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Abstract

Many managed service vendors in networking are adopting machine learning (ML)

for many applications for their customers; e.g., anomaly detection, device finger-

printing, and resource management. Today, the data for training is siloed across

customers leading to sub-optimal performance. While there are emerging proposals

(e.g., federated learning, multi-party computation) to enable cooperative learning,

these are at odds with analysts need for data for model exploration and testing. In

this thesis, we envision a novel use of synthetic data generated using Generative Ad-

versarial Networks (GANs) to augment the performance of existing ML workflows.

We formulate the cooperative data augmentation problem, identify the design space

of options, and identify key research challenges. We demonstrate the preliminary

promise under two settings: (1) tra�c classification and (2) novelty detection show-

ing that our improved workflow can enhance the performance of ML models up to

58% in AUC score. We also identify limitations and discuss for future work.
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1

Introduction

Many vendors o↵ering network management or network monitoring as a service are

beginning to o↵er ML-driven capabilities to improve the performance, reliability,

and security of their customers [60, 10]. For instance, recent e↵orts have demon-

strated the promise of ML-driven approaches for user experience prediction [32, 31],

novelty detection [73], tra�c fingerprinting [52, 57, 13], among others. There are

even grander aspirations for “self driving networks” that use AI/ML driven network

management [19]

The typical workflow is that a service vendor S receives data feeds from individual

customers C1, ...CN for various management tasks of interest and develops custom

ML-driven workflows for each customer in isolation. The data-driven workflows for

di↵erent customers are siloed due to internal (to S) and contractual (from the cus-

tomers) policy concerns. Unfortunately, the value of the ML-driven workflows is only

as good as the data that feeds into it. As such, silos result in suboptimal perfor-

mance and significant blind spots with respect to emerging patterns. For example,

LastLine estimates that on average, 50% of alerts in endpoint protection systems

are false positives [35]. Indeed, recent e↵orts have explicitly called into question the
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robustness of ML-derived algorithms when data is limited [72].

To tackle the pitfalls of data silos, concurrent e↵orts in the ML, systems, and

privacy literature have explored solutions based on techniques like federated learn-

ing [34, 11, 33] and machine learning over encrypted data [70]. While these are

valuable, they are not always appropriate for data scientists developing ML-for-

networking applications. They typically assume that the ML algorithm, features, and

model requirements are known a priori. As such, their focus is on privacy-preserving

computation and communication frameworks for model learning. Unfortunately, the

reality of ML-driven workflows is much messier, and data scientists and analysts

spend significant e↵ort on model and data exploration to clean datasets, derive the

features of interest, and explore algorithmic development [42]—tasks that would be

di�cult or impossible using these alternatives [8]. Furthermore, such “blackbox”

approaches complicate e↵orts to provide model interpretability and explainability.

In this thesis, we explore a pragmatic alternative for tackling the data silo problem

using synthetic data from deep generative models—that is, data generated with the

same statistical properties as real data that can be safely released to enable cross-

stakeholder cooperation. While synthetic data is not a new idea in networking [64,

63], prior work has relied on custom simulators (e.g., [64, 63, 30, 50, 16, 43, 62]) or

expert-driven models (e.g., [15, 66]). Unfortunately, these do not generalize across

datasets and customer-specific scenarios. Fortunately, recent e↵orts have shown the

feasibility of using deep generative models, of which Generative Adversarial Networks

(GANs) are a well-known example, to generate synthetic network datasets [71, 40, 9].

The primary benefit deep generative models o↵er is the ability to learn high fidelity

representations of high-dimensional relationships. A secondary benefit is flexibility

to tune generation (e.g., augment anomalous or sparse events), which would not be

possible with raw or anonymized datasets [49, 41].

The contribution in this thesis is in formulating the problem of generative-model-
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(b) Our vision for augmenting ML workflows with synthetic data and the

technical questions this vision raises.

