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Abstract

We study several problems related to the identi�cation and the e�cient esti-
mation of parameters arising in causal inference. In the �rst part of this thesis,
we consider the problem of conducting sensitivity analysis to the no-unmeasured-
confounding assumption in observational studies. Roughly speaking, confounders
are variables that a�ect both the treatment receipt and the outcome. To estimate
causal e�ects, all such variables must be measured and properly taken into account
in the statistical analysis. �is is an untestable assumption in the problems consid-
ered here because the treatment is not randomly assigned by the experimenter.
�erefore, in these se�ings, gauging the impact of departures from this assumption
on the causal e�ects’ estimates is of great practical relevance. In one project, we
develop a novel framework that bounds the average treatment e�ect (ATE) as a
function of the proportion of units for which the treatment-outcome association is
confounded. In other work, we propose and analyze a suite of models for obtaining
bounds on certain causal e�ects when a marginal structural model is assumed.

In the second part of this thesis, we study the e�cient estimation of two
popular causal parameters: the dose-response function (DRF) and the level sets of
the conditional ATE (CATE) curve. �e DRF measures the expected outcome if
everyone in the population takes a given treatment level. When the treatment is
continuous, this parameter is a curve, viewed as a function of the in�nitely many
treatment values. We study several procedures to estimate the DRF and derive an
estimator that, under certain conditions and to the best of our knowledge, achieves
the lowest mean-square-error currently known in the literature. In a second paper,
we derive the minimax optimal estimator of CATE level sets and provide upper
bounds on the risk of other simpler estimation procedures. CATE level sets are
a useful quantity to compute in many applications because they identify units
with large treatment e�ects, which is the crucial information needed to optimally
allocate the treatment.

Finally, in the third part of this thesis, we study the e�ects of reduced mobility
on the number of Covid-19 deaths. We tackle this problem by specifying a marginal
structural model motivated by an epidemic model. Our analysis �nds that, for
many US States and at the beginning of the pandemic, a decrease in mobility leads
to signi�cantly fewer deaths.
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Chapter 1

Introduction

1.1 Motivation

Understanding the e�ect of a variable on an outcome is ultimately how science progresses and
new knowledge is accumulated. Experiments are generally considered the gold-standard for
this task because the randomization of the treatment ensures that, on average, any di�erence in
outcomes between the treated and the untreated groups is due to the treatment status alone and
not some other factors. However, experiments have also certain limitations, such as they may
not be representative of the general population or very costly to conduct. Importantly, they
might not be feasible for ethical reasons; for example, humans cannot be randomly assigned to
smoking or to not going to college.

Building upon seminal work conducted at the beginning of the 20th century [Fisher, 1936,
Neyman, 1923], from the 1970s researchers (e.g. Cochran and Rubin [1973], Corn�eld et al.
[1959], Robins [1986], Rubin [1974]) started to lay out su�cient and necessary conditions so
that causal e�ects can be estimated even in observational studies, that is in any se�ing that is
not a perfectly executed experiment. �e standard assumption invoked to interpret observed
associations as causal e�ects is the no-unmeasured-confounding assumption. It states that all
confounders, roughly variables a�ecting both the outcome and the treatment receipt, have
been correctly measured and included in the statistical analysis. In generality, it is impossible
to test whether the measured covariates are su�cient to deconfound the treatment-outcome
association, and thus justifying the veridicity of this assumption represents one of the main
challenges in observational studies.

Another major challenge o�en encountered in observational studies is that the confounders
must be correctly included in the statistical model for the data generating mechanism, typically
in the form of covariates in a regression. With a large number of confounders, the precision
with which the causal e�ect can be estimated quickly deteriorates, a phenomenon known as
the curse of dimensionality in the nonparametric statistics literature. �is is not the case in
experiments because the probability of receiving treatment is known for each unit, so that

7



Chapter 1. Introduction 8

inverse-probability-weighted estimators are root-n consistent essentially under no conditions.

�e goal of this thesis is to make progress on both of these challenges. In the �rst part, we
propose several methods to gauge the impact of potential residual unmeasured confounding
on the causal e�ects estimates. In the second part, we study estimation procedures designed
to make the most e�cient use of the sample and thus mitigate the issue of the curse of
dimensionality. We conclude the thesis with an application of our methods to investigate the
magnitude of the e�ect of reduced social mobility on Covid-19 deaths.

1.2 Overview of contributions

1.2.1 Chapters 2 and 3

In the �rst part of the thesis, we propose sensitivity models to gauge the impact of potential
unmeasured confounding on the causal e�ects estimates. �e holy grail of a sensitivity analysis
in this context is to operationalize residual unmeasured confounding in a way that is both
interpretable and general enough to capture plausible confounding mechanisms. Interpretability
is key in sensitivity analyses because the researcher is required to judge whether the minimum
amount of residual confounding needed to reduce the observed e�ect to the null value is too
large to be plausible in the speci�c context of their application. If this is the case, the study’s
conclusions are deemed “robust.”

In Chapter 2, we consider studies where the treatment is binary and does not vary with
time and propose bounding the averaget treatment e�ect (ATE) as a function of the proportion
of units for whom the treatment-outcome association is confounded. �is proportion is not
identi�ed and is varied by the researcher as a sensitivity parameter: we argue that this model
strikes a good balance between interpretability and generality. When this proportion equals
zero, the bounds collapse to the point-identi�ed ATE under no-unmeasured-confounding.
When it equals one, the bounds are the so called “natural bounds” that are valid under no
assumptions if the outcome is bounded and that are guaranteed to include the null value zero
[Manski, 1990, Robins, 1989]. We also propose reporting a point and interval-estimate of the
minimum proportion of “confounded units” such that the bounds include zero, which we view
as a one-number summary of the study’s robustness.

In Chapter 3, motivated by the application on Covid-19 reported in Chapater 6, we propose
and analyze several methods to conduct sensitivity analysis when the treatment is multi-valued
/ continuous and potentially time-varying. We do so under the assumption of a marginal
structural model (MSM) [Robins, 2000]. An MSM g(a;β) is a parametric model that maps a
given treatment sequence to the the expected outcome if everyone in the population takes
that sequence. For example, if the treatment A can vary over T time-points, one can imagine
counterfactual worlds where every unit in the population takes the same treatment sequence
aT = a1, . . . , aT leading to the population expected outcome E(Y aT ). An MSM speci�es a
model for the map aT 7→ E(Y aT ), e.g. g(aT ;β) = β0 +β1

∑T
t=1 at. Under the no-unmeasured-

confounding assumption, the parameters of an MSM can be identi�ed and estimated as the
solution to a particular moment equation. In this work, we propose ways to bound the
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parameter β or the model g(aT ;β) itself under several sensitivity models governing how
residual unmeasured confounding acts on the observed distribution.

1.2.2 Chapters 4 and 5

In the second part of this thesis, we investigate the e�cient estimation of popular causal
parameters. While the estimands considered are motivated by causal inference applications,
these two chapters are purely about statistical methodology. �e following is a summary of
the estimands considered together with the main challenges that we aim to address.

Chapter 4:

• Estimand: the set
{x ∈ Rd : µ1(x)− µ0(x) > θ},

for some user-speci�ed cuto� θ and µa(x) = E(Y | A = a,X = x), for A ∈ {0, 1} and
X ∈ Rd. Under no-unmeasure-confounding, µ1(x)− µ0(x) measures the conditional
average treatment e�ect (CATE) for all units with covariates’ value X = x and the
estimand is the CATE (upper) level sets. An important case is the upper level set at
θ = 0, which e�ectively identi�es the portion of the covariates’ space where the treatment
e�ect is positive. If the goal is to maximize the mean outcome in the population, then
the treatment should be allocated only to the units with covariates’ values falling into
this region.

• Main challenges: the parameter is set-valued and it depends on the complexity of P(A =
1 | X = x), µa(x) and the di�erence τ(x) = µ1(x)− µ0(x), which can be potentially
of smaller complexity than the individual regression functions. �e main challenge
we tackle is to bound the risk of an estimator that simply thresholds an estimator of
τ(x) and establish 1) that thresholding the minimax optimal estimator of τ(x) results
in the minimax optimal estimator for τ(x)’s level sets and 2) su�cient conditions such
that τ(x)’s level sets can be estimated with be�er accuracy than τ(x) itself. We also
connect this statistical problem to the areas of classi�cation, nonparametric regression
and functional estimation.

Chapter 5:

• Estimand: the curve a 7→
∫
E(Y | A = a,X = x)dP(x), where A ∈ R and X ∈ Rd.

Under no-unmeasured-confounding, this parameter representes the dose-response
function (DRF), i.e., the expected outcome in the population if every units takes treat-
ment value A = a.

• Main challenges: the DRF is a one-dimensional object that is the result of marginally
integrating out all but one covariates of a d+ 1-dim regression. �e main challenge is to
construct a �exible, nonparametric estimator whose risk is close to that of a one-dim
regression rather than a d+ 1-dim one.



Chapter 1. Introduction 10

1.2.3 Chapter 6

In the context of the Covid-19 pandemic, this chapter investigates the relationship between
(anti)-mobility, as measured by the fraction of mobile devices that do not leave the immediate
area of their home every week, and the number of Covid-19 deaths at the state-level. For
each state, we thus observe a sequence (A1, Y1), . . . , (AT , YT ), where At and Yt denote (anti)-
mobility and Covid-19 deaths in week t, respectively. We consider data from Feb 15, 2020 to
December 19, 2020.

During the beginning of the Covid-19 pandemic, many authors have studied the e�ect of
mobility and interventions, e.g. lockdowns and school closures, on the number of Covid-19
cases and deaths. Many of the models proposed in the literature are generative in the sense
that they try to model the infection or death processes as accurately as possible, typically using
mechanistic models relating susceptible, infected and recovered (SIR) people via di�erential
equations. �ese models are rooted in rigorous epidemiology theory, but they can make
statistical inference intractable. To overcome this challenge, we start by considering a simple
SIR model relating mobility, infections and deaths each week. From this model, by the g-formula
[Robins, 1986] and under the assumption that there are no confounding variables except for
previous deaths, we get an expression for the function mapping each treatment sequence
(anti-mobility) to the expected number of deaths if everyone in the population follows that
sequence. We then abandon the original SIR working model and simply interpret that map
semiparametrically as a marginal structural model (MSM): we consider all distributions such
that, if plugged into the g-formula, yield that particular MSM.

�e parameters of an MSM can be identi�ed as the solution to a moment condition. As
such, inference can be carried out by standard Z-estimation theory. �is is one of the main
advantages of our approach. In the speci�c application considered, we �nd that, for many
states, reduced mobility appears to decrease the number of deaths approximately four weeks
later. Data availability in this study is limited, which has led us to make several simplifying
assumptions, including the use of parsimonious semi-parametric models as well as the inclusion
of only previous weeks’ Covid-19 deaths as possible confounders. However, we also carry
out several sensitivity analyses and �nd that the results are quite robust to the assumptions
invoked.



Chapter 2

Sensitivity analysis via the
proportion of unmeasured
confounding

�is chapter is taken from my work supervised by Edward H. Kennedy, which was published
in the Journal of the American Statistical Association [Bonvini and Kennedy, 2020].

2.1 Introduction

In an experiment, the random assignment of the treatment to the units ensures that any mea-
sured and unmeasured factors are balanced between the treatment and control groups, thereby
allowing the researcher to a�ribute any observed e�ect to the treatment. In observational stud-
ies, however, achieving such balance requires the untestable assumption that all confounders,
roughly variables a�ecting both the treatment A and the outcome Y , are collected. To gauge
the consequences of departures from the no-unmeasured-confounding assumption, a sensitivity
analysis generally posits the existence of an unmeasured confounder U and varies either the
U -A association or the U -Y association or both. �e minimal strength of these associations
that would drive the observed Y -A association to zero is o�en reported as a measure of the
study’s robustness to unmeasured confounding.

Since the seminal work of Corn�eld et al. [1959] on the association between smoking
and lung cancer, a plethora of sensitivity analysis frameworks have been proposed. Here, we
mention a few of them and refer to Liu et al. [2013] and Richardson et al. [2014] for excellent
reviews. In the context of matched studies, Rosenbaum’s framework [Rosenbaum, 1987, 2002]
is likely the most commonly used. It governs the U -A association via a parameter Γ ≥ 1 by
requiring that, within each pair, the ratio of the odds that unit 1 is treated to the odds that
unit 2 is treated falls in the interval [Γ−1,Γ]. �e U -Y association is o�en le� unrestricted or
bounded as in Gastwirth et al. [1998]. More recently, Zhao et al. [2019] and Yadlowsky et al.

11
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[2018] have proposed extensions to this framework that do not require matching.

In addition, Ding and VanderWeele [2016] and VanderWeele and Ding [2017] have derived
a bounding factor for certain treatment e�ects in terms of two sensitivity parameters governing
the U -A and U -Y relationships. Other authors have proposed modeling the distribution of U
and the relationships U − Y and U −A directly [Imbens, 2003, Rosenbaum and Rubin, 1983],
which has been recently extended to the case where the distribution of U is le� unspeci�ed by
Zhang and Tchetgen Tchetgen [2019]. In the context of time-varying treatments, sensitivity
analyses have been proposed for marginal structural models [Brumback et al., 2004] and
cause-speci�c selection models [Rotnitzky et al., 2001].

In this paper, we propose a novel approach to sensitivity analysis based on a mixture model
for confounding. We conceptualize that an unknown fraction ε of the units in the sample is
arbitrarily confounded while the rest is not. �e parameter ε is unknown and not estimable
but can be varied as a sensitivity parameter. As discussed below, our model generalizes some
relaxations to the no-unmeasured-confounding assumption that have been previously proposed
in the literature. Furthermore, our framework yields a natural one-number summary of a
study’s robustness: the minimum proportion of confounded units such that bounds on the
average treatment e�ect contain zero. All the code can be found in the Github repository
matteobonvini/experiments-sensitivity-paper.

2.1.1 Motivation

�e most widely adopted frameworks for sensitivity analysis generally assume that each unit
in the sample could be subject to unmeasured confounding and then proceed by specifying the
maximal extent of such confounding. However, just like a treatment e�ect can be heterogeneous,
confounding, too, can di�er between units. We propose a complementary approach: in some
instances, the researcher may have failed to measure relevant confounders but may hope that
there is a subset of units, possibly unknown, for whom the treatment is as good as randomized
given the measured covariates.

As a toy example, suppose it is observed that adolescent alcohol drinking (treatment A) is
positively associated with the occurrence of liver diseases (outcome Y ). Suppose all confounders
X have been recorded except for parental smoking, which could be associated with both A
[Oliveira et al., 2019, Pengpid and Peltzer, 2019] and Y due to second-hand smoking [Lammert
et al., 2013]. Previously proposed sensitivity analyses would check whether a small association
between parental smoking and A or Y can explain away the observed A-Y association. Instead,
we propose to leverage on the observation that parental smoking is a confounder only for units
whose parents smoke at home. For instance, some parents may only smoke at work, in which
case parental smoking would not have an e�ect on Y . �e sample is thus composed of two
groups: those units for which A is as good as randomized given X because they are not subject
to second-hand smoking regardless of whether their parents smoke and those for which it is
not. Depending on how prevalent the former group is, the observed A–Y association might
be at least partially a�ributed to the e�ect of A. �is toy example generalizes to other cases.
For instance, if a confounder is measured with error, the observed covariates may be su�cient



Chapter 2. Sensitivity analysis via the proportion of unmeasured confounding 13

to de-confound the treatment-outcome relationship only for an unknown subset of units. In
such case, the sample can be thought of containing two groups: those units for whom the
confounder was measured correctly, e.g. if the questionnaire on motivation or drugs usage
was answered truthfully, and those for whom it was not.

�e possibility that a sample comes from a mixture of distributions has been studied in
great detail in statistics. In robust statistics, for example, it is assumed that a small unknown
fraction of the sample comes from a “corrupted” or “contaminated” distribution that is not the
target of inference (see Remark 2). In causal inference, unmeasured confounding takes the role
of contamination. Borrowing the contaminated model from this literature, we conceptualize
that an unknown fraction of the sample su�ers from unmeasured confounding.

For example, consider Figure 2.1. In the shaded region of the space de�ned by the two
observed covariates, the treatment is not assigned randomly; units with covariates’ values
falling in this region may have self-selected into the treatment arms and therefore estimating
the e�ect of the treatment on their outcomes is impossible without making further, untestable
assumptions. For brevity, we say these units are “confounded,” while the other units are
“unconfounded.” Note that, except in special cases, some of which are discussed next, the region
is not identi�able from the observed data. However, even if the region is not identi�able, its
measure, termed ε in our model, might be speci�ed or upper bounded using subject-ma�er
knowledge. More generally, ε can be varied as a sensitivity parameter. In Figure 2.1, despite
covering di�erent sets of units, all three regions have the same mass, with approximately 20%
of the points falling inside them. Given a value for ε, we show how to �nd the region yielding
the most conservative inference.

Figure 2.1: �e shaded region represents the set of units for whom the treatment is not assigned
randomly, even a�er conditioning on observed covariates. All three �gures show approximately
the same number of points falling within the “confounded region,” albeit covering di�erent
sets of units. �e probability ε that a unit falls within the region is our model’s sensitivity
parameter, here ε ≈ 0.2.

Special cases of our model have already been discussed in the literature when it is known
who the confounded units are. For example, in introducing the selective ignorability framework,
Jo�e et al. [2010] discuss estimating the e�ect of erythropoietin alpha (EPO) on mortality
using an observational database containing information on all subjects in the United States
on hemodialysis. �e treatment is thought to be unconfounded only a�er conditioning on
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hematocrit, which, however, is not recorded for 10.6% of the subjects. �us, one may view
10.6% of the sample as coming from a “confounded distribution.” In addition, the di�erential
e�ects framework proposed in Rosenbaum [2006], too, can be regarded as a special case of our
model. Di�erential e�ects are treatment contrasts that are immune to certain types of biases
called “generic biases.” For example, suppose two treatments are under study. In certain cases,
it is plausible that, while units might self select into either treatment arm, the choice of the
treatment among units who take exactly one treatment is as good as random. Notice that this
setup is a special case of our model: the confounded units are precisely those who are not
taking any treatment or are taking a combination of both of them.

Finally, a standard instrumental variables (IV) se�ing, too, can be thought of as a case where
a fraction of the units is unconfounded. For example, consider an experiment with binary
treatment that su�ers from units’ non-compliance. �e treatment assignment is randomized
but the treatment received is not. For the units who complied with the experimental guidelines,
the treatment received is equal to the treatment assigned, which is randomly assigned. �us,
the compliers can be considered the units for whom the treatment / outcome relationship is not
confounded. In fact, in their detailed analysis of the binary IV model, Richardson and Robins
[2010] propose a sensitivity analysis for the average treatment e�ect where the sensitivity
parameter can be expressed as the proportion of compliers. For the observational se�ing
considered in this paper, however, the instrument is never observed, thus, contrarily to a
standard IV analysis, the sample contains no information regarding who the confounded units
are. In this light, our contribution can also be regarded as an a�empt to infer average treatment
e�ects when it is plausible that nature is acting via an unobservable IV.

2.2 The Sensitivity Model

We suppose we are given an iid sample (O1, . . . ,On) ∼ P with O = (X, A, Y ), for covariates
X ∈ X ⊆ Rp, a binary treatment A ∈ {0, 1} and an outcome Y ∈ Y ⊆ R. We let Y a

denote the potential outcome that would have been observed had the treatment been set to
A = a [Rubin, 1974]. �e goal is to estimate the Average Treatment E�ect (ATE) de�ned as
ψ = E(Y 1 − Y 0). To ease the notation, we let π(a | X) = P(A = a | X),

µa(X) = E (Y | A = a,X) , and ηηη = {π(0 | X), π(1 | X), µ0(X), µ1(X)} .

�roughout, we assume that the following two assumptions hold

Assumption 1 (Consistency). Y = AY 1 + (1−A)Y 0.

Assumption 2 (Positivity). P {t ≤ π(a | X) ≤ 1− t} = 1 for some t > 0.

Both assumptions are standard in the causal inference literature. Consistency rules out
any interference between the units, whereas positivity requires that each unit has a non-zero
chance of receiving either treatment arm regardless of their covariates’ values. It is well known
that if, in addition to consistency and positivity, it also holds that Y a ⊥⊥ A | X (no unmeasured
confounding), then ψ can be point-identi�ed as ψ = E{µ1(X) − µ0(X)}. In this work, we
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propose a sensitivity model that relaxes the no-unmeasured-confounding assumption while
retaining both consistency and positivity. As a consequence of this relaxation, ψ is no longer
point-identi�ed but it can still be bounded.

Our model supposes that the observed distribution P is derived from a counterfactual
distribution Q of (X, A, Y 1, Y 0) such that

Q = εQ0 + (1− ε)Q1 (2.1)

where Q0 is a “confounded distribution” for which A 6⊥⊥ Y a | X and Q1 is an “unconfounded
distribution” for which A ⊥⊥ Y a | X. In practice, it might be useful to think of each Qi as
potentially factoring according to A ⊥⊥ Y a | Si, where Si is a set of confounding variables
such that S1 is measured but S0 \ S1 6= ∅ is not. 12

�e parameter ε ∈ E ⊆ [0, 1] governs the proportion of unmeasured confounding. It is
unknown and not estimable but can be varied as a sensitivity parameter. Here, E is an interval
that the user can specify. Although ψ cannot be point-identi�ed for ε > 0, it is possible to
bound it as a function of ε. In particular, for ε = 1, the familiar worst-case bounds are recovered.
For an outcome bounded in [0, 1], these bounds have width equal to 1, which means that the
sign of the treatment e�ect is not identi�ed. Varying the sensitivity parameter to recover
di�erent identi�cation regions has been proposed in other works, such as Richardson et al.
[2014], Kennedy et al. [2019] and Dı́az and van der Laan [2013a], albeit for di�erent targets of
inference or sensitivity models.

An equivalent formulation of our model (2.1) is one where there is a latent selection indicator
S ∈ {0, 1}, with P(S = 1) = 1− ε, such that A 6⊥⊥ Y a | X, S = 0, but A ⊥⊥ Y a | X, S = 1.
�e following lemma rewrites ψ in terms of S.

Lemma 1. Let λa(X) = E(Y a | A = 1 − a,X, S = 0). Under consistency (1) and positivity
(2), it holds that

ψ = E((1− S)[{Y − λ1−A(X)}(2A− 1)] + S{E(Y | A = 1,X, S = 1)− E(Y | A = 0,X, S = 1)})

All proofs can be found in the supplementary material. As shown in Lemma 1, ψ depends on
three unobservable quantities: λ0(X), λ1(X) and S. �e quantity λ1(X) (λ0(X)) represents
the average outcome for those control (treated) units subject to unmeasured confounding
had they taken the treatment (control) instead. Without further assumptions, the observed
distribution P would not impose any restrictions on λ0(X) or λ1(X) even if S was known.

1As pointed out by an anonymous reviewer, the mixture model (2.1) could be generalized to Q =
∑J
j=1 εjQj ,

where each Qj is a distribution on the counterfactuals capturing di�erent degrees of the confounding. While richer
sensitivity analyses can yield more nuanced conclusions, the large number of parameters whose plausibility range
would need to be assessed (J − 1 in this case) may hinder their applications in many se�ings.

2For instance, consider the toy example above, with X = ∅ and Y,A, U ∈ {0, 1} for simplicity. Suppose
that P(U = 1 | A) = γ0 + γ1A and Qs(Y a = 1 | A,U) = α1s + (1 − s)(α2 + α3U), for some constants
γ and α. �en, EQ0(Y 1 − Y 0) = EQ1(Y 1 − Y 0) = 0 and EQ1(Y 1 | A = 1) − EQ1(Y 0 | A = 0) = 0, but
EQ0(Y 1 | A = 1)− EQ1(Y 0 | A = 0) = α3γ1, which is generally nonzero.
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For any given ε, a sharp lower (upper) bound on ψ can be obtained by minimizing (maxi-
mizing) ψ in Lemma 1 over λ0(X), λ1(X) and S. Without imposing some restrictions on the
distribution of S, the optimization step involves �nding, and nonparametrically estimating, the
optimal regression functions E(Y | A = a,X, S = 1). Given a sample of n observations, this
step would involve ��ing regression functions on

(
n
dnεe
)

di�erent sub-samples of size dnεe,
which is computationally very costly even for moderate sample sizes.

Instead, we proceed by requiring that S ⊥⊥ (Y,A) | X; we call the resulting sensitivity
model “X-mixture model”. �e assumption that S ⊥⊥ (Y,A) | X can be interpreted in at
least three ways. First, one may hope that it holds exactly for the mechanism that generated
the sample. For instance, it is trivially satis�ed, for example, if S is just a possibly unknown,
deterministic function of the observed covariates. An example satisfying this condition is given
by the selected ignorability framework proposed in Jo�e et al. [2010]: if the treatment is as
good as randomized conditional on hematocrit (and possibly other observed covariates), then
S could be an indicator of whether hematocrit is missing.

Even if it does not hold exactly, assuming S ⊥⊥ (Y,A) | X may be a close approximation
to reality that one can use to make the problem computationally tractable. �is second inter-
pretation is in the same spirit as using parametric regression models in order to simplify a
given problem, hoping that they will be a close approximation to the true regression function.
�ird, even if S 6⊥⊥ (Y,A) | X, the X-mixture model can help determining whether a study is
not robust to unmeasured confounding. Because the bounds if no assumptions are made will
be at least as wide as those under S ⊥⊥ (Y,A) | X, if a study does not appear robust in the
X-mixture model, it will not appear robust in the general case either. In the following theorem,
we derive closed-form expressions for sharp bounds on ψ in the X-mixture model.

�eorem 1 (Bounds in X-mixture model). Suppose that assumptions 1 and 2 hold. Further
suppose that

S ⊥⊥ (A, Y ) | X (A1)

and that P(Y ∈ [ymin, ymax]) = 1, for ymin, ymax �nite. Choose δ ∈ [0, 1] such that

La ≡ δ{ymin − µa(X)} ≤ λa(X)− µa(X) ≤ δ{ymax − µa(X)} ≡ Ua with prob. 1 (2.2)

for a ∈ {0, 1}. �en, as a function of ε, sharp bounds on ψ are:

ψl(ε) = E [µ1(X)− µ0(X) + 1 {g(ηηη) ≤ qε} g(ηηη)]− εδ(ymax − ymin)

ψu(ε) = E [µ1(X)− µ0(X) + 1 {g(ηηη) > q1−ε} g(ηηη)]

where g(ηηη) = π(0 | X)U1 − π(1 | X)L0 and qτ is its τ -quantile.

�eorem 1 yields the identi�cation of sharp lower and upper bounds on ψ when it is
suspected that 100ε% of the units in the sample are confounded and it is assumed that predicting
whether a unit is confounded or not cannot be improved by conditioning on (Y,A). Relaxing
condition (A1) to S ⊥⊥ Y | (A,X) poses no additional challenges and it is discussed in
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Appendix A.3. We refer to this relaxed version of the X-mixture model as the “XA-mixture
model.” Notably, it covers the di�erential e�ects framework of Rosenbaum [2006], as one could
specify S = 1(A1 +A2 = 1) for some binary treatment A1 and A2.

�e bounds are in terms of the parameters ε and δ, as well as the regression functions
π(a | X) and µa(X), and they involve non-smooth transformations of unknown functions of P.
�e parameter ε is our main sensitivity parameter and controls the proportion of unmeasured
confounding in the sample. Parallely, δ controls the extent of unmeasured confounding among
the S = 0 units, as it bounds the di�erence between the unobservable regression λa(X) and
the estimable regression µa(X). Notice that (2.2) always holds for δ = 1. Se�ing δ < 1
imposes an untestable assumption on the severity of the unmeasured confounding, which
might be sensible if some knowledge on the confounding mechanism is available. Speci�cally,
our parametrization is such that λa(X) can be bounded by linear combinations of ymin, ymax
and µa(X):

δymin + (1− δ)µa(X) ≤ λa(X) ≤ δymax + (1− δ)µa(X)

Unless otherwise speci�ed, in what follows we consider ymin = 0, ymax = 1 and set δ = 1, thus
yielding

ψl(ε) = E [µ1(X)− µ0(X) + 1 {g(ηηη) ≤ qε} g(ηηη)]− ε
ψu(ε) = E [µ1(X)− µ0(X) + 1 {g(ηηη) > q1−ε} g(ηηη)]

for g(ηηη) = π(0 | X){1 − µ1(X)} + π(1 | X)µ0(X). If Y is bounded, this choice does not
impose any assumption since Y can be rescaled to be in [0, 1]. If Y is unbounded, �eorem 1
is not directly applicable, but a similar result can be derived if one is willing to assume that
|λa(X) − µa(X)| ≤ δ for a ∈ {0, 1} and δ < ∞. We leave further investigation of the
unbounded case as future work. We conclude this section with four remarks aiming to shed
some more light on the bounds derived in �eorem 1.

Remark 1. Suppose Y is bounded in [0, 1] and take δ = 1. �e length of the bound is then

∆(ε) = [E{g(ηηη) | g(ηηη) > q1−ε} − E{g(ηηη) | g(ηηη) ≤ qε}+ 1]ε

If S was known, the length of the bound would reduce to ∆(ε) = ε. �us, we can view the
term [E{g(ηηη) | g(ηηη) > q1−ε} − E{g(ηηη) | g(ηηη) ≤ qε}]ε as the “cost” of not knowing who the
confounded units are.

Remark 2. �e conditional independence of S and Y considerably simpli�es the optimization
step. To see this, notice that E(Y | A = a,X, S = 1) = µa(X) if S ⊥⊥ Y | A,X. In turn, this
implies that ψ can be wri�en as

ψ = E[Γ(Y,A,X) + S{µ1(X)− µ0(X)− Γ(Y,A,X)}]

where Γ(Y,A,X) = {Y − λ1−A(X)}(2A− 1). �erefore, bounds on ψ can be derived from
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bounds on E {µ1(X)− µ0(X)− Γ(Y,A,X) | S = 1}, which �ts the framework studied by
Horowitz and Manski [1995]. In their work, the goal is to do inference about a distribution Q1

using data Y such that Y = ZY1 + (1 − Z)Y0, with Z ∈ {0, 1} and Yi ∼ Qi. �ey discuss
two models: the “contaminated sampling model”, which assumes Z to be independent of Y1,
and the “corrupted sampling model”, which does not make this assumption. If it is known that
P(Z = 0) ≤ λ, they derive sharp bounds on the conditional expectation of Y1 given some
covariates X when contamination or corruption does not occur in X. Our setup does not
immediately �t this framework because corruption applies to all observed variables (Y,A,X).
However, if S ⊥⊥ Y | A,X, the optimal solution for S can be found by considering only the
marginal distribution of the one-dimensional random variable µ1(X)− µ0(X)− Γ(Y,A,X).
Following the terminology in Horowitz and Manski [1995], we may view the assumption that
S ⊥⊥ Y | A,X as a compromise between contamination (S ⊥⊥ (Y,A,X)) and corruption (no
assumption on S).

Remark 3. As pointed out by Robins [2002], many interesting sensitivity analyses make
use of parameters that depend on the covariates collected. In turn, this might hinder the
direct comparison of studies’ robustness. For example, a study where many confounders
have been properly taken into account might appear more sensitive to departures from the
no-unmeasured-confounding assumption than a study that failed to control for any confounder.
�is could happen, for instance, if the e�ect estimate in the former study is closer to the null
value than the estimate from the la�er. �is apparent paradox might arise because a sensitivity
analysis measures departures from a weak or strong assumption depending on whether many
or few observed confounders are collected. Our proposed sensitivity analysis hinges on ε, the
proportion of unmeasured confounding, which depends on the covariates collected. As such, it
might be subject to this paradox.

Remark 4. Section 4 of Rosenbaum [1987] contains a modi�cation to the sensitivity analysis
proposed in that paper, and brie�y summarized in our introduction, that allows an unknown
fraction β of the sample to su�er from arbitrarily confounding. While conceptually similar
to the approach presented in this paper, their method relies on exact matching. In fact, if
units are exactly matched on observed covariates, our sensitivity model recovers Rosenbaum’s
with β = ε and Γ = 0. However, exact matching is o�en infeasible due to the presence of
continuous or high-dimensional covariates. �erefore, our work can be viewed as an extension
to Rosenbaum’s Section 4 model to the case where units are not matched on observed covariates.

2.2.1 One-number Summary of a Study’s Robustness

In practice, one might want to report a one-number summary of how robust the estimated
e�ect is to the number of confounded units. An example of such summary is the minimum
proportion of confounded units ε0 such that the bounds on ψ are no longer informative about
the sign of the e�ect, i.e. that they contain zero. Larger values of ε0 indicate that the estimated
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e�ect is more robust to potential unmeasured confounding. Mathematically,

ε0 = argmin
ε∈E

1[sgn{ψl(ε)} 6= sgn{ψu(ε)}]

where sgn(x) measures the sign of x, sgn(x) = −1(x < 0) + 1(x > 0). Because ψu(ε =
1) − ψl(ε = 1) = 1, the minimum is guaranteed to be a�ained in E = [0, 1]. Furthermore,
under certain mild conditions, the bounds are continuous and strictly monotone in ε, hence ε0
is generally the unique value such that ψl(ε0) = 0 or ψu(ε0) = 0. �is motivates the moment
condition ψl(ε0)ψu(ε0) = 0, which we use to construct a Z-estimator of ε0.

Other authors have proposed one-number summaries of a study’s robustness to unmeasured
confounding. For example, the minimum value for Γ in Rosenbaum’s framework and its
extensions [Gastwirth et al., 1998, Rosenbaum, 1987, Yadlowsky et al., 2018, Zhao et al., 2019]
such that the observed e�ect ceases to be statistically signi�cant can be used as a summary
of study’s robustness to unmeasured confounding. Recently, Ding and VanderWeele [2016]
and VanderWeele and Ding [2017] have introduced the E-Value, which measures the minimum
strength of association, on the risk ratio scale, that an unmeasured confounder would need to
have with both the outcome and the treatment in order to “explain away” the observed e�ect
of the treatment on the outcome. In order to derive the elegant formula for the E-Value, the
unobserved confounder is assumed to be associated with the treatment and with the outcome
in equal magnitude. Furthermore, the derivation makes use of a bounding factor that needs to
be computed for each stratum of the covariates. Computing such bounding factor when the
observed covariates are continuous or high-dimensional can be problematic. Moreover, their
method requires additional approximations if the outcome is not binary. On the other hand, the
one-number summary proposed here does not require any further assumption other than the
restriction on S described above. Hence, we view these summary measures as complementary
and the speci�c context would generally dictate which one is more appropriate.

2.3 Estimation & Inference

2.3.1 Proposed Estimators

�ere are at least two types of bias that can arise when estimating a causal e�ect using
observational data: the bias arising from incorrectly assuming that all confounders have been
collected and the statistical bias of the chosen estimator [Luedtke et al., 2015]. In Section 2.2,
we constructed a model to probe the e�ects of the former bias. In this section, we propose
estimators that aim to minimize the la�er. Our estimators of the bounds are built using the
e�cient in�uence functions (IFs) and cross-��ing. IFs play a crucial role in nonparametric
e�ciency theory, as the variance of the e�cient IF can be considered the nonparametric
counterpart of the Cramer-Rao lower bound in parametric models. Furthermore, estimators
constructed using the e�cient IF have favorable properties, such as doubly-robustness or
second-order bias. Here, we note that ψl(ε) and ψu(ε) do not possess an in�uence function, as
they are not pathwise di�erentiable. However, certain terms appearing in their expressions,
such as E{µa(X)}, are pathwise di�erentiable; as such, they can be estimated using IFs. For
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terms that are not pathwise di�erentiable we resort to plug-in estimators. We refer to Bickel
et al. [1993], van der Vaart [2002], Van der Laan et al. [2003], Tsiatis [2007], Chernozhukov
et al. [2016] and others for detailed accounts on IFs and their use.

To ease the notation in this section, let

ν(O;ηηη) =
(2A− 1) {Y − µA(X)}

π(A | X)
+ µ1(X)− µ0(X)

denote the uncentered in�uence function for the parameter E {µ1(X)− µ0(X)}. Furthermore,
let τ(O;ηηη) denote the uncentered in�uence function for E {g(ηηη)}:

τ(O;ηηη) =
(1− 2A) {Y − µA(X)}
π(A | X)/π(1−A | X)

+Aµ0(X) + (1−A) (1− µ1(X))

and let

ϕl(O;ηηη; qε) = ν(O;ηηη) + 1{g(ηηη) ≤ qε}τ(O;ηηη)− ε
ϕu(O;ηηη; q1−ε) = ν(O;ηηη) + 1{g(ηηη) > q1−ε}τ(O;ηηη)

�en, it holds that ψl(ε) = E{ϕl(O;ηηη; qε)} and ψu(ε) = E{ϕu(O;ηηη; q1−ε)}.

Following Robins et al. [2008], Zheng and Van Der Laan [2010] and Chernozhukov et al.
[2016] among others, we use cross-��ing to allow for arbitrarily complex estimators of the
nuisance functions ηηη and qτ in order to avoid empirical process conditions. Speci�cally, we split
the data into B disjoint groups of size n/B and we let Ki = k indicate that subject i is split
into group k, for k ∈ {1, . . . , B}. Notice that it is not required that the groups have equal size,
for example each Ki could be drawn uniformly from {1, . . . , B}. For simplicity, we proceed
with having equal-size groups. We let Pn denote the empirical measure as Pn {f(O)} =
1
n

∑n
i=1 f(Oi) and Pkn denote the sub-empirical measure as Pkn {f(O)} =

∑n
i=1 f(Oi)1(Ki =

k)/
∑n

i=1 1(Ki = k). In addition, we let η̂ηη−k denote the estimator of ηηη computed without
using observations from foldK = k and q̂τ,−k denote the estimator of qτ equal to the empirical
quantile of g(η̂ηη−k) solving Pkn[1{g(η̂ηη−k) ≤ q̂τ,−k}] = τ + oP(n−1/2). �en, we estimate the
bounds as

ψ̂l(ε) =
1

B

B∑
k=1

Pkn[ν(O; η̂ηη−k) + 1{g(η̂ηη−k) ≤ q̂ε,−k}τ(O; η̂ηη−k)]− ε ≡ Pn
{
ϕl(O; η̂ηη−K , q̂−K,ε)

}
ψ̂u(ε) =

1

B

B∑
k=1

Pkn[ν(O; η̂ηη−k) + 1{g(η̂ηη−k) > q̂1−ε,−k}τ(O; η̂ηη−k)] ≡ Pn
{
ϕu(O; η̂ηη−K , q̂−K,1−ε)

}
�e computation of the estimators above is straightforward as it amounts to ��ing regression
functions on B − 1 subsets of the data and evaluate the estimated functions at the values of
the covariates on the corresponding test set. �e use of cross-��ing lends itself naturally to the
use of parallel computing as one can estimate the regression functions on di�erent subsets of
the data simultaneously. We incorporate this possibility in our implementation of the methods
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in R. Moreover, it is worth noting that cross-��ing does not discard any data point in the
estimation step, since each observation is used twice without over��ing: once for estimating
the regression functions and once for estimating the expectation operator. In addition, because
we are working under a fully nonparametric model, there exists only one in�uence function;
therefore, our estimators of the pathwise di�erentiable terms are e�cient in the sense that
they asymptotically achieve the semiparametric e�ciency bound.

Finally, while the estimators of the bounds discussed in this section have several a�ractive
properties in terms of computational tractability and convergence rates, they might not be
monotone in ε in �nite samples. To remedy this, the estimators can be “rearranged” using the
procedure described in Chernozhukov et al. [2009]. We apply this procedure in Section 2.4,
although we �nd that the original, non-rearranged estimators achieve low bias and nominal
uniform coverage as well.

2.3.2 Establishing Weak Convergence

To state asymptotic guarantees for the proposed estimators, we �rst make the following
technical assumption:

Assumption 3 (Margin Condition). �e random variable g(ηηη) has absolutely continuous CDF
and there exists α > 0 such that for all t > 0 and τ ∈ E , it holds that P (|g (ηηη)− qτ | ≤ t) . tα
and P (|g (ηηη)− q1−τ | ≤ t) . tα.

Assumption 3 requires that there is not too much mass around any ε-quantile or (1− ε)-
quantile of g(ηηη), for ε ∈ E . It is essentially equivalent to the margin condition used in
classi�cation problems [Audibert and Tsybakov, 2007], optimal treatment regime se�ings
[Luedtke and Van Der Laan, 2016, van der Laan and Luedtke, 2014], and other problems
involving estimation of non-smooth functionals [Kennedy et al., 2019, 2020]. Notably it is
satis�ed for α = 1 if, for instance, the density of g(ηηη) is bounded on E . We give the main
convergence theorem for ψ̂u(ε). A similar statement holds for ψ̂l(ε).

�eorem 2. Let

σ̂2
u(ε) = Pn{(ϕu(O; η̂ηη−K , q̂1−ε,−K)− ψ̂u(ε)− q̂1−ε,−K [1{g(η̂ηη−K) > q̂1−ε,−K} − ε])2}

be the estimator of the variance function

σ2
u(ε) = E{(ϕu(O;ηηη, q1−ε)− ψu(ε)− q1−ε[1{g(ηηη) > q1−ε} − ε])2}

If assumptions 1, 2 and 3 hold, and the following conditions also hold:

1. P {t ≤ π̂(a | X) ≤ 1− t} = 1 for a = 0, 1 and some t > 0.

2. supε∈E

∣∣∣ σ̂u(ε)
σu(ε) − 1

∣∣∣ = oP(1).

3. ‖ supε∈E |ϕu(o; η̂ηη, q̂1−ε)−ϕu(o;ηηη, q1−ε)−q1−ε[1{g(η̂ηη) > q̂1−ε}−1{g(ηηη) > q1−ε}]|‖ =
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oP(1).

4. (‖g(η̂ηη)− g (ηηη)‖∞ + supε∈E |q̂1−ε − q1−ε|)1+α = oP(n−1/2), for α satisfying assumption
3.

5. ‖π̂(1 | X)− π(1 | X)‖maxa‖µ̂a(X)− µa(X)‖ = oP(n−1/2).

�en
√
n{ψ̂u(ε)− ψu(ε)}/σ̂u(ε) G(ε) in `∞(E), with E ⊆ [0, 1], where G(·) is a mean-zero

Gaussian process with covariance E {G(ε1)G(ε2)} = E {φu(O;ηηη, q1−ε1)φu(O;ηηη, q1−ε2)} and

φu(O;ηηη, q1−ε) =
ϕu(O;ηηη, q1−ε)− ψu(ε)− q1−ε[1{g(ηηη) > q1−ε} − ε]

σu(ε)
.

�eorem 2 gives su�cient conditions so that the estimated curves tracing the lower and
upper bounds as a function of ε converge to a Gaussian process. In turn, this enables the
computation of con�dence bands trapping the average treatment e�ect with any desired
con�dence level uniformly over ε. �e �rst three conditions of the theorem are quite mild.
Condition 1 is a positivity condition requiring that the estimator of the propensity score is
bounded away from 0 and 1. Condition 2 requires uniform consistency of the variance estimator
at any rate. Condition 3 holds if, in addition to satisfying the margin assumption 3, g(η̂ηη) and
q̂τ converge uniformly, in x and ε respectively, to the truth at any rate.

�e key assumptions are conditions 4 and 5. While more restrictive than the �rst three,
these conditions can be satis�ed even if �exible machine learning tools are used. In fact,
condition 5 only requires that the product of the L2 errors in estimating π(a | X) and µa(X) is
of order n−1/2, which means that, for example, each regression function can be estimated at the
slower rate n−1/4. A rate of convergence in L∞ norm of order n−1/4 is also su�cient to satisfy
condition 4 if the density of g(ηηη) is bounded because the margin assumption 3 would hold
for α = 1. A convergence rate of order n−1/4 can be achieved if nonparametric smoothness,
sparsity or other structural assumptions are imposed on the true regression functions. For
instance, if a minimax optimal estimator is used, in order to satisfy condition 5, it is su�cient
that the underlying regression functions belong to a β-Hölder class with smoothness parameter
β > p/2, where p is the number of covariates. In addition, even in regimes of very large p,
convergence at n−1/4 rate can be achieved under structural assumptions such as additivity or
sparsity [Farrell, 2015, Horowitz, 2009, Kandasamy and Yu, 2016, Rasku�i et al., 2012, Yang
and Tokdar, 2015]. Furthermore, such convergence rate can also be achieved if the regression
functions belong to the class of cadlag functions with bounded variation norm [Benkeser and
Van Der Laan, 2016, van der Laan, 2017]. We refer to Györ� et al. [2006] among others for
additional convergence results.

Similarly to Kennedy [2018], we can use �eorem 2 and the multiplier bootstrap to construct
uniform con�dence bands covering the identi�cation region [ψl(ε), ψu(ε)]. Placing (1− α/2)
uniform con�dence bands on each curve also yields a (conservative) (1−α) uniform con�dence
band for ψ. We also deploy the procedure of Imbens and Manski [2004] to construct bands
covering just ψ that are valid pointwise. Details are provided in Appendix A.5.2. Constructing
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uniformly valid bands covering ψ, as opposed to the whole identi�cation region, is le� for
future research.

2.3.3 Estimation of the One-Number Summary ε0

In our se�ings, a natural way to de�ne ε0 is via the moment condition ψl(ε0)ψu(ε0) = 0 and
construct an estimator ε̂0 de�ned implicitly as the solution to the empirical moment condition

Pn{ϕl(O; η̂ηη−K , q̂ε̂0,−K)}Pn{ϕu(O; η̂ηη−K , q̂1−ε̂0,−K)} = oP(n−1/2).

Standard results in Z-estimation theory (�eorem 3.3.1 in van der Vaart and Wellner [1996])
yield the following theorem.

�eorem 3. Suppose that the CDF G of g(ηηη) is strictly increasing in neighborhoods of qε0 and
q1−ε0 . Suppose assumptions 1, 2, 3 and conditions 1, 3, 4, 5 (and 3’s and 4’s counterpart for the
lower bound) from �eorem 2 are satis�ed with E = [0, 1]. �en

√
n (ε̂0 − ε0) N

(
0, [ψu(ε0)(qε0 − 1) + ψl(ε0)q1−ε0 ]−2 var {ϕ̃(ε0)}

)
provided that the denominator ψu(ε0)(qε0 − 1) + ψl(ε0)q1−ε0 6= 0, and where the unscaled
in�uence function is

ϕ̃(ε0) = ψu(ε0)[ϕl(O;ηηη, qε0)− qε01{g(ηηη) ≤ qε0}] + ψl(ε0)[ϕu(O;ηηη, q1−ε0)− q1−ε01{g(ηηη) > q1−ε0}].

�eorem 3 describes su�cient conditions so that ε̂0 is
√
n-consistent and asymptotically

normally distributed. We require the same conditions as the ones required for �eorem 2, plus
that the CDF of g(ηηη) is strictly increasing in neighborhoods of qε0 and q1−ε0 . �e asymptotic
normality of ε̂0 relies on the existence (and non-singularity) of the derivative of the map
ε 7→ ψl(ε)ψu(ε) at ε = ε0. Calculating such derivative requires computing the derivative of
the quantile function, which is why we require the CDF of g(ηηη) to be strictly increasing in the
relevant neighborhoods. We expect all these conditions to be satis�ed in practice in the presence
of continuous covariates and enough smoothness or sparsity for the regression functions.3
Asymptotic normality allows the straightforward calculation of a Wald-type con�dence interval
for ε0 using a consistent estimate for the variance. We thus propose reporting both a point-
estimate for ε0 and 1 − α con�dence interval as a summary of the study’s robustness to
unmeasured confounding.4

3In principle, one could construct the empirical moment condition a�er performing the rearrangement procedure
of Chernozhukov et al. [2009]. Whether or not the rearrangement is done, we expect the inference about ε0 to be
equivalent asymptotically and vary minimally in �nite samples.

4In order to incorporate �nite sampling uncertainty in sensitivity analyses, one-number summaries of a study’s
robustness are generally computed as the values of the sensitivity parameter(s) such that a α-level con�dence
interval for the ATE under no unmeasured confounding includes the null value. Choosing di�erent αs to estimate
the ATE with no residual confounding may then yield di�erent conclusions regarding the study’s robustness to
unmeasured confounding, despite the la�er being a separate inferential task. Constructing a con�dence interval for
ε0 directly bypasses this issue.
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2.4 Illustrations

2.4.1 Simulation Study

In this section, we report the results of the simulations we performed to investigate the �nite-
sample performance of our proposed estimators. We consider the following data generating
mechanism:

Xi ∼ TruncNorm(µ = 0, σ = 1, lb = −2, ub = 2) for i ∈ {1, 2}, U ∼ Bern(0.5),

S | X1, X2 ∼ Bern{Φ(X1)},
A | X1, X2, U, S ∼ Bern[0.5{Φ(X1) + 0.5S + (1− S)U}],
Y a | X1, X2, U, S,A ∼ Bern{0.25 + 0.5Φ(X1 +X2) + (a− 0.5)r − 0.1U},
Y = AY 1 + (1−A)Y 0,

where Φ(·) denotes the CDF of a standard normal random variable. Notice that

P(A = 1 | X1, X2, S = 0) = P(A = 1 | X1, X2, S = 1) = 0.5Φ(X1) + 0.25,

thus this model satis�es the assumptions of �eorem 2 and it implies that E(Y 1 − Y 0) = r.
�e random variable U acts as a binary unmeasured confounder; given the observed covariates
X, units with S = 0 and U = 1 are more likely to be treated and exhibit Y = 0 than those
with S = 0 and U = 0. �erefore, under this setup, one would expect the treatment e�ect to
be underestimated if the no-unmeasured-confounding assumption is (incorrectly) assumed to
be true.5

We estimate the lower bound ψl(ε), the upper bound ψu(ε) and ε0 using the methods
outlined in Section 2.3.1. In particular, we use 5-fold cross-��ing to estimate the nuisance
functions, ��ing both generalized linear and additive models via the SuperLearner method
[Van der Laan et al., 2007]. �e performance of the proposed estimators is evaluated via
integrated bias, root-mean-squared-error (RMSE), and coverage. �ese evaluation metrics
o�er insight into what sample size is required to achieve a good performance of the multiplier
bootstrap, which relies on the convergence of the bounds’ estimators to a Gaussian process.

b̂ias =
1

I

I∑
i=1

∣∣∣∣∣∣ 1J
J∑
j=1

{ψ̂l,j(εi)− ψl,j(εi)}

∣∣∣∣∣∣ , R̂MSE =
1

I

I∑
i=1

 1

J

J∑
j=1

{ψ̂l,j(εi)− Tj(εi)}2
1/2

and suitably modi�ed formulas for ψu(ε) and ε0. We run J = 500 simulations across I = 21
values of ε equally spaced in E = [0, 0.2]. To be�er estimate ε0 we make the grid �ner and
consider 201 values of ε equally spaced in E . To evaluate 95% uniform coverage, we say that
the uniform band covers if it contains the true region [ψl(ε), ψu(ε)] for all ε ∈ E . Finally, we
assess bias and 95% coverage for ε0.

5In the context of the toy example of Section 2.1.1, U and S indicate whether the parents are smokers and
whether they would smoke at home respectively, X1 and X2 may be measures of the parents’ education level and
income respectively, A indicates adolescent alcohol consumption and Y indicates the occurrence of liver disease.
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n Bias (×100)
√
n×RMSE Coverage (×100)

ψl(ε) ψu(ε) ε0 ψl(ε) ψu(ε) ε0 [ψl(ε), ψu(ε)] ε0
500 0.38 0.12 2.47 0.95 0.96 1.32 95.4 97.0
1000 0.51 0.14 1.59 0.95 0.95 1.45 93.2 95.6
5000 0.04 0.10 0.16 0.99 0.98 1.72 92.4 95.4
10000 0.05 0.09 0.07 0.95 0.96 1.75 93.6 94.8

Table 2.1: Simulation results across 500 simulations.

Table 2.1 shows the results of our simulation for r = 0.05. �is set up is such that ε0 = 0.041.
In addition, if no-unmeasured-confounding is erroneously thought to hold (ε = 0), ψ is, on
average, underestimated since E {µ1(X)− µ0(X)} ≈ 0.023 < r. �is simple simulation setup
exempli�es what our theory predicts. Even for moderate sample sizes, we achieve approximately
correct nominal uniform coverage for the identi�cation region and ε0. Furthermore, the√
n×RMSE remains roughly constant as the sample size increases. Finally, in Section A.7 of

the Appendix, we extend this simulation study to investigate how conservative our model
would be if the true ε0 is actually zero, i.e. there is no unmeasured confounding.

2.4.2 Application

In this section, we illustrate the proposed sensitivity analysis by reanalyzing the data from
the study on Right Heart Catheterization (RHC) conducted by Connors et al. [1996].6 �e
data consist of 5735 records from critically ill adult patients receiving care in an ICU for
certain disease categories in one out of �ve US teaching hospitals between 1989 and 1994.
For each patient, demographic variables, comorbitidies and diagnosis variables as well as
several laboratory values were recorded. A total of 2184 patients underwent RHC within
the �rst 24 hours in the ICU. Within 30 days of admission, 1918 patients died, approximately
38.00% and 30.64% of the treated and control groups respectively. A�er conditioning on the
measured confounders, the authors concluded that patients treated with RHC had, on average,
lower probability of surviving (30-day mortality: OR = 1.24, 95% CI = [1.03, 1.49]). Notably,
sensitivity analyses targeting potential violations of the propensity score model suggested
robustness of the study’s conclusions to unmeasured confounding.

We investigate the e�ects of varying the proportion of confounded units while avoiding
any parametric assumptions on the nuisance regression functions. One reason to believe that a
fraction of the sample might be e�ectively unconfounded is the following. Suppose there are
two types of surgeons: those who prefer performing RHC (R-surgeon) and those who don’t
(NR-surgeon). One might believe that the surgeon’s preference for RHC is a valid instrument.
Roughly, an instrument is a variable that is unconfounded, associated with the treatment
receipt, and that a�ects the outcome only through the treatment. It appears plausible that a
surgeon’s preference for RHC would satisfy these conditions if, for instance, the e�cacy of RHC
was not well understood at the time the study was conducted. In fact, physicians’ preferences

6Available at http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets.

http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
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for a treatment have been used as IVs before, see for example Hernán and Robins [2006] and
Baiocchi et al. [2014] for reviews and discussions. �en, the patients who would undergo RHC
if assigned to an R-surgeon but would not undergo RHC if assigned to a NR-surgeon represent
the unconfounded unknown fraction of the sample.

Consider the group of patients who underwent RHC. A unit in this group can be either
a “complier” or a “non-complier”. She’s a complier if she would not have undergone RHC if
assigned to an NR-surgeon, whereas she’s a non-complier if she would have undergone RHC
regardless of the type of surgeon or only if assigned to a NR-surgeon. In many instances, these
two types will di�er in terms of observed covariates X. However, for certain values x of X, a
unit might be either a complier or a non-complier with non-zero probability. In this scenario,
our relaxed XA-model posits that the probability of survival conditional on receiving RHC
is the same for a complier and a non-complier sharing the same X = x. Notice that this is
not imposing any assumption on what would have happened to the non-complier had she
not been treated. In fact, we derived the lower (upper) bound on the average e�ect of RHC
by assuming that she would have certainly survived (died) had she not undergone RHC. �is
maximal conservativeness in deriving the bounds likely protects our conclusions from mild
violations of our X- and XA-models.

To construct the curves tracing the bounds using the data, we estimate the nuisance
regression functions via the cross-validation-based SuperLearner ensemble [Van der Laan
et al., 2007], combining generalized additive models, random forests, splines, support vector
machines as well as generalized linear models. We perform 5-fold cross-��ing. We also
construct pointwise and uniform con�dence bands. Results are reported in Figure 2.2.

In line with the results in Connors et al. [1996], if no-unmeasured-confounding holds,
patients treated with RHC show a statistically signi�cant decrease in 30-day survival rates.
�e risk di�erence equals −3.74% (95% CI = [−6.00%,−1.49%]). Under the X-mixture
model, the bounds on the di�erence in survival rate would include zero if more than 4.89%
(95% CI = [1.50%, 8.28%]) of the patients were confounded. �e value reduces to 4.02%
(95% CI = [1.59%, 6.45%]) under the relaxed XA-mixture model. Whether robustness to 5%
of potentially confounded units is enough to a�ach a causal interpretation to the study’s result
largely depends on subject-ma�er knowledge. Earlier we have described ε0 as the proportion of
“non-compliers,” but other interpretations are also possible. For instance, suppose it is known
that, before deciding whether a patient undergoes RHC, most surgeons look at lab value v1,
but some may check lab value v2 as well. Both values are correlated with survival, but only v1

is measured. If reviewers of the study have an idea of how common it is for surgeons to check
v2 in addition to v1, then they would be able to decide whether ε̂ = 5% is large or small. In
the supplementary material, we consider varying δ, the parameter governing the severity of
the unmeasured confounding. For instance, if δ = 0.5 is thought to be reasonable, robustness
would increase to 11.00% (95% CI = [3.84%, 18.16%]) under the X-mixture model.

Finally, we refer the readers to Lin et al. [1998] and Altonji et al. [2008], among others,
for additional sensitivity analyses applied to this dataset. In particular, in the context of Cox
proportional hazard regression, and under certain simplifying assumptions, Lin et al. [1998]
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derive that a con�dence interval for the relative hazard of death would include 1 as long
as the prevalence of a binary unmeasured confounder is at least 10% greater in the group
that underwent RHC than in the control group. Using a probit model of mortality at day
90, Altonji et al. [2008] show that the observed positive association between mortality and
RHC usage could be “explained away” if the correlation between the unmeasured factors
determining RHC usage and mortality is approximately 0.15. In addition, in Section A.6.1 of the
supplementary material, we apply the sensitivity analysis designed for linear models proposed
in Cinelli and Hazle� [2020]. We �nd that an unmeasured confounder that explains 4.2+% of
the variance in mortality not captured by RHC usage and the measured covariates and 4.2+% of
the variance in RHC usage not captured by the measured covariates would be su�cient to drive
the observed e�ect (≈ −0.04) to zero. Notice that these approaches are designed for speci�c
models used in the primary analysis, whereas our framework is agnostic regarding modeling
choices. Further, they assume that the treatment-outcome association may be confounded
for every unit, while our sensitivity model captures departures from such homogeneity by
allowing the treatment-outcome association to be unconfounded for an unknown subgroup of
units.

2.5 Discussion

In this paper, we propose a novel approach to sensitivity analysis in observational studies
where the sensitivity parameter is the proportion of unmeasured confounding. A strength of
our model is that it captures a rich form of unmeasured confounding heterogeneity. While even
richer models may allow for a more �exible characterization of confounding heterogeneity, we
believe our approach strikes a nice balance between complexity and transparency. In fact, it
captures heterogeneity with just one, intuitive sensitivity parameter: an unknown fraction ε of
the units can be arbitrarily confounded while the rest are not. �e model is general enough to
cover some relaxations to the no-unmeasured-confounding assumption already proposed in
the literature. As ε is varied, lower and upper bounds on the ATE are derived under certain
assumptions on the distribution of the confounded units. �e parameter ε is interpretable and
yields a natural one-number summary of a study’s robustness to unmeasured confounding,
namely the minimal proportion of confounding such that the bounds on the ATE contain
zero. We provide su�cient conditions to construct both pointwise and uniform con�dence
bands around the curves tracing the lower and upper bounds on the ATE as a function of ε.
We also describe the asymptotic normality of a Z-estimator of ε0; we propose reporting an
estimate of ε0 together with a Wald-type con�dence interval when discussing results from an
observational study.

Several questions remain unanswered and could be the subject of future research. First,
bounding the ATE under no restrictions on the distribution of the confounded units is currently
computationally intractable. �erefore, the discovery of a clever way to compute the bounds
in this se�ing would generalize the current version of our model. Second, generalizing the
approach of Imbens and Manski [2004] to construct uniform con�dence bands trapping the
true ATE ψ, rather than the identi�cation region [ψl(ε), ψu(ε)], would allow far more precise
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Figure 2.2: Estimated bounds on the Average Treatment E�ect as a function of the proportion
of confounded units ε assuming “worst-case” δ = 1, with pointwise [Imbens and Manski,
2004] and uniform 95% con�dence bands. Curves under the X-mixture model and under the
XA-mixture model are shown along with estimates of ε0 on the abscissa.

inference. Lastly, extensions to our model other than the one considered in Appendix A.4
would likely lead to a richer set of sensitivity models, ultimately allowing the user to gauge
the e�ects of departures from the no-unmeasured-confounding assumption in more nuanced
ways. For example, it would be interesting to extend our sensitivity model to accommodate
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time-varying or continuous exposures, as well as to explore the possibility of tighter bounds
by employing speci�c sensitivity analysis models to the confounded fraction of the sample.
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Chapter 3

Sensitivity analysis for marginal
structural models

�is chapter is taken from my work supervised by Larry Wasserman, Valérie Ventura and
Edward H. Kennedy, which can be found on arXiv [Bonvini et al., 2022a].

3.1 Introduction

Marginal structural models (MSMs) [Robins, 1998, 2000, Robins et al., 2000] are a class of
semiparametric model commonly used for causal inference. As is typical in causal inference, the
parameters of the model are only identi�ed under an assumption of no unmeasured confounding.
�us, it is important to quantify how sensitive the inferences are to this assumption. Most
existing sensitivity analysis methods deal with binary point treatments. In contrast, in this
paper we develop tools for assessing sensitivity for MSMs with both continuous (non-binary)
and time-varying treatments.

For simplicity, consider the static treatment se�ing �rst. Extensions to time-varying
treatments are described in Section 3.6. Suppose we have n iid observations (Z1, . . . , Zn), with
Zi = (Xi, Ai, Yi) from a distribution P, where Y ∈ R is the outcome of interest, A ∈ R is a
treatment (or exposure) and X ∈ Rd is a vector of confounding variables. De�ne the collection
of counterfactual random variables (also called potential outcomes) {Y (a) : a ∈ R}, where
Y (a) denotes the value that Y would have if A were set to a. �e usual assumptions in causal
inference are:

(A1) No interference: if A = a then Y = Y (a), meaning that a subject’s potential outcomes
only depend on their own treatment.

(A2) Overlap: π(a|x) > 0 for all x and a, where π(a|x) is the density of A given X = x (the
propensity score). Overlap guarantees that all subjects have some chance of receiving
each treatment level.

30
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(A3) No unmeasured confounding: the counterfactuals {Y (a) : a ∈ R} are independent of A
given the observed covariates X . �is assumption means that the treatment is as good
as randomized within levels of the measured covariates; in other words, there are no
unmeasured variables U that a�ect both A and Y .

