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ABSTRACT 

Global temperatures have risen by 0.180C per decade and could rise further due to increasing 

anthropogenic activity in urban areas, which may host 68% of the world's population by 2050. 

Urban Heat Island (UHI), the higher urban temperatures compared to the rural surroundings, is 

one of the most widely researched phenomena to study the impact of urbanization on climate. Yet, 

limited research exists across rapidly urbanizing countries, like India, which could be the biggest 

contributor to urban population growth in the following decades.  

This research is a comparative examination of UHI and its association with the urban built 

environment in India and the US. It conducts a quantitative analysis of the  Land Surface 

Temperatures (LST) and the Surface Urban Heat Island (SUHI) magnitude (ΔT) across 42 cities 

in India and 32 cities in the US using remote sensing data. Such large-scale multi-city analysis 

facilitated statistical analysis of the observed LST and ΔT. 

The daytime analysis of LST and ΔT showed SUHI in the US but the reverse in India, where urban 

areas are cooler than rural surroundings. Rural LSTs in India were higher than urban LSTs, which 

are already 10-120C higher than in the US. The dry or non-green vegetation land cover is linked 

to higher daytime rural LSTs in India. Further investigations showed that the popular remote 

sensing indices used to quantify built-up areas cannot differentiate between built-up areas, 

cropland, and other sparse vegetative land covers that are dominant in India. Literature on the 

thermal characteristics, especially the thermal admittance of non-green vegetation, dry soil, and 

barren land covers, indicates rapid warming of such land covers during the daytime and cooling 

after sunset. Consistent with this, the subsequent nighttime SUHI analysis showed warmer urban 

areas than rural areas in India. This nighttime SUHI magnitude is higher in India than in the US, 

and this difference is statistically significant. Together these findings highlight the shortcomings 

of conventional SUHI research methods in global analysis. 

Since the conventional SUHI analysis methods and indices did not show an association between 

urban LSTs or ΔT with built-up areas and vegetation in India, this study used impervious surface 

area (ISA) data to evaluate the temporal changes in diurnal and seasonal ΔT over 15 years and the 

summer daytime spatio-temporal variation in urban built-up LSTs. The temporal analysis of ΔT 

showed that urbanization, quantified using ISA data, and ΔT increased in both countries over 15 



 

iii 

years. This increase in ΔT over time is higher in India than in the US during nighttime and is 

statistically significant. However, the daytime ΔT change between the two countries is not 

statistically significant. The summer daytime urban built-up LST analysis showed that the recent 

(2007-2016) built-up areas in India were warmer than those older (before 2007). However, the 

reverse pattern occurs in the US over the same periods. Further, cluster analysis of urban built-up 

LSTs showed that green vegetation, with a Normalized Difference Vegetation Index (NDVI) 

greater than 0.3, reduces the LST of the neighboring built-up areas. This reduction in built-up area 

LST with a green neighbor is higher in the US than in India.  

This study indicates that rural areas are not consistently cooler than urban areas in India, although 

that assumption is implicit in the definition of UHI. Additionally, the current global SUHI research 

methods need revisions for locations where drought or other factors may result in non-green 

vegetation. This study's methodological approach showed the variation in urban LSTs with built-

up areas and vegetation, which was not apparent through conventional methods. Such an approach 

can also be relevant for other countries with similar characteristics. The study's quantitative 

findings show the need and scope to improve urban surfaces and buildings to reduce urban LSTs. 

Although the results indicate green vegetation as a potential UHI mitigation strategy, its 

effectiveness needs evaluation in conjunction with limitations on water availability and overall 

urban densities. The study also emphasized the need for more localized SUHI research methods 

and measures that can specifically analyze the impact of the urban built environment on urban 

LSTs. 
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1 INTRODUCTION 

1.1 RESEARCH CONTEXT 

Earth's temperatures increased by 0.70C between 1986-2016, compared to 1901-1960 (Wuebbles 

et al., 2017), and the hottest year on record was 2016, tied with 2020. It is now a fact that human 

activities are driving climate change. Rising global land surface temperatures, warming oceans, 

shrinking ice sheets, increasing frequency of extreme weather events, and rising sea levels are all 

evidence of climate change. Increased greenhouse gas emissions and changes in land use due to 

increased urbanization relate to climate change. As seen in Figure 1, increasing temperatures 

increase the probability of extreme weather events, and such climate events could impact the 

world's urban areas the most. The projected rapid urbanization, especially across developing 

nations, increasing 55% of the global population in urban areas to 68% in the next three 

decades(United Nations, Department of Economic and Social Affairs, 2019), is further expected 

to drive climate change.  

Urban areas of the world are at both the causing and receiving end of climate change, forming a 

vicious cycle. A recent study(Wei, Wu, & Chen, 2021) showed that out of the 167 cities studied, 

25 megacities result in 52% of total greenhouse gas emissions through stationary energy uses 

(buildings) and transportation. Urbanization, together with changing climate such as the frequent 

heatwave events (Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. 

Naik, M.D. Palmer, G.-K. Plattner et al., 2021; Mandal et al., 2019) exacerbate the impacts of 

increasing temperatures. The summer heatwave events, especially across hot urban areas, impact 

human health and well-being (Bradford, Abrahams, Hegglin, & Klima, 2015; Prosdocimi & 
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Klima, 2020) and are increasing the heat-related mortality rate(Mazdiyasni et al., 2017). For 

example, in India, heat-related mortality exceeded 2,000 in 2015 (Kumar & Singh, 2021), the 

highest in the last 15 years. Therefore, understanding the interplay between urbanization and urban 

climate is more relevant now than ever. 

 

Figure 1: Changes in the climate with rising temperatures compared to the average global temperature between 1850-1900. This 

figure shows the increase in impact with increasing temperatures. Picture credit: Technical Summary. In Climate Change 2021: The 

Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change  
(Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner et al., 2021) 

1.2 URBANIZATION AND UHI 

The Urban Heat Island phenomenon – defined as higher urban temperatures compared to rural 

surroundings, is the most researched impact of urbanization on temperatures. With rapid 

urbanization across the world's developing and already hot regions, like India, there is an 

impending need to conduct UHI research across such locations. Between 2018-2050 India is 
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projected to be the most significant contributor to urban population growth, adding 416 million to 

the current 460 million urban population. To put this in perspective, the current urban population 

estimate in the US is 268 million, which is close to half of that in India. There will be 235 urban 

settlements in India with > 300,000 urban dwellers by 2030, compared to 181 in 2018 and 94 in 

1990. Detail on the past, current, and future urban population and the number of cities in India 

compared to the US is shown in Figure 2. 

 

Figure 2: Urban population and the number of cities in India and the US: the past, present, and future. Note that the predicted 

urban population by 2030 in the US is half that in India. (Image ref:(United Nations, 2018)) 

Suppose UHI increases with urbanization, as shown in some prior studies. In that case, there could 

be an intense UHI phenomenon noticed across countries like India, and in turn, such a UHI 

phenomenon could impact a larger population. A recent study(Hari, Dharmasthala, Koppa, 

Karmakar, & Kumar, 2021) from India identified that the migrant population across Indian 

megacities would be most affected by climate hazards. With this intense urbanization 

phenomenon, existing cities and those yet to be built face several impending environmental and 
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social issues. The UHI phenomenon could further increase energy demand, exacerbate poor air 

quality, reduce health and well-being, increase urban poverty, and reduce overall quality of life.  

1.3 RESEARCH MOTIVATION 

Urban areas, especially urban buildings, contribute to UHI formation and get impacted due to UHI. 

On the latter front, some dominant impacts of UHI on buildings are increased cooling energy 

consumption and decreased thermal comfort(T. Xu, Sathaye, Akbari, Garg, & Tetali, 2012) 

(Santamouris, 2014a). A meta-analysis(Santamouris, 2014b) conducted across studies that 

evaluate the impact of UHI on building energy showed that the cooling load in the urban building 

is 13% higher compared to a similar building in a rural area. Another study that analyzed 15 

studies(Santamouris, Cartalis, Synnefa, & Kolokotsa, 2015) reported that the increase in electricity 

demand could vary from 0.5% to 8.5% per degree of temperature increase. 

With increasing whole building energy modeling capabilities and expertise among building 

scientists, incorporating the impact of increased urban temperatures in predicting building energy 

performance is becoming a norm. However, it is still essential to understand how buildings and 

the built environment contribute to UHI. Such research is still in its infancy, primarily due to the 

interdisciplinary approach needed for using current analysis tools and methods. Traditionally, 

while building and urban designers focus on improving a space's indoor and spatial performance, 

urban climatologists and meteorologists study atmospheric phenomena like UHI. There was little 

interaction between these two groups. However, this is changing. Now in 2023, approximately 200 

years after the first observation of UHI, when more than half the world’s population is urban, and 

when the eight warmest years on record are from the last 8 years, understanding UHI dynamics 

and how to mitigate the UHI effect have become essential even for building scientists. 
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1.4 PURPOSE STATEMENT 

This mixed-method research aims to estimate the association between the built environment and 

the surface UHI (SUHI) phenomenon across highly populated cities in India compared to the 

United States (US). The such comparative analysis could help understand the relevance and 

efficacy of global SUHI research methods and SUHI drivers in the context of a less researched 

and rapidly urbanizing country, India.  

This study analyzed the land surface temperatures (LST) and SUHI during one of the warmest 

years to date, 2016. This research studied SUHI and used remote sensing data to overcome the 

limitations and inconsistencies that could exist in air temperature data availability and 

measurement methods across multi-city, multi-nation studies like this. Remote sensing satellites 

provide data gathered and processed using consistent methods across different spatial (local to 

multiple global locations) and temporal(diurnal, seasonal, and inter-annual) scales- the majority 

available free of cost. This study quantifies SUHI magnitude (ΔT) as the difference between urban 

and rural mean LST. The built-up areas were quantified using spectral indices and the impervious 

surface area data. Remote sensing spectral index – the Normalized Difference Vegetation Index 

(NDVI) represents vegetation. The study used qualitative and quantitative analysis methods to 

estimate the variation in LST and ΔT with built-up land use and vegetation in India compared to 

the US. 
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1.5 RESEARCH GOAL AND HYPOTHESES 

The primary goal of this dissertation is to understand the differences, if any, in the Surface Urban 

Heat Island phenomenon and its association with the urban built environment across highly 

populated cities in India compared to the US.  

Some current research directions relevant to SUHI are 1.) Contributors to SUHI – natural and 

human-made factors, 2.) Standardization of urban-rural definitions and delineation methods, 3.) 