Figure 1.1: Contrasting our vision with the status quo of ML workflows for managed
services

augmented ML workflows for managed network services use cases and identifying

research challenges that arise therein. We identify the design space of data augmen-

tation strategies. For example,

1. Do we use normal or anomalous data from customers?

2. Do we generate and utilize synthetic normal or anomalous data for augmentation?

We also explore the choice of generative models to generate the synthetic data across

these design space alternatives; e.g., generating anomalous data is fundamentally
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harder than generating the common case patterns. Figure 1.1b shows the general

structure of the workflow and would be explained in details in Chapter 3

‚ We present a preliminary proof of concept framework and empirically demon-

strate the value of our framework using real-world datasets.

‚ We simulate a data-hungry and type-imbalanced learning pipeline, and model

both homogeneous and heterogeneous customer data distributions to present the

benefits of this framework.

‚ We observe that a given customer can obtain up to 36% improvement in model

performance (AUC score) by receiving augmented synthetic data from other

customers in the homogeneous setting, and up to 58% improvement in the het-

erogeneous setting.

‚ We also identify a range of limitations and open questions for future work.
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2

Motivation

We start by illustrating some exemplar use cases of ML-for-networking, the value of

larger datasets in training these models, and argue why current e↵orts are qualita-

tively at odds with operational workflows.

2.1 Motivating use cases

A growing body of work shows that future network systems will require novel data-

driven techniques to meet their security, adaptability, robustness, and autonomy

goals (e.g., [19, 32, 28]). In parallel, small- to medium-sized enterprises are in-

creasingly outsourcing their requirements on those novel data-driven applications to

third-party network service vendors (e.g., Cisco, Palo Alto Network)[60, 10]. Those

vendors have the expertise and help its customers to develop the applications based

on their own needs.

Figure 1.1a shows the structure of the third-party service workflow between the

vendors and customers. The vendor makes use of the required customer’s data to help

build various kinds of data-driven applications based on its customized requirements.

We highlight three example applications: tra�c classification, novelty detection and
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fingerprinting.

U1: Tra�c classification. Tra�c classification plays a significant role in network

security and management. The network service vendor analyzes customer’s network

data to classify the anomalous or attack tra�c and to investigate events (e.g., [21, 6,

77, 7]). For example, tra�c type prediction is one of the vital tasks for the vendor to

maintain network security such as helping to implement intrusion detection system

for the customers.

U2: Novelty detection. Novelty detection is to determine if the incoming unseen

event is unusual or anomalous. It has been widely implemented in many di↵erent use

cases. For example, with the rapid development of Internet of Things (IoT), many

interconnected IoT devices are deployed to monitor and detect new, unusual, and

anomalous data [73]. Determining if the new unseen data is unusual and anomalous

can be indicative on security incidents or device malfunctions. Vendors could train a

novelty detection model that determines if the data representation from an incoming

tra�c is anomalous relative to the majority of the tra�c if required from all of its

customers.

U3: Fingerprinting. Fingerprinting can be used to identify compromised de-

vices [52, 57, 13]. It consists of detecting patterns and observing di↵erences in the

network packets, physical behavior etc. generated by a compromised versus a regular

device. This allows a vendor to detect and limit the harm caused by a compromised

device. For e.g., it can be used to identify and quarantine an IoT device that is

running a port scan request after it has been compromised.

In most cases, service vendors are only allowed to build separate application mod-

els based on each customer’s data individually due to policy and privacy concerns.

Because of the limited data size, most customers can only achieve suboptimal perfor-

mance. Intuitively, data- and ML-driven applications gain benefits when having more

data access. As an illustrative example, Figure 2.1 shows the performance of tra�c
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(b) Novelty detection.

Figure 2.1: Data-driven applications such as tra�c classification and novelty detec-
tion model can benefit with more data. Detailed explanation of dataset, models,
performance metrics is in Chapter 4.2.
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Figure 2.2: Structure for the workflow of Federated Learning.

classification and novelty detection tasks [12] using public datasets [51] and models

as a function of the data size used for training.1 As we can see, the performance

improves significantly with more data.