Under these assumptions, the causal mean E{Y (a)} is identi�ed and equal to

ψ(a) ≡
∫
µ(x, a)dP(x), (3.1)

where µ(x, a) = E[Y |X = x,A = a] is the outcome regression (causal parameters other than
E{Y (a)}, e.g., cumulative distribution functions, are identi�ed similarly). Equation (3.1) is a
special case of the g-formula [Robins, 1986].

A marginal structural model (MSM) is a semiparametric model assuming ψ(a) = g(a;β)
[Robins, 1998, 2000, Robins et al., 2000]. �e MSM provides an interpretable model for the
treatment e�ect and β can be estimated using simple estimating equations. �e model is
semiparametric in the sense that it leaves the data generating distribution unspeci�ed except
for the restriction that

∫
µ(x, a)dP(x) = g(a;β). If g is mis-speci�ed, one can regard g(a;β)

as an approximation to ψ(a), in which case one estimates the value β∗ that minimizes
∫

(ψ(a)−
g(a;β))2ω(a)da, where ω is a user provided weight function [Neugebauer and van der Laan,
2007].

In practice, there are o�en unmeasured confounders U so that assumption (A3) fails. �is
is especially true for observational studies where treatment is not under investigators’ control,
but it can also occur in experiments in the presence of non-compliance. In these cases, E{Y (a)}
is no longer identi�ed. We can still estimate the functional ψ(a) in (3.1) but we no longer
have E{Y (a)} = ψ(a). Sensitivity analysis methods aim to assess how much E{Y (a)} and
the MSM parameter β will change when such unmeasured confounders U exist. In this paper,
we will derive bounds for E{Y (a)} ≡ g(a;β), as well as for β, under varying amounts of
unmeasured confounding.

We consider several sensitivity models for unmeasured confounding: a propensity-based
model, an outcome-based model, and a subset confounding model, in which only a fraction of
the population is subject to unmeasured confounding.

3.1.1 Related Work

Sensitivity analysis for causal inference began with Corn�eld et al. [1959]. �eory and methods
for sensitivity analysis were greatly expanded by Rosenbaum [1995]. Recently, there has been
a �urry of interest in sensitivity analysis including Chernozhukov et al. [2021], Kallus et al.
[2019], Scharfstein et al. [2021], Yadlowsky et al. [2018], Zhao et al. [2019], among others. We
refer to Section 2 of Scharfstein et al. [2021] for a review. Most work deals with binary, static
treatments.

�e closest work to ours is Brumback et al. [2004], who study sensitivity for MSMs with
binary treatments using parametric models for the sensitivity analysis. We instead consider
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nonparametric sensitivity models, for continuous rather than binary treatments. While com-
pleting this paper, Dorn and Guo [2021] appeared on arXiv, who independently derived bounds
on treatment e�ects for nonparametric causal models that are similar to our bounds in Sec-
tion 3.4.1, Lemma 2. Here we treat MSMs rather than nonparametric causal models, with
Lemma 2 being an intermediate step to our results.

3.1.2 Outline

We �rst treat the static treatment se�ing. In Section 3.2 we review MSMs. In Section 6.6.2 we
introduce our three sensitivity analysis models. We �nd bounds for the MSM g(a;β) and for its
parameter β under propensity sensitivity in Section 3.4, under outcome sensitivity in Section 3.5
and under subset sensitivity in Appendix B.0.2. �en in Section 3.6, we extend our methods to
the time series se�ing. We illustrate our methods on simulated data in Appendix B.0.1 and on
observational data in Section 3.7. Section 6.7 contains concluding remarks. All proofs can be
found in the Appendix.

3.1.3 Notation

We use the notation P[f(Z)] =
∫
f(z)dP(z) and U[f(Z1, Z2)] =

∫
f(z1, z2)dP(z1, z2) to

denote expectations of a �xed function, andPn[f(Z)] = n−1
∑n

i=1 f(Zi) andUn[f(Z1, Z2)] =
{n(n− 1)}−1

∑n
1≤i 6=j≤n f(Zi, Zj) to denote their sample counterparts, where Un is the usual

U -statistic measure. We also let ‖f‖2 =
∫
f2(z)dP(z) denote the L2(P) norm of f and

‖f‖∞ = supz |f(z)| denote the L∞ or sup-norm of f . For β ∈ Rk we let ‖β‖ denote the
Euclidean norm. For f(z1, z2) we let S2[f ] = {f(z1, z2) + f(z2, z1)}/2 be the symmetrizing
function. �en Un[f(Z1, Z2)] = Un[S2[f(Z1, Z2)]].

3.1.4 Some Inferential Issues

Here we brie�y discuss three issues that commonly arise in this paper when constructing
con�dence intervals.

�e �rst is that we o�en have to estimate quantities of the form

ν =

∫ ∫
f(x, a)π(a)dadP(x)

where π(a) is the marginal density of A. �is is not a usual expected value since the integral is
with respect to a product of marginals, π(a)dP(x), rather than the joint measure P(x, a). �en
ν can be wri�en as

U[f(Z1, Z2)] ≡
∫ ∫

1

2
[f(x1, a2) + f(x2, a1)] dP(x1, a1)dP(x2, a2)

=

∫ ∫
g(z1, z2)dP(z1)dP(z2)

where Z1 = (X1, A1, Y1) and Z2 = (X2, A2, Y2) are two independent draws and g(z1, z2) =
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S2[f ] ≡ (f(x1, a2) + f(x2, a1))/2. Under certain conditions, the limiting distribution of√
n{Un[f̂(Z1, Z2)]−U[f(Z1, Z2)]}, where f̂ is an estimate of f , is the same as that of

√
n(Un−

U)[f(Z1, Z2)]. More speci�cally, let α ∈ Rk, where k is the dimension of f . By �eorem 12.3
in Van der Vaart [2000],

√
n(Un − U)[αT f(Z1, Z2)]→ N(0, 4σ2),

where σ2 = 1
4α

TΣα and Σ = var
[∫
S2[f(Z1, z2)]dP(z2)

]
. �erefore, by the Cramer-Wold

device,
√
n(Un − U)[f(Z1, Z2)] N(0,Σ). �us,

√
n(Un − U)[S2[f(Z1, Z2)]] has variance

equal to the variance of the in�uence function of ν =
∫ ∫

f(x, a)π(a)dadP(x) and thus it is
e�cient.

�e second issue is that calculating the variances of these estimators can be cumbersome.
Instead, we construct con�dence intervals using the HulC [Kuchibhotla et al., 2021], which
avoids estimating variances. �e dataset is randomly split intoB = log(2/α)/ log 2 subsamples
(B = 6 when α = 5%) and the estimators are computed in each subsample. �en, the minimum
(maximum) of the six estimates is returned as the lower (upper) end of the con�dence interval.

�e third issue is that many of our estimators depend on nuisance functions such as the
outcome model µ(a, x) and the conditional density π(a|x). To avoid imposing restrictions on
the complexity of the nuisance function classes, we analyze estimators based on cross-��ing.
�at is, unless otherwise stated, the nuisance functions are assumed to be estimated from a
di�erent sample than the sample used to compute the estimator. Such construction can always
be achieved by spli�ing the sample into k folds; using all but one fold for training the nuisance
functions and the remaining fold to compute the estimator. �en, the roles of the folds can
be swapped, thus yielding k estimates that are averaged to obtain a single estimate of the
parameter. For simplicity, we will use k = 2, but our analysis can be easily extended to the
case where multiple splits are performed.

3.2 Marginal Structural Models

In this section we review basic terminology and notation for marginal structural models. We
focus for now on studies with one time point; we deal with time varying cases in Section 3.6.
More detailed reviews can be found in Robins and Hernán [2009] and Hernán and Robins
[2010]. Let

E{Y (a)} ≡ ψ(a) = g(a;β), β ∈ Rk, (3.2)

be a model for the expected outcome under treatment regime A = a. An example is the linear
model g(a;β) = bT (a)β for some speci�ed vector of basis functions b(a) = [b1(a), . . . , bk(a)].
It can be shown that β in (3.2) satis�es the k-dimensional system of equations

E [h(A)w(A,X){Y − g(A;β)}] = 0 (3.3)

for any vector of functions h(a) = [h1(a), . . . , hk(a)], where w(a, x) can be taken to be either
1/π(a|x) or π(a)/π(a|x), and π(a) is the marginal density of the treatment A. �e la�er
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weights are called stabilized weights and can lead to less variable estimators of β. We will use
them throughout. �e parameter β can be estimated by solving the empirical analog of (3.3),
leading to the estimating equations

Pn [h(A)ŵ(A,X){Y − g(A;β)}] = 0, (3.4)

where ŵ(a, x) = π̂(a)/π̂(a|x), and π̂(a|x) and π̂(a) are estimates of π(a|x) and π(a). Under
regularity conditions, including the correct speci�cation of π(a|x), con�dence intervals based
on
√
n(β̂ − β)  N(0, σ2), where σ2 = M−1var[h(A)w(A,X){Y − g(A;β)}]M−1 and

M = E{h(A)∇βg(A;β)T }, will be conservative.

Under model (3.2), every choice of h(a) leads to a
√
n-consistent, asymptotically Normal

estimator of β, though di�erent choices lead to di�erent standard errors. If the MSM is linear,
i.e. g(a;β) = b(a)Tβ, a common choice of h(a) is h(a) = b(a). In this case, the solution to the
estimating equation (3.4) can be obtained by weighted regression, β̂ = (BTWB)−1BTWY ,
where B is the n × k matrix with elements Bij = bj(Ai), W is diagonal with elements
Ŵi ≡ ŵ(Ai, Xi) and Y = (Y1, . . . , Yn).

3.3 Sensitivity Models

We now describe three models for representing unmeasured confounding when treatments are
continuous. Each model de�nes a class of distributions for (U,X,A, Y ) where U represents
unobserved confounders. Our goal is to �nd bounds on causal quantities, such as β or g(a;β),
as the distribution varies over these classes.

3.3.1 Propensity Sensitivity Model

In the case of binary treatments A ∈ {0, 1}, a commonly used sensitivity model [Rosenbaum,
1995] is the odds ratio model

(γ) =

{
π(a|x, u) :

1

γ
≤ π(1|x, u)

π(0|x, u)

π(0|x, ũ)

π(1|x, ũ)
≤ γ for all u, ũ, x

}

for γ ≥ 1. When A is continuous, it is arguably more natural to work with density ratios, and
so we de�ne

Π(γ) =

{
π(a|x, u) :

1

γ
≤ π(a|x, u)

π(a|x)
≤ γ,

∫
π(a|x, u)da = 1, for all a, x, u

}
. (3.5)

We can think of Π(γ) as de�ning a neighborhood around π(a|x). �is is related to the class in
Tan [2006] but we consider density ratios rather than odds ratios. �ere are other constraints
possible, such as

∫
π(a|x, u)dP(u|x) = π(a|x); we leave enforcing these additional constraints,

which can yield more precise bounds, for future work.
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3.3.2 Outcome Sensitivity Model

For an outcome-based sensitivity model, we de�ne a neighborhood around µ(x, a) given by

M(δ) =

{
µ(u, x, a) : |∆(a)| ≤ δ, ∆(a) =

∫
[µ(u, x, a)− µ(x, a)]dP(x, u)

}
,

which is the set of unobserved outcome regressions (on measured covariates, treatment, and
unmeasured confounders) such that di�erences between unobserved and observed regressions
di�er by at most δ a�er averaging over measured and unmeasured covariates. We immediately
have the simple nonparametric bound E{µ(a,X)} − δ ≤ E{Y (a)} ≤ E{µ(a,X)}+ δ. For
a given ∆(a), is a known function, nonparametric bounds can be computed by regressing
an estimate of ∆(A) + w(A,X){Y − µ(A,X)} +

∫
µ(A, x)dP(x) on A (see, e.g. Kennedy

et al. [2017], Semenova and Chernozhukov [2021], Foster and Syrgkanis [2019], Bonvini and
Kennedy [2022]). However, our main goal is not to bound E{Y (a)}, but bound the parameters
β of the MSM or the MSM itself. Finding these bounds under outcome sensitivity will require
specifying an outcome model. For the propensity sensitivity model, we will also need an
outcome model if we want doubly robust estimators of β.

3.3.3 Subset Confounding

Bonvini and Kennedy [2020] consider a model where only an unknown fraction ε of the
population is subject to unobserved confounding. Speci�cally, suppose there exists a latent
binary variable S such that P (S = 0) = ε as well as Y (a) ⊥⊥ A|X,S = 1 and Y (a) ⊥
⊥ A|X,U, S = 0. It follows that P = (1 − ε)P1 + εP0 where Pj is the distribution of
(U,X,A, Y ) given S = j. For the S = 0 group of units, we will control the extent of
unmeasured confounding using either the outcome model or the propensity sensitivity model.
�is can be regarded as a type of contamination model.

Results under the propensity and outcome sensitivity confounding models are in the next
two sections. Due to space restrictions, the results on subset confounding are in the appendix.

3.4 Bounds under the Propensity Sensitivity Model

3.4.1 Preliminaries

In this section, we develop preliminary results needed to derive bounds under the propensity sen-
sitivity model. A preliminary step in deriving bounds for the MSM is to �rst bound E{Y (a)|X}
and it may be veri�ed that E{Y (a)|X} = m(a,X) where m(A,X) = E{Y v(Z)|A,X} and

v(Z) ≡ E

{
π(A|X)

π(A|X,U)

∣∣∣∣∣ A,X, Y
}
∈
[
γ−1, γ

]
.
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It is easy to see that E{v(Z)|A,X} = 1. So bounding E{Y (a)|X} is equivalent to bounding
m(a,X) = E{Y v(Z)|A,X} as v varies over the set

V(γ) =

{
v(·) : γ−1 ≤ v(z) ≤ γ, E{v(Z)|X = x,A = a} = 1 for all x, a

}
. (3.6)

Proposition 1. �e following moment condition holds for the MSM:

E
{
h(A)

[∫
m(A, x)dP(x)− g(A;β)

]}
= U [h(A1){m(A1, X2)− g(A1;β)}] = 0, (3.7)

where (X1, A1) and (X2, A2) are two independent draws (see Section 3.1.4).

Notice that if U = ∅, then v(Z) = 1 and m(a, x) = µ(a, x) = E{Y |A = a,X = x}.
However, when there is residual unmeasured confounding, m(a, x) does not equal E(Y |A =
a,X = x) and in general cannot be identi�ed. However, it can still be bounded under the
propensity sensitivity model, as in the following lemma.

Lemma 2. For j ∈ {`, u} (corresponding to lower and upper bound) let qj(Y |A,X) denote the
τj-quantile of Y given (A,X), where τ` = 1/(1 + γ) and τu = γ/(1 + γ). De�ne

v`(Z) = γsgn{q`(Y |A,X)−Y } and vu(Z) = γsgn{Y−qu(Y |A,X)}.

�en m`(a, x) ≤ m(a, x) ≤ mu(a, x), where mj(a, x) = E {Y vj(Z)|A = a,X = x}, j ∈
{u, `}.

Now that we have bounds on m(a, x), we turn to �nding bounds on the MSM g(a;β)
and on its parameter β. We will use the notation c` = γ−1, cu = γ, Sj ≡ s(Z; qj) =

qj(Y |A,X) + {Y − qj(Y |A,X)}csgn{Y−qj(Y |A,X)}
j , κj ≡ κ(A,X; qj) = E{Sj |A,X} and

ϕj(Z1, Z2) ≡ ϕj(Z1, Z2;w, qj , κj) = w(A1, X1){s(Z1; qj)−κ(A1, X1; qj)}+κ(A1, X2; qj).
(3.8)

Notice that
U{κ(A1, X2; qj)} =

∫ ∫
mj(a, x)dP(a)dP(x), (3.9)

since E
[
c

sgn{Y−qj(Y |A,X)}
j |A,X

]
= 1.

3.4.2 Bounds on g(a; β)

Under the MSM E{Y (a)} = g(a;β), given the discussion in Section 3.4.1, we have that
E{Y (a)} = E{m(a,X)} if Y (a) ⊥⊥ A|(X,U). �is implies that E{m`(a,X)} ≤ g(a;β) ≤
E{mu(a,X)}, where m` and mu are de�ned in Lemma 2. �us, a straightforward way to
bound g(a;β) is to assume that the bounds follow a model similar to the model we assume
under no unmeasured confounding, when E{Y (a)} = g(a;β) is identi�ed. �at is, we let
E{mj(a,X)} = g(a;βj), j ∈ {u, `}, and estimate βj by solving the empirical analog of the
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moment condition:

E
{
h(A)

[∫
mj(A, x)dP(x)− g(A;βj)

]}
= 0, j ∈ {u, `}. (3.10)

Using (3.9) and the fact that the �rst term in (3.8) has conditional mean 0, we also have that
U [h(A1) {ϕj(Z1, Z2)− g(A1;βj)}] = 0.Given an estimate of the functionϕj(Z1, Z2) in (3.8),
estimated from an independent sample, we estimate βj by solving

Un
[
h(A1)

{
ϕ̂j(Z1, Z2)− g(A1; β̂j)

}]
= 0. (3.11)

�e following proposition provides the asymptotic distributions of g(a; β̂j), j ∈ {u, `}.

Proposition 2. Suppose the following conditions hold:

1. �e function class Gl = {a 7→ hl(a)g(a;β)} is Donsker for every l = {1, . . . , k} with
integrable envelop and g(a;β) is a continuous function of β.

2. For j ∈ {`, u}, the map β 7→ U{h(A)[ϕj(Z1, Z2) − g(A1;β)] is di�erentiable at all β
with continuously invertible matrices Ψ̇β0 and Ψ̇

β̂
, where Ψ̇β = −E{h(A)∇T g(a;β)};

3.
∥∥∫ S2 {ϕ̂j(Z1, z2)− ϕj(Z1, z2)} dP(z2)

∥∥ = oP(1);

4. ‖w − ŵ‖‖κj − κ̂j‖ + ‖qj − q̂j‖2 = oP(n−1/2), where ϕj , κj and qj are de�ned in
Section 3.4.1.

�en
√
n(β̂j − βj) N

(
0, 4var{Ψ̇−1

βj
φj(T ;βj)}

)
,

where φj(Z1;βj) =
∫
S2h(A1) {ϕj(Z1, z2)− g(A1;βj)} dP(z2), and it follows that

√
n{g(a; β̂j)−g(a;βj)} N

(
0, 4∇g(a;βj)

T var{Ψ̇−1
βj
φj(Z;βj)}∇g(a;βj)

)
, j ∈ {u, `}.

�e main requirement, in condition (d), to achieve asymptotic normality is that certain
products of errors for estimating the nuisance functions are oP(n−1/2). �is can be achieved
even if these functions are estimated at nonparametric rates, e.g. n−1/4, under structural
constraints such as smoothness or sparsity. We note that, strictly speaking, our estimator is
not doubly robust since one needs to consistently estimate qj for consistency. However, the
dependence on the estimation error in q̂j is still second-order, in that it depends on the squared
error.

3.4.3 Bounds on g(a; β) when g(a; β) is linear

When the MSM is linear, it is straightforward to bound g(a;β) = b(a)Tβ directly, without
assuming that the bounds themselves follow parametric models g(a;βj). Let h(A) = b(A) and
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Q = E{b(A)b(A)T }. �en we can re-write g(a;β) = b(a)TQ−1U {b(A1)m(A1, X2)} . Let
λ−(a,A) = 1{b(a)TQ−1b(A) ≤ 0} and λ+(a,A) = 1{b(a)TQ−1b(A) ≥ 0}. Further de�ne

gsj (a) = U{b(A1)λs(a,A1)κ(A1, X2; qj)}

for s = {−,+} and j = {`, u}. Bounds on g(a;β) = b(a)Tβ are g`(a) ≤ g(a;β) ≤ gu(a)
where g`(a) = b(a)TQ−1{g+

` (a) + g−u (a)} and gu(a) = b(a)TQ−1{g−` (a) + g+
u (a)}. �at is,

depending on the sign of b(a)TQ−1b(A), we setm(A, x) = m`(A, x) orm(A, x) = mu(A, x).
Let

fsj (Z1, Z2) = λs(A1)ϕj(Z1, Z2).

We analyze the performance of estimators that construct f̂sj (Z1, Z2) from a separate, indepen-
dent sample and output ĝj(a0) = b(a0)T β̂j , where

β̂` = argmin
β∈Rk

Un
{
f̂−u (Z1, Z2) + f̂+

` (Z1, Z2)− b(A1)Tβ
}2

β̂u = argmin
β∈Rk

Un
{
f̂−` (Z1, Z2) + f̂+

u (Z1, Z2)− b(A1)Tβ
}2
.

�e following proposition gives the limiting distribution of the estimated upper and lower
bounds ĝj(a) for g(a;β), j ∈ {u, `}.

Proposition 3. Suppose the following conditions hold:

1.
∥∥∥∫ S2{f̂sj (Z1, z2)− fsj (Z1, z2)}dP(z2)

∥∥∥ = oP(1);

2. ‖q̂j − qj‖2 + ‖ŵ − w‖‖κ̂j − κj‖ = oP(n−1/2);

3. �e density of b(a)TQ−1b(A) is bounded.

�en
√
n{ĝj(a)− gj(a)}

 N

(
0, 4b(a)T var

[
Q−1

∫
S2b(A1){fsj (Z1, z2)− bT (A1)βj}dP(z2)

]
b(a)

)
.

Another approach for ge�ing bounds on g(a;β) is to note that

δg(a;β)/δv =
∑
j

bj(a)δβj/δv,

where δ is the functional derivative, and then apply the homotopy algorithm from Section 3.4.4.
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3.4.4 Bounds on β

We now turn to �nding approximate bounds on components of β rather than on g(a;β).
Suppose, to be concrete, that we want to upper bound β1. (Lower bounds can be found
similarly.) At this point, we re-name V(γ) in (3.6) as Vsmall(γ) and we de�ne

Vlarge(γ) =

{
v(·) : γ−1 ≤ v(z) ≤ γ, E[v(Z)] = 1

}
.

Bounds over Vlarge(γ) are conservative but, as we shall see, are easier to compute. Next we
de�ne two functionals. Let F1(v) be the value of b that solves∫

yh(a)w(a, x)v(z)P(z) =

∫
h(a)w(a, x)g(a; b)v(z)P(z)

and F2(v) be the value of b that solves∫
yh(a)w(a, x)v(z)P(z) =

∫
h(a)w(a, x)g(a; b)P(z).

At the true value v∗ we have β1∗ = eTF1(v∗) = eTF2(v∗) where e = (1, 0, . . . , 0) and β1∗ is
the true value of β1. But F1(v) 6= F2(v) in general, and bounding F1(v) and F2(v) both lead
to valid bounds for β1. A quick summary of what will follow is this:

i. For Vsmall(γ), bounds based on F1 and F2 are equal, as stated in Lemma 3. �ese bounds
require quantile regression.

ii. For Vlarge(γ), bounds based on F1 and F2 are di�erent so we take their intersection.
�ese bounds do not require quantile regression. In our experience, bounds based on F1

are o�en tighter.

Lemma 3. We have

inf
v∈Vsmall(γ)

eTF1(v) = inf
v∈Vsmall(γ)

eTF2(v)

sup
v∈Vsmall(γ)

eTF1(v) = sup
v∈Vsmall(γ)

eTF2(v).

For Vlarge(γ), the bounds may di�er.

We want to �nd vγ such that eTFk(vγ) = supv∈V e
TFk(v), for k ∈ {1, 2} and V ∈

{Vsmall,Vlarge}.

Unless the MSM g(a;β) = bT (a)β is linear, determining the optimal vγ is intractable, so
we �nd an approximate bound. For example, to optimize over Vlarge(γ), we proceed as follows:

1. We will �nd a function vγ that is a local maximum of Fk(v).
2. We show that vγ is de�ned by a �xed point equation vγ = L(vγ).
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3. We construct an increasing grid {γ1, γ2, . . . , } where γ1 = 1 and γj = γj−1 + δ. �en
we take vγj ≈ L(vγj−1).

4. In the limit, as δ → 0, this de�nes a sequence of functions (vγ : γ ≥ 1) where each vγ
is a local optimizer in Vlarge(γ).

We refer to this as a homotopy algorithm. (An alternative approach based on gradient ascent
is described Appendix B.1.2.) To make this precise, we need the functional derivative of Fk(v)
with respect to v. First we recall the de�nition of a functional derivative: if G(v) ∈ R, we say
that δG(v)

δv is the functional derivative of G(v) with respect to v in L2(P) if∫
δG(v)

δv
(z)f(z)dP(z)dz =

[
d

dε
G[v + εf ]

]
ε=0

for every function f . When G(v) = (G1(v), . . . , Gk(v)) is vector valued, we de�ne δG/δv =
(δG1(v)/δv, . . . , δGk(v)/δv).

Lemma 4 (Functional derivatives). We have

δF1(v)

δv
(z) =

{
E
[
v(Z)h(A)w(A,X)∇βg(A;β)T

]}−1

h(a)(y − g(a;β))w(a, x), (3.12)

δF2(v)

δv
(z) =

{
E
[
h(A)w(A,X)∇βg(A;β)T

]}−1

h(a)yw(a, x).

Notice that, unless g(a;β) is linear in β, δF2(v)
δv (z) depends on v(z) through ∇βg(A;β)

since β is implicitly a function of v(z). We can now �nd the expression for the local optimizer
vγ from Step (a) above.

Lemma 5. Suppose that for every v, (δFk(v)/δv)(Z) has a continuous distribution. �ere is a
set of functions (vγ : γ ≥ 1) such that:

1. vγ ∈ Vlarge(γ);

2. vγ satis�es the �xed point equation

vγ(z) = γ1
[
dγ(z) ≥ qu(dγ)

]
+ γ−1

1

[
dγ(z) < qu(dγ)

]
(3.13)

where

dγ = eT

δFk(v)

δv

∣∣∣∣∣
v=vγ


and qu(dγ) is the τu = γ/(1 + γ) quantile of dγ(Z). (�is is a �xed point equation since dγ on
the right hand side is a function of vγ .);

3. vγ is a local maximizer of eTFk(v), in the sense that, for all small ε > 0, eTFk(vγ) ≥
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eTFk(v) + O(ε2) for any v ∈ Vlarge(γ)
⋂
B(vγ , ε) where, for any v and any ε > 0 we de�ne

B(v, ε) = {f :
∫

(f − v)2dP(z) ≤ ε2}.

In practice, we compute vγ sequentially using an increasing sequence of values of γ.
Using (3.13) we approximate vγ by γ1{dγ−δ(z) ≥ qu(dγ−δ)}+ γ−1

1{dγ−δ(z) < qu(dγ−δ)}
where qu(dγ−δ) is the τu = γ/(1 + γ) quantile of dγ−δ(Z) and δ is a small positive number.
�e sample approximation to the functional derivative for observation i is

di =
∂F̂1(v)

∂Vi
=

 1

n

∑
j

h(Aj)VjŴj∇βg(Aj ; β̂)T


−1

h(Ai)Ŵi(Yi − g(Ai; β̂)) (3.14)

for F1 and

di =
∂F̂2(v)

∂Vi
=

 1

n

∑
j

h(Aj)Ŵj∇βg(Aj ; β̂)T


−1

h(Ai)ŴiYi (3.15)

for F2, where Vi = v(Xi, Ai, Yi). �e algorithm is described in Appendix B.1.1. �e lower
bound on β1 is obtained the same way, with (3.13) replaced by vγ(z) = γ−1

1{dγ(z) ≥
q`(dγ)}+ γ1{dγ(z) < q`(dγ)}, where τ` = 1/(1 + γ). Ge�ing con�dence intervals for these
bounds is challenging because we need to adjust the estimator with the in�uence function to
make the bias second order, but their in�uence functions are very complicated; the details are
in Appendix B.2.11.

For V = Vsmall, which imposes the stronger restriction E{v(Z)|A,X} = 1, we replace
qu(dγ) in (3.13) with qu(dγ |A,X), the conditional quantile of dγ(z) given (X,A). �en

dγ(Z) = E{h(A)∇βg(A;β)T }−1h(A)w(A,X)Y ≡ T (A,X)Y,

so that the τ th quantile of dγ(Z) given (A,X) can be expressed as

qτ (dγ |A,X) =

{
T (A,X)qτ (Y |A,X) if T (A,X) < 0,

T (A,X)q1−τ (Y |A,X) if T (A,X) > 0,

where qτ (Y |A,X) is the τ th quantile of Y given (A,X). �en, to obtain an upper bound on
β1, vγ(Z) has to satisfy the �xed-point equation:

vγ(z) = 1{eTT (a, x) ≥ 0}vu(z) + 1{eTT (a, x) < 0}v`(z),

where vu(Z) = γsgn{Y−qu(Y |A,X)} and v`(Z) = γsgn{q`(Y |A,X)−Y } are de�ned in Lemma 2,
and T (a, x) depends on vγ(z) through β. Similarly, a lower bound on β1 requires vγ(z) to
satisfy

vγ(z) = 1{eTT (a, x) ≤ 0}vu(z) + 1{eTT (a, x) > 0}v`(z).
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3.4.5 Bounds on β when g(a; β) is linear

If g(a;β) = b(a)Tβ, we can derive simpler bounds. In this case we have

F1(v) =

∫
yw(a, x)v(z)M−1(v)b(a)dP(z), F2(v) =

∫
yw(a, x)v(z)M−1b(a)dP(z)

where M(v) =
∫
w(a, x)v(z)b(a)b(a)TdP(z) and M =

∫
w(a, x)b(a)b(a)TdP(z).

Lemma 6. Let f(z) = yw(a, x)eTM−1b(a). We have

inf
v∈Vsmall(γ)

eTF1(v) = inf
v∈Vsmall(γ)

eTF2(v) =

∫
f(z)v(z)dP (z),

sup
v∈Vsmall(γ)

eTF1(v) = sup
v∈Vsmall(γ)

eTF2(v) =

∫
f(z)v(z)dP (z),

where

v(Z) = γ1{f(Z) ≥ qu(f |A,X)}+ γ−1
1{f(Z) < qu(f |A,X)},

v(z) = γ1{f(Z) ≤ q`(f |A,X)}+ γ−1
1{f(Z) > q`(f |A,X)},

and qu(f |A,X) and q`(f |A,X) are the τu = γ/(1 + γ) and τ` = 1/(1 + γ) quantiles of f(Z)
given (X,A).

Again, for the class Vlarge(γ) the bounds can di�er and one can construct examples where
either of the two is tighter, so we use the intersection of the bounds from F1 and F2. Bounding
F2(v) over Vlarge(γ) is straightforward as discussed in the following lemma.

Lemma 7. Let f(z) = yw(a, x)eTM−1b(a). �en

inf
v∈Vlarge(γ)

F2(v) = F2(v), sup
v∈Vlarge(γ)

F2(v) = F2(v),

where

v(Z) = γ1{f(Z) ≥ qu(f)}+ γ−1
1(f(Z) < qu(f)),

v(z) = γ1{f(Z) ≤ q`(f)}+ γ−1
1{f(Z) > q`(f)},

and qu(f) and q`(f) are the τu = γ/(1 + γ) and τ` = 1/(1 + γ) quantiles of f(Z).

�at is, we only need marginal quantiles for the bound on F2(v). We do not have a closed
form expression for bounds on F1(v) over Vlarge(γ). Instead we use the homotopy algorithm.
As in the general MSM case presented in Section 3.4.4, ge�ing con�dence intervals for the
bounds of β1 over Vlarge is challenging because their in�uence functions involve solving an
integral equation.
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3.4.6 Local (Small γ) Bounds on β

A fast, simple approach to bounding F1 over Vlarge(γ) is based on a functional expansion of
F1(v) around the function v0 = 1, or alternatively, an expansion of F1(L) around the function
L0 ≡ log v0 = 0. In principle, this will lead to tight bounds only for γ near 1, but, in our
examples, it leads to accurate bounds over a range of γ values; see Figures 3.3, B.1 and B.2.
Note that we do not need local bounds based on F2 because we have an exact expression in
that case.

Let L(z) = log v(x, a, y). Our propensity sensitivity model is the set of functions L
such that ||L||∞ ≤ log γ. Note that δF1

δL (z) = δF1
δv (z)eL = δF1

δv (z)v(z). No unmeasured
confounding corresponds to v0(z) = 1, L0(z) = 0 and γ = 1. �en F1(L) = F1(L0) +
eT
∫

(L− L0) δF1
δL (z)dP(z) +O(γ − 1)2 = F1(L0) + eT

∫
L δF1

δv (z)dP(z) +O(γ − 1)2 where
F1(L0) is the value of β1 assuming no unmeasured confounding. Now, by Holder’s inequality,∫
L δF1

δv (z)dP ≤ ||L− L0||∞
∫
| δF1
δv (z)dP| ≤ log γ

∫
| δF1
δv (z)dP|. So, up to order O(γ − 1)2,

β1(L0)− log γ

∫ ∣∣∣∣∣δF1

δv
(z)dP

∣∣∣∣∣ ≤ F1(L) ≤ β1(L0) + log γ

∫ ∣∣∣∣∣δF1

δv
(z)dP

∣∣∣∣∣. (3.16)

3.5 Bounds under the Outcome Sensitivity Model

Consider now the outcome sensitivity model from Section 3.3.2. Recall that µ(A,X,U) =
E(Y |A,X,U) is the outcome regression on treatment and both observed and unobserved con-
founders, and ∆(a) =

∫
{µ(a, x, u)− µ(a, x)}dP(x, u) is the (integrated) di�erence between

this regression and its observed counterpart, and |∆(a)| ≤ δ. If Y (a) ⊥⊥ A|(X,U), then

E{Y (a)} =

∫
µ(a, x, u)dP(x, u) = ∆(a) +

∫
µ(a, x)dP(x).

We can write a corresponding MSM moment condition as

E
[
h(A)

{
∆(A) +

∫
µ(A, x)dP(x)− g(A;β)

}]
= 0

so that β is identi�ed under no unmeasured confounding whenever E{h(A)∆(A)} = 0.
Using an approach similar to Section 3.4.2, if we assume that the bounds

∫
µ(a, x)dP(x)± δ

follow models g(a;β`) and g(a;βu), it is straightforward to estimate β` and βu by solving the
empirical, in�uence function based, bias-corrected analogs of the moment conditions

E
[
h(A)

{∫
µ(A, x)dP(x) + δ − g(A;βu)

}]
= 0,

E
[
h(A)

{∫
µ(A, x)dP(x)− δ − g(A;β`)

}]
= 0.

Inference can be performed as outlined in Proposition 2.
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In the linear MSM case, we have

g(a;β) = b(a)Tβ = b(a)TQ−1U [h(A1) {µ(A1, X2) + ∆(A1)}] ,

where Q = E{h(A)b(A)T }. �erefore, valid bounds on g(a;β) are

b(a)TQ−1U {b(A1)µ(A1, X2)} ± δE|b(a)TQ−1b(A)|,

which we re-write as

g`(a) = b(a)TQ−1U
(
b(A1)

[
µ(A1, X2)− δ sgn

{
b(a)TQ−1b(A1)

}])
gu(a) = b(a)TQ−1U

(
b(A1)

[
µ(A1, X2) + δ sgn

{
b(a)TQ−1b(A1)

}])
,

since |b(a)TQ−1h(A)| = b(a)TQ−1 sgn
{
b(a)TQ−1b(A)

}
b(A).

Our estimators are

ĝj(a) = b(a)T β̂j , β̂j = argmin
β∈Rk

Un
{
ζ̂j(Z1, Z2)− b(A1)Tβ

}2
, j ∈ {u, `},

where
ζ`(Z1, Z2) = w(A1, X1){Y1 − µ(A1, X1)}+ µ(A1, X2)− δ sgn

{
b(a)TQ−1b(A1)

}
,

ζu(Z1, Z2) = w(A1, X1){Y1 − µ(A1, X1)}+ µ(A1, X2) + δ sgn
{
b(a)TQ−1b(A1)

}
.

To simplify the analysis of our estimators and avoid imposing additional Donsker-type
requirements on µ̂ and π̂, we proceed by assuming that ζ̂l and ζ̂u are estimated on samples
independent from that used to compute the U-statistic in the empirical risk minimization
step. �is means that, in �nite samples, the matrix Q̂ appearing in ζ̂j and Q̃ arising from
the minimization step (since β̂j = Q̃−1Un{b(A1)ζ̂j(Z1, Z2)}) will not be equal, even if they
estimate the same matrix Q = P{b(A)b(A)T }. In particular, sgn

{
b(a)TQ−1b(A1)

}
might

not equal sgn
{
b(a)T Q̃−1b(A1)

}
and so ĝ`(a) could be larger than ĝu(a). However, this is

expected to occur with vanishing probability as the sample size increases.

Proposition 4. Assume that:

1. eTQ−1h(A) has a bounded density with respect to the Lebesgue measure;

2.
∥∥∥∫ S2{ζ̂j(Z1, z2)− ζj(Z1, z2)}dP(z2)

∥∥∥ = oP(1);

3. ‖w − ŵ‖‖µ− µ̂‖ = oP(n−1/2).
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�en
√
n{ĝj(a)− gj(a)} N (0, 4Σ), for j ∈ {u, `}, where

Σ = b(a)T var
[
Q−1

∫
S2b(A1){ζj(Z1, z2)− bT (A1)βj}dP(z2)

]
b(a).

Bounds on a speci�c coordinate of β, say β1, are straightforward to derive in the linear MSM
case by replacing b(a)T with eT in the bounds above. When g(a;β) is not linear, bounds on β1

can be obtained using a homotopy algorithm similar to that in Section 3.4.4. �e algorithm
uses the functional derivative of β(∆) with respect to ∆ in L2(P(a)):

δβ(∆)

δ∆
= E

{
h(A)∇βg(A;β)T

}−1
h(A).

Another, exact but computationally expensive, approach is described in Appendix B.0.3.

3.6 Time Series

Now we extend the methods to time varying treatments. In this se�ing, we have data
(X1, A1), . . . , (XT , AT , Y ) on each subject, whereXt can include an intermediate outcome Yt.
We write Xt = (X1, . . . , Xt) and At = (A1, . . . , At). An intervention corresponds to se�ing
AT = aT = (a1, . . . , aT ) with corresponding counterfactual outcome Y (aT ). In this case, the
assumption of no unmeasured confounding is expressed as At ⊥⊥ Y (aT )|(At−1, Xt) for every
t ∈ {1, . . . , T}. Under this assumption, the g-formula [Robins, 1986] is

E{Y (aT )} =

∫
µ(aT , xT )

T∏
s=1

dP(xs|xs−1, as−1)

where µ(aT , xT ) = E(Y | XT = xT , AT = aT ). As before, a MSM is a model g(aT ;β) for
E{Y (aT )}. A common example is g(aT ;β) = β0 + β1

∑T
s=1 as. For some user-speci�ed

function h(·) of the treatments, it can be shown that

E
[
h(AT )WT (AT , XT )

{
Y − g(AT ;β)

}]
= 0, where WT (aT , xT ) =

∏T
s=1 π(as|as−1)∏T

s=1 π(as|xs, as−1)
.

3.6.1 Bounds on g(at; β) under Propensity Sensitivity Confounding

Let UT = (U1, . . . , UT ) denote unobserved confounders. If At ⊥⊥ Yt(at)|(At−1, Xt, U t) for
all t, then the g-formula becomes

E{Y (aT )} =

∫
E(Y | AT = aT , XT = xT , UT = uT )

T∏
s=1

dP(xs, us|xs−1, us−1, as−1),
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De�ne

vT (Y,AT , XT ) = E

{ ∏T
s=1 π(As|Xs, As−1)∏T

s=1 π(As|Xs, U s, As−1)
| Y,AT , XT

}

and note that we can rewrite E{Y (aT )} as

E{Y (aT )} =

∫
E{Y vT (Y, aT , xT )|AT = aT , XT = xT }

T∏
s=1

dP(xs|xs−1, as−1).

It can be shown that E{vT (Y,AT , XT )} = 1 and also that∫
E{vT (Y,AT , XT ) | AT , XT }

T∏
s=2

dP(xs | xs−1, as−1) = 1 (3.17)

However, unless additional assumptions are invoked, it is not the case that E{vT (Y,AT , XT ) |
AT , XT } = 1. Ge�ing bounds in the propensity sensitivity model enforcing vT (Y,AT , XT ) ∈
[γ−1, γ] and E{vT (Y,AT , XT )} = 1 is straightforward. For example, as shown in Section
B.2.13 in the appendix, it holds that

E
[
h(AT )WT (AT , XT )

{
Y vT (Y,AT , XT )− g(AT ;β)

}]
= 0

In this light, methods based on the class Vlarge(γ) described in Sections 3.4.4 and 3.4.5 apply
here as well with WT replacing W and vT replacing v. �e local approach taken in Section
3.4.6 also applies. However, enforcing (3.17) appears more challenging and we leave it for
future work.

3.6.2 Bounds under Outcome Sensitivity Confounding

Bounds for g(aT ;β) and for coordinates of β governed by the outcome sensitivity model can
be derived in a similar fashion by extending the results in Section 3.5.

3.7 Examples

In this section we present a static treatment example and a time series example. �e appendix
also contains simple, proof of concept synthetic examples.

3.7.1 Effect of Mothers’ Smoking on Infant Birthweight

We re-analyzed a dataset of births in Pennsylvania between 1989 and 1991, which has been used
to investigate the causal e�ects of mothers’ smoking behavior on infants birthweight. Previous
analyses [Almond et al., 2005, Ca�aneo, 2010], assuming no unmeasured confounders, found a
negative e�ect of smoking on the infant’s weight. Recently, Scharfstein et al. [2021] conducted
a sensitivity analysis to the assumption of no unmeasured confounding by dichotomizing the
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Figure 3.1: Bounds for β1 and β2 for the birthweight dataset, assuming the MSM
g(a;β) = β0 + β1a+ β2a

2. �e do�ed horizontal lines are at β̂1 and β̂2. �e black bounds are
from F1 over Vlarge for the propensity model, found using the homotopy algorithm (Section 3.4.4).
�e local approximation to F1 (Section 3.4.6) matched the black bounds closely (not shown), similar
to the appendix examples. �e quadratic term parameter loses signi�cance at γ ≈ 1.11 and
the linear term at γ ≈ 1.25. �e dark and light grey bounds use the subset sensitivity model
(Sections 3.3.3 and B.0.2), with ε = .5 and .1, respectively. Bounds are all the narrower when ε is
smaller, as expected.

treatment into smoking vs non-smoking. In line with previous work, they found a negative
e�ect of smoking on the child’s weight, but also identi�ed plausible values of their sensitivity
parameters consistent with a null e�ect. �ey concluded that, while likely negative, the true
e�ect of smoking on weight might be smaller than that estimated under no unmeasured
confounding. We complement and expand on their analysis by considering sensitivity models
that can accommodate MSMs; we reach similar conclusions, although we �nd the estimated
e�ect to be less sensitive to the unmeasured confounding parametrized by our sensitivity
models.

�e dataset consists of a random subsample of 5, 000 observations from the original dataset
that is available online.1 �e outcome is birthweight and the treatment is an ordered cate-
gorical variable taking six values corresponding to ranges {0, 1-5, 6-10, 11-15, 16-20, 21+}
of cigare�es smoked per day. �ere are 53 pre-treatment covariates including mother’s and
father’s education, race, and age; mother’s marital status and foreign born status; indicators
for trimester of �rst prenatal care visit and mother’s alcohol use.

Figure 3.1 shows bounds on β1 and β2 for the quadratic MSM given by g(a;β) = β0 +
β1a + β2a

2 under propensity sensitivity, based on F1 over Vlarge (with only six treatment
values, we cannot �t a more complex parametric model). We estimated the propensity π(a|x)
via a log-linear neural net using the nnet package for the R so�ware, as in Ca�aneo [2010].
�e quadratic term parameter loses signi�cance at γ ≈ 1.11 and the linear term at γ = 1.25.
Figure 3.1 also shows bounds on β1 and β2 under the subset sensitivity model with ε = .5
and .1. As expected, there is much less sensitivity for small ε.

Recall from (3.5) that γ measures the change in the propensity score when U is dropped.
1https://github.com/mdcattaneo/replication-C 2010 JOE

https://github.com/mdcattaneo/replication-C_2010_JOE
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(a) Estimated bands for the linear MSM
g(a;β) = β0 + β1a+ β2a
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(b) Estimated bands for the saturated MSM
g(a;β) = β0 +

∑4
j=1 βj1{aj ∈ jthbin}.

Figure 3.2: Pointwise 95%-con�dence bands on the bounds forE{Y (a)} = g(a;β) under
the propensity sensitivity model, where a ∈ {0, 1–5, 6–10, 10+} cigare�es per day. �e
lines with dots are g(a; β̂).

To determine if γ = 1.25 constitutes substantial confounding, we followed the ideas in Cinelli
and Hazle� [2020] by assessing changes to the propensity score when observed confounders
are dropped. Most authors drop one covariate at a time but with 53 covariates, we found that
this caused almost no changes to the propensity score. Instead, we (i) dropped half of the
covariates, and (ii) computed, for each data point, the ratio of propensity scores using all the
covariates and the randomly chosen subset, and repeated (i, ii) 100 times. Each repeat yielded a
distribution of propensity score ratios and we used the average of their 80th percentiles as a
measure of substantial confounding. �is value is γ = 1.20, so we conclude that the causal
e�ect of smoking on infant birthweight remains signi�cant even under substantial confounding.
�e next analysis con�rms this conclusion.

Next, Figure 3.2 shows 95% point-wise con�dence bands for the bounds on g(a;β) under
propensity sensitivity based on Vsmall, assuming that the bounds are modeled as g(a;β`) and
g(a;βu); see Proposition 2. Note that Figure 3.1 showed the bounds on β1 and β2 rather
than con�dence bands on these bounds, because con�dence bands are di�cult to obtain;
see Sections 3.4.4 and 3.4.5. Figure 3.2a shows results for the quadratic MSM g(a;β) =
β0 + β1a + β2a

2, and as a safeguard against MSM mis-speci�cation, Figure 3.2b shows the
saturated parametric MSM �t. �e black bands corresponding to γ = 1 assume no-unmeasured-
confounding (so they are con�dence bands for g(a; β̂)) and increasing values of γ correspond
to increasing amount of unmeasured confounding. We estimated the nuisance functions
nonparametrically: the outcome model µ(x, a) and conditional quantiles qj(Y |a, x) were ��ed
assuming generalized additive models, with mother’s and father’s ages, education and birth
order entering the model linearly, and number of prenatal care visits and months since last birth
entering the model as smooth terms – we used the mgcv and qgam packages in R, respectively;
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Figure 3.3: Bounds on β in MSM (6.13) for the Covid data in four US states. �e black
bounds are from F1 over Vlarge with increasing amount of unobserved confounding, under the
propensity confounding model. �e occasional lack of smoothness is due to estimating the quantile
q from small samples (n = 40) in the homotophy algorithm (Section B.1.1). �e do�ed red bounds
are the local approximations to F1 (Section 3.4.6). �e MSM coe�cients remain signi�cant under
substantial unobserved confounding for the four states: mobility has a signi�cant e�ect on Covid
deaths.

the propensity π(a|x) was estimated via a log-linear neural net, as above. We constructed the
95% point-wise con�dence bands relying on Proposition 2 and the Hulc method by Kuchibhotla
et al. [2021]. For the Hulc, the sample needs to be split into six subsamples, but because of small
sample sizes in some categories, we collapsed all regimes of 10+ cigare�es into one category,
thereby reducing the number of treatment regimes to four. Consistent with Figure 3.1 and
previous analyses [Almond et al., 2005, Ca�aneo, 2010], we found a statistically signi�cant
negative relationship between smoking and birthweight under no-unmeasured-confounding.
�e relation ceases to be signi�cant for γ = 1.1875 when the quadratic model is used and
γ = 1.25 when the saturated model is used.

3.7.2 Effect of Mobility on Covid-19 Deaths

We revisit the analysis in Bonvini et al. [2022b] on the causal e�ects of mobility on deaths due
to Covid-19 in the United States. In their paper, a sensitivity analysis to the no unmeasured
confounding assumption was conducted under the propensity model without providing details.
We provide details here.

�e data consist of weekly observations, at the state level, on the number of Covid-19 deaths
Yt and a measure of mobility “proportion at home,” At, which is the fraction of mobile devices
that did not leave the immediate area of their home. �e time period considered in the analysis
is February 15 2020 (week 1) to November 15 2020 (week 40). We focus on four states, CA, FL,
NY and TN, as representatives of four di�erent evolutions of the pandemic; their observed
time series of deaths are plo�ed as dots in Figure 3.4. We model each state separately so that
di�erences between states do not act as confounders of the treatment/outcome relationship.

Our MSM is given by

g(at, β, ν) = E[Lt(at)] = ν(t) + βMt (3.18)
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Figure 3.4: Bounds for counterfactual deaths ψ(aT ) = E(Y (aT )) for the Covid data in
four US states usingMSM (6.13) in a hypothetical mobility scenario aT corresponding
to shi�ing the observed mobility pattern two weeks earlier. �e bounds are from F1 over
Vlarge under propensity sensitivity, found using the homotopy algorithm. �e shades correspond
to γ = 3 (white), γ = 2 (light grey) and γ = 1 (no unmeasured confounding, dark grey). �e
black dots are observed deaths. Our analysis suggests that, even with substantial unobserved
confounding, sheltering two weeks earlier would have saved lives, although only by a small number
in TN, because the epidemic there started more mildly.

where at = (a1, . . . , at), Lt(at) are log-counterfactual deaths, Lt = log(Yt + 1), Mt ≡
M(at) =

∑t−δ
s=1 as, and δ = 4 weeks is approximately the mean time from infection to death

from Covid-19. �e nuisance function ν(t) is assumed to be non-linear to capture changes in
death incidence due to time varying variables other than mobility, for example probability of
dying, which decreased over time due to be�er hospital treatment, number of susceptibles to
Covid-19, which naturally decreased, and social distancing changes.

Figure 3.3 shows β̂ for the four states, along with lower and upper bounds under propensity
sensitivity. �e estimates are negative, as would be expected since higher As means that
more people sheltered at home, and they remain negative even under substantial unobserved
confounding.

Bonvini et al. [2022b] also estimated counterfactual deaths under three hypothetical mobility
regimes At = (A1, . . . , At): “start one week earlier” and “start two weeks earlier”, which shi�s
the observed mobility pro�les back by one or two weeks with aim to assess Covid-19 infections
if we had started sheltering in place one and two weeks earlier; and “stay vigilant”, which
halves the slope of the rapid decrease in stay at home mobility a�er the initial peak in week 9,
when a large proportion of the population hunkered down a�er witnessing the situation in
New York city. To save space, Figure 3.4 shows only the estimated counterfactual deaths and
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bounds for the “start two weeks earlier” scenario. Bounds were computed on g(at;β) for each
t using the homotopy algorithm on F1 over Vlarge, under propensity sensitivity (Section 3.4.4).

Bounds for β and g(at;β) under the outcome sensitivity model requires an outcome model,
which we do not pursue here.

3.8 Conclusion

We have derived several sensitivity analysis methods for marginal structural models. Doing
so may require additional modeling, for example, using quantile regression. We also saw that
approximate, conservative bounds are possible without quantile regression.

We have focused on the traditional interventions corresponding to se�ing the treatment to a
particular value. In a future paper, we address sensitivity analysis under stochastic interventions.
Here we �nd that these interventions can lead to inference that is less sensitive to unmeasured
confounding than traditional interventions.

One issue that always arises in sensitivity analysis is how to systematically choose ranges
of values for the sensitivity parameters (e.g., γ, δ, ε, in our case). In the smoking example, we
dropped large sets of observed confounders to provide a benchmark, but for the most part this
is an open problem.

3.9 Acknowledgements

We thank Prof. Nicole Pashley for helpful discussions regarding the interpretation of the causal
e�ect of mobility on deaths due to Covid-19. In particular, unmeasured confounding is not the
only issue that needs to be addressed when interpreting our results. A potential complication
is that there could be multiple versions of mobility, e.g. a person may move to go to work
versus a bar. �ese di�erent versions of mobility may a�ect the probability of dying due to
Covid-19 di�erently, complicating the interpretation of the overall e�ect of reduced mobility
on deaths. Conducting a sensitivity analysis to gauge the impact of multiple versions of the
same treatment is an important avenue for future work.



Chapter 4

Minimax optimal subgroup
identification

�is chapter is a preliminary dra� of my work supervised by Edward H. Kennedy and Luke J.
Keele.

4.1 Introduction

Much empirical research focuses on estimating causal e�ects. One commonly estimated causal
e�ect is the average treatment e�ect (ATE), which is the di�erence in average outcome if
everyone in the population, versus no one, receives treatment. By de�nition, the ATE is an
aggregate measure of treatment e�cacy that does not capture any e�ect heterogeneity. An
alternative measure of treatment e�ect is the conditional average treatment e�ect (CATE),
which is the ATE restricted to a subpopulation of interest. �e subpopulation is typically de�ned
by the values of some a priori selected variables known as e�ect modi�ers. One natural extension
of the CATE is to estimate the set of units with treatment e�ects larger (or smaller) than some
user-speci�ed threshold. For example, when the threshold is zero, assigning treatment to only
those units with a positive treatment e�ect is the optimal rule maximizing the mean outcome
in the population (see, e.g, Robins [2004], Hirano and Porter [2009], Chakraborty and Moodie
[2013], and Luedtke and Van Der Laan [2016]).

To consider this problem, informally, we de�ne Y as the outcome, A as an indicator for
treatment, and X as measured confounders and simultenously e�ect modi�ers. Using these
terms, the CATE τ(x) is equal to τ(x) = E(Y | A = 1, X = x)− E(Y | A = 0, X = x), and
the ATE is E{τ(X)}. Our target of inference, the upper level set of the CATE at θ, is

Γ(θ) = {x ∈ X : τ(x) > θ}

We assume the level θ ∈ R to be user-speci�ed. For some estimator τ̂(x) of τ(x), we estimate

52
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the level set, Γ(θ), with

Γ̂(θ) = {x ∈ X : τ̂(x) > θ}.

�is estimator de�nes the set of study units with estimated CATEs that are greater than θ.
Clearly, an estimator for Γ(θ) depends on an estimator for τ(x), and the performance of Γ̂(θ)
will be a�ected by how well τ(x) can be estimated. Yet, we will show that estimating Γ(θ)
can be an easier statistical problem than estimating τ(x) itself on its support. Intuitively, one
needs to be able to estimate τ(x) accurately only in regions of the covariates’ space where
τ(x) is close to θ. Further, if τ(X) has a bounded density and a particular loss function is used,
we will show that the convergence rate of Γ̂(θ) to Γ(θ) will generally be faster than that of
τ̂(x) to τ(x).

Recent work has developed a number of proposals for CATE estimation with an emphasis on
using nonparametric estimation methods borrowed from the machine learning (ML) literature
[Athey and Imbens, 2016, Foster and Syrgkanis, 2019, Hahn et al., 2020, Imai and Ratkovic,
2013, Kennedy, 2020, Kennedy et al., 2022, Künzel et al., 2019, Nie and Wager, 2021, Semenova
and Chernozhukov, 2021, Shalit et al., 2017, Wager and Athey, 2018]. In our work, we focus
on a class of nonparametric estimators for the CATE that are embedded in a meta-learner
framework that separates estimation of the CATE into a multi-step regression procedure. In the
�rst step, a set of nuisance functions is estimated using �exible machine learning models. �en,
in the second-stage, an estimate of τ(x) is computed using the previous nuisance function
estimates as inputs. More speci�cally, we focus on two recently proposed estimators of τ(x):
the DR-Learner analyzed in Kennedy [2020] and the Lp-R-Learner proposed in Kennedy et al.
[2022]. �e �rst one is a general estimation procedure based on a two-stage regression that can
be computed using o�-the-shelf so�ware. �e second is a more complicated estimator, which
has been shown to be minimax optimal for an important set of models.

We merge this work on �exible estimation of CATEs with the extensive literature on
nonparametric estimation of (upper) level sets. See, for examples, Qiao and Polonik [2019],
Mammen and Polonik [2013], Chen et al. [2017], Rigollet and Vert [2009], Wille� and Nowak
[2007] and references therein. �e main di�erence between our work and this research is that in
our context the level set is de�ned by the di�erence of two regressions, the optimal estimation of
which can be considerably more involved than that of either regression. Within this literature,
our work is closest to Rigollet and Vert [2009], and we use their general framework to analyze
the performance of our estimators.

Other streams of research closely related to our work are policy learning [Athey and Wager,
2021, Ben-Michael et al., 2022, Hirano and Porter, 2009] and contextual bandits [Gur et al.,
2022]. In the policy learning literature, it is typically assumed that the best policy belongs to
some well-behaved and interpretable class of decision rules. �is is di�erent from the route we
take in this work; instead of restricting the complexity of the level set class, we restrict the
complexity of the CATE function in nonparametric models. In addition, while one of the core
goals of the literature on contextual bandits is to identify regions of the covariates space where
the treatment e�ect is positive, this is usually done in se�ings where the probability of taking
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a given action or receiving treatment, i.e., the propensity score, is under the experimenter’s
control and known. Instead, we consider observational studies where the propensity score is
unknown. Finally, Reeve et al. [2021] has also considered a similar problem to the one discussed
in this paper, but they require that the propensity score is known and the estimator appears to
be more complicated.

4.1.1 Our contribution

�e level set estimator that we study follows the plug-in principle and consists of simply
thresholding an estimator of the CATE. To the best of our knowledge, how the properties of a
CATE learner relate to those of the corresponding level set estimator has not been investigated
in the literature yet. As such, our �rst goal is to derive the asymptotic properties of level
set estimators depending on which estimator of the CATE is used. We calculate the risk for
estimating Γ(θ) by thresholding a general estimator of the CATE required to satisfy a particular
exponential inequality. �en, we specialize the results when the CATE is estimated with the
DR-Learner or the Lp-R-Learner. Further, we show that if the Lp-R-Learner is used, the risk
achieved is minimax optimal, under certain conditions. �e optimality of thresholding the
Lp-R-Learner for estimating CATE level sets had yet to be established. As an intermediate step
for obtaining our main results, we derive exponential inequalities for CATE estimators based
on linear smoothing, which might be of independent interest.

We establish the minimax optimal rate for estimating Γ(θ) in Hölder smoothness models
where τ(x) and the nuisance functions have potentially di�erent smoothness levels. Kennedy
et al. [2022] have recently shown that, from a minimax optimality point of view, the parameter
τ(x) shares features of a functional with nuisance components [Robins et al., 2009b, 2017b] and
a standard nonparametric regression [Tsybakov, 2009]. Building upon their work and Rigollet
and Vert [2009], we show that Γ(θ) behaves as a hybrid parameter not only exhibiting features
similar to those of τ(x), but also those of a Bayes classi�er. E�ectively, we connect the problem
of estimating CATE level sets to the domains of classi�cation, nonparametric regression and
functional estimation. We also brie�y discuss the construction of con�dence sets for Γ(θ) based
on the distribution of supx∈X |τ̂(x)− τ(x)|. Finally, we illustrate our methods in simulations
and with a real dataset used to study the e�ect of laparoscopic surgery for partial colectomy
on mortality and complications.

4.2 Notation

We assume that X has at least one continuous component and denote the marginal CDF of X
by F (x), with corresponding density f(x) with respect to the Lebesgue measure, which we
assume to be uniformly bounded. We also let d denote the dimension of X and let X be the set
of all x ∈ Rd such that f(x) > 0.
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We de�ne the nuisance functions:

π(X) = P(A = 1 | X), µ(X) = E(Y | X), µa(X) = E(Y | A = a,X),

and τ(X) = µ1(X)− µ0(X) = E[{π(X)}−1Y A− {1− π(X)}−1Y (1−A) | X].

Unless we need to keep track of constants, we will adopt the notation a . b to mean that there
exists a constant C such that a ≤ Cb. We assume all the nuisance functions are uniformly
bounded and π(x) is also bounded away from 0 and 1. To keep the notation as light as possible,
we will o�en write Γ to mean Γ(θ).

Let s = (s1, . . . , sd) ∈ Nd, |s| =
∑d

i=1 si, s! = s1! · · · sd! and Ds = ∂s1+...sd

∂x
s1
1 ···∂x

sd
d

be the
di�erential operator. For β > 0, let bβc denote the largest integer strictly less than β. Given
x ∈ Rd and f a bβc-times continuously di�erentiable function, let

fx(u) =
∑
|s|≤bβc

(u− x)s

s!
Dsf(x)

denote its Taylor polynomial approximation of order bβc at u = x.

De�nition 1 (locally Hölder-β function). A function f is “β-smooth locally around a point
x0 ∈ X0” if it is bβc-times continuosly di�erentiable at x0 and there exists a constant L such
that

|f(x)− fx0(x)| ≤ L‖x− x0‖β for all x ∈ B(x0, r), r > 0.

�ere are a few ways to measure the performance of Γ̂(θ), two of which are

• d∆(Γ̂,Γ) =
∫

Γ̂∆Γ
f(x)dx, for Γ̂∆Γ = (Γ̂c ∩ Γ) ∪ (Γ̂ ∩ Γc) (set di�erence);

• dH(Γ̂,Γ) =
∫

Γ̂∆Γ
|τ(x)− θ|f(x)dx (penalized set di�erence).

�e �rst one is simply the PX -measure of the set di�erence between Γ̂ and Γ. �e second one
is the PX -measure of the set di�erence simply with a smaller penalty assigned to errors made
by including / excluding values of X for which the CATE is close to θ. In particular, whether
or not x such that τ(x) = θ is included or excluded from the set Γ̂ has no impact on the error
measured by dH(Γ̂,Γ). If θ = 0, this means that, according to this metric, it does not ma�er
whether we assign treatment to units with zero treatment e�ect. We will focus on dH(Γ̂,Γ)
and analyze the risk

E
{
dH(Γ̂,Γ)

}
= E

{∫
Γ̂∆Γ
|τ(x)− θ|f(x)dx

}
, (4.1)

which we represent in Figure 4.1 for the case d = 1 and X ∼ Unif(0, 1).

Remark 5. Wille� and Nowak [2007] study estimation of the level sets of a function us-
ing dyadic trees. �eir approach, adjusted to our se�ings, would prescribe �nding Γ̂(θ) by
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θ

x

τ(
x)

Figure 4.1: Representation of the loss in eq. (4.1) for d = 1 and X uniformly distributed. �e
solid line is τ(x), the do�ed line is τ̂(x), and the shaded area equals dH(Γ̂,Γ). �e orange
portion of the x-axis represents Γ(θ), the blue one Γ̂(θ) and the red one Γ̂∆Γ.

minimizing an estimate of

R{Γ(θ)} ∝
∫
{θ − τ(x)}[1{x ∈ Γ(θ)} − 1{x ∈ Γ

c
(θ)}]f(x)dx

as the risk function. �ey show that minimizing R{Γ(θ)} is equivalent to minimizing the
excess risk, i.e.