Intra-urban differences in LST 4.) Multi-location and multi-year studies of SUHI, 5.) Interactions 

between SUHI and canopy UHI, and 6.) Understanding remote sensing data, viewing angles, and 

method. Based on existing gaps in the literature in the first four categories, the hypotheses of this 

study are: 

• Hypothesis #1: The surface urban heat island magnitude (ΔT), measured as the difference 

between urban and rural mean land surface temperatures, is higher in India compared to 

the United States. 

• Hypothesis #2: Urbanization increases SUHI. This increase is higher in India compared to 

the US. 

• Hypothesis #3: With the advent of building energy efficiency standards, green building 

ratings, and construction materials and technology improvement, recent urban built-up 

areas have lower land surface temperatures than the older ones. 

• Hypothesis #4: Green vegetated areas reduce land surface temperatures and SUHI. 
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1.6 RESEARCH OBJECTIVES 

This research aims to assemble the explanatory observations of SUHI in India compared to the 

US, specifically focusing on its association with built-up areas and vegetation. Some of the specific 

objectives of this research therefore are: 

1. Quantify and compare diurnal and seasonal SUHI in India and the US.  

2. Analyze and compare the variation of LST and ΔT with built-up areas and vegetation in 

India and the US. 

3. Assess the impact of the increase in built-up with urbanization on SUHI in a rapidly 

urbanizing country, India, compared to a developed nation, the US.  

4. Verify the relevance of global SUHI methods and metrics in the Indian context. 

1.7 DISSERTATION STRUCTURE 

The core of this dissertation is in three parts and four chapters. The first part compares and 

discusses the existing SUHI and its association with built-up areas and vegetation in India and the 

US during daytime and nighttime. The second part discusses the temporal changes in SUHI to 

estimate the impact of urbanization on SUHI. The third part quantifies the thermal performance of 

urban built-up areas. The third part of this work is in two parts – one that understands built-up area 

LST in two different scenarios based on the construction period and the second that quantifies 

built-up area LST based on the neighboring land use. 

The first chapter of this dissertation explains the need and motivation for this research. It lists the 

hypotheses and objectives of the research.  

The second chapter discusses a few relevant concepts and the background. This chapter also 

includes a literature review from the area of focus of this research and identifies the knowledge 
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gaps in the existing literature. While there isn't any literature specific to SUHI comparative analysis 

between India and the US, several studies assisted in developing this study's research questions 

and methodology. Such studies are critically reviewed and presented.  

The third chapter presents the data and methodology used in this research. It details the study 

locations, the remote sensing data used in this research, the urban-rural delineation methodology, 

the LST calculation methodology, and the analysis metrics used. This chapter presents examples 

from various cities to explain the data and the maps generated for analysis.  

This dissertation's fourth and fifth chapters discuss the first part of this research work, which 

focuses on analyzing LST, SUHI, and their variation with built-up areas and vegetation. The third 

chapter presents a daytime analysis of LST and SUHI. Correlations between vegetation, built-up 

areas, and LST or ΔT show the association between these variables. An analysis of each country's 

Land Use Land Cover (LULC) characteristics show its role in the observed SUHI/SUCI trends. 

The fifth chapter extends the daytime analysis to nighttime and diurnal and seasonal comparisons 

of SUHI. This chapter primarily focuses on comparative analysis – satellite data Landsat 8 vs. 

MYD11A2, day vs. night, seasonal, and India vs. the US. The diurnal variation in SUHI/SUCI is 

quantified and explained using the LULC data.  

The sixth chapter provides a temporal analysis of SUHI. It discusses the SUHI change with 

urbanization. The impervious surface area (ISA) changes in each city represented urbanization, 

which relates to the ΔT change.  

The seventh chapter focuses on the analysis of the built-up area LSTs. This study analyzes built-

up area LSTs in different scenarios, 1.)based on the construction period and 2.)based on the spatial 

neighbors' land use. The first part of the chapter discusses the variation in urban built-up land use 
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LSTs in the new (2007-2016) and old (prior 2007) areas to understand how the 'newly' built-up 

land use compares the old in terms of their thermal performance. The second part of the chapter 

analyzes the variation in built-up land use LST with its spatial neighbors.  

The eighth or final chapter summarizes the findings and provides conclusions. This chapter also 

outlines the limitations of this work and the prospects of future work. 
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2 BACKGROUND AND LITERATURE 

2.1 OVERVIEW 

The synergistic effects of intense urbanization and climate change already have a marked effect 

on human health and quality of life and demand closer scrutiny on many fronts. Consequently, 

understanding the interaction of building design, land use, energy use, anthropogenic heat release, 

and local air temperature is critical within building science and urban design disciplines. This 

chapter discusses the overall urban energy balance and introduces UHI and its types, presenting a 

broader explanation of the phenomenon in a generic scenario. This chapter also details specific 

literature relevant to the goal of this research. 

2.2 CONCEPTS: URBAN CLIMATE AND THE URBAN HEAT ISLAND PHENOMENON 

2.2.1 Urban Climate and Energy Balance 

Several natural and human-modified changes impact the urban boundary layer (an imaginary 

atmospheric layer above the urban area) climate across the temporal and spatial scales. From small-

scale turbulences at the micro-scale to the macro-scale jet streams and hurricanes, the climatic 

system is altered by the natural and human-modified earth's surface characteristics, as seen in 

Figure 3. 
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Figure 3: Factors altering urban boundary layer climate(Oke, 1987) 

While natural impacts of the earth's surface on climate may or may not be interfered with, it is 

crucial to understand and limit the negative impact of the human-modified environment on climate. 

Urban areas are the best examples of human-modified environments. From Figure 4, the factors 

that most impact UHI can be related to human-made modifications of urban areas.  

 

Figure 4: Natural and human-modified factors that contribute to UHI formation 
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Understanding the energy exchanges within the urban areas could provide insight into the 

contributors and mitigation measures related to UHI. The energetic basis behind an arbitrary urban 

area can be explained using Equation 1(Oke, 1987). Any given system tends to be in equilibrium 

by balancing energy, and therefore for any given system:  

Energy Input - Energy Output ± Change in Stored energy = 0 

Based on this, Equation 1 represents the net change in energy in any controlled volume. Figure 5 

shows these energy exchanges within a hypothetical urban area. 

𝑄∗ + 𝑄𝐹 = 𝑄𝐻 + 𝑄𝐸 + ∆𝑄𝑆 + ∆𝑄𝐴     ………….………………Equation 1 

Where; 

Q* Net radiation (shortwave + longwave) entering the control volume  

QF Anthropogenic heat, added to the control volume by human-made factors  such as 

buildings, transportation, humans 

QH Sensible heat leaving the control volume 

QE Latent heat leaving the control volume 

∆QS Net storage heat within the control volume 

∆QA Net advection heat happening horizontally from the sides of the control volume 

All units in W/m2 

 

As shown in Equation 1, each energy exchange changes with space and time. For example, in a 

rural area, QF – the anthropogenic heat flux would be minimal compared to a dense urban area. Q* 

predominantly comprises shortwave radiation during the day, while only longwave radiation at 

night. Using this energy balance as the basis, comparing human-modified urban environments with 

natural or near-natural rural areas could provide information on the association between urban 

areas and urban climate. Different types of UHI at different spatial scales can also be explained 

using the terms in Equation 1, as seen in Section 2.2.2 and Table 1. 
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Figure 5: Energy Balance in Building-Air Volume (Reference: Oke, 1987) 

 

2.2.2 The Urban Heat Island Phenomenon 

The first UHI studies date back to the 1800s when Luke Howard compared temperatures in London 

to those outside the city(Howard, 2012). This study contemplated that the higher London 

temperatures represented an "artificial warmth induced by the city's structure, by a crowded 

population, and by the consumption of great quantities of fuels in fires" (Howard, 2012). Since 

then, UHI has been defined as the higher temperatures recorded in urban areas compared to their 

rural surroundings and quantified as the difference between urban and rural temperatures (ΔT). 

The annual average ambient temperature can be 1-30C higher than surrounding rural areas in a city 

with at least one million people. In addition, exposed surfaces of the built environment in peak 

summers can be 300C to 400C hotter than the urban ambient air dry bulb temperature(H Akbari, 
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Pomerantz, & Taha, 2001). Figure 6 shows an example of a grey roof's surface temperature 

compared to a shaded roof in Ho Chi Minh City, Vietnam.   

  

Figure 6: Grey roof temperature compared to the shaded roof temperature in HoChiMinh City, Vietnam. (PC: Prof. Marco 

Schmit, TU-Berlin) 

As demonstrated in Figure 7, the differences in the energy exchanges between urban and rural 

relate to the UHI formation(Oke, 1987, 1988). The characteristics of urban areas that could impact 

UHI formation(Oke, 1987, 1988; Haider Taha, 1997) are: 

• increased absorption of radiation (+∆QS),  

• increased intensity of longwave radiation (+Q*), 

•  increased sensible heat storage capacity (due to impervious surfaces) (+QH),  

• increased anthropogenic heat (from buildings, humans, vehicles) (+QF),  

• reduction in the latent heat fraction (-QE) (due to decreased vegetation and 

evapotranspiration), and  

• the reduction in heat transfer due to decreased wind speeds (-∆QA). 



Chapter 2: Background and Literature 

Surface Urban Heat Island: A Comparative Study between India and the United States 
36 36 

 

Figure 7: Differences in energy exchanges between urban and rural areas attributed to the UHI formation. 

2.3 TYPES OF URBAN HEAT ISLANDS 

To advance the scientific understanding of this complex phenomenon, researchers branched the 

phenomenon into three different types, as seen in Figure 8, based on the location of the temperature 

measurement - addressing different spatial scales. The UHI phenomenon in three categories is A.) 

Surface UHI (SUHI), B.) Canopy UHI (CUHI), and C.) Boundary Layer UHI. Figure 8 shows a 

typical temperature profile across the cross-section of urban-rural areas and the different types of 

UHI. 
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As seen in the figure, in simple terms, the type of UHI can be identified based on the location of 

the temperature measurement. SUHI represents the land surface temperatures (LST) commonly 

measured using remote sensing methods. CUHI and boundary layer UHI are air temperature 

measurements. CUHI is measured in the urban canopy (≈2m from ground level), and boundary 

layer UHI is air temperatures measured in the urban boundary layer, as shown in Figure 8C. All 

three UHI types can vary in magnitude and intensity of impact on the environment and human 

well-being for a given location and time. For example, SUHI and CUHI are more relevant when 

studying the impact of the urban built environment on human well-being and energy consumption. 