2.2 Alternative approaches

Today, there are two leading research proposals for tackling data silos. Federated

Learning (FL) learns a ML model at the vendor from private customer data [34]. Fig-

ure 2.2 shows the general structure of the workflow. The server (vendor) would use

1
Details of the dataset are in §4.2.
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Figure 2.4: The blue customer is willing to share its anonymized data to the yellow
customer to improve the yellow one’s model performance.

all the customers’ data to train a global model without touching them. Customer pri-

vacy is preserved through di↵erentially-private model updates and/or cryptographic

aggregation techniques [33]. As shown in Figure 2.3, the second approach relies on

computation over encrypted data, such as homomorphic encryption or secure multi-

party computation [18, 70, 68, 58]. These approaches allow a vendor to compute a

function of the data without plaintext access.

Both approaches are powerful and seeing real-world adoption [33, 1, 3]. By design,

they hide raw data from the learning party, i.e., the vendor. In reality, however, up

to 80% of data analysts’ time can be spent transforming data into a usable form

[42]. Cleaning data and extracting features is typically the bulk of work for data

scientists. As such, technologies that hide raw data from the data scientists make

key data science tasks di�cult, if not impossible [8, 54].
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An alternative common practice is to share anonymized data, as demonstrated in

Figure 2.4 [59, 56]. Anonymized traces preserve a one-to-one mapping between each

packet or flow in the original and shared datasets. While anonymization is appealing

at first glance, prior e↵orts have shown “linkage” attacks against anonymization

(e.g., [53]). Second, the one-to-one mapping restricts the flexibility to produce new

or more samples to meet the data analyst’s needs, e.g., adding more attack samples

or balancing datasets across classes.

Synthetic data can potentially help with all of these challenges; it provides data

in the same schema (and ideally, from the same distribution) as the original data.

Indeed, recent e↵orts have designed deep-learning-based synthetic data models for

network data [71, 40, 9]. However, little work has gone towards exploring the e�cacy

of synthetic data for cooperative learning pipelines in the networking domain. This

is the focus of our work.
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3

Overview

In this chapter, we provide a high-level view of our vision and contrast it to the

status quo. We also set up a broad set of algorithmic and system design challenges

that we need to address as part of this vision.

Figure 1.1a shows a simplified view of the current workflow that the service vendor

uses for their customers. The vendor uses the customer’s raw data to build the model

for the data-driven application. As discussed, it is hard to build a robust ML model

because the data from that customer may be sparse. Such sparsity can both result

in two-sided types of errors in typical applications; e.g., for anomaly detection poor

coverage over normal patterns can result in false positives (i.e., normal patterns not

seen before get flagged erroneously) and poor coverage over attack/anomaly scenarios

can result in false negatives (i.e., anomalies are missed by the inference model).

To address this limitation, we envision synthetic data augmentation as a prag-

matic alternative to improve the models while still addressing the privacy concerns

of the stakeholders. As such, we envision a new cooperative framework to enhance

applications as shown in Figure 1.1b . We envision one or more customers of the

service vendors opting in to allow the the service vendor to use synthetic data for
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cooperatively boosting the performance of the collective as well as their own perfor-

mance.

For each customer that has opted in, we envision generating high-fidelity, privacy

preserving synthetic data to be shared with the vendor. Depending on the deploy-

ment and policy constraints, the generation may either run “on premise” at the

customer side or may be run within the vendor’s infrastructure. The service vendor

can use the augmented dataset to drive the target ML applications of interest.

Given this workflow, several natural questions arise:

‚ R1: How does the vendor use the data e↵ectively? There are 2 sub-

questions: (1) what data do we want the generative model to generate for aug-

mentation, and (2) what data do we want to train the generative model with.

Regarding (1): in some cases, generating only a subset of the tra�c types may

be su�cient. For example, when a target customer requires the vendor to build

a tra�c type classification application, augmenting the anomalous tra�c can

dramatically help the classifier reduce the false positive and false negative rate.

It may not be necessary for the vendor to generate synthetic data from all the

data provided by the customers. Regarding (2): even if we only want to augment

one subset of the tra�c types (e.g., anomalous tra�c), training the generative

model using all available tra�c (e.g., both normal and anomalous tra�c) may

be beneficial depending on the type of generative models.

‚ R2: What are suitable generative models? The quality and fidelity of

synthetic data generated from each customer is vital to the performance of the

final augmented model. However, networking data is usually high-dimensional

timeseries with complex patterns. What’s more, rare events (e.g., anomalies)

makes synthetic data generation more challenging as it will be hard to generate

new, representative examples given limited training samples for rare classes.