R{Γ̂(θ)} −R{Γ(θ)} =

∫
Γ∆Γ̂
|τ(x)− θ|f(x)dx

which is equivalent to the loss dH(Γ̂,Γ) that we use in this paper. We leave the study of
empirical risk minimizers for estimating CATE level sets for future work.

As described below, the performance of our estimators will depend crucially on the di�culty
in estimating the CATE around the level θ. �e intuition is that, to estimate Γ(θ), one needs to
estimate the sign of τ(x)− θ well and, in regions of the covariates’ space where τ(x) is far
from θ, estimating this sign well does not require estimating τ(x) precisely. On the contrary,
for values of x such that τ(x) is close to θ, estimating τ(x) precisely plays an important role
in determining the sign of τ(x)− θ. For example, τ(x) may be a very complex function far
away from θ but, as long as it is well-behaved and easy to estimate close to θ, one may hope to
still be able to estimate Γ(θ) well. In this respect, a typical example that we consider is when
τ(x) is γ-smooth in a neightborhood around θ and γ′-smooth everywhere else.
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4.3 Estimation

4.3.1 Estimand & setup

�e goal of this section is to provide an upper bound on the risk (4.1) for generic CATE
estimators. Following Rigollet and Vert [2009], we introduce a margin assumption governing
the mass concentrated around the level set χ = {x ∈ X : τ(x) = θ} encoded below.

Assumption 4. �ere exist positive constants ε0 and c0 such that such that, for all ε ∈ (0, ε0],
it holds that PX(0 < |τ(X)− θ| < ε) ≤ c0ε

ξ .

�e margin condition (Assumption 4) can yield fast convergence rates when the perfor-
mance is measured by the risk in eq. (4.1). Crucially, it can be shown to hold with exponent
ξ = 1 as long as the density of τ(X) is bounded, which can be satis�ed in many applica-
tions. �e following two propositions are restatements of Lemmas 5.1 and 5.2 in Audibert
and Tsybakov [2007] wri�en for the problem considered here; we provide their proofs for
completeness.

Proposition 5. Under Assumption 4, it holds that

E
{
dH(Γ̂,Γ)

}
≤ E

[∫
X
1 {|τ(x)− θ| ≤ ‖τ̂ − τ‖∞} |τ(x)− θ|f(x)dx

]
. E

(
‖τ̂ − τ‖1+ξ

∞

)
Proof. �e proposition simply follows from the observation that

1

{
x ∈ Γ̂(θ)∆Γ(θ)

}
= |1 {τ̂(x)− θ > 0} − 1 {τ(x)− θ > 0}|

≤ 1 {|τ(x)− θ| ≤ |τ̂(x)− τ(x)|}
≤ 1 {|τ(x)− θ| ≤ ‖τ̂ − τ‖∞}

�e second inequality follows by Lemma 1 in Kennedy et al. [2020].

Proposition 5 applies to any estimator τ̂ of τ and links the error in estimating the upper
level sets to the error in estimating τ . In particular, it is o�en the case that ‖τ̂ − τ‖∞ is of the
same order of the pointwise error |τ̂(x)− τ(x)| up to a log factor. In this sense, Proposition 5
would typically match the sharper result described in Lemma 8 up to a log factor provided that
estimating τ(x) near the level θ is at least as di�cult as estimating it on the entire domain. �e
next proposition links the level set estimator error to the Lp norm of the error in estimating
τ . �is proposition, however, appears to give results that match those in Lemma 8 only if the
margin condition does not hold, i.e. ξ = 0.

Proposition 6. Under Assumption 4, it holds, for any 1 ≤ p <∞:

E
{
dH(Γ̂,Γ)

}
≤ Cξ,pE

{
‖τ̂ − τ‖

p(1+ξ)
p+ξ

p

}
for some constant Cξ,p depending on p and ξ.



Chapter 4. Minimax optimal subgroup identi�cation 58

Proof. It holds that

dH(Γ̂,Γ) ≤
∫
1 {|τ(x)− θ| ≤ |τ̂(x)− τ(x)|}1 {0 < |τ(x)− θ| ≤ t} |τ(x)− θ|f(x)dx

+

∫
1 {|τ(x)− θ| ≤ |τ̂(x)− τ(x)|}1 {|τ(x)− θ| > t} |τ(x)− θ|f(x)dx

≤
∫
1 {|τ(x)− θ| ≤ |τ̂(x)− τ(x)|}1 {0 < |τ(x)− θ| ≤ t} |τ(x)− τ̂(x)|f(x)dx

+

∫
1 {|τ(x)− θ| ≤ |τ̂(x)− τ(x)|}1 {|τ(x)− θ| > t} |τ(x)− τ̂(x)|f(x)dx

. ‖τ̂ − τ‖pt
ξ
p

(p−1)
+
‖τ̂ − τ‖pp
tp−1

by Hölder’s inequality. Minimizing the RHS over t yields the desired bound.

Proposition 5 and 6 show that larger values of ξ make estimation of the upper level sets
easier. However, as noted in Audibert and Tsybakov [2007], ξ cannot be too large or else the
class of distributions satisfying the margin condition becomes small. �is is particularly clear
in smoothness models where τ(x) is γ-smooth around the cuto� in the sense of De�nition 1.
If τ(x) is smooth enough around the cuto�, it cannot jump away from the level θ too quickly.
�is means that the measure of the set where it stays close to the cuto� cannot be too small and
thus ξ cannot be too large. In particular, following the proof of Proposition 3.4 in Audibert and
Tsybakov [2007], ξmin(1, γ) ≤ 1 is necessary for τ(x) to cross θ in the interior of the support
of the distribution of X , when this has a density bounded above and below away from zero.

�e lemma below, which is essentially Lemma 3.1 in Rigollet and Vert [2009] and �eorem
3.1 in Audibert and Tsybakov [2007] adjusted for our se�ing, shows that if τ̂(x)− τ(x) satis�es
an exponential inequality, then the bound on the risk E{dH(Γ̂,Γ)} can be sharpened relative
to the results presented in Propositions 5 and 6 above. Furthermore, the bound on the risk
depends on how fast τ̂(x) converges to τ(x) for values of x near the cuto� τ(x) = θ.

Lemma 8. Fix η > 0,∆ > 0 and let D(η) = {x ∈ X : |τ(x)− θ| ≤ η}. Let an, bn and δn be
monotonically decreasing sequences. Suppose that

1. bn ≤ c1(log n)−1/κ2−ε, with ε > 0;

2. an ≥ c2n
−µ for some positive constants c2 and µ, and an ≤ bn;
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and that the following inequalities hold

P (|τ̂(x)− τ(x)| > t) ≤ c3e
−c4(t/an)κ1 + c5

δ1+ξ
n

t1+ξ
(4.2)

for all x ∈ D(η) and caan < t < ∆, and

P (|τ̂(x)− τ(x)| > t) ≤ c6e
−c7(t/bn)κ2 + c8

δ1+ξ
n

t1+ξ
(4.3)

for all x 6∈ D(η) and cbbn < t < ∆.

for some constants ca, cb, c1, . . . , c8, κ1, and κ2. �en, E{dH(Γ̂,Γ)} . a1+ξ
n +(c5∨c8)δ1+ξ

n log n.
In particular, if c5 = c8 = 0, then E{dH(Γ̂,Γ)} . a1+ξ

n .

�e central requirement to apply Lemma 8 is that the estimator τ̂(x) must satisfy an
exponential inequality. If this is the case, this lemma shows that, provided that τ̂(x) converges
to τ(x) at a rate (log n)−κ for some κ on the entire domain, the accuracy for estimating the
CATE level set Γ(θ) is entirely determined by the rate for estimating τ(x) near the level θ. If
it is hard to show that the estimator satis�es an exponential inequality, then one can resort
to applying Propositions 5 and 6. Because of Lemma 8, we are le� with the task of deriving
concentration inequalities for |τ̂(x)− τ(x)|. We will do that for the case when τ̂(x) is either a
DR-Learner or an Lp-R-Learner, which may be of independent interest.

4.3.2 Bound on estimation error using a DR-Learner

To start, we consider the DR-Learner proposed and analyzed by Kennedy [2020].

De�nition 2 (DR-Learner algorithm based on linear smoothing). Let Dn and Zn be two
independent samples of observations.

1. Using only observations in Dn, construct estimators π̂(x) = P̂(A = 1 | X − x) and
µ̂a(x) = Ê(Y | A = a,X = x).

2. Using only observations in Zn, construct

τ̂(x) =
n∑
i=1

Wi(x;Xn)ϕ̂(Zi), for

ϕ̂(Zi) =
{A− π̂(Xi)}{Yi − µ̂A(Xi)}

π̂(Xi){1− π̂(Xi)}
+ µ̂1(Xi)− µ̂0(Xi),

some weights Wi(x;Xn) and Xn ⊂ Zn.
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Let us de�ne:

S(x;Xn) =

{
n∑
i=1

W 2
i (x;Xn)

}1/2

, b̂(Xi) = E{ϕ̂(Zi)− ϕ(Zi) | Xi} and

∆(x;Xn) =
n∑
i=1

Wi(x;Xn)τ(Xi)− τ(x)

�e quantity ∆(x;Xn) is the smoothing bias (conditional on X1, . . . , Xn) of the oracle estima-
tor that has access to the true function ϕ(Zi). �e quantity b̂(x) expresses the bias resulting
from having to estimate the nuisance functions. If π(x) and π̂(x) are bounded away from zero
and one (positivity), it can be shown that

|̂b(x)| . |{π(x)− π̂(x)}[{µ1(x)− µ̂1(x)}+ {µ0(x)− µ̂0(x)}]|

Remark 6. A major advantage of the DR-Learner framework, not necessarily based on linear
smoothing, is that regressing an estimate of the pseudo-outcome ϕ̂(Z) on V = v yields an
estimate of τ(v) = E{µ1(X)− µ0(X) | V = v}, i.e., the CATE function evaluated at e�ect
modi�ers V , which may di�er from the covariates X needed to deconfound the treatment-
outcome association. �is is particularly useful when the dimension of X is much greater than
that of V . �us, if the goal is to compute the upper level sets of τ(v), with v 6= x, thresholding
a DR-Learner is an a�ractive option.

We have the following exponential inequality.

Lemma 9. Suppose τ̂(x) is a DR-Learner de�ned in (2). Further suppose that

1. |∆(x;Xn)| ≤ c1an almost surely for a monotonically decreasing sequence an and constant
c1;

2. E{Sp(x;Xn)} ≤ spn for any p > 0, a monotonically decreasing sequence sn;

3. E
∣∣∣∑n

i=1Wi(x;Xn)̂b(Xi)
∣∣∣1+ξ

≤ δ1+ξ
n for a monotonically decreasing sequence δn;

4. ‖ϕ̂− ϕ− b̂‖∞ ≤ c2‖ϕ‖∞ for a constant c2.

�en, for any t ≥ 3c1an, it holds that

P (|τ̂(x)− τ(x)| > t) ≤ 2e2 exp

{
−
(

t

12(c2 ∨ 2)e‖ϕ‖∞sn

)2
}

+ 31+ξ

(
δn
t

)1+ξ

Lemma 9 provides an exponential inequality for the DR-Learner based on linear smoothing,
which might be of independent interest. Conditions 1-3 are not really assumptions in the sense
that they are simply used to state the inequality in a succint form. Depending on the weights
of the linear smoother and the accuracy in estimating the nuisance functions, conditions 1-3



Chapter 4. Minimax optimal subgroup identi�cation 61

would be satis�ed by di�erent sequences an, sn and δn. Condition 4 is a mild boundedness
assumption. In the following example, we show how Lemmas 8 and 9 can be used to derive an
upper bound on E{dH(Γ̂,Γ)}, where Γ̂ = {x ∈ X : τ̂(x) > θ} for τ̂(x) the DR-Learner based
on local polynomial second stage regression.

Example 1 (DR-Learner with local polynomials). Suppose that τ(x) is γ-smooth locally around
any x ∈ D(η) in the sense of De�nition 1 and it is γ′-smooth for any x 6∈ D(η). Further
suppose that τ̂(x) is based on local polynomial second stage regression and that all observations
are bounded. �at is, Wi(x;Xn) are the weights of a local polynomial of degree p = bγc. �e
calculations in Tsybakov [2009] (Section 1.6) show that, under mild regularity conditions:

S(x;Xn) .
1√
nhd

, T (x;Xn) =
n∑
i=1

|Wi(x;Xn)| . 1, and |∆(x;Xn)| . hγ .

for x ∈ D(η). Choosing h of order n−1/(2γ+d) yields that there exist constants c1 and c2 such
that

S(x;Xn) ≤ c1n
−γ/(2γ+d) and |∆(x;Xn)| ≤ c2n

−γ/(2γ+d)

Typically, it will be the case thatWi(x;Xn) = 0 if ‖Xi−x‖ > h so that by Jensen’s inequality
(since u 7→ |u|1+ξ is convex):

E

∣∣∣∣∣
n∑
i=1

Wi(x;Xn)̂b(Xi)

∣∣∣∣∣
1+ξ

≤ E

T 1+ξ(x;Xn) ·


∑n

i=1 |Wi(x;Xn)|
∣∣∣̂b(Xi)

∣∣∣
T (x;Xn)


1+ξ


≤ E

T 1+ξ(x;Xn) ·


∑n

i=1 |Wi(x;Xn)|
∣∣∣̂b(Xi)

∣∣∣1+ξ

T (x;Xn)




≤ E

{
T 1+ξ(x;Xn) sup

u:‖u−x‖≤h

∣∣∣̂b(u)
∣∣∣1+ξ

}

= E
{
T 1+ξ(x;Xn)

}
E

{
sup

u:‖u−x‖≤h

∣∣∣̂b(u)
∣∣∣1+ξ

}

. E

{
sup

u:‖u−x‖≤h

∣∣∣̂b(u)
∣∣∣1+ξ

}

where the last equality follows because b̂(u) depends only on the observations in the training
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sample, which is independent of Xn. By Lemma 9 and all t ≥ 3c2n
−γ/(2γ+d) and x ∈ D(η):

P (|τ̂(x)− τ(x)| > t) . exp
(
−Ct2n−2γ/(2γ+d)

)
+ t−1−ξE

(
sup

u:‖u−x‖≤h
|{π(u)− π̂(u)}[{µ1(u)− µ̂1(u)}+ {µ0(u)− µ̂0(u)}]|1+ξ

)

For x 6∈ D(η), we have the same inequality with γ replaced by γ′. �us, by Lemma 8, we have

E{dH(Γ̂,Γ)} . n−(1+ξ)γ/(2γ+d) + δ1+ξ
n log n

where δn satis�es

E

(
sup

u:‖u−x‖≤h
|{π(u)− π̂(u)}[{µ1(u)− µ̂1(u)}+ {µ0(u)− µ̂0(u)}]|1+ξ

)
. δ1+ξ

n .

4.3.3 Bound on estimation error using Lp-R-Learners

In this section, we derive an exponential inequality when τ̂(x) is the Lp-R-Learner. To describe
the Lp-R-Learner estimator, we need to introduce some additional notation. We refer to the
original paper Kennedy et al. [2022] for more details. In particular, the authors consider two
di�erent parametrizations of the data generating process: one based on (f, π, µ0, τ), which
we consider in our work, and one based on (f, π, µ, τ), where µ(x) = E(Y | X = x) (see
their Section 6). We expect that extending our analysis to cover the la�er parametrization is
straightforward.

De�nition 3 (Lp-R-Learner). Let F denote the CDF of X . For each covariate xj , let ρ(xj) =
[ρ0(xj), . . . , ρbγc(xj)] be the �rst (bγc+ 1) Legendre polynomials shi�ed to be orthonormal
in [0, 1]. �at is,

ρm(xj) =

m∑
l=1

θlmx
l
j , for θlm = (−1)l+m

√
2m+ 1

(
m

l

)(
m+ l

l

)
De�ne ρ(x) to be the tensor product containing all interactions of ρ(x1), . . . , ρ(xd) up to
order bγc. �us, ρ(x) has length J =

(d+bγc
bγc

)
and is orthonormal in [0, 1]d. Finally, de�ne
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ρh(x) = ρ(0.5 + (x− x0)/h). �e Lp-R-Learner τ̂(x0) is de�ned as

τ̂(x0) = ρTh (x0)Q̂−1R̂, where Kh(x) = 1(2‖x− x0‖ ≤ h)

Q̂ = Pn
{
ρh(X)Kh(X)ϕ̂a1(Z)ρTh (X)

}
+ Un

{
ρh(X1)Kh(X1)ϕ̂a2(Z1, Z2)Kh(X2)ρTh (X1)

}
R̂ = Pn {ρh(X1)Kh(X)ϕ̂y1(Z)}+ Un {ρh(X1)Kh(X1)ϕ̂y2(Z1, Z2)Kh(X2)}
ϕ̂a1(Z) = A{A− π̂(X)}

ϕ̂a2(Z1, Z2) = −{A1 − π̂(X1)}Kh(X1)bTh (X1)Ω̂−1bTh (X2)A2

ϕ̂y1(Z) = {Y − µ̂0(X)}{A− π̂(X)}

ϕ̂y2(Z1, Z2) = −{A1 − π̂(X1)}bTh (X1)Ω̂−1bTh (X2){Y2 − µ̂0(X2)}
bh(X) = b(0.5 + (x− x0)/h)1(2‖x− x0‖ ≤ h)

Ω̂ =

∫
v∈[0,1]d

b(v)bT (v)dF̂ (x0 + h(v − 0.5))

for b : Rd 7→ Rk a basis vector of dimension k that should have good approximating properties
for the nuisance function class. �e nuisance functions (F̂ , π̂, µ̂0) are computed from a training
sample Dn, independent of that used to calculate the empirical and U -statistic measures.

�e Lp-R-Learner estimator is tailored to a particular smoothness model, which we describe
next and adopt in this section and when discussing minimax optimality.

De�nition 4 (Lp-R-Learner smoothness model). Fix γ, γ′, α and β. Recall that D(η) = {x ∈
X : |τ(x)− θ| ≤ η}, η > 0. We de�ne P to be the collection of all distributions satisfying the
following conditions:

1. τ(x) is γ-smooth locally around any x ∈ D(η) in the sense of De�nition 1;

2. τ(x) is γ′-smooth for any x 6∈ D(η);

3. µ0(x)− µ̂0(x) is β-smooth and π(x)− π̂(x) is α-smooth for any x ∈ X 1;

4. ε ≤ π(x) ≤ 1− ε almost-surely, for some ε > 0;

5. �e eigenvalues of Q and Ω are bounded above and below away from zero.

Let s = (α + β)/2 denote the average smoothness of the nuisance functions. Let T =
1 + d/(4s) + d/(2γ) and T ′ = 1 + d/(4s) + d/(2γ′). For the model described in De�nition
4, Kennedy et al. [2022] proved that, under certain regularity conditions, the pointwise risk

1In principle, µ0(x) and π(x) could have di�erent smoothness levels depending on whether x ∈ D(η) or not.
�is would not complicate the analysis conceptually but it would make the notation more involved. For simplicity,
we treat the nuisance functions as having a smoothness level that does not vary across the covariates’ space.
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satis�es

E|τ̂(x)− τ(x)|2 .


n−2γ/(2γ+d) if x ∈ D(η) and s ≥ d/4

1+d/(2γ)

n−2/T if x ∈ D(η) and s < d/4
1+d/(2γ)

n−2γ′/(2γ′+d) if x 6∈ D(η) and s ≥ d/4
1+d/(2γ′)

n−2/T ′ if x 6∈ D(η) and s < d/4
1+d/(2γ′)

Crucially, Kennedy et al. [2022] shows that these rates are the minimax optimal rates for
estimating τ(x) in this model. Notice that the rate n−2γ/(2γ+d) is the optimal rate for estimating
a d-dimensional, γ-smooth regression function. It is referred to as the oracle rate because it
is the fastest rate achievable by an infeasible estimator that has access to the true pseudo-
outcomes ϕ(Zi) (see de�nition 2). In the next section, we show that Γ̂(θ) based on thresholding
the Lp-R-Learner estimator of the CATE is minimax optimal for Γ(θ) in this model as well. We
derive the following exponential inequality, which may be of independent interest.

Lemma 10. Suppose the data generating mechanism satis�es the model described in De�nition
4. Let dF ∗(v) = dF (x0 + h(v − 0.5)) and ‖g‖2F ∗ =

∫
g2(v)dF ∗(v). Further suppose that:

1. �e quantities y2, π̂2, µ̂2
0, ‖µ0−µ̂0‖F ∗ , ‖Q̂−1−Q−1‖ are all bounded above and ‖dF/dF̂‖∞,

‖Q̂‖ and ‖Ω̂‖ are bounded above and below away from zero;

2. ‖dF/dF̂ − 1‖∞ {‖π̂ − π‖F ∗(hγ + ‖µ̂0 − µ0‖F ∗)} . n−1/T ∨ n−1/T ′ ∨ n−1/(1+d/(2γ));

3. �e basis dictionary is suitable for approximating Hölder functions of order s in the sense
that ∥∥∥∥g − bTΩ−1

∫
b(u)g(u)dF ∗(u)

∥∥∥∥
F ∗
. k−s/d

if g is s-smooth.

�en there exist some constants C, c, cr and ∆ so that, for all crrn ≤ t ≤ ∆, it holds that

P (|τ̂(x)− τ(x)| > t) ≤ C exp

[
−cmin

{(
t

rn

)2

,

(
t

rn

)1/2
}]

,

where

rn =


n−γ/(2γ+d) if x ∈ D(η) and s ≥ d/4

1+d/(2γ)

n−1/T if x ∈ D(η) and s < d/4
1+d/(2γ)

n−γ
′/(2γ′+d) if x 6∈ D(η) and s ≥ d/4

1+d/(2γ′)

n−1/T ′ if x 6∈ D(η) and s < d/4
1+d/(2γ′)

All the conditions listed in the lemma above are needed in the derivation of the convergence
rate (in pointwise RMSE) of τ̂(x0) as proven in Kennedy et al. [2022]. We note that condition 2
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requires estimating the covariates’ density su�ciently well. We refer the reader to the original
paper for a detailed discussion of their interpretation. Next, we use Lemmas 8 and 10 to derive
a bound on E{dH(Γ̂,Γ)} when Γ̂ is estimated using the Lp-R-Learner.

Corollary 1. Under the setup of Lemma 10, it holds that E{dH(Γ̂,Γ)} . r∗1+ξ
n , where

r∗n =

{
n−γ/(2γ+d) if s ≥ d/4

1+d/(2γ)

n−1/T s < d/4
1+d/(2γ)

Proof. It is su�cient to apply Lemma 8 with c5 = c8 = 0.

In the next section, we show that r∗1+ξ
n is also the minimax rate for estimating the level

set Γ(θ) in the model described by De�nition 4 when the risk is E{dH(Γ̂,Γ)}. We will derive
the lower bound on the minimax risk in the low-smoothness regime (s < d/4

1+d/(2γ) ), with
the understanding that a similar construction yields the appropriate lower bound in the high-
smoothness regime (s ≥ d/4

1+d/(2γ) ).

4.4 Minimax lower bound

Here, the goal is to lower bound the minimax risk, de�ned as:

inf
Γ̂

sup
p∈P

Ep{dH(Γ̂,Γp)} = inf
Γ̂

sup
p∈P

Ep

{∫
Γ̂∆Γp

|τp(x)− θ|fp(x)dx

}

where P is a set of distributions compatible with our assumptions. Calculating the minimax
risk for estimating a given parameter is important for at least two reasons. First, it serves as a
benchmark for comparing estimators. In particular, if the lower bound on the minimax risk
matches the rate of an available estimator, then one can conclude that there is not another
estimator that can improve upon the minimax optimal one, at least in terms of a worst-case
analysis, without introducing additional assumptions. Conversely, if there are no estimators
a�aining a rate that matches the minimax lower bound, then one has to either construct a
be�er estimator or tighten the upper or lower bound. In our se�ing, we show that a valid lower
bound matches the upper bound of Corollary 1 up to constants, which therefore establishes
the minimax rate for estimating Γ under the loss dH(Γ̂,Γ) in model 4. Furthermore, a tight
minimax lower bound is helpful because it precisely characterizes the di�culty in estimating
this parameter.

�eorem 4. Suppose that ξγ ≤ d. Under assumption 4 and the smoothness model de�ned in 4,
then

inf
Γ̂

sup
p∈P

Ep{dH(Γ̂,Γp)} & r∗1+ξ
n , where r∗n = n−1/T and T = 1 + d/(4s) + d/(2γ).

when s < d/4
1+d/(2γ) .
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As shown in Kennedy et al. [2022], the rate r∗n is the minimax rate for estimating τ(x) (at a
point and under the square loss) in the smoothness model encoded in De�nition 4 in the low
smoothness regime. Our result shows that the same estimator can be thresholded to yield an
optimal estimator of the CATE level sets. �e result in �eorem 4 aligns with that of Rigollet
and Vert [2009], where r∗n is replaced by the optimal minimax rate for estimating a γ-smooth
density on a d-dimensional domain, i.e. n−γ/(2γ+d) (on the root-mean-square error scale).

�e proof of �eorem 4 combines the construction of Rigollet and Vert [2009], Kennedy
et al. [2022] and Assouad’s lemma (speci�cally, we rely on �eorem 2.12 in Tsybakov [2009]).
To derive a lower bound on the risk of some estimator, one needs to construct two worst-case
distributions Q1 and Q2 such that Q1 and Q2 are similar enough so that one cannot perfectly
determine whether a sample is from Q1 or Q2 but, at the same time, the value of the parameter
at Q1 is maximally separated from that at Q2. To construct Q1 and Q2 one typically carefully
designs �uctuations around the quantities that need to be estimated, in our case π(x), µ0(x)
and τ(x). As shown in Figure 4.2, we place bumps on these functions of particular heights
depending on the level of smoothness. Our construction extends that of Kennedy et al. [2022],
which is localized in a neighborhood around x = x0, to the entire domain of X . In particular,
it can be used to show that the rate obtained in Kennedy et al. [2022] for the pointwise risk
is also the minimax rate for the integrated risk

∫
{τ̂(x) − τ(x)}2dF (x), which might be of

independent interest. We refer to Kennedy et al. [2022] for additional details. Finally, the lower
bound from �eorem 4 applies only to the case ξγ ≤ d. �is condition also appears in the
work of Audibert and Tsybakov [2007] and the more stringent condition ξγ ≤ 1 appears in the
lower bound construction of Rigollet and Vert [2009]. To the best of our knowledge, deriving a
tight lower bound without this condition is still an open problem.

4.5 Inference

In this section, we discuss a simple way to carry out inference when a DR-Learner is thresholded
to estimate Γ(θ). Inspired by Mammen and Polonik [2013], we propose constructing two sets
Ĉl and Ĉu of the form

Ĉl =
{
x ∈ Rd : σ̂−1(x){τ̂(x)− θ} > cn(1− α)

}
Ĉu =

{
x ∈ Rd : σ̂−1(x){τ̂(x)− θ} ≥ −cn(1− α)

}
,

where σ̂(x) is an estimate of the standard deviation of τ̂(x) and cn(1− α) is some carefully
chosen cuto�, depending on the 1−α con�dence level. �e rationale for constructing such sets
is outlined in the following lemma, which is wri�en for level sets of some arbitrary function
f(x).

Lemma 11. Let Λ(θ) = {x ∈ X : f(x) ≥ θ} and Λ(θ) = {x ∈ X : f(x) > θ}. Let
f̂(x) be an estimator of f(x) with some standard deviation σ̂(x). De�ne the t-statistic tn =
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Figure 4.2: Lower bound construction for the case d = 1, θ = 0 and α ≥ β. �e solid black
curve represents τ(x), the red curve represents µ0(x) while the blue curve represents π(x).
Notice that if τ(x) > 0 then π(x) = 1/2, whereas µ0(x) is always �uctuated.

{σ̂(x)}−1{f̂(x)− f(x)}. Finally, de�ne

Ĉl = {x ∈ Rd : {σ̂(x)}−1{f̂(x)− θ} > t}

Ĉu = {x ∈ Rd : {σ̂(x)}−1{f̂(x)− θ} ≥ −t}

�en, it holds that

P
(

Λ(θ) ⊆ Ĉu and Ĉl ⊆ Λ(θ)
)
≥ P (‖tn‖∞ ≤ t) .

Proof. Let x0 be any member of Λ(θ) and notice the following chain of implications

‖tn‖∞ ≤ t =⇒ σ̂−1(x0){f̂(x0)− f(x0)} ≥ −t =⇒ σ̂−1(x0){f̂(x0)− θ} ≥ −t

because f(x0) ≥ θ. �is means that x0 ∈ Ĉu so that we conclude that P
(

Λ(θ) ⊆ Ĉu
)
≥

P (‖tn‖∞ ≤ t).
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Similarly, let x0 be any member of Ĉl and notice that

‖tn‖∞ ≤ t =⇒ σ̂−1(x0){f̂(x0)− θ}+ σ̂−1(x0){θ − f(x0)} ≤ t
=⇒ σ̂−1(x0){θ − f(x0)} < 0

because σ̂−1(x0){f̂(x0)− θ} > t. �us, x0 ∈ Λ(θ) so that

P
(
Ĉl ⊆ Λ(θ)

)
≥ P (‖tn‖∞ ≤ t) .

In light of Lemma 11, Ĉl and Ĉu act as 1− α lower and upper con�dence sets for Λ(θ) as
long as ‖tn‖∞ ≤ t with probability at least 1− α. �us, constructing Ĉl and Ĉu to cover Γ(θ)
e�ectively reduces to the problem of constructing uniform con�dence bands around τ̂(x).

Constructing con�dence regions for level sets based on the supremum of the function
that is being thresholded is an example of con�dence sets based on “vertical variation.” An
alternative route would be to construct con�dence regions based on “horizontal variation,” an
example of which would be a con�dence region based on approximating the distribution of
the Hausdor� distance between the estimated set and the true set. We leave this for future
work and refer to Qiao and Polonik [2019] and Chen et al. [2017] for more details regarding
the di�erences between these approaches in the context of density estimation.

Semenova and Chernozhukov [2021] establish uniform con�dence bands for a DR-Learner
estimator of the CATE such that the second-stage regression is carried out via orthogonal series
regression. One can therefore leverage their results (�eorem 3.5) to construct con�dence sets
for the CATE level sets based on Lemma 11. 2 Finally, in the context of dose-response estimation,
Takatsu and Westling [2022] construct uniformly valid con�dence bands for second-stage local
linear smoothers where the outcome is estimated in a �rst-step. We expect their results to be
useful in the se�ing considered here as well. We plan on including a more precise result on
uniform inference for DR-Learners in an updated version of this work.

4.6 Small simulation experiment

�e goal of this section is to evaluate the performance of the estimators and investigate the
role of various aspects of the data generating processes in �nite samples. First, we study the
impact of the nuisance functions’ estimation step on the coverage of the CATE upper level set.
Our estimator of the upper level set will consist of thresholding a DR-Learner estimator of the
CATE based on a parametric second-stage linear regression. Based on Lemma 9 and Example

2Estimating the quantile of ‖tn‖∞ typically requires that the smoothing bias for estimating the CATE converges
to zero faster than the standard error (e.g., see condition (iv) in �eorem 3.5 in Semenova and Chernozhukov [2021]).
�is condition can be challenging to guarantee in applications, but we note that it is not required if one changes the
target of inference to upper level sets of a “smoothed version” of the CATE function, i.e. a modi�ed CATE function
that can be estimated without smoothing bias. See also Chen et al. [2017].
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1, we expect the performance of our estimator to deteriorate signi�cantly when the product of
the nuisance functions’ error is greater than oP(n−1/2).

Next, we investigate the impact of the parameters governing the margin assumption 4 on
the error in estimating the upper level set. To simplify the simulation se�ings, we consider
a smooth CATE with bounded density so that ξ = 1 in Assumption 4 holds and we increase
the constant c0 on the right hand side of the margin condition inequality. We expect that the
larger the region of the covariates’ space where the CATE is close to the threhsold the harder
the estimation problem becomes.

In all simulation scenarios, we de�ne θ = 0, the sample size n = 1000, the number of
bootstrap replications used in constructing the con�dence regions B = 105 and the number
of simulations I = 500. We enforce consistency by se�ing Y = AY 1 + (1 − A)Y 0. We
approximate the space [−1, 1]2 by a grid of points x1, . . . , xm, which are equally spaced points
(x1i, x2j) for 1 ≤ i, j ≤ 50. Uniform coverage is computed relative to this approximation.

Setup 1A: Impact of the nuisance functions’ estimation step. We generate data from
the following model:

Xi
iid∼ Unif(−1, 1), A | X1, X2 ∼ Bin(expit(−1 +X1 +X2)),

Y 1 | X1, X2 ∼ N(0.15−X1 − 0.5X2
1 +X2, 1), Y 0 | X1, X2 ∼ N(0, 1).

Notice that τ(x) = 0.15 − x1 − 0.5x2
1 + x2, which we assume is correctly speci�ed in the

second-stage regression. However, we construct the nuisance functions estimators π̂, µ̂a by
injecting Gaussian noise of order n−1/c, for c = {0, 2, 3, 3.8, 4, 5} in the true functions. For
example, π̂(x) = expit(xT β̂), where β̂ = [−1 1 1]T + N3(n−1/c, n−1/cI3). �e case c = 0
refers to the case where we do not inject any noise. Figure 4.3a represents the simulation setup;
the black solid line denotes the set of covariates’ values where the CATE is zero.

Setup 1B: Impact of the parameters governing the margin assumption 4. We gen-
erate data as in Setup 1A except that Y 1 | X1, X2 ∼ N(κ(0.15 − X1 − 0.5X2

1 + X2), 1),
where κ = {0.1, 0.5, 1, 5, 10}. �e parameter κ is meant to govern the size of the set
{x ∈ X : |τ(x)| ≤ ε} for some �xed ε; the smaller κ the larger this set is. We thus ex-
pect the performance of our estimator to deteriorate as κ decreases. To isolate the impact of
varying κ on the performance of the estimators, we use the true nuisance functions, instead of
the estimated ones, in the construction of the pseudo outcome. In other words, we gauge the
impact of κ on the oracle estimator. We compute a monte-carlo approximation to E{dH(Γ̂,Γ)}.

As shown in Figure 4.3b, in agreement with our theoretical results, the coverage of the
CATE upper level sets starts to deteriorate as soon as the product of the errors in estimating the
nuisance functions equals or exceeds the rate n−1/4. Furthermore, Figure 4.3c shows simulation
evidence that the estimation error as measured by the risk E{dH(Γ̂,Γ)} decreases, i.e. the
estimation problem becomes easier, if the size of covariates’ space where the CATE is close to
the level decreases. �is too is in agreement with the results from the previous sections.
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Figure 4.3: Simulation results

4.7 Data Analysis

Partial colon removal, also known as partial colectomy, is a medical procedure where a surgeon
removes the diseased portion of the patient’s colon and a small portion of surrounding healthy
tissue. A partial colectomy serves as a treatment for various conditions including Crohn’s
disease, ulcerative colitis, and colon cancer. Surgery for appendicitis can be done in two
ways. Traditionally, partial colectomy is done via open surgery (OS), which requires a long
incision in the abdomen to gain access to the colon. �e primary alternative to open surgery is
laparoscopic surgery (LS) which is a surgical technique that uses a small incision and small
narrow tubes. �e surgeon pumps carbon dioxide through the tubes to in�ate the organs and
create more space for the procedure. Surgical instruments are inserted and used to remove part
of the colon. LS is a minimally invasive colectomy and is designed to help patients recover
more quickly and experience fewer surgical complications.

LS for partial colectomy has been widely evaluated in randomized controlled trials, ob-
servational studies and meta-analyses [Kannan et al., 2015, Kemp and Finlayson, 2008, Varela
et al., 2008, Wu et al., 2022, 2010]. Across these various types of studies, results indicate that LS
leads to be�er patient outcomes including lower morbidity and lower complications. However,
it is also likely that the e�ect of LS varies from patient to patient. More speci�cally, there may
be some patients for whom LS is particularly bene�cial, and there may be other patients for
whom it is harmful or ine�ective. As an empirical application, we use level sets to characterize
optimal treatment for LS for partial colectomy. In our analysis, we use a large observational
data set and exploit the large sample size and rich set of covariates to be�er detect whether the
e�ects of LS vary systematically with key patient characteristics.

We use a data set that merges the American Medical Association (AMA) Physician Master�le
with all-payer hospital discharge claims from New York, Florida and Pennsylvania in 2012-2013.
�e data include patient sociodemographic and clinical characteristics including indicators
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for frailty, severe sepsis or septic shock, and 31 comorbidities based on Elixhauser indices
[Elixhauser et al., 1998]. �e data also include information on insurance type. Our primary
outcomes are indicator variables for mortality and complications. In our data, there are 46,506
patients that underwent a partial colectomy. Among these patients, 20,133 underwent LS and
26,373 underwent OS.

In Figure 4.4, we report the results from a very preliminary data analysis we have conducted.
We plan on reporting our �nal data analysis in an updated version of this paper. �e �gure
shows our DR-Learner estimate of the CATE function de�ned in terms of two e�ect modi�ers,
an aggregate measure of comorbidity and age. Age is approximately continuous ranging from 18
to 102 years old, whereas the measure of comorbidity is ordinal taking values in 0, 1, . . . , 7, 8+.
�e outcome is a binary indicator for whether a set of complications occured. To create Figure
4.4, we restrict the range of comorbidities to be between 0 and 5 and the range of age to be
between 30 and 80. In the rest of the covariates’ space, we observe too few data points. We
deconfound the treatment / outcome association using all pre-treatment variables available. To
estimate the nuisance functions, we use Random Forests implemented in the ranger R package
with default parameters. We then estimate the CATE with a DR-Learner where the second
stage regression is a spline regression with six degrees of freedom as implemented in the
splines R package. We construct the con�dence regions using the method of approximating
the distribution of supx |τ̂(x)− τ(x)| described in Semenova and Chernozhukov [2021].

As shown in Figure 4.4a, our estimates of the CATE are negative in most of the covariates’
space. �is is consistent with the idea that laparoscopic surgery, being minally invasive, reduces
the risk to develop complications. From this preliminary analysis, and in particular from Figure
4.4b, it appears that laparoscopic surgery signi�cantly decreases the chance of complications
for units with an average number of comorbities across many age groups, for units with no
comorbidities and age between 50 and 60 and for units with a relatively large number of
comorbidities 5 (4) and roughly age between 55 and 67 (51 and 63). Notice that these regions
make up the complement of Ĉu (with θ = 0) as de�ned in Section 4.5. �erefore, their union is
a region that, with high probability, is contained in, and thus potentially smaller than, the true
region where the CATE is negative.

4.8 Conclusions

In this work, we have studied the convergence rates for estimating the upper level sets of the
conditional average treatment e�ect (CATE). We have provided upper bounds on the error in
estimating this parameter when either DR-Learners or Lp-R-Learners of the CATE are thresh-
olded to yield estimators of the CATE level sets. Furthermore, we have shown that the estimator
based on thresholding the Lp-R-Learner is minimax optimal in a particular smoothness model
that allows the CATE and the nuisance functions to have di�erent smoothness levels. We have
also discussed a straightforward method to construct upper and lower con�dence regions for
the upper level set.

�ere are many questions that remain to be investigated. First, implementing the minimax
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Figure 4.4: Data analysis results

optimal Lp-R-Learner estimator of the CATE presents a few challenges. For example, it would
be very useful to study how to choose the right values for the tuning parameters that would
adapt to the unknown smoothness of the data generating process. In addition, when the
covariates’ dimension is large, this estimator requires substantial computational power. Second,
our construction used to derive the minimax rates requires that the product of the parameter ξ
governing the margin condition times the smoothness γ of the CATE is less than the dimension
of the covariates. Establishing minimax optimality without imposing this assumption remains
an open problem.

It would also be of interest to consider the estimation of related parameters. For example,
one could estimate 1) the PX measure of the CATE upper level set, which could potentially
be estimated with even more precision than the upper level set and the CATE itself, 2) the
boundary level set at θ = 0, as well as 3) the CATE upper level sets under additional structural
constraints, e.g. in cases where the covariates take values on a lower-dim manifold in Rd.

Finally, an important avenue for future work is to consider estimators of CATE upper level
sets that are based on empirical risk minimization, as opposed to the one we have considered
in this work that consist of simply thresholding estimators of the CATE functions. �is would
naturally allow the user to pre-specify a family of candidate upper level sets, which can be
chosen su�ciently regular, e.g. hyper-rectangles, to have a natural interpretation in the context
of the application considered.
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Chapter 5

Fast convergence rates for
dose-response estimation

�is chapter is taken from my work supervised by Edward H. Kennedy, which can be found on
arXiv [Bonvini and Kennedy, 2022].

5.1 Introduction

5.1.1 Notation & setup

Continuous or multi-valued treatments occur o�en in practice; time, distance traveled, or
dosage of a drug are common examples. We study the problem of estimating the e�ect of a
continuous treatment A ∈ A ⊂ R on an outcome Y ∈ Y ⊂ R. Within the potential outcomes
framework [Rubin, 1974], this e�ect is de�ned as the expectation of the potential outcome Y a,
which is the outcome observed if the subject takes treatment level A = a. In other words, the
estimand represents the average outcome if everyone in the population had taken treatment
level a. Because A is continuous, E(Y a) is a curve, o�en referred to as the dose-response
function (DRF). Under standard assumptions (see e.g. Kennedy et al. [2017]), the DRF takes the
form of a partial mean:

θ(t) = E{E(Y | A = t,X)} =

∫
E(Y | A = t,X = x)dP(x)

where X ∈ X ⊂ Rd denotes measured confounders. Let Z = (Y,A,X) be distributed
according to some distribution P with density p with respect to the Lebesgue measure. �e
goal of this paper is to discuss new ways of estimating θ(a) using n iid copies of Z , which yield
strong error guarantees, under weaker conditions, and fast rates of convergence. To simplify

73
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the notation we de�ne:

p(u) =
d

du
P(U ≤ u), π(a | x) =

p(a, x)

p(x)
, µ(a, x) = E(Y | A = a,X = x),

andw(a, x) = p(a)/π(a | x). �at is, p(u) is the density of U at U = u, µ(a, x) is the outcome
regression, and π(a | x) is the conditional density of A given X = x. We will sometimes
denote all the nuisance functions by η = {p(a), p(x), µ(a, x), π(a | x)}. With this notation,
we have

θ(t) = E{µ(t,X)} = E {w(t,X)Y | A = t}

For a kernel functionK(u), we letKht(a) = h−1K((a−t)/h). We use the notationP{g(Z)} =∫
g(z)dP(z) and Pn{g(Z)} = n−1

∑n
i=1 g(Zi) to denote means (given g) and sample means.

Further, we let ‖f‖2 =
∫
f2(z)dP(z) = P{f2(Z)} to denote the squared L2(P) norm.

�roughout the paper, we will rely on the following assumptions. Additional assumptions
will be introduced as needed.

1. Positivity: π(a | x) and its estimator π̂(a | x) are bounded above and away from zero
for all a ∈ A and x ∈ X ;

2. Boundedness: Y , A, µ̂(a, x) are uniformly bounded.

Notice that Positivity is enough to de�ne θ(a) =
∫
µ(a, x)dP(x), but not enough to interpret

θ(a) as the dose-response curve. To interpret θ(a) as the e�ect of A on Y , one needs to impose
additional causal assumptions such as Y a ⊥⊥ A | X and A = a =⇒ Y a = Y , i.e., no
unmeasured confounding and consistency (e.g. no interference). �is paper is about estimating
θ(a), regardless of its interpretation, and we refer to Kennedy et al. [2017] and reference therein
for more details on identi�cation.

Finally, our focus will be on estimation of the dose-response in nonparametric models where
the dose-response itself and the nuisance functions possess varying degrees of smoothness. In
particular, we will distinguish between the smoothness levels of the dose response a 7→ θ(a),
the conditional density of the treatment given the measured confounders (a, x) 7→ π(a | x),
and the outcome regression (a, x) 7→ µ(a, x). We will further re�ne this distinction when
introducing the mth-order estimator in the sense that we will consider models where a 7→
µ(a, x), x 7→ µ(a, x), a 7→ π(a | x) and x 7→ π(a | x) may have di�erent smoothness
levels. Note that it is reasonable to expect the smoothness of a 7→ µ(a, x) to match that of
a 7→ θ(a) =

∫
µ(a, x)dP(x) in most applications.

5.1.2 Literature review

Crucially, because A is continuous, the parameter θ(t) cannot be estimated at
√
n rates in

nonparametric models. Informally, in order to see this, notice that we can write θ(t) =
E{w(t,X)Y | A = t} and thus even if w(t,X)Y was fully observed (e.g., in a randomized
experiment), the best convergence rate a�ainable would be that of nonparametric regression.
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In fact, in order to compare the performances of di�erent estimators, it is useful to establish
the regimes where they behave like the oracle estimator that has access to w(t,X)Y and can
regress it on A.

De�nition 5 (Oracle rate). Given an iid sampleZ1, . . . , Zn, let θ̃(·) be the (infeasible) estimator
regressing w(t,X)Y on A and let rn be its error under some loss, e.g., the square loss at a
point: E[{θ̃(t)− θ(t)}2]. We refer to rn as the oracle rate.

In nonparametric models that admit slow rates of convergence, two commonly employed
strategies are either 1) to specify a marginal structural model θ(t) = m(t;β) [Robins et al.,
2000] or 2) to change the target of inference from θ(t) to a projection of θ(t) onto a �nite-
dimensional model g(t;β). We refer to Neugebauer and van der Laan [2007] and Ai et al. [2018]
for discussions of e�cient estimation in the la�er case.

Another approach for estimation of dose-responses is to impose some nonparametric,
structural assumptions on the curve itself. For instance, if it is known that the treatment cannot
harm the patients, one may impose a monotonicity assumption [Westling and Carone, 2020,
Westling et al., 2020]. Yet another approach is to choose a candidate estimator of θ(a) that
minimizes a good estimate of the risk. �e key insight is that, while θ(a) is generally not
estimable at

√
n-rates, the integrated risk of a candidate estimator is [Dı́az and van der Laan,

2013b, Van der Laan et al., 2003].

In the context of nonparametric estimation, Newey [1994] derives su�cient conditions
under which a two-stage kernel estimator of θ(t) is asymptotically normal and unbiased. �eir
estimator is of the plug-in variety and takes the form θ̂(a) = n−1

∑n
i=1 µ̂(t,Xi), where µ̂(t, x)

is a kernel-smoothed estimate of µ(t, x) depending on some bandwidth h. To achieve
√
nh-

consistency and asymptotic unbiasedness, µ̂(t, x) has to be undersmoothed; i.e., h has to be
chosen smaller than that minimizing the asymptotic mean-square-error of µ̂(t, x). Choosing
the right amount of undersmoothing presents challenges in practice; see e.g., Section 5.7 in
Wasserman [2006]. Starting from the estimator considered in Newey [1994], Flores [2007]
develops plug-in-type estimators of the maximum of θ(a) and the value of a at which the
maximum is a�ained. Galvao and Wang [2015] study estimation and testing of continuous
treatment e�ects in general se�ings using inverse-probability-weighted estimators. Singh et al.
[2020] analyze plug-in-type estimators of general causal functions based on reproducing kernel
methods.

�ere exists another representation of the DRF that plays an important role in developing
e�cient estimators:

θ(a) = E{ϕ(Z) | A = a}, where ϕ(Z) = w(A,X){Y − µ(A,X)}+

∫
µ(A, x)dP(x)

�is representation motivates estimators that regress the pseudo-outcome ϕ(Z) ontoA. Because
this pseudo-outcome depends on unknown nuisance functions, it needs to be estimated from
the data; thus we refer to the regression of ϕ(Z) on A as a second-stage regression. �e crucial
point is that ϕ(Z) is such that an estimated regression Ên{ϕ̂(Z) | A = a} can behave like the
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oracle Ên{ϕ(Z) | A = a} even when ϕ̂(Z) converges to ϕ(Z) at a rate that is slower than the
convergence of Ên{ϕ(Z) | A = a} to θ(a). We conclude this section with a review of the use
of this pseudo-outcome in the estimators proposed in Kennedy et al. [2017], Semenova and
Chernozhukov [2017] and Colangelo and Lee [2020], as they are the ones most similar to the
estimators considered in this article.

5.1.3 Review of existing doubly-robust estimators

In this section, we review a few estimation strategies that are doubly-robust and yield fast
convergence rates in the sense that the upper bound on the risk is of the form: “oracle rate +
second order, doubly-robust remainder terms,” and thus yield consistent estimators when either
w(a, x) or µ(a, x), but not necessarily both, are consistently estimated. �is is analogous to
the case of treatment e�ects de�ned by categorical treatments, whereby estimators based on
in�uence functions are doubly-robust and enjoy second-order error terms.

�e estimators proposed in Semenova and Chernozhukov [2017] and Kennedy et al. [2017]
are based on regressing an estimate of ϕ(Z) onto A. �e quantity ϕ(Z) has a doubly robust
remainder error, or equivalently, satis�es a Neyman-orthogonality condition in the sense that,
for η = {p(A), π(A | X), µ(A,X)}:

∂rE{ϕ(Z; η0 + r(η − η)) | A = a}|r=0 = 0 for all a, η.

�is implies that the loss {ϕ(Z; η)− θ(A)}2 is universally Neyman-orthogonal in the sense
that

∂r2∂r1E[ϕ(Z; η0 + r2(η − η0))− θ(A)− r1{θ(A)− θ(A)}]2|r1=r2=0

= −2

∫
∂rE{ϕ(Z; η0 + r(η − η0)) | A = a}r=0{θ(a)− θ(a)}dP(a)

= 0

for any θ, θ.

Constructing estimators satisfying Neyman-orthogonality conditions has a long history
in Statistics, albeit under di�erent names. For example, in functional estimation, and, in
particular, estimation of average treatment e�ects, estimators that are “Neyman-orthogonal,”
“bias-corrected,” “augmented-inverse-probability-weighted,” or, more generally, constructed
according to the “double machine learning” framework are all based on �rst-order functional
Taylor expansions, also known as von-Mises expansions [Kennedy, 2022]. In fact, underlying
Neyman orthogonality is a �rst-order expansion of the target estimand ψ(P), viewed as a
function of the unknown distribution P, around an estimator P̂ of P. If the derivative term,
say ψ′(P− P̂; P̂), exists then the estimator consisting of the (estimated) derivative term plus
the initial estimator ψ(P̂) should exhibit second-order error rates. For smooth functionals, the
derivative term can be wri�en as ψ′(P− P̂; P̂) =

∫
φ(z; P̂)dP(z), where φ(z) is the in�uence

function and is mean-zero. For more complex parameters, such as the dose-response curve,
this representation is generally not possible. However, one may try to express the derivative as
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an integral with respect to the conditional distribution of the observations given, for example,
the treatment.

Kennedy et al. [2017] show that, when the second stage regression Ên(ϕ̂(Z) | A = a) is a
local linear regression, then the oracle rate (the rate achievable if ϕ(Z) was fully observed as
de�ned in De�nition 5) is a�ained as long as

sup
a:|a−t|≤h

‖π̂(a | X)− π(a | X)‖‖µ̂(a,X)− µ(a,X)‖ = oP(1/
√
nh), (5.1)

where h is the bandwidth used in the second-stage regression. A similar requirement appears in
Colangelo and Lee [2020]. Notice that this error term is second order, as it is a product of errors.
It also reveals the double-robustness property of ϕ(Z): consistency of Ên{ϕ̂(Z) | A = a}
requires consistency of either π(A | X) or µ(A,X) but not necessarily both.

Semenova and Chernozhukov [2017] studies an estimator of the same form P∗n{ϕ̂(Z) | A =
a} where P∗n is a series estimator. �eir estimator uses cross-��ing, whereby, for a given fold k,
the nuisance functions are estimated on all folds but k, and P∗n is computed using observations
from k. �is construction bypasses the need to impose Donsker conditions on the nuisance
functions. We note that, relative to the results in Kennedy et al. [2017] and Colangelo and Lee
[2020], those in Semenova and Chernozhukov [2017] appear to require that the product of
root-mean-square-errors for estimating µ(a, x) and π(a | x) is of smaller order than 1/

√
nk,

where k is the dimension of the basis (Assumptions 3.5 and 4.9). �is is more stringent of a
requirement than (5.1).

�e approach taken by Colangelo and Lee [2020] is di�erent in that instead of regressing
ϕ̂(Z) onto A, the estimator is

θ̂(t) =
1

n

n∑
i=1

[
Kht(Ai){Yi − µ̂(t,Xi)}

π̂(t | Xi)
+ µ̂(t,Xi)

]
(5.2)

�ey motivate their estimator as being based on an approximate �rst-order in�uence function,
which can be calculated as the Gateaux derivative with respect to smooth deviations from the
true data-generating distribution as these deviations approach a distribution with point-mass
at A = t (see their Section 4). �is estimator still enjoys second order rates, but, it is not
immediately clear how it adapts to di�erent level of smoothness of θ(a). �at is, their error rates
may be of the form “oracle + second-order terms” only in certain smoothness regimes of θ(a).
�is is in contrast to estimators based on regressing ϕ̂(Z) on A, which would behave like an
oracle, and thus adapt to the smoothness of θ(a), as long as the second-order remainder terms
are negligible. �eir analysis focuses on low-smoothness regimes; viewed as a function of a,
they assume that the joint density of the observations is three-times continuously di�erentiable.
Notice that this implies that both the outcome regression a 7→ µ(a, x) and the conditional
density a 7→ π(a | x) are three-times continuously di�erentiable. In practice, however, it
could be that a 7→ µ(a, x) and thus the dose-response curve are smoother than a 7→ π(a | x).
Our mth-order estimator is an extension of (5.2) and appears to track the smoothness of the
dose-response only in cases when this is no-greater than the smoothness of a 7→ π(a | x),
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which appears to be consistent with the results in Colangelo and Lee [2020].

5.1.4 Our contribution

Our contribution is mainly three-fold. We study three approaches to dose-response estimation:
one based on estimators relying on approximate �rst-order in�uence functions and one based
on higher-order corrections. For the �rst approach, we consider two estimation strategies.
�e �rst one is based on empirical loss minimization, which we view as a “global” method
since it naturally estimates the curve on its entire support. Our approach specializes the
results of Foster and Syrgkanis [2019] on empirical loss minimization with estimated outcomes
to estimate dose-response functions under the square-loss. Importantly, we show that the
resulting estimator is doubly-robust and give an explicit characterization of the remainder term.
�is, in turn, implies faster rates of convergence than those directly obtainable from the results
in Foster and Syrgkanis [2019] whenever the treatment and the outcome models are estimated
at di�erent rates. �e second one extends the DR-learner estimator of the conditional average
treatment e�ect (proposed in Kennedy [2020]) to the continuous treatment e�ect se�ing. We
view this as a “local” method since it estimates the dose-response at a speci�c point.

Next, we show how convergence rates can be substantially improved using kernel-smoothed,
approximate higher order in�uence functions [Robins et al., 2008, 2009a, 2017a]. To the best of
our knowledge, our higher order estimator is the �rst use of higher order in�uence functions
to estimate a dose-response curve. Further, we are not aware of other estimators of the dose-
response curve that exhibit convergence rates as fast as that of our higher order estimator,
under similar assumptions on the data generating process.

Finally, extending the work of Bonvini et al. [2022a] on sensitivity analysis in marginal
structural models, we describe a simple, yet �exible framework to gauge the impact of potential
unmeasured confounders on the dose-response estimates. We analyze the performance of
DR-Learner-based estimators of the bounds on the dose-response function derived under the
sensitivity model.

5.2 Doubly-robust estimators

5.2.1 General doubly-robust estimation procedure

Here, we expand on the list of estimators enjoying second-order, doubly robust errors. We
will show that extensions of the general procedure proposed in Foster and Syrgkanis [2019]
and the DR-learner approach proposed by Kennedy [2020] in the context of conditional e�ects
de�ned by binary treatments also yield estimators enjoying second-order and doubly-robust
remainder terms. �e work by Foster and Syrgkanis [2019] is rather general and already yields
estimators that have second-order remainder terms, but their rates are in terms of ‖η̂ − η‖F
where ‖f‖F is a norm for the function spaces where all nuisance functions η live in. We apply
their results to the dose-response se�ings and show that it is possible to obtain estimators
that are also doubly-robust. Establishing the double-robustness property, i.e. that the second
order remainder term is a product of errors, is particularly important when the estimators of
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the nuisance functions converge at di�erent rates, since the product of the errors would be of
smaller order than the sum of the squared errors.

Let Zn1 , Zn2 and Zn3 denote three independent samples. We will work with estimates of the
pseudo-outcome ϕ(Zj) of the form

ϕ̂(Zj) = ŵ(Aj , Xj){Yj − µ̂(Aj , Xj)}+
1

n

n∑
i=1

µ̂(Aj , Xi)

where µ̂(a, x) and ŵ(a, x) are estimated using observations in Zn1 , the observations (Xi)
n
i=1

belong to Zn2 and Zj belongs to Zn3 . An alternative approach, taken in Semenova and Cher-
nozhukov [2017], is to consider only two samples, say Zn1 and Zn2 , and compute

ϕ̂(Zj) = ŵ(Aj , Xj){Yj − µ̂(Aj , Xj)}+
1

n

n∑
i 6=j

µ̂(Aj , Xi)

for Zj and (Xi)
n
i=1 in the same sample Zn2 . We proceed by considering three separate samples

to simplify the analysis of all our estimators, as we have ϕ̂(Zk) ⊥⊥ ϕ̂(Zl) | (Zn1 , Zn2 ) for k 6= l.
�e roles of Zn1 , Zn2 and Zn3 can be swapped, which results in three estimators of θ(t). One can
then take their average as the �nal estimator. From a sample of iid observations, it is possible
to obtain separate independent samples simply by randomly split the data into sub-samples. To
keep the notation as light as possible, we analyze the theoretical properties of the estimators
based a single split into three subsamples. However, we expect the same arguments to hold
when multiple splits are performed.

Our estimation procedure is summarized in the following algorithm. In the following two
sections, we give error bounds for a procedure that generalizes Algorithm 5.1. In particular, the
bounds apply to the problem of estimating some θ(u) ≡ E{f(Z) | U = u}, where U is some
observed subset of Z and f(Z) is not directly observable. �e estimator is θ̂(u) = Ên{f̂(Z) |
U = u}, where Ên(· | U = u) is either an empirical risk minimizer or a linear smoother and
it is computed from a sample independent of that used to construct f̂(·). One can see that
Algorithm 5.1 �ts exactly this framework where f(Z) = ϕ(Z). �e additional sample split
considered in Algorithm 5.1 is not needed to derive the next two propositions but it is useful to
derive the result in Lemma 12. Finally, both bounds on the risk will involve a particular bias
term r̂(u) that would need to be analyzed on a case-by-case basis

r̂(u) =

∫
f̂(z)dP(z | U = u)− θ0(u).

To estimate a dose-response curve, we have f(Z) = ϕ(Z) and we propose using ϕ̂(Z) as
an estimator of ϕ(Z), as detailed in Algorithm 5.1. Lemma 12 below shows that r̂(u) is
second-order and doubly-robust.



Chapter 5. Fast convergence rates for dose-response estimation 80

Let Zn1 , Zn2 and Zn3 denote three independent samples of n iid observations of Z = (Y,A,X).
1. Nuisance training

• Using only observations in Zn1 , estimate µ(A,X) with µ̂(A,X) and w(A,X) with
ŵ(A,X);

• Using only observations in Zn2 , estimate m(a) =
∫
µ(a, x)p(x)dx with m̂(a) =

n−1
∑n

i=1 µ̂(a,Xi).
2. Pseudo-outcome construction: using observations in Zn3 , construct the pseudo-outcome

ϕ̂(Z) = ŵ(A,X){Y − µ̂(A,X)}+ m̂(A)

3. Second stage regression, either of the following:
(a) Empirical-risk-minimization: De�ne θ̂ to be the empirical risk minimizer

θ̂ = argmin
θ∈Θ

1

n

∑
i∈Zn3

{ϕ̂(Zi)− θ(Ai)}2

where Θ is some function class.
(b) DR-Learner: De�ne

θ̂(t) =
1

n

∑
i∈Zn3

Wi(t;A
n)ϕ̂(Zi)

where Wi(t;A
n) are weights depending on t and An = (A1, . . . , An) ⊂ Zn3 .

4. (Optional) Cross-��ing: swap the role of Zn1 , Zn2 and Zn3 and repeat steps 1 and 2.
Use the average of the three estimators as an estimate of θ.

Figure 5.1: Algorithm to compute general doubly-robust estimators of the dose-response
function.
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5.2.2 Upper bound on the risk of the ERM-based estimator

We start by considering estimating θ(t) via empirical loss minimization as in Algorithm 5.1
(a). We view this as a “global” method, as we estimate the function on its entire support as
opposed to local methods, such as the DR-Learner discussed next, whereby the dose-response
is estimated at a speci�c point. �e error bound we describe in this section will be on the
L2 loss and will be a specialization of the results described in Foster and Syrgkanis [2019]
and Wainwright [2019]. Foster and Syrgkanis [2019] provides a general framework for doing
empirical risk minimization in the presence of nuisance components that need to be estimated.
Here, we take their approach and �nd that the oracle rate is achievable if E‖r̂‖2 is simply of
smaller order. In particular, from Lemma 27, if the orthogonal signal ϕ(Z) is used, r̂ consists
of a product of errors, as opposed to simply being of second order, and thus the bound on the
MSE of our procedure improves upon the bound from Foster and Syrgkanis [2019].

�e next proposition provides a bound on the error incurred by an estimator that uses
an estimated outcome f̂(Z) in place of the true (unobservable) outcome f(Z), when doing
empirical risk minimization with the square loss to estimate a regression function E{f(Z) |
U = u}.

Proposition 7. Consider two independent samples, Dn = (Z01, . . . , Z0n) and
Zn = (Z1, . . . , Zn), consisting of n iid copies of some generic observation Z distributed
according to P. Let U denote a generic variable such that U ⊂ Z . Let θ0(u) ≡ E{f(Z) | U =
u} and suppose f̂(·) is constructed using only observations in Dn. Consider the estimator

θ̂ ≡ argmin
θ∈Θ

1

n

n∑
i=1

{f̂(Zi)− θ(Ui)}2.

Let θ∗ = argminθ∈Θ‖θ − θ0‖ and Θ∗ = {θ − θ∗ : θ ∈ Θ}. De�ne the local Rademacher
complexity:

Rn(Θ∗, δ) = E

{
sup

g∈Θ∗:‖g‖≤δ

∣∣∣∣∣ 1n
n∑
i=1

εig(Ui)

∣∣∣∣∣
}

where ε1, . . . , εn are iid Rademacher random variables, independent of the sample. Suppose
Θ∗ is star-shaped and S ≡ supz∈Z |f̂(z)| ∨ supθ∈Θ ‖θ‖∞ is �nite. Let δn be any solution to
Rn(Θ∗, δ) ≤ δ2 that satis�es

δ2
n &

log log(n)

n
∨ 1

2n
.