However, boundary layer UHI is important in studying the variation in macro-scale weather 

conditions due to urban areas. Table 1 lists the UHI types, study methods, energetic processes, and 

relevant impacts. Though not extensive, Table 1 lists the most common characteristics of each type 

of UHI. Equation 1 on the energetic basis of urban climate can explain the urban and rural energy 

processes contributing to UHI formation. As seen in the table, radiation (both longwave (LS)and 

shortwave (SW)), heat fluxes (sensible, latent, and storage), and anthropogenic heat (addition of 

heat due to human-modified environments) are all altered by the urban built environments- 

contributing to UHI formation. In the case of SUHI, the increased absorption of radiation by urban 

material and reduced latent heat flux due to no or minimal vegetation are expected to be the crucial 

factors influencing SUHI formation. For CUHI, urban buildings and human and vehicular 

populations contribute to reduced radiation loss, increased storage, and anthropogenic heat. 

Boundary layer UHI, which is more impacted by atmospheric changes, is also an indirect impact 

of the urban built environment but at a larger horizontal scale and higher in the vertical atmospheric 

scale. As seen in the table, each type of UHI could provide different information related to the 

built environment and mitigation measures.  
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Figure 8: Typical temperature profile of the UHI phenomenon across a location and the three different types of UHI. A.) Surface, 

B.) Canopy, and C.) Boundary Layer UHI with the temperature measurement locations shown. 
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Table 1: Urban Heat Island types- their study methods, energy processes, urban/rural features, and possible impacts 

UHI Type Data & Study Method Process – 

Energy exchanges 

Examples of Urban/Rural Feature Possible Impact 

Surface UHI • Remote Sensing – 

satellites and other 

airborne instruments. 

• Increased net SW radiation 

• Increased storage heat flux 

• Decreased latent heat flux 

• Absorption by materials with low 

emissivity and reflectance  

• Increased thermal admittance of 

construction material and barren land 

• Increased impervious surfaces and 

reduced vegetation in urban areas 

• Urban planning 

• Outdoor thermal 

comfort 

• Stormwater runoff 

Canopy UHI • Fixed weather station  

• Traverse measurements 

using land transportation 

• Urban canopy models 

• Decreased LW radiation loss 

• Increased anthropogenic heat 

• Increased net SW radiation 

• Increased storage heat flux 

• Decreased latent heat flux 

• Increased surface area and multiple 

reflections in urban areas 

• Reduced sky view factor in urban areas 

• Humans, buildings, and automobiles 

reject heat into the street canyons 

• Increased waterproofing of building 

material 

• Thermal comfort 

• Building energy 

consumption 

• Wind speeds 

• Air quality 

• Urban ecology 

• Stormwater runoff 

Boundary 

layer UHI 
• Fixed weather stations 

• Traverse measurements 

using aircraft 

• Meso-scale models 

• Increased incoming LW 

radiation 

• Decreased LW radiation loss 

• Air pollution increases heat gain from 

urban areas into the upper atmosphere 

• Air mixing and 

circulation 

• Air quality 

• Atmospheric cloud 

formation 

• Atmospheric winds 
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As seen in Table 1, SUHI and CUHI analysis could provide critical feedback needed for the 

planning of urban areas. In the case of SUHI, the increased absorption of radiation by urban 

impervious material and reduced latent heat flux due to no or minimal vegetation might relate to 

SUHI formation. For CUHI, urban building design and mechanical conditioning, human 

population, and vehicular population contribute to reduced radiation loss, increased heat storage, 

and anthropogenic heat. SUHI analysis is more relevant for local scale (a neighborhood) analysis, 

especially across multiple locations. In contrast, CUHI analysis can provide detail on the 

interaction between buildings and outside air temperatures at a micro-scale (an urban street 

canyon). The in-situ measured air temperatures for CUHI analysis lack the spatial scale offered by 

remote sensing-based SUHI analysis (Voogt & Oke, 2003; Weng, 2009). Also, remote sensing-

based SUHI analysis provides consistency in data extraction and analysis methods for multi-city 

or multi-study comparisons (Deilami, Kamruzzaman, & Liu, 2018; D. Zhou et al., 2018). Land 

surface temperatures from SUHI studies are also helpful in estimating the surface energy and water 

balance across different spatial scales (Z. L. Li et al., 2013). The applicability and validity of 

satellite-derived LSTs are also apparent from studies that estimated air temperatures using LST 

(Bechtel, Zakšek, Oßenbrügge, Kaveckis, & Böhner, 2017; Hooker, Duveiller, & Cescatti, 2018). 

A few studies (Good, Ghent, Bulgin, & Remedios, 2017) also showed a strong correlation between 

LST and air temperatures. Therefore, both SUHI and CUHI research are essential to estimate the 

impact of the urban built environment on urban climate, precisely urban temperatures. Factors 

contributing to all these types of UHI include various bio-physical characteristics that can be 

specific to a location and a given time, making UHI a dynamic phenomenon that changes with 

space and time. Despite this, most of the current UHI research is still from countries of North 

America, Europe, and China, and the available research for a rapidly urbanizing and highly 
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populated country like India is still scant and is in its infancy (Deilami et al., 2018; D. Zhou et al., 

2018).  

2.3.1 Urban Cool Islands 

Urban cool islands (UCI), as the name suggests, are urban areas that are cooler than the 

surrounding suburban and rural areas. This phenomenon is a relatively newer observation by the 

research community, and its causes and impacts are still under scrutiny (X. Yang, Li, Luo, & Chan, 

2017). Prior studies(Oke, 1988; Theeuwes, Steeneveld, Ronda, Rotach, & Holtslag, 2015) 

discussed an early morning UCI observed in cities and attributed it to the slow heating of urban 

fabric compared to the rural areas. UCI is most reported across some tropical and dry locations of 

the world and is more predominant when studying land surface temperatures (Surface UCI or 

SUCI). However, few prior studies showed the occurrence of urban cool islands in some parts of 

the US (Imhoff, Zhang, Wolfe, & Bounoua, 2010; Theeuwes et al., 2015; L. Zhao et al., 2014). 

Based on research to date, the UCI formation is due to the difference in urban and rural land use 

and the amount of solar radiation each of these areas receives based on the time of the day. 

However, a more detailed understanding of the formation of UCI and its mitigation measures is 

still missing in the literature. 
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2.4 BACKGROUND ON SUHI: REMOTE-SENSING DATA AND VARIABLES 

Remote sensing is the process in which sensors mounted on aircraft, other airborne instruments, 

or, most commonly, satellites record data from the earth's surface to provide information on the 

characteristics of the earth's surface in the form of geographically referenced digital images with 

data. Some typical remote sensing applications are environmental studies, climate change, and 

meteorology. Urban climates, especially UHI, are widely studied using this method and are 

referred to as SUHI(Deilami et al., 2018; D. Zhou et al., 2018). Land Surface Temperature (LST) 

is almost always the most useful metric to characterize, map, and quantify SUHI. Studies show 

that Land Use Land Cover (LULC), the Impervious Surface Area (ISA), and vegetation have a 

vital role to play in SUHI formation.  

2.4.1 Remote Sensing SUHI 

Thermal remote sensing is the name given to remote sensing data used to calculate temperatures. 

A 2003 study(Voogt & Oke, 2003) on thermal remote sensing shows its relevance in urban climate 

studies, especially in understanding the correlation between surface and air temperatures and 

extracting information that would serve as inputs into other urban climate models. The study 

pointed out that while there are some advancements in this field, there are still several limitations, 

especially in studying the urban surface and air temperatures to solve the urban surface energy 

balance. Another meta-analysis(Weng, 2009) reviews thermal remote sensing data's methods, 

techniques, and applications in understanding UHI. This study shows that while UHIs are most 

studied by correlating LSTs with vegetation and other urban biophysical parameters, deriving UHI 

parameters from this data to solve surface energy balance is still limited. This study seconded the 

previously mentioned study regarding the importance of defining an "urban surface" at different 

scales and how remote sensing could resolve this. While these studies show the critical applications 
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of remote sensing in urban climate analysis, a more recent study(Deilami et al., 2018) reviewed 75 

peer-reviewed articles to identify the standard methods used in studying SUHI and the spatio-

temporal factors influencing SUHIs. This study showed LST as a standard metric to explain SUHI, 

and most studies agree with % ISA and LULC as the most critical factors impacting SUHI. 

According to this study, the most reported factors influencing SUHI were vegetation cover, season, 

built-up area, diurnal changes, population densities, and water bodies. All three of these meta-

analyses conducted over the last 15 years show that quantifying SUHI and its contributing factors 

are crucial standalone and in coordination with other types of UHI.  

2.4.2 Satellite Data 

Figure 9 shows the data transfer process of remote sensing. As seen in the figure, in remote sensing, 

the airborne sensors on the satellite capture the reflected light from the earth's surface in the form 

of pictures and data. These images and data collected need to be further processed by the 

researchers to convert and interpret them in the necessary analysis metrics. The advantages of 

remote sensing methods for UHI analysis are apparent in multiple-city studies like this. 

Consistency in the data collection methods and how the data is processed reduces or eliminates 

bias and allows for better comparison across multiple cities.  
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Figure 9: Overview of the remote sensing satellite data collection and processing and a data scene. 

Remote sensing data are most commonly available in different wavelengths. Sensors mounted on 

satellites read the reflected light from the earth's surface in different wavelength ranges, each 

referred to as a Band (#). The band numbers and wavelengths of data may vary with sensors. Figure 

10 and Table 2 show an example of the data collected in different bands using Landsat 7 and 8 

satellites. Each wavelength range could provide different information on the surface conditions. 

For example, the vegetation on the earth's surface absorbs light in the visible range and reflects 

light in the near-infrared (NIR) range. Hence, vegetation on the earth's surface can be studied using 

data from these two wavelengths. Depending on the data satellite type, each data band or the 

processed data is provided to the user in the form of data scenes (rectangles measuring X by Y that 

vary with the sensor) constituted of several pixels (squares with a size that vary with sensors). 
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Figure 10: The wavelengths in which Landsat 7 and 8 satellites collect data and their corresponding band numbers. Image 

source: (US Geological Survey, 2019) 

 

Table 2: The spectral bands, wavelengths, and spatial resolution of data from Landsat 7 and 8 satellites (Table source: (US 

Geological Survey, 2019) 

 

Some of the most common sensors and related satellites used in thermal remote sensing 

applications are 1.) ETM+ and TIRS are on board NASA's Landsat 7 and 8 satellites, respectively, 
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2). MODIS sensor on NASA's Terra and Aqua satellites, 3). ASTER on board an American 

Japanese ASTER satellite, and 4). AVHRR – Advanced Very High-Resolution Radiometer on 

board an NOAA satellite. While there are several others, these four are some of the most common 

sensors, and Landsat and MODIS are most commonly used in global studies(Deilami et al., 2018; 

D. Zhou et al., 2018). The advantage of these two satellites is cost-free data availability for global 

locations. However, since each of these satellites' spatial and temporal resolution varies, their 

applicability in SUHI studies would depend on the study's goal. 