11



‚ R3: What data to share? We envision for many typical applications that

customers will have both normal and anomalous tra�c patterns of interest.

Each customer can opt in to provide (with suitable privacy policies discussed

below) data on either normal or anomalous patterns or both, depending on

policy considerations.

‚ R4: How can we preserve customer privacy? In addition to contractual

arrangements, privacy guarantees are also critical to allow the customers to

share their networking data. The vendor must be able to generate the privacy-

preserving synthetic data for augmentation. Currently, there is still no unified

privacy metrics especially for networking data. Di↵erential privacy (DP) [17] is

one of the leading metrics but prior works [40] have shown that naive DP could

destroy the fidelity of synthetic data even under very weak privacy guarantees.

‚ R5: How should the vendor enhance the ML model development? As

a starting point, we can envision the service vendor simply using the existing ML

models with augmented training datasets. However, it may also be worthwhile

for them to revisit the model in light of the larger dataset. For instance, we may

need to consider changing the structure or the hyperparameters of the model

in order to reach the optimal performance given a larger training set. Looking

even further, the vendor may even be able to consider more expressive complex

models (e.g., foundation models or transformers) given the new larger dataset

at its disposal that may have been previously infeasible.

Our goal in this thesis is to articulate these new design questions and challenges

that arise in this novel workflow rather than seek conclusive answers to these research

questions. As such, our preliminary exploration in the next Chapter presents an

initial study to R1 and R2 to demonstrate the potential utility of the framework and

lays out the design space for R3, R5. We defer a discussion of R4 and questions
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related to generality to Chapter 6.
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4

Formulation and Initial Study

In this chapter, we formulate and scope our problem in a data hungry and tra�c type

unbalanced assumption. We describe our initial ideas on how to determine some of

the design choices described in §3.

4.1 Problem Formulation

A vendor has N customers, tC1, . . . , CNu. Each customer has a local tra�c dataset

Di. In this thesis, we will study downstream use cases that involve detecting anoma-

lous or malicious tra�c, so we further specify thatDi “ pNi, Ai), where Ni represents

the set of normal tra�c records and Ai the set of anomalous tra�c records. Note

that the customers may or may not know the labels (i.e., normal v.s. anomalous) of

the tra�c depending on setting.

The vendor is trying to learn a ML model fi for each of its customers to accom-

plish a downstream task. The downstream task is assumed to be the same for all

customers, but the models fi may have di↵erent parameters, hyperparameters, or

architectures, due to di↵erent local training data distributions. When data is siloed,

each fi is learned using only the corresponding local dataset Di (Figure Figure 1.1a).
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As discussed in Chapter 3, we explore a setting where the vendor can augment the

training data for each model. We use D̃j “ pÑj, Ãjq to denote a synthetic version

of customer j’s data, with synthetic normal data Ñj and synthetic anomalous data

Ãj. Hence, the vendor can augment customer i’s real data Di with (any subset of)

synthetic data D̃j for j ‰ i.

We focus on two research questions as a starting point:

1. (R1) How does the vendor use the data e↵ectively?

2. (R2) What are the suitable generative models?

As a first step, we assume that customers willing to cooperate share all the data

with the vendor (R3) and we leave the choices of privacy metrics and model re-

weighting/update as an open question in the future directions (R4, R5).

R1: How does the vendor use the data e↵ectively? In this work, we explore

this design based on the downstream applications. For unsupervised ML applications

like novelty detection, the vendor does not know the ground truth labels for the

shared data. Therefore, we use all the data to build a generative model, and use the

generative model to generate all types of tra�c. For supervised ML applications like

tra�c classification, vendor knows the ground truth labels. Regarding the output of

the generative model, we only generate anomalous tra�c from the generative model

due to its significant benefit. Regarding the input for training the generative model,

we explore two choices: utilizing only anomalous tra�c, and utilizing both normal

and anomalous tra�c. We leave the more comprehensive exploration to future work.