�en,

E(‖θ̂ − θ0‖2) . ‖θ∗ − θ0‖2 + δ2
n + E(‖r̂‖2)

where ‖f‖2 =
∫
f2(z)dP(z).
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�e error bound from Proposition 7 takes the form of an oracle rate plus a term involving
r̂, which is controlled by Lemma 12 when f(Z) = ϕ(Z) and f̂(Z) = ϕ̂(Z).

�e assumptions underlying �eorem 7 are rather mild. Appendix D in Foster and Syrgkanis
[2019] and Chapters 13 and 14 in Wainwright [2019] describe common classes of functions for
which the theorem applies, e.g., linear functions with constraints on the coe�cients, functions
satisfying Sobolev-type constraints or Reproducing Kernel Hilbert spaces. In order to apply
Proposition 7, the class of functions considered has to be star-shaped. A class is star-shaped
around the origin if, for any g ∈ G and α ∈ [0, 1], it is the case that αg ∈ G. Importantly, a
convex set is star-shaped. If the star-shaped condition is not met, the statement of the theorem
would hold for δn de�ned in terms of the star-hull of the function class. �e boundedness
assumption on ϕ̂(Z) and Θ is used in various places in the proof, including in ensuring that
the square-loss is globally Lipschitz; we expect this assumption to hold when the observations
are bounded. Finally, the inequality involving δn should o�en be satis�ed. For instance,
δ2
n ≥ 1/(2n) as long as Θ∗ contains the constant function θ(u) = 1.1

Example 2 (Orthogonal series, Examples 13.14 and 13.15 in Wainwright [2019]). Suppose θ(u)
is α-times di�erentiable with θ(α)(u) satisfying

∫
{θ(α)(u)}2dP(u) ≤ B for some constant B.

Let {pj}∞j=1 be an orthonormal basis of L2(P), such as the sine / cosine basis (see Belloni et al.
[2015] for a discussion on di�erent basis choices). Consider estimating θ0 via ERM over the
function class

Θ(k, b) =

θc(·) :

k∑
j=1

pj(·)cj ,
k∑
j=1

c2
j ≤ 1, and |θc(·)| ≤ b


Writing θ0(u) =

∑∞
j=1 pj(u)c0j , we have

θ∗(u) =
k∑
j=1

pj(u)c0j and ‖θ∗ − θ0‖2 =
∞∑

j=k+1

c2
0j .

It can be shown that ‖θ∗−θ0‖2 ≤ k−2α. Furthermore, the function class Θ∗(k) = {θ−θ∗, θ ∈
Θ(k)} = Θ(k, 2b) is convex and thus star-shaped and can be shown to satisfy δ2

n . k/n. �us,
Proposition 7 provides an upper bound of the mean-square error of the order

E(‖θ̂ − θ‖2) . k−2α +
k

n
+ E(‖r̂‖2)

1To see this, suppose that, for the sake of contradiction, δn < 1/
√

2n. To start, because Θ∗ is star-shaped, we
have g(U) = δn ∈ Θ∗ because θ(U) = 1 ∈ Θ∗ and δn ∈ [0, 1]. �en, ‖g‖ = δn so that

Rn(Θ∗, δn) ≥ δnE

(∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
)
≥ δn√

2n
> δ2n

where the second inequality is an application of the Khintchine inequality. �is is a contradiction because δn
satis�esRn(Θ∗, δn) ≤ δ2n.



Chapter 5. Fast convergence rates for dose-response estimation 83

If k is chosen optimally, i.e. k ∼ n1/(2α+1), Proposition 7 shows that the oracle rate is a�ained
as long as E(‖r̂‖2) is of order O(n−2α/(2α+1)).

5.2.3 Upper bound on the risk of the linear smoothing-based estimator

In this section, we consider a DR-Learner-style estimator (cf. Van der Laan [2006] and Kennedy
[2020] for heterogeneous e�ects of binary treatments). �e DR-Learning framework proposed
and analyzed in Kennedy [2020] covers a broad class of second-stage estimators satisfying
a stability condition, linear smoothers being one example. Here, for simplicity, we consider
the case where the second-stage estimator in θ̂(t) is based on localized linear smoothing. As
discussed in Example 3, regressing ϕ̂(Z) on A via local polynomial regression represents an
archetype of a localized DR-Learner. Kennedy et al. [2017] propose using generic learners to
regress the estimated pseudo-outcome ϕ̂(Z) onA but only analyze local linear estimators. �us,
our next proposition is an extension to their work, in the spirit of analyzing more general linear
smoothers. �eorem 1 and Proposition 1 in Kennedy [2020] yield the following proposition.

Proposition 8. Consider two independent samples, Dn = (Z01, . . . , Z0n) and
Zn = (Z1, . . . , Zn), consisting of n iid copies of some generic observation Z distributed
according to P. Let U denote a generic variable such that U ⊂ Z . Let θ0(u) ≡ E{f(Z) | U =
u} and suppose f̂(·) is constructed using only observations in Dn. Consider the following
estimator:

θ̂(t) = n−1
n∑
i=1

Wi(t;A
n)f̂(Z)

Further suppose that the following regularity conditions hold:

• Minimum variance: var{f(Z) | U = u} ≥ c > 0 for all u ∈ U and some constant c;

• Consistency of nuisance estimators: supz |f̂(z)− f(z)| = oP(1);

• Localized weights: n−1
∑n

i=1 |Wi| ≤ C , for some constant C , and there exists a neigh-
borhood Nt around U = t such that Wi(t;U

n) = 0 if Ui 6∈ Nt.

�en, le�ing θ̃(t) = n−1
∑n

i=1Wi(t;U
n)f(Zi) denote the oracle estimator:

|θ̂(t)− θ0(t)| ≤
∣∣∣θ̃(t)− θ0(t)

∣∣∣+ sup
u∈Nt

|r̂(u)|+ oP

(
E
[{
θ̃(t)− θ0(t)

}2
])

.

As discussed in Kennedy [2020], the assumptions underlying Proposition 8 are easily
satis�ed for linear smoothers of the local polynomial regression variety. In particular, the
weights of the local polynomial regression satis�es the assumptions (Tsybakov [2009], Lemma
1.3). �is proposition follows from the results contained in Kennedy [2020] that apply to
general linear smoothers, e.g. it does not require the weights to be localized. We work with
localized weights to simplify the analysis of the point-wise risk.
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Example 3. Suppose θ0(t) ≡ E{f(Z) | A = t} belongs to a Hölder class of order α and let
p = bαc. A DR-Learner can be based upon local polynomial regression of order p. �e weights
are

Wi(t;A
n) = s(t)T Q̂−1Kht(Ai)s(Ai)

T ,

where K(·) is a kernel function, Q̂ = Pn{s(A)s(A)T } and s(a) =
[
1 a−t

h . . .
(
a−t
h

)p]T .
A standard calculation (see, for example, Tsybakov [2009]), yields that

E
[{
θ̃(t)− θ0(t)

}2
]

= O(n−2α/(2α+1))

�is means that the oracle rate is a�ainable if supu∈Nt r̂
2(u) = OP(n−2α/(2α+1)), which is

essentially the same requirement as for the estimator based on empirical-risk-minimization,
see Example 2.

Remark 7. From the bound in Proposition 8, inference can be carried out in the oracle regime,
i.e., under the assumption that supu∈Nt |r̂(u)| is of smaller order that |θ̃(t)−θ(t)|. In particular,
if this holds, all inference tools for standard local nonparametric regression can be used. For
example, let the setup be as in Example 2. Let σ2(t) be asymptotic variance of θ̃(t), σ̂2(t) its
consistent estimator and b(t) the asymptotic bias. �en, if supu∈Nt r̂

2(u) = oP((nh)−1/2), we
have

√
nh[θ̂(t)− θ(t)− b(t)]

σ̂(t)
 N(0, 1)

as shown, for instance, in Section 4 of Fan and Gijbels [2018]. Notice that, without undersmooth-
ing or bias-correction, a Wald-type con�dence interval based on the asymptotic statement
above will cover the smoothed dose-response curve E{θ̃(t)}, rather than θ(t) itself (see Section
5.7 in Wasserman [2006] for more discussion).

5.2.4 Bounding the conditional bias of ϕ̂(Z)

As outlined in Propositions 7 and 8, the analysis of the estimator based on empirical risk
minimization and that of the one based on linear smoothing yield a bound on the MSE that
is the oracle rate plus a term of the order of r̂2(t). We show that r̂(t) for f̂(Z) = ϕ̂(Z) is
second-order, as outlined in the following lemma.

Lemma 12. Let r̂(t) = E{ϕ̂(Z) | A = t,Dn} − θ0(t). It holds that

|r̂(t)| . ‖w − ŵ‖t‖µ− µ̂‖t + |(Pn − P){µ̂(t,X)}|

where ‖f‖2t =
∫
f2(z)dP(z | A = t) and Pn denotes an average over observations in sample Zn2 .
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Proof. Recall that θ0(t) = E{ϕ(Z) | A = t}. By Bayes’ rule, we have

P{µ̂(t,X)} − θ(t) =

∫
w(t, x){µ̂(t, x)− µ(t, x)}dP(x | A = t)

and

E{ϕ̂(Z) | A = t,Dn} =

∫
ŵ(t, x){µ(t, x)− µ̂(t, x)}dP(x | A = t) + Pn{µ̂(t,X)}

Adding and subtracting P{µ̂(t,X)} and applying Cauchy-Schwarz yield the result.

�e result from Lemma 12 shows that |r̂(t)| can be bounded by the product of the L2 errors
in estimating w(a, x) and µ(a, x) plus a centered sample average, which would generally be of
the smaller orderOP(n−1/2) if, for instance, the second moment of µ̂(t,X) (conditional on Zn1 )
is bounded. In this respect, this term is e�ectively asymptotically negligible in nonparametric
models where the rate of convergence is of slower order than n−1/2. �us, the conditional bias
of ϕ̂(Z) is driven by the product of the errors incurred in estimating the nuisance functions;
this product structure of the bias is important when the nuisance functions are estimated at
di�erent rates.

Standard results are generally calculated for L2(dP(a, x)) errors de�ned by the joint
distribution of (A,X), for example

‖w − ŵ‖2 ≡
∫
{w(a, x)− ŵ(a, x)}2dP(a, x).

In this case, optimal convergence rates for estimating µ(a, x) are well-understood for many
classes. For instance, if µ(a, x) belongs to a Hölder class of order γ, then minimax-optimal
convergence rates in L2(dP(a, x)) are of order n−2γ/(2γ+d+1). �e bound from Lemma 12
is actually on an L2 error with weight given by the conditional density of X given A = t.
In most se�ings, we expect the more conventional rate based on L2(dP(a, x)) to match that
based on L2(dP(x | A = t)). For example, Result 1 from Colangelo and Lee [2020] shows that
the rate in L2(dP(x | A = t)p(t)) matches that for the point-wise risk (in (A,X)) under a
mild boundeness assumption. Alternatively, we note that one can always upper bound (up to
constants) ‖f‖t by the supremum norm ‖f‖∞ and the rate for estimating a regression function
in L∞ generally matches that for estimating the function in L2(dP(a, x)) up to log factors.

�ere are fewer results available for conditional density estimation compared to regression
estimation. Recently Ai et al. [2018] have proposed a method to estimate w(a, x) directly that,
under certain conditions, exhibits a convergence rate in L2 of order n−2γ/(2γ+d+1) if w(a, x)
is γ-smooth (see their �eorem 3). Alternatively, one can estimate p(a) and π(a | x) and
compute their ratio to estimate w(a, x). We refer to Colangelo and Lee [2020] for a discussion
on ways to estimate π(t | x). In particular, one approach is to estimate E{Gh1t(A) | X = x},
where G(u) is some kernel and h1 some bandwidth of choice. As a third approach, because
w(a, x) = p(a)p(x)/p(a, x), one can estimate the marginals p(x) and p(a) and the joint density
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p(a, x) and take the ratio as an estimate of w(a, x). Estimating a joint density of d variables
that belongs to a Hölder-class of order γ can be done with error scaling as n−2γ/(2γ+d). �us,
the MSE of this ratio would trivially be upper bounded by the MSEs for estimating p(a, x),
p(x) and p(x), which would depend on their respective smoothness levels.

As investigated in more detail in the next section, an interesting se�ing is where a 7→ µ(a, x)
has a di�erent smoothness level than x 7→ µ(a, x), where we expect the former to match the
smoothness of the dose-response θ(a) in many applications. �is is an example of anisotropic
regression. �e optimal rate for estimating a d-dimensional regression in a Hölder class where
each coordinate has its own level of smoothness γj is of order n−2γ/(1+2γ), where γ satis�es
γ−1 =

∑d
j=1 γ

−1
j [Bertin, 2004, Ho�man and Lepski, 2002]. If µ(a, x) is in an anisotropic

Hölder class of order (α, b, . . . , b), the rate simpli�es to n−2b/(2b+b/α+d), where d = dim(X).
If the treatment A is categorical or α is much larger than b, the rate is essentially n−2b/(2b+d),
i.e. the optimal rate for estimating a d-dimensional regression function that is b-smooth. In
a similar fashion, we may think of a 7→ π(a | x) and x 7→ π(a | x) as having di�erent
smoothness levels; optimal convergence rates in this context typically depend too on the
harmonic means of the smoothness levels of each coordinate [Efromovich, 2007].

Remark 8. Suppose the dose-response θ(a) belongs to a Hölder class of orderα and thatw and
µ are s-smooth so that they can be estimated in L2 at the rate n−2s/(2s+d+1). Estimators whose
risk is of the form “oracle rate + a term of the same order as r̂” would behave like an oracle
estimator that has access to the true nuisance functions as soon as s ≥ (d+ 1)/{2(1 + 1/α)}.
We will show that this oracle e�ciency bar can be lowered, under certain conditions, by a
higher order estimator. See Remark 13.

Remark 9. We note that our discussion on the rates a�ained by the doubly-robust estimators
discussed in Section 5.2 is driven by the bound computed in Lemma 12. If µ̂ and ŵ are designed
to optimally estimate µ andw, e.g. by selecting tuning parameters to minimize estimates of their
MSEs, then generally the bound based on Cauchy-Schwarz is the best available. However, there
are other techniques, such as particular forms of sample spli�ing coupled with undersmoothing,
whereby the nuisance functions are estimated optimally with respect to the target of inference,
and so the selected tuning parameters for the nuisance estimators may not minimize the MSEs
with respect to the nuisance functions. �is approach has favorable theoretical properties,
see e.g. Kennedy [2020], although it can be challenging to implement in practice. We leave
studying undersmoothing in the context of continuous treatments for future work.

Remark 10. Compared to �eorem 2 in Kennedy et al. [2017], �eorem 8 and Lemma 12
provide the same error bound, but under substantially weaker conditions. Sample-spli�ing
circumvents the need to impose Donsker-type conditions on the nuisance functions’ classes
in the form of bounded uniform entropy integrals. Moreover, the use of local polynomial
regression allows the estimator to track the smoothness of θ(a), thereby achieving the oracle
rate in high smoothness regimes (provided that the remainder term is negligible).
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5.3 Higher-order estimators

5.3.1 Preliminaries

Inspired by the seminal work of Robins et al. [2008, 2009a, 2017a], in this section we investigate
the use of higher-order in�uence functions (HOIFs) to estimate continuous treatment e�ects.
To the best of our knowledge, this is the �rst time HOIFs are used in this context. For an
introduction to higher-order in�uence functions, we refer to the main papers [Robins et al.,
2009a, 2017a] and give a brief overview here. Informally, anmth-order estimator of a functional
χ(p) (where p is the density of the observations) takes the form

χ̂(p) = χ(p̂) +
m∑
j=1

Un{ϕ̂j(Z1, . . . , Zj)} (5.3)

where Un is the U -statistic measure so that

Un{ϕj(Z1, . . . , Zj)} =
1

n(n− 1) · · · (n− j + 1)

∑
1≤i1 6=i2... 6=ij≤n

ϕj(Zi1, . . . , Zij).

Le�ing Pj{f(Z1, . . . , Zj)} =
∫
f(z1, . . . , zj)dP(z1) . . . dP(zj) denote the corresponding pop-

ulation measure, this implies an expansion:

χ̂(p)− χ(p) = χ(p̂)− χ(p) +
m∑
j=1

Pj{ϕ̂j(Z1, . . . , Zj)}+
m∑
j=1

(Un − Pj){ϕ̂j(Z1, . . . , Zj)}

Following Robins et al. [2009a], van der Vaart [2014], Robins et al. [2017a], if ϕj is chosen such
that −Pj{ϕ̂j(Z1, . . . , Zj)} acts as the jth-order term in the functional Taylor expansion of
χ(p̂)− χ(p), then

χ(p̂)− χ(p) +
m∑
j=1

Pj{ϕ̂j(Z1, . . . , Zj)} = O(d(p− p̂)m+1)

for some distance d(·). �e quantity ϕj is referred to as the jth-order in�uence function of
χ(p). Provided that

var

 m∑
j=1

(Un − Pj){ϕ̂j(Z1, . . . , Zj)}

 = O(n−1),

this calculation would suggest that χ̂(p) would always be root-n consistent if m is large
enough. However, higher order in�uence functions do not exist for many functionals of
interest, including the average treatment e�ect of a binary treatment. In our se�ing, the
dose-response does not possess in�uence functions of any order, in nonparametric models.
While this means that generally it is not possible to construct root-n consistent estimators,
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we will show that estimators of the form (5.3) that employ approximate in�uence functions
still enjoy favorable properties. �e performance of the resulting estimators will be based on a
careful bias-variance trade-o�. We show that an mth-order estimator of the dose-response can
outperform the doubly-robust estimators from Section 5.2 under certain smoothness conditions.
Our estimator is tailored to models where a 7→ µ(a, x) and a 7→ π(a | x) are α-times and
β-times continuously di�erentiable, respectively. However, our analysis suggests that this
estimator can outperform the current state-of-the-art only when α ≤ β.

5.3.2 Notation

Before describing our mth-order estimator of the dose-response, we need to introduce some
notation. Let Kht(a) denote a kernel of order l = bα ∧ βc and b(x) denote a vector of the �rst
k terms of some orthonormal basis. De�ne

Πi,j ≡ Π(xi, xj) = b(xi)
TΩ−1b(xj)

where, for g(x) =
∫
Kht(a)p(a, x)da:

Ω =

∫
b(x)b(x)T g(x)dx

�us, provided that g(x) is positive and bounded away from zero and in�nity, Πi,j is e�ectively
the kernel of an orthogonal projection in L2(g) onto a k-dimensional subspace. �at is, for
some function f(x),

∫
Π(xi, x)f(x)g(x)dx = b(xi)

Tβ∗, where β∗ solves the minimization
problem

β∗ = argmin
β∈Rk

∫ {
f(x)− b(x)Tβ

}2
g(x)dx

�e kernel Π(xi, xj) has to be estimated in practice because g(x) depends on the true density
p(a, x). WhenX is multivariate, the basis can be taken to be the tensor product basis. Following
Robins et al. [2017a], by a slight abuse of notation, we will denote the projection operator
associated with the kernel above using the same symbol Π. �is way, we have Π(f)(xi) =∫

Π(xi, x)f(x)g(x)dx.

Example 4. Suppose Xi ∈ [ai, bi] for i ∈ {1, 2}, i.e., X ∈ X ⊂ R2. Let b̃(u) be a k-dim vector
of terms from an orthonormal basis in L2 over the interval [−1, 1]. We may construct a generic
element bu(x1, x2) of b(x1, x2) as

bu(x1, x2) =
4

(b1 − a1)(b2 − a2)
√
g(x)

b̃l

(
2x1 − a1 − b1

b1 − a1

)
b̃m

(
2x2 − a2 − b2

b2 − a2

)
where l and m range over {1, . . . , k}. By a change of variables, it can be seen that bu(a, x) is
orthonormal in L2(g) so that the kernel Π(x1i, x2i, x1j , x2j) simpli�es to

Π(x1i, x2i, x1j , x2j) = b(x1i, x2i)
T b(x1j , x2j).
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5.3.3 The estimator

In this section, we describe an estimator of θ(t) =
∫
µ(t, x)p(x)dx based on approximate,

mth-order HOIFs. De�ne the �rst approximate in�uence function:

f0(Z) =
Kht(A){Y − µ(t,X)}

π(t | X)
+ µ(t,X)

and the functions

f1(Z) = Kht(A){Y − µ(A,X)}

f2(Z) =
Kht(A)

π(A | X)
− 1

�e function f0(Z) is a sum of a residual term involving Y − µ(t,X) and the outcome
model µ(t,X). If A was binary and Kht(A) = A, f0(Z) would be exactly the in�uence
function of

∫
µ(1, x)dP(x), which equals E(Y 1) under standard causal assumptions. �e

terms f1(Z) and f2(Z) are kernel-weighted residuals; f2(Z) is a residual term in the sense
that E{Kht(A)π(A | X) | X} = 1 whenever

∫
Kht(a)da = 1.

�e mth-order estimator of θ(t) that we study is

θ̂(t) = Pn{f̂0(Z)}+
m∑
j=2

Un{ϕ̂j(Z1, . . . , Zj)}

where

ϕj(Z1, . . . , Zj) = (−1)j−1
∑

A⊂{1,...,j}

(−1)j−|A|E
{
ϕj(Z1, . . . , Zj) | Zi, i ∈ A

}
ϕj(Z1, . . . , Zj) = f1(Z1)Π1,2Kht(A2) · · ·Πj−2,j−1Kht(Aj−1)Πj−1,jf2(Zj)

are the mth-order approximate in�uence functions. Notice that ϕj(Z1, . . . , Zj) is simply the
degenerate version of ϕj(Z1, . . . , Zj), which ensures that∫

ϕj(z1, . . . , zj)dP(zi) = 0

for every i and (zl : l 6= i). In addition, it holds that∫
Π(xi−1, xi)Kht(ai)Π(xi, xi+1)dP(zi)

= b(xi−1)TΩ−1

∫
b(xi)b(xi)

TKht(ai)dP(zi)Ω
−1b(xi+1)

= Π(xi−1, xi+1)
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and, by degeneracy of f1(z) and f2(z),∫
f1(z1)Π(x1, x2)dP(z1) =

∫
Π(xj−1, xj)f2(zj)dP(zj) = 0.

�is means that the �rst few approximate HOIFs take a rather simple form:

ϕ2(Z1, Z2) = −f1(Z1)Π1,2f2(Z2)

ϕ3(Z1, Z2, Z3) = f1(Z1)Π1,2Kht(A2)Π2,3f2(Z3)− f1(Z1)Π1,3f2(Z3)

ϕ4(Z1, Z2, Z3, Z4) = −f1(Z1)Π1,2Kht(A2)Π2,3Kht(A3)Π3,4f2(Z4)

+ f1(Z1)Π1,2Kht(A2)Π2,4f2(Z4) + f1(Z1)Π1,3Kht(A3)Π3,4f2(Z4)

− f1(Z1)Π1,4f2(Z4)

Remark 11. �e estimator θ̂(t) = Pn{f̂0(Z)}, corresponding to m = 1, is precisely the
estimator studied in Colangelo and Lee [2020]. �us, we may view the mth-order estimator as
a higher-order generalization of their approach.

Remark 12. �e mth-order estimator that we study has the same form as the mth-order
estimator of the functional ψ =

∫
E(Y | A = 1, X = x)p(x)dx studied in Robins et al. [2017a]

(Section 8) except that terms of the form Af(Z) for some function f of the observations are
replaced by Kht(A)f(Z). In fact, the rate described in �eorem 5 is similar to that for ψ
from �eorem 8.1 in Robins et al. [2017a] with n replaced by nh. Finally, Section 9 in Robins
et al. [2017a] presents an estimator that is a modi�ed version of that presented in Section 8.1
where certain terms in the in�uence functions are “cut out” to decrease the variances without
increasing the bias. �is results in a more complex estimator that exhibits a be�er, and in
fact minimax optimal under certain conditions, bias-variance trade-o�. We plan to apply this
re�nement to the dose-response se�ings in future work, with the idea of �rst calculating a
candidate minimax lower bound.

We propose estimating all nuisance functions, namely π(a | x), µ(a, x) and g(x) using a
separate independent sample Dn. Notice that Π(xi, xj) can be estimated by b(xi)T Ω̂−1b(xj),
where Ω̂ is a suitable estimator of

∫
b(x)b(x)T g(x)dx. �e weight g(x) =

∫
Kht(a)p(a, x)da

can be estimated as
∫
Kht(a)p̂(a, x)da. However, for k su�ciently small, an a�ractive alter-

native is to use the empirical version of Ω, namely Ω̂ = Pn{b(X)b(X)TKht(A)}. See also
Mukherjee et al. [2017] for an in-depth discussion of using the empirical counterpart of Ω for
estimators based on higher-order in�uence functions.

5.3.4 Upper bound on the (conditional) risk

Here, we bound the risk of the estimator θ̂(t) conditional on the training sample Dn.

�eorem 5. Suppose Assumptions 1-2 hold and the following assumptions also hold:

1. �e functions a 7→ µ(a, x) and a 7→ π(a | x) are α-times and β-times continuously
di�erentiable with uniformly bounded derivatives, for any x ∈ X ;
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2. �e kernel K of order l = α ∧ β is uniformly bounded, supported in [−1, 1] and satis�es∫
K(u)du = 1 and

∫
Kht(a)p(a, x)da ∈ [ε,M ] for some ε > 0, M <∞ and all x ∈ X .

3. �e orthogonal projection kernel Π and its estimator Π̂ satisfy supx Π(x, x) . k and
supx Π̂(x, x) . k;

4. Boundedness:
∫
Kht(a)p(a, x)da/

∫
Kht(a)p̂(a, x)da ∈ [ε

′
,M

′
] for some ε

′
> 0, M

′
<

∞ and all x ∈ X ; similarly the density of X is uniformly bounded.

�en∣∣∣E{θ̂(t)− θ(t) | Dn}
∣∣∣ . ‖(I −Π)(v)‖g‖(I −Π)(q)‖g + hα∧β + ‖q‖g‖v‖g‖f‖m−1

∞

var{θ̂(t) | Dn} .
m∑
j=1

kj−1h−j

n(n− 1) · · · (n− j + 1)

where v(x) = µ(t, x)− µ̂(t, x), q(x) = 1/π̂(t | x)− 1/π(t | x) and f(x) = p̂(t, x)− p(t, x),
and ‖f‖2g =

∫
f2(x)g(x)dx.

�e assumptions underlying �eorem 5 are similar to those made in Propositions 7 and
8. �e main di�erence is that the higher order estimator θ̂(t) is speci�cally designed for
nonparametric models where a 7→ µ(a, x) and a 7→ π(a | x) possess some smoothness, which
we encode in condition 1. �e second condition ensures that the kernelK accurately tracks the
least smooth function between a 7→ µ(a, x) and a 7→ π(a | x). A be�er estimator or a tighter
bound would track just the smoothness of θ(a) or, at least, the smoothness of a 7→ µ(a, x), as
that should match the smoothness of θ(a) in most applications. We leave this for future work.
In particular, we conjecture it might be possible to derive a tighter bound that would have, in
place of the term hα∧β , terms of order hα∧(β+1) plus terms of order hα∧β(‖v‖+ ‖q‖+ o(h)).
�is re�ned bound would also not track the smoothness of the dose-response and thus we
preferred the simpler and more interpretable bound in terms of hα∧β .

Because the higher order kernels can take negative values on sets of non-zero Lebesgue
measure (see, e.g. Proposition 1.3 in Tsybakov [2009]), we require g(x) =

∫
Kht(a)p(a, x)da

to be bounded away from zero since this is the weight used in the projection Π onto the �nite
space of dimension k. Condition 3 requires the kernels Π and Π̂ to be bounded on the diagonal.
�is would be satis�ed, for instance, if the basis elements are bounded. Condition 4 is a mild
regularity condition on the estimator p̂(a, x).

We now discuss a few implications of �eorem 5, under the assumptions that 1) α ≤ β, i.e.
a 7→ π(a | x) is smoother than a 7→ µ(a, x), and 2) the dose-response is also α-smooth.

Remark 13. In order to understand the implications of �eorem 5, we consider the case where
x 7→ µ̂(t, x) and x 7→ µ(t, x) are Hölder-γ1 and x 7→ π̂(t | x) and x 7→ π(t | x) are Hölder-γ2.
Given an appropriate basis, suppose the approximation error satis�es

‖(I −Π)(v)‖g‖(I −Π)(q)‖g . k−(γ1+γ2)/d.
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Each term in the variance bound contributes a term of order kj−1/(nh)j . �erefore, if we
choose k ∼ nh the variance is of order (nh)−1. With this choice of k, the third term in the
bias ‖q‖g‖v‖g‖f‖m−1

∞ can be made arbitrarily small by choosing m large enough and thus it
is negligible relative to the other terms. �e bound on the MSE (conditional on Dn) of θ̂(t) is
thus O(k−2(γ1+γ2)/d + h2α + (nh)−1).

�is means that, if the average nuisance functions’ smoothness satis�es (γ1 + γ2)/2 ≥ d/4
and h ∼ n−1/(2α+1), one obtains the rate n−2α/(2α+1). �us, θ̂(t) behaves like the oracle
estimator that uses the true nuisance regression functions if α ≤ β and (γ1 + γ2)/2 ≥ d/4,
provided that m is chosen large enough. If s = γ1 = γ2, this means that θ̂(t) is oracle e�cient
for s ≥ d/4. To the best of our knowledge, no existing estimator of the dose-response is
oracle-e�cient in this regime.

In order to compare this result to that from Remark 8, consider the case where the error
in estimating the nuisance functions is entirely driven by that in estimating x 7→ µ(t, x) and
x 7→ π(t | x). �is would be the case, for example, if A is categorical. �en, for s = γ1 = γ2,
|r̂(a)| . n−2s/(2s+d) and the estimators from Section 5.2 are oracle-e�cient only in the
regime s ≥ d/{2(1 + 1/α)}. �us, higher-order corrections, at least in the case where α ≤ β,
e�ectively lower the bar for oracle e�ciency.

Remark 14. Suppose we use HOIFs of order m = 2, the nuisance functions’ smoothness
satis�es (γ1 + γ2)/2 < d/4 and w(a, x) = p(a)/π(a | x) and 1/π(a | x) are estimable at the
same rate in L2. In this regime, the estimators from Section 5.2 are not oracle e�cient, so the
rate is driven by r̂. Without further corrections, r̂ is bounded by the product of the MSEs for
estimating w and µ, which is of bigger order than the term ‖v‖‖q‖‖f‖∞, which is of the same
order as ‖v‖g‖q‖g‖f‖∞ because

∫
Kht(a)π(a | x)da is uniformly bounded. Suppose k and h

are chosen optimally and so are of orders

k ∼ (nh)2d/(d+2γ1+2γ2) and h ∼ n−2(γ1+γ2)/[α{2(γ1+γ2)+d}+2(γ1+γ2)].

�en, the MSE of θ̂(t) is of order n−2r2 for

r2 =

{
1 +

d

2(γ1 + γ2)
+

1

α

}−1

∧ ‖v‖g‖q‖g‖f‖∞

�us, if the �rst term in r2 dominates the rate, then the rate obtained by the quadratic estimator
θ̂(t) is a combination of the oracle rate 1/(2 + 1/α) and the minimax rate for estimating the
dose-response when A is categorical (i.e. some average treatment e�ect) in the non-root-n
regime, namely n−2rf , for rf = [1 + d/{2(γ1 + γ2)}]−1, which is recovered as α→∞.

In Figure 5.2, we illustrate the rates obtained in this work as a function of s = γ1 = γ2. Here
s refers to the smoothness of x 7→ µ(a, x) and x 7→ π(a | x). For illustration, we set α = β = 2
and dim(X) = 20, where α is the smoothness of a 7→ µ(a, x) and a 7→ π(a | x). In this se�ing,
the optimal rate for estimating the anisotropic functionsµ(a, x) and π(a | x) isn−2s/(2s+s/α+d).
�is is also the rate inherited by the plug-in estimator (black line) Pn{µ̂(a,X)}, without further
corrections. �e oracle rate is n−2α/(2α+1). �e DR-Learner and the EMR-based estimator



Chapter 5. Fast convergence rates for dose-response estimation 93

(red line) achieve a rate of order n−2α/(2α+1) ∨ n4s/(2s+s/a+d). �e blue line refers to the
rate obtainable by the quadratic (m = 2) estimator under the assumption that the covariates
density is estimated well enough so that the term ‖v‖g‖q‖g‖f‖∞ is negligible, which is
n−2/{1+d/(4s)+1/α}∨n−2α/(2α+1); see Remark 14. Finally, as a reference value, we also plot the
minimax lower bound for estimating the ATE, which is of order n−2/{1+d/(4s)} ∨ n−1 [Robins
et al., 2009b].
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Figure 5.2: Illustration of the convergence rates in MSE for the estimator considered in this
article, as a function of the smoothness s = γ1 = γ2. We take the smoothness of the dose-
response to be α = 2 and dim(X) = 20.

For smooth functionals possessing a �rst-order in�uence function, e�cient estimators based
on the in�uence function are asymptotically equivalent. For instance, corrected plug-in estima-
tors and TMLE may be di�erent in �nite samples but are asymptotically equivalent. In contrast,
for functionals like the dose-response θ(t), which do not possess in�uence functions of any
order, it is not clear whether estimators based on di�erent approximations of the in�uence func-
tions are equivalent asymptotically. �is is true for higher order corrections as well, particularly
for the choice of the projection kernel Π. For example, Π could be taken to represent a projection
inL2(

∫
Kht(a)p(a, x)da), as we have done in this work, or inL2(p(t, x)). Using projections in

L2(p(t, x)) would avoid the assumption that
∫
Kht(a)p(a, x)da is positive and bounded away

from zero, but at the expense of complicating the proof of the theorem, since the arguments
made in the proof of �eorem 8.1 in Robins et al. [2017a] would need to adjusted to deal with
issues such as

∫
Π(xi−1, xi)Kht(ai)Π(xi, xi+1)dP(zi) 6= Π(xi−1, xi+1). Similarly, one may

consider replacing Kht(a) with the weight function of a local polynomial regression. �at
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is, replacing Kht(a) with s(t)TQ−1K̃ht(a)s(a), where s(a) =
[
1 (a− t) · · · (a− t)l

]T ,
Q =

∫
K̃ht(a)s(a)s(a)T p(a)da and K̃(u) is a standard second-order kernel, such as the

Epanechnikov. An approach conceptually similar to the DR-Learner may use projections in
L2(p(x | t)), although this may require a di�erent analysis than what used to prove �eorem
5. Exploring the di�erences between these approaches is an important avenue for future work.

5.4 Sensitivity analysis to the no-unmeasured-confounding as-
sumption

In this section, we brie�y outline a simple pseudo-outcome regression method to carry out
�exible, nonparametric sensitivity analysis to the no-unmeasured-confounding assumption, i.e.,
when Y a 6⊥⊥ A | X so that

∫
µ(t, x)dP(x) can no longer be interpreted as the dose-response

curve. To the best of our knowledge, this is the �rst nonparametric sensitivity analysis method
for continuous treatment e�ects. Bonvini et al. [2022a] propose an extension to Rosenbaum’s
sensitivity model for binary treatments as follows. Let U be such that Y a ⊥⊥ A | (X,U) and
recall that E(Y a) = E{Y p(a)/π(a | X,U) | A = a}. Let γ ≥ 1 be a user-speci�ed sensitivity
parameter. Departures from the no-unmeasured-confounding assumption are parametrized by
considering all densities of A given (X,U), π(a | x, u), in the class

Π(γ) =

{
π(a | x, u) :

1

γ
≤ π(a | x, u)

π(a | x)
≤ γ

}
When γ = 1, corresponding to the case when the measured covariates are su�cient to
characterize the treatment selection process, one has the usual identi�cation formula

E(Y a) = E{w(a,X)Y | A = a} =

∫
µ(a, x)dP(x).

Lemma 2 in Bonvini et al. [2022a] shows that valid bounds on E(Y a) under the sensitivity
model Π(γ) are

θl(t; γ) =

∫
E[Y γsgn{ql(t,x)−Y } | A = t,X = x]dP(x)

θu(t; γ) =

∫
E[Y γsgn{Y−qu(t,x)} | A = t,X = x]dP(x)

where ql(A,X) (resp. qu(A,X)) is the 1/(1 + γ) (resp. γ/(1 + γ))-quantile of Y given (A,X).
In other words, for a given, user-speci�ed γ, if π(a | x, u) ∈ Π(γ), then θl(a; γ) ≤ E(Y a) ≤
θu(a; γ).

A DR-Learner estimator of the bounds above can be computed by appropriately modi-
fying the original pseudo-outcome ϕ(Z) = w(A,X){Y − µ(A,X)}+

∫
µ(A, x)dP(x) and
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regressing it onto A. For j = {l, u}, de�ne

ϕj(Z; γ) ≡ ϕj(Z;w, κj , qj , γ) = w(A,X){sj(Z; qj)− κj(A,X; qj)}+

∫
κj(A, x; qj)dP(x), for

sl(Z; ql) = ql(A,X) + {Y − ql(A,X)}γsgn{ql(A,X)−Y }

su(Z; qu) = qu(A,X) + {Y − qu(A,X)}γsgn{Y−qu(A,X)}

κj(A,X; qj) = E{sj(Z; qj) | A,X}

Following the sample spli�ing scheme whereby all nuisance functions are estimated on a
separate, independent sample Dn, a DR-Learner estimator of θj(t; γ) regresses an estimate of
ϕj(Z; γ) onto A on the test set. For example, if the second stage regression is done via linear
smoothing, then θ̂j(t; γ) = n−1

∑n
i=1Wi(t;Ai)ϕ̂j(Z; γ). It can be shown that ϕj(Z) is just

part of the in�uence function of
∫
θj(a; γ)dP(a), which is a pathwise-di�erentiable parameter.

Furthermore, ϕl(Z; 1) = ϕu(Z; 1) = ϕ(Z).

�e error analysis of the DR-Learners θ̂l(t; γ) and θ̂u(t; γ) follows from Propositions 7 and
8. In this light, it only remains to calculate E{ϕ̂j(Z; γ) − ϕj(Z; γ) | A = t,Dn}. We do so
in the following lemma, proved in Appendix D.4.1, which plays the role of Lemma 12 in the
no-unmeasured-confounding case.

Lemma 13. Let r̂j(t) = E{ϕ̂j(Z; γ)− ϕj(Z; γ) | A = t,Dn}. It holds that

|r̂j(t)| . ‖w − ŵ‖t‖κj − κ̂j‖t + ‖qj − q̂j‖2t + |(Pn − P)κ̂j(t,X; q̂j)|

�e result of Lemma 13 is similar to that of Lemma 12, except that the upper bound on
the conditional bias involve the additional term ‖qj − q̂j‖2t . �us, consistent estimation of
the bounds relies on the consistency of the conditional quantiles estimators. �e centered
empirical average term is of order OP(n−1/2), under mild boundedness conditions, and thus
negligible in nonparametric models for which the convergence rate is slower than n−1/2.

We conclude this section by establishing that ϕj(Z; γ) satis�es the doubly-valid structure
discovered by Dorn et al. [2021] in a similar sensitivity model for binary treatments. In particular,
the bounds remain valid even if the conditional quantiles are not correctly speci�ed. While
Dorn et al. [2021] focused on binary treatments, their observation extends to the continuous
treatment case as well, as summarized in the following proposition.

Proposition 9. Let w, κl, κu, ql and qu be some �xed-functions such that all the expectations
below are well de�ned. If either κj = κj(a, x; qj) or w(a, x) = w(a, x), but not necessarily
both, then

E{ϕl(Z;w, κl, ql, γ) | A = t} ≤ θl(t; γ) ≤ θu(t; γ) ≤ E{ϕu(Z;w, κu, qu, γ) | A = t}
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Proof. If either κj = κj(a, x; qj) or w(a, x) = w(a, x), then

E{ϕl(Z;w, κl, ql, γ) | A = t}

=

∫ (
ql(t, x) + E[{Y − ql(A,X)}γsgn{ql(A,X)−Y } | A = t,X = x]

)
dP(x)

E{ϕu(Z;w, κu, qu, γ) | A = t}

=

∫ (
qu(t, x) + E[{Y − qu(A,X)}γsgn{Y−qu(A,X)} | A = t,X = x]

)
dP(x)

�e result follows because it holds that

E
[
γsgn{ql(A,X)−Y } | A,X

]
= E

[
γsgn{Y−qu(A,X)} | A,X

]
= 1

and, deterministically, that

{Y − ql(A,X)}γsgn{ql(A,X)−Y } ≤ {Y − ql(A,X)}γsgn{ql(A,X)−Y }

{Y − qu(A,X)}γsgn{Y−qu(A,X)} ≥ {Y − qu(A,X)}γsgn{Y−qu(A,X)}

Proposition 3 establishes the doubly-valid structure of ϕl(Z; γ) and ϕu(Z; γ). Just like
in the sensitivity model studied by Dorn et al. [2021] for binary treatments, the bounds on
E(Y a) remain valid even if the conditional quantiles are not correctly speci�ed as long as
either w(a, x) or the second stage regression of sj(Z; q) onto (A,X) are.

In the next proposition, we provide the sample analog of Proposition 9 when the estimator
of the bounds is a DR-Learner. Let κj(a, x) ≡ κj(a, x; qj) = E{sj(Z; qj) | A = a,X = x}.
Further, let R2

j (t) be the mean-square-error of an oracle estimator of θj(t; γ) regressing the
pseudo-outcome ϕj(Z;w, κj , qj , w, qj) onto A, de�ned as

ϕu(Z;w, κu, qu, w, qu) = w(A,X){su(Z; qu)− κu(A,X; qu)}+

∫
κu(A, x; qu)dP(x)

− w(A,X){Y − qu(A,X)}
[
γsgn{Y−qu(A,X)} − γsgn{Y−qu(A,X)}

]
ϕl(Z;w, κl, ql, w, ql) = w(A,X){sl(Z; ql)− κl(A,X; ql)}+

∫
κl(A, x; ql)dP(x)

− w(A,X){Y − ql(A,X)}
[
γsgn{ql(A,X)−Y } − γsgn{ql(A,X)−Y }

]
It can be shown that E{ϕj(Z;w, κj , qj , w, qj) | A = t} = θj(t; γ) for j = {l, u}.

Proposition 10. Let θ̂j(t; γ) be an DR-Learner estimator of θj(t; γ) based on linear smoothing
(Sections 5.2 and 5.4). Further, let the sample spli�ing scheme be the same as in Figure 5.1 and
assume that the following conditions hold:
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1. If Ti ≤ Vi for all i ∈ {1, . . . , n}, then the weights satisfy

n∑
i=1

Wi(t;A
n)Ti ≤

n∑
i=1

Wi(t;A
n)Vi;

2. ‖ŵ − w‖∞, ‖κ̂j − κj‖∞ and ‖q̂j − qj‖∞ are all oP(1), where qj(a, x) does not need to
equal qj(a, x);

3. var{ϕj(Z;w, κj , qu, w, qu) | A = a} ≥ c > 0 for all a ∈ A and some constant c.

4. �e outcome Y has a uniformly bounded conditional density given any values of (A,X);

5. �e linear smoother weightsWi(t;A
n) are localized as in Proposition 8 in a neighborhood

Nt around A = t.

�en, the following inequalities hold

θ̂l(t; γ) ≤ θl(t; γ) +OP

(
Rl(t) + sup

a∈Nt
rl(a)

)
θ̂u(t; γ) ≥ θu(t; γ) +OP

(
Ru(t) + sup

a∈Nt
ru(a)

)
where, for ‖f‖2t =

∫
f2(z)dP(z | A = t):

rj(t) = ‖ŵ − w‖t‖κ̂j − κj‖t + ‖ŵ − w‖t‖q̂j − qj‖t + |(Pn − P)κ̂j(t,X; q̂j)|

Proposition 10 shows that, even if the conditional quantiles of Y given (A,X) are not
well estimated, the estimators of the bounds can still converge to functions that contain the
region [θl(t; γ), θu(t; γ)] and, in this sense, are “valid bounds.” �e result holds under mild
conditions. For instance, conditions 1 and 5 are a mild stability conditions on the second-stage
linear smoother. Conditions 3 and 4 are mild regularity conditions on the data generating
process and the nuisance functions’ estimators. �e speed at which θ̂j(t; γ) converges to valid
bounds depends on the structural properties of θj(t; γ), encoded in the oracle MSE R2

j (t), as
well as the accuracy in estimating w and κ. �e proof of Proposition 10 extends the strategy of
Dorn et al. [2021] to the case of non-root-n estimable parameters.

5.5 Small simulation experiment

We conduct a small simulation experiment to evaluate the performance of the �rst- and second-
order estimators in �nite samples. We generate data according to the following process

X ∼ U(−1, 1), A ∼ TruncNorm(amin = −1, amax = 1, mean = κ(x), sd = 1),

and Y | A,X ∼ N(ξ(a, x), 0.25).
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where b(x) =
[
b1(x) . . . b6(x)

]T are the �rst six, normalized Legendre polynomials and

β =
[
1, 0.8, 0.4, 0.2, 0.1, 0.05

]T
κ(x) =

1

3
b(x)Tβ and ξ(a, x) = b(a)Tβ + b(x)Tβ

To estimate µ(a, x) and π(a | x) while keeping tight control on the error incurred by the
nuisance estimation step, we simulate estimators as

µ̂(a, x) = ξ(a, x) +N(5n−1/α, n−1/α) · cos(2πx) +N(5n−1/α, n−1/α) · cos(2πa)

π̂(a | x) = φ(a; mean = κ(x) +N(n−1/α, 0.5n−1/α) · cos(2πx), sd = 1)

for n = 500 (the sample size used), α = {2, 4, 6, 8, 10, 15} and where φ(a;µ, σ2) is the density
of a truncated normal and the terms N(µ, σ) denote independent Normal random variables.
�e estimators are �uctuations of the true curves where the �uctuations scale as n−1/α. We
estimate p(a) as n−1

∑n
i=1 π̂(a | Xi).

As an example of the ERM-based estimator, we consider orthogonal series regression,
where the basis that we use is the Legendre polynomials basis. �e number of terms ranges
from 2 to 8. For the DR-Learner, we consider local linear regression with Gaussian kernel and
bandwidth taking value in bw = {0.1, 0.2, 0.3, 0.4, 0.5}. Finally, we consider �rst-order (the
estimator of Colangelo and Lee [2020]) and second-order estimators based on the higher-order
estimator construction. We use a Gaussian kernel for the term Kht(a), with bandwidth taking
value in bw and the �rst eleven Legendre polynomials (normalized) as the basis in Π(xi, xj).
We estimate Ω by its empirical counterpart Ω̂ = Pn{b(X)b(X)TKht(A)}.

To compare the estimators’ performance, we evaluate the dose-response θ(a) = b(a)Tβ +
1
2

∫ 1
−1 b(x)Tβdx at 5 points equally spaced in [−0.5, 0.5]. At each point t, we approximate

the mean-square-errors of the estimators by averaging their errors across 500 simulations.
At each point t, we thus have one estimate of the MSEs for each tuning parameter value
(number of basis or bandwidth value). To compare the estimators at each point, we consider
the best-performing tuning parameter in terms of MSEs. In practice, this is not viable; potential
alternatives would be to select the bandwidth via some form of cross-validation or simply to
report a sequence of estimates for tuning parameter value. We �nally compute a weighted
mean of the MSEs with weight proportional to the density of A at t.

Figure 5.4 reports the results. We have included the MSEs for an oracle DR-Learner
estimator that has access to the true nuisance functions to give a reference value. As expected,
the performance of the estimators is similar when the error in the nuisance estimators is
small. As the error increases, however, the second-order estimator performs be�er. Across the
regimes for the nuisance errors that we considered, the �rst-order estimator performs be�er
than either the one based on orthogonal series regression (ERM-based) or the one based on
local polynomial regression (DR-Learner). In future work, it would be interesting to explore if
this conclusion holds even when π(a | x) and µ(a, x) have vastly di�erent smoothness levels.
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Figure 5.3: Examples of estimators of the true nuisance functions µ(a, x) and π(a | x) and
simulation results.

We conclude with a word of caution. In all the results contained in this work, we have
not kept track of constant terms. While in asymptotic regimes, constants do not ma�er, in
�nite samples they might. Our simulated estimators would thus converge to the truth with the
desired rate of order n−1/α even if we consider �uctuations cn−1/α for any constant c. Perhaps
not surprisingly, we �nd that our simulation setup is sensitive to the choice of the constants
multiplying the rate. In this sense, while encouraging, our limited simulation results should
be interpreted with caution. We leave the design and implementation of larger simulation
experiments to future work. We refer the reader to Li et al. [2005] for a comprehensive
simulation study illustrating the superior performance of estimators based on higher order
in�uence functions in the context of pathwise di�erentiable parameters.

5.6 Conclusions and future directions

In this work, we have explored the possibility of improving existing approaches to doubly-
robust estimation of a dose-response curve by considering estimators based on DR-Learning
framework and higher-order in�uence functions. We have shown that an estimator akin to the
higher-order estimator of the average treatment e�ect described in Robins et al. [2017a] perform
be�er than existing estimators, at least under certain smoothness conditions. In addition, we
have specialized recent advancements on regression estimation with estimated outcomes to the
dose-response se�ings and introduced two new doubly-robust estimators of the dose-response
curve. A small simulation experiment has corroborated our theoretical results in �nite samples.
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Figure 5.4: Estimated MSEs for di�erent estimators of the dose-response across 500 simulations.

We have also described a �exible method to bound the causal dose-response function in the
presence of unmeasured confounding.

Many open questions remain. First, and perhaps most importantly, a minimax lower bound
for estimating the dose-response curve has not been described in the literature, to the best of
our knowledge. Computing a lower bound on the risk of any estimator of this parameter is
instrumental for understanding under what conditions, if any, the higher order estimator that
we have proposed can be improved. Second, the higher-order estimator is currently not capable
of tracking the smoothness of the dose-response when the conditional density of the treatment
given the covariates, viewed as a function of the treatment alone, is less smooth than the dose-
response itself. It is unclear if this stems from an intrinsic limitation of our estimator, the upper
bound on the risk that we have computed is not tight enough or this is part of the minimax
rate. A potential avenue for future research is to investigate the possibility of constructing a
higher-order estimator that is based on regressions of some particular pseudo-outcomes onto
A.

Finally, our results are about convergence of the estimators in mean-square-error. We leave
the study of the inferential properties of the estimators discussed here for future work.



Chapter 6

Causal inference for the effect of
mobility on Covid-19 deaths

�is chapter is taken from my work supervised by Larry Wasserman, Valérie Ventura and
Edward H. Kennedy, which was published in the Annals of Applied Statistics [Bonvini et al.,
2022b].

6.1 Introduction

During a pandemic, it is reasonable to expect that reduced social mobility will lead to fewer
deaths. But how do we quantify this e�ect? In this paper we combine ideas from mechanistic
epidemic models with modern causal inference tools to answer this question using state level
data on deaths and mobility. Our goal is not to provide de�nitive estimates for the e�ects but
rather to develop some methods and highlight the challenges in doing causal inference for
pandemics. We also show how a generative epidemic model motivates a semiparametric causal
model.

We use state death data at the weekly level. �e data are available at the daily county level
but the weekly state level data are more reliable. Indeed, the data are subject to many reporting
issues. It is not uncommon for a state to fail to report many deaths for a few days and then
suddenly report a bunch of unreported deaths on a single day. �e problems are worse at the
county level. Also, there are many small counties with very li�le data. We �nd using weekly
state level data to be a good compromise between the quantity and quality of the data. We also
note that epidemic analyses, such as �u surveillance, are generally done at the weekly level.

Epidemics are usually modeled by using generative models, which fully specify the distri-
bution of the outcome (deaths). �e most common epidemic models relate exposure, infections,
recoveries and deaths by way of a set of di�erential equations. �e simplest version is the SIR
model (susceptible, infected, recovered) but there are many �avors of the model. We review
the basic model in Section 6.4.

101
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Instead of a generative model, we use a marginal structural model (MSM) (Robins [2000],
Robins et al. [2000]). An MSM is a semiparametric model that directly models the e�ect of
mobility on death without specifying a generative model. Because it is semiparametric, it
makes fewer assumptions than a generative model. However, our MSM is motivated by a
modi�ed SIR-type generative model.

We model deaths in each state separately to reduce confounding due to state di�erences.
A�er obtaining model parameter estimates for each state, we will be interested in the causal
question: what would happen if we set mobility to a certain value? For example, how many
deaths would have occurred if mobility had been reduced earlier, or if people had remained
more vigilant throughout? We follow standard causal language and refer to changing mobility
as an intervention. A di�erent notion of intervention would be a policy change like closing
schools. In this case, mobility is a mediator meaning that the intervention a�ects the outcome
through mobility. In this paper we focus on the e�ect of mobility on deaths and refer to
hypothetically se�ing mobility to a certain value as an intervention. Providing estimates of the
e�ect of mobility on deaths is valuable so that we can tell policy makers what mobility level
they should aim for with their interventions. Analyzing the e�ect of interventions is also of
interest but in this paper we focus on the e�ect of mobility on deaths.

We will see that the data provide evidence for an e�ect of mobility. But the data are very
limited. As mentioned above, we use state-speci�c models with weekly resolution due to
concerns about data quality and unmeasured confounding due to geographic di�erences. �e
result is that we have about 40 observations per state. With so li�le data, we are restricted
to use fairly simple models. We do �nd signi�cant causal e�ects but we conduct sensitivity
analyses that show that the e�ects need to be interpreted cautiously. �is sensitivity analysis
includes assessing the impact of model assumptions and unobserved confounding.

Related Work. A number of researchers have considered modeling the e�ect of causal
interventions (such as mobility and masks) on Covid-19. Notable examples are Unwin et al.
[2020], Chang et al. [2020], and IHME [2020]. �ese authors develop very detailed epidemic
models of the dynamics of the disease. One advantage of such an approach is that one can then
consider the e�ects of a large array of potential interventions. Further, the models themselves
are of great interest for understanding the dynamics of Covid-19. However, these models are
very complex, and they involve a large number of parameters including parameters for various
latent variables. Fi�ing such models and assessing uncertainty is challenging. Some authors
take a Bayesian approach with informative priors. Others use heuristics such as reporting
intervals based on using various se�ings of the parameters. To the best of our knowledge, it is
not known how to get valid, frequentist con�dence intervals in these complex models. �is
is not meant as a criticism of these papers but rather, this re�ects the intrinsic di�culty of
dealing with such models. Furthermore, when used for causal analysis, parametrically speci�ed
epidemic models are susceptible to a problem known as the null paradox which we discuss in
Section 4.2.

In contrast, our goal is to make the model as simple as possible and to use standard
estimating equation methods so that standard errors can be obtained fairly easily. We do
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not claim that our approach is superior but we do believe that the model and the resulting
con�dence intervals are more transparent. Ge�ing precise results from our simple model turns
out to be challenging and raises doubts about the accuracy of published studies using highly
complex models.

�e papers by Chernozhukov et al. [2020] and Xiong et al. [2020] are much closer to ours.
�e authors of Chernozhukov et al. [2020] use a set of causal linear structural equations to
model weekly cases as a function of social behavior (mobility) and social behavior as a function
of policies. �ey model several policies simultaneously and they model all states simultaneously.
�ey do obtain valid frequentist con�dence intervals. Xiong et al. [2020] construct a measure
of mobility in�ow and using daily county level cases they �t a linear structural model to relate
cases to mobility in�ow. Our approach di�ers in several ways: we model deaths, we focus
only on the e�ect of mobility, we model one state at a time, and we use a MSM rather than
a generative model. By modeling within each state, we have much less data at our disposal,
which makes modeling challenging. On the other hand, the threat of confounding due to state
di�erences is reduced. By using a marginal structural model, our approach is semiparametric
and so makes fewer assumptions. Unlike these authors, we focus on deaths instead of cases
because we �nd the data on cases to be quite unreliable in general; for example, the availability
of testing changed over time in various ways within and across states. Moreover, the data early
in the pandemic are very important and this is when case data were least reliable. Also, we
place a strong emphasis on sensitivity analysis. �ese analyses complement each other nicely.

Paper Outline. We describe the data in Section 6.2. In Section 6.3 we review some basics
of causal inference. In Section 6.4 we construct the models that we will use and we explain how
the models are �t in Section 6.5. �e results are presented in Section 6.6. Concluding remarks
are in Section 6.7.

6.2 Data

As mentioned earlier, we model each state separately, at the weekly level. �e data for each
state have the form

(A1, Y1), . . . , (AT , YT )

where At is mobility on week t and Yt is the number of deaths due to Covid-19 on week t. We
obtained our data from CMU’s Delphi group (cmu.covidcast.edu) which gets the death data from
Johns Hopkins (https://coronavirus.jhu.edu) and the mobility data from Safegraph (safegraph.com).
�e data are from Feb 15 2020 to December 19 2020.

Figure 6.1 shows log deaths Lt = log(Yt + 1) and “proportion at home” At which is one of
the mobility measures, for four states. �is is the fraction of mobile devices that did not leave
the immediate area of their home. In this case, a higher value means less mobility so we can
think of this measure as anti-mobility. �is is the variable we will use throughout. In the rest
of the paper we standardize mobility by subtracting A1 from each value of At so that mobility
starts at zero.

cmu.covidcast.edu
https://coronavirus.jhu.edu
safegraph.com
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(a) Plot of log deaths versus time, from Feb 15
2020 to December 19 2020, for four populous
states.
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Figure 6.1: Plots of log deaths and anti-mobility across time.

6.3 Causal Inference

In this section, we brie�y review basic ideas from causal inference. Consider weekly mobility
and death data (A1, Y1), . . . , (AT , YT ) in one state. De�ne At = (A1, . . . , At) and Y t =
(Y1, . . . , Yt) for t ≥ 1.

Now consider the causal question: what would Yt be if we set At equal to some value
at = (a1, . . . , at)? Let Y at

t denote this counterfactual quantity. It is important to distinguish
the observed data (AT , Y T ) from the collection of unobserved counterfactual random variables{

Y aT : aT ∈ RT
}
,

which is an in�nite collection of random vectors, one for each possible mobility trajectory
aT . We make the usual consistency assumption that Y T = Y

AT
T . To make sure this is clear,

consider a simple case where a subject gets either treatment A = 1 or control A = 0. In
this case, the random variables are (A, Y, Y 0, Y 1) and the consistency assumption is that the
observed outcome Y satis�es Y = Y 1 if A = 1 and Y = Y 0 if A = 0.

Causal inference when the treatment varies over time is subtle. It may be tempting to
simply regress YT on the past and get the regression coe�cient for mobility. �is strategy
has serious problems because Y T−1 are both confounding and mediating variables. Indeed,
previous deaths can a�ect both future mobility and future deaths, while also being a�ected by
previous mobility. More precisely, a large number of deaths implies a large number of infections
which can cause future infections which then cause future deaths, and a large number of deaths
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might scare people into staying home. So we must adjust for past deaths. A common principle
in epidemiology is to adjust for pre-treatment variables but not for post-treatment variables.
But Ys comes a�er As−1 and before As+1 making it both a pre-treatment and post-treatment
variable. So how do we properly de�ne the causal e�ect?

�e solution is to use Robins’ g-formula. Assuming for the moment that there are no other
confounding variables except past deaths, Robins [1986] proved that the mean of Y at

t is given
by the g-formula:

ψ(at) ≡ E[Y at
t ] =

∫
· · ·
∫

E[Yt|At = at, Y t−1 = yt−1]

t−1∏
s=1

p(ys|ys−1, as) dys; (6.1)

ψ(at) is the causal e�ect we seek to estimate. (We note that some authors denote E[Y at
t ] by

E[Yt|do(at)].) When there are other confounders Xt besides past deaths, the formula becomes

ψ(at) ≡
∫
· · ·
∫

E[Yt|At = at, Y t−1 = yt−1, Xt−1 = xt−1]

×
t−1∏
s=1

p(ys, xs|ys−1, as, xs−1) dys dxs.

Intuitively, the g-formula can be obtained as follows. �e density of (yt, at) can be wri�en as

p(yt, at) =
t∏

s=1

p(ys|ys−1, as)p(as|as−1, ys−1). (6.2)

Now replace p(as|as−1, ys−1) with a point mass at as (i.e. the A’s are �xed, no longer random)
and then �nd of the mean of Yt from this new distribution. It will be useful later in the paper
to bear in mind that ψ(at) ≡ ψ(at, p) is a functional of the joint density p from (6.2).

For the causal e�ect ψ(at) to be identi�ed we require three standard assumptions. �ese
are: (1) there is no unmeasured confounding. Formally, this means that at each time, the
treatment is independent of the counterfactuals given the past measured variables. (2) �e
distribution of treatment has a positive density. (3) Counterfactual consistency: If At = at then
Yt = Y at . Later we add a fourth assumption, namely, that the dependence of mobility on the
past satis�es a Markov condition.

�e next question is: how do we estimate ψ(at)? A natural idea is to plug-in estimates of
all the unknown quantities in the g-formula which leads to

ψ̂(at) ≡
∫
· · ·
∫

Ê[Yt|At = at, Y t−1 = yt−1]
t−1∏
s=1

p̂(ys|ys−1, as) dys. (6.3)

As discussed in Robins [1989, 2000], Robins et al. [2000] there are a number of problems with
this approach, called g-computation. If we plug-in nonparametric estimates, we quickly face
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the curse of dimensionality. If we use parametric estimates, we encounter the null-paradox
(Robins and Wasserman [1997]): there may be no se�ing of the parameters which can represent
the case where there is no treatment e�ect, i.e., there is no se�ing of the parameters which
makes ψ(at) a constant function of at. We discuss the null paradox further in Section 4.2.

An alternative approach to estimating ψ(at) is to directly specify a parametric functional
form g(at, β) for ψ(at). Such a model is called a marginal structural model (MSM). Robins et al.
[2000] showed that β can be estimated by solving the following inverse-probability-weighted
estimating equation: ∑

t

Wt h(At)(Yt − g(At, β̂)) = 0 (6.4)

where

Wt =

t∏
s=1

π(As|As−1)

π(As|As−1, Y s−1)
(6.5)

and h is an arbitrary function. �e choice of h a�ects the e�ciency of the estimator but not its
consistency. We discuss the choice of h in Section 6.5.