2.4.3 Remote sensing analysis variables – Spectral Indices 

The remote sensing analysis variables in the main categories are the LST and SUHI magnitude 

(ΔT) - the dependent variables, and the various factors that impact them (independent variables). 

Based on the satellite type, the user calculates LST, or it is directly available as a data product for 

download. On the other hand, SUHI magnitude quantification is done by the researchers using 

various methods. Section 1.4.1 discusses the SUHI quantification methods more.  

When it comes to the factors contributing to SUHI, there are several. Some prevalent factors 

impacting SUHI are LULC, built-up or impervious surface areas, vegetation, population, 

anthropogenic heat release, and other climatic factors (air temperature, wind, precipitation). 

Different data sources and methods are used across studies to quantify these factors and their 

association with SUHI. Among those, spectral indices are one of the most common ways of 

quantifying the LULC using remote sensing data. 

Remote sensing spectral indices explain the land surfaces characteristics such as vegetation, soil, 

water, snow, built-up area, barren areas, and other geological features on the earth's surface. Table 

3 presents the most used spectral indices on the built environment across SUHI studies. A review 

of these indices showed that while the Normalized Difference Built-up Index(NDBI)(Zha, Gao, & 
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Ni, 2003) is an extensively used index to explain built-up, separating barren lands from urban 

built-up could be a limitation. The Enhanced Built-up Bareness Index (EBBI)(As-syakur, 

Adnyana, Arthana, & Nuarsa, 2012) tried to address this; however, the application of this index is 

still minimal. Other indices, such as Urban Index(UI)(Kawamura, Jyamanna, & Tsujiko, 1996), 

Built-up Index (BUI)(Lee, Lee, & Chi, 2010), and New Built-up Index (NBI)(Kaimaris & Patias, 

2016), are also reported to have issues in identifying barren lands from built-up. The number of 

researchers using these metrics is minimal. Based on the literature, the Index Based Index (IBI) 

showed the potential of differentiating barren from built-up land and could provide more 

appropriate information on urban built-up areas. 

Along with these built-up indices, the other most common spectral indices used in SUHI studies 

fall in the categories of vegetation and water. While this study doesn't detail water indices, the 

vegetation index used in the analysis is the Normalized Difference Vegetation Index (NDVI)(The 

Earth Observatory, 2000). NDVI  ranges between -1 and +1, with 1 being the highest density, and 

< 0.1 is mainly observed in areas other than vegetation (such as built-up, sand, snow, and barren). 

Sparse vegetation results in moderate NDVI (0.2 - 0.5), and the NDVI of dense green forests is 

highest (0.6 - 0.9). NDVI calculation in Table 3 uses data from visible and near-infrared 

wavelengths. The leaves of vegetation absorb the visible band of sunlight for photosynthesis. 

While doing this, leaves strongly reflect the near-infrared light. Therefore, the light reflected in 

these wavelengths predicts the density and greenness of vegetation, as demonstrated in Figure 11. 

As seen in Figure 11, the NDVI value of healthy green vegetation is higher than the NDVI of non-

green vegetation. 
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Figure 11: An illustration showing NDVI of green vegetation vs. NDVI of non-green vegetation. Image source: (The Earth 

Observatory, 2000) 

 



Chapter 2: Background and Literature 

Surface Urban Heat Island: A Comparative Study between India and the United States 
49 49 

Table 3: Details on the most commonly used spectral indices across SUHI studies 

Spectral Index Represents Calculation 

NDVI 

Normalized 

Difference 

Vegetation Index 

Determines live greenery 

NDVI quantifies the green vegetation and 

explains the vegetation density  

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NDBI 

Normalized 

Difference Built-Up 

Index  

Identifies the urban areas  

Map urban built-up areas with an accuracy of 

92.6%, as reported by the author.  

Extensively used across prior studies 

𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 

EBBI 

Enhanced Built-Up 

and Bareness Index 

(EBBI) 

Identifies built-up areas  

EBBI targets to differentiate the built-up and 

barren lands in urban areas more accurately 

than IBI, NDBI, and UI. 

𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

√𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
10  

UI. Urban Index (UI.) 

Identifies the urban areas 

It was developed and verified for a tropical 

climate – Colombo, Sri Lanka 

𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅2 + 𝑁𝐼𝑅
+ 

IBI 
Index-Based Built-

Up Index (IBI) 

Show the built-up areas based on other 

indices such as NDBI, SAVI1, MNDWI2 

Computed based on other indices, including 

built-up areas, vegetation, and water features. 

Refer to Equations 6 and 7 in this dissertation  

 
 

 

 
1 Soil Adjusted Vegetation Index 
2 Modified Normalized Difference Water Index 

2 ∗ 𝑆𝑊𝐼𝑅1
𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅

−  
𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝑒𝑑
+

𝐺𝑟𝑒𝑒𝑛
𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅

 

2 ∗ 𝑆𝑊𝐼𝑅1
𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅 +  

𝑁𝐼𝑅
𝑁𝐼𝑅 + 𝑅𝑒𝑑

+
𝐺𝑟𝑒𝑒𝑛

𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅 

=  

2𝐵𝑎𝑛𝑑6
𝐵𝑎𝑛𝑑6 + 𝐵𝑎𝑛𝑑5

−  
𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4
+

𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑6

 

2𝐵𝑎𝑛𝑑6
𝐵𝑎𝑛𝑑6 + 𝐵𝑎𝑛𝑑5

+  
𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4
+

𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑6
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2.5 LITERATURE REVIEW 

2.5.1 SUHI Quantification Methods 

SUHI magnitude (∆T) is commonly calculated or defined as the difference between urban and 

rural mean LSTs. Most prior research broadly uses two different ways of defining urban and rural 

areas, as shown in Figure 12. In the first type, urban areas are geographically delineated based on 

different datasets or information representing urban areas. In the second type, urban and rural 

parcels of land are identified based on the LULC data. However, this urban-rural delineation 

methodology has always been a topic of interest for UHI researchers, and there are several other 

differences across methods that make each of them unique. 

 

Figure 12: Most typical ways SUHI studies define urban and rural areas to quantify SUHI. 

For this reason, this study reviews  47 peer-reviewed journal articles from the last 10+ years (2010-

2022) to identify the most common ways of quantifying ∆T and defining urban and rural areas. 

The three main questions this review aims to answer are: 

1.) Does the urban-rural delineation method vary with the geographical location of the study? 
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2.) Does the urban-rural delineation method vary with the satellite data?  

3.) Does the urban-rural delineation method impact the ∆T? 

Figure 13 summarizes the reviewed literature about the study location, the satellite used, and the 

∆T results. The figure shows that the most recent literature (especially between 2005-2020) is from 

Asia and other non-European and non-North American countries, unlike the UHI research from 

the initial years. MODIS and Landsat thermal data are most widely used across these studies, with 

Landsat being more predominant in the US and Europe. This analysis also showed that the 

occurrence of Surface Urban Cool Islands (rural LST > urban LST) is not specific to a location or 

the satellite data.  

 

Figure 13: Summary of the literature review on urban-rural delineation methods across 47 studies from the past 10 years 

Figure 14 summarizes the urban-rural delineation literature reviewed,  the type of SUHI 

quantification method used, the location of the study, the data type, and the observation. Based on 

this literature review from the last 10+ years, the urban-rural delineation methodology can be 

categorized into four primary categories and several sub-categories, as shown in Figure 14 and 

Table 5. The urban-rural delineation methods categorized based on the review are:  
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1. Administrative Boundaries: In this category, the city's administrative boundaries or the 

traffic rings/ring road/ circumferential highways separate the urban from the rural.  

1A.  Most (11/47) of the studies fall under this category: an urban area is a city or the 

metropolitan area extent, and the area beyond this urban boundary is rural.(Alves, 

2016; Borbora, Das, Sah, & Hazarika, 2018; Cheval & Dumitrescu, 2015; Cui, Xu, 

Dong, & Qin, 2016; Haashemi, Weng, Darvishi, & Alavipanah, 2016; Rasul, 

Balzter, & Smith, 2015, 2016; Schwarz, Lautenbach, & Seppelt, 2011; C. Wang, 

Myint, Wang, & Song, 2016; C. Yang et al., 2017) 

1B. The administrative division of the city or areas based on traffic rings is defined as 

urban, while the areas beyond the outer traffic circle are rural. (Y. Cai, Zhang, 

Zheng, & Pan, 2016; K. Liu et al., 2015; H. Wang, Zhang, Tsou, & Li, 2017) 

1C. The urban area is the city or the metropolitan area extent, as defined in 1A. 

However, the rural areas are specific districts beyond this boundary based on the 

rural land cover type (Taheri Shahraiyni et al., 2016). 

1D. The LST of individual pixels within the city boundary and rural is a sub-urban 

buffer beyond the city boundary (Clinton & Gong, 2013). 

2. Urban Area Maps: The urban areas are delineated using the urban area maps generated by 

various algorithms (e.g., city clustering algorithm) and datasets (e.g., impervious surface 

area and nightlight data). The sub-categories in this method are: 

2A.  The urban area is defined using urban area extents developed by prior researchers 

using various datasets and methods. The rural area is an equal area buffer around 

the urban area. Ten of 47 studies review fall into this category (Fu & Weng, 2018; 

Kumar et al., 2017; X. Li, Zhou, Asrar, Imhoff, & Li, 2017; Peng et al., 2012; 
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Schwarz et al., 2011; Shastri, Barik, Ghosh, Venkataraman, & Sadavarte, 2017; J. 

Wang, Huang, Fu, & Atkinson, 2015; S. Zhao, Zhou, & Liu, 2016; B. Zhou, Rybski, 

& Kropp, 2013) 

2B. In this category, cities are divided into zones based on urban development intensity 

(UDI), built-up intensity, or the % impervious surface areas. The least UDI areas 

or buffers around the urban areas represent the rural areas (Imhoff et al., 2010; D. 

Zhou et al., 2016; D. Zhou, Zhao, Liu, Zhang, & Zhu, 2014; D. Zhou, Zhao, Zhang, 

Sun, & Liu, 2015). 