R2: What are the suitable generative models? Classical synthetic data models

have been based on strong assumptions about the underlying data, including (cy-

clo)stationarity [46, 47, 45, 48, 65, 55, 5, 38], autoregressive generation [4, 76, 75, 67],

or Markovian generation [27, 22, 39]. These assumptions may not hold for many

datasets [65, 55, 5, 38, 4, 76, 75, 67]. As such, these approaches are outperformed
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by modern neural network models [29, 36], such as GANs [23].

GANs generally consist of two neural networks, one is called generator and the

other is called discriminator. The job of the generator is to generate the fake samples

while discriminator should be able to determine if the given sample is fake (generated

from the generator) or is real (sampled from the training set). The two networks

contests each other to get the final state. That is the generator can generate fake

samples that looks very real and the discriminator can only achieves the 50% ac-

curacy. In short, GANs take as input a set of training data samples, and output

a model that can produce new samples from the same distribution as the original

data. GANs are popular in part because they require few assumptions on the class

of distributions from which the training data is drawn. They have emerged as a pop-

ular technique for generating or augmenting datasets, e.g., medical images or patient

records [24, 14, 20, 61, 25], and more recently, for generating synthetic models of

networking datasets [71, 40, 9].

Network tra�c can be divided into classes (e.g., normal vs. anomalous). Naively,

one could train a separate generative model for each data class. In practice, this

approach has poor fidelity, particularly when some of the classes have little training

data (e.g., anomalous tra�c) [41].

A more robust approach in the generative modeling literature is to cogenerate

tra�c from di↵erent classes by training a single model capable of conditional gener-

ation. Common GAN-based methods for cogenerating samples from di↵erent classes

include conditional GANs (CGAN) [49]. CGAN would accept an additional input

specifying the label of the fake samples from the generator. In these models, the

GAN can be made to output samples from a specific class by inputting the class

label to the generator; this can be used to tune the ratio of synthetic normal vs.

anomalous tra�c, for instance. Although these models still struggle to learn from

imbalanced training data, they can use data from other classes to learn general pat-
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terns that apply to rare classes. For example, a conditional GAN can learn what

kinds of correlations appear between fields in normal NetFlow records, which may

be partially relevant for generating realistic anomalous records.

As preliminary work, we explore di↵erent designs based on the downstream ap-

plication. For example, for tra�c classification—which requires training labels—we

explore both design options mentioned above: using a GAN and cogeneration using

a CGAN. For novelty detection—which is an unsupervised task—there are no labels

in the training data, and we use a vanilla GAN to generate unlabeled synthetic data.

We leave a comprehensive exploration for future work.

4.2 Preliminary Evaluation

We evaluate two tasks, tra�c type classification and novelty detection under di↵erent

setups.

4.2.1 Experimental Setup

We run experiments on one of the most popular data types in the networking do-

main, NetFlow [2]. We use the TON IoT dataset [51], which is a telemetry IoT

sensor dataset for evaluating the fidelity and e�ciency of di↵erent cybersecurity ap-

plications. The original dataset contains 300k normal samples and nine di↵erent

attacks with each attack about 20k anomalous samples. We set the total number

of normal samples N “ ∞n
1 Ni “ 20, 000 and the total number of anomalous sam-

ples as A “ ∞n
1 Ai “ 2, 000. We set the total number of customers to n “ 10 and

evaluate both a homogeneous setup, where customers have data from the same dis-

tribution, and a heterogeneous setup, which models di↵erent customers having data

from di↵erent distributions.

Homogeneous Setup. For the homogeneous setup, we randomly partition the

entire dataset across the n customers, subject to Ni{Ai “ 10 for i “ 1, 2, ¨ ¨ ¨ , n.
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To evaluate our pipeline, we used an 80%:20% i.i.d. train/test split for each cus-

tomer’s data. The held-out test set is used to evaluate the model before and after

augmentation.

Heterogeneous Setup. To simulate di↵erent customers, we partitioned the en-

tire sample into 11 evenly-sized chunks by time. Each of the 10 customers owns

one chunk, and the last chunk is used as the test set. Since the data distribution

changes over the course of the dataset, this partitioning causes di↵erent customers to

have di↵erent data distributions, which models customer heterogeneity. It is possi-

ble that some customers may have only normal or only anomalous tra�c. Moreover,

by testing on a held-out time chunk, we model distribution drift—i.e., the model is

trained over data from a di↵erent distribution than the final test data. In our ex-

periments, we can only measure model performance for customers with both normal

and anomalous tra�c in their local test dataset.