An MSM is a semiparametric model in the sense that it leaves the data generating process
unspeci�ed, subject to the restriction that the functional ψ(at) has a speci�c form. Speci�cally,
let us write ψ(at) as ψ(at, p) to make it clear that ψ(at, p) depends on the joint density of the
data p(aT , yT ) from (6.2). �e generative model we are using is then

P =
{
p(aT , yT ) : there exists β such that ψ(at, p) = g(at, β) for all t

}
. (6.6)

�e model g is typically chosen to be interpretable. For example, suppose that g(at, β) =
β0 + β1

∑
s as. �en the e�ect of the parameter se�ings is simple (i.e., mean outcomes only

depend linearly on the amount of cumulative treatment), and the null (of no treatment e�ect)
simply corresponds to β1 = 0. It is important to keep in mind that g(at, β) is not a model for
the entire data generating process, just for marginal treatment e�ects, i.e., how mean outcomes
under di�erent treatment sequences are connected. Marginal structural models are o�en
chosen to be some arbitrary but simple parametric model. Instead, we choose to specify the
marginal structural model g(at, β) by the following route: we tentatively specify a generative
model and �nd a closed form formula g(a, β) for ψ(at). We then drop the generative model
and use g(at, β) as a MSM. We explain this in more detail in the next section.

Remark 15. �ere is a di�erence between the standard MSM setup and the one we are considering
that warrants mentioning. Typically one assumes access to n di�erent time series (Z1, ..., Zn),
with each series Z = {(A1, Y1), ..., (AT , YT )} = (AT , Y T ) observed for n di�erent independent
units (e.g., states). �ere, one could have a di�erent estimating equation at each time, for example,∑

i

Wti ht(Ati)(Yti − gt(Ati, β̂t)) = 0

where the i subscript denotes weights, treatments, outcomes, etc. for series i. If there are common
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parameters across timepoints, then these estimating equations could be combined, for example by
summing over time, or using a generalized method of moments approach, etc. However, we model
states individually, and so do not assume di�erent states are independent. �is leaves us with one
observation per state at each time, which we then combine across time (but only within state)
to obtain estimating equation (6.4). �is represents the trade-o� between independence versus
modeling assumptions (e.g., Markov assumptions in the weights, or linearity in g(·)): the less we
require of one, the more we require of the other.

6.4 Models

Epidemics are o�en modeled using di�erential equations that describe the evolution of certain
subgroups over time. Perhaps the most common is the SIR (Susceptible, Infected, Recovered)
model (Kermack and McKendrick [1927], Brauer et al. [2012], Bjørnstad [2018]) described by
the equations

dSt
dt

= −αItSt
N

dIt
dt

=
αItSt
N
− γIt

dRt
dt

= γIt,

where N is population size, St is the number of susceptibles, It is the number of infected, Rt
are the removed (due to infection) at time t and α > γ. Solving the second equation conditional
on St yields It = It−1e

∫ t
t−1 αSu/N−γdu, which can be discretized as

It ≈ It−1e
αSt/N−γ (6.7)

when Su ≈ St for all u ∈ (t− 1, t). Without intervention, the epidemic grows exponentially,
peaks when St/N = γ/α and then decays exponentially. �ere are numerous generalizations
of this model including stochastic versions, discretized versions and models with more states
besides S, I and R.

6.4.1 The Mobility Model

Our proposed MSM is

g(at, ν0, ,ג f) =
t∑

s=1

f(s, t)eν0(s)+
∑s
r=1 (ar)ג (6.8)

with nuisance functions f , ν0 and .ג �e model is motivated by (6.7) as we now explain.

�e basic idea of the SIR model is that there is a natural tendency for an epidemic to increase
exponentially at the beginning. But there are also elements that reduce the epidemic such
as the depletion of susceptible individuals due to infection. At the beginning of a pandemic,
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reduction of susceptibles will play a negligible role. On the other hand, interventions like
lockdowns, school closings etc can have a drastic e�ect. �ese considerations lead us to the
following working model. We use this working model only to suggest a form for the MSM.

Let It denote new infections in week t. Let

At ∼ Qt
It = It−1e

ct+ג(At) + δt (6.9)

Yt =
t∑

s=1

f(s, t)Is + ξt

where Qt is an arbitrary distribution depending on (At−1, It−1, Y t−1), δt and ξt are mean
0 random variables (independent of the other variables), f(s, t) denotes the probability that
someone infected at time s dies of COVID at time t, the parameter ct is a positive number and
ג is a smooth function. Notice that the infection process (second equation) has an exponential
growth form as in (6.7), but we model the exponent directly as a function of mobility and time
instead of stipulating a model for the susceptibles St. Here, ct represents the evolution of the
epidemic without intervention and (At)ג is the e�ect of mobility. We allow ct to vary with t to
make the model more general and to allow the spread of Covid-19 to depend on the availability
of susceptibles. We write

f(s, t) = d(s)f0(s, t) (6.10)

where d(s) is the probability that someone infected at time s will eventually die of COVID and
f0(s, t) is the probability that someone infected at time s and who will eventually die, will
die at time t. Following Unwin et al. [2020] we take f0(s, t), on the scale of days, to be the
density of T1 + T2 where T1 (time from infection to symptoms) is Gamma with mean 5.1 and
coe�cient of variation 0.86 and T2 (time from symptoms to death) is Gamma with mean 18.8
and coe�cient of variation 0.45. �e resulting distribution can be accurately approximated
by a Gamma with mean 23.9 days and coe�cient of variation 0.40. Finally, we integrate this
distribution over 7 day bins to get f0(s, t) on a weekly scale. A directed graph illustrating the
model is given in Figure 6.2.

At this point, we might use (6.9) as our model. But the It’s are not observed. Further-
more, a non-linear, sequentially speci�ed parametric generative model can su�er from serious
anomalies when used for causal inference. In particular, such a model can su�er from the null
paradox (Robins [1986, 1989], Robins and Wasserman [1997]). �is means that there may be no
parameter values that satisfy both (i) Yt is conditionally dependent on past values of As and
(ii) the null hypothesis of no treatment e�ect holds. We explain this point in more detail in
Section 6.4.2.

Instead, we apply the g-formula to the model speci�ed by (6.9) to �nd E[Y at
t ] and use the
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A1 I1 Y1 A2 I2 Y2

Figure 6.2: Directed graph illustrating the working model. Infections It are unobserved. We
use this model to �nd the form g(a;β) of the causal e�ect ψ(a). But when we estimate β we
use a semiparametric estimating equation approach; we do not �t the above model to the data.

resulting function as an MSM. �is yields

E[Y at
t ] =

t∑
s=1

f(s, t)eν0(s)+
∑s
r=1 (Ar)ג ≡ g(at, ν0, ,ג f)

where ν0(s) = log I1 +
∑s

r=1 cr . (We treat I1 as an unknown parameter that is absorbed into
ν0.) Now we abandon the working model and just interpret g(at, ν0, ,ג f) directly as a model
for the counterfactual E[Y at ], that is, as an MSM. Put another way, we start with the model
(6.9), �nd g(at, ν0, ,ג f) = E[Y at ], and then expand the model to include all joint distributions
that satisfy E[Y at

t ] = g(at, ν0, ,ג f). �is de�nes the model (6.6).

�e MSM can be �t with the estimating equation (6.4), which corrects for confounding due
to past deaths, not by modeling the entire conditional process, but by weighting by propensity
weights Wt given by (6.5). �is MSM approach allows us to be agnostic about whether it is
our motivating model (6.9) that holds, or some other much more complicated data-generating
process. In fact, one can go further and take a completely agnostic view, in which the marginal
structural model is not assumed to be correct, but only viewed as an approximation to the true,
and possibly very complex, underlying counterfactual mean [Neugebauer and van der Laan,
2007].

To summarize, our approach involves three steps.

1. Tentatively specify a working model for infections It.

2. Find the resulting functional form g(a;β) for ψ(a) using the g-formula. We use g(a;β)
as our MSM.

3. Drop the working model and �t the MSM semiparametrically without further assumptions
on the data generating process.

It is important to emphasize that when we estimate the causal parameter β, we do not
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assume any model for the epidemic process. Note that the model for It in step 1 is very �exible
but it does assume that the mobility e�ect is additive. An alternative would be to use a more
sophisticated epidemic model for E[It|past] in step 1. It would be interesting to do this and
this would help unify the traditional approach to epidemic modeling with the MSM approach
we are using. However, the implied function g(a;β) would not be in closed form and it would
be very hard to �t this model especially with only 40 observations.

6.4.2 The Null Paradox

To see how the null paradox works, consider a simple example with four time ordered variables
(A0, I1, A1, I2) where A0 and A1 are mobility and I1 and I2 are number of infected, which we
assume are observed. �is is a snippet of the entire time series. A simple epidemic model is

A0 ∼ p(a0)

log I1 = β0 + ε

A1 ∼ p(a1|I1, A0)

log I2 = θ0 + θ1A0 + θ2 log I1 + θ3A1 + δ

where ε and δ are, say, mean 0 Normal random variables. �is is meant to capture exponential
growth of It (i.e. the SIR model at early times with no recovered individuals). By applying the
g-formula, the causal e�ect of se�ing A = (A0, A1) to a = (a0, a1) is

ψ(a) = E[log Ia2 ] = θ0 + θ1a0 + θ2β0 + θ3a1.

�is means that, if we simulated the epidemic model with A = (A0, A1) set to a = (a0, a1),
the mean of log I2 would precisely be θ0 + θ1a0 + θ2β0 + θ3a1. Suppose now that there is
an unobserved variable U that a�ects I1 and I2. For example, U could represent the general
health of the population. �e variable U is not a confounder as it does not a�ect A0 or A1. �e
causal e�ect is still given by the g-formula with no change. Suppose now that neither A0 or A1

have a causal e�ect on I2. �e set up is shown in Figure 6.3. Despite the fact that A0 and A1

have no causal e�ect on I2, it may be veri�ed that I2 is conditionally dependent on A0 and A1.
(�is follows since I1 is a collider on the path I2, U, I1, A0, A1.) It follows that the maximum
likelihood estimators θ̂1 and θ̂3 are not zero (and in fact converge to nonzero numbers in the
large sample limit). �e estimated causal e�ect is

ψ̂(a) = θ̂0 + θ̂1a0 + θ̂2β̂0 + θ̂3a1

and will therefore be a function of a even when a has no causal e�ect.
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A0 I1 A1 I2

U

Figure 6.3: �e null paradox. �e directed graph is a snippet of the time series. Mobility is
(A0, A1) and number of infected individuals is (I1, I2). �e latent variableU is not a confounder
as it has no arrows to mobility. Neither A0 nor A1 have a causal e�ect on I2. �e variable I1

is a collider, meaning that two arrowheads meet at I1. �is implies that I2 and (A0, A1) are
dependent conditional on I1. �e estimate of the parameters that relate I2 to (A0, A1) in the
epidemic model will be non-zero even though there is no causal e�ect.

�e details of the model were not important. A similar model is

A0 ∼ p(a0)

I1 ∼ p(i1|A0)

A1 ∼ p(a1|I1, A0)

I2 ∼ p(i2|A0, I1, A1)

where E[I2|A0, I1, A1] = eβ0+β1A0+β2A1I1. In this case

E[Ia2 ] = eβ0+β1a0+β2a1E[I1|A0].

�e same argument shows that the estimate will be a function of a even when a has no causal
e�ect.

6.4.3 Simplified Models

�e MSM in (6.8) is not identi�ed without further constraints. We will take (As)ג = βAs so
that

E[Y at
t ] =

t∑
s=1

f(s, t)eβ
∑s
r=1 Ar+ν0(s).

Solving the estimating equation with this model is unstable and computationally prohibitive.
Hence we make two approximations. First, we take f0(s, t) in (6.10) to be a point mass at δ = 4
weeks (approximately its mean). �en we get

E[Y at
t ] = ed(t−δ)+ν0(t−δ)+βMt
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where Mt ≡ M(at) =
∑t−δ

s=1 as. If we approximate logE[Y at
t ] with E[log(Y at

t )] we further
obtain

E[Latt ] = log d(t− δ) + ν0(t− δ) + βMt (6.11)

where Lt = log(Yt + 1). Note that ∂E[Latt ]/∂as = β for any s ≤ t − δ so β has a clear
meaning. Finally, we take

ν(t) ≡ log d(t− δ) + ν0(t− δ) =
k∑
j=1

βjφj(t)

where φ1, . . . , φk are orthogonal polynomials starting with φ1(t) = t. �is model is easy
to �t and will be used in Section 6.6. Note that the probability of dying d(t) is allowed to
change smoothly over time, which it likely did as hospitals were be�er prepared during the
second wave. We have consistently found that using k = 1 leads to unreasonable results which
means that the disease exponential growth changes with time other than through mobility.
�e method for choosing k is described in Section 6.6.2.

�e model in (6.11) was used independently in Shi and Ban [2020] with k = 1. �ey used
the model for curve ��ing and they showed that this simple model �ts the data surprisingly
well. However, we �nd that making ν(t) non-linear (i.e. k > 1) is important.

We will also consider a di�erent approach to ��ing the model. Speci�cally, we will use
deconvolution methods to estimate the unobserved infection process I1, . . . , IT . �e �rst
equation in (6.9) implies E[It] = eν(t)+β

∑
s As suggesting the MSM

E[Latt ] = ν(t) + βMt

which is the same as (6.11) except that now Lt = log(It) and Mt =
∑t

s=1 as rather than
Mt =

∑t−δ
s=1 as.

Remark 16. We have regularized the model by restricting ν(t) to have a �nite basis expansion.
We also considered a di�erent approach in which ν(t) is restricted to be increasing which seems a
natural restriction if ν(t) is supposed to represent the growth of the pandemic in lieu of intervention.
(�is is valid only at the start of the pandemic; later in the pandemic, ν could be decreasing.) Using
the methods in Liao and Meyer [2018], Meyer [2008, 2018] we obtained estimates and standard
errors. �e results were very similar to the results in Section 6.6.

Counterfactual Estimands. Now we discuss some causal quantities that we can estimate
from the model. Let at = (a1, . . . , at) be a mobility pro�le of interest. A�er ��ing the model
we will plot estimates and con�dence intervals for counterfactual deaths

θt = exp
{
E[Lat ]

}
(6.12)

under mobility regime at, t = 1, . . . , T .
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We will consider the following three interventions:

Start one week earlier : aT = (A2, A3, . . . , , AT+1)

Start two weeks earlier : aT = (A3, A4, . . . , AT+2)

Stay vigilant : aT = (A1, A2, . . . , A9, A10, A10, A11, A11, A12, A12, A13, A13, . . .)

�e �rst two interventions aim to assess COVID-19 infections if we had started sheltering in
place one and two weeks earlier. �e last intervention halves the slope of the rapid decrease
in stay at home mobility a�er the initial peak in week 9 that is clearly visible in Fig.6.1. See
Figure 6.6.

6.5 Fitting the Model

Now we discuss the method for estimating the model.

6.5.1 Fitting the Semiparametric Model

Recall the MSM
E[Latt ] = ν(t) + βM(at) (6.13)

where ν(t) = β0 +
∑k

j=1 βjφj(t). We estimate ν(t) and β by solving the estimating equation∑
t

ht(at)Wt[Lt − (ν̂(t) + β̂M(at))] = 0 (6.14)

corresponding to (6.4). We discuss the estimation of the weights Wt in Section 6.5.2. As is o�en
done for MSMs we choose

ht(at) = (1, φ1(t), . . . , φk(t),M(at))
T

since solving the estimating equation then corresponds to using least squares with weights Wt.
�e estimating equation is then the derivative of the weighted sum of squares set to zero.

Recall from (6.12) that θt = eψ(at) = eν(t)+βM(at) which we estimate by θ̂t = eν̂(t)+β̂M(at).
We obtain approximate con�dence intervals using the delta method and the aymptotic normality
of estimating equations estimators. �e asymptotic variance is based on the heteroskedasticity
and autocorrelation consistent HAC sandwich estimator (Newey and West [1987]).

6.5.2 Estimating the Stabilized Weights

To estimate the marginal structural model we need to estimate the stabilized weights

Wt =
t∏

s=1

π(As|As−1)

π(As|As−1, Y s−1)
;
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see (6.5). One approach is to plug in estimates of the numerator and denominator densities into
the formula for Wt. But estimating these densities is not easy and ratios of density estimates
can be unstable. �e problem is exacerbated when we multiply densities. Instead we use a
moment-based approach as in Fong et al. [2018], Zhou and Wodtke [2018]. �e idea is to
estimate the vector of weights W1, . . . ,WT by noting that they need to satisfy certain moment
constraints. Our method is similar to the approach in Zhou and Wodtke [2018].

We rewrite Wt =
∏t
s=1 Vs where

Vs ≡ Vs(As, Y s−1) =
π(As|As−1)

π(As|As−1, Y s−1)
.

Let h̃1(at) and h̃2(yt−1) be arbitrary functions and de�ne their centered versions by

h1(at) = h̃1(at)− µt
h2(yt−1) = h̃2(yt−1)− ηt

where the conditional means are

µt ≡ µt(At−1) = E[h̃1(At)|At−1]

ηt ≡ ηt(At−δ−1, Y t−2) = E[h̃2(Yt−1)|At−δ−1, Y t−2].

Weighted products of these functions have mean zero since

E[h1(At)h2(Yt−1)Wt] =

∫
· · ·
∫
h1(at)h2(yt−1)p(at, yt−1)Wt(at, yt−1) dat dyt−1

=

∫
· · ·
∫
h1(at)h2(yt−1)π(at|at−1, yt−1)p(yt−1|at−1, yt−2)p(at−1, yt−2)

× π(at|at−1)

π(at|at−1, yt−1)

(
t−1∏
s=1

Vs

)
dat dyt−1

=

∫ {
ω(yt−2, at−1)

∫
h1(at)π(at|at−1)dat

×
∫
h2(yt−1)p(yt−1|at−1, yt−2)dyt−1

}
dat−1 dyt−2

= 0

from the de�nition of h1 and h2, where

ω(yt−2, at−1) = p(yt−2, at−1)
t−1∏
s=1

Vs.
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�us, the weights are characterized by the moment constraints

E[h1(At)h2(Yt−1)Wt] = 0. (6.15)

As in Zhou and Wodtke [2018] we estimate the weights by �nding Wt to satisfy

E[h1(At)h2(Yt−1)Wt] = 0

for a set of functions h1, h2. �is requires estimating these moments and estimating µt and ηt.
To proceed, we make a Markov assumption, namely

E[h̃1(At)|At−1] = E[h̃1(At)|At−1, . . . , At−κ]

and

E[h̃2(Yt−1)|At−δ−1, Y t−2] = E[h̃2(Yt−1)|At−1−δ, . . . , At−κ−δ, Yt−2, . . . , Yt−κ]

for some κ. We will use κ = 1 in our analysis. Moreover, we assume homogeneity so that the
functions µt and ηt do not depend on t. Under the homogeneous Markov assumption, µt and
ηt can be estimated by regression. For example, if κ = 1, µ can be estimated by regressing
h̃1(A2), . . . , h̃1(AT ) on A1, . . . , AT−1. (We tried both linear and nonparametric regression
and obtained similar weights from each approach so we have used linear regression in our
results.) �e sample versions of the moment conditions (6.15) are then

1

T

∑
t

HtjWt = 0

where
Htj = (h̃1j(At)− µ̂j)(h̃2j(Yt−1)− η̂j)

and {(h̃1j , h̃2j) : j = 1, . . . , J} are a set of pairs of functions, µ̂j is the estimate of

E[h̃1(At)|At−1, . . . , At−κ]

and η̂j is the estimate of E[h̃2(Yt−1)|At−1−δ, . . . , At−κ−δ, Yt−2, . . . , Yt−κ].

�e moment conditions do not completely specify the weights. As in the above references
we add a regularization term, in this case, (1/2)

∑
t(Wt − 1)2 and we require

∑
tWt = T .

�is leads to the following minimization problem: minimize W1, . . . ,WT in

1

2

∑
t

(1−Wt)
2 + λ0

∑
t

(Wt − T ) +
J∑
j=1

λj
∑
t

WtHtj (6.16)

where the λj ’s are Lagrange multipliers. �e solution to the minimization is

W = 1−H(HTH)−1[HT1−D] (6.17)
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1. Choose the order κ of the Markov assumption.
2. Choose J pairs of functions

{
(h̃1j(a), h̃1j(y)) : j = 1, . . . J

}
.

3. Estimate µj = E[h̃1j(At)|At−κ, . . . , At−1] and ηj =

E[h̃2j(Yt−1)|At−κ−δ−1, . . . , At−δ−1, Yt−1−κ, . . . , Yt−2] by regression.
4. Compute the weights W1, . . . ,Wn from (6.17).
5. Fit the model Lt = β

∑t−δ
i=1As + ν(t) + εt using weighed least squares with weights

W1, . . . ,Wn.

Figure 6.4: Steps for ��ing the model.

where W = (W1, . . . ,WT ), 1 is a vector of 1′s, D = (T, 0, . . . , 0)T and

H =


1 H11 · · · H1N

1 H21 · · · H2N
...

...
...

...
1 HT1 · · · HTN


and N is the total number of moment constraints. In our case we choose h11(a) = a, h12(a) =
a2, h21(y) = y, h22(y) = y2.

To include other time varying confounders Xt one should replace h2(yt−1) with two
functions:

h2(yt−1) = h̃2(yt−1)− E[h̃2(yt−1)|Xt−1, At−1, Y t−2]

and
h3(xt−1) = h̃3(xt−1)− E[h̃3(xt−1)|Xt−2, At−1, Y t−2].

�e steps for ��ing the model are summarized in Figure 6.4. Note that we cannot include
past infections as a confounder since this variable is not observed. We choose not to include past
cases or hospitalizations because the former is terribly biased downward at the beginning of the
epidemic, and reliable data for the second is di�cult to obtain. We need to assume that adjusting
for past deaths serves as an adequate surrogate for infections, cases and hospitalizations. We
address the more general problem of unoberved confounding in Section 6.2.

6.6 Results

In this section we give results for the mobility measure ‘proportion of people staying at home.’
We begin by showing the results of ��ing the MSM to each state. �en we report on various
types of sensitivity analysis.
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(b) Plot of ν̂(t) for four populous states.

Figure 6.5: Estimates of the MSM parameters de�ned in (6.13).

6.6.1 Main Results

Figure 6.5a shows 95 percent con�dence intervals for β̂ for each state from the marginal
structural model in (6.13). We computed standard errors as if the weights were known, which
results in valid but potentially conservative inference as long as the weight models are correctly
speci�ed [Tsiatis, 2007]. �e estimates are mostly negative, as would be expected, since higher
As means less mobility. Interestingly, we �nd that there turns out to be li�le confounding due
to past deaths, as the �ts with and without the estimated weights (not shown) are very similar.
Nevertheless, we keep the weights in all the �ts as a safeguard. In Section 6.6.2 we investigate
this further by doing a sensitivity analysis.

Figure 6.5b shows the estimated smooth function ν̂(t) in (6.13) for four states. �e functions
are increasing with slopes tapering o� as time goes on, and picking up again in NY and CA in
late September, consistent with deaths rising at that time in these two states; see Figure 6.1.
�e shape of ν̂(t) is consistent with the usual epidemic dynamics where it is assumed that
this component should initially grow (linearly with no interventions and with an in�nite pool
of susceptibles) on the log-scale at the start of the epidemic and then decrease. Some of the
non-linearity probably re�ects the fact that the probability d(t) of dying decreases over time
due to be�er hospital treatment, social distancing changes, and the number of susceptibles
to COVID-19 decreases over time as recovered patients are likely immune for some period
post-infection.

Next we consider counterfactual deaths θt = exp(E[LaT ]) in (6.12) for the three mobility
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Figure 6.6: �e observed mobility curves and hypothetical interventions for four states. Mobility
has been standardized to have value 0 at the beginning of the series. All plots are on the same
scale.

scenarios described at the end of section 4; two mobility scenarios are shown in Figure 6.6 for
four states. Figure 6.7 shows the estimates and pointwise 95 percent con�dence bands for θt
for these four states. �e plots for all states are in the Supplement [Bonvini et al., 2022b].

Finally, Figure 6.8 shows 95 percent con�dence intervals for
∑

t exp
(
E[Lat ]

)
−
∑

t Yt and
for
(∑

t exp
(
E[Lat ]

)
−
∑

t Yt
)
/
∑

t Yt under the ‘stay vigilant’ scenario. We refer to these as
total and relative excess deaths, where a negative excess means that lives would be saved. Of
course, this number is larger for more populous states, although relative to the total number of
observed deaths, all states small and large would have bene�ted equally from more sustained
vigilance. Note that the con�dence interval for New York (fourth from right) is very large. New
York experienced the pandemic early and responded with large values of As so it is believable
that further vigilance may not have a large e�ect.

We now compare our results to those in Unwin et al. [2020]. �ey use a sophisticated model
of the epidemic dynamics so a direct comparison is di�cult. �ey estimate a parameter Rt that
measures how many individuals an infected person will infect. Using a Bayesian approach,
they �nd a 95 percent posterior interval for the change in Rt for the U.S. when se�ing mobility
to its maximum value is [26.5,77.0]. �e log of the change in Rt is roughly equivalent to −β in
our se�ing. On the log scale, their interval is [3.3,4.3]. Our e�ect sizes are similar and slightly
larger for the large states. For the middle sized states our e�ect estimates vary somewhat
and are sometimes larger and sometimes smaller than theirs. Overall, the e�ect estimates
are quite similar which is reassuring given how vastly di�erent the methods are. Another
point of comparison is Chernozhukov et al. [2020] who consider a very ambitious model
which includes multiple policy interventions and multiple mobility measures (which they call
behavior) simultaneously and the model is over all states. �eir estimate of the mobility e�ect
on log cases is -0.54 with a standard error of .19. Unlike Unwin et al. [2020], this estimate
is very di�erent from ours and we do not know why. �ey are using a di�erent measure of
mobility (they used Google mobility) which might have some e�ect. It is possible that some of
the mobility e�ect might be absorbed into their policy e�ect which could happen if there is
model misspeci�cation.
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Figure 6.7: Pointwise 95% con�dence bands for deaths θt = exp(E[LaT ]) for the three mobility
scenarios aT described at the end of section 4; see also Figure 6.6. Each row is a di�erent
state. Each column is a di�erent scenario, start one week early, start two weeks early and stay
vigilant. �e epidemic in NY started early so staying at home sooner had a large impact. �e
same is true for PA, IL, MI, NJ, MA. Staying home earlier would not have had as much impact in
states such as TN that did not su�er the epidemic early. Staying more vigilant would have had
a large impact except for New York. Some lack of �t in the early time period is evident in Texas,
where counterfactual deaths exceed observed deaths under ‘stay vigilant’ where mobility has
not yet been changed.
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Figure 6.8: 95% con�dence intervals for total excess deaths
∑

t exp
(
E[Lat ]

)
−
∑

t Yt (top) and
relative excess deaths

(∑
t exp

(
E[Lat ]

)
−
∑

t Yt
)
/
∑

t Yt (bo�om) under the ‘stay vigilant’
scenario. �e con�dence intervals for NY (fourth from right) and a handful of other states
include zero and suggests that staying more vigilant would not have signi�cantly impacted the
death toll. On the other hand, many states, small and large, could have reduced their death
tolls by over a half.
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6.6.2 Sensitivity Analysis

We have made a number of strong assumptions in our model. Our preference would be to
weaken these assumptions and use nonparametric methods but the data are too limited to do
so. Instead, we now assess the sensitivity of the results to various assumptions. We consider
various perturbations of our analysis. �ese include: (1) changing the model/estimation method
(we replace the MSM with a generative model), (2) assessing the Markov assumption (which was
used to estimate the weights), (3) checking the accuracy of the point mass approximation (which
was used in Section 6.4.3 to simplify the model) and (4) assessing sensitivity to unmeasured
confounding (we have assumed that the only time varying confounders are past values of
mobility and death).

1. An Alternative Model. Here we compare the results from the MSM in (6.13) to the time series
AR(1) model:

Lt = Lt−1 + βAt−δ + r(t) + εt (6.18)

where r(t) is a polynomial of degree k − 1. �is says that, apart from random error, Lt
di�ers from Lt−1 for two reasons, mobility At−δ and the natural increase r(t) due to epidemic
dynamics (at the start of the epidemic). If we apply the g-formula in (6.1) to this model, we
�nd E[Latt ] = βM(at) + ν(t) where ν(t) =

∑t
s=1 r(s) is a polynomial of order k. Hence, this

model is consistent with the MSM. In other words, this model is contained in the semiparametric
modelP de�ned in (6.6). �is model resembles Robins’ blip models (Robins [2000], Vansteelandt
and Jo�e [2014]) as it measures the e�ect of one blip of treatment At−δ so we will refer to (6.18)
as the blip model. We will �t (6.18) by least squares. �ere are three reasons for ��ing this
model. First, it as a point of comparison for the MSM. Second, we are able to check residuals
and model �t. �ird, since it is a regression model, we can use AIC to choose the degree k − 1
of r(t). We also use this choice of k in the MSM. �e degree k chosen by AIC is typically k = 1
for small states and k = 3 or k = 4 for the larger states. A plot of the selected degree versus
log population and versus log deaths is in the supplementary material [Bonvini et al., 2022b].

�e le� plot in Figure 6.9 shows the estimates of β and 95 percent con�dence intervals for
all the states from the blip model in (6.18), and the right plot compares the estimates of β from
the MSM and blip models, where we see the similarity of the inferences. Since the blip model is
a regression model, it makes sense to compare the observed data to the �ts. Fig 6.10 shows the
��ed values and the data for four states. �e �t is not perfect but is reasonable. �ere are some
large outliers in some states, mostly in the �rst few weeks of the pandemic where mobility At
and log deaths Lt change rapidly. Because of this we also ��ed a robust regression but the
results did not change much.

2. �e Markov Assumption. In Section 6.5.2, to estimate the weights, we have made the Markov
assumption that At−δ is conditionally independent of the past given (At−1−δ, Lt−1−δ). We
also assumed that Lt is conditionally independent of the past given (At−1−δ, Lt−1). To assess
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Figure 6.9: Estimates from the blip model compared with estimates from the MSM model.
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the blip model in (6.18).
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Figure 6.11: (Le�) Boxplots across states of t-statistics for the parameters in the model for At as
a function of the past. �e horizontal red lines are at ±2. Only α̂1 is consistently signi�cantly
di�erent from zero across states, suggesting that the times series of at home mobility At is a
memory one process. (Right) Same for Yt. Only β̂1 is consistently signi�cantly di�erent from
zero across states, suggesting that the deaths times series Yt is a memory one process.

this assumption, we �t the models

At−δ = α0 + α1At−1−δ + α2At−2−δ + α3At−3−δ + β1Lt−1−δ + β2Lt−2−δ + β3Lt−3−δ + εt

Lt = α0 + α1At−δ + α2At−δ−1 + α3At−δ−2 + β1Lt−1 + β2Lt−2 + β3Lt−3 + δt.

Figure 6.11 shows boxplots of the t-statistics for these parameters. �e evidence suggests
that the �rst order Markov assumption is reasonable. �e weak dependence of At on past
values of Yt is consistent with the weights Wt having almost no e�ect, i.e. there is li�le
confounding due to past deaths. However, this assessment still assumes that the Markov
assumption is homogeneous, that is, that the law of At given (At−1, Yt−1) is constant over
time. �is assumption is not checkable without invoking further assumptions.

3. Point Mass Versus Deconvolution. Recall that in Section 6.4.3 we approximated f0(s, t) with
a point mass at t− δ with δ = 4. An alternative is to solve the estimating equation using g
de�ned as in (6.8) but this is numerically very unstable. Yet another alternative to the point
mass approximation is to estimate the number of infections I by deconvolution. From the
number of infections, we can estimate the model parameters as in Section 6.5 without making
the point mass approximation, using log(I) as the outcome variable. We infer Ĩt = d(t)It from
the optimization:

minI≥0‖Y − F Ĩ‖22 + λ
T−1∑
r=2

(Ĩr − Ĩr−1)2, (6.19)

where Y denotes the vector of weekly deaths and F is a matrix with (i, j)-entry equal to
f(i, j) if j ≤ i and zero otherwise; that is, Fij is proportional to the probability of dying at
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time j given that infection occurred at time i. �e parameter λ is user-speci�ed and represents
a penalty imposed on non-smooth solutions. Because f is proportional to the density of a
Gamma random variable, we have Fii = f(i, i) = 0. To ensure nonzero elements on the
diagonal of F , we remove the �rst row and last column (all zeros) from F and solve (6.19) using
Y = (Y2, . . . , YT ), thus obtaining an estimate of Ĩ = (Ĩ1, . . . , ĨT−1). To enforce nonnegative
values of I , we use the constrained optimization routine L-BFGS-B from optim in R. Using
a penalty λ = 1, we report the inferred infections (up to proportionality) ̂̃I (red line) for
California, Florida, New York and Texas in Figure 6.12 along with the implied deaths computed
as F ̂̃I . �e la�er match the observed deaths well, leading credence to this procedure. In
Figure 6.13, we compare the estimates of β from the MSM using the point-mass approximation
and those from the MSM using the estimates of infections from the deconvolution step. �e
estimates are in rough agreement as they lie near the diagonal.

4. Unmeasured Confounding. At time t, we treated (A1, Y1), . . . , (At−1, Yt−1) as confounders.
Now suppose there is an unmeasured confounder U . We would like to assess |β̂U − β̂| where
β̂U is the value of our estimate if we had access to U . �is quantity is not identi�ed and so any
sensitivity analysis must invoke some extra assumption. Let ∆ = |β̂U − β̂|/se(β̂) denote the
unobserved confounding on the standard error scale. So ∆ = 0 corresponds to no unmeasured
confounding, ∆ = 1 corresponds to saying that the unmeasured confounding is the same size
as the standard error, etc. For each state, we enlarge the con�dence interval by ∆ se(β̂). We
can then ask: how large would ∆ have to be so that the enlarged con�dence interval would
contain 0. Figure 6.14a shows this critical ∆. We see that for most states, it takes a fairly large
∆ to lose statistical signi�cance. A substantial number of medium to large states are quite
robust to unmeasured confounding.

Adding other potential within state confounders would be desirable but, in a within state
analysis, we can only accommodate time varying confounders. (A �xed confounder is a single
variable with no replication and can only be used an across state analysis.) So far we do not
have any within state time varying variables that would be expected to directly a�ect both At
and Yt. One could imagine that a variable like “the percentage of rural cases” could change
over time and possibly a�ect both variables but we do not have such data.

Next we consider a second style of sensitivity analysis inspired by the approach in Rosen-
baum [2010]. �e e�ect of unmeasured confounding in our analysis is that the weights Wt are
misspeci�ed. If there are unobserved confounders Ut, then the correct weights are

W̃t =

t∏
s=1

π(As|As−1)

π(As|As−1, Y s−1, U s−1)

whereas we estimated the weights

Wt =
t∏

s=1

π(As|As−1)

π(As|As−1, Y s−1)
.
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Figure 6.12: Inferred infections in four states. �e red curve is ̂̃It, the estimate of the number of
infections times the probability of dying if infected by Covid-19, Ĩt = d(t)It. �e black curve is
deaths F ̂̃I computed from the optimization with λ = 1 in (6.19), and the dots are the observed
deaths.
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Figure 6.14: Unmeasured confounding sensitivity plots.
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To assess this impact we �nd the maximum and minimum β̂ under the assumption that

Wt

Γ
≤ W̃t ≤ ΓWt

for t = 1, . . . , T and some Γ ≥ 1. Similar ideas for static, binary treatments have been
considered in Yadlowsky et al. [2018], Zhao et al. [2019]. Figure 6.14b shows the bounds on
β̂ using Γ = 3. Even with this fairly large value of Γ the e�ects for most large and medium
states remain signi�cant indicating robustness to unmeasured confounding. (Several methods
for computing the bounds in this context can be found in Bonvini et al. [2022a].)

6.6.3 Across Versus Within States

We have focused on within state estimation. An alternative is to �t a model across states as
well. Although we are skeptical of combining data over states we do so here for completeness.
We �t the blip model (6.18) with common β and, rather than include state level covariates such
as population size, proportion of residents in cities, etc., we use a �xed e�ect for each state.
�e resulting estimates of β and standard errors for k = 1, 2, 3, 4 are:

k β̂ standard error
1 -5.20 0.27
2 -4.60 0.27
3 -3.82 0.34
4 -2.83 0.43

�e estimates are consistent with the within state models. AIC chooses k = 1, which
con�icts with the within state analysis which favors larger k for larger states. �e likely
reason is that combining states adds variability in the combined dataset since β’s and r(t)’s
are di�erent between states, so there is less signal compared to the noise to estimate a more
complicated relationship than a linear. A natural extension of this model is to use a random
e�ects approach, although we do not pursue that here.

6.7 Discussion

Our approach to modeling the causal e�ect of mobility on deaths is to construct a marginal
structural model whose parameters are estimated by solving an estimating equation. We model
each state separately to reduce confounding due to state di�erences. Our approach has several
advantages and disadvantages.

Our modeling assumptions are reasonable in the short term but not in the long term.
Eventually, the e�ects of acquired immunity, masks, vaccinations etc might have to be accounted
for by using a more complex form of ν. Also, the e�ect of mobility β could change with new
variants.

Estimating the model parameters comes down to solving the estimating equation (6.14).
Computing standard errors and con�dence intervals is then straightforward. �is is in contrast
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to more traditional and Icarian epidemic modeling which requires estimating many parameters
using grid searches or MCMC. Provably valid con�dence intervals are elusive for those methods.
On the other hand, the more detailed models might be more realistic and can capture e�ects
that our simple model cannot capture. Moreover, our inferences are asymptotic in nature.
When comparing exact Bayesian methods to approximate frequentist methods it is hard to
argue that one approach is more valid than the other.

We believe that focusing on weekly data at the state level gives us the best chance of ge�ing
data of reasonable quality and helps avoid confounding related to state di�erences. Further,
this allows the causal e�ect to vary between states. But this results in a paucity of data, a few
dozen observations per state. �is limits the complexity of the models we can �t and it requires
that we make a homogeneous Markov assumption. A natural compromise worthy of future
investigation would be to use some sort of random e�ects model to allow modeling all states
simultaneously. �is could also permit using data from other countries. At any rate, there is
a tradeo�: within state analysis requires stronger modeling assumptions while analyzing all
states together requires assuming independence and it assumes we can model all sources of
between state confounding.

Detailed dynamic modeling versus the more traditional causal modeling done here (and
in Chernozhukov et al. [2020]) represent two di�erent approaches to causal inference for
epidemics. It would be interesting to see a general comparison of these approaches, perhaps
eventually leading to some sort of fusion of these ideas.

Finally, let us recap the null paradox. Any nonlinear, sequentially speci�ed parametric
model — which includes most epidemic models — has the following problem. �ere is no
value of the parameters that allows both (i) the outcome is conditionally dependent on the
intervention variableA and (ii) there is no causal e�ect ofA. But, due to latent non-confounding
variables U (see Figure 6.3), (i) and (ii) can both be true. �is means that we would �nd a
causal e�ect even if there is no such e�ect. We can in principle avoid the null paradox by using
nonparametric models but then the model complexity explodes as T increases leading to the
curse of dimensionality. Linear models avoid the null paradox but caution is still needed since
the causal e�ect ψ(a) involves complicated nonlinear functions of the regression parameters.
Hence, the model is very di�cult to interpret and the individual regression parameters do not
have a causal interpretation. Also, most epidemic models are not linear.

�e quickly growing literature on using sequentially speci�ed epidemic models does include
such models; see, for example, Bha� et al. [2020], Sco� et al. [2021], Unwin et al. [2020] and
references therein. MSMs avoid the null paradox, and this is another reason for using MSMs
(or some other semiparametric causal model such as structural nested models). In our case
we motivated the MSM by starting with a sequentially speci�ed model. �is seems like a
reasonable approach for using epidemic models to de�ne an MSM but there may be other
approaches as well.
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Chapter 7

Conclusions and future work

In this thesis, we have proposed several contributions to two of the main streams of causal
inference research: identi�cation and nonparametric functional estimation. In the �rst two
chapters, we have proposed and analyzed a suite of methods to perform sensitivity analysis
to the no-unmeasured-confounding assumption, which is the crucial, untestable assumption
needed to identify popular causal e�ects in observational studies. In both chapters, we have
exempli�ed our methods on real datasets.

In the second part of the thesis, we have proposed and analyzed new estimators of two
commonly targeted causal estimands: the dose-response function and the level sets of the
conditional average treatment e�ect (CATE). In each case, we have derived estimators achieving
the best convergence rate currently known in the literature, for the models considered. In the
CATE level sets problem, we have established that the rate of the proposed optimal estimator
cannot be improved without introducing additional assumptions. In both problems, we have
also analyzed the properties of other estimators that are arguably easier to implement in
practice than the be�er performing ones.

In the third part of the thesis, we have conducted an analysis of the causal e�ects of reduced
mobility on deaths due to Covid-19; we have focused on the early stages of the pandemic. We
have proposed a semiparametric approach to causal inference in this challenging se�ing that
is based on specifying a marginal structural model motivated by an epidemic model. We have
complemented our main �ndings with sensitivity analyses showing that the results are not, for
the most part, overly e�ected by deviations of the assumptions invoked in the main analysis.

Many open questions remain. �e following is a summary of the most pressing questions
motivated by this research that we would like to �nd an answer to.

Chapter 2:

• In deriving the bounds on the average treatment e�ect as a function of the proportion of
units for which the treatment-outcome association is confounded, we have assumed that
the indicator for whether a unit belongs to the “confounded” subgroup is idependent
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of the outcome given the treatment and the covariates. �is has allowed us to derive
closed-form expressions for the bounds. Calculating the bounds without this untestable
assumption appears to lead to prohibitive computational costs. Finding a clever algorithm
to compute or approximate the bounds without relying on this independence assumption
is an important open question.

• For each value of the sensitivity parameter ε ∈ [0, 1], our model returns bounds on the
average treatment e�ect. We thus derive lower and upper curves as a function of the
proportion ε. �e seminal paper by Imbens and Manski [2004] shows that, if the goal is
to carry out inference for a parameter that is only partially identi�ed, there is a way to
construct con�dence intervals that 1) adapt to the length of the bounds and 2) can be
considerably narrower than con�dence intervals based on the intervals for the lower and
upper end-points of the partial identi�cation region. �e method relies on the asymptotic
normality of the estimators of the end-points of the identi�cation interval. It remains an
open question to adapt their construction to the case when the bounds are curves whose
estimators converge weakly to a Gaussian Process.

Chapter 3:

• In the propensity sensitivity model that we have considered, all the bounds on the causal
parameters that we have derived are valid but may not be sharp. �at is, we have not been
able to rule out that there exist valid bounds that are strictly narrower than ours for every
data generating mechanism compatible with the assumptions made. Establishing the
sharpness of our results or deriving tighter bounds would have important implications
for the adoption of our methods in practice.

• In the non time-varying propensity sensitivity model, we have been able to derive bounds
enforcing several constrains that the model on unobserved confounding needs to satisfy
based on the observed distribution. However, the time-varying case presents more
challenges and we have not been able to enforce all the constrains in this case. �ere is
therefore the danger that our time-varying bounds are too lose in certain se�ings, which
is an issue we plan to address in a revised version of the paper.

Chapters 4 and 5:

• In recent years, it has emerged that the optimal estimators of many causal e�ects in
regimes of low smoothness are based on the theory of higher order in�uence functions
(HOIF) [Robins et al., 2008, 2017a]. Our �ndings in this thesis also align with this recent
trend as our optimal estimator of CATE level sets simply thresholds the optimal, HOIF-
based estimator of the CATE derived in Kennedy et al. [2022]. We also conjecture that our
HOIF-based estimator of the dose-response function is also optimal, at least under certain
conditions. Unfortunately, while theoretically appealing, estimators based on HOIFs are
rarely adopted in practice because of important limitations, including requiring a delicate
choice of the tuning parameters and o�en a heavy computational cost. Mitigating these
challenges to allow for more widely adoption of these methods would likely open the
path for more precise inference in many domains of science.
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• Speci�cally for the estimation of the dose-response parameter a 7→ θ(a) ≡
∫
E(Y | A =

a,X = x)dP(x), A ∈ R and X ∈ Rd, an important open question is to establish the
minimax rate in models where a 7→ θ(a) has its own smoothness level, which can be
di�erent from that of (a, x) 7→ E(Y | A = a,X = x).
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Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating
heterogeneous treatment e�ects using machine learning. Proceedings of the national academy
of sciences, 116(10):4156–4165, 2019. 4.1



Bibliography 139

Craig Lammert, Douglas L Nguyen, Brian D Juran, Erik Schlicht, Joseph J Larson, Elizabeth J
Atkinson, and Konstantinos N Lazaridis. �estionnaire based assessment of risk factors for
primary biliary cirrhosis. Digestive and Liver Disease, 45(7):589–594, 2013. 2.1.1

Lingling Li, Eric Tchetgen, J Robins, and A van der Vaart. Robust inference with higher order
in�uence functions: Parts i and ii. In Joint Statistical Meetings, Minneapolis, Minnesota, 2005.
5.5

Xiyue Liao and Mary C Meyer. cgam: An r package for the constrained generalized additive
model. arXiv preprint arXiv:1812.07696, 2018. 16

Danyu Y Lin, Bruce M Psaty, and Richard A Kronmal. Assessing the sensitivity of regression
results to unmeasured confounders in observational studies. Biometrics, pages 948–963, 1998.
2.4.2

Weiwei Liu, S Janet Kuramoto, and Elizabeth A Stuart. An introduction to sensitivity analysis
for unobserved confounding in nonexperimental prevention research. Prevention science, 14
(6):570–580, 2013. 2.1

Alexander R Luedtke and Mark J Van Der Laan. Statistical inference for the mean outcome
under a possibly non-unique optimal treatment strategy. Annals of statistics, 44(2):713, 2016.
2.3.2, 4.1

Alexander R Luedtke, Ivan Diaz, and Mark J van der Laan. �e statistics of sensitivity analyses.
2015. 2.3.1

Enno Mammen and Wolfgang Polonik. Con�dence regions for level sets. Journal of Multivariate
Analysis, 122:202–214, 2013. 4.1, 4.5

Charles F Manski. Nonparametric bounds on treatment e�ects. �e American Economic Review,
80(2):319–323, 1990. 1.2.1

Mary C Meyer. Inference using shape-restricted regression splines. �e Annals of Applied
Statistics, 2(3):1013–1033, 2008. 16

Mary C Meyer. A framework for estimation and inference in generalized additive models with
shape and order restrictions. Statistical Science, 33(4):595–614, 2018. 16

Rajarshi Mukherjee, Whitney K Newey, and James M Robins. Semiparametric e�cient empirical
higher order in�uence function estimators. arXiv preprint arXiv:1705.07577, 2017. 5.3.3

Romain Neugebauer and Mark van der Laan. Nonparametric causal e�ects based on marginal
structural models. Journal of Statistical Planning and Inference, 137(2):419–434, 2007. 3.1,
5.1.2, 6.4.1

Whitney K Newey. Kernel estimation of partial means and a general variance estimator.
Econometric �eory, pages 233–253, 1994. 5.1.2



Bibliography 140

Whitney K. Newey and Kenneth D. West. A simple, positive semi-de�nite, heteroskedasticity
and autocorrelation consistent covariance matrix. Econometrica, 55(3):703–708, 1987. ISSN
00129682, 14680262. URL http://www.jstor.org/stable/1913610. 6.5.1

Jerzy Neyman. On the application of probability theory to agricultural experiments. essay on
principles. Ann. Agricultural Sciences, pages 1–51, 1923. 1.1

Xinkun Nie and Stefan Wager. �asi-oracle estimation of heterogeneous treatment e�ects.
Biometrika, 108(2):299–319, 2021. 4.1
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Appendix A

Appendix for Chapter 2

A.1 Proof of Lemma 1

Notice that, because A ⊥⊥ Y a | X, S = 1, we have

E{(Y 1 − Y 0)S} = E[S{E(Y | A = 1,X, S = 1)− E(Y | A = 0,X, S = 1)}]

and, by the consistency assumption, it holds that

E
{

(Y 1 − Y 0)(1− S)
}

= E
[
(1− S)

{
(Y − Y 0)A+ (Y 1 − Y )(1−A)

}]
= E((1− S)[{Y − λ1−A(X)}(2A− 1)])

�erefore, we conclude that

ψ = E((1− S)[{Y − λ1−A(X)}(2A− 1)] + S{E(Y | A = 1,X, S = 1)− E(Y | A = 0,X, S = 1)})

as desired.

A.2 Proof of Theorem 1

Notice that (A1) is equivalent to S ⊥⊥ A | X and S ⊥⊥ Y | X, A. �en, under (A1), we have
that E (Y | X, A = a, S) = µa(X) and P (A = a | X, S) = π(a | X). �is means that the
result in Lemma 1 simpli�es to

ψ(S, λ0, λ1) = E (µ1(X)− µ0(X) + (1− S) [π(0 | X) {λ1(X)− µ1(X)} − π(1 | X) {λ0(X)− µ0(X)}])

�e observed distribution P and the knowledge of S places no restrictions on λ0(X) and λ1(X).
Recalling that δ is chosen such that

La ≡ δ{ymin − µa(X)} ≤ λa(X)− µa(X) ≤ δ{ymax − µa(X)} ≡ Ua with prob. 1
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for a ∈ {0, 1}, we have that

E {µ1(X)− µ0(X) + (1− S)g(ηηη)} − εδ(ymax − ymin)

≤ ψ(S, λ0, λ1) ≤
E {µ1(X)− µ0(X) + (1− S)g(ηηη)}

where g(ηηη) = π(0 | X)U1 − π(1 | X)L0. �ese bounds are sharp for any given S.

Next, notice that g(ηηη) : X p → R and P(S = 0) = ε. �us, by Proposition 4 in Horowitz
and Manski [1995], it holds that ψ ∈ [ψl(ε), ψu(ε)] where

ψl(ε) = E [µ1(X)− µ0(X) + 1 {g(ηηη) ≤ qε} g(ηηη)]− εδ(ymax − ymin)

ψu(ε) = E [µ1(X)− µ0(X) + 1 {g(ηηη) > q1−ε} g(ηηη)]

and these bounds are sharp.

A.3 Bounds in XA-mixture model

�e restriction in (A1) can easily be weakened to

S ⊥⊥ Y | X, A (A2)

Under (A2), it still holds that E(Y | X, A = a, S) = µa(X), but π(a | X, S = 1) does not
equal π(a | X, S = 0) necessarily. �erefore, the result in Lemma 1 simpli�es only to

ψ(S, λ0, λ1) = E(µ1(X)− µ0(X) + (1− S)[(1−A){λ1(X)− µ1(X)} −A{µ0(X)− λ0(X)}])

where λa(X) = E(Y a | A = 1− a,X, S = 0). Following the same line of reasoning as in the
proof of �eorem 1, under consistency and positivity, sharp bounds on ψ are:

ψl(ε) = E[µ1(X)− µ0(X) + 1{g(A,ηηη) ≤ qε}g(A,ηηη)]− εδ(ymin − ymax)

ψu(ε) = E[µ1(X)− µ0(X) + 1{g(A,ηηη) > q1−ε}g(A,ηηη)]

where g(A,ηηη) = (1−A)U1 −AL0, qτ is the τ -quantile of g(A,ηηη) and δ is chosen such that

La ≡ δ{ymin − µa(X)} ≤ λa(X)− µa(X) ≤ δ{ymax − µa(X)} ≡ Ua with prob. 1.

with ymin and ymax �nite. �e following lemma shows that the bounds assuming S ⊥⊥ Y | X, A
are at least as wide as those assuming S ⊥⊥ (Y,A) | X.

Lemma 14. Let X,A be two random variables and let π(X) = E (A | X). Consider the func-
tions:

g1(a, x) = af(x) and g2(x) = π(x)f(x)
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for a measurable function f . �en, it holds that

E [g1(A,X)1 {g1(A,X) ≤ q1τ}] ≤ E [g2(X)1 {g2(X) ≤ q2τ}]
E [g1(A,X)1 {g1(A,X) > q1τ}] ≥ E [g2(X)1 {g2(X) > q2τ}] (A.1)

where qiτ is the τ -quantile of gi(·).

Proof. �is lemma is essentially a restatement of the subadditivity property of expected shortfall
[Acerbi and Tasche, 2002]. It is su�cient to note that

E [g2(X)1 {g2(X) ≤ q2τ}] = E [g1(A,X)1 {g2(X) ≤ q2τ}]

and that

E (g1(A,X) [1 {g2(X) ≤ q2τ} − 1 {g1(A,X) ≤ q1τ}]) ≥ q1τE [1 {g2(X) ≤ q2τ} − 1 {g1(A,X) ≤ q1τ}]
= q1τ (τ − τ)

= 0

where the inequality follows because{
1 {g2(X) ≤ q2τ} − 1 {g1(A,X) ≤ q1τ} ≤ 0 if g1(A,X) ≤ q1τ

1 {g2(X) ≤ q2τ} − 1 {g1(A,X) ≤ q1τ} ≥ 0 if g1(A,X) > q1τ

Inequality (A.1) follows by rearranging:

E [g1(A,X)1 {g1(A,X) > q1τ}] = E (g1(A,X) [1− 1 {g1(A,X) ≤ q1τ}])
E [g2(X)1 {g2(X) > q2τ}] = E (g1(A,X) [1− 1 {g2(X) ≤ q2τ}])

so that

E (g1(A,X) [1 {g2(X) > q2τ} − 1 {g1(A,X) > q1τ}])
= E (g1(A,X) [1 {g1(A,X) ≤ q1τ} − 1 {g2(X) ≤ q2τ}])
≤ 0

as desired.

From Lemma 14 we conclude that the lower bound (upper bound) under S ⊥⊥ (Y,A) | X
is greater (smaller) than that under S ⊥⊥ Y | A,X.

A.4 Extensions

In this section, we discuss one possible extension to our model, though we note that others
are possible. �e impact of unmeasured confounding U can be controlled by linking the true,
unidenti�able propensity score P(A = a | X, U, S = 0) to the estimable “pseudo-propensity
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score” π(a | X) via a sensitivity model of choice. For example, as proposed in Zhao et al. [2019],
an extension to Rosenbaum’s framework to non-matched data can be formulated by noting
that, under consistency and positivity,

E (Y a) = E
{

Y 1 (A = a)S

P(A = a | X, S = 1, Y a)

}
+ E

{
Y 1 (A = a) (1− S)

P(A = a | X, S = 0, Y a)

}
(A.2)

and thus we can simply take the unobserved confounder U to be one of the potential outcomes.
Next, notice that P(A = a | X, S = 1, Y a) = π(a | X) under Assumption (A1) (S ⊥⊥ (Y,A) |
X), so that (A.2) simpli�es to

E (Y a) = E
{
Y 1 (A = a)S

π(a | X)

}
+ E

{
Y 1 (A = a) (1− S)

P(A = a | X, S = 0, Y a)

}
Let πa(x, y) = P(A = a | X = x, S = 0, Y a = y). Noting that P(A = a | X, S = 0) =
π(a | X) under Assumption (A1), the impact of unmeasured confounding can be governed by
requiring πa(x, y) to be an element of the following sensitivity model

E (Λ) =
{

Λ−1 ≤ OR {πa(x, y), π(a | x)} ≤ Λ, for all x ∈ X , y ∈ [0, 1], a ∈ {0, 1}
}

(A.3)

where Λ ≥ 1 and Λ = 1 corresponds to the unconfounded case. Model (A.3) can be conveniently
reformulated on the logit scale. Let

g(a | x) = logit{π(a | x)}, ga(x, y) = logit{πa(x, y)}
h(x, y) = g(a | x)− ga(x, y), π(h)(x, y) = [1 + exp {h(x, y)− g(a | x)}]−1

and write

E (Λ) =
{
π(h)(x, y) : h ∈ H(Λ)

}
, whereH(Λ) = {h : X × [0, 1]→ R and ‖h‖∞ ≤ log Λ}

(A.4)

From (A.4), we rewrite E (Y a) as

E (Y a) = E
(
SY 1 (A = a)

π(a | X)
+ (1− S)Y 1 (A = a) [1 + exp {h(X, Y )} exp {−g(a | X)}]

)
(A.5)

where exp {h(X, Y )} ∈ [Λ−1,Λ]. Bounds on ψ can then be computed following the same line
of reasoning as in �eorem 1, where exp {h(X, Y )} takes the role of λa(X). Convergence
statements for estimators of (A.5) can be derived using standard arguments for convergence of
inverse propensity score-weighted estimators together with the arguments made in proving
�eorem 2. However, we expect the conditions for

√
n-consistency and asymptotic normality

to be stronger than those assumed in �eorem 2. Moreover, note that, if P(S = 1) = 0, as in
Zhao et al. [2019], expression (A.5) can be bounded and estimated via a stabilized IPW (SIPW)
and a suitable linear program. In our model, because P(S = 1) ≥ 0, optimization of a SIPW is
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harder due to the integer nature of S and beyond the scope of this paper.

A.5 Technical Proofs

A.5.1 Proof of Theorem 2

Before proceeding with the proof of �eorem 2, we report a lemma used below. It can be found
in Kennedy et al. [2020] (Lemma 1) or in the proof of Lemma 2 in van der Laan and Luedtke
[2014].

Lemma 15. Let f̂ and f take any real values. �en

|1(f̂ > 0)− 1(f > 0)| ≤ 1(|f | ≤ |f̂ − f |)

Proof. �is follows since

|1(f̂ > 0)− 1(f > 0)| = 1(f̂ , f have opposite sign)

and if f̂ and f have opposite sign then

|f̂ | + |f | = |f̂ − f |

which implies that |f | ≤ |f̂ − f |. �erefore, whenever |1(f̂ > 0)− 1(f > 0)| = 1, it must
also be the case that 1(|f | ≤ |f̂ − f |) = 1, which yields the result.

�e proof of �eorem 2 is similar to that of �eorem 3 in Kennedy [2018], with the main
di�erence being that the in�uence function of the estimator proposed is not a smooth function
of the sensitivity parameter ε. Fortunately, we can exploit the fact that the bounds are monotone
in ε to establish convergence to a Gaussian process. We prove the result for the upper bound, as
the case for the lower bound follows analogously. We also proceed by assuming Y is bounded
in [0, 1].

Let ‖f‖E = supε∈E |f(ε)| denote the supremum norm over E ⊆ [0, 1], a known interval.
Let λ1−ε be shorthand notation for 1 {g(ηηη) > q1−ε}. Similarly, let τ and ν be shorthand nota-
tions for the uncentered in�uence functions of E {g(ηηη)} and E{µ1(X)− µ0(X)} respectively,
so that

τ =
(1− 2A) {Y − µA(X)}
π(A | X)/π(1−A | X)

+Aµ0(X) + (1−A) (1− µ1(X))

ν =
(2A− 1) {Y − µA(X)}

π(A | X)
+ µ1(X)− µ0(X)
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De�ne the following processes:

Ψ̂n(ε) =
√
n{ψ̂u(ε)− ψu(ε)}/σ̂u(ε)

Ψ̃n(ε) =
√
n{ψ̂u(ε)− ψu(ε)}/σu(ε)

Ψn(ε) = Gn([ϕu(O;ηηη, q1−ε)− λ1−εq1−ε − {ψu(ε)− εq1−ε}]/σu(ε))

= Gn([ϕu(O;ηηη, q1−ε)− {ψu(ε)− εq1−ε}]/σu(ε))

= Gn{φu(O;ηηη, q1−ε)}

where ϕu(O;ηηη, q1−ε) = ν + λ1−ε(τ − q1−ε) and Gn(·) =
√
n(Pn− P) denotes the empirical

process on the full sample.

We also let G(·) denote the mean-zero Gaussian process with covariance

E {φu(O;ηηη, q1−ε1)φu(O;ηηη, q1−ε2)} .

We will show that Ψn(·) G(·) in `∞(E) and that ‖Ψ̂n −Ψn‖E = oP(1).

To show that Ψn(·)  G(·) in `∞(E), notice that ϕu(·;ηηη, q1−ε) : E → [−M,M ], for
some M < ∞, consists of a sum of a bounded, constant function plus a product of two
monotone functions. Speci�cally, consider s(·;ηηη, ε) : E 7→ [−S, S], de�ned as s(·;ηηη, ε) = ν,
f(·;ηηη, ε) : E 7→ {0, 1}, de�ned as f(·;ηηη, ε) = λ1−ε, and h(·;ηηη, ε) : E 7→ [−H,H], de�ned
as h(·;ηηη, ε) = τ − q1−ε. �en, ϕu(·;ηηη, q1−ε) = s(·;ηηη, ε) + f(·;ηηη, ε)h(·;ηηη, ε). �e fact that
s(·;ηηη, ε) and h(·;ηηη, ε) are uniformly bounded follows by the assumptions that P{t ≤ π(a |
X) ≤ 1− t} = 1, for some t > 0 and a ∈ {0, 1}, and that the outcome Y is bounded.

�en we de�ne the class Fη where ϕu(·;ηηη, q1−ε) takes value in

Fη = {ν + λ1−ε(τ − q1−ε) : ε ∈ E} .

Fη is contained in the sum of Fη,0 and the pairwise product Fη,1 · Fη,2, where Fη,0 = {ν : ε ∈
E} (constant function class), Fη,1 = {λ1−ε : ε ∈ E} and Fη,2 = {τ − q1−ε : ε ∈ E}.

By, for example, �eorem 2.7.5 in van der Vaart and Wellner [1996], the class of bounded
monotone functions possesses a �nite bracketing integral, and in particular, for w ∈ {0, 1, 2}:

logN[] (δ,Fη,w, L2(P)) .
1

δ

Furthermore, because Fη,0, Fη,1 and Fη,2 are uniformly bounded:

logN[] (δ,Fη, L2(P)) . 3 logN[]

(
δ

2
,Fη,1, L2(P)

)
.

1

δ

by, for instance, Lemma 9.24 in Kosorok [2008]. �us, by for example �eorem 19.5 in Van der
Vaart [2000], Fη is Donsker.
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Next, we prove the statement that ‖Ψ̂n −Ψn‖E = oP(1). First, we notice that

‖Ψ̂n −Ψn‖E = ‖(Ψ̃n −Ψn)σu/σ̂u + Ψn (σu − σ̂u) /σ̂u‖E
≤ ‖Ψ̃n −Ψn‖E‖σu/σ̂u‖E + ‖σu/σ̂u − 1‖E‖Ψn‖E
. ‖Ψ̃n −Ψn‖E + oP(1)

where the last inequality follows because ‖σ̂u/σu−1‖E = oP(1) by assumption and ‖Ψn‖E =
OP(1) by, for example, �eorem 2.14.2 in van der Vaart and Wellner [1996] since Fη possesses
a �nite bracketing integral.