3. Land Use Land Cover: In this third category, the LULC of a location is used to identify 

urban and rural areas.  

3A. Few studies used a pixel-based selection of built-up areas to represent urban areas, 

and the vegetative pixels from the data represent rural areas(Choi, Suh, & Park, 

2014; Schwarz et al., 2011; L. Zhao et al., 2014). 

3B. Urban maps are developed based on built-up area land use, and rural areas are 

buffers around the built-up extent(Gupta, Mathew, & Khandelwal, 2019; Mathew, 

Khandelwal, & Kaul, 2016; Mathew, Sreekumar, Khandelwal, & Kumar, 2019; Q. 

Yang, Huang, & Li, 2017). 

3C. Urban areas are parcels of built-up land use, and rural areas are vegetative land 

cover parcels(Dobrovolný, 2013; Heinl, Hammerle, Tappeiner, & Leitinger, 2015; 

Mohanta & Sharma, 2017; Schwarz et al., 2011). 

4. Statistical approaches: The researchers defined SUHI magnitude using various statistical 

indexes or variables. Though this SUHI quantification method isn't the focus of this study, 

some of the statistical ways in which SUHI is quantified are: 
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4A. In two studies(L. Liu & Zhang, 2011; Singh, Kikon, & Verma, 2017), researchers 

used the Urban Thermal Field Variance Index (UTFVI) quantified using the 

equation below. 

𝑈𝑇𝐹𝑉𝐼 =
𝑇𝑠

𝑇𝑠−𝑇𝑚𝑒𝑎𝑛
      

Where Ts =  LST of a particular pixel and Tmean = mean LST of the study area. 

4B. In a few other studies, hot spots based on the ΔT thresholds represent SUHI(Taheri 

Shahraiyni et al., 2016)  

4C. The city is diving into multiple SUHI zones using the mean and standard deviation 

of the LST(L. Chen, Jiang, & Xiang, 2016; W. Chen, Zhang, Pengwang, & Gao, 

2017; Ma, Kuang, & Huang, 2010). 

4D. Few studies identified SUHI using the LST anomaly-based approaches(Sharma & 

Joshi, 2014)  

Some of the relevant observations from this review are: 

• Studies from India mainly used LULC in urban-rural delineation. Six of 11 studies from 

India fall in category #3B (urban areas map based on LULC), and 2/11 studies used LULC-

based pixel representation of urban and rural (category #3C). 

• Two studies from the US used the urban area extents (category #2) developed using 

relevant data and algorithms. 

• Administrative boundaries or traffic rings (category #1)define urban-rural areas in 

countries like Iraq, Iran, Romania, Brazil, and some in China. 

• Most multi-city studies defined urban areas using the urban area maps (category #2) or the 

definition of urban areas based on LULC (category #3).  
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• Studies that used statistical approaches for quantifying ΔT did not report negative ΔT 

(SUCI). 

 

Figure 14: The categories and sub-categories of the urban-rural delineation and SUHI quantification method literature 

The analysis discussed in this section showed some patterns in terms of the urban-rural delineation 

method and the location of the study. However, the urban-rural delineation method did not vary 

based on the satellite. The urban-rural delineation method did show an impact on the observed ΔT. 

Studies that used statistical approaches to quantify ΔT always showed positive ΔT. Another 

relevant observation from this review is that several studies use outdated LULC compared to the 

date of LST analysis. Prior research(Deilami et al., 2018; S. Zhao et al., 2016; D. Zhou et al., 2018) 

showed a mismatch in the date of LULC or other data used, and the date of LST analysis could 

impact the results. Such findings could be especially relevant for rapidly developing countries like 

India. 

.
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Table 4: A literature review of 47 peer-reviewed journals to analyze the urban-rural delineation and ΔT calculation methodology and its relevance to satellite data used, location, and the 

observations (SUHI vs. SUCI) 

 

 

1A 1B 1C 1D 2A 2B 3A 3B 3C 4A 4B 4C 4D

Yang et al, 2017 ● ● ● ●

Wang et al, 2017 ● ● ● ●

Li et al, 2017 ● ● ● ●

Chen et al, 2017 ● ● ● ● ●

Zhou et al, 2016 ● ● ● ● ●

Wang et al, 2016 ● ● ● ● ●

Shahraiyni et al,2016 ● ● ● ● ● ●

Cui et al,2016 ● ● ● ● ●

Alves, 2016 ● ● ● ● ●

Wang et al., 2015 ● ● ● ● ●

Liu et al., 2015 ● ● ● ●

Heinl et al, 2015 ● ● ● ●

Cheval et al, 2015 ● ● ● ●

Choi et al, 2014 ● ● ● ●

Schwarz et al, 2011 ● ● ● ● ● ● ●

Ma et al, 2010 ● ● ● ●

Zhao et al, 2014 ● ● ● ● ● ●

Kumar et al., 2017 ● ● ● ● ● ●

Zhou et al,2015 ● ● ● ● ●

Peng et al, 2012 ● ● ● ● ●

Zhou et al, 2014 ● ● ● ● ●

Imhoff et al, 2010 ● ● ● ● ●

Cai et al, 2016 ● ● ● ●

Chen et al, 2016 ● ● ● ●

Dobrovolny, 2013 ● ● ● ●

Gupta et al, 2019 ● ● ● ●

Mathew et al, 2018 ● ● ● ● ●

Mathew et al,2016 ● ● ● ●

Mathew et al, 2017 ● ● ● ●

Mathew et al, 2019 ● ● ● ●

Mathew et al, 2018 ● ● ● ● ●

Mohanta and Sharma, 2017 ● ● ● ●

Shastri et al, 2017 ● ● ● ● ●

Borbora et al, 2018 ● ● ● ●

Liu and Zhang, 2011 ● ● ● ●

Singh et al, 2017 ● ● ● ●

Sharma and Joshi, 2014 ● ● ●

Rasul et al, 2016 ● ● ● ● ●

Haashemi et al, 2016 ● ● ● ● ● ●

Rasul et al, 2015 ● ● ● ● ●

Clinton and Gong,2013 ● ● ● ● ●

Zhou et al, 2013 ● ● ● ● ●

Zhao et al, 2016 ● ● ● ● ●

Miles and Esau, 2017 ● ● ● ● ●

Yang et al, 2017 ● ● ● ● ●

Zhou et al, 2016 ● ● ● ● ●

Peng et al, 2018 ● ● ● ● ●

Multiple Other SUHI SUCIMODIS Other India US China Europe
STUDY

METHOD SATELLITE LOCATION Observation

Adminstrative Urban Area LULC Statistical
Landsat



Chapter 2: Background and Literature 

Surface Urban Heat Island: A Comparative Study between India and the United States 
57 57 

2.5.1.1 The local climate zone classification (LCZ) system 

To address this issue of standardization of UHI quantification and the urban-rural delineation 

methods, UHI research in the past decade has moved towards adopting the Local Climate Zone 

(LCZ) classification system. LCZs are "regions of uniform surface cover, structure, material, and 

human activity that span hundreds of meters to several kilometers in horizontal scale" (Stewart & 

Oke, 2012). The LCZs intend to serve as universal LULC or landscape descriptions at a local scale. 

It aims to provide consistency and comparability of UHI or any urban temperature studies across 

the globe. The use of LCZs in UHI studies gained pace in the recent past. However, its application 

in SUHI research in India is still limited and needs a more comprehensive analysis(Xue, You, Liu, 

Chen, & Lai, 2020). Following the overall UHI research trend, most of the existing SUHI studies 

using the LCZ classification system are also from China(Shi, Xiang, & Zhang, 2019; R. Wang et 

al., 2019; Xia et al., 2022; J. Yang et al., 2020; Z. Zhao, Sharifi, Dong, Shen, & He, 2021), 

Europe(Dian, Pongrácz, Dezső, & Bartholy, 2020; Geletič, Lehnert, & Dobrovolný, 2016; Lehnert, 

Savić, Milošević, Dunjić, & Geletič, 2021), and the US (C. Wang et al., 2018; C. Zhao, Jensen, 

Weng, Currit, & Weaver, 2020). Many of the studies mentioned above are focused across 1-3 cities 

at a time and used Landsat 8(M. Cai, Ren, Xu, Lau, & Wang, 2018; Shi et al., 2019; J. Yang et al., 

2020); MODIS (Dian et al., 2020; R. Wang et al., 2019) or ASTER(Geletič et al., 2016; C. Wang 

et al., 2018) dataset to extract LSTs. Irrespective of location and satellite data used, all studies 

except from arid regions(Eldesoky, Gil, & Pont, 2021; C. Wang et al., 2018) showed that LSTs 

vary significantly across the LCZs. Most studies generally observed higher LSTs in the built and 

industrial zones and lowest in vegetation and water zones. A few global(Bechtel, Demuzere, et al., 

2019; Eldesoky et al., 2021) and national(N. Li et al., 2021) studies analyze LST and SUHI using 

LCZs. The first study(Bechtel et al., 2019) evaluated the applicability of LCZs in SUHI studies by 
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analyzing the diurnal LST and SUHI for 50 cities across the globe. The second (Eldesoky et al., 

2021) discusses the suitability and limitations of LCZ use in LST analysis for the world's tropical, 

temperate, cold, and arid climate zones. In another(N. Li et al., 2021), 63 cities from China were 

used to show midrise and compactly built LCZ zones warmer compared to high-rise,  low-rise 

areas, or open built-type, especially during summers. Two studies (Budhiraja, Pathak, & Agrawal, 

2017; Das & Das, 2020) from India showed higher LSTs in compactly built zones compared to 

cooler vegetated and water areas. Both studies use the WUDAPT framework ((Bechtel et al., 

2015)) to create LCZ maps and Landsat data for LST calculations. Extending such studies to 

multiple locations and improving the temporal scale could provide more information on existing 

SUHIs trends and possible mitigation measures. 

2.5.2 LST and SUHI variation with different factors 

This section introduces the variation and association of LST and SUHI with various factors. Built-

up areas (all related variables such as built-up indices, ISA, albedo, and city size) and vegetation 

are the two main SUHI contributors of interest in this study. While the focus was on multi-city 

studies from peer-reviewed journals, a few relevant non-multi-city studies were also analyzed. 