4.2.2 Use cases

U1: Tra�c classification. In our first use case, we predict the type of a given

NetFlow record (normal/anomalous) given fields {port number, protocol, bytes/flow,

packets/flow, flow duration}. We don’t include the IP as a field for the task since

the synthetic data generation model will generate new and unseen IP from the raw

dataset to help with generalization. However, these newly generated IP cannot be

considerred as a clue in some specific use cases such as tra�c classification task.

We trained a MLP model as a tra�c classifier which will classify the given netflow

record as normal or anomalous. MLP is one of the most widely used fully connected

neural networks which plays an important role in various use cases. Its performance

is evaluated using AUC score. AUC score makes use of True Positive rate and False

Positive rate under di↵erent cut-o↵ thresholds to represent the degree of separability.

Compared to other metrics such as accuracy, AUC can be a better indicator and

18



performs well in the imbalanced dataset, which is appropriate given the imbalanced

nature of our data (normal vs. anomalous). Since the di↵erent parameters of the

MLP classifier has influence on the final performance, we further homogeneously split

the training set into training data and validation data, the latter of which is used to

select the best set of hyperparameters. The final classifier is selected as the one with

the highest AUC score over the validation set.

As discussed in Chapter 4.1, we augment only anomalous tra�c as a first step.

That is, in Figure 1.1b, to train model fi for the orange customer Ci, the blue

customers Cj, j ‰ i contribute only synthetic anomalous data Ãj. To generate this

synthetic data, we evaluate two deep generative models, GAN and CGAN. Since we

only augment anomalous tra�c in this thesis, we sampled the anomalous tra�c from

CGAN, and only trained GAN to generate anomalous tra�c. Even though we only

generate anomalous tra�c, CGAN can benefit from normal data to learn a better

model.

U2: Novelty detection. Our second use case is unsupervised novelty detection.

We explore a model called Local Outlier Factor (LOF) [12]. LOF is a unsupervised

anomaly detection or novelty detection method. Local density deviation will be

computed for a given data point with respect to its neighbors and those with very

low density deviation will be regarded as outliers. We use the same fields as in U1,

and ignore labels in the training data. All the data from each customer is used to

train a GAN without regard to whether the data is normal or anomalous. That is, to

train novelty detection model fi for customer Ci, the other customers Cj contribute

unlabeled synthetic data D̃j. Finally, the test set is passed through the learned model

fi. Given a netflow trace, fi would determine if this incoming trace is of majority or

is an outlier. We regard the majority as normal and an outlier as anomalous tra�c.

We evaluate the learned model by computing the AUC score over the ground truth

labels in the test set.
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Figure 4.1: Tra�c classification with di↵erent customers opt-in under homogeneous
setup.

4.2.3 Results

We first show results for tra�c type classification task under the homogeneous setup.

Finding 1: The vendor can build a robust tra�c classification model

when there are more cooperative customers.

We consider a setting where the vendor augments a single customer’s real data

(real and anomalous) with synthetic anomalous tra�c from di↵erent customers; at

most, we can augment with up to 9 customers’ anomalous data. If a customer

decides to participate, it will contribute 160 synthetic samples. Figure 4.1 shows the

change in AUC as we increase the number of customers who contribute synthetic

anomalous data. We first observe that on this dataset, synthetic data augmentation

achieves close AUC benefits as augmenting with real data, which is an upper bound

on the performance improvements we can hope for. Second, having more customers

participated in data sharing is helpful in getting better model performance.

Finding 2: The tra�c classification model is relatively robust to the amount

of augmented anomalous synthetic data.