Let N = n/B be the number of samples in any group k = 1, . . . , B, and denote the
empirical process over group k units by Gk

n =
√
N(Pkn − P). �en, we have

Ψ̃n(ε)−Ψn(ε) =

√
n

σu(ε)
{ψ̂u(ε)− ψu(ε)} −Gn{ϕ̃u(O;ηηη, q1−ε)}

=

√
n

Bσu(ε)

B∑
k=1

[
Pkn{ϕu(O; η̂ηη−k, q̂−k,1−ε)} − ψu(ε)− (Pn − P){ϕ(O;ηηη, q1−ε)}

]
=

√
n

Bσu(ε)

B∑
k=1

[
Pkn{ϕu(O; η̂ηη−k, q̂−k,1−ε)− ϕu(O;ηηη, q1−ε)}+ (Pn − P) (λ1−εq1−ε)

]
=

√
n

Bσu(ε)

B∑
k=1

[
1√
N

Gk
n{ϕu(O; η̂ηη−k, q̂−k,1−ε)− ϕu(O;ηηη, q1−ε)}

+ P{ϕu(O; η̂ηη−k, q̂−k,1−ε)− ϕu(O;ηηη, q1−ε)}+ (Pn − P)(λ1−εq1−ε)

]
where we used the facts that

ψu(ε) = P {ϕu(O;ηηη, q1−ε)} and
B∑
k=1

Pkn {ϕu(O;ηηη, q1−ε)} =
B∑
k=1

Pn {ϕu(O;ηηη, q1−ε)}

�e term P
{
ϕu(O; η̂ηη−k, q̂−k,1−ε)− ϕu(O;ηηη, q1−ε)

}
can be decomposed in

P{ϕu(O; η̂ηη−k, q̂−k,1−ε)− ϕu(O;ηηη, q1−ε)} = P{ν̂−k − ν + λ̂−k,1−ε (τ̂−k − τ) + (τ − q1−ε)(λ̂−k,1−ε − λ1−ε)

+ q1−ε(λ̂−k,1−ε − λ1−ε)}



Appendix A. Appendix for Chapter 2 154

Notice that ε+ oP(n−1/2) = Pkn(λ̂−k,1−ε) = P (λ1−ε), so that

oP(n−1/2) =

B∑
k=1

Pkn(λ̂−k,1−ε)− P(λ1−ε)

=
B∑
k=1

(
Pkn − P

)
(λ̂−k,1−ε − λ1−ε) + P(λ̂−k,1−ε − λ1−ε) + (Pn − P) (λ1−ε)

where we used again the fact that
∑B

k=1 Pkn(λ1−ε) =
∑B

k=1 Pn(λ1−ε). �us, we have that

B∑
k=1

P{q1−ε(λ̂−k,1−ε − λ1−ε)} = −
B∑
k=1

(Pkn − P){q1−ε(λ̂−k,1−ε − λ1−ε)} − (Pn − P) (q1−ελ1−ε) + oP(n−1/2)

�erefore, we rewrite Ψ̃n(ε)−Ψn(ε) as

Ψ̃n(ε)−Ψn(ε) =

√
n

Bσu(ε)

B∑
k=1

(
1√
N

Gk
n{ϕu(O; η̂ηη−k, q̂−k,1−ε)− q1−ελ̂−k,1−ε − ϕu(O;ηηη, q1−ε)}

+ P{ν̂−k − ν + λ̂−k,1−ε(τ̂−k − τ) + (τ − q1−ε)(λ̂−k,1−ε − λ1−ε)}
)

≡ Bn,1(ε) +Bn,2(ε) + oP(1)

Next, we show that ‖Bn,1‖E = oP(1) and ‖Bn,2‖E = oP(1), which completes the proof.

For Bn,1(ε), notice that, because B is �xed regardless of n, we have that

‖Bn,1‖E = sup
ε∈E

∣∣∣∣∣ 1√
Bσu(ε)

B∑
k=1

Gk
n{ϕu(O; η̂ηη−k, q̂−k,1−ε)− q1−ελ̂−k,1−ε − ϕu(O;ηηη, q1−ε)}

∣∣∣∣∣
. maxk sup

f∈Fkn
|Gn(f)|

where we de�ne the class Fkn = Fη̂ηη−k − Fηηη , where Fη̂ηη−k = {ν̂−k + λ̂−k,1−ε(τ̂−k − q1−ε) :
ε ∈ E} and Fη = {ϕu(·;ηηη, ε) : ε ∈ E} as above. Viewing η̂ηη−k as �xed given the training data
Dk

0 = {Oi : Ki 6= k}, by �eorem 2.14.2 in van der Vaart and Wellner [1996], we have that

E

{
sup
f∈Fkn

|Gn(f)| | Dk
0

}
.
∥∥∥F kn∥∥∥∫ 1

0

√
1 + logN[] (δ ‖F kn‖ ,Fkn , L2(P)) dδ

where F kn is an envelop of the class Fkn . Given the training data, the function class where
λ̂−k,1−ε lives can be expressed as {1(u > q), q ∈ Q}, where Q is the set of all quantile
functions, which in this case is a subset of the class of all bounded, monotone functions because
g(ηηη−k) is bounded for any k. �erefore, by the same line of argument as above, the class Fkn is
contained in unions and products of classes of uniformly bounded, monotone functions. As
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such, it satis�es

logN[]

(
δ
∥∥∥F kn∥∥∥ ,Fkn , L2(P)

)
.

1

δ ‖F kn‖

If we take

F kn (o) = sup
ε∈E
|ϕu(O; η̂ηη−k, q̂−k,1−ε)− q1−ελ̂−k,1−ε − ϕu(o;ηηη, q1−ε)|

then ‖F kn‖ = oP(1) by assumption. �e bracketing integral is �nite for any �xed ηηη, but hereFkn
depends on n through η̂ηη−k, hence concluding that the LHS is oP(1) requires further analysis.
Le�ing Ckn = ‖F kn‖, we have that

∥∥∥F kn∥∥∥∫ 1

0

√
1 + logN[] (δ ‖F kn‖ ,Fkn , L2(P)) dδ . Ckn

∫ 1

0

√
1 +

1

δCkn
dδ

=
√
Ckn(Ckn + 1) +

1

2
log

{
1 + 2Ckn

(
1 +

√
1 +

1

Ckn

)}

which goes to zero as Ckn → 0. Hence, we conclude that supf∈Fkn |Gn(f)| = oP(1) for each k.
Because B is �nite, this implies that ‖Bn,1‖E = oP(1) as desired.

For Bn,2(ε), �rst notice that

P(ν̂−k − ν) . P
[
{π(1 | X)− π̂(1 | X)}

{
µ1(X)− µ̂1(X)

π̂(1 | X)
+
µ0(X)− µ̂0(X)

1− π̂(1 | X)

}]
. ‖π̂(1 | X)− π(1 | X)‖maxa ‖µ̂a(X)− µa(X)‖

by an application of the Cauchy-Schwartz inequality.

Next, similar calculations yield

sup
ε∈E

P{λ̂−k,1−ε(τ̂−k − τ)} ≤ P(|τ̂−k − τ |)

. ‖π̂(1 | X)− π(1 | X)‖ (maxa ‖µ̂a(X)− µa(X)‖)

where the �rst inequality follows because supε∈E |λ̂−k,1−ε| ≤ 1.

Finally, we have

P{(τ − q1−ε)(λ̂−k,1−ε − λ1−ε)} . P[(λ̂1−ε − λ1−ε){g(ηηη)− q1−ε}]
≤ P[|g (ηηη)− q1−ε| |1 {g(η̂ηη)− q̂1−ε > 0} − 1 {g(ηηη)− q1−ε > 0}|]
≤ P[|g (ηηη)− q1−ε|1 {|g (ηηη)− q1−ε| ≤ |g(ηηη)− g(η̂ηη)|+ |q̂1−ε − q1−ε|}]
. (‖g(η̂ηη)− g (ηηη)‖∞ + |q̂1−ε − q1−ε|)1+α

where the third inequality follows by Lemma 15 and the last inequality follows by the margin
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condition (assumption (3)).

�erefore, we have that

‖Bn,2‖E√
n
. ‖π̂(1 | X)− π(1 | X)‖maxa ‖µ̂a(X)− µa(X)‖+

(
‖g(η̂ηη)− g (ηηη)‖∞ + sup

ε∈E
|q̂1−ε − q1−ε|

)1+α

where the RHS is oP(n−1/2) by assumption.

A.5.2 Construction of Uniform Confidence Bands

In this section, we propose the construction of 1− α con�dence bands capturing ψ uniformly
in ε. For any given ε, con�dence intervals for ψ can be constructed in at least two ways. One
way is to construct a con�dence interval for the identi�cation region [ψl(ε), ψu(ε)]. Another
way is to construct a con�dence interval for ψ directly [Imbens and Manski, 2004, Stoye, 2009,
Vansteelandt et al., 2006]. �e former approach yields a conservative con�dence interval for
ψ, particularly for larger values of ε for which the identi�cation interval is wider. To see this,
notice that, unless the length of the interval is of the same order as the sampling variability, the
true parameter ψ can be close to either the lower bound or the upper bound, but not to both.
�us, the con�dence interval in regimes of large ε is practically one-sided. Here, we provide
con�dence bands for the identi�cation region that are valid uniformly over ε. �ese bands
also serve as conservative uniform bands for the true ψ curve. We also provide the code to
construct bands covering just ψ(ε), as in Imbens and Manski [2004], that are valid pointwise.
We leave the construction of bands covering just ψ(ε) that are valid uniformly over ε for future
research.

Let sample analogues of the variance functions of the bounds at ε be

σ̂2
u(ε) = Pn([ϕu(O; η̂ηη−K , q̂1−ε,−K)− 1{g(η̂ηη−K) > q̂1−ε,−K}q̂1−ε,−K − ψ̂u(ε) + εq̂1−ε,−K ]2)

σ̂2
l (ε) = Pn([ϕl(O; η̂ηη−K , q̂ε,−K)− 1{g(η̂ηη−K) ≤ q̂ε,−K}q̂ε,−K − ψ̂l(ε) + εq̂ε,−K ]2).

To construct asymptotically valid (1− α)-uniform bands of the form

ĈI(ε; cα, dα) =

[
ψ̂l(ε)− cα

σ̂l(ε)√
n
, ψ̂u(ε) + dα

σ̂u(ε)√
n

]
, (A.6)

we need to �nd the critical values cα and dα such that

P

[
sup
ε∈E

{
ψ̂l(ε)− ψl(ε)
σ̂l(ε)/

√
n

}
≤ cα and sup

ε∈E

{
ψu(ε)− ψ̂u(ε)

σ̂u(ε)/
√
n

}
≤ dα

]
≥ 1− α+ o(1)
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In particular, we propose choosing cα and dα such that

P

[
sup
ε∈E

{
ψ̂l(ε)− ψl(ε)
σ̂l(ε)/

√
n

}
≤ cα

]
= P

[
sup
ε∈E

{
ψu(ε)− ψ̂u(ε)

σ̂u(ε)/
√
n

}
≤ dα

]
= 1− α

2
+ o(1),

(A.7)

essentially allowing the lower (upper) bound estimate to be greater (smaller) than the true
lower (upper) bound with probability equal to α/2. In light of the result in �eorem 2, cα and
dα can be found by approximating the distribution of the supremum of the respective Gaussian
processes. Similarly to Kennedy [2018], we use the multiplier bootstrap to approximate these
distributions. A key advantage of this approximating method is its computational e�ciency, as
it does not require re��ing the nuisance functions estimators.

�e following lemma asserts that, for ξ and ζ iid Rademacher random variables, the suprema
of the following multiplier processes
√
nPn(ζ[ϕl(O; η̂ηη−K , q̂ε;−K)− 1{g(η̂ηη−K) ≤ q̂ε,−K}q̂ε,−K − ψ̂l(ε) + εq̂ε;−K ]/σ̂l(ε))
√
nPn(ξ[ψ̂u(ε)− εq̂1−ε;−K − ϕu(O; η̂ηη−K , q̂1−ε;−K) + 1{g(η̂ηη−K) > q̂1−ε,−K}q̂1−ε,−K ]/σ̂u(ε))

are valid approximations to their counterparts in (A.7).

Lemma 16. Conditional on the sample, let ĉα and d̂α denote the (1− α/2)-quantiles of

sup
ε∈E

√
nPn(ζ[ϕl(O; η̂ηη−K , q̂ε;−K)− 1{g(η̂ηη−K) ≤ q̂ε,−K}q̂ε,−K − ψ̂l(ε) + εq̂ε;−K ]/σ̂l(ε))

sup
ε∈E

√
nPn(ξ[ψ̂u(ε)− εq̂1−ε;−K − ϕu(O; η̂ηη−K , q̂1−ε;−K)− 1{g(η̂ηη−K) > q̂1−ε,−K}q̂1−ε,−K ]/σ̂u(ε))

respectively, where (ζ1, . . . , ζn) and (ξ1, . . . , ξn) are iid Rademacher random variables indepen-
dent of the sample. �en, under the same conditions of �eorem 2, it holds that

P{[ψl(ε), ψu(ε)] ⊆ ĈI(ε; ĉα, d̂α), for all ε ∈ E} ≥ 1− α+ o(1)

Proof. Together with an application of the Bonferroni correction, the proof of �eorem 4 in
Kennedy [2018] can be used here.

A.5.3 Proof of Theorem 3

Recall the following map used to de�ne ε0:

Ψ(ε) = ψl(ε)ψu(ε) = P {ϕl(O;ηηη; qε)}P {ϕu(O;ηηη; q1−ε)}

where

ϕl(O;ηηη, qε) = ν(O;ηηη) + τ(O;ηηη)κε − ε, ϕu(O;ηηη, q1−ε) = ν(O;ηηη) + τ(O;ηηη)λ1−ε,
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κε = 1 {g(ηηη) ≤ qε} and λ1−ε = 1 {g(ηηη) > q1−ε}. �e corresponding empirical version, which
makes use of cross-��ing, is:

Ψ̂n(ε) =
1

B

B∑
k=1

Pkn
{
ϕ̂l(O; η̂ηη−k, q̂−k,ε)

}
Pkn
{
ϕ̂u(O; η̂ηη−k, q̂−k,1−ε)

}
where Pkn is the empirical measure over fold k, de�ned as in Section 2.3.1.

�e moment condition de�ning ε0 is Ψ(ε0) = 0, since at ε = ε0 either the lower bound
or the upper bound is equal to 0 and both are uniformly bounded so that the product is 0.
Furthermore, the lower and upper bound curves are monotone in ε; if the bounds are continuous
and strictly monotone in a neighborhood of ε0, then the moment condition will be satis�ed by
a unique value in [0, 1]. In practice, we would estimate ε0 by εn solving the empirical moment
condition Ψ̂n(εn) = oP(n−1/2).

�eorem 3 follows from a direct application of �eorem 3.3.1 in van der Vaart and Wellner
[1996]. �erefore, our proof consists of checking that the following conditions hold:

1.
√
n(Ψ̂n −Ψ)(ε0) N(0, var{ϕ̃(O;ηηη, ε0)}), where

ϕ̃(O;ηηη, ε) = ψu(ε)[ν(O;ηηη) + κε{τ(O;ηηη)− qε} − ε] + ψl(ε)[ν(O;ηηη) + λ1−ε{τ(O;ηηη)− q1−ε}]

2.
√
n(Ψ̂n −Ψ)(εn)−

√
n(Ψ̂n −Ψ)(ε0) = oP (1 +

√
n |εn − ε0|)

3. �e map ε 7→ Ψ(ε) is di�erentiable at ε = ε0.

4. εn is such that Ψ̂n(εn) = oP(n−1/2) and εn
p→ ε0.

We will follow the same notation as for the proof of �eorem 2. In particular, let ‖f‖E =
supε∈E |f(ε)| denote the supremum norm over E . We proceed with considering E = [0, 1].

Proof of Statement 1

We actually prove the following stronger result:

‖
√
n(Ψ̂n −Ψ)−

√
n(Pn − P)ϕ̃‖E = oP(1),

for ϕ̃(·;ηηη, ε) living in a Donsker class. �is is useful in establishing the other conditions.

First, we claim that the function ϕ̃(·;ηηη, ε) lives in a Dosker class. To see this, notice that

ϕ̃(O;ηηη, ε) = ψu(ε)ϕl(O;ηηη, ε) + ψl(ε)ϕu(O;ηηη, ε)

whereϕl(O;ηηη, ε) = ν(O;ηηη)+κε{τ(O;ηηη)−qε}−ε andϕu(O;ηηη, ε) = ν(O;ηηη)+λ1−ε{τ(O;ηηη)−
q1−ε}. In the proof of �eorem 2, we showed that ϕu(·;ηηη, ε) lives in a Donsker class because
its class can be constructed via sums and products of classes of uniformly bounded, monotone
functions. �erefore, following a similar logic, we conclude that ϕ̃(·;ηηη, ε) lives in a Donsker
class as well.
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Next, we argue that ‖
√
n(Ψ̂n −Ψ)−

√
n(Pn − P)ϕ̃‖E = oP(1). A bit of algebra reveals

that

Ψ̂n(ε)−Ψ(ε)− (Pn − P)ϕ̃ =
1

B

B∑
k=1

[
(Pkn − P)(ϕ̂l,−k − ϕl)(Pkn − P)(ϕ̂u,−k − ϕu)

+ (Pkn − P)(ϕ̂l,−k − ϕl){T1 − T2 + (Pn − P)(ϕu)}
+ (Pkn − P)(ϕ̂u,−k − ϕu){V1 − V2 + (Pn − P)(ϕl)}
+ (Pn − P)(ϕu)(V1 − V2) + (Pn − P)(ϕl)(T1 − T2)

+ (Pn − P)(ϕu)(Pn − P)(ϕl)

+ T1V1 − T1V2 − T2V1 + T2V2

+ P(ϕu){(Pkn − P)(ϕ̂l,−k − ϕl) + V1}
+ P(ϕl){(Pkn − P)(ϕ̂u,−k − ϕu) + T1} ]

where

ϕ̂l,−k − ϕl = ϕ̂l−k − qεκ̂−k,ε − ϕl−k + qεκε

ϕ̂u,−k − ϕu = ϕ̂u−k − q1−ελ̂−k,1−ε − ϕu + q1−ελ1−ε

V1 = P{ν̂−k − ν + κ̂−k,ε(τ̂−k − τ) + (τ − qε)(κ̂−k,ε − κε)}

T1 = P{ν̂−k − ν + λ̂−k,1−ε(τ̂−k − τ) + (τ − q1−ε)(λ̂−k,1−ε − λ1−ε)}
V2 = (Pn − P)(qεκε) and T2 = (Pn − P)(q1−ελ1−ε)

As shown in the proof of �eorem 2, under the conditions of the theorem, it holds that∥∥∥∥∥ 1

B

B∑
k=1

(Pkn − P)(ϕ̂l,−k − ϕl)

∥∥∥∥∥
E

= oP(n−1/2),

∥∥∥∥∥ 1

B

B∑
k=1

(Pkn − P)(ϕ̂u,−k − ϕu)

∥∥∥∥∥
E

= oP(n−1/2),

‖V1‖E = oP(n−1/2), ‖T1‖E = oP(n−1/2), ‖V2‖E = OP(n−1/2), and ‖T2‖E = OP(n−1/2).

�erefore, by an application of the triangle inequality, it holds that

‖
√
n(Ψ̂n −Ψ)−

√
n(Pn − P)ϕ̃‖E = oP(1)

In particular,
√
n(Ψ̂n −Ψ)(ε0) N(0, var{ϕ̃(O;ηηη, ε0)})

by Slutsky’s theorem.
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Proof of Statement 2

Because in the proof of Statement 1 we have argued that

‖
√
n(Ψ̂n −Ψ)−

√
n(Pn − P)ϕ̃‖E = oP(1)

to prove Statement 2, it is su�cient to show
√
n(Pn − P){ϕ̃(O;ηηη, εn)} −

√
n(Pn − P){ϕ̃(O;ηηη, ε0)} = oP(1 +

√
n |εn − ε0|) (A.8)

Because ϕ̃(·;ηηη, ε) lives in a Donsker class and εn
p→ ε0 (proved below in the proof of Statement

4), by Lemma 3.3.5 in van der Vaart and Wellner [1996], in order to prove (A.8) it is su�cient
to show that

P{ϕ̃(ε)− ϕ̃(ε0)}2 → 0 as ε→ ε0

We have that

P{ϕ̃(ε)− ϕ̃(ε0)}2 = P[ψl(ε){ν + λ1−ε(τ − q1−ε)} − ψl(ε0){ν + λ1−ε0(τ − q1−ε0)}
+ ψu(ε){ν + κε(τ − qε)− ε} − ψu(ε0){ν + κε0(τ − qε0)− ε0}]2

= P (Dl +Du)2

Notice that we can write

Dl = {ψl(ε)− ψl(ε0)}{ν + λ1−ε(τ − q1−ε)}
+ ψl(ε0){(λ1−ε − λ1−ε0)(τ − q1−ε) + λ1−ε0(q1−ε0 − q1−ε)}

Du = {ψu(ε)− ψu(ε0)}(ν + κε(τ − qε)− εn)

+ ψu(ε0){(κε − κε0)(τ − qε) + κε0(qε0 − qε)− (ε− ε0)}

�en, we have

P(D2
l ) . P|λ1−ε − λ1−ε0 | + |q1−ε0 − q1−ε| + |ψl(ε)− ψl(ε0)|

P(D2
u) . P|κε − κε0 | + |qε0 − qε| + |ψu(ε)− ψu(ε0)| + |ε− ε0|

P(DlDu) . |ψl(ε)− ψl(ε0)| + |ψu(ε)− ψu(ε0)| + P|λ1−ε − λ1−ε0 | + P|κε − κε0 |
+ |q1−ε0 − q1−ε| + |qε0 − qε| + |ε− ε0|

Next, notice

P|κε − κε0 | ≤ P[1{|g(ηηη)− qε0 | ≤ |qε0 − qε|}] . |qε0 − qε|α

P|λ1−ε − λ1−ε0 | ≤ P[1{|g(ηηη)− q1−ε0 | ≤ |q1−ε0 − q1−ε|}] . |q1−ε0 − q1−ε|α

for some α > 0. �e �rst inequalities rely on Lemma 15. �e last step hinges on the fact that
the density of g(ηηη) satis�es the margin condition 3 for some α > 0.
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Moreover, we have

|ψl(ε)− ψl(ε0)| . P|κε − κε0 | + |ε− ε0| and |ψu(ε)− ψu(ε0)| . P|λ1−ε − λ1−ε0 |

since P(|g(ηηη)| ≤ 1) = 1.

We have assumed that the CDF of g(ηηη) is continuous and strictly increasing in neighbor-
hoods of qε0 and q1−ε0 , thus the quantile function is continuous in neighborhoods of ε0 and
1− ε0 as well, allowing us to conclude that, for α > 0

|qε0 − qε|α → 0 and |q1−ε0 − q1−ε|α → 0 as ε→ ε0.

�en, it follows that P{ϕ̃(ε)− ϕ̃(ε0)}2 → 0 as ε→ ε0.

Proof of Statement 3

To prove Statement 3, notice that

ψl(ε)ψu(ε) =

[
E {µ1(X)− µ0(X)}+

∫ qε

0
tdG(t)− ε

][
E {µ1(X)− µ0(X)}+

∫ 1

q1−ε

tdG(t)

]

Because we have assumed that the quantile function of g(ηηη) is di�erentiable in neighborhoods
of ε0 and 1− ε0, by “Leibniz integral rule,” it holds that

Ψ
′
(ε0) =

d

dε
ψl(ε)ψu(ε)

∣∣∣∣
ε=ε0

= ψu(ε0)(qε0 − 1) + ψl(ε0)q1−ε0

which we have assumed to be nonzero. Notice that in calculating the derivative, we used the
fact that

∫
tdG(t) =

∫
tf(t)dt with f being the density of g(ηηη), which we have assumed to

exist.

Proof of Statement 4

We have that Ψn(εn) = oP(n−1/2) by de�nition. Furthermore, we have shown that

‖Ψn −Ψ‖E = ‖(Pn − P){ϕ̃(O;ηηη, ε)}‖E + oP(n−1/2) = oP(1)

where the last equality follows because ϕ̃(·;ηηη, ε) is Donsker and thus Glivenko-Cantelli.

We now show that ψl(ε) and ψu(ε) are strictly monotone. First, for ε1 < ε2, we have

ψl(ε1)− ψl(ε2) = E(g(ηηη)[1{g(ηηη) ≤ qε1} − 1{g(ηηη) ≤ qε2}])− (ε1 − ε2)

= −E{g(ηηη) | qε1 < g(ηηη) < qε2}P{qε1 < g(ηηη) < qε2} − (ε1 − ε2)

= −E{g(ηηη) | qε1 < g(ηηη) < qε2}(ε2 − ε1) + (ε2 − ε1)

> 0
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where we used the facts that P{0 < g(ηηη) < 1} = 1 and P{qε1 < g(ηηη) < qε2} = ε2 − ε1
(continuity of g(ηηη)), that 1{g(ηηη) ≤ qε1} ≤ 1{g(ηηη) ≤ qε2} (monotonicity of quantile function)
and that

1{g(ηηη) ≤ qε1} − 1{g(ηηη) ≤ qε2} = −1 ⇐⇒ qε1 < g(ηηη) < qε2

Similarly, we note that, for ε1 < ε2, we have

ψu(ε1)− ψu(ε2) = E(g(ηηη)[1{g(ηηη) > q1−ε1} − 1{g(ηηη) > q1−ε2}])
= −E{g(ηηη) | q1−ε2 < g(ηηη) < q1−ε1}(ε2 − ε1)

< 0

using the same logic as before. �us, we conclude that, under the assumption that g(ηηη) is
a continuous random variable, both ψl(ε) and ψu(ε) are continuous and strictly monotone.
�erefore, the value ε0 satisfying Ψ(ε0) = 0 must be unique. Furthermore, we have assumed (to
derive a �nite asymptotic variance of εn) that Ψ

′
(ε0) 6= 0, thus a �rst-order Taylor expansion

of Ψ(εn) around ε0

Ψ(εn) = Ψ
′
(ε0)(εn − ε0) + o(|εn − ε0|)

su�ces to conclude that |Ψ(εn)| → 0 implies |εn− ε0| → 0 for any sequence εn ∈ E . In other
words, under the assumptions of the theorem, the identi�ability condition of ε0 is satis�ed.
�en, by an application of �eorem 2.10 in Kosorok [2008], we conclude that |εn − ε0| = oP(1)
as desired.

A.6 Additional Data Analysis

In this section, we provide additional analysis of the data from Connors et al. [1996]. In Figure
A.1, we consider values of δ smaller than 1, and notice that the bounds would start to include
zero for larger values of ε. For instance, under the X-mixture model, if δ = 1/2 is used, the
results appear to be robust for up to 11.00% (95% CI = [3.84%, 18.16%]) of confounded units
in the sample. A value of δ = 1/2 requires that the counterfactual mean outcomes satisfy:

µa(X)

2
≤ E(Y a | A = 1− a,X, S = 0) ≤ 1

2
+
µa(X)

2
with prob. 1.

for a ∈ {0, 1}, thereby restricting E(Y a | A = 1 − a,X, S = 0) to be in an interval of
length 1/2 instead of the worst-case interval of length 1. Robustness is up to 8.99% (95% CI =
[3.78%, 14.20%]) confounded units if the XA-mixture model is considered instead.
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Figure A.1: Estimated bounds on the average treatment e�ect as a function of the proportion
of confounded units ε and the parameter δ ∈ {0.25, 0.5, 0.75, 1}, which governs the amount of
confounding among the S = 0 units. Darker shades correspond to smaller values of δ. Bolded
labels on the abscissa represent estimates of ε0 for corresponding values of δ. Uniform and
pointwise con�dence intervals are not shown for the sake of clarity.

A.6.1 Results using the sensitivity model from Cinelli and Hazlett [2020]

In this section, we brie�y report the results from applying the sensitivity analysis for linear
models discussed in Cinelli and Hazle� [2020]. Because their model is appropriate only for
causal e�ect estimates computed using OLS, we �t a linear model for 30-day survival regressed
all baseline covariates, the treatment and no interactions. If the model is accurate and there is
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no residual confounding, RHC usage appears to decrease the probability of 30-day survival
by 0.042 (95%CI = [−0.07,−0.02]). However, it is su�cient that an unmeasured confounder
explains 1.7% of the outcome variance not already captured by the treatment and the covariates
and 1.7% of the treatment variance not already captured by the covariates to make the e�ect
not statistically signi�cance at the 0.05-level (Table A.1). As shown in Figure A.2, the observed

Outcome: survival at day 30
Treatment: Est. S.E. t-value R2

Y∼D|X RVq=1 RVq=1,α=0.05

RHC usage -0.042 0.013 -3.261 0.2% 4.2% 1.7%
df = 5658 Bound (2x dnr1): R2

Y∼Z|X,D = 3.7%, R2
D∼Z|X = 1%

df = 5658 Bound (2x is miss adld3p): R2
Y∼Z|X,D = 6%, R2

D∼Z|X = 1.6%

Table A.1: Summary of the e�ect estimate under no unmeasured confounding as well as
assessment of the estimate’s robustness using some key covariates as benchmarks.

e�ect would cease to be signi�cance also if there is an unmeasured confounder with explanatory
power that is 2 times greater than that of the variable dnr1 (an indicator for whether there
was a “do not resuscitate” order when the patient was admi�ed on day 1) or 2 times greater
than that of the variable indicating that adld3p (ADL) is missing.
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Figure A.2: Sensitivity contour plots in the partial R2 scale with benchmark bounds of the
t-value.

A.7 Simulations regarding power

In this section, we conduct a brief simulation to investigate how conservative inference based
on ε0 is when all the confounders have been measured so that the true ε is actually zero. �e
bounds on the ATE τ depends on three fundamental quantities, µa(X) = E(Y | A = a,X)
for a = 0, 1 and π(X) = P(A = 1 | X). Let Qg(p, δ) be the quantile function of either g(ηηη)
as de�ned in �eorem 1 (X-model) or g(A,ηηη) as de�ned in Section A.3 (XA-model). When
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ε = 0, τ = E{µ1(X)− µ0(X)} and the bounds can be wri�en as

ψl(ε, δ) = τ +

∫ ε

0
Qg(p, δ)dp− εδ(ymax − ymin) and ψu(ε, δ) = τ +

∫ 1

1−ε
Qg(p, δ)dp.

�erefore, we may de�ne the design sensitivity [Rosenbaum, 2004] as ε̃ solving

τ +

∫ ε̃

0
Qg(p, δ)dp− ε̃δ(ymax − ymin) = 0 if τ ≥ 0 and τ +

∫ 1

1−ε̃
Qg(p, δ)dp = 0 if τ < 0.

�us, ε̃ depends on τ and the quantile function Qg(p, δ), which itself depends on τ through
the functions µa(X). Without knowing Qg(p, δ), one can get crude bounds on ε̃ as

τ

δ(ymax − ymin)−Qg(0, δ)
≤ ε̃ ≤ τ

δ(ymax − ymin)−Qg(1, δ)
if τ ≥ 0

|τ |
Qg(1, δ)

≤ ε̃ ≤ |τ |
Qg(0, δ)

if τ < 0

since, for example,
∫ ε

0 Qg(p, δ)dp ≥ εQg(0, δ). �e derivatives of the bounds are

d

dε
ψl(ε, δ) = Qg(ε, δ)− δ(ymax − ymin) and d

dε
ψu(ε, δ) = Qg(1− ε, δ).

so that the rate at which they widen crucially depends on Qg(p, δ). For example, let the data
be generated as in the simulation setup of Section 2.4.1 except for

Y a | X1, X2, U, S,A ∼ Bern{(1− a)/2 + aB−1
α ◦ TN(X1)},

where B−1
α (·) is the quantile function of a Beta(α, 1) random variable and TN(·) is the

CDF of X1, a truncated normal random variable in [−2, 2]. �erefore, µ0(X1, X2) = 1/2,
µ1(X1, X2) ∼ Beta(α, 1), and τ = α/(α+ 1)− 1/2. As shown in Figure A.3, as τ increases
ε̃ increases, although the relationship is nonlinear. In fact, di�erent values of α also a�ects
the skewness of the distribution of g(ηηη), for example. Finally, ε̃ is always greater under the
X-model than under the XA-model because the bounds under the la�er are at least as wide as
those under the former model.
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Figure A.3: �e values of τ and ε̃ under either the X-model or the XA-model are shown as a
function of α.
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Appendix for Chapter 3

B.0.1 Synthetic Examples

As a proof of concept, we consider a simple simulated example. We take n = 100,A1, . . . , An ∼
N(0, 1) and Yi = βAi + εi where εi ∼ N(0, 1). Figure B.1a shows the propensity sensitivity
bounds for β = 3 based on the homotopy algorithm and using the local approximation; the
local method is an excellent approximation. We also conducted a few simulations using very
small sample sizes where the exact solution can be computed by brute force. We found that the
homotopy method was indistinguishable from the exact bound. Figure B.1b shows the bounds
using the outcome sensitivity approach.

Now we look at the e�ect of bounding over Vlarge using F1 and F2. �e example in Figure
B.2 shows that the propensity sensitivity bounds from F2 (green) are wider than bounds
from F1 (black). In this case we used n = 1000,1 X ∼ N(0, 1), A = X + N(0, 1), Y =
βA + 2X + N(0, 1), with β = 3. Conversely, the example in Figure B.2b shows that the
propensity sensitivity bounds from F2 (green) are narrower than bounds from F1 (black). Here
we used n = 1000 with: U ∼ Unif(.5, 1), A = 3− U , Y = 5U and Y = 2.5U + .25N(0, 1).
�e red do�ed lines are the local approximations to the F1 bounds, which are very good in
these two examples as well. Our experience is that usually F1 gives tighter bounds.

B.0.2 Subset Confounding

Recall that, under this model, an unknown proportion of the population is subject to unobserved
confounding. Suppose S is such that Y (a) ⊥⊥ A|X,S = 1 but Y (a) ⊥⊥ A|X,U, S = 0 where
U is not observed. �at is, S = 0 represents the subset with unmeasured confounding and
S = 1 represents the subset with no unmeasured confounding. �is is a sensitivity model
proposed by Bonvini and Kennedy [2020] in the case of binary treatments. Here, we extend
this framework to multivalued treatments and MSMs under the propensity sensitivity model

168
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Figure B.1: (a) Propensity sensitivity model bounds and (b) Outcome sensitivity model
bounds for β in the MSM g(a;β) = βa with β = 3, for a simulated example. In (a), the
black bounds in are from F1 over Vlarge, obtained by the homotopy algorithm (Section 3.4.4),
and their local approximations (Section 3.4.6) are in do�ed red.
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Figure B.2: Propensity sensitivity model bounds from F1 (black) and F2 (green) over
Vlarge, in simulated examples. Bounds from F2 are computationally easier to obtain than
bounds from F1. �e local approximations to F1, which are also simple to obtain, are in do�ed
red. (a) In this example, bounds from F2 are wider than bounds from F1, so we use the la�er.
(b) In this other example, the reverse is true. We do not know in advance which bounds to use.

and the outcome sensitivity model. To start, we de�ne the propensity model in this case to be

γ−1 ≤ π(a|x, u, S = 0)

π(a|x, S = 0)
≤ γ for all a, x, u.

Let

v0(Z) = E
{

π(A|X,S = 0)

π(A|X,S = 0, U)

∣∣∣ Y,A,X, S = 0

}
and notice that E{v0(Z)|A,X, S = 0} = 1 and v0(Z) ∈ [γ−1, γ]. Essentially, we can repeat
the same calculations as in the non-contaminated model, this time simply applied to the S = 0
group.
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�e same argument used in proving Lemma 2 yields that

E{Y γsgn{q`(Y |a,x,S=0)−Y }|A = a,X = x, S = 0}
≤ E{Y v0(Z)|A = a,X = x, S = 0} ≤

E{Y γsgn{Y−qu(Y |a,x,S=0)}|A = a,X = x, S = 0}

where q`(Y |a, x, S = 0) and qu(Y |a, x, S = 0) are the τ` = 1/(γ + 1) and τu = γ/(1 + γ)
quantiles of the distribution of Y |(A,X, S = 0). As in Bonvini and Kennedy [2020], we make
the simplifying assumption that S ⊥⊥ Y |A,X . �is way,

m`(a, x) ≡ E{Y γsgn{q`(Y |a,x)−Y }|A = a,X = x}
≤ E{Y v0(Z)|A = a,X = x, S = 0} ≤

E{Y γsgn{Y−qu(Y |a,x)}|A = a,X = x} ≡ mu(a, x)

where now the quantile are those of the distribution of Y |(A,X). Notice that these are the
usual bounds in the non-contaminated model.

We can then compute the bounds on E{Y (a)|X}. First notice that,

E{Y (a)S|X} = E(Y |A = a,X, S = 1)P(S = 1|X) (Y (a) ⊥⊥ A|X,S = 1)

= µ(a,X)P(S = 1|X). (Y ⊥⊥ S|A,X)

�is means that E{Y (a)S} = E{Sµ(a,X)}. Next notice that

E{Y (a)(1− S)|X} = E{Y (a)|X,S = 0}P(S = 0|X)

= E{Y α(a,X,U, S = 0)|A = a,X, S = 0}P(S = 0|X)

= E{Y v0(Z)|A = a,X, S = 0}P(S = 0|X).

�erefore,

E{Y (a)|X} = µ(a,X)P(S = 1|X) + E{Y v0(Z)|A = a,X, S = 0}P(S = 0|X)

so that

E{Y (a)} = E {µ(a,X)}+ E [(1− S) {E{Y v0(Z)|A = a,X, S = 0} − µ(a,X)}]

which implies, for rj(a,X) = mj(a,X)− µ(a,X) and j ∈ {l, u}:

E{µ(a,X) + (1− S)r`(a,X)} ≤ E{Y (a)} ≤ E{µ(a,X) + (1− S)ru(a,X)}.

Let tε,l(a) the ε-quantile of r`(a,X) and tε,u be the (1 − ε)-quantile of ru(a,X). Further,
let λ`(a, x) = 1{ru(a, x) ≤ tε,l(a)} and λu(a, x) = 1{ru(a, x) > tε,u(a)}. Under the
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assumption that P(S = 0) = ε, we bound E{Y (a)} by further optimizing over S as

E{Y (a)} ≥ E{µ(a,X)}+ E[λ`(a,X)r`(a,X)] ≡ θ`(a)

E{Y (a)} ≤ E{µ(a,X)}+ E[λu(a,X)ru(a,X)] ≡ θu(a).

As discussed in Section 3.4.2, one option to estimate the bounds is to assume that they follow
some parametric models g(a;β`) and g(a;βu). De�ne

fµ(Z1, Z2) = W (A1, X1){Y1 − µ(A1, X1)}+ µ(A1, X2)

f∆,j(Z1) = W (A1, X1) [{sj(Z; qj)− κ(A1, X1; qj)} − Y1 + µ(A1, X1)]

fr,j(Z1, Z2) = κ(A1, X2; qj)− µ(A1, X2)

fj(Z1, Z2) = fµ(Z1, Z2) + λj(A1, X1)f∆,j(Z1) + λj(A1, X2)fr,j(Z1, Z2).

�en, if it is assumed that θj(a) = g(a;βj), the following moment condition holds

U [h(A1) {fj(Z1, Z2)− g(A1;βj)}] = 0.

In this respect, we de�ne β̂j to solve Un
[
h(A1)

{
f̂j(Z1, Z2)− g(A1; β̂j)

}]
= 0. We estimate

the nuisance functions on a separate sample Dn independent from the sample Zn used to
evaluate the U -statistic. However, in the proof of the proposition below, we require that t̂ε,j(a)
satis�es

1

n

∑
i∈Zn

1{r̂j(a,Xi) > t̂ε,j(a)} = ε+ oP(n−1/2) for all a ∈ A and j = {l, u}.

In other words, we estimate all nuisance functions on a separate, training sample except for
a 7→ t1−ε(a), which is estimated on the same sample used to estimate the moment condition.
�is helps with controlling the bias due to the presence of the indicator at the expense of an
additional requirement on the complexity of the class where a 7→ t̂ε,j(a) belongs to. We have
the following proposition.

Proposition 11. Suppose

1. �e function class Gl = {a 7→ hl(a)g(a;β)} is Donsker for every l = {1, . . . , k} with
integrable envelop and g(a;β) is a continuous function of β;

2. �e map β 7→ U{h(A1)fj(Z1, Z2)− g(A1;β)} is di�erentiable at all β with continuosly
invertible matrices Ψ̇β0 and Ψ̇

β̂
, where Ψ̇β = −E{h(A)∇T g(A;β)};

3. �e function class T where a 7→ t̂ε,j(a) and a 7→ tε,j(a) belong to is VC-subgraph;

4. For any a ∈ A and x ∈ X , rj(a,X)− tε,j(a), rj(A, x)− tε,j(A) and rj(A,X)− tε,j(A)
have bounded densities;
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5. �e following holds

‖q̂u − qu‖ = oP(n−1/4), ‖rj − r̂j‖∞ +
∥∥tε,j − t̂ε,j∥∥∞ = oP(n−1/4)(

‖rj − r̂j‖∞ +
∥∥tε,j − t̂ε,j∥∥∞ + ‖ŵ − w‖

)
(‖µ̂− µ‖+ ‖κj − κ̂j‖) = oP(n−1/2).

�en,
√
n(β̂j − βj) N(0, 4Σ)

where Σ = var
[
Ψ̇−1
βj

∫
S2h(A1) {fj(Z1, z2)− tε,j(A1)λj(A1, x2)− g(A1;βj)} dP(z2)

]
.

To get bounds on some coordinate of β, say β1, one may proceed by homotopy as in the
non-contaminated model. In the linear MSM case, i.e. g(a;β) = b(a)Tβ, bounds on β1 that
enforce the restriction E{v0(Z)|A,X, S = 0} = 1 would be

lγ =

∫
min

{
eTM−1b(a)θu(a), eTM−1b(a)θ`(a)

}
dP(a)

uγ =

∫
max

{
eTM−1b(a)θu(a), eTM−1b(a)θ`(a)

}
dP(a)

where M = E{b(A)b(A)T } and we set h(A) = b(A). A similar statement to Proposition 3
can be derived using the in�uence function established in proving Proposition 11.

Remark: If we make the stronger assumption that S is independent of (X,A, Y ) then
p0(x, a, y) = p1(x, a, y). In this case it is easy to see that E[h(A)(Y − g(A, β))w(A,X)((1−
ε)+εv(Z))] = 0. All the previous methods can then be used with v replaced with (1−ε)+εv(Z).

Now we use the outcome sensitivity model on the confounded subpopulation. We will
assume that S ⊥⊥ Z . �e distribution is

(1− ε)p(u, x, a)p(y|x, a) + εp(u, x, a)p(y|u, x, a).
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�e moment condition is

0 =

∫
b(a)(y − bT (a)β)w(u, x, a)dP (u, x, a)

= (1− ε)
∫
b(a)(y − bT (a)β)w(u, x, a)p(u, x, a)p(y|x, a)

+ ε

∫
b(a)(y − bT (a)β)w(u, x, a)p(u, x, a)p(y|u, x, a)

= (1− ε)
∫
b(a)(y − bT (a)β)w(x, a)p(x, a)p(y|x, a)

+ ε

∫
b(a)(y − bT (a)β)w(u, x, a)p(u, x, a)p(y|u, x, a)

= (1− ε)
∫
b(a)(y − bT (a)β)w(x, a)p(x, a)p(y|x, a)

+ ε

∫
b(a)(y − µ(x, a))w(u, x, a)p(u, x, a)p(y|u, x, a)

+ ε

∫
b(a)(µ(x, a)− bT (a)β)w(u, x, a)p(u, x, a)p(y|u, x, a)

= (1− ε)
∫
b(a)(y − bT (a)β)w(x, a)p(x, a)p(y|x, a)

+ ε

∫
b(a)(µ(u, x, a)− µ(x, a))w(u, x, a)p(u, x, a)︸ ︷︷ ︸

Ξ

+ ε

∫
b(a)(µ(x, a)− bT (a)β)w(x, a)p(x, a)

= (1− ε)
∫
b(a)(y − bT (a)β)w(x, a)p(x, a)p(y|x, a)

+ ε

∫
b(a)(µ(x, a)− bT (a)β)w(x, a)p(x, a)p(y|x, a) + εΞ

= E

[
b(A)

(
(1− ε)Y + εµ(X,A)

)
w(X,A)

]
−

(
E[b(A)bT (A)w(X,A)]

)
︸ ︷︷ ︸

Ω

β + εΞ,

where Ξ =
∫
b(a)(µ(u, x, a)− µ(x, a))w(u, x, a)p(u, x, a) and Ω = E[b(A)bT (A)w(X,A)].

�erefore

β = Ω−1E

[
b(A)

(
(1− ε)Y + εµ(X,A)

)
w(X,A)

]
+ εΩ−1Ξ

and β1 = eTβ, where e = (1, 0, . . . , 0). Let r be the �rst row of Ω−1 and let f(a) =
∑

j rjbj(a).
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�en

eTΩ−1Ξ = rTΞ =

∫
(
∑
j

rjbj(a))(µ(u, x, a)− µ(x, a))w(u, x, a)p(u, x, a)

≤ δ
∫
f(a)I(f(a) > 0)π(a)− δ

∫
f(a)I(f(a) < 0)π(a)

= δ

∫
f(a)(2I(f(a) > 0)− 1)π(a).

Similarly,

eTΩ−1Ξ ≥ δ
∫
f(a)I(f(a) < 0)π(a)− δ

∫
f(a)I(f(a) > 0)π(a)

− δ
∫
f(a)(2I(f(a) > 0)− 1)π(a).

�erefore,

β∗1 − δ
∫
f(a)(2I(f(a) > 0)− 1)π(a) ≤ β1 ≤ β∗1 + δ

∫
f(a)(2I(f(a) > 0)− 1)π(a)

where

β∗1 = E

[
b(A)

(
(1− ε)Y + εµ(X,A)

)
w(X,A)

]
.

B.0.3 Bounds for β under the outcome sensitivity confounding model when
the MSM is not linear

Say the MSM is not linear. Since g(a;β) = E{Y (a)} =
∫ ∫

yp(y|u, x, a)dP (x, u), we have

0 =

∫ ∫ ∫
h(a)(y − g(a;β))p(y|u, x, a)π(a)dydP (u, x)

=

∫ ∫
h(a)(µ(u, x, a)− g(a;β))π(a)dP (u, x)

=

∫ ∫
h(a)(µ(u, x, a)− µ(x, a))π(a)dP (u, x) +

∫ ∫
h(a)(µ(x, a)− g(a;β))π(a)dP (u, x)

=

∫ ∫
h(a)(µ(u, x, a)− µ(x, a))π(a)dP (u, x) +

∫ ∫
h(a)(µ(x, a)− g(a;β))π(a)dP (x)

=

∫ ∫
h(a)(µ(u, x, a)− µ(x, a))π(a)dP (u, x)

+

∫ ∫
h(a)(µ(x, a)− g(a;β))π(a)

π(a|x)
π(a|x)dP (x)

=

∫
h(a)ξ(a)π(a)da+ E[h(A)(µ(X,A)− g(A;β))w(A,X)].
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Let C = {E[h1(A)ξ(A)], . . . ,E[hk(A)ξ(A)] : −δ ≤ ξ(a) ≤ δ}. For each vector t ∈ C , let
β(t) solve E[h(A)(µ(X,A)− g(A;β))w(A,X)] = t. �en

inf
t∈C

eTβ(t) ≤ βj ≤ sup
t∈C

eTβ(t).

�ese bounds can be found numerically by solving for β(t) over a grid on C .

B.1 Algorithms

B.1.1 Homotopy Algorithm

Input: grid {γ1, . . . , γN} where γ1 = 1 and γ1 < · · · < γN .

1. Let β̂ be the solution of
∑

i h(Ai)(Yi − g(Ai; β̂))Ŵi = 0. Let u1 = `1 = eT β̂.
2. For j = 2, . . . , N :

(a) Let dj,i ≡ dγj−1,i from (3.14) evaluated at v = vγj−1.
(b) Set Vi = γ−1

j I(dj,i ≤ q) + γjI(dj,i > q) where q is the γj/(1 + γj) quantile of
dj,1, . . . , dj,n. Let β̂ be the solution of

∑
i h(Ai)(Yi − g(Ai; β̂))ŴiVi = 0. Set

uj = eT β̂.
(c) Set Vi = γjI(dj,i ≤ q) + γ−1

j I(dj,i > q) where q is the 1/(1 + γj) quantile of
dj,1, . . . , dj,n. Let β̂ be the solution of

∑
i h(Ai)(Yi − g(Ai; β̂))ŴiVi = 0. Set

`j = eT β̂.
3. Return (`1, u1), . . . , (`N , uN ).

B.1.2 Bounds on β by Coordinate Ascent

Another approach we consider is coordinate ascent where we maximize (or minimize) β̂1(v)
over each coordinate vi in turn. It turns out that this is quite easy since β̂1(v) is strictly
monotonic in each vi for many models so we need only compare the estimate at the two values
vi = γ and vi = 1/γ. Furthermore, in the linear case, ge�ing the estimate a�er changing one
coordinate vi can be done quickly using a Sherman-Morrison rank one update.

�e coordinate ascent approach will lead to a local optimum but it will depend on the
ordering of the data so we repeat the algorithm using several random orderings. �e homotopy
method instead uses the last solution as a starting point for the new solution. �is makes the
homotopy method faster but, in principle, the coordinate ascent approach could explore a
wider set of possible solutions. For simplicity, the only restriction we enforce is 1/γ ≤ vi ≤ γ.
In practice, we �nd that the solutions are very similar.

Lemma 17. Suppose that the function β̂(v) is strictly monotonic in each coordinate vi. �e
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maximizer and minimizer occur at corners of the cube [1/γ, γ]n. We have that

∂β̂1(v)

∂vj
=

1

Wi
eT
{

(XTWX)−1[Si − (RiR
T
i )β̂]

}
whereWi = 1/π(Ai|Xi), W is diagonal with Wii = Wi,Ri = (Xi1, . . . , Xid)

T and Si = RiYi.
Also,

Hij ≡
∂2β̂1

∂vi∂vj
= −eT (XTWX)−1

{
(RiR

T
i )
∂β̂

∂vi
+ (RjR

T
j )
∂β̂

∂vj

}
.

�e proof is straightforward and is omi�ed.

Coordinate Ascent

1. Input: Data (B,A, Y ), whereB is the n×k matrix with elementsBij = bj(Ai), weights
Wi = 1/π(Ai|Xi) and grid {γ1, . . . , γN} with γ1 = 1.

2. Let β̂ = (BTWB)−1BTWY where W is diagonal with Wii = Wi. Set β1(1) = β
1
(1) =

β̂1.
3. Now move vi = 1 to vi = γ2 or vi = 1/γ2, whichever makes β̂1 larger:

(a) Let G = (BTWB). For each i let

ui = eT

(
G−1
i −

∆iG
−1
i rir

T
i G
−1

1 + ∆irTi A
−1
i ri

)
(BTW + ∆ieie

T
i )Y flip 1 to γ2

`i = eT

(
G−1
i −

δiG
−1rir

T
i G
−1

1 + δirTi G
−1ri

)
(BTW + δieie

T
i )Y flip 1 to 1/γ2

where ∆i = γ2 − 1 and δi = 1
γ2
− 1.

(b) If ui ≥ `i: set vi = γ2 and Ii = 1. Else, set vi = 1/γ2 and Ii = 0.
4. For j = 3, . . . , N : Try �ipping each vi to 1/alphai.

(a) Let vi = γjIi + γ−1
j (1− Ii).

(b) Let Wii = vi and β̂ = (BTWB)−1BTWY .
(c) Let A = (BTWB),

ti = eT

(
A−1
i −

∆iA
−1
i rir

T
i A
−1
i

1 + ∆irTi A
−1
i ri

)
(BTW + ∆ieie

T
i )Y.

where ∆i = 1/vi − vi. If ti > β̂1 let vi = 1/vi. Let Wii = vi. Let β̂ =
(BTWB)−1BTWY . Let β1(γj) = β̂1.
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B.2 Technical proofs

B.2.1 Proof of Proposition 1

Let α(u, x, a) = π(a|x)/π(a|x, u). Recall that v(X,A, Y ) = E{α(U,X,A) | X,A, Y } and
w(A,X) = π(A)/π(A | X). We have

0 = E [h(A)w(A,X){Y − g(A;β)}α(U,X,A)]

= E [h(A)w(A,X){Y − g(A;β)}v(X,A, Y )]

= E {h(A)Y v(X,A, Y )− h(A)w(A,X)g(A;β)v(X,A, Y )}
= E [h(A)w(A,X)E{Y v(X,A, Y )|X,A} − h(A)w(A,X)g(A;β)E{v(X,A, Y )|X,A}]
= E {h(A)w(A,X)m(X,A)− h(A)w(A,X)g(A;β)}

=

∫ ∫
{h(a)m(x, a)dP(x)− h(a)g(a;β)}dP(x)π(a)da

= E
[
h(A)

{∫
m(A, x)dP(x)− g(A;β)

}]
. �

B.2.2 Proof of Lemma 2

We will prove the result for the upper bound. �e proof for the lower bound follows analogously.
We have vu(Z) ∈ [γ−1, γ] and we can check that E{vu(Z)|A,X} = 1. Indeed

E{vu(Z)|A,X} = γP (Y > qu(Y |A,X)|A,X) +
1

γ
P (Y ≤ qu(Y |A,X)|A,X)

= γ

(
1− γ

1 + γ

)
+

1

γ
· γ

1 + γ
= 1,

because qu(A,X) is the γ/(1 + γ)-quantile of the conditional distribution of Y given (A,X).
Let v(Z) be any function contained in [γ−1, γ] such that E{v(Z)|A,X} = 1. We have{

vu(Z)− v(Z) ≥ 0 if Y > qu(Y |A,X)

vu(Z)− v(Z) ≤ 0 if Y ≤ qu(Y |A,X)

�erefore, Y {vu(Z)− v(Z)} ≥ qu(Y |A,X){vu(Z)− v(Z)} so that

E {Y {vu(Z)− v(Z)}|A,X} ≥ qu(Y |A,X)E{vu(Z)− v(Z)|A,X} = 0

as desired.
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B.2.3 Proof of Proposition 2

�is proposition follows directly from Lemma 23, except that we need to show the validity of
condition 4. �is condition holds under the assumption of Proposition 2 because

U [hl(A1){ϕ̂j(Z1, Z2)− ϕj(Z1, Z2)}] =

∫
hl(a)ŵ(a, x){κ(a, x; q̂j)− κ(a, x; qj)}dP(a, x)

+

∫
{w(a, x)− ŵ(a, x)}{κ̂(a, x; q̂j)− κ(a, x; qj)}dP(a, x)

�erefore, by Cauchy-Schwarz and Lemma 21:

|U [hl(A1){ϕ̂j(Z1, Z2)− ϕj(Z1, Z2)}]| . ‖qj − q̂j‖2 + ‖w − ŵ‖‖κ̂j − κj‖.

B.2.4 Proof of Proposition 3

We apply Lemma 23 to the moment condition

Ψn(β) = Un
[
b(A)

{
f̂sj (Z1, Z2)− b(A1)Tβ

}]
= oP(n−1/2)

�e function class Gl =
{
a 7→ bl(a)b(a)Tβ, β ∈ Rk

}
is Donsker since its a �nite dimensional

vector space (Lemma 7.15 in Sen [2018]). �us, it remains to check condition 4. We have∣∣∣U{f̂sj (Z1, Z2)− f sj (Z1, Z2)
}∣∣∣ . ‖qj − q̂j‖2 + ‖w − ŵ‖‖κj − κ̂j‖+ sup

a

∣∣∣bT0 (Q̂−Q)h(a)
∣∣∣2

= oP(n−1/2)

by assumption and because the last term is OP(n−1) = oP(n−1/2) by Lemma 19.

B.2.5 Proof of Lemma 3

For v ∈ Vsmall(γ) we have∫ ∫ ∫
h(a)w(a, x)g(a; b)v(z)dP (z) =

∫ ∫
h(a)w(a, x)g(a; b)[

∫
v(z)p(y|x, a)]π(a|x)dP (x)

=

∫ ∫
h(a)w(a, x)g(a; b)π(a|x)dP (x)

=

∫ ∫
h(a)w(a, x)g(a; b)dP (z)

since E[v(Z)|X,A] = 1. �erefore F1 = F2 and the result follows.



Appendix B. Appendix for Chapter 3 179

B.2.6 Proof of Lemma 4

Let Z = (A,X, Y ) and p(z) denote its density. From the moment condition, we have that
F2(v) satis�es ∫

h(a)w(a, x)v(z)ydP(z) =

∫
h(a)g(a;F2(v))w(a, x)dP(z)

Let m : F 7→ R be a generic functional taking as input a function f . �e functional derivative
of m with respect to f(z), denoted δ

δfm, satis�es

d

dε
m(f + εη)|ε=0 =

∫
δ

δf
m(z)η(z)dP(z)

for any function η. Le�ing

∇βg(A : β) =


d
dβ1

g(A;β)
...

d
dβk

g(A;β)

 , d

dε
F2(v + εη) =


d
dεF2,1(v + εη)

...
d
dεF2,k(v + εη)

 ,

and δ

δv
F2(v) =


δ
δvF2,1(v)

...
δ
δvF2,k(v)

 ,
and taking the functional derivative with respect to v(z) on both sides of the expression above
yields

d

dε

∫
h(a)w(a, x){v(z) + εη(z)}yp(z)dz|ε=0 =

∫
h(a)w(a, x)yη(z)p(z)dz

=⇒ δ

δv

∫
h(a)w(a, x)v(z)yp(z)dz = h(a)w(a, x)y

d

dε

∫
h(a)w(a, x)g(a;β(v + εη))p(z)dz|ε=0

=

∫
h(a)w(a, x)∇βg(a;β)T p(z)dz

d

dε
β(v + εη)|ε=0

=⇒ δ

δv

∫
h(a)w(a, x)g(a;β(v))p(z)dz = E

{
h(A)w(A,X)∇βg(A;β)T

} δβ(v)

δv

�us, we conclude that the functional derivative of β(v) with respect to v satis�es

δF2(v)

δv
= E

{
h(A)w(A,X)∇βg(A;β)T

}−1
h(a)w(a, x)y

as desired. A similar calculation yields δF1(v)
δv .
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B.2.7 Proof of Lemma 5

Property 1: �is is clear.
Property 2: De�ne a map F : V(γ)→ V(γ) by

F (v) = γI(dv > qv) +
1

γ
I(dv < qv)

where dv(z) = δβ/δv(z) and qv is the γ/(1+γ) quantile of dv(Z). We want to show that there
is a �xed point v = L(v). De�ne the metricm bym(v1, v2) =

√∫
(v1(z)− v2(z))2dP(z). �e

set of functions V(γ) is a nonempty, closed, convex set. It is easy to see that L : V(γ)→ V(γ)
is continuous, that is, m(vn, v) → 0 implies L(vn) → L(v). According to Schauder’s �xed
point theorem there exists a �xed point vγ so that L(vγ) = vγ .
Property 3: Let v ∈ V(γ)

⋂
B(vγ , ε). �en β(v) = β(vγ)+

∫
(v(z)−vγ(z))dγ(z)dP(z)+O(ε2).

�e linear functional
∫

(v(z) − vγ(z))dγ(z)dP(z) is maximized over V(γ) by choosing v =
γI(dγ(z) > t) + γ−1I(dγ(z) < t). �e condition

∫
v(z)dP(z) = 1 implies that t = q. So∫

(v(z)−vγ(z))dγ(z)dP(z) is maximized by v = vγ and hence
∫

(v(z)−vγ(z))dγ(z)dP(z) ≤ 0.
�us β(vγ) ≥ β(v) +O(ε2). �

B.2.8 Proof of Lemma 6.

�e fact that F1 and F2 yield the same bounds follows from Lemma 6. Now F2(v) =∫
v(z)q(z)dP (z) where q(z) = yw(a, x)M−1b(a) which is a linear functional. �e form

of the maximizer amd minimizer follows by the same argument as in the proof of Lemma 2.

B.2.9 Proof of Lemma 7.

Since F2(v) is a linear functional of v, �e form of the maximizer and minimizer follows by
the same argument as in the proof of Lemma 2.

B.2.10 Proof of Lemma 4

Consider the upper bound. We apply Lemma 23 to the moment condition

Ψn(β̂) = Un
[
b(A1)

{
ζ̂u(Z1, Z2)− b(A1)T β̂

}]
= oP(n−1/2)

where ζu(Z1, Z2) = w(A1, X1) {Y1 − µ(A1, X1)} + µ(A1, X2) + δ sgn
{
b(a0)TQ−1b(A1)

}
and a0 is a �xed value of a that we want to distinguish from the dummy a in the function
class Gl =

{
a 7→ bl(a)b(a)Tβ, β ∈ Rk

}
. Notice that Gl is Donsker and we have Ψ̇β0 = Q =

E{b(A)bT (A)}. Next notice that, by virtue of the statement of Lemma 23:

ĝu(a0)− gu(a0) = b(a0)T (β̂ − βu) = b(a0)TQ−1Ub(A1)
{
ζ̂u(Z1, Z2)− ζu(Z1, Z2)

}
+ b(a0)TQ−1(Un − U)b(A1)

{
ζu(Z1, Z2)− bT (A1)βu

}
+ oP(n−1/2).
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Next, we have∣∣∣U{b(a0)TQ−1b(A1)ζ̂u(Z1, Z2)− ζu(Z1, Z2)
}∣∣∣

. sup
a
|b(a0)TQ−1b(a)|‖w − ŵ‖‖µ− µ̂‖

+
∣∣∣P(b(a0)TQ−1b(A)

[
sgn

{
b(a0)T Q̂−1b(A)

}
− sgn

{
b(a0)TQ−1b(A)

}])∣∣∣ .
By assumption the �rst term is oP(n−1/2). By Lemma 22, the last term is upper bounded by a
constant multiple of

sup
a

∣∣∣b(a0)T (Q̂−1 −Q−1)b(a)
∣∣∣2

which is OP(n−1) by Lemma 19.

B.2.11 Influence Function for β(vγ)

�e parameter is ψ = β(v) where v is given by the �xed point equation

v(z) = γ −
(
γ − γ−1

)
I(d(z)− q < 0).

Now v is a function of p and z and d is a function of v and z so we will write v = v(p, z) and
d = d(v(p), z) and

v(p, s) = γ −
(
γ − γ−1

)
I(d(v(p), z)− q < 0).

