity. In this case, latent space becomes an important manual 
adjustment tool. Unfortunately my dashboard was not responding on the sample texting 
part, below is the sample lasso selection from the dashboard. 

 
Data Control vs Coding Control 
In general I think the data is decisive upon the detailed quality of learning output and the 
way of constructing neural structures. While coding focuses more on reducing the loss 
during training and increasing efficiency, they are mutually supporting factors. Since 
most machine learning models have no control over the dataset itself, one needs to be 
careful about data selection and filtering to ensure that the dataset is balanced, 
cohesive in quality at its best capability. 
 
 



 
 

 

 

 

 

 

 

 

9.2 SecondHand Meta-Tool Handbook 

  



Data Pipeline

Dashboard Folder:
● Download this whole folder and run it on your desktop machine.

Notebooks:
● Initial data processing Notebook: use this notebook to process the annotations
● Data post-processing Notebook: use this notebook to export your data in the correct size

and format
● Training notebook: use this to train your model!

Data Collection
In this step, you provide a relatively small data set of your handwriting samples. You should
follow these steps:

1. Download the text sample file
2. Print them on paper or import them into a digital device and write pages 0 to 10. DO

NOT fill pages 11-20.
3. Scan the pages or export them in high-quality (with 3000px width)

Labeling
After scanning the pages, you need to manually label the data. To do this, you should use CVAT
online tool. This animation guides you through the steps.
At the end of this process, you will have a .txt file that contains a set of numbers as below:

0 0.035064 0.159735 0.039169 0.099119
0 0.071784 0.166474 0.027745 0.085641
...
0 0.339410 0.157750 0.024521 0.071366
0 0.370616 0.158941 0.032284 0.076911

The first number shows the label, we ignore this. The next four digits are representing the
bounding box that you have drawn. The first two digits are x and y coordination of the center of
the box, the last two digits are the width and height. These numbers should be multiplied by the

https://colab.research.google.com/drive/138ZenplaWmAuL02kn4Holi7EETZvW7UU?usp=sharing
https://colab.research.google.com/drive/14CA6J59ZbcYuiXcPrVMg3bcFY04YG1RS?usp=sharing
https://colab.research.google.com/drive/1dFfkqSslBLtsHxclxgky6m8N3zlVLARb?usp=sharing
https://drive.google.com/file/d/1XMbeqSf3BVK0b8uGrXquNFw8uPL5nArf/view?usp=sharing


size of the original image to get converted into integer numbers. The provided notebook will take
care of this process.

● Note: I strongly suggest you start with one page, then go through all the steps and then
come back and repeat the process for the rest of the pages.

Pre/Post Processing data
Using the provided notebook, you can upload your txt file and the scanned image. This
notebook reads the text file and crops the image around the boundaries that you have drawn.
Finally, it will format and save the image as a NumPy file next to the label files.
You can use these two files and share them with your friends.

● Note: It is very important to double-check your data. It is your responsibility to make sure
you share a reliable dataset with your friends.

● Notebooks:
○ Initial data processing Notebook: use this notebook to process the annotations
○ Data post-processing Notebook: use this notebook to export your data in the

correct size and format

Shared Database
● Once made your data in the right format, upload it in this folder: Fall_2021_dataset with

this naming format: alphabet_handwriting_64_n_yourInitials.npy
● Don’t upload the label files, it is the same for all.
● I will check this folder three times a day (10:00 am, 6:00 pm, and 11:59 pm).
● Use this notebook to train your model based on your first set of data.

https://colab.research.google.com/drive/138ZenplaWmAuL02kn4Holi7EETZvW7UU?usp=sharing
https://colab.research.google.com/drive/14CA6J59ZbcYuiXcPrVMg3bcFY04YG1RS?usp=sharing
https://drive.google.com/drive/folders/1qMje4WEvdolQh3NN01c3FlqkV5VOo4ul?usp=sharing
https://colab.research.google.com/drive/1dFfkqSslBLtsHxclxgky6m8N3zlVLARb?usp=sharing


Dashboard
Data viewer is a Dash app that helps you view your big data and make a selection out of it.
(please watch the video for more details)

You need to run this app on your local machine, as Colab is not completely compatible with this
service. To do so:

- Open terminal in Mac or Command Prompt in your Windows machines,
- Check and see if you have Python 3 installed (just type python and hit enter, it should

run python with a note about its version, here we have version 3.8.5 on Mac and
Windows:



- Now navigate to the folder that you have the zip file unzipped:
○ cd address/to/folder

- Then install all the dependencies using this line:
○ python -m pip install dash plotly dash_core_components

dash_bootstrap_components torch openTSNE numpy pandas
opencv-python kaleido

- The script above installs the original PyTorch library with CPU support. If you are
planning to use an Nvidia GPU, then install PyTorch using this script after you have all
other libraries installed:

○ python -m pip install torch==1.9.1+cu102
torchvision==0.10.1+cu102 torchaudio===0.9.1 -f
https://download.pytorch.org/whl/torch_stable.html

- Once all the libraries are installed, you can run the app:
○ python secondHand_dashboard.py

- The app starts running in the background and it is accessible through your browser in
this address:

○ http://127.0.0.1:8020/



Data Curation Tab:
The goal of this tab is to let you observe the datasets, select a set of desired samples, and train
your model based on that.
Note: After each round of training, you can modify your training samples and continue the
training process with the new samples.

Interaction models:
You can select how many samples will be shown in the main plot, the slider at the bottom
determines the number of points in the plots. Be advised that this slider cuts the dataset in
order. Thus, showing 1000 samples means that it will only pick the first 1000 samples and omit
all the other couple of thousand samples in your dataset.

The plot on the left side distributes the samples in 2 dimensions based on their visual
appearances. The plot on the right distributes them on x based on their visual properties and on
the y-axis based on their labels (lower samples are a,b,c,... and upper samples are …, X, Y, and
Z.

Hovering
The samples are distributed based on the t-SNE algorithm, similar-looking characters are
located close to each other. Hovering your mouse over each dot will show that sample and 8
other samples close to it in the dataset (not in the plot).



Selection
You can use the Box selection and Lasso Select tool to choose what samples you want to use.
Play with selection tools on both plots and make a data set to train your model.
As soon as you make a selection, the selection will be saved in a NumPy file
/data/selected_data.npy and /data/selected_data_labels.npy and you can use
them to train your model.

You can make vertical and horizontal selection boxes on the right-side plot to focus on one
specific letter or all the letters with similar visual characteristics.



You can also draw multiple boxes by holding shift while selecting boxes:

You can also use Lasso select tool to make wild selection too:



When making a selection, make sure you have samples from all the letters included in your
selection, otherwise, your typeface generation will be denied.

Merge/Visualization

The other two buttons can merge the NumPy files in the folder, which should take under one
second, and run the t-SNE algorithm on your dataset, which may take a few minutes. Only use
these two buttons if you have added some new NumPy files to the data folder.



Training Tab

Once you have your data selected, you can start training. Set your desired number of epochs
and hit Train Model. The plots provide you with enough clue to monitor the training process (left
image). Once the training is over, you will see the loss values (right image) and you can save
your model. If you do so, it will overwrite your latest model that has been saved as
./model/trained_model.
You can repeat this part as much as you want. Each time, you can edit your data selection and
continue training with the newly added or removed samples. You can save the model, or reset
the model and begin training from the scratch.

Generation Tab



You can use the sliders to generate all the letters and save them as a numpy file. If you just
want to practice to a model that you have trained previously, you can hit Load Model and it will
load ./model/trained_model. You can use the Load Favorite Model button to load a
model you manually saved as: ./model/favorite_model. It can be a model that you have
trained previously. But I do not recommend loading models that you have trained with a totally
different dataset.



 
 

 

 

 

 

 

 

 

 

9.3 Recruiting Email 

Recruiting email for the SecondHand study  



Greetings.  

My name is [identifiable data retracted] and I am the teaching assistant for “ARC48770 Learning Matters, exploring 
artificial intelligence in architecture and design,” offered at the School of Architecture at Carnegie Mellon 
University (CMU).  

The Learning Matters team conducting a research study that explores the use of interactive machine learning to 
address the gap in the current state of creative computing toolmaking that sets apart end-users and from the 
toolmaking process. The study will be executed in parallel with one of the modules of 48-770, a course which you 
are a part of.  

If you would like to participate in this study, you must be at least 18 years of age, and a student of “ARC48770 
Learning Matters, exploring artificial intelligence in architecture and design” course. Your participation is entirely 
voluntary. If you decide to participate, you will be contributing to a preliminary work in a PhD research project 
focusing on the issues of situatedness and machine learning, as well as the resulting academic knowledge production 
on the subject.  