2.5.2.1 LST and SUHI variation with location and time of day 

Prior studies indicate diurnal and spatial differences in LST and SUHI. In a multi-city study 

conducted across 32 major cities in China(D. Zhou et al., 2014), the daytime SUHI intensities 

varied between 0.01 -1.870C during daytime and 0.35-1.950C during nighttime. The study showed 

that while natural land cover and climate played a crucial role in daytime SUHI formation, human-

made factors such as built-up density, albedo, and anthropogenic heat influence the nighttime 

SUHI formation. In another multi-city study from China(J. Wang et al., 2015), using the 

correlations and SUHI from 67 cities, scores were assigned to evaluate the role of various factors 
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on spatio-temporal variation in SUHI. The study showed that population density and the number 

of public buses were ranked important in impacting daytime SUHI in southern China compared to 

NDVI and albedo for northern China. During the nighttime, too, the impact of the studied factors 

varied. In southern China, NDVI and annual electricity consumption impacted SUHI the most, vs. 

albedo and the number of taxis for northern China.  

In a study across 65 cities in North America(L. Zhao et al., 2014), the authors extracted LSTs to 

solve the surface energy balance and understand the relation between SUHI intensity and various 

natural (precipitation, climate, radiation)and human-modified(population, anthropogenic heat) 

factors impacting it. The study correlated MODIS-derived annual mean UHI magnitude with 

annual mean precipitation and population. The results showed that precipitation correlates 

(r=0.74,p<0.001) to daytime SUHI, and the population explains more of the nighttime SUHI 

(r=0.54,p<0.001) formation. Further, the cities were classified based on the Koppen-Geiger 

climate classification to quantify the differences between SUHI based on climates. The study 

showed that the daytime annual mean SUHI average for 24 cities in the humid southeast US is 3.3 

K higher than that of the 15 dry regions. In another study from the US (Imhoff et al., 2010), SUHI 

across different biomes varied between -1- 90C. In this study, the least and maximum SUHI 

occurred when urban areas replaced the desert-xeric shrublands and temperate broadleaf-mixed 

forests, respectively. 

In India, a study(Kumar et al., 2017) that analyzed diurnal urban-rural temperature differences 

showed that across most cities in India, the rural temperatures are higher than urban during daytime 

(SUCI). During the nighttime, however, around 90% of the study locations in India show SUHI. 

The study concludes that vegetation – agriculture, and irrigation are the two main factors 

influencing the urban-rural temperature gradients in India. In another study(Shastri et al., 2017), 
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diurnal and seasonal SUHI analysis also showed negative ΔT (urban LST <  rural LST) during 

daytime. The study showed poorly vegetated non-urban regions and low evapotranspiration impact 

ΔT, especially during summers. Another two-city study(Mathew, Khandelwal, & Kaul, 2018) 

draws a similar conclusion on SUCI during daytime. 

Also, a global multi-city study(Peng et al., 2012) across 419 big cities showed diurnal differences 

in SUHI. Daytime SUHI intensities reached 70C, while the nighttime maximum was 3.40C. This 

study also reported that 5% of the cities, such as Jeddah in Saudi Arabia and Mosul in Iraq, 

recorded negative SUHI intensities. Based on the results, albedo and vegetation seemed to have 

played an essential role in SUHI formation. 

This review indicates that SUHI changes with space and time. Cities within the same country vary 

in terms of SUHI magnitude. While most temperate locations exhibit higher daytime SUHI, many 

tropical locations show daytime SUCI. Therefore, understanding the urban-rural temperature 

difference (ΔT) for different locations during different times of the day could provide a 

comprehensive insight into SUHI formation and influencing factors. 

2.5.2.2 LST and SUHI variation with Vegetation 

Of all the factors influencing LST and SUHI, the location's Land Use Land Cover (LULC), 

especially the vegetation and built-up land use types, is most frequently used to explain 

SUHI(Deilami et al., 2018; D. Zhou et al., 2018). In remote sensing studies like this - vegetation 

is commonly quantified using the Normalized Difference Vegetation Index (NDVI). The built-up 

areas are quantified using indices such as the Normalized Difference Built-up Index (NDBI) (Zha 

et al., 2003), Index Based Built-Up Index (IBI) (H. Xu, 2008), and Enhanced Built-up and 

Bareness Index (EBBI) (As-syakur et al., 2012). Photosynthetic vegetation (green vegetation) 

decreases LST and SUHI in most cases (W. Chen et al., 2017; Grover & Singh, 2015; Heinl et al., 
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2015; Kikon, Singh, Singh, & Vyas, 2016; J. Li et al., 2011; Peng et al., 2012; Sharma, 

Chakraborty, & Joshi, 2014). However, the impact of vegetation (NDVI) on LST and SUHI varies 

with seasons (J. Li et al., 2011; Zhang, Odeh, & Han, 2009) and the background soil surface 

conditions (X.-L. Chen, Zhao, Li, & Yin, 2006; Yuan & Bauer, 2007). There is a non-linear 

correlation between NDVI and LST (Guo et al., 2015; Weng, Lu, & Schubring, 2004), and it 

depends on the season, soil conditions, and amount of vegetation. Such complex correlation 

between NDVI and LST led the prior researchers to propose the use of alternative metrics such as 

percentage impervious surface area (%ISA) (Yuan & Bauer, 2007) or vegetation fraction (Weng, 

Lu, & Schubring, 2004) to quantify the impact of vegetation and built-up areas on LST. Despite 

these possible limitations associated with using NDVI, it is still one of the most used indexes to 

quantify vegetation (Deilami et al., 2018; D. Zhou et al., 2018).  

2.5.2.3 LST and SUHI variation with Built-up areas 

Prior research shows that the correlation between built-up indices and LST is more straightforward 

than between NDVI and LST. Most prior research (X.-L. Chen et al., 2006; H. Xu, 2008; Zhang 

et al., 2009) shows a strong positive correlation between built-up surface density (predominantly 

quantified using NDBI) and LST, irrespective of seasons. As with built-up indices, a strong 

positive correlation exists between %ISA and LST. A US study(Imhoff et al., 2010) conducted 

across 38 urban regions from 8 different biomes showed that %ISA explains 70% of the variance 

in LST for all cities combined. Similar findings also exist from the Indian city Jaipur(Mathew, 

Khandelwal, & Kaul, 2017), for which the authors reported a season-independent strong linear (R2 

> 60%) positive correlation between %ISA and mean LST. In another study(Ali, Marsh, & Smith, 

2017), LSTs from two different (climates and morphologies) cities – London and Baghdad showed 

a moderate positive correlation with built-up indices and a weak negative correlation with NDVI 



Chapter 2: Background and Literature 

Surface Urban Heat Island: A Comparative Study between India and the United States 
62 62 

in both cities. Based on the LULC data, correlations, and the LST maps, the study concluded that 

developing barren lands would reduce LSTs in Baghdad and increase LSTs in London. Like the 

positive correlations observed between %ISA and LST, an increase in urban area size increased 

SUHI non-linearly. As the urban areas doubled, SUHI increased to 0.70C in the US (X. Li et al., 

2017). 

2.5.2.4 Impact of urbanization on SUHI 

Prior studies showed urbanization by quantifying the LULC changes over time. Most of such 

temporal SUHI studies explaining the impact of urbanization are from China and a few from the 

rest of the world. A 2018 study from Nanjing, China(S. Wang, Ma, Ding, & Liang, 2018), using 

Landsat data from 1985, 1991, 1996, and 2009 showed increased LSTs and decreased vegetation. 

Another study from Beijing, China(W. Chen et al., 2017) reported similar findings when studying 

LSTs from 1995 and 2009. These studies, however, do not quantify the change in SUHI over time. 

Two studies from India show the impact of urbanization on SUHI and LST in Bengaluru(Sussman, 

Raghavendra, & Zhou, 2019) and Lucknow(Singh et al., 2017), respectively. The study from 

Bengaluru, India, reported an increase in SUHI from 2003 to 2018 during both daytime and 

nighttime of the wet season (August, September, October) and only during the nighttime of the 

dry season (December, January, February). The Lucknow study showed changes in LST and 

LULC from 2002 to 2014. Similarly, a study from the US(Jiang, Fu, & Weng, 2015) showed a 

change in LULC and LST between 2001 and 2006 in Marion county, Indiana. However, all these 

studies are single-city studies, and two studies use single-day(Jiang et al., 2015; Singh et al., 2017) 

Landsat data to compare LST from two different years. Another single-city study from the 

Metropolitan area of Rio de Janeiro (MARJ), Brazil (Peres, Lucena, Rotunno Filho, & França, 

2018) analyzed the LST trend over 30 years using multiple Landsat data images. This study used 
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data from two 15-year periods (1984-1999 and 2000-2015) 30 years apart to show the impact of 

urbanization on LST and SUHI. The study showed that the LST increase is highest in urban areas 

compared to the rural (low-density urban) areas.  

A multi-city study (Fan et al., 2017) analyzed the SUCI effect in five desert climate cities 

worldwide. The study showed that the magnitude of SUCI decreased over time due to an increase 

in urban LSTs. A few recent multi-city studies from India(Mohammad & Goswami, 2021; Raj, 

Paul, Chakraborty, & Kuttippurath, 2020) and globally(Z. Liu et al., 2022) also analyzed the 

impact of urbanization on LST and SUHI. Two studies from India analyzed the temporal trend of 

SUHI across 44 cities(Raj et al., 2020) and 150 cities(Mohammad & Goswami, 2021).  Both 

studies showed a nighttime increase in SUHI over time. These studies showed that the daytime 

SUHI temporal change varies with the climate zone(Mohammad & Goswami, 2021) and the 

season(Raj et al., 2020). Another recent global study(Z. Liu et al., 2022) showed that the impact 

of urbanization on LSTs is more evident in urban areas than rural areas. The study used MODIS 

LST data between 2002 to 2021 to calculate the change in LST and the factors influencing it across 

2000-plus urban clusters worldwide. 

Very recent literature from multi-city temporal analysis of SUHI shows the relevance and need to 

understand the impact of urbanization on SUHI. However, the number of temporal or inter-annual 

studies of SUHI is still limited, especially in countries like India and the US. Further, the existing 

studies do not verify whether the observed SUHI change is statistically significant or compare the 

findings with less urbanizing or developed world locations. 
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2.6 LITERATURE REVIEW SUMMARY AND EXISTING GAPS 

Table 5 lists some of the key studies reviewed in this chapter and their scope of work.  A review 

of popular peer-reviewed journals showed that SUHI research has recently (after 2000) gained 

prominence. As of 2022, the challenge limiting SUHI comparisons from local and regional studies 

is a lack of a standard SUHI quantification method. The literature review shows that the SUHI 

quantification method could impact the magnitude of SUHI. The use of non-concurrent data for 

quantification of SUHI - as seen in the multi-city studies from India, is another factor that skews 

the magnitude of SUHI. While these are the methodological characteristics of SUHI literature, 

existing studies also helped understand the factors that impact LST and contribute to SUHI 

formation.  