20



We next assume that for any target customer, the remaining 9 customers are all

willing to share data. The vendor augments each customer’s model with the same

amount of synthetic anomalous data from all of the cooperative customers (up to 160

samples per customer). We define the augmentation ratio Ri for customer i as the

ratio between the amount of augmented anomalous synthetic data and the original

size of the dataset |Di| “ |Ni| ` |Ai|, i.e Ri “ ∞
j‰i |Ãj|{|Di|. Because we are only

augmenting with (up to) 1440 samples of anomalous data (Ri « 81%), this ratio

will be less than 1 in our experiments. Figure 4.2 shows the change in AUC as the

augmentation ratio grows. We find that AUC is relatively robust to the ratio when

it gets 30%, which suggests that the improvement may reach a state of ”saturation”

when amount of data augmented is beyond a “threshold”.

Finding 3: Novelty detection also benefits from (su�cient amounts of)

augmented data.

This experiment evaluates the experimental setting from Figure 4.2, except on the

novelty detection task. Here, we assume that all customers share the data and the

vendor augments each customer’s model with the same amount of synthetic data from
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Figure 4.2: Tra�c classification with di↵erent augmentation ratio under homoge-
neous setup.
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Figure 4.3: Novelty detection with di↵erent augmentation ratio under homogeneous
setup.

all customers, but we vary the number of shared synthetic samples per customer. We

capture the total amount of shared data by the augmentation ratio Ri for customer i,

defined as the ratio between the amount of added data and the original data quantity

|Di| “ |Ni|`|Ai|, i.e Ri “ ∞
j‰i |D̃j|{|Di|. Figure 4.3 shows the improvement in AUC

as the augmentation ratio grows. With su�cient augmented data, we still see the

relative improvement for both synthetic and real data augmentation. We also observe

that sometimes synthetic data augmentation hurts the model. One possible reason

is that the GAN cannot mimic the distribution of both normal and anomalous tra�c

well.

Finding 4: In heterogeneous data, di↵erent customers benefit di↵erently

from data augmentation.

Figure 4.4 and Figure 4.5 show the AUC of tra�c classification and novelty detec-

tion models before and after data augmentation in the heterogeneous setting. Each

column shows the changes for a single customer, when their data is augmented with

data from all other customers. For this experiment, all customers benefit from data

augmentation. More importantly, di↵erent customers benefit by di↵erent amounts.

We expect that in general, data augmentation can help or hurt heterogeneous cus-
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Figure 4.4: Tra�c classification in heterogeneous setup.

C1 C2 C3 C4 C5 C6
0.0

0.2

0.4

0.6

AU
C 

sc
oU

es

befoUe augmentation
Ueal
gan

Figure 4.5: Novelty detection in heterogeneous setup.

tomers depending on their local data distribution. Understanding and predicting

such trends is an interesting direction for future work.
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5

Related Works

Data silos resulting in suboptimal performance is a long-term pain points which has

a long history for exploration. We would list several related works in this Chapter.

Federated learning. In contrast to traditional machine learning algorithms, fed-

erated learning allows for the training of a ML model across decentralized clients.

Instead of requiring each client to upload their data, they only need to compute

an update using their local data to the global model maintained by the server [44].

Federated learning has definitely the potential to train a robust model with pri-

vacy guarantees by using all the clients’ data without touching them. However,

networking data is usually high-dimensional time series data which requires com-

plicated preprocessing logic. For example, the state-of-the-art synthetic IP header

trace generator, NetShare, uses a method called ip2vec to encode the field {port,

protocol}, bit-encoding to preprocess the field {IP}, zero-one normalization on other

continuous fields and one-hot encoding to other categorical fields [74]. This can be

time-consuming for data scientists, and in federated learning, the server is unable to

access the raw data, making the preprocessing task even more di�cult in practice.

Data augmentation. So far, there are two main di↵erent ways of data augmen-
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tation: (1) synthetic data augmentation and (2) anonymized data augmentation.

Regarding (1): a generative model will be utilized for synthetic trace generation.