�e in�uence function is not well-de�ned beacause of the presence of the indicator function.
So we approximate v by

v(p, z) = γ −
(
γ − γ−1

)
S(d(v(p), z)− q)

where S is any smooth approximation to the indicator function. In general, the in�uence
function ϕ(z) of a parameter ψ is relate to the L2(P ) functional derivative by ϕ(z) =
(1/p(z))δψ(z)/δp. We then have

δβ(v(p))

δp
=

∫
δβ(v(p))

δv(p, s)

δv(p, z)

δp
dP(z) =

∫
dγ(z)

δv(p, z)

δp
dP(z).

Now

δv(p, z)

δp
(Z) = −

(
γ − γ−1

)
S′(d(v(p), z)− q)

(
δd(v(p), z)

δp
(Z)− δq

δp
(Z)

)
= −

(
γ − γ−1

)
S′(d(v(p), z)− q)

(∫
δd(v(p), z)

δv(p, t)
(Z)

δv(p, t)

δp
(Z)dP(t)− δq

δp
(Z)

)
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Note that δv/δp appears on both sides and so the in�uence function involves solving an integral
equation.

We still need to �nd δd(v(p), z)/δv(p, t)(Z) and δq
δp(Z). We may write the formula for

d(z) as
dγ(z)

∫
h(a)g′(a, β)r(x, a, y) = h(a)yw(a, x)v(z)

where r = p(x)π(a)p(y|x, a) and W = π(a)/π(a|x). Note that

r̊ = δap(x)p(y|x, a) + δxπ(a)p(y|x, a) + π(a)δxa
δy − p(y|x, a)

π(a|x)
− p(x)π(a)p(y|x, a)

and
W̊ =

δap(x) + δxπ(a)−Wδxa
p(x)π(a|x)

−W

where r̊ means the in�uence function of r etc. So

d̊

∫
h(a)g′r + d(z)

∫
h(a)g̊′r + d(z)

∫
h(a)g ′̊r = h(a)yW̊v(z)

and therefore

d̊ = (

∫
h(a)g′r)−1h(a)yW̊v(z)− d(z)

∫
h(a)g̊′r − d(z)

∫
h(a)g ′̊r and

δd(v(p), z)

δv(p, t)
(Z) =

d̊(Z)

p(Z)
.

To �nd q̊ note that F (q, p) = γ/(1 + γ) where F (t, p) = P (d(Z) ≤ t). So f(q)q̊ + F̊ = 0,
which implies q̊ = −F̊ /f(q). Now

F (t, p) =

∫
I(d(z, p) ≤ t)p(z)dz and F̊ (t, p) = I(dγ(z) ≤ t)−

∫
I(dγ(z) = t)d̊γ(z)p(z)dz,

so that F̊ (q, p) = I(dγ(z) ≤ q)−
∫
I(dγ(z) = q)d̊γ(z)p(z)dz. Hence

q̊ = −
I(dγ(z) ≤ q)−

∫
I(dγ(z) = q)d̊γ(z)p(z)dz

f(q)
and δq

δp
(Z) =

q̊(Z)

p(Z)
.

Finally,

g̊′(a, β) = p(z)
δg′(a, β)

δp
= p(z)

∫
δg′(a, β)

δvγ

δvγ
δp

= p(z)

∫
dγ(z)̊v(z)dz.

B.2.12 Proof of Proposition 11

We will prove the proposition in two steps:
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1. We show that Lemma 23 yields that

β̃j − βj = −Ψ̇−1
βj

(Un − U)h(A1){f(Z1, Z2)− g(A1;βj)}+ oP(n−1/2)

where β̃j solves:

Unh(A1)
[
f̃(Z1, Z2)− g(A1; β̃)

]
= oP(n−1/2), where

f̃(Z1, Z2) = f̂µ(Z1, Z2) + λj(A1, X1)f̂∆(Z1) + λ(A1, X2)f̂r(Z1, Z2).

�at is, β̃ solves the original moment condition except that the estimator of the indicator
term is replaced with the true indicator , e.g. λ̂u(a, x) = 1{r̂u(a, x) > t̂ε,u} is replaced
by λu(a, x) = 1{ru(a, x) > tε,u}.

2. We show that

β̂j − β̃j = −Ψ̇−1

β̂j
(Un − U)h(A1)tε,j(A1)λj(A1, X2) + oP(n−1/2).

From these statements, it follows by Lemma 18 and Slutsky’s theorem, that
√
n(β̂j − βj) N(0, 4Σ)

because, by the continuous mapping theorem, Ψ̇−1

β̂

p→ Ψ̇−1
βj

since β̂ p→ βj .

Step 1

Because f̃(Z1, Z2) is �xed given the training sample, we can apply Lemma 23. In particular,
all the conditions of the lemma are satis�ed by assumption and by noticing that∣∣∣U{f̂µ(Z1, Z2)− fµ(Z1, Z2)

}∣∣∣ . ‖w − ŵ‖‖µ− µ̂‖
and ∣∣∣U [λj(A1, X1)f̂∆(Z1) + λ(A1, X2)

{
f̂r(Z1, Z2)− fr(Z1, Z2)

}]∣∣∣
. ‖w − ŵ‖ (‖κj − κ̂j‖+ ‖µ− µ̂‖) + ‖qj − q̂j‖2.

�erefore, condition 4 in Lemma 23 is satis�ed as well under the assumption that the nuisance
functions are estimated with enough accuracy.

Step 2

De�ne λ̃`(a, x) = 1 {r̂`(a, x) ≤ tε,l(a)}, λ̃u(a, x) = 1 {r̂u(a, x) > tε,u(a)}. First notice that,
by construction of t̂ε,j(a), for every a ∈ A:

oP(n−1/2) = Pnλ̂j(a,X)− Pλj(a,X)



Appendix B. Appendix for Chapter 3 184

where Pnλ̂j(a,X) is the sample average over the test sample used to construct the U -statistics.
In this light, Unhl(A1)tε,j(A1)λ̂j(A1, X2)− Uhl(A1)tε,j(A1)λj(A1, X2) = oP(n−1/2) and

oP(n−1/2) = (Un − U)
[
h(A1)tε,j(A1)

{
λ̂j(A1, X2)− λ̃j(A1, X2)

}]
+ (Un − U)

[
h(A1)tε,j(A1)

{
λ̃j(A1, X2)− λj(A1, X2)

}]
+ (Un − U) [h(A1)tε,j(A1)λj(A1, X2)] + U

[
tε,j(A1)hl(A1)

{
λ̂j(A1, X2)− λj(A1, X2)

}]
.

Notice that the middle term involving λ̃j(A1, X2)− λj(A1, X2) is an empirical process term
of a �xed function given the training sample. �erefore, by Lemma 20, it is oP(n−1/2) because∫ ∣∣∣S2

{
λ̃j(a1, x2)− λj(a1, x2)

}∣∣∣ dP(z2)

≤
∫
1 {|rj(a1, x2)− tε,j(a1)| ≤ ‖r̂j − rj‖∞} dP(x2)

+

∫
1 {|rj(a2, x1)− tε,j(a2)| ≤ ‖r̂j − rj‖∞} dP(a2)

. ‖r̂j − rj‖∞
= oP(1)

because the densities of rj(a,X)− tε,j(a) and rj(A, x)− tε,j(A) are assumed to be bounded
for any a and x. In this respect, we have

oP(n−1/2) = (Un − U)
[
h(A1)tε,j(A1)

{
λ̂j(A1, X2)− λ̃j(A1, X2)

}]
+ (Un − U) [h(A1)tε,j(A1)λj(A1, X2)]

+ U
[
tε,j(A1)hl(A1)

{
λ̂j(A1, X2)− λj(A1, X2)

}]
Because both β̂ and β̃ solve empirical moment conditions, we have

oP(n−1/2) = Un
{
f̂(Z1, Z2)− f̃(Z1, Z2)

}
+ Pnh(A)

{
g(A; β̃)− g(A; β̂)

}
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and, in light of the observations above, we can subtract the oP(n−1/2) term to obtain

oP(n−1/2) = (Pn − P)h(A1)f̂∆(Z1)
{
λ̂j(A1, X1)− λ̃j(A1, X1)

}
+ (Un − U)

[
h(A1)

{
λ̂j(A1, X2)− λ̃j(A1, X2)

}{
f̂r(Z1, Z2)− tε,j(A1)

}]
− (Un − U) [tε,j(A1)h(A1)λj(A1, X2)]

+ P
[
h(A1)

{
λ̂j(A1, X1)− λj(A1, X1)

}
f̂∆(Z1)

]
+ U

[
h(A1)

{
λ̂j(A1, X2)− λj(A1, X2)

}{
f̂r(Z1, Z2)− tε,j(A1)

}]
+ (Pn − P)h(A)

{
g(A; β̃)− g(A; β̂)

}
+ Ψ̇

β̂
(β̃ − β̂) + o(‖β̃ − β̂‖)

where we used the identity

Pnh(A)
{
g(A; β̃)− g(A; β̂)

}
= (Pn − P)h(A)

{
g(A; β̃)− g(A; β̂)

}
+ Ψ̇

β̂
(β̃ − β̂) + o(‖β̃ − β̂‖).

Next, we claim that, conditioning on the training sample Dn and thus viewing f̂∆(z) and
r̂j(a, x) as �xed functions, the function class

F =
{
f(z) = hj(a)f̂∆(z)1 {r̂j(a, x)− tε,j(a) > 0} , tε,j(a) ∈ T

}
is VC-subgraph. �e subgraph Cq of ft(z) ≡ 1 {r̂j(a, x)− tε,j > 0} is the collection of sets
(z, c) in Z ×R such that ft(z) ≥ c. For a given t ≡ tε,j , let S0(t) be the collection of all z such
that r̂j(a, x)− tε,j(a) ≤ 0. �en, we have that the subgraph of ft(z) is

S0(t)× (−∞, 0] ∪ Sc0(t)× (−∞, 1]

By Lemma 7.19 (iii) in Sen [2018], S0(t) is a VC set whenever r̂j(a, x)− tε,j(a) is VC-subgraph,
which is the case since tε,j(a) is VC-subgraph by assumption and r̂j(a, x) is a �xed function
(given the training data). �is then yields that the subgraph of ft(z) is a VC-set. Because F
consists of products of VC-subgraph functions and hl(a)f̂∆(z), a �xed function, we conclude
that F itself is a VC-subgraph class. �is means that the process

√
n(Pn − P)f , f ∈ F , is

stochastically equicontinuous relative to ρ(f1, f2) = [var{f1(Z) − f2(Z)}]1/2 ≤ ‖f1 − f2‖.
�us,

(Pn − P)h(A1)f̂∆(Z1)
{
λ̂j(A1, X1)− λ̃j(A1, X1)

}
= oP(n−1/2)
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because, using the assumption that rj(A,X)− tε,j(A) has a bounded density:∫ [
hj(a)f̂∆(z)

{
λ̂j(a, x)− λ̃j(a, x)

}]2
dP(z) .

∫ ∣∣∣λ̂j(a, x)− λ̃j(a, x)
∣∣∣ dP(a, x)

≤
∫
1
{
|r̂j(a, x)− tε,j(a)| ≤ |t̂ε,j(a)− q(a)|

}
dP(a, x)

≤
∫
1
{
|rj(a, x)− tε,j(a)| ≤ ‖r̂j − rj‖∞ + ‖t̂ε,j − tε,j‖∞

}
dP(a, x)

. ‖r̂j − rj‖∞ + ‖t̂ε,j − tε,j‖∞
= oP(1)

To analyze the empirical U -process, we rely on Arcones and Giné [1993]. In particular, by their
�eorem 4.9 applied in conjuction with their �eorem 4.1, the process

√
n(Un − U)f , for

f ∈ F =
{
f(z1, z2) 7→ hl(a1){f̂r(z1, z2)− tε,j(a1)}1

{
r̂j(a1, x2)− tε,j(a1) > 0

}
, tε,j(a1) ∈ T

}
is stochastically equicontinuous, relative to the norm

ρ2(f1, f2) =

∫ [∫
S2 {f1(z1, z2)− f2(z1, z2)} dP(z2)

]2

dP(z1),

if, for instance, the class F is VC-subgraph. �is is indeed the case under the assumption that
T is a VC-subgraph class. Let t̃ε,j(z1, z2) ≡ tε,j(a1) and Ct the subgraph of a 7→ tε,j(a). �en
the subgraph of t̃ is simply Z ∩ Ct × Z , which is still a VC set. �en, as argued earlier, F
consists of functions that are products of VC-subgraph classes and thus it is VC-subgraph. �is
concludes our proof that

(Un − U)
[
h(A1)

{
λ̂j(A1, X2)− λ̃j(A1, X2)

}{
f̂r(Z1, Z2)− tε,j(A1)

}]
= oP(n−1/2)

since∣∣∣∣∫ S2

{
λ̂j(a1, x2)− λ̃j(a1, x2)

}
dP(z2)

∣∣∣∣ . ‖r̂j − rj‖∞ + ‖t̂ε,j − tε,j‖∞ = oP(1).

Next, we have by Cauchy-Schwarz∣∣∣P [hl(A)
{
λ̂j(A,X)− λj(A,X)

}
ŵ(A,X) {κ(A,X; q̂j)− κ̂(A,X; q̂j)− µ(A,X)− µ̂(A,X)}

]∣∣∣
.
∫ ∣∣∣λ̂j(a, x)− λj(a, x)

∣∣∣ dP(a, x)
(
‖κj − κ̂j‖+ ‖q̂ − q‖2 + ‖µ− µ̂‖

)
.
(
‖r̂j − rj‖∞ + ‖t̂ε,j − tε,j‖∞

) (
‖κj − κ̂j‖+ ‖q̂ − q‖2 + ‖µ− µ̂‖

)
= oP(n−1/2)

by assumption. �is concludes our proof that Ph(A1)
{
λ̂j(A1, X1)− λj(A1, X1)

}
f̂∆(Z1) =
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oP(n−1/2).

Next, we have∣∣∣U [hl(A1)
{
λ̂j(A1, X2)− λj(A1, X2)

}{
f̂r(Z1, Z2)− fr(Z1, Z2)

}]∣∣∣
=

∣∣∣∣∫ hl(A1)
{
λ̂j(a, x)− λj(a, x)

}
{κ̂(a, x; q̂j)− κ(a, x; q̂)− µ̂(a, x)− µ(a, x)} dP(a)dP(x)

∣∣∣∣
. (‖r̂j − rj‖∞ + ‖t̂ε,j − tε,j‖∞)(‖κ̂j − κj‖+ ‖µ̂− µ‖+ ‖q̂ − q‖2)

and∣∣∣U [hl(A1)
{
λ̂j(A1, X2)− λj(A1, X2)

}
{fr(Z1, Z2)− tε,j(A1)}

]∣∣∣
=

∣∣∣∣∫ hl(a){λ̂j(a, x)− λj(a, x)}{rj(a, x)− tε,j(a)}dP(a)dP(x)

∣∣∣∣
.
∫
1{|rj(a, x)− tε,j(a)| ≤ ‖r̂j − rj‖∞ + ‖tε,j − t̂ε,j‖∞}{rj(a, x)− tε,j(a)}dP(a)dP(x)

≤
(
‖r̂j − rj‖∞ + ‖tε,j − t̂ε,j‖∞

) ∫
P
(
|r(a,X)− tε,j(a)| ≤ ‖r̂j − rj‖∞ + ‖tε,j − t̂ε,j‖∞

)
dP(a)

. ‖r̂j − rj‖2∞ + ‖tε,j − t̂ε,j‖2∞

�is concludes our proof that

U
[
hl(A1)

{
λ̂j(A1, X2)− λj(A1, X2)

}{
f̂r(Z1, Z2)− tε,j(A1)

}]
= oP(n−1/2)

Statement 2 now follows if we can show that

(Pn − P)h(A)
{
g(A; β̃j)− g(A; β̂j)

}
= oP(n−1/2)

which is the case if ‖β̂j − β̃j‖ ≤ ‖β̂j − βj‖+ ‖β̃j − βj‖ = oP(1) because g(A;β), β ∈ Rk is a
Donsker class. We can show consistency of β̂j for βj by relying on �eorem 2.10 in Kosorok
[2008] as done in the proof of Statement 1 of Lemma 23. Let Ψ̂n(β) = Unh(A1){f̂j(Z1, Z2)−
g(A1;β)} and Ψ(β) = Uh(A1){fj(Z1, Z2)−g(A1;βj)}. First, we need to show that ‖Ψ(βn)‖ →
0 implies ‖βn − βj‖ → 0 for any sequence βn ∈ Rk. �is is accomplished as in the proof of
Lemma 23 by di�erentiability of Ψ(β) : Rk → Rk and invertibility of its Jacobian matrix:

Ψ(βn) = Ψ̇βj (βn − βj) + o(‖βn − βj‖) =⇒ ‖βn − βj‖{1 + o(1)} . ‖Ψ(βn)‖ → 0.

Second, we need to show that supβ∈Rk ‖Ψn(β)−Ψ(β)‖ = oP(1), which is the case since

Ψn(β)−Ψ(β) = (Un − U)h(A1){f̂j(Z1, Z2)− fj(Z1, Z2)}+ (Un − U)fj(Z1, Z2)

+ Uh(A1){f̂j(Z1, Z2)− fj(Z1, Z2)}+ (Pn − P)h(A)g(A;β)

All the terms above are oP(1) by the arguments made in proving the previous steps and because
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g(a;β), β ∈ Rk is Donsker and thus Glivenko-Cantelli. �is concludes our proof that

β̂j − β̃j = −Ψ̇−1

β̂j
(Un − U)h(A1)tε,j(A1)λj(A1, X2) + oP(n−1/2)

B.2.13 Moment condition in the time-varying case

We assume that Y (aT ) ⊥⊥ At | At−1, Xt, U t. �en, we have, for p(·) denoting generically a
density:

E
[
h(AT )WT (AT , XT )

{
Y vT (Y,AT , XT )− g(AT ;β)

}]
=

∫
h(aT )π(aT )∏T

s=1 π(as | xs, as−1)
{yvT (y, aT , xT )− g(aT ;β)} p(y, aT , xT )dydaTdxT

=

∫
h(aT )π(aT )∏T

s=1 π(as | xs, as−1)

{
y

∫ ∏T
s=1 π(as | as−1xs)∏T

s=1 π(as | as−1, xs, us)
dP(uT | aT , xT , y)− g(aT ;β)

}
× p(y, aT , xT )dydaTdxT

=

∫
h(aT )π(aT )∏T

s=1 π(as | xs, as−1)

{∫
y

∏T
s=1 π(as | as−1xs)∏T

s=1 π(as | as−1, xs, us)
dP(uT , y | aT , xT )− g(aT ;β)

}
× p(aT , xT )daTdxT

=

∫
h(aT )π(aT )∏T

s=1 π(as | xs, as−1)

{∫
E(Y aT | aT , xT , uT )

∏T
s=1 π(as | as−1xs)∏T

s=1 π(as | as−1, xs, us)
dP(uT | aT , xT )

− g(aT ;β)

}
p(aT , xT )daTdxT
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Next, because Y aT ⊥⊥ AT | XT , UT , AT−1 and by Bayes’ rule, we can further simplify:

=

∫
h(aT )π(aT )∏T

s=1 π(as | xs, as−1)

×

{∫
E(Y aT | aT−1, xT , uT )

∏T−1
s=1 π(as | as−1xs)∏T−1

s=1 π(as | as−1, xs, us)
dP(uT | aT−1, xT )

− g(aT ;β)

}
p(aT , xT )daTdxT

=

∫
h(aT )π(aT )∏T

s=1 π(as | xs, as−1)

×

{∫
E(Y aT | aT−1, xT , uT−1)

∏T−1
s=1 π(as | as−1xs)∏T−1

s=1 π(as | as−1, xs, us)
dP(uT−1 | aT−1, xT )

− g(aT ;β)

}
p(aT , xT )daTdxT

=

∫
h(aT )π(aT )∏T−1

s=1 π(as | xs, as−1)

×

{∫
E(Y aT | aT−1, xT , uT−1)

∏T−1
s=1 π(as | as−1xs)∏T−1

s=1 π(as | as−1, xs, us)
dP(uT−1 | aT−1, xT )

− g(aT ;β)

}
p(aT−1, xT )daTdxT

=

∫
h(aT )π(aT )∏T−1

s=1 π(as | xs, as−1)

×

{∫
E(Y aT | aT−1, xT−1, uT−1)

∏T−1
s=1 π(as | as−1xs)∏T−1

s=1 π(as | as−1, xs, us)
dP(uT−1 | aT−1, xT−1)

− g(aT ;β)

}
p(aT−1, xT−1)daTdxT−1

Repeating this calculation T − 1 times, we arrive at

=

∫
h(aT )π(aT )

π(a1 | x1)

{∫
E(Y aT | a1, x1, u1)

π(a1 | x1)

π(a1 |, x1, u1)
dP(u1 | a1, x1)− g(aT ;β)

}
p(a1, x1)daTdx1

=

∫
h(aT )π(aT )

{∫
E(Y aT | x1, u1)dP(u1 | x1)− g(aT ;β)

}
p(x1)daTdx1

=

∫
h(aT )π(aT )

{
E(Y aT )− g(aT ;β)

}
daT = 0
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B.2.14 Additional useful lemmas

Lemma 18 (�eorem 12.3 in Van der Vaart [2000]). Let h(z1, z2) be a symmetric function of
two variables and E{h2(Z1, Z2)} <∞. �en,

√
n(Un − U)h(Z1, Z2) N (0, 4var{h1(Z1)})

where h1(Z1) =
∫
h(Z1, z2)dP(z2).

Lemma 19 (Rudelson LLN for Matrices, Lemma 6.2 in Belloni et al. [2015]). Let Q1, . . . , Qn
be a sequence of independent symmetric, nonnegative k× k-matrix valued random variables with
k ≥ 2 such that Q = Pn{E(Qi)} and ‖Qi‖ ≤M a.s.. �en, for Q̂ = PnQ:

E‖Q̂−Q‖ . M log k

n
+

√
M‖Q‖ log k

n
.

Lemma 20. Let ĥ(z1, z2) be a symmetric function estimated on a separate training sample Dn

and

∆̂(z1) =

∫
{ĥ(z1, z2)− h(z1, z2)}dP(z2).

If E
[{
ĥ(Z1, Z2)− h(Z1, Z2)

}2
|Dn

]
<∞, then

(Un − U)
{
ĥ(Z1, Z2)− h(Z1, Z2)

}
= OP

(
‖∆̂‖√
n

)
.

Proof. We have

E
[
(Un − U)

{
ĥ(Z1, Z2)− h(Z1, Z2)

}
|Dn

]
= 0

because U-statistics are unbiased and ĥ(z1, z2) is a �xed function given Dn.
Let θ =

∫
f(z1, z2)dP(z1)dP(z2). �e variance of a U-statistic with symmetric kernel f
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satisying Ef2(Z1, Z2) <∞ is

var{Unf(Z1, Z2)}

=

(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<l≤n

∫
{f(zi, zj)− θ}{f(zk, zl)− θ}dP(zi)dP(zj)dP(zk)dP(zl)

=

(
n

2

)−2(n
2

)
· 2 · (n− 1)var

{∫
f(Z1, z2)dP(z2)

}
+

(
n

2

)−2(n
2

)
var{f(Z1, Z2)}

=
4

n
var
{∫

f(Z1, z2)dP(z2)

}
+ o(n−1)

≤ 4

n
E

[{∫
f(Z1, z2)dP(z2)

}2
]

+ o(n−1).

Substituting f(z1, z2) = ĥ(z1, z2)− h(z1, z2) into the expression above, we get

var
[
(Un − U){ĥ(Z1, Z2)− h(Z1, Z2)}|Dn

]
≤ 4‖∆̂‖2

n
+ o(n−1).

�e result then follows from Chebyshev’s inequality.

Lemma 21. For j = {`, u}, let sj(Z; qj) = qj(Y |A,X) + {Y − qj(A,X)}csgn{Y−qj(Y |A,X)}
j ,

where c` = γ−1, cu = γ, q`(Y |A,X) is the 1/(1 + γ)-quantile of Y given (A,X), qu(Y |A,X)
is the γ/(1 + γ)-quantile of Y given (A,X) and κ(A,X; qj) = E{s(Z; qj)|A,X}. �en, the
following holds:

1. �e map q 7→ s(Z; q) is Lipschitz;

2. �e �rst and second derivatives of q 7→ κ(a, x; q) are

d

dq
κ(A,X; q) = 1− c−1

j

∫ q

−∞
f(y|A = a,X = x)dy − cj

∫ ∞
q

f(y|A = a,X = x)dy

d2

dq2
κ(A,X; q) = −c−1

j f(q|A = a,X = x) + cjf(q|A = a,X = x);

3. �e �rst derivative of q 7→ κ(a, x; q) vanishes at the true quantile qj(Y |A = a,X = x).

Proof. All three statements were noted by Dorn et al. [2021]. To prove the �rst one, let q1 < q2

without loss of generality and notice that if either y < q1 < q2 or q1 < q2 < y,

|s(Z; q1)− s(Z; q2)| =
∣∣∣q1 − q2 + (q2 − q1)c

sgn{y−q1}
j

∣∣∣ ≤ (1 + γ)|q1 − q2|

because y − q1 and y − q2 agree on the sign. If q1 < y < q2, |y − q1| ≤ |q1 − q2| and
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|y − q2| ≤ |q1 − q2| so that

|s(Z; q1)− s(Z; q2)| =
∣∣∣q1 − q2 + (y − q1)c

sgn{y−q1}
j + (y − q2)c

sgn{y−q2}
j

∣∣∣
≤ (1 + γ−1 + γ)|q1 − q2|

�e second statement follows from an application of Leibniz rule of integration and the third
by noticing that

d

dq
κ(A,X; q)

∣∣∣
q=q`

= 1− γ · 1

1 + γ
− γ−1

(
1− 1

1 + γ

)
= 0

d

dq
κ(A,X; q)

∣∣∣
q=qu

= 1− γ−1 · γ

1 + γ
− γ

(
1− γ

1 + γ

)
= 0.

Lemma 22. Let f(A) be a �xed function of the random variable A with density upper bounded
by B and g(A) be any other �xed function. �en,∣∣∣∣∫ [1{g(a) ≤ 0} − 1{f(a) ≤ 0}f(a)dP(a)]

∣∣∣∣ ≤ 2B‖f − g‖2∞.

Proof. By Lemma 1 in Kennedy et al. [2020],

|1{g(a) ≤ 0} − 1{f(a) ≤ 0}| ≤ 1{|f(a)| ≤ |f(a)− g(a)|} ≤ 1{|f(a)| ≤ ‖f − g‖∞}.

�erefore,∣∣∣∣∫ [1{g(a) ≤ 0} − 1{f(a) ≤ 0}f(a)dP(a)]

∣∣∣∣ ≤ ∫ 1{|f(a)| ≤ ‖f − g‖∞}|f(a)|dP(a)

≤ ‖f − g‖∞
∫
1{|f(a)| ≤ ‖f − g‖∞}dP(a)

= ‖f − g‖∞P (−‖f − g‖∞ ≤ f(A) ≤ ‖f − g‖∞)

≤ 2B‖f − g‖2∞.

Lemma 23. Let f̂(z1, z2) be a function estimated on a separate independent sample and g(A;β)
be some parametric model indexed by β ∈ B ⊂ Rk . For some �nite collection of known functions
h1(A), . . . , hk(A), de�ne

Ψn,l(β) = Un
[
hl(A1)

{
f̂(Z1, Z2)− g(A1;β)

}]
Ψl(β) = U [hl(A1) {f(Z1, Z2)− g(A1;β)}] .
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and let Ψn(β) = [Ψn,1(β), . . . ,Ψn,k(β)] and Ψ(β) be de�ned similarly. Let β̂n and β0 be the
solutions to Ψn(β̂) = oP(n−1/2) and Ψ(β0) = 0, respectively, with β0 in the interior of B.
Suppose that

1.
∥∥∥∫ S2

{
f̂(Z1, z2)− f(Z1, z2)

}
dP(z2)

∥∥∥ = oP(1);

2. �e function class G =
{
a 7→ hl(a)g(a;β), β ∈ Rk

}
is Donsker for every l = {1, . . . , k}

with integrable envelop and g(a;β) is a continuous function of β;

3. �e function β 7→ Ψ(β) is di�erentiable at all β with continuously invertible matrices Ψ̇β0

and Ψ̇
β̂

, where Ψ̇β = −E
{
h(A)∇Tβ g(A;β)

}
.

4. maxl
∣∣∣U [hl(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]∣∣∣ = oP(1).

�en,

1. ‖β̂ − β‖ = oP(1);

2. β̂ − β = Ψ̇−1

β̂
Uh(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}
− Ψ̇−1

β0
(Un − U)h(A1){f(Z1, Z2) −

g(A1;β)}+ oP(n−1/2);

3. In particular, if Ψ̇−1

β̂
U
[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
= oP(n−1/2), then

√
n
(
β̂ − β

)
 −Ψ̇−1

β0
N(0, 4Σ)

where

Σ = E
[∫

S2h(A1) {f(Z1, z2)− g(A1;β0)} dP(z2)

]2

.

Proof. Statement 1 follows from �eorem 2.10 in Kosorok [2008]. We need to verify the two
conditions of the theorem, namely:

1. ‖Ψ(βn)‖ → 0 implies ‖βn − β0‖ → 0 for any sequence βn ∈ Rk;

2. supβ∈Rk ‖Ψn(β)−Ψ(β)‖ = oP(1).

By di�erentiability of Ψ(β) : Rk → Rk,

Ψ(βn) = Ψ̇(β0)(βn − β0) + o(‖βn − β0‖) =⇒ βn − β0 + o(‖βn − β0‖) = Ψ̇−1(β0)Ψ(βn)
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�erefore, ‖βn − β0‖{1 + o(1)} . ‖Ψ(βn)‖ → 0. In addition,

Ψn(β)−Ψ(β) = (Un − U)
[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
+ (Un − U)h(A1)f(Z1, Z2) + U

[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
+ (Pn − P)h(A)g(A;β)

= oP(1) + (Pn − P)h(A;β)g(A;β)

Because a Donsker class is also Glivenko-Cantelli, supβ∈Rk |(Pn − P)hl(A)g(A;β)| = oP(1).
�erefore, since k is �xed, supβ∈Rk ‖(Pn − P)h(A)g(A;β)‖ = oP(1).

To prove Statement 2, we apply �eorem 2.11 in Kosorok [2008] to the “debiased” moment
condition

Ψ̃n(β̃) = Un
[
h(A1)

{
f̂(Z1, Z2)− g(A1; β̃)

}]
− U

[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
= oP(n−1/2)

By the same reasoning used to derive statement 1, we have that ‖β̃ − β0‖ = oP(1). Next, we
have

√
n(Ψ̃n −Ψ)(β0) =

√
n(Un − U)h(A1){f(Z1, Z2)− g(A1;β0)}

+
√
n(Un − U)h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}
�us, by condition 1 and Lemma 20 together with Lemma 18,

√
n(Ψ̃n −Ψ)(β0) N(0, 4Σ).

Condition 2.12 in �eorem 2.11 in Kosorok [2008] requires that∥∥∥√n(Pn − P)
{
h(A)g(A; β̃)− h(A)g(A;β0)

}∥∥∥ = oP

(
1 +
√
n‖β̃ − β0‖

)
Because each function class Gl = {a 7→ hl(a)g(a;β), β ∈ Rk} is Donsker, the process√
n(Pn − P)f , f ∈ G, is stochastically equicontinuous relative to the norm ρ2(f1, f2) =

var(f1 − f2) ≤ ‖f1 − f2‖2. In this respect, because ‖β̃ − β0‖ = oP(1) and k is �xed, the
condition above is satis�ed. �erefore, we conclude that

β̃ − β0 = −Ψ̇−1
β0

(Un − U)h(A1){f(Z1, Z2)− g(A1;β0)}+ oP(n−1/2).

Finally, because hj(a)g(a;β) belongs to a Donsker class and ‖β̃− β̂‖ ≤ ‖β̃−β0‖+‖β̂−β0‖ =



Appendix B. Appendix for Chapter 3 195

oP(1):

oP(n−1/2) =
{

Ψn(β̂)− Ψ̃n(β̃)
}

= (Pn − P)h(A)
{
g(A; β̃)− g(A; β̂)

}
+ Ph(A)

{
g(A; β̃)− g(A; β̂)

}
+ U

[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
= oP(n−1/2) + o(‖β̃ − β̂‖) + Ψ̇

β̂
(β̃ − β̂) + U

[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
Rearranging, we have

β̂ − β̃ = Ψ̇−1

β̂
U
[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
+ oP(n−1/2).

�is concludes our proof that

β̂ − β0 = −Ψ̇−1
β0

(Un − U)h(A1){f(Z1, Z2)− g(A1;β0)}

+ Ψ̇−1

β̂
U
[
h(A1)

{
f̂(Z1, Z2)− f(Z1, Z2)

}]
+ oP(n−1/2).
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Appendix for Chapter 4

C.1 Proof of Lemma 8

Write

E{dH(Γ̂,Γ)} = E
∫

Γ̂c∩Γ
|τ(x)− θ|f(x)dx+ E

∫
Γ̂∩Γc

|τ(x)− θ|f(x)dx

Let αn = cαan and βn = cβ(log n)−min{(1+ξ)−1,ε}, where cα = 2ca and

cβ = max[cb, c1{µ(1 + ξ)/c7}1/κ2 ].

Consider the �rst term and write

Γ̂c ∩ Γ = {x ∈ X : τ̂(x) ≤ θ and τ(x) > θ} = A1 ∪A2 ∪A3

A1 = {x ∈ X : τ̂(x) ≤ θ and θ < τ(x) ≤ θ + αn}
A2 = {x ∈ X : τ̂(x) ≤ θ and θ + αn < τ(x) ≤ θ + βn}
A3 = {x ∈ X : τ̂(x) ≤ θ and τ(x) > θ + βn}

Let n0 be the integer such that for all n ≥ n0, it holds that

αn < βn < min(η, ε0,∆)

For the proof we assume that the sample size n exceeds n0.

We have A1 ⊆ {x ∈ X : 0 < |τ(x)− θ| ≤ αn}. By Assumption 4 (margin condition), we
have

E
∫
A1

|τ(x)− θ|f(x)dx ≤ αnP(0 < |τ(X)− θ| ≤ an) ≤ c0α
1+ξ
n

Next, let Jn = blog2{βn/αn}c+ 1. Notice that βn/αn . nµ so that Jn . log n. Partition A2

196
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as A2 = ∪Jnj=1A2 ∩ Vj , where

Vj = {x ∈ X : τ̂(x) ≤ θ and 2j−1αn < τ(x)− θ ≤ 2jαn}

We have

E
∫
A2

|τ(x)− θ|f(x)dx =

Jn∑
i=1

E
∫
A2∩Vj

|τ(x)− θ|f(x)dx

and

Vj ⊂ {x ∈ X : |τ̂(x)− τ(x)| > 2j−1αn and |τ(x)− θ| < 2jαn} ∩ D(min(η, ε0))

To see why this is the case, consider a x∗ such that τ(x∗) ∈ (θ + 2j−1αn, θ + 2jαn] and
τ̂(x∗) ≤ θ. Clearly, x∗ satis�es τ(x∗) ∈ [θ − 2jan, θ + 2jαn]. Notice that

τ(x∗)− 2j−1αn > θ + 2j−1αn − 2j−1αn = θ ≥ τ̂(x∗)

for any j. �e claim follows because we have shown that τ̂(x∗) < τ(x∗)− 2j−1αn and thus
x∗ is in the larger set.

For any j ≥ 1, we have that 2j−1αn > caan and

E
∫
A2∩Vj

|τ(x)− θ|f(x)dx ≤ ‖f‖∞2jαn

∫
X
P
(
|τ̂(x)− τ(x)| > 2j−1αn

)
1{0 < |τ(x)− θ| < 2jαn}dx

≤ ‖f‖∞c02j(1+ξ)α1+ξ
n

{
c3 exp(−c42(j−1)κ1cκ1α ) + c5

δ1+ξ
n

2(j−1)(1+ξ)α1+ξ
n

}
= ‖f‖∞c3c02j(1+ξ)α1+ξ

n exp(−c42(j−1)κ1cκ1α ) + c5c021+ξδ1+ξ
n

�us,

E
∫
A2

|τ(x)− θ|f(x)dx =

Jn∑
j=1

E
∫
A2∩Vj

|τ(x)− θ|f(x)dx

≤ ‖f‖∞c3c0α
1+ξ
n

Jn∑
j=1

2j(1+ξ) exp
{
−c4

(cα
2

)κ1
2jκ1

}
+ Jnc5c021+ξδ1+ξ

n

. a1+ξ
n + δ1+ξ

n log n

�e last inequality follows, because for any a, b, c > 0,
∑∞

j=1 2aj exp(−b2jc) < ∞. In fact,
for any α, there exists a constant C such that (1/eb)x ≤ Cx−α for any x ≥ 1. Let j0 be large
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enough so that 2jc−1 ≥ j ≥ 1 for all j ≥ j0. �en, for some constant C and xj = 2jc−1:

2aj
(

1

eb

)2jc−1

= 2a/cx
a/c
j

(
1

eb

)xj
≤ C for all j ≥ j0.

�en, we have

∞∑
j=1

2aj exp(−b2jc) =

j0−1∑
j=1

2aj exp(−b2jc) +
∞∑
j=j0

2aj exp(−b2jc−1) exp(−b2jc−1)

≤
j0−1∑
j=1

2aj exp(−b2jc) + C
∞∑
j=j0

exp(−b2jc−1)

<∞

Finally, we have that βn > cbbn so that

E
∫
A3

|τ(x)− θ|f(x)dx ≤
∫
X
|τ(x)− θ|P (|τ̂(x)− τ(x)| > βn) f(x)dx

≤
∫
X
|τ(x)− θ|f(x)dx

(
c6 exp

[
−c7

(
cβ
c1

)κ2 { (log n)1/κ2+ε

(log n)min{(1+ξ)−1,ε}

}κ2]
+

c8

c1+ξ
β

δ1+ξ
n log n

)

. exp

{
−c7

(
cβ
c1

)κ2
log n

}
+ c8δ

1+ξ
n log n

= exp [−max{c7(cb/c1)κ2 , µ(1 + ξ)} log n] + c8δ
1+ξ
n log n

≤ n−(1+ξ)µ + c8δ
1+ξ
n log n

. a1+ξ
n + c8δ

1+ξ
n log n

�e bound on E
∫

Γ̂∩Γc
|τ(x)− θ|f(x)dx follows similarly.

C.2 Proof of Lemma 9

By de�nition, we have τ̂(x) =
∑n

i=1Wi(x;Xn)ϕ̂(Zi). De�ne τ(x;Xn) =
∑n

i=1Wi(x;Xn)τ(Xi)

and recall that ∆(x;Xn) = τ(x;Xn)−τ(x). Finally, let b̂(Xi) = E{ϕ̂(Zi)−ϕ(Zi) | Xi, D
n}.

We start from the decomposition

τ̂(x)− τ(x) =

n∑
i=1

Wi(x;Xn)ϕ(Zi)− τ(x;Xn) +

n∑
i=1

Wi(x;Xn){ϕ̂(Zi)− ϕ(Zi)− b̂(Xi)}

+ ∆(x;Xn) +

n∑
i=1

Wi(x;Xn)̂b(Xi).
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Given (Dn, Xn), the last two terms are constants, whereas the �rst two are mean-zero. We
have

P (|τ̂(x)− τ(x)| > t)

≤ E

{
P

(∣∣∣∣∣
n∑
i=1

Wi(x;Xn)ϕ(Zi)− τ(x;Xn)

∣∣∣∣∣ > t

3
− |∆(x;Xn)|

2
| Xn

)}

+ E

[
P

(∣∣∣∣∣
n∑
i=1

Wi(x;Xn){ϕ̂(Zi)− ϕ(Zi)− b̂(Xi)}

∣∣∣∣∣ > t

3
− |∆(x;Xn)|

2
| Dn, Xn

)]

+ inf
p>0

(
3

t

)p
E

∣∣∣∣∣
n∑
i=1

Wi(x;Xn)̂b(Xi)

∣∣∣∣∣
p

As in equation 2.16 in Giné et al. [2000], we have, for p ≥ 2:

E

[∣∣∣∣∣
n∑
i=1

Wi(x;Xn){ϕ(Zi)− τ(Xi)}

∣∣∣∣∣
p

| Xn

]

≤ 2p(p− 1)p/2E

[ n∑
i=1

W 2
i (x;Xn){ϕ(Zi)− τ(Xi)}2

]p/2
| Xn


≤ (4‖ϕ‖∞)ppp/2Sp(x;Xn)

�us,

E

[∣∣∣∣∣
n∑
i=1

Wi(x;Xn)ϕ(Zi)− τ(x;Xn)

∣∣∣∣∣
p]
≤ (4‖ϕ‖∞)ppp/2E{Sp(x;Xn)}

≡ (4‖ϕ‖∞)ppp/2spn

�e following lemma, which can be found for instance in Giné et al. [2000] (eq. 3.2, page 14),
shows that an exponential inequality follows if all the moments E|τ̂(x)− τ(x)|p are properly
controlled.

Lemma 24. Let X be some random variable such that E|X|p ≤ apnpp/α, for all p ≥ p0 and
some �xed p0. �en,

P (|X| > t) ≤ ep0 exp

{
−
(

t

ane

)α}
Proof. For t such that p = (te−1a−1

n )α ≥ p0, we have the bound t−pE|X|p ≤ e−p. For all t,
we thus have P(|X| > t) ≤ ep0−p, since for values of t for which p < p0, ep0−p > 1 is a valid
bound.
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In light of Lemma 24, we have for all t ≥ 3|∆(x;Xn)|:

P

(∣∣∣∣∣
n∑
i=1

Wi(x;Xn)ϕ(Zi)− τ(x;Xn)

∣∣∣∣∣ > t

3
− |∆(x;Xn)|

2
| Xn

)

≤ P

(∣∣∣∣∣
n∑
i=1

Wi(x;Xn)ϕ(Zi)− τ(x;Xn)

∣∣∣∣∣ > t

6
| Xn

)

≤ e2 exp

{
−
(

t

24e‖ϕ‖∞sn

)2
}

Similarly,

P

(∣∣∣∣∣
n∑
i=1

Wi(x;Xn){ϕ̂(Zi)− ϕ(Zi)− b̂(Xi)}

∣∣∣∣∣ > t

3
− |∆(x;Xn)|

2
| Dn, Xn

)

≤ e2 exp

{
−
(

t

12c2‖ϕ‖∞esn

)2
}

under the assumption that ‖ϕ̂− ϕ− b̂‖∞ ≤ c2‖ϕ‖∞. �erefore, we conclude that

P (|τ̂(x)− τ(x)| > t) ≤ 2e2 exp

{
−
(

t

12(c2 ∨ 2)e‖ϕ‖∞sn

)2
}

+ 31+ξ

(
δn
t

)1+ξ

for all t ≥ 3|∆(x;Xn)|.

C.3 Proof of Lemma 10

Recall that the Lp-R-Learner can be wri�en as τ̂(x0) = ρh(x0)T Q̂−1R̂, where

Q̂ = Un{f̂1(Z1, Z2)} and R̂ = Un{f̂2(Z1, Z2)}

for some functions f̂1 and f̂2 described in De�nition 3. De�ne τh(x0) = ρh(x0)TQ−1R to be
the projection parameter. By proposition 4 in Kennedy et al. [2022], it holds that

|τh(x0)− τ(x0)| ≤

{
c1h

γ if x0 ∈ D(η)

c2h
γ′ if x0 6∈ D(η)

for some constants c1 and c2. Let Ŝ = R̂− Q̂Q−1R. By Proposition 6 in Kennedy et al. [2022],
we have, under the conditions of the theorem, for J =

(d+bγc
bγc

)
and a constant c3:

{τ̂(x0)− τh(x0)}2 ≤ c3

J∑
j=1

Ŝ2
j
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�erefore, if x0 ∈ D(η) and t ≥ 2c1h
γ :

P (|τ̂(x0)− τ(x0)| > t) ≤ P (|τ̂(x0)− τh(x0)| > t− c1h
γ)

≤ P
(
{τ̂(x0)− τh(x0)}2 > t2

4

)
≤

J∑
j=1

P
(∣∣∣Ŝj∣∣∣ > t

2
√
c3J

)
Next, we bound

P
(∣∣∣Ŝj∣∣∣ > t

2
√
c3J

)
Recall that Ŝj = Un{g(Z1, Z2)}, where

g(Z1, Z2) = f2j(Z1, Z2)− [Q̂Q−1R]j

f2j(Z1, Z2) = ρhj(X1)Kh(X1)ϕ̂y1(Z1) + ρhj(X1)Kh(X1)ϕ̂y2(Z1, Z2)Kh(X2)

ϕy1(Z1) = {Y − µ0(X1)}{A− π(X1)}
ϕy2(Z1, Z2) = −{A1 − π(X1)}bTh (X1)Ω−1bh(X2){Y2 − µ0(X2)}
Ω = E{bh(X)bh(X)T }, for Kh(x) = h−d1(2‖x− x0‖ ≤ h).

It will be useful to write Ŝj as a sum of degenerate U -statistics, as follows:

Ŝj = Ung(Z1, Z2) = Un{gD(Z1, Z2)}+ Pn{g1(Z1)}+ Pn{g2(Z2)}+

∫
g(z1, z2)dP(z1)dP(z2)

where

gD(Z1, Z2) = g(Z1, Z2)−
∫
g(z1, Z2)dP(z1)−

∫
g(Z1, z2)dP(z2) +

∫
g(z1, z2)dP(z1)dP(z2)

g1(Z1) =

∫
g(Z1, z2)dP(z2)−

∫
g(z1, z2)dP(z1)dP(z2)

g2(Z2) =

∫
g(z1, Z2)dP(z1)−

∫
g(z1, z2)dP(z1)dP(z2)

�us, we have

P
(∣∣∣Ŝj∣∣∣ > t

2
√
c3J

)
≤ P

(
|Un{gD(Z1, Z2)}|+ |Pn{g1(Z1)}|+ |Pn{g2(Z2)}| > t

2
√
c3J
−
∣∣∣∣∫ g(z1, z2)dP(z1)dP(z2)

∣∣∣∣)
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By proposition 9 in Kennedy et al. [2022], there exists a constant c4 such that∣∣∣∣∫ g(z1, z2)dP(z1)dP(z2)

∣∣∣∣ ≤ c4

(
k

hd

)−2s/d

�erefore, for t ≥ 4
√
c3Jc4

(
k
hd

)−2s/d:

P
(∣∣∣Ŝj − Sj∣∣∣ > t

2
√

2c3J

)
≤ P

(
|Un{gD(Z1, Z2)}|+ |Pn{g1(Z1)}|+ |Pn{g2(Z2)}| > t

4
√
c3J

)
≤ P

(
|Un{gD(Z1, Z2)}| > t

12
√
c3J

)
+ P

(
|Pn{g1(Z1)}| > t

12
√
c3J

)
+ P

(
|Pn{g2(Z2)}| > t

12
√
c3J

)
�e second and third terms can be analyzed by Bernstein’s inequality. For the �rst term, we
use a concentration inequality for U -statistics derived in Giné et al. [2000] and restated below.
See also Ca�aneo et al. [2022] for a similar use of this lemma.

Lemma 25 (Equation 3.5 in Giné et al. [2000]). Let fij(zi, z̃j) be the kernel of a degenerate and
decoupled second order U -statistic. De�ne

A = max1≤i,j≤n sup
z,z̃
|fij(z, z̃)|, B2 = max

sup
z̃

n∑
i=1

E
{
f2
ij(Zi, z̃)

}
, sup

z

n∑
j=1

E
{
f2
ij(z, Z̃j)

}
C2 =

∑
1≤i,j≤n

E
{
f2
ij(Zi, Z̃j)

}
where {Zi, 1 ≤ i ≤ n} are independent random variables and {Z̃j , 1 ≤ j ≤ n} are independent
copies of Zi. �en, for a universal constant K , the following holds

P

∣∣∣∣∣∣
∑
i,j

fij(zi, z̃j)

∣∣∣∣∣∣ > t

 ≤ K exp

[
− 1

K
min

{
t

C
,

(
t

B

)2/3

,

(
t

A

)1/2
}]

Lemma 25 is for decoupled U -statistics, however, because of the result in de la Peña and
Montgomery-Smith [1995], as noted in Giné et al. [2000] (pages 15 and 20), the same conclusion
holds for regular, undecoupledU -statistics simply withK replaced by a di�erent constant. �us,
we will apply Lemma 25 without performing the additional decoupling step or introducing a
di�erent constant. In particular, we apply Lemma 25 with fij(zi, zj) = {n(n−1)}−1gD(zi, zj)
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if i 6= j and zero otherwise; that is:

P

∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

gD(zi, zj)

∣∣∣∣∣∣ > t | Dn

 ≤ K exp

[
− 1

K
min

{
t

C
,

(
t

B

)2/3

,

(
t

A

)1/2
}]

,

where A =
supz1,z2 |gD(z1, z2)|

n(n− 1)
,

B2 = max
[

sup
z2

E
{
g2
D(Z1, z2) | Dn

}
n2(n− 1)

, sup
z1

E
{
g2
D(z1, Z2) | Dn

}
n2(n− 1)

]
, and

C2 =
E
{
g2
D(Z1, Z2) | Dn

}
n(n− 1)

C.3.1 Bound on P
(
|UngD(Z1, Z2)| > t

12
√
c3J
| Dn

)
First, notice that, under the assumption that ‖Q̂‖ . 1 and ‖Q−1‖ . 1,

[Q̂Q−1R]j . maxj |Rj |

= maxj
∣∣∣∣∫ ρhj(x)Kh(x)var(A | X = x)τ(x)f(x)dx

∣∣∣∣
= maxj

∣∣∣∣∫ ρj(1/2 + v)K(v)var(A | X = x0 + vh)τ(x0 + vh)f(x0 + vh)dv

∣∣∣∣
≤ maxj sup

v
|ρj(1/2 + v)var(A | X = x0 + vh)τ(x0 + vh)f(x0 + vh)|

∣∣∣∣∫ K(v)dv

∣∣∣∣
. 1

and ∣∣∣∣∫ g(z1, z2)dP(z1)

∣∣∣∣ ≤ ∣∣∣∣∫ f2j(z1, z2)dP(z1)

∣∣∣∣+ [Q̂Q−1Rj ]j

. h−d1(2‖x2 − x0‖ ≤ h)

∣∣∣∣Π̂(dF
dF̂

(π − π̂)

)
(x2)

∣∣∣∣+ 1 . h−d

∣∣∣∣∫ g(z1, z2)dP(z2)

∣∣∣∣ ≤ ∣∣∣∣∫ f2j(z1, z2)dP(z2)

∣∣∣∣+ [Q̂−1QRj ]j

. h−d1(2‖x1 − x0‖ ≤ h)

∣∣∣∣1− Π̂

(
dF

dF̂
(µ− µ̂0)

)
(x1)

∣∣∣∣+ 1 . h−d

and recall that by Proposition 9 in Kennedy et al. [2022],∣∣∣∣∫ g(z1, z2)dP(z1, z2)

∣∣∣∣ ≤ c4

(
k

hd

)−2s/d
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for some constant c4.

Term A.

We have

sup
z1,z2
|gD(z1, z2)| ≤ 4 sup

z1,z2
|g(z1, z2)|

. sup
z1,z2
|ρhj(x1)Kh(x1)ϕ̂y1(z1) + ρhj(x1)Kh(x1)ϕ̂y2(z1, z2)Kh(x2)|

. kh−2d

�us, there exists a constant cA such thatA . k
n(n−1)h2d

≤ cA
√

k
n(n−1)h2d

since kh−2dn−2 →
0.

Term B.

We have

f2
2j(z1, z2)

. h−2d
1(2‖x1 − x0‖ ≤ h)

+ h−2d
1(2‖x1 − x0‖ ≤ h)h−2d

1(2‖x2 − x0‖ ≤ h)bTh (X1)Ω̂−1bh(X2)bTh (X2)Ω̂−1bh(X1)

and, for instance, for dF ∗(v) = dF (x0 + h(v − 0.5)):∫
f2

2j(z1, z2)dP(z1) . h−d
∫
v:‖v−0.5‖≤0.5

dF ∗(v)

+ h−3d
1(2‖x2 − x0‖ ≤ h)bh(x2)T Ω̂−1

∫
v:‖v−0.5‖≤0.5

b(v)b(v)TdF ∗(v)Ω̂−1bh(x2)

.
k

h3d

and similarly for
∫
f2

2j(z1, z2)dP(z2). �erefore,

sup
z2

∫
g2(z1, z2)dP(z1) .

k

h3d
+ [Q̂−1QRj ]

2
j .

k

h3d

and similarly for supz1
∫
g2(z1, z2)dP(z2). Furthermore,

sup
z2

∣∣∣∣∫ g(z1, z2)dP(z1)

∣∣∣∣ . h−d, sup
z1

∣∣∣∣∫ g(z1, z2)dP(z2)

∣∣∣∣ . h−d,
and

∣∣∣∣∫ g(z1, z2)dP(z1)dP(z2)

∣∣∣∣ . ( k

hd

)−2s/d

.



Appendix C. Appendix for Chapter 4 205

�erefore,

sup
z2

∫
g2
D(z1, z2)dP(z1) .

k

h3d
and sup

z1

∫
g2
D(z1, z2)dP(z2) .

k

h3d
.

�us, for some constant cB , we have

B .
1√
nhd
·

√
k

n(n− 1)h2d
≤ cB

√
k

n(n− 1)h2d

Term C.

∫
f2

2j(z1, z2)dP(z1)dP(z2) . h−d
∫
v:‖v−0.5‖≤0.5

dF ∗(v)

+ h−2d

∫
v:‖v−0.5‖≤0.5

bh(v)T Ω̂−1

∫
v:‖v−0.5‖≤0.5

b(v)b(v)TdF ∗(v)Ω̂−1bh(v)dF ∗(v)

.
k

h2d

so that ∫
g2(z1, z2)dP(z1)dP(z2) .

k

h2d

Furthermore, ∣∣∣∣∫ g(z1, z2)dP(z1)

∣∣∣∣ . h−d and
∣∣∣∣∫ g(z1, z2)dP(z2)

∣∣∣∣ . h−d
�erefore,∫
g2
D(z1, z2)dP(z1)dP(z2) .

∫
g2(z1, z2)dP(z1)dP(z2) +

∫ {∫
g(z1, z2)dP(z1)

}2

dP(z2)

+

∫ {∫
g(z1, z2)dP(z2)

}2

dP(z1)

.
k

h2d

�is means that C ≤ cC
√

k
n(n−1)h2d

for some constant cC .
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To recap, we have derived that for some constant K , which now includes cA, cB and cC :

P
(
|UngD(Z1, Z2)| > t

2
√
c3J
| Dn

)

≤ K exp

− 1

K
min

 t√
k

n(n−1)h2d

,

 t√
k

n(n−1)h2d

2/3

,

 t√
k

n(n−1)h2d

1/2

 ,

for t ≥ 4
√
c3Jc4

(
k
hd

)−2s/d.

C.3.2 Bound on P
(
|Png1(Z1)| > t

12
√
c3J
| Dn

)
By Bernstein’s inequality, we have

P
(
|Png1(Z1)| > t

12
√
c3J
| Dn

)
≤ 2 exp

(
− n(t/{12

√
c3J})2/2

E{g2
1(Z1) | Dn}+ supz1(3)−1|g1(z1)|t

)
We have

sup
z1

∣∣∣∣∫ g(z1, z2)dP(z2)

∣∣∣∣ ≤ c5h
−d, and

∣∣∣∣∫ g(z1, z2)dP(z1)dP(z2)

∣∣∣∣ ≤ c4

(
k

hd

)−2s/d

.

Moreover, ∫ {∫
g(z1, z2)dP(z2)

}2

dP(z1) ≤ c6h
−d

�erefore, we have

E{g2
1(Z1) | Dn} ≤ 2c6h

−d + 2c4

(
k

hd

)−4s/d

≤ c7h
−d and

sup
z1
|g1(z1)| ≤ c5h

−d + c4

(
k

hd

)−2s/d

≤ c8h
−d

since k/hd →∞. �erefore, we conclude that for all t ≤ 3c7/c8 and c9 = 1/(4 · 122c3Jc7):

P
(
|Png1(Z1)| > t

12
√
c3J
| Dn

)
≤ 2 exp

(
−c9nh

dt2
)
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C.3.3 Bound on P
(
|Png2(Z2)| > t

12
√
c3J
| Dn

)
A similar to the one above yields that there exist constants c10 and ∆10 such that

P
(
|Png2(Z2)| > t

12
√
c3J
| Dn

)
≤ 2 exp

(
−c10nh

dt2
)

for all t ≤ ∆10

C.3.4 Final step

To conclude, notice that√
k

n(n− 1)h2d
=

√
k

n2h2d
+

k

n2(n− 1)h2d
.

√
k

n2h2d
≡ an

We have obtained that, for x0 ∈ D(η), there exists constants K , ∆, c11 and c12 such that, for
all c11max

{
hγ ,
(
k
hd

)−2s/d
}
≤ t ≤ ∆, it holds that:

P (|τ̂(x0)− τ(x0) > t| | Dn) ≤ K exp

[
− 1

K
min

{
t

an
,

(
t

an

)2/3

,

(
t

an

)1/2
}]

+ 4 exp
(
−c12nh

dt2
)

�e optimal choice of k and h depends on the values of γ, s and d. In particular, we distinguish
two cases.

Case I: s ≥ d/4
1+d/2γ . Set

h = n−1/(2γ+d) and k = nhd = n2γ/(2γ+d) =⇒ an =
1√
nhd

= n−γ/(2γ+d).

In this case, we have for all t such that caan ≤ t ≤ ∆ for some constant ca:

P (|τ̂(x0)− τ(x0) > t| | Dn) ≤ K exp

[
− 1

K
min

{(
t

an

)2

,
t

an
,

(
t

an

)2/3

,

(
t

an

)1/2
}]

for some constant K .

Case II: s < d/4
1+d/2γ . De�ne T = 1 + d/(2γ) + d/(4s), where we recall s = (α+ β)/2 (α

= smoothness of π, π̂ and β = smoothness of µ, µ̂). Set

h = n−1/(Tγ) and k = n{d/(2s)−d/γ}/T

=⇒ an = n−1/T and an ≥
1√
nhd

= nd/(2Tγ)−1/2 because s < d/4

1 + d/2γ
.
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�us, in this case too, we have for all t such that caan ≤ t ≤ ∆ for some constant ca:

P (|τ̂(x0)− τ(x0) > t| | Dn) ≤ K exp

[
− 1

K
min

{(
t

an

)2

,
t

an
,

(
t

an

)2/3

,

(
t

an

)1/2
}]

for some constant K .

If x0 6∈ D(η), the same arguments use to prove the x0 ∈ D(η) case hold simply with γ
replaced by γ′. �e �nal rate would be a′n = n−1/T ′ , where T ′ = 1 + d/(2γ′) + d/(4s).

C.4 Proof of Theorem 4

We prove the case when α ≥ β, since the case α < β can be proved in a symmetric way by
swapping the perturbations of µ0 and π in a way analogous to that presented in Kennedy et al.
[2022]. We proceed as follows

1. Let z = (y, a, x) ∈ {0, 1}2 × [0, 1]d and f(x) the density of x with respect to the
Lebesgue measure. We consider a data generating process such that each observation
follows a distribution with density pω,λ(z), where ω ∈ Ω = {0, 1}m and λ = {0, 1}2mk ,
for some k and with prior ω on λ. �e sample of n independent observations has thus
density

pnω ≡ pnω(z1, . . . , zn) =

∫ n∏
i=1

pω,λ(zi)dω(λ)

Depending on ω, the density will have τω(x) = µ1(x) − µ0(x) �uctuated. For each
density, the λ vector will govern the �uctuations of π(x) and µ0(x) and will not generally
interact with ω. Notice that we parametrize the density by (π, µ0, τ), so that µ1(x) =
τ(x)+µ0(x). Crucially, we will establish that pω,λ(z) belongs toP , the set of all densities
compatible with assumptions 4 and 4, so that we have

inf
Γ̂

sup
p∈P

E{dH(Γ̂,Γp)} ≥ inf
Γ̂

maxωEpnω{dH(Γ̂,Γω)}

where Γω is the true upper level set when the data is sampled from pnω .
2. Under the margin assumption 4, we rely Proposition 2.1 in Rigollet and Vert [2009] to

obtain

dH(Γ̂,Γω) &

[∫
(Γ̂∆Γω)∩{τω(x)6=θ}

f(x)dx

](1+ξ)/ξ

3. We construct a vector ω̂ such that∫
(Γ̂∆Γω)∩{τω(x)6=θ}

f(x)dx ≥ 1

2

∫
(Γω̂∆Γω)∩{τω(x)6=θ}

f(x)dx
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and show that ∫
(Γω̂∆Γω)∩{τω(x)6=θ}

f(x)dx = 2Lebd{Shk(x1)}ρ(ω̂, ω)

where ρ(ω̂, ω) =
∑n

i=1 1(ω̂i 6= ωi) is the Hamming distance and Shk(x1) is a particular
set de�ned below.
At this point we have the following chain of inequalities:

inf
Γ̂

sup
p∈P

E{dH(Γ̂,Γp)} ≥ inf
Γ̂

maxωEpnω{dH(Γ̂,Γω)}

& inf
Γ̂

maxωEpnω

[∫
(Γ̂∆Γω)∩{τω(x)6=θ}

f(x)dx

](1+ξ)/ξ


≥ inf
Γ̂

maxω

(
Epωn

[∫
(Γ̂∆Γω)∩{τω(x) 6=θ}

f(x)dx

])(1+ξ)/ξ

≥ 1

2
inf
ω̂

maxω

(
Epωn

[∫
(Γω̂∆Γω)∩{τω(x)6=θ}

f(x)dx

])(1+ξ)/ξ

= [Lebd{Shk(x1)}](1+ξ)/ξ inf
ω̂

maxω
[
Epωn {ρ(ω̂, ω)}

](1+ξ)/ξ

4. By �eorem 2.12 in Tsybakov [2009], if the Hellinger distance satis�es H2(pnω′ , p
n
ω) ≤ 1

for any ω′, ω such that ρ(ω′, ω) = 1, then

inf
ω̂

maxωEpnωρ(ω̂, ω) ≥ m

(
1

2
−
√

3

4

)

We show that Lebd{Shk(x1)} = (h/2)d so that, pu�ing everything together, we have

inf
Γ̂

sup
p∈P

E{dH(Γ̂,Γp)} & (hdm)(1+ξ)/ξ

Choosing h = O
(
n−1/(Tγ)

)
and m = O

(
h−d+γξ

)
yields the desired rate, where

T = 1 + d/(4s) + d/(2γ).
5. We verify that choosingh = O

(
n−1/(Tγ)

)
,m = O

(
h−d+γξ

)
and k = O

(
nd(γ−2s)/(2sγT )

)
yields H2(pnω′ , p

n
ω) ≤ 1 for any ω′, ω such that ρ(ω′, ω) = 1.