Multi-city studies showed that SUHI and its drivers varied with space and time. Overall, the 

daytime SUHI was higher across most studies than the nighttime. Studies indicate higher daytime 

SUHI in temperate and humid climates compared to dry or desert conditions. While most studies 

did a diurnal and seasonal analysis of SUHI, the studies on the inter-annual variability of SUHI 

are still limited, indicating a prospect for future research.  

Regarding influencing factors, vegetation was the most studied driver of SUHI,  followed by built-

up land use and other climatic and social factors. The literature shows the predominant role of 

built-up areas and vegetation in SUHI formation, using quantification metrics such as spectral 

indices and percentage impervious surface area. Interestingly most studies either analyze LST or 

SUHI. Very few studies show the variation in both LST and SUHI with vegetation and built-up 

areas.  
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While SUHI research is gaining popularity, it is still limited to a rapidly developing tropical 

country, India. Researchers show India is one of the least studied places and should be one of the 

most-studied locations (Deilami et al., 2018; D. Zhou et al., 2018) for UHI research. Much of the 

literature on quantifying SUHI and the factors influencing them is still from China and the United 

States. While there are a few global studies, they are limited to summarizing SUHI across big 

global cities. Studies focusing on just two countries or regions and quantitatively comparing them 

are close to none. However, the SUHI research community is now moving towards multi-city 

studies that could assist in understanding global and regional trends of UHI and its drivers. Using 

remote sensing data for such multi-cities studies provides a unique opportunity to use consistent 

data, unlike air temperature measurements which could be subject to human errors and instrument 

differences. 

Therefore, a summary of existing gaps based on this literature review are:  

1. Very few multi-city studies from India and none that quantitatively analyze and compare 

LST and SUHI from India with the rest of the well-researched locations, such as the US or 

China. 

2. The lack of consistent SUHI quantification and urban-rural delineation methods limits the 

comparisons of SUHI across locations and studies. 

3. No multi-city studies from India explain how LST varies with vegetation and built-up 

areas.  

4. Very few studies focus on the temporal change in SUHI, and none compare India's 

temporal SUHI with the US. Such a comparison could show how a rapidly urbanizing 

country performs compared to a developed nation. 

5. No studies from India or US statistically quantify ΔT or its change over time. 
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Therefore, for a country like India, the sparsity in UHI research and the lack of consistent 

observations across the existing studies restrict the development of localized UHI mitigation 

policies by basing them on research from the rest of the world(Lall, Talwar, Shetty, & Singh, 

2014). To address such inconsistencies, a multi-city study comparing SUHI in India with a well-

researched location like the US could help put the observations from India into a global 

perspective. A comparative study could also assist in highlighting the differences and similarities 

in the SUHI trends and its contributors and provide information on the relevance of popular UHI 

mitigation measures, such as increasing urban greenery and other built-up area measures (e.g., cool 

roofs, green roofs, green walls). 
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Table 5: A list of relevant studies reviewed and details on the study locations and scope of work.  

Study 
Location of Study Number of cities Temporal 

SUHI 

Contributors LST 

analysis India US Other 
Multi-

City 

Single-

City 
Vegetation 

Built-up 

areas 
Urbanization Other 

(Ali et al., 2017)     ● ●             ● 

(D. Zhou et al., 2014)     ● ●     ● ●   ●   

(Fan et al., 2017) ● ● ● ●   ●     ●     

(Guo et al., 2015)     ●   ●           ● 

(Heinl et al., 2015)     ●   ●   ●       ● 

(Imhoff et al., 2010)   ●   ●     ● ●       

(J. Li et al., 2011)     ●   ●           ● 

(J. Wang et al., 2015)     ● ●   ● ● ●   ● ● 

(Jiang et al., 2015)   ●     ●       ●   ● 

(Kumar et al., 2017) ●     ●               

(L. Zhao et al., 2014)   ●   ●   ● ●     ●   

(Mathew et al., 2017) ●       ●           ● 

(Mathew, Khandelwal, Kaul, & 

Chauhan, 2018) 

● 
    

● 
    

● ● 
    

● 

(Mohammad & Goswami, 2021) ●     ●   ● ● ● ●     

(Peng et al., 2012) ● ● ● ●     ● ●   ●   

(Peres et al., 2018)     ●   ● ●     ●     

(Raj et al., 2020) ●     ●   ● ●  ● ●   

(S. Wang et al., 2018)     ●   ●       ●   ● 

(Shastri et al., 2017) ●     ●     ●         

(Singh et al., 2017) ●       ●       ●   ● 

(Sussman et al., 2019) ●       ● ●     ●     

(W. Chen et al., 2017)     ●   ● ● ●     ● ● 

(W. Chen et al., 2017)     ●   ●       ●   ● 

(X. Li et al., 2017)   ●   ●       ●       

(Z. Liu et al., 2022) ● ● ● ●   ●     ●     

(Zhang et al., 2009)     ●   ●           ● 

This study ● ●   ●   ● ● ● ●  ● 
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3 DATA AND METHODS 

3.1 OVERVIEW 

This chapter describes the study's data, land surface temperature, and ΔT calculation methodology. 

The overall study methodology is in three main stages 1.) Data collection, 2.) Spatial Processing 

of the Data, and 3.) Post-processing analysis. The data collection includes the selection of the 

location of the study, the selection of a satellite for LST data, selecting the time and date of data, 

identifying other relevant data, and the data download. In the second stage of remote sensing data 

processing, -a crucial step is identifying each selected location's urban and rural areas. An urban-

rural delineation methodology customized based on existing methodologies is applied to identify 

all the urban and rural areas of the study locations, as discussed in Section 3.5. Depending on the 

LST dataset, several steps are involved in quantifying ΔT. The chapter lists a step-by-step 

methodology of LST calculation using Landsat 8 data and the ΔT quantification. This study 

compares LST and ΔT between India and the US and discusses the impact of vegetation and built-

up areas on them. Therefore, quantifying vegetation and built-up areas is another essential step in 

this stage. In the third or final stage of post-processing data analysis, statistical analysis, such as 

regressions, Spearman’s rank correlation, and t-tests, were used to address the research questions.  

3.2 STUDY LOCATIONS 

All the urban agglomerations with a greater than one million population in India and US were 

shortlisted and reviewed for data availability. Demographia (Demographia, 2016) world urban 

area dataset that follows a consistent urban land area calculation method for urban areas with > 

5000,000 population across the globe was referenced for the population data. Cloud-free data from 
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Landsat 8 satellite (NASA Landsat Science, 2020) was reviewed for the summer (April-June in 

India, June-September in the US) and winter (November-February) days of 2016 - one of the 

warmest years to date. For locations with multiple cloud-free days, the highest and lowest daily 

maximum air temperature days were chosen for summers and winters, respectively. Based on these 

criteria, this study analyzed 42 Indian cities and 32 US cities. Appendix A provides a list of all the 

cities, and Section 3.3 of this chapter discusses the satellite data used in this study. 

3.2.1 Comparison of the 10 populous cities of India and the US 

This section provides an overview of the population and climatic differences between the two 

countries using the example of the 10 most populous cities in India and the US. Table 6 

quantitatively compares the 10 most populous urban agglomerations from India and the US. 

Population data shows that 9 out of the 10 most populous urban areas in India and the US have 

greater than 5 million people. While the population across some megacities in India and the US 

are comparable, the population densities differ. The highest population density in the US – in Los 

Angeles is 2400 people/km2 (includes Riverside-San Bernardino and Mission Viejo), which is 13x 

lower than the highest in India (Vijayawada: 31,200 people/km2) and 1.7x lower than the lowest 

density found in an urban area (> 500,000 people) (Thoothukkudi: 4000 people/ km2) of India. 

Table 6 also compares the heating degree day (HDD) and cooling degree day (CDD) of these 10 

locations from India (Bhatnagar, Mathur, & Garg, 2018)and the US(NOAA, 2016). Information 

on the HDD and CDD is relevant in showing how hot or cold the temperatures could be and 

indicates the need for mechanical cooling and heating. From Table 6, most cities in India have no 

heating requirement, while only one city, Miami (out of the 10 populous) in the US, has a 

negligible heating requirement. On the other hand, in India, there is a need for mechanical cooling 

in most of the cities, with only a few comparable ( ≈ 3000 CDD or more) US cities from the 
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southern states like Texas and Florida (Miami). Therefore, this information on population, CDD, 

and HDD provides an overview of the cities in India compared to the US cities. While there are 

considerable differences in population densities, there are some commonalities – in population- 

New York City, US, Mumbai, India, and in CDD - Houston, Dallas, and Miami comparable to 

cities in India, across a few cities in India and US. 

Table 6: Population, Population Density, Heating Degree Days, and Cooling Degree Days across the 10 most populous cities in 

India and the United States 

City Population  

(thousands) 

Population Density  

(people/km2) 

HDD (base temp: 

180C) 

CDD (base temp: 

180C) 

10 most populous Urban Agglomerations in India 

Delhi 25,735 11,900 248 2926 

Mumbai 22,885 26,000 0 3457 

Kolkata 14,810 12,300 6 3232 

Bengaluru 10,165 8,700 0 2342 

Chennai 9,985 10,300 0 3992 

Hyderabad 7,750 6,300 0 3154 

Ahmedabad 7,410 21,200 6 3587 

Pune 5,785 12,100 9 2290 

Surat 5,685 24,400 0 3471 

Jaipur 3,485 8,400 109 3046 

10 most populous Urban Agglomerations of the United States 

New York  20,685 1,800 3978 1732 

Los Angeles 15,135 2,400 889 966 

Chicago 9,185 1,300 5690 1162 

Dallas 6,280 1,200 1602 3227 

Houston 6,005 1,200 997 3452 

San Francisco 5,995 2,100 1983 146 

Miami 5,820 1,700 71 4931 

Philadelphia 5,595 1,100 4074 1711 

Atlanta 5,120 700 2168 2550 

Washington DC 4,950 1,300 3594 1982 

 

3.2.2 Climate 

3.2.2.1 The climate and seasons in India and the US 

According to the Indian Meteorological Department(Attri & Tyagi, 2010; Indian Meteorological 

Department, 2019), India has four seasons, as shown in Table 7. Monsoon timings could vary 

across the country based on the location. However, the onset of south-westerly monsoons would 
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happen no later than July 15 across the country. Rains could also happen during the post-monsoon 

season in the eastern and southeastern states due to the northeastern monsoon. For the development 

of regional building codes and standards, the National Building Code (NBC) and the Energy 

Conservation Building Code (ECBC) of India divide the country into five climatic zones: Hot and 

Dry, Composite, Temperate, Warm and Humid, and Cold, as shown in  

Figure 15. The figure shows that summer temperatures in most areas, except India's very few cold 

locations, can range between 30-450C. There are very few cold regions in the country-  the extreme 

northern part and other few hill stations across the country, where the winter temperatures go below 

00C.  