These synthetic traces would be used for data augmentation to improve the perfor-

mance of the model. Strictly speaking, our cooperative data augmentation workflow

also falls in this category. But, to the best of our knowledge, all the current works

fail to consider suitable augmentation strategy and privacy guarantees as important

factors during augmentation. [69] and [26] are two examples using GAN based gen-

erative model to augment networking traces in di↵erent use cases. However, they

didn’t include a systematic strategy on what data and how to augment. Meanwhile,

they didn’t formulate the problems in a vendor-customer scenario and of course didn’t

consider the appropriate privacy metrics as a necessary open question for exploration

in their work. Regarding (2): anonymization policy plays an important role to ensure

the security and privacy needs. However, the anonymized data processed based on

anonymization policy may also have some shortcomings when used for augmenta-

tion. The first one is about the generalization. As briefly mentioned in Chapter 2.2,

the anonymization would preserve a one-to-one mapping between the original and

the anonymized dataset. Therefore, the lack of generalization and inflexibility for

the amount of data may have a negative e↵ect on the data augmentation and a↵ect

the final performance of the augmented data. The second one is the lost of some

significant fields. For example, the anonymization policy in [56] would enforce the

anonymized data to lose the exact timestamp and be replaced by a counter instead.

The lost of timestamp would destroy the temporal pattern which is a vital property

for the networking traces. What’s more, this would also cause the data schema of

the raw data and data for augmentation di↵erent, which would increase the di�culty

on augmentation.
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6

Limitations and Discussions

In this chapter, we revisit several limitations in this work and discuss the related

open questions for future work:

Performance comparison with the alternatives: In this study, we did not com-

pare our workflow with other approaches such as federated learning or anonymized

data sharing. While these alternatives have their own limitations, they have the po-

tential to improve customer data-driven models. Therefore, in future work, it would

be worth evaluating these methods and see how our synthetic data augmentation

workflow is compared to them.

Privacy metrics: The focus in this thesis was on establishing the design space

and potential utility of synthetic data augmentation. To show the initial promise,

we haven’t included the privacy metrics in this work. We posit that in networking

settings privacy notions explored in other communities such as di↵erential privacy

may not su�ce; e.g., business or competitive concerns may matter more. This raises

several question: What are the right privacy metrics for customers to specify such

business requirements? Are there formal foundations for defining these domain-

specific privacy metrics? Can we reason about the strength of various approaches
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(e.g., anonymization vs. synthetic data) in meeting these goals?

More realistic experiments setup: The dataset used in this experiment is a

telemetry IoT sensor dataset. Partitioning only one dataset to di↵erent customers

to simulate data distribution for each one may not reflect a real scenario. A better

solution would be to assume that the data owned by each customer comes from

di↵erent sources. Therefore, in a future work, a potential direction is to use synthetic

data trained on completely di↵erent raw datasets for augmentation and evaluate the

performance improvement of the augmented model.

Data heterogeneity: In my thesis, I simulated a scenario of data heterogeneity by

splitting the data by time and assigning it to di↵erent customers. However, this does

not provide a quantitative evaluation of the heterogeneity between each customer’s

data. However, the extent of heterogeneity may impact the augmentation strategy,

the final performance of the data-driven model and also the required amounted of

synthetic data required for the model to reach it. For a labeled dataset, a potential

more systematic way is to calculate diversity of the labels within each customer’s data

and the heterogeneity of the data with the same label between di↵erent customers.

A larger label heterogeneity indicates that each customer has quite di↵erent labels

of data, which can directly help model to reach generalization after augmentation.

However, it is unclear if this augmentation may negatively a↵ect the accuracy of the

original labels. Similarly, if the heterogeneity of the data with same label is large,

how to augment to help improve the generalization while keeping the accuracy needs

to be studied carefully.

Use case generalization and customization: We showed the initial promise

for two use cases. In general, we posit that synthetic data augmentation can help

cooperative workflows that rely on some “structural” understanding of the tra�c

rather than pinpointing particular actors/actions of interest. An open question then

is if we can formally scope the spectrum of ML-driven tasks that can benefit from
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usage of synthetic data? It also raises an attendant question if generation can be

tailored better with knowledge of these tasks.

Synergy with future ML algorithms: While we explore the use of GANs,

recent advances in ML suggest transformers or foundation models can be even more

successful. These raises two synergistic questions. First, can these transformer based

approaches or other techniques be used for synthetic data generation [37]? Second,

these models often require significantly more data to train to be useful and may not

naturally be considered in a sparse data setting. Synthetic data augmentation could

thus even be an enabler for exploring more powerful ML models that would have

otherwise been stymied by data sparsity.
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