There is no cost to you to participate and your participation will be limited to class time and the time you should 
normally spend on your class assignments. The study will document your assignment for the interactive machine 
learning module, including handwriting samples, information about the trained models, output samples, and the final 
class discussions on your experience with interactive machine learning. All these data will be collected as a part of 
the class routine workflow, and we would like to have your permission to use them for this study. 

The risks and discomfort associated are no greater than those ordinarily encountered in daily life or during the 
regular course activities of ARC48770. You will NOT be asked to provide any personal information other than your 
name on the consent form, commit any personal time other than what you already spend in ARC48770 class and its 
regular assignments, perform any special tasks other than what you do in ARC48770 class and its assignments, or 
travel to a destination other than the school of Architecture, only if you need to pick up a piece of hardware.  

The study is not intended to assess or evaluate your performance or quality of your work in ARC48770. Your 
participation will NOT be shared with the instructors until the grades and evaluations for ARC48770 are finalized 
and will NOT have any effect on the grading or any other evaluation within the course. Your privacy and data 
confidentiality will be respected and protected at all times. More information is provided in the attached consent 
form.  

Before deciding whether or not to participate, please read the consent form attached and ask questions about 
anything you do not understand. If you volunteer to participate, please let me know and I will provide you a pdf 
copy of the form to sign.  

Thank you very much.  
Best,  
[identifiable data retracted] 



9.4 Consent Forms 

Consent forms for the SecondHand and the ThirdHand studies 



Carnegie Mellon University 
 
 

Consent Form for Participation in Research 
 

 
    Version 7.2018 

 

Study Title:  Situated/Interactive Machine Learning for Creative Computing 
 
Principal Investigator: Ardavan Bidgoli, Ph.D. Candidate, Department of Architecture, 5000 Forbes 
Avenue, College of Fine Arts 201, Pittsburgh, PA 15213, 412.268.2354, abidgoli@andrew.cmu.edu  

 
Faculty Advisor:  Daniel Cardoso Llach, associate professor, dcardoso@andrew.cmu.edu 
_______________________________________________________________________________ 
 
Purpose of this Study 
The purpose of this study is to investigate the way creative users can interface with generative machine 
learning models through interactive data curation to make creative computing tools.  The study is 
intended to explore how this approach can address the gap in the current state of creative computing 
toolmaking that sets apart the end‐users from the toolmaking process.  
The study will be organized along with one of the class assignments for “ARC48770 Learning Matters, 
exploring artificial intelligence in architecture and design,” offered at the School of Architecture at 
Carnegie Mellon University (CMU). The assignment is focused on interactive and situated machine 
learning to create a handwriting generator tool. 
 
Summary 
Through this study, the participants will collaboratively develop a dataset of handwriting samples to train 
a generative machine learning model. The participants will train their own unique machine learning 
model, using the data they individually provided in combination with the samples that other participants 
have shared. 
 
Procedures   
The study will follow the procedure listed below: 

1. Onboarding the participants:  
In this phase, the class TA, which is an independent colleague and is not part of the study 
team, will introduce the participant to the research, goals, and the process. Participants will 
have time to ask their questions. 
The research will be a study of an already‐scheduled module of the course that will be 
conducted for all class members whether they choose to allow their data be used for research 
or not. 
 

2. Data collection and t raining the machine learning model: 
This phase will be focused on collecting data and interactively training the model by 
each participant. It will consist of 5‐6 sessions, each between 60‐90 minutes over a 
ten‐day period (March 23rd, April 1st).  

 During each session, the participants will: 
i. Provide handwriting samples, using physical pen and paper or a touch‐enabled 

device with a stylus, 
ii. Digitalize the samples (if written with physical pen and paper), 
iii. Analyze the samples and feed them to train the machine learning model, 
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iv. Inspect the samples created by other users and integrate them in their training 
process, 

v. Analyze the learning trajectory and steering it with manipulating the data set, 
until a desired handwriting style is achieved.  

3. Creation: 
After these sessions, the participants will use their handwriting generator tool to 
create a series of scripts rendered with a desired handwriting style.  

 
None of the activities require the physical presence of participants. For all the above‐mentioned 
activities Zoom platform will be used. 
 