 

Figure 15: Climate zones in India as shown in the Energy Conservation Building Code of India 

In the US, however, seasons and their timings vary compared to India, as seen in Table 7. The US 

has four meteorological seasons (NOAA, 2021), as shown in Table 7.  The temperatures and 

precipitations vary by season across the US.  Unlike India, there isn't a monsoon season in the US. 

Rainfall happens at different times of the year based on the location. For example, the Midwest 
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and the eastern states experience maximum rainfall during late spring and early summer, while on 

the west coast, rainfall occurs during winter.  

In the US, for building design and HVAC equipment load design purposes, the climate zone 

classification provided by ASHRAE 169 is followed by the country's commercial and residential 

building codes. ASHRAE Standard169 (ASHRAE, 2020) divides the country into 8 thermal zones, 

0. Extremely hot, 1. Very hot, 2. Hot, 3. Warm, 4. Mixed, 5. Cool, 6. Cold, 7. Very cold, and 8. 

Subarctic/arctic, and 3 moisture zones, A. Humid, B. Dry, and C. Marine. The temperatures, 

precipitation, cooling degree days (CDD), and heating degree days (CDD) vary across all the 

zones.  

Table 7: Meteorological seasons of India and the US 

India United States 

Season Calendar Months Season Calendar Months 

Winter January, February Winter December, January, and February 

Pre-monsoon  or Summer March, April, and May Summer June, July, and August 

Monsoon June, July, August, and September Spring March, April, and May 

Post-monsoon October, November, and December Fall September, October, and November. 

 

3.2.2.2 Climate classification using Koppen Gieger Climate  

This section details the cities' climate classification using the Koppen Geiger system to compare 

the climate across cities in India and the US using the same weather classification system, unlike 

previously discussed ECBC and ASHRAE climate zones. At the time of processing of these 

results, ASHRAE 169 climate classification system classified the whole of India into one climate 

zone, zone 1A; this, however, was changed in the 2021 revision of the ASHRAE standard. 

Koppen-Gieger climate(Kottek, Grieser, Beck, Rudolf, & Rubel, 2006) classifies the world into 5 

climates (A to E) and several sub-classes based on temperature and precipitation of the location. 

India constitutes several climate classes, most under the A: equatorial and B: arid categories, with 
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a few northeastern locations under C: warm temperate. However, most US is C: warm temperate 

and D: snow climates, with a few southwestern locations under B: arid category. While few 

overlaps exist in the Koppen classification across India and the US, the countries vary widely in 

temperatures and seasons.  

Figure 16 shows the study locations and their Koppen climate classification. As seen on the map, 

the maximum (18/42)of the study locations in India are Equatorial climates with dry winters (Aw), 

followed by arid- hot steppe (BSh) (10/42). In India, 9/42 cities belong to the warm temperate 

climate class, compared to the majority (27/32) in the US. More than half (21/32) of US cities' 

studied belong to the warm temperate and humid with hot summers (Cfa) climate class. Only 2 of 

the 11 classes observed across both countries have cities in common. One city in each of the 

country (US: Phoenix, India: Jodhpur) fall in BWh (Arid-Desert-Hot Arid temperatures) climate 

class, and 2 cities from the US and 4 cities from India are under Csa (Warm Temperate with warm 

and dry summers). The air temperature and precipitation differences can be high between 

equatorial (Tmin ≥ 180C) and warm temperate climates (Tann ≥ 220C), the two primary climate 

classes in India and the US, respectively. Therefore, this climate classification indicates that India 

and the US have cities with different climates; hence, quantifying SUHI across these climate 

classes might show the impact of climate on SUHI. Understanding the SUHI based on Koppen 

Geiger Classification is relevant, not only because it is a widely used climate classification system 

but also because of its basis on vegetation, air temperature, and precipitation that impact 

SUHI(Imhoff et al., 2010; Kumar et al., 2017; L. Zhao et al., 2014).  
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Figure 16: Study locations from the US and India on the Koppen-Geiger Climate Classification Map 
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3.3 LAND SURFACE TEMPERATURES: SATELLITE DATA 

This dissertation uses LST data from two different satellites 1.) Landsat, and 2.) MODIS Aqua. 

While Chapter 2 Section 2.4.2 discussed the Landsat and MODIS as the most common satellite 

data used across SUHI studies, this section discusses the specific data used in this work. This 

section details the data characteristics, and the collection date and time 

3.3.1 Landsat 8 Data 

Landsat 8 satellite(NASA Landsat Science, 2020), launched in the year 2013, uses two sensors – 

the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) to provide data across 

11 bands (wavelengths). This satellite captures data images (in digital numbers) called scenes that 

are typically sized 170m (north-south) by 182 m (east-west) once every 16 days during mornings 

(9 am-12 noon). The equatorial crossing time of this satellite is around 10 am. The Landsat 8 data 

is available in 9 spectral bands and two thermal bands. The two thermal bands (bands 10 and 11) 

collect data at 100m spatial resolution and are resampled to 30 m spatial resolution to match the 

spectral band(1-9)  resolutions of 15-30m.  

In this study, cloud-free (<5% cloud cover) Landsat 8 data (all the bands) was downloaded for 42 

cities from India and 32 cities from the US. Landsat 8 data from 2016, one of the warmest years 

to date, was used in this analysis. Cloud-free data for the highest maximum daily air temperatures 

days during summers in India (April-June) and the US (June-September) were selected. The cloud-

free data with the lowest daily maximum air temperature was downloaded for analysis during 

winter (November-Febrauary)—Appendix A lists all the cities and the date of Landsat 8 data. Non-

summer month data was used in the case of Houston, TX (5/5/16) and Orlando, FL (5/6/16) due 

to high cloud cover on the days when data were available in summer. Chennai, India, was not 

included in the winter analysis due to a lack of cloud-free data in this location, resulting in 41 
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Indian cities for winter compared to 42 during summer. The USGC EarthExplorer (USGS, 

2019)site was used for the Landsat 8 data download.  

Section 3.6 of this chapter details the LST calculation using the Landsat 8 thermal band 10. Other 

spectral band data were also used in the spectral indices calculations, as discussed in Section 3.7. 

In this dissertation, Chapter 4- the daytime-specific analysis of LST and ΔT, which also studied 

the correlations with built-up areas and vegetation, used Landsat 8 data. Chapter 7 also uses 

Landsat 8 data to study the variation in built-up area LSTs with construction period and 

neighboring land use. In both these chapters, higher resolution LST data is more appropriate to 

understand the correlations and the variation in LST with land use. 

3.3.2 MODIS Landsat Surface Temperature Data 

MODIS, or the Moderate Resolution Imaging Spectroradiometer, is the sensor on the Terra and 

Aqua satellites(MODIS, n.d.). These satellites orbit the earth every 1-2 days during the daytime 

and the nighttime. The availability of daily data for both day and nighttime is one of the most 

significant advantages of MODIS. The main difference between MODIS Terra (MOD) and 

MODIS Aqua (MYD) is the time of data collection. MODIS Terra collects data in the morning 

(≈10.30 am) and early at night (≈10.30 pm), whereas MODIS Aqua's data collection times are 

approximately 1.30 pm and 1.30 am. This study used MODIS Aqua data (1.30 pm and 1.30 am) 

for the diurnal and nighttime analysis of ΔT. Since Landsat 8 daytime data was from the mornings, 

MODIS Aqua data from the afternoon helps understand if any differences in ΔT pattern exist when 

calculated at a different time of the day. Unlike Landsat 8 - data available in different bands and 

needs further processing for LST conversion, the MODIS data provides Land Surface Temperature 

data as a direct download for its users. This work uses the MYD11A2 v6.1(Wan, Hook, & Hulley, 

2015) product that provides an average 8-day per-pixel (calculated from the daily data) LST and 



Chapter 3: Data and Methods 

Surface Urban Heat Island: A Comparative Study between India and the United States 
77 77 

Emissivity. The spatial resolution of this LST is 1km, and each scene is 1200 km x 1200km in 

size. 

The MYD11A2 data available at an 8-day interval for 2016 was downloaded for all 42 Indian and 

32 US cities, listed in Appendix A. The monthly average LST for all the Indian and the US seasons 

(see Table 7) was calculated by averaging the 8-day average MYD11A2 (≈ 4 scenes from each 

month) data. Chapter 5 of this dissertation uses these average monthly LSTs in the diurnal and 

seasonal analysis of ΔT. Chapter 6 of this dissertation also used MYD11A2 data for the seasonal, 

temporal analysis of ΔT. In Chapter 6, the MYD11A2 LST from April and May were averaged to 

represent Indian summers and from July and August to represent US summers. LSTs from January 

and February were averaged to represent the winter LSTs in both countries. MYD11A2 LST data 

is available from 2002 and was downloaded for several years ranging between 2003-2022 in this 

dissertation for the temporal analysis, in Chapter 6. This dissertation used the 

AppEEARS(AppEEARS Team, 2023) web tool for the MODIS LST data downloads.  

3.4 LAND USE LAND COVER DATA 

The LULC data is crucial for determining the urban-rural boundaries and analyzing the LST and 

ΔT results. This study used two LULC datasets 1.) LULC for India from IRA AWiFS sensors at 

56m resolution(Bhuvan/ISRO, n.d.), and 2.) the global Copernicus LULC data (Buchhorn et al., 

2020), which only became available in the year 2020. The first LULC dataset from India defines 

the urban boundaries for the 42 locations in India, and  Section 3.6 further discusses this urban-

rural delineation methodology. The Copernicus global LULC data from 2016 shows the LULC 

across all the study locations -using the same classification for both countries. Figure 17 shows all 

the cities from the US and India marked on the Copernicus LULC map from 2016. This LULC 
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data helps explain the similarities and differences in ΔT between India and the US, as seen in 

Chapter 4 and Chapter 5 of this dissertation. As seen in Figure 17, India's LULC is significantly 

different from the US. While most of India is cropland, the US is a mixture of herbaceous 