Step 1: Construction of fluctuated densities

Let x1, . . . , x2m denote a grid of [0, 1]d, for some m to be chosen later, and Ch(xi) a cube with
side h centered at xi. Let Ch/k1/d(mji), j ∈ {1, . . . , k}, be a partition of the cube Ch(xi) into k,
equally-sized cubes with midpoints m1i, . . . ,mki. �en, for λ ∈ {−1, 1}2mk and ω ∈ {0, 1}m,
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de�ne the functions

τω(x) = θ + hγ
m∑
i=1

[
ωiB

(
x− xi
h

)
+ (1− ωi)B

(
x− xi+m

h

)]

µ0λ(x) =
1

2
+

(
h

k1/d

)β 2m∑
i=1

k∑
j=1

λijB

(
x−mji

h/2k1/d

)
− τω(x)

2

πλω(x) =
1

2
+

(
h

k1/d

)α m∑
i=1

k∑
j=1

{
(1− ωi)λijB

(
x−mji

h/2k1/d

)
+ ωiλi+mjB

(
x−mji+m

h/2k1/d

)}

f(x) = chm

[
1−

2m∑
i=1

1{x ∈ C2h(xi)}+
2m∑
i=1

1{x ∈ Shk(xi)}

]
Shk(xi) = ∪kj=1Ch/2k1/d(mji)

where chm = {1 − 2(2d − 2−d)hdm}−1 and B(u) is an in�nitely di�erentiable function
such that B(u) = 1 for u ∈ [−1/2, 1/2]d and B(u) = 0 for u 6∈ [−1, 1]d. For example,
B
(
x−mji
h/2k1/d

)
= 0 for any x 6∈ Ch/k1/d(mji) and B

(
x−mji
h/2k1/d

)
= 1 for any x ∈ Ch/2k1/d(mji).

Also notice that f(x) = chm for any x 6∈ ∪2m
i=1C2h(xi) ≡ X0. In this region X0, τω(x) = θ,

µ0λ(x) = (1 − θ)/2 andπωλ(x) = 1/2. �erefore, the density of each observation can be
wri�en as

pω,λ(z) = chm

m∑
i=1

1{x ∈ Shk(xi)}{ωipiλ(z) + (1− ωi)qiλ(z)}

+ 1{x ∈ Shk(xi+m)}{(1− ωi)piλ(z) + ωiqiλ(z)}

+
1

4
chm1{x ∈ X0} {1 + (2y − 1)(2a− 1)θ}

where, for s = (α+ β)/2,

piλ(z) =
1

4
+ (y − 1/2)

(
h

k1/d

)β k∑
j=1

λijB

(
x−mji

h/2k1/d

)
+ (2a− 1)(2y − 1)

{
θ

4
+
hγ

4
B

(
x− xi
h

)}

qiλ(z) =
1

4
+

[
(a− 1/2)

(
h

k1/d

)α
+ (y − 1/2)

{(
h

k1/d

)β
+ θ

(
h

k1/d

)α}] k∑
j=1

λijB

(
x−mji

h/2k1/d

)

+ (2a− 1)(2y − 1)

θ4 +

(
h

k1/d

)2s k∑
j=1

B

(
x−mji

h/2k1/d

)2


It is possible to verify that τω(x) is γ-smooth, µ0λ(x) is β-smooth and πλω(x) is α-smooth. To
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verify the margin condition, notice that∫
x∈X :0<|τω(x)−θ|<ε

f(x)dx = chm

m∑
i=1

Lebd{x ∈ Shk(xi) ∩ 0 < |τω(x)− θ| < ε}

= chmmLebd{x ∈ Shk(x1) ∩ 0 < |τω(x)− θ| < ε}

=
chm
2d

hdm1(ε > hγ)

=
chm
2d

hγξ1(εξ > hξγ)

. εξ

because the choice of h and m ensures that chm is upper bounded by a constant.

Step 2: Proposition 2.1 in Rigollet and Vert [2009]

By Proposition 2.1 in Rigollet and Vert [2009], under the margin assumption 4, we have

dH(G1, G2)ξ/(1+ξ) &
∫
G1∆G2∩τ(x) 6=θ

f(x)dx

for any G1 and G2.

Step 3: Reduction from Γ̂ to Γpω̂

De�ne

ω̂i =

{
0 if Lebd{Γ̂ ∩ Shk(xi)} < Lebd{Γ̂ ∩ Shk(xi+m)}
1 otherwise

and notice that∫
(Γ̂∆Γω)∩τω(x)6=θ

f(x)dx = chm

m∑
i=1

Lebd[Γ̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]

≥
m∑
i=1

Lebd[Γ̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]

≥ 1

2

m∑
i=1

Lebd[Γω̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]

�e second inequality follows because chm ≥ 1. To see why the third inequality holds, �rst
consider the case where ωi = 1. If ω̂i = 1, then

0 = Lebd[Γω̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}] ≤ Lebd[Γ̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]
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If ω̂i = 0, then it means that Lebd{Γ̂ ∩ Shk(xi)} < Lebd{Γ̂ ∩ Shk(xi+m)} so that

Lebd[Γ̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}] = Lebd{Γ̂c ∩ Shk(xi)}+ Lebd{Γ̂ ∩ Shk(xi+m)}

= Lebd{Shk(xi)} − Lebd{Γ̂ ∩ Shk(xi)}+ Lebd{Γ̂ ∩ Shk(xi+m)}
> Lebd{Shk(xi)}

=
1

2
Lebd[Γω̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]

Similarly, consider the case where ωi = 0. If ω̂i = 0, then as before

0 = Lebd[Γω̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}] ≤ Lebd[Γ̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]

If ω̂i = 1, then it means that Lebd{Γ̂ ∩ Shk(xi)} ≥ Lebd{Γ̂ ∩ Shk(xi+m)} so that

Lebd[Γ̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}] = Lebd{Γ̂ ∩ Shk(xi)}+ Lebd{Γ̂c ∩ Shk(xi+m)}

= Lebd{Γ̂ ∩ Shk(xi)}+ Lebd{Shk(xi+m)} − Lebd{Γ̂ ∩ Shk(xi+m)}
≥ Lebd{Shk(xi+m)}

=
1

2
Lebd[Γω̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}]

We have
m∑
i=1

Lebd[Γω̂∆Γω ∩ {Shk(xi) ∪ Shk(xi+m)}] = 2Lebd{Shk(x1)}
m∑
i=1

1(ω̂i 6= ωi)

�erefore, we have that, for any Γ̂, it holds that

maxω∈ΩEω

{∫
(Γ̂∆Γω)∩τω(x) 6=θ

f(x)dx

}
≥ Lebd{Shk(x1)} inf

ω̂
maxω∈ΩEpnωρ(ω̂, ω)

Step 4: Final bound

By �eorem 2.12 in Tsybakov [2009], if we can show that H2(pnω, p
n
ω′) ≤ 1 for any ω, ω′ ∈ Ω

such that ρ(ω′, ω) = 1, then

inf
ω̂

maxω∈ΩEωρ(ω̂, ω) ≥ m

(
1

2
−
√

3

4

)

�us,

inf
Γ̂

sup
p∈P

E{dH(Γ̂,Γp)} & (mhd)(1+ξ)/ξ
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because Lebd{Shk(x1)} = 2−dhd. By choosing h = O
(
n−1/(Tγ)

)
and m = O

(
h−d+γξ

)
,

where

T = 1 + d/(4s) + d/(2γ),

we get a lower bound of order n−(1+ξ)/T as desired.

Step 5: Verification of upper bound on Hellinger distance

Lemma 26 (Robins et al. [2009b], Kennedy et al. [2022]). Let Pλ and Qλ denote distributions
indexed by a vector λ = (λ1, . . . , λk), and let Z = ∪kj=1Zj denote a partition of the sample
space. Assume:

1. Pλ(Zj) = Qλ(Zj) = pj for all λ, and

2. the conditional distributions 1ZjdPλ/pj and 1ZjdQλ/pj do not depend on λl for l 6= j,
and only di�er on partitions j ∈ S ⊆ {1, . . . , k}.

For a prior distribution ω over λ, let p =
∫
pλdω(λ) and q =

∫
qλdω(λ), and de�ne

δ1 = maxj∈S sup
λ

∫
Zj

(pλ − p)2

pλpj
dν

δ2 = maxj∈S sup
λ

∫
Zj

(qλ − pλ)2

pλpj
dν

δ3 = maxj∈S sup
λ

∫
Zj

(q − p)2

pλpj
dν

for a dominating measure ν. If p/pλ ≤ b <∞ and npjmax(1, δ1, δ2) ≤ b for all j, then

H2

(∫
Pnλ dω(λ), Qnλdω(λ)

)
≤ Cn

∑
j∈S

pj
{
n (maxj∈Spj) (δ1δ2 + δ2

2) + δ3

}
for a constant C only depending on b.

It remains to verify that, given our choices of h, m, and k, it holds that H2(pnω, p
n
ω′) ≤ 1

for any ω, ω′ ∈ Ω such that ρ(ω′, ω) = 1.

Following similar calculations as Kennedy et al. [2022], we will rely on their Lemma 2
(from Robins et al. [2009b] and restated above in Lemma 26) to derive a bound on the Hellinger
distance.

Let us partition the space according to Zji = Ch/2k1/d(mji)× {0, 1}2, j ∈ {1, . . . , k} and
i ∈ {1, . . . , 2m} and Z0 = ([0, 1]d × {0, 1}2)/ (∪i ∪j Zji). On Z0, we have for any ω:

pω(z) =
1

4
chm1(x ∈ X0){1 + (2y − 1)(2a− 1)θ} for any z ∈ Z0,
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so that
∫
Z0
pω(z)dz = chm(1− 2d+1mhd).

Next, notice that, because ρ(ω′, ω) = 1, the densities pnω′ and pnω di�er only on two cubes,
which, without loss of generality, we take to be C2h(x1) and C2h(xm+1). �is corresponds to
a di�erence in the �rst coordinate of ω. To keep things clear, let ω1 = (1, ω2, . . . , ωm) and
ω0 = (0, ω2, . . . , ωm). �is way, we have

pω1,λ
(z) =

chm1{x ∈ Shk(x1)}

 1

4
+ (y − 1/2)

(
h

k1/d

)β k∑
j=1

λ1jB

(
x−mj1
h/2k1/d

)
+ (2a− 1)(2y − 1)

{
θ

4
+
hγ

4
B

(
x− x1
h

)}
+ chm

m∑
i=2

1{x ∈ Shk(xi)}{ωipiλ(z) + (1− ωi)qiλ(z)} + 1{x ∈ Shk(xi+m)}{(1− ωi)piλ(z) + ωiqiλ(z)}

+ chm1{x ∈ Shk(x1+m)}

 1

4
+

[
(a− 1/2)

(
h

k1/d

)α
+ (y − 1/2)

{(
h

k1/d

)β
+ θ

(
h

k1/d

)α}] k∑
j=1

λ1+mjB

(
x−mj1+m
h/2k1/d

)

+(2a− 1)(2y − 1)

 θ4 +

(
h

k1/d

)2s k∑
j=1

B

(
x−mj1+m
h/2k1/d

)2



+
1

4
chm1{x ∈ X0} {1 + (2y − 1)(2a− 1)θ}

and pω0,λ(z) similarly de�ned. We will apply Lemma 26 with Pλ(z) = pω1,λ(z) and Qλ(z) =
pω0,λ(z).

First, notice that, for any (i, j) and vector λ, we have∫
Zji

pω1,λ(z)dz =

∫
Zji

pω0,λ(z)dz =
chmh

d

2dk
≡ pji

Further, λij only a�ects the densities in Zji, so the second condition in the lemma is satis�ed.

Furthermore, because pω1,λ(z) only di�ers from pω0,λ(z) on 2k elements of the partition,
it holds that

∑
(ij)∈S

pji =

k∑
j=1

p1j + p1+mj . h
d

�erefore, provided we can verify the other assumptions of Lemma 26, the Hellinger distance
is upper bounded by

H2

(∫
pnω1,λdω(λ), pnω0,λdω(λ)

)
. n2hd

(
max(ji)∈Spji

)
(δ1δ2 + δ2

2) + nhdδ3

We take ω(λ) to be a uniform prior on λ so that λj = {−1, 1} independently and with equal
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probability. �en,

pi(z) ≡
∫
piλ(z)dω(λ) =

1

4
+ (2a− 1)(2y − 1)

{
θ

4
+
hγ

4
B

(
x− xi
h

)}

qi(z) ≡
∫
qiλ(z)dω(λ) =

1

4
+ (2a− 1)(2y − 1)

θ
4

+

(
h

k1/d

)2s k∑
j=1

B

(
x−mji

h/2k1/d

)2


p−1(z) ≡ chm
m∑
i=2

1{x ∈ Shk(xi)}{ωipi(z) + (1− ωi)qi(z)}

+ 1{x ∈ Shk(xi+m)}{(1− ωi)p(z) + ωiqi(z)}+
1

4
chm1{x ∈ X0} {1 + (2y − 1)(2a− 1)θ}

pω1
(z) ≡

∫
pω1,λ(z)dω(λ) = p−1(z) + chm

[
1{x ∈ Shk(x1)}p1(z) + 1{x ∈ Shk(x1+m)}q1+m(z)

]
pω0

(z) ≡
∫
pω0,λ(z)dω(λ) = p−1(z) + chm

[
1{x ∈ Shk(x1)}q1(z) + 1{x ∈ Shk(x1+m)}p1+m(z)

]
Next, we bound

δ1 ≡ max(ij)∈S sup
λ

∫
Zji

{pω1,λ(z)− pω1
(z)}2

pω1,λ(z)pji
dz

In the following, we use the bound (a+ b)2 ≤ 2a2 + 2b2 and the fact that β ≤ α and k ≥ 1.
We have∫

Zji

{pω1,λ(z)− pω1
(z)}2

pω1,λ(z)pij
dz .

(
h

k1/d

)2β c2
hm

pij

∫ ∑
a,y

1{x ∈ Ch/2k1/d(mji)}
pω1,λ(z)

dz

∫
Zji+m

{pω1,λ(z)− pω1
(z)}2

pω1,λ(z)pij
dz .

(
h

k1/d

)2β c2
hm

pi+mj

∫ ∑
a,y

1{x ∈ Ch/2k1/d(mji+m)}
pω1,λ(z)

dz

Let ε and ε be such that

min
{(

1− |θ|
4
− 1

2

(
h

k1/d

)β
− 1 + |θ|

2

(
h

k1/d

)α
−
(

h

k1/d

)2s
)
,(

1− |θ|
4
− 1

2

(
h

k1/d

)β
− hγ

4

)}
≥ ε

ε =
1 + |θ|

4
+ max

{
hγ

4
,

(
h

k1/d

)2s
}
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�en, pω1,λ(z) ≥ chmε and

δ1 ≤
1

ε

(
h

k1/d

)2β

and
pω1

(z)

pω1,λ(z)
≤ 1 ∨ ε

ε
.

Next, suppose hγ−2s = 4k−2s/d. We have

δ2 ≡ maxij sup
λ

∫
Zji

{pω1,λ(z)− pω0,λ(z)}2

p1λ(z)pji
dz

= maxj sup
λ

∫
Zj1

{pω1,λ(z)− pω0,λ(z)}2

pω1,λ(z)pj1
dz

by symmetry and ∫
Zj1

{pω1,λ(z)− pω0,λ(z)}2

pω1,λ(z)pj1
dz .

1

ε

(
h

k1/d

)2α

because for any i:

B

(
x−mji

h/2k1/d

)
= B

(
x− xi
h

)
= 1 if x ∈ ∪jCh/2k1/d(mji)

Finally, again if hγ−2s = 4k−2s/d,

pω0
(z)− pω1

(z) =

= chm1{x ∈ Shk(x1)}(2a− 1)(2y − 1)


(

h

k1/d

)2s k∑
j=1

B

(
x−mj1
h/2k1/d

)2

−
hγ

4
B

(
x− x1
h

)
− chm1{x ∈ Shk(x1+m)}(2a− 1)(2y − 1)


(

h

k1/d

)2s k∑
j=1

B

(
x−mj1+m
h/2k1/d

)2

−
hγ

4
B

(
x− x1+m

h

)
= 0

By Lemma 26, we conclude that

H2(pnω1
, pnω0

) ≤ C

ε2
n2h2d

k

{(
h

k1/d

)4s

+

(
h

k1/d

)4α
}
≤ 2C

ε2
· n2h2d+4sk−1−4s/d

because α ≥ s. �is bound on the Hellinger distance actually holds for any pnω′ and pnω such
that ρ(ω′, ω) = 1. Finally, recall that ξγ ≤ d by assumption. Set

m = cmh
−d+ξγ , k = ckn

d
2s
· γ−2s

γ
· 1
1+d/(4s)+d/(2γ) , h =

(
4c
− 2s
d

k

) 1
γ−2s

n
− 1
γ{1+d/(4s)+d/(2γ)}
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Notice that this choice enforces hγ−2s = 4k−2s/d. �erefore,

n2h2d+4sk−1−4s/d =

(
4c
− 2s
d

k

) 2d+4s
γ−2s

· c−1−4s/d
k · n2 · n−

2d+4s
γ{1+d/(4s)+d/(2γ)} · n−

d
2s
· γ−2s

γ
· 1+4s/d
1+d/(4s)+d/(2γ)

=

(
4c
− 2s
d

k

) 2d+4s
γ−2s

· c−1−4s/d
k

We can choose ck large enough so that k ≥ 1, h ≤ 1 and the leading constant in the equation
above is less than ε2/(2C). �is way, the bound on the Hellinger distance is less than or equal
to 1. Finally, we verify that chm is �nite. We need 2m disjoint cubes with sides equal to 2h, so
m needs to satisfy m ≤ (2h)−d/2 or, equivalently, cmhγξ ≤ 2−d−1. Because we can choose
h ≤ 1, choosing cm = 2−d−2(2d − 2−d)−1 satis�es this requirement and yields

chm = {1− 2(2d − 2−d)hdm)}−1 ≤ {1− 2(2d − 2−d)cm)}−1 =

{
1− 1

2d+1

}−1

=⇒ 1 ≤ chm ≤
4

3
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Appendix for Chapter 5

D.1 Proof of Proposition 7

Suppose we observe two samples of n iid observations from P, say Dn and Zn. Denote
Z1, . . . , Zn the observations in Zn that are iid copies of a generic random variable Z . Let
U denote a generic random variable such that U ⊂ Z . For example, in the dose-response
se�ings, Z = (Y,A,X) and U = A. Let θ0(u) = E{f(Z) | U = u} denote the true regression
function that needs to be estimated. Recall that ‖f‖2 =

∫
f(z)2dP(z) = P{f(Z)2} and

θ∗ ∈ argminθ∈Θ‖θ − θ0‖2, a �xed function. Let f̂(·) denote an estimate of f(·) constructed
using only observations in Dn. Let Pn denote the empirical average over sample Zn. �e
estimator of θ0(·) considered is

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

{f̂(Zi)− θ(Ui)}2 ≡ argmin
θ∈Θ

Pn{f̂(Z)− θ(U)}2.

Finally, let r̂(u) = E{f̂(Z) | U = u,Dn} − θ0(u).

�e statement of the theorem follows a�er proving

E(‖θ̂ − θ0‖2 | Dn) . ‖r̂‖2 + ‖θ∗ − θ0‖2 + δ2
n (D.1)

Our proof is a specialization of that of �eorem 3 in Foster and Syrgkanis [2019]. A useful
reference for the arguments made in their proof is Chapter 14 in Wainwright [2019]. To prove
(D.1), we need two lemmas.

Lemma 27. �e following inequality holds:

‖θ̂ − θ0‖2 ≤ 8‖r̂‖2 + 3‖θ∗ − θ0‖2 − 2(Pn − P)
[
{f̂(Z)− θ̂(U)}2 − {f̂(Z)− θ∗(U)}2

]

218
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Proof. Notice that

P
[
{f̂(Z)− θ̂(U)}2 − {f̂(Z)− θ∗(U)}2

]
= −2P[r̂(U){θ̂(U)− θ∗(U)}] + ‖θ̂ − θ0‖2 − ‖θ∗ − θ0‖2

By the AM-GM inequality we have, for any κ > 01:

2r̂(U){θ̂(U)− θ∗(U)} = 2r̂(U){θ̂(U)− θ0(U)}+ 2r̂(U){θ0(U)− θ∗(U)}

≤ 2

κ
r̂(U)2 + κ{θ̂(U)− θ0(U)}2 + κ{θ∗(U)− θ0(U)}2

By monotonicity of integration, it follows that

−2P[r̂(U){θ̂(U)− θ∗(U)}] ≥ −2‖r̂‖2

κ
− κ‖θ̂ − θ0‖2 − κ‖θ∗ − θ0‖2

Rearranging and choosing κ = 1/2, we have

‖θ̂ − θ0‖2 ≤ 8‖r̂‖2 + 3‖θ∗ − θ0‖2 + 2P
[
{f̂(Z)− θ̂(U)}2 − {f̂(Z)− θ∗(U)}2

]
Because Pn[{f̂(Z)− θ̂(U)}2 − {f̂(Z)− θ∗(U)}2] ≤ 0 since θ∗ ∈ Θ and θ̂ is a minimizer, we
also have

‖θ̂ − θ0‖2 ≤ 8‖r̂‖2 + 3‖θ∗ − θ0‖2 − 2(Pn − P)
[
{f̂(Z)− θ̂(U)}2 − {f̂(Z)− θ∗(U)}2

]
as desired.

Lemma 28. For some constant L, let

E =
{
∃θ ∈ Θ : ‖θ − θ∗‖ ≥ δn ∩

∣∣∣(Pn − P)
[
{f̂(Z)− θ(U)}2 − {f̂(Z)− θ∗(U)}2

]∣∣∣ ≥ Lδn‖θ − θ∗‖}
Under the conditions of Proposition 7, P (E | Dn) ≤ c1 exp(−c2nδ

2
n) for some constants c1 and

c2.

Proof. Consider the sets

Sm =
{
θ ∈ Θ : 2m−1δn ≤ ‖θ − θ∗‖ ≤ 2mδn

}
Because supθ∈Θ‖θ‖∞ ≤ S, ‖θ − θ∗‖ ≤ 2S for any θ ∈ Θ, which implies that any θ such that
‖θ − θ∗‖ ≥ δn must belong to some Sm for m ∈ {1, . . . ,M}, where M ≤ log2(2S/δn). By a

1For any x, y and κ > 0, (
x√
2κ
− y
√
κ

2

)2

≥ 0 =⇒ x2

2κ
+ y2

κ

2
≥ xy
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union bound,

P(E | Dn) ≤
M∑
m=1

P(E ∩ Sm | Dn)

≤
M∑
m=1

P
(
∃θ ∈ Θ : ‖θ − θ∗‖ ≤ 2mδn

∩
∣∣∣(Pn − P)

[
{f̂(Z)− θ(U)}2 − {f̂(Z)− θ∗(U)}2

]∣∣∣ ≥ 2m−1Lδ2
n | Dn

)
≤

M∑
m=1

P(Zn(2mδn) ≥ 2m−1Lδ2
n | Dn)

where we de�ne

Zn(r) = sup
θ∈Θ:‖θ−θ∗‖≤r

∣∣∣(Pn − P)
[
{f̂(Z)− θ(U)}2 − {f̂(Z)− θ∗(U)}2

]∣∣∣
Under the conditions of the proposition, we have

sup
θ∈Θ

sup
z∈Z

∣∣∣{f̂(z)− θ(u)}2 − {f̂(z)− θ∗(u)}2
∣∣∣ ≤ 8S2

and [
{f̂(z)− θ(u)}2 − {f̂(z)− θ∗(u)}2

]2
≤ 16S2{θ(u)− θ∗(u)}2

�us, we have

σ2(r) ≡ sup
θ:‖θ−θ∗‖≤r

P
([
{f̂(Z)− θ(U)}2 − {f̂(Z)− θ∗(U)}2

]2
)
≤ 16S2r2

By �eorem 3.27 in Wainwright [2019] and subsequent discussion, viewing f̂(·) as �xed given
Dn, we have

P (Zn(r) ≥ E{Zn(r) | Dn}+ u | Dn) ≤ 2 exp

(
− nu2

8e[16S2r2 + 16S2E{Zn(r) | Dn}] + 32S2u

)
Next, we bound E{Zn(r) | Dn}. By a symmetrization argument, for ε a vector of iid
Rademacher random variables independent of Zn and Dn, it holds that

E{Zn(r) | Dn} ≤ 2EZ,ε

(
sup

θ∈Θ:‖θ−θ∗‖≤r

∣∣∣Pn (ε [{f̂(Z)− θ(U)}2 − {f̂(Z)− θ∗(U)}2
])∣∣∣ ∣∣∣Dn

)

�e Ledoux-Talagrand contraction inequality (see also pages 147 and 474 in Wainwright [2019])
yields that, for non-random xi ∈ X , a class F of real-valued functions and a L-Lipschitz
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function φ : R→ R, the following holds

E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi{φ(f(xi))− φ(f∗(xi))}

∣∣∣∣∣
)
≤ 2LE

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi{f(xi)− f∗(xi)}

∣∣∣∣∣
)

where f∗ : X → R is any function.

Under the boundedness conditions of our proposition, we have∣∣∣{f̂(z)− θ1(u)}2 − {f̂(z)− θ2(u)}2
∣∣∣ ≤ 4S|θ1(u)− θ2(u)|

for any z ∈ Z . �us, the square-loss in this case is 4S-Lipschitz for any z ∈ Z . By the
contraction inequality above, we have

Eε

(
sup

θ∈Θ:‖θ−θ∗‖≤r

∣∣∣Pn (ε [{f̂(Z)− θ(u)}2 − {f̂(Z)− θ∗(U)}2
])∣∣∣)

≤ 2Eε

(
sup

θ∈Θ:‖θ−θ∗‖≤r
|Pn[ε{θ(U)− θ∗(U)}]|

)

�erefore, we have

EZ,ε

(
sup

θ∈Θ:‖θ−θ∗‖≤r

∣∣∣Pn (ε [{f̂(Z)− θ(U)}2 − {f̂(Z)− θ∗(U)}2
])∣∣∣ ∣∣∣Dn

)

≤ 8SE

(
sup

θ∈Θ:‖θ−θ∗‖≤r
|Pn[ε{θ(U)− θ∗(U)}]|

∣∣∣Dn

)
≡ 8SRn(Θ∗, r)

Next, we have assumed Θ∗ to be star-shaped; by Lemma 13.6 in Wainwright [2019] the function
r 7→ Rn(Θ∗, r)/r is non-increasing. �erefore, because δn solves Rn(Θ∗, δ) ≤ δ2, we also
have:

Rn(Θ∗, r) ≤ rδn for all r ≥ δn.

�erefore, we conclude that E{Zn(r) | Dn} ≤ 16Srδn for all r ≥ δn.

Pu�ing everything together, we have derived that

P (Zn(r) ≥ 16Srδn + u | Dn) ≤ 2 exp

(
− nu2

8e(16S2r2 + 162S3r2) + 32S2u

)
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Let L = 34S; specializing this bound to our se�ing with r = 2mδn and u = S2mδ2
n, we have

P
(
Zn(2mδn) ≥ L · 2m−1δ2

n | Dn
)
≤ 2 exp

(
− nδ2

n

8e(16 + 162S) + 32S

)
since 2−m ≤ 1 for any m ≥ 1. Finally,

P(E | Dn) ≤
M∑
m=1

P
(
Zn(2mδn) ≥ L2m−1δ2

n | Dn
)

≤ 2 exp

(
− nδ2

n

8e(16 + 162S) + 32S
+ lnM

)

Recall that M ≤ log2(2S/δn) ≤ log2(2S
√

2n) because we have assumed δn ≥ 1/
√

2n.
�erefore, if

δ2
n ≥

2 ln{log2(2S
√

2n)}{8e(16 + 162S) + 32S}
n

we can conclude

P(E | Dn) ≤ 2 exp

(
− nδ2

n

16e(16 + 162S) + 64S

)
as desired.

D.1.1 Proof of Equation (D.1)
Notice that Lemma 28 implies that, with probability at least 1− c1 exp(−c2nδ

2
n), either of the

following two events occur:

1. Event 1:

‖θ̂ − θ∗‖ ≤ δn =⇒ ‖θ̂ − θ0‖ ≤ δn + ‖θ∗ − θ0‖ =⇒ ‖θ̂ − θ0‖2 ≤ 2δ2
n + 2‖θ∗ − θ0‖2

2. Event 2: ∣∣∣(Pn − P)
[
{f̂(Z)− θ̂(U)}2 − {f̂(Z)− θ∗(U)}2

]∣∣∣ ≤ Lδn‖θ̂ − θ∗‖
≤ L2δ2

n

κ
+
κ‖θ̂ − θ0‖2

2
+
κ‖θ∗ − θ0‖2

2

for any κ > 0.

Because of the result from Lemma 27, Event 2 (with κ = 1/2) implies

‖θ̂ − θ0‖2 ≤ 16‖r̂‖2 + 7‖θ∗ − θ0‖2 + 8L2δ2
n
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�is means that there exists a constant C such that

P
(
‖θ̂ − θ0‖2 ≤ C

(
‖r̂‖2 + ‖θ∗ − θ0‖2 + δ2

n

)
| Dn

)
≥ 1− c1 exp(−c2nδ

2
n)

Let t0 = C
(
‖r̂‖2 + ‖θ∗ − θ0‖2 + δ2

n

)
. �is implies that

E
(
‖θ̂ − θ0‖2 | Dn

)
=

∫ ∞
0

P
(
‖θ̂ − θ0‖2 > t | Dn

)
dt

=

∫ t0

0
P
(
‖θ̂ − θ0‖2 > t | Dn

)
dt+

∫ ∞
t0

P
(
‖θ̂ − θ0‖2 > t | Dn

)
dt

=

∫ t0

0
P
(
‖θ̂ − θ0‖2 > t | Dn

)
dt+

∫ ∞
0

P
(
‖θ̂ − θ0‖2 > t0 + t | Dn

)
dt

≤ t0 +

∫ ∞
0

c1 exp(−c3nt)dt

= t0 +
c1

c3n

as desired. �e last inequality holds because P
(
‖θ̂ − θ0‖2 > t | Dn

)
≤ 1 and because, when-

ever δn satis�es Rn(δn; Θ∗)/δn ≤ δn, then so does δ′n =
√
δ2
n + t/C > δn. �is means that

we can write

t0 + t = C
(
‖r̂‖2 + ‖θ∗ − θ0‖2 + δ′n

2
)

�us,

P
(
‖θ̂ − θ0‖2 > t0 + t | Dn

)
≤ c1 exp{−c2n(δ2

n + t/C)} ≤ c1 exp(−c3nt)

as Lemma 28 holds for any δ′n that solvesRn(δ; Θ∗)/δ ≤ δ.

D.2 Proof of Proposition 8

�e proof of this theorem is based on Proposition 1 and �eorem 1 from Kennedy [2020]. �eir
�eorem 1 together with consistency of f̂(z) yields that

|θ̂(t)− θ0(t)| ≤ |θ̃(t)− θ0(t)|+

∣∣∣∣∣ 1n
n∑
i=1

Wi(t;U
n)E{f̂(Zi)− f(Zi) | Dn, Ui}

∣∣∣∣∣
+ oP

(
E
[{
θ̃(t)− θ0(t)

}2
])
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Under the assumptions of Proposition 8 (localized weights):∣∣∣∣∣ 1n
n∑
i=1

Wi(t;U
n)r̂(Ui)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|Wi(t;U
n)| |r̂(Ui)|1{Ui ∈ N(t)} . sup

a∈N(t)
|r̂(u)|

as desired.

D.3 Proof of Theorem 5

�e proof of this theorem essentially follows from that of �eorem 8.1 in Robins et al. [2017a],
with the main di�erence that our estimator hasKht(a) in place of 1(A = t) so that our analysis
will need to keep track of terms of order O(hα∧β).

To simplify the notation, we let v(a, x) = µ(a, x) − µ̂(a, x), h(a, x) = 1/π(a | x),
q(a, x) = ĥ(a, x) − h(a, x), v(x) = v(t, x), q(x) = q(t, x), and g(x) =

∫
Kht(a)p(a, x)da.

Also we de�ne ‖f‖2g =
∫
f2(x)g(x)dx.

Before computing bias and variance of our estimator, we state some useful facts about
orthogonal projections. More general versions of these statements can be found in the
excellent supplementary material to Robins et al. [2017a]. First, recall the de�nition of
the orthogonal projection and its kernel in our context. For g(x) =

∫
Kht(a)p(a, x)da,

ĝ(x) =
∫
Kht(a)p̂(a, x)da and some function f :

Π(f)(xi) =

∫
Πi,jf(xj)g(xj)dxj = b(xi)

TΩ−1

∫
b(xj)f(xj)g(xj)dxj

Π̂(f)(xi) =

∫
Π̂i,jf(xj)ĝ(xj)dxj = b(xi)

T Ω̂−1

∫
b(xj)f(xj)ĝ(xj)dxj

Ω =

∫
b(u)b(u)T g(u)du and Ω̂ =

∫
b(u)b(u)T ĝ(u)du.

• Fact 1. Orthogonal projections do not increase length: for any function f and projection
in L2(µ),

‖Π(f)‖2 =

∫
Π(f)(x)Π(f)(x)dµ =

∫
Π(f)(x)f(x)dµ ≤ ‖Π(f)‖‖f‖ =⇒ ‖Π(f)‖ ≤ ‖f‖

by Cauchy-Schwarz, where ‖f‖2 =
∫
f2dµ and

Π(f)(x) = b(x)T
{∫

b(u)b(u)Tdµ

}−1 ∫
b(u)f(u)dµ.

• Fact 2. Let w denote some positive and bounded weight function and Πw and Π pro-
jections in L2(µ) onto some �xed k-dimensional space L spanned by b1(x), . . . , bk(x),
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with weights w and 1 respectively. �en, for any l ∈ L, we have Πw(l) = Π(l):

l(x) = b(x)Tβ = Πw(l)(x) = b(x)T
{∫

b(u)b(u)Tw(u)dµ

}−1 ∫
b(u)b(u)Tβw(u)dµ

= b(x)T
{∫

b(u)b(u)Tdµ

}−1 ∫
b(u)b(u)Tβdµ = Π(l)(x)

where β ∈ Rk is some vector of coe�cients.
• Fact 3. Useful identities:∫

Π(xi, xj)Π(xj , xk)g(xj)dxj = b(xi)
TΩ−1

∫
b(xj)b(xj)

T g(xj)dxjΩ
−1b(xk) = Π(xi, xk)∫

Π̂(xi, xj)Π̂(xj , xk)ĝ(xj)dxj = b(xi)
T Ω̂−1

∫
b(xj)b(xj)

T ĝ(xj)dxjΩ̂
−1b(xk) = Π̂(xi, xk)∫

Π(xi, xj)Π̂(xj , xk)g(xj)dxj = b(xi)
TΩ−1

∫
b(xj)b(xj)

T g(xj)dxjΩ̂
−1b(xk) = Π̂(xi, xk)

D.3.1 Bias

We will divide the proof of the bias bound in several steps:

1. Prove that, for some functions r1 and r2 (de�ned in the proof) and

T = −
∫
r1(x1)Π(x1, x2)r2(x2)g(x1)g(x2)dx1dx2

the following holds∣∣∣∣∫ ϕ̂1(z)dP(z)− θ(t) + T

∣∣∣∣ . ‖(I −Π)(v)‖g‖(I −Π)(q)‖g + hα∧β

2. Prove that
m∑
j=2

∫
ϕ̂j(z1, . . . , zj)dP(z1, . . . , zj)− T

= (−1)m−1

∫
r1(x1)(Π̂1,2 −Π1,2) · · · (Π̂m−1,m −Πm−1,m)r2(xm)g(x1) · · · g(xm)dx1 · · · dxm

≡ T2

3. Prove that

|T2| . ‖r1‖g‖r2‖g‖ŝ− 1‖m−1
∞ .

(
‖v‖g‖q‖g + hα∧β

)
‖ŝ− 1‖m−1

∞

where ŝ = g/ĝ.
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Step 1

Let us de�ne

∆1(x) ≡
∫
Kht(a){v(a, x)− v(t, x)}π(a | x)da

∆2(x) ≡
∫
Kht(a){µ(a, x)− µ(t, x)}π(a | x)da

∆3(x) ≡
∫
Kht(a){ĥ(a, x)− ĥ(t, x)}π(a | x)da

∆4(x) ≡
∫
Kht(a)π(a | x)da− π(t | x)

∆5(x) ≡ h(t, x)− 1∫
Kht(a)π(a | x)da

=
∆4(x)

π(t | x){π(t | x) + ∆4(x)}

We have∫
ϕ̂1(z)dP(z)− θ(t) =

∫
Kht(a)ĥ(t, x){µ(a, x)− µ̂(t, x)}π(a | x)dap(x)dx−

∫
v(x)p(x)dx

=

∫
Kht(a)ĥ(t, x){µ(a, x)− µ̂(t, x)}π(a | x)dap(x)dx−

∫
v(x)∫

Kht(a)π(a | x)da
g(x)dx

=

∫
v(x)q(x)g(x)dx+

∫
v(x)∆5(x)g(x)dx+

∫
ĥ(t, x)∆2(x)p(x)dx

Let

r1(x) = v(x) +
∆1(x)∫

Kht(a)π(a | x)da
, and r2(x) = q(x) + ∆5(x) +

∆3(x)∫
Kht(a)π(a | x)da

and notice that∫
Kht(a){y − µ̂(a, x)}dP(z | x) = r1(x)

∫
Kht(a)π(a | x)da∫

{Kht(a)ĥ(a, x)− 1}dP(z | x) = r2(x)

∫
Kht(a)π(a | x)da

De�ne

T ≡ −
∫
r1(x1)Π(x1, x2)r2(x2)g(x1)dx1g(x2)dx2

= −
∫
v(x)Π(q)(x)g(x)dx−

∫
∆1(x)∫

Kht(a)π(a | x)da
Π(r2)(x)g(x)dx

−
∫

Π(v)(x)

{
∆5(x) +

∆3(x)∫
Kht(a)π(a | x)da

}
g(x)dx
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�erefore, ∫
ϕ̂1(z)dP(z) + T − θ(t) =

∫
v(x)(I −Π)(q)(x)g(x)dx+ ∆

where ∆ groups all the terms involving ∆j together:

∆ =

∫
v(x)∆5(x)g(x)dx+

∫
ĥ(t, x)∆2(x)p(x)dx

−
∫

∆1(x)∫
Kht(a)π(a | x)da

Π(r2)(x)g(x)dx

−
∫

Π(v)(x)

{
∆5(x) +

∆3(x)∫
Kht(a)π(a | x)da

}
g(x)dx

�e term ∆ is controlled under the smoothness assumptions of the theorem, while∣∣∣∣∫ v(x)(I −Π)(q)(x)g(x)dx

∣∣∣∣ ≤ ‖(I −Π)(v)‖g‖(I −Π)(q)‖g

by Cauchy-Schwarz. In particular, we have assumed that a 7→ µ(a, x), a 7→ µ̂(a, x) are
α-times continuously di�erentiable and a 7→ h(a, x), a 7→ ĥ(a, x) (or, equivalently, π(a | x)
and π̂(a | x)) are β-times continuously di�erentiable. �us, we have

v(a, x) =
α−1∑
j=0

v(j)(t, x)
(a− t)j

j!
+ v(α)(t+ τ1(a− t), x)

(a− t)α

α!

µ(a, x) =

α−1∑
j=0

µ(j)(t, x)
(a− t)j

j!
+ µ(α)(t+ τ2(a− t), x)

(a− t)α

α!

π(a | x) =

β−1∑
j=0

π(j)(t | x)
(a− t)j

j!
+ π(β)(t+ τ3(a− t) | x)

(a− t)β

β!

h(a, x) =

β−1∑
j=0

h(j)(t, x)
(a− t)j

j!
+ h(β)(t+ τ4(a− t), x)

(a− t)β

β!
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for some τ1, τ2, τ3, τ4 ∈ [0, 1]. �en, for example, we have the following

∆1(x) ≡
∫
Kht(a){v(a, x)− v(t, x)}π(a | x)da

=
α−1∑
i=1

β−1∑
j=0

hi+j
v(i)(t, x)

i!

π(j)(t | x)

j!

∫ 1

0
ui+jK(u)du

+

α−1∑
j=1

hβ+j v
(j)(t, x)

β!j!

∫ 1

0
uβ+jK(u)π(β)(t+ τ3uh | x)du

+

β−1∑
j=0

hα+j π
(j)(t | x)

α!j!

∫ 1

0
v(α)(t+ τ1uh, x)uα+jK(u)du

+
hα+β

α!β!

∫ 1

0
v(α)(t+ τ1uh, x)uα+βK(u)π(β)(t+ τ3uh | x)du

so that ‖∆1‖∞ . h(β+1)∧α. Similarly, ‖∆2‖∞ . h(β+1)∧α and

∆3(x) ≡
∫
Kht(a){ĥ(a, x)− ĥ(t, x)}π(a | x)da

=

β−1∑
i=1

β−1∑
j=0

hi+j
ĥ(i)(t, x)

i!

π(j)(t | x)

j!

∫ 1

0
ui+jK(u)du

+

β−1∑
j=1

hβ+j ĥ
(j)(t, x)

β!j!

∫ 1

0
uβ+jK(u)π(β)(t+ τ3uh | x)du

+

β−1∑
j=0

hβ+j π
(j)(t | x)

β!j!

∫ 1

0
ĥ(β)(t+ τ1uh, x)uβ+jK(u)du

+
h2β

β!β!

∫ 1

0
v(β(t+ τ1uh, x)u2βK(u)π(β)(t+ τ3uh | x)du

�erefore, ‖∆3‖∞ . hβ and, similarly, ‖∆4‖∞ . hβ and ‖∆5‖∞ . hβ . In this light, it holds
that ‖∆j‖∞ . hα∧β , for j = 1, 2, 3, 4, 5. �is concludes our proof that∣∣∣∣∫ ϕ̂1(z)dP(z) + T − θ(t)

∣∣∣∣ . ‖(I −Π)(v)‖g‖(I −Π)(q)‖g + hα∧β
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Step 2

We will show that

T2 =
m∑
j=2

∫
ϕ̂j(z1, . . . , zj)dP(z1, . . . , zj)− T

=
m∑
j=2

∫
ϕ̂j(z1, . . . , zj)dP(z1, . . . , zj) +

∫
r1(x)Π(x1, x2)r2(x2)g(x1)g(x2)dx1dx2

= (−1)m−1

∫
r1(x1)(Π̂1,2 −Π1,2) · · · (Π̂m−1,m −Πm−1,m)r2(xm)g(x1) · · · g(xm)dx1 · · · dxm

�e result is clearly true for m = 2, so we proceed by induction. Relative to the mth term, the
term m+ 1 receives the contribution from∫

ϕ̂m+1(z1, . . . , zm+1)dP(z1, . . . , zm)

= (−1)m
m−1∑
i=0

(
m− 1

i

)
(−1)i

∫
r1(x1)Π̂1,2 · · · Π̂m−i,m−i+1r2(xm−i+1)g(x1) · · · g(xm−i+1)dx1 · · · dxm−i+1

≡ (−1)mT3

�us to prove the claim we need to show that

T3 =

∫
r1(x1)(Π̂1,2 −Π1,2) · · · (Π̂m−1,m −Πm−1,m)r2(xm)g(x1) · · · g(xm)dx1 · · · dxm

+

∫
r1(x1)(Π̂1,2 −Π1,2) · · · (Π̂m,m+1 −Πm,m+1)r2(xm+1)g(x1) · · · g(xm+1)dx1 · · · dxm+1

≡ T4 + T5

Notice that T4 can be wri�en as a sum of terms of the form

Bl = (−1)m−1−l
∫
r1(x1)B1,2 · · ·Bm−1,mr2(xm)g(x1) · · · g(xm)dx1 · · · dxm

where Bi,j equals either Π̂i,j or Πi,j and l denotes the number of terms in the product for
which Bi,j = Π̂i,j . Similarly, T5 is a sum of terms of the form

Cl = (−1)m−l
∫
r1(x1)B1,2 · · ·Bm,m+1r2(xm+1)g(x1) · · · g(xm+1)dx1 · · · dxm+1

Fact 3 is the reason why we only need to keep track of the number of Π̂i,j terms and not
speci�cally which Bij equals Πi,j or Π̂i,j . In fact, for Bij = Πi,j or Π̂i,j , we have∫

Π(xj−1, xj)B(xj , xj+1)g(xj)dxj = Bj−1,j+1 =

∫
B(xj−1, xj)Π(xj , xj+1)g(xj)dxj
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In this light, we can simplify as

Bl = (−1)m−1−l
∫
r1(x1)Π̂1,2 · · · Π̂l,l+1r2(xl+1)dg(x1) · · · dg(xl+1) for l ≥ 1

B0 = (−1)m−1

∫
r1(x1)Π1,2r2(x2)dg(x1)d(x2)

Cl = (−1)m−l
∫
r1(x1)Π̂1,2 · · · Π̂l,l+1r2(xl+1)dg(x1) · · · dg(xl+1) for l ≥ 1

C0 = (−1)m
∫
r1(x1)Π1,2r2(x2)dg(x1)d(x2) = −B0

For l ∈ {1, . . . ,m− 1}, we have Cl = −Bl. �us, we have reached

T4 = −C0 −
m−1∑
l=1

(
m− 1

l

)
Cl and T5 = C0 +

m−1∑
l=1

(
m

l

)
Cl + Cm

and this implies

T4 + T5 =

m−1∑
l=1

{(
m

l

)
−
(
m− 1

l

)}
Cl + Cm =

m−1∑
l=1

(
m− 1

l − 1

)
Cl + Cm = T3

as desired. We have thus shown that

T2 = (−1)m−1

∫
r1(x1)(Π̂1,2 −Π1,2) · · · (Π̂m−1,m −Πm−1,m)r2(xm)g(x1) · · · g(xm)dx1 · · · dxm

Step 3

We need to show that |T2| ≤ ‖r1‖g‖r2‖g‖ŝ − 1‖m−1
∞ . �is statement is essentially a direct

consequence of Lemma 13.7 in the Supplementary material to Robins et al. [2017a]. For the
sake of completeness, we give a proof here that is less general (and more verbose) than that in
Robins et al. [2017a], although it uses the same arguments.

De�ne ŝ = g(x)/ĝ(x) and let Mŝ denoting multiplication by ŝ. We have∫
(Π̂m−1,m −Πm−1,m)r2(xm)g(xm)dxm =

(
Π̂Mŝ −Π

)
(r2)(xm−1)

Continuing with this calculation, we get

T2 = (−1)m−1

∫
r1(x)

(
Π̂Mŝ −Π

)m−1
(r2)(x)g(x)dx
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Let ‖f‖22,ĝ =
∫
f2(u)ĝ(u)du and bound |T2| as

|T2| . ‖r1‖g
∥∥∥∥(Π̂Mŝ −Π

)m−1
(r2)

∥∥∥∥
2,ĝ

De�ne

l(x) =
(

Π̂Mŝ −Π
)m−2

(r2)(x) ≡ b(x)Tβ

We can write l(x) as a linear combination of the truncated basis because both Π̂ and Π project
a function onto the same �nite dimensional subspace. Notice that we can view Π as a weighted
projection in L2(ĝ) with weight ŝ, i.e.

Π(f)(x) = b(x)TΩ−1

∫
b(u)f(u)g(u)du

= b(x)T
{∫

b(u)b(u)ŝ(u)ĝ(u)du

}−1 ∫
b(u)f(u)ŝ(u)ĝ(u)du

�erefore, by Fact 2, we have(
Π̂Mŝ −Π

)m−1
(r2)(x) =

(
Π̂Mŝ −Π

)
(l)(x)

=

∫
Π̂(x, u){ŝ(u)− 1}l(u)ĝ(u)du

= Π̂ ((ŝ− 1)l) (x)

By Fact 1, we have∥∥∥∥(Π̂Mŝ −Π
)m−1

(r2)

∥∥∥∥
2,ĝ

=
∥∥∥Π̂ ((ŝ− 1)l)

∥∥∥
2,ĝ
≤ ‖(ŝ− 1)l‖2,ĝ ≤ ‖ŝ− 1‖∞‖l‖2,ĝ

Repeating this argument m− 3 times applied to ‖l‖2,ĝ , we obtain∥∥∥∥(Π̂Mŝ −Π
)m−1

(r2)

∥∥∥∥
2,ĝ

≤ ‖ŝ− 1‖m−2
∞

∥∥∥(Π̂Mŝ −Π
)

(r2)
∥∥∥

2,ĝ

Furthermore,∥∥∥(Π̂Mŝ −Π
)

(r2)
∥∥∥2

2,ĝ
=

∫ (
Π̂Mŝ −Π

)
(r2)(x)

(
Π̂Mŝ −Π

)
(r2)(x)ĝ(x)dx

=

∫ (
Π̂Mŝ −Π

)
(r2)(x)Π (r2) (x){ŝ(x)− 1}ĝ(x)dx

�e second line follows because
(

Π̂Mŝ −Π
)

(r2) belongs to the �nite dimensional subspace



Appendix D. Appendix for Chapter 5 232

and can be expressed as b(x)Tβ for some β. �erefore,∫ (
Π̂Mŝ −Π

)
(r2)(x)Π̂Mŝ(r2)(x)ĝ(x)dx

= βT
∫
b(x)Π̂Mŝ(r2)(x)ĝ(x)dx

= βT
∫
b(x)b(x)T Ω̂−1

∫
b(u)ŝ(u)r2(u)ĝ(u)duĝ(x)dx

= βT
∫
b(u)r2(u)g(u)du

= βT
∫
b(x)b(x)TΩ−1

∫
b(u)r(u)g(u)duŝ(x)ĝ(x)dx

=

∫
βT b(x)Π(r2)(x)ŝ(x)ĝ(x)dx

By Cauchy-Schwarz:∥∥∥(Π̂Mŝ −Π
)

(r2)
∥∥∥2

2,ĝ
≤
∥∥∥(Π̂Mŝ −Π

)
(r2)

∥∥∥
2,ĝ
‖Π (r2) (ŝ− 1)‖2,ĝ ,

implying ∥∥∥(Π̂Mŝ −Π
)

(r2)
∥∥∥

2,ĝ
. ‖ŝ− 1‖∞‖r2‖g.

�is then yields

|T2| . ‖r1‖g‖r2‖g‖ŝ− 1‖m−1
∞ .

�e bounds on the terms involving ∆j derived in Step 1 �nally yield the result:

|T2| .
(
‖v‖g‖q‖g + hα∧β

)
‖ŝ− 1‖m−1

∞
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D.3.2 Variance

�e proof of the variance bound follows as in Robins et al. [2017a]. Because, for two random
variables U1 and U2, var(U1 + U2) ≤ 2var(U1) + 2var(U2), and because m is �xed, we have:

var

Pnf̂0(Z) +
m∑
j=2

Unϕ̂j(Z1, . . . , Zj) | Dn


≤ 2var

{
Pnf̂0(Z) | Dn

}
+ 2var


m∑
j=2

Unϕ̂j(Z1, . . . , Zj) | Dn


. var

{
Pnf̂0(Z) | Dn

}
+ Pn


m∑
j=2

Unϕ̂j(Z1, . . . , Zj)


2

. var
{
Pnf̂0(Z) | Dn

}
+

m∑
j=2

Pn
[
{Unϕ̂j(Z1, . . . , Zj)}2

]
Because, given Dn, Pnf̂0(Z) is a sample average of independent observations, we have

var
{
Pnf̂0(Z) | Dn

}
≤ 1

n
P{f̂2

0 (Z)} . 1

nh

since
∫
K2
ht(a)π(a | x)da = h−1

∫
K2(u)π(uh+ t)du . h−1. By Lemma 14.1 in Robins et al.

[2017a], the following holds

Pn
[
{Unϕ̂j(Z1 . . . , Zj)}2

]
≤ 2j

(
1 +

∥∥∥∥pp̂
∥∥∥∥
∞

)2j

P̂n
[
{Unϕ̂j(Z1 . . . , Zj)}2

]
Because ϕ̂j is degenerate relative to P̂ , we also have

P̂n
[
{Un(ϕ̂j(Z1 . . . , Zj))}2

]
.

1

n(n− 1) · · · (n− j + 1)
P̂ j
[
{ϕ̂j(Z1 . . . , Zj)}2

]
.

1

n(n− 1) · · · (n− j + 1)
P̂ j
[{
f1(Z1)Π̂1,2Kht(A2) · · · Π̂j−1,jf2(Zj)

}2
]

Notice that{
f1(Z1)Π̂1,2Kht(A2) · · · Π̂j−1,jf2(Zj)

}2
. K2

ht(A1)Π̂2
1,2K

2
ht(A2) · · · Π̂2

j−1,jK
2
ht(Aj)

since h(a, x), Y and µ̂(a, x) are uniformly bounded by assumption. Next, because∫
K2
ht(a)π(a | x)da = h−1

∫
K2(u)π(uh+ t | x)du . h−1,
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we have

P̂ j
[{
f1(Z1)Π̂1,2Kht(A2) · · · Π̂j−1,jf2(Zj)

}2
]

. h−j
∫

Π̂2
1,2 · · · Π̂2

j−1,jp(x1) · · · p(xj)dx1 · · · dxj

= h−j
∫

Π̂2
1,2 · · · Π̂2

j−1,j

{
j∏
l=1

p(xl)

ĝ(xl)

}
ĝ(x1) · · · ĝ(xj)dx1 · · · dxj

≤
{

sup
x

p(x)

ĝ(x)

}j
h−j

∫
Π̂2

1,2 · · · Π̂2
j−1,j ĝ(x1) · · · ĝ(xj)dx1 · · · dxj

. h−j
∫

Π̂2
1,2 · · · Π̂2

j−1,j ĝ(x1) · · · ĝ(xj)dx1 · · · dxj

Next, notice that∫
Π̂2(xi, xj)ĝ(xj)dxj =

∫
b(xi)

T Ω̂−1b(xj)b(xj)
T Ω̂−1b(xi)ĝ(xj)dxj = Π̂(xi, xi)

We bound each term from i = j to i = 3 as∫
Π̂2
i−2,i−1Π̂2

i−1,iĝ(xi−1)ĝ(xi)dxi−1dxi =

∫
Π̂2
i−2,i−1Π̂i−1,i−1ĝ(xi−1)dxi−1

≤ sup
x

Π̂(x, x)

∫
Π̂2
i−2,i−1ĝ(xi−1)dxi−1

�is leads to∫
Π̂2

1,2 · · · Π̂2
j−1,j ĝ(x1) · · · ĝ(xj)dx1 · · · dxj ≤

{
sup
x

Π̂(x, x)

}j−2 ∫
Π̂2

1,2ĝ(x1)dx1ĝ(x2)dx2

Finally, without loss of generality, let b(x) be scaled so that Ω̂ is the identity matrix. �is way,
we immediately have∫

Π̂2
1,2ĝ(x1)ĝ(x2)dx1dx2 =

∫
b(x)T b(x)ĝ(x)dx =

k∑
i=1

∫
b2i (x)ĝ(x)dx = k

because the basis is orthonormal. Becausem is �xed and does not grow withn and supx Π̂(x, x) .
k, this yields the bounds in the statement of the theorem.
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D.4 Proofs of claims from Section 5.4

D.4.1 Proof of Lemma 13

We prove the result for the upper bound, as that for the lower bound can be proven with a similar
argument. By Leibniz rule of integration, the derivative of the map q(a, x) 7→ E{su(Z; q) |
A = a,X = x) is

d

dq

{
q +

1

γ

∫ q

−∞
(y − q)f(y | A = a,X = x)dy + γ

∫ ∞
q

(y − q)f(y | A = a,X = x)dy

}
= 1− 1

γ
P (Y ≤ q | A = a,X = x)− γP (Y ≥ q | A = a,X = x)

Similarly, the second derivative is

d2

dq2

{
q +

1

γ

∫ q

−∞
(y − q)f(y | A = a,X = x)dy + γ

∫ ∞
q

(y − q)f(y | A = a,X = x)dy

}
=

d

dq

{
1− 1

γ

∫ q

−∞
f(y | A = a,X = x)dy − γ

∫ ∞
q

f(y | A = a,X = x)dy

}
= −1

γ
f(q | A = a,X = x) + γf(q | A = a,X = x)

= O(1)

Notice that the �rst derivative vanishes at the true quantile q(a, x) = qu(a, x). �erefore, by a
second order Taylor expansion, it holds that

|E{s(Z; q̂u)− s(Z; qu) | A = a,X = x}| . {q̂u(a, x)− qu(a, x)}2

Next, notice that

r̂u(t) =

∫
ŵ(t, x)[E{s(Z; q̂u) | A = t,X = x} − κ̂u(t, x)]dP(x | A = t)

+

∫
w(t, x){κ̂u(t, x)− κu(t, x)}dP(x | A = t) + (Pn − P)κ̂u(t,X; q̂u)

=

∫
ŵ(t, x)[E{s(Z; q̂u) | A = t,X = x} − κu(t, x)]dP(x | A = t)

+

∫
{w(t, x)− ŵ(t, x)}{κ̂u(t, x)− κu(t, x)}dP(x | A = t) + (Pn − P)κ̂u(t,X; q̂u)

�e bound then follows by the Cauchy-Schwarz inequality.
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D.4.2 Proof of Proposition 10

We prove the result for the upper bound, as the proof for the lower bound is analogous. Let
Ê(· | A = t) denote the second-stage regression based on linear smoothing. De�ne

ϕ̃u(Z; ŵ, κ̂u, q̂u, w, qu)

= ϕu(Z; ŵ, κ̂u, q̂u)− w(A,X)[Y − q̂u(A,X)]
[
γsgn{Y−q̂u(A,X)} − γsgn{Y−qu(A,X)}

]
,

where

ϕu(Z; ŵ, κ̂u, q̂u) = ŵ(A,X){su(Z; q̂u)− κ̂u(A,X; q̂u)}+
1

n

n∑
i=1

κ̂u(A,Xi; q̂u)

We have ϕu(Z; ŵ, κ̂u, q̂u) ≥ ϕ̃u(Z; ŵ, κ̂u, q̂u, w, qu) and, deterministically by assumption,

Ê{ϕu(Z; ŵ, κ̂u, q̂u) | A = t} ≥ Ê{ϕ̃u(Z; ŵ, κ̂u, q̂u, w, qu) | A = t}.

Let

ϕu(Z;w, κu, qu, qu) = ϕ̃u(Z;w, κu, qu, qu)− 1

n

n∑
i=1

κ̂u(A,Xi; q̂u) +

∫
κu(A, x; qu)dP(x)

= w(A,X){su(Z; qu)− κ(A,X; qu)}+

∫
κ(A, x; qu)dP(x)

− w(A,X)[Y − qu(A,X)]
[
γsgn{Y−qu(A,X)} − γsgn{Y−qu(A,X)}

]
and notice that, because E[γ{Y−qu(t,x)} | A = t,X = x] = 1:

E {ϕu(Z;w, κu, qu, qu) | A = t,X = x}

=

∫
κ(t, x; qu)dP(x)− w(t, x)E

[
{Y − qu(t, x)}γsgn{Y−qu(t,x)} | A = t,X = x

]
+ w(t, x)E

[
Y γsgn{Y−qu(t,x)} | A = t,X = x

]
− w(t, x)qu(t, x)

=

∫
κ(t, x; qu)dP(x)− w(t, x)κ(t, x; qu) + w(t, x)E

[
Y γsgn{Y−qu(t,x)} | A = t,X = x

]
�erefore, E {ϕu(Z;w, κu, qu, qu) | A = t} = θu(t; γ).

By the reasoning in Kennedy [2020] and used to prove Proposition 8, one has

Ê{ϕ̃u(Z; ŵ, κ̂u, q̂u, qu) | A = t} − θu(t; γ)

= Ê{ϕ̃u(Z; ŵ, κ̂u, q̂u, qu) | A = t} − E{ϕu(Z;w, κu, qu, qu) | A = t}

= OP (Ru(t)) +
1

n

n∑
i=1

Wi(t;A
n)E {ϕ̃u(Z; ŵ, κ̂u, q̂u, w, qu)− ϕu(Z;w, κu, qu, w, qu) | Ai, Dn}
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provided that supz |ϕ̃u(z; ŵ, κ̂u, q̂u, qu) − ϕu(z;w, κu, qu, qu)| = oP(1). �is is the case, be-
cause ŵ is consistent for w, κ̂u is consistent for κu and q̂ is consistent for q.

Next, recall that

θu(A; γ) = E{ϕu(Z;w, κu, qu, w, qu) | A}

=

∫
W (A, x)E{Y γsgn{Y−qu(A,X)} | A,X = x}dP(x | A)

so that, because E[γsgn{Y−qu(A,X)} | A,X] = 1:

E
(
w(A,X)[Y − q̂u(A,X)]γsgn{Y−qu(A,X)} − ϕu(Z;w, κu, qu, w, qu) | Ai, Dn

)
= −

∫
w(Ai, x)q̂u(Ai, x)dP(x | Ai)

In turns, this means that

E
(
−w(A,X)[Y − q̂u(A,X)]

[
γsgn{Y−q̂u(A,X)} − γsgn{Y−qu(A,X)}

]
− ϕu(Z;w, κu, qu, w, qu) | Ai, Dn

)
= −E{w(Ai, X)su(Z; q̂u) | Ai, Dn)

yielding

b̂(Ai) ≡ E{ϕ̃u(Z; ŵ, κ̂u, q̂u, w, qu)− ϕu(Z;w, κu, qu, w, qu) | Ai, Dn}

=

∫
{ŵ(Ai, x)− w(Ai, x)}[E{su(Z; q̂u) | Ai, x} − κ̂u(Ai, x; q̂u)]dP(x | Ai)

+ (Pn − P)κ̂u(Ai, X; q̂u)

=

∫
{ŵ(Ai, x)− w(Ai, x)}[E{su(Z; q̂u) | Ai, x} − κu(Ai, x; qu)]dP(x | Ai)

+

∫
{ŵ(Ai, x)− w(Ai, x)}{κu(Ai, x; qu)− κ̂u(Ai, x; q̂u)}dP(x | Ai)

+ (Pn − P)κ̂u(Ai, X; q̂u)

As shown in Dorn et al. [2021] (Lemma 5), the map q 7→ su(Z; q) is Lipschitz. �erefore, by
Cauchy-Schwarz:∣∣∣Ê{b̂(A) | A = t}

∣∣∣ . sup
a∈Nt

[‖ŵ − w‖a{‖q̂u − qu‖a + ‖κ̂u − κu‖a}+ |(Pn − P)κ̂u(a,X; q̂u)|]
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