Participant Requirements   
Participants must be at least 18 years of age and a student of course ARC48770. 
 
Risks 
The risks and discomfort associated with participation in this study are no greater than those ordinarily 
encountered in daily life or regular remote class activities. 
 
Benefits 
There may be no personal benefit from your participation in the study, but the knowledge received may 
be of value to humanity.  Both participating and non‐participating students will have the opportunity to 
learn concepts of interactive and situated machine learning. Both groups will also gain hands‐on 
experience with data collection methods, working collaboratively on making machine learning tools. 
 
Compensation & Costs 
There is no compensation for participation in this study.   
There will be no cost to you if you participate in this study.   
 
Future Use of Information  
The future use of the collected data, with all identifiable information removed, and as anonymized 
output, will be limited to academic publications or presentations for scientific and educational 
purposes. We would do this without getting additional informed consent from you (or your legally 
authorized representative).  Sharing of data with other researchers will only be done in such a manner 
that you will not be identified. 
 
Confidentiality 
Your decision to accept or decline participation will not be shared with the instructors and the PIs until 
the assessments, evaluations, and grading for course ARC48770 are finalized.  
 
By participating in the study, you understand and agree that Carnegie Mellon may be required to 
disclose your consent form, data, and other personally identifiable information as required by law, 
regulation, subpoena. or court order.  Otherwise, your confidentiality will be maintained in the 
following manner: 
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Your data and consent form will be kept separate. Your research data will be stored in a secure location 
on Carnegie Mellon property.  By participating, you understand and agree that the data and 
information gathered during this study may be used by Carnegie Mellon and published and/or disclosed 
by Carnegie Mellon to others outside of Carnegie Mellon.  However, your name, address, contact 
information and other direct personal identifiers will not be mentioned in any such publication or 
dissemination of the research data and/or results by Carnegie Mellon.  Note that per regulation all 
research data must be kept for a minimum of 3 years. 
 
Effects on your class experience and evaluation: 
This study is by no means affecting the quality of your class experience. It has no effect on the grading 
or any other evaluation within the course. 
 
Optional Permission 
I understand that the researchers may want to use any of the video, audio, handwriting samples, and 
final  image  outputs  for  illustrative  reasons  in  presentations  of  this  work,  as  printed  or  digital 
publication,  publishing  still  images,  slide  shows,  video  clips,  or  raw  image‐based  data  on  online 
platforms for scientific or educational purposes. I give my permission to do so.   
 
 Please initial here:               _______YES    ________NO    
 
 
Rights 
Your participation is voluntary.  You are free to stop your participation at any point.  Refusal to 
participate or withdrawal of your consent or discontinued participation in the study will not result in any 
penalty or loss of benefits or rights to which you might otherwise be entitled.  The Principal Investigator 
may at his/her discretion remove you from the study for any a number of reasons.  In such an event, you 
will not suffer any penalty or loss of benefits or rights which you might otherwise be entitled. 
 
Right to Ask Questions & Contact Information 
If  you  have  any  questions  about  this  study,  you  should  feel  free  to  ask  them  now.    If  you  have 
questions later, desire additional information, or wish to withdraw your participation please contact 
the Principal Investigator by mail, phone, or e‐mail in accordance with the contact information listed 
on the first page of this consent.   
 
If you have questions pertaining to your rights as a research participant; or to report concerns to this 
study, you should contact the Office of Research Integrity and Compliance at Carnegie Mellon 
University.  Email: irb‐review@andrew.cmu.edu . Phone: 412‐268‐1901 or 412‐268‐5460. 
 
 
Voluntary Consent 
By signing below, you agree that the above information has been explained to you and all your current 
questions have been answered.  You are encouraged ask questions about any aspect of this research 
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study during the course of the study and in the future.  By signing this form, you agree to participate in 
this research study.  A copy of the consent form will be given to you. 
 
           
PRINT PARTICIPANT’S NAME 
 
               
PARTICIPANT SIGNATURE         DATE 
 
I certify that I have explained the nature and purpose of this research study to the above individual and I 
have discussed the potential benefits and possible risks of participation in the study.  Any questions the 
individual has about this study have been answered and any future questions will be answered as they 
arise. 
               
SIGNATURE OF PERSON OBTAINING CONSENT        DATE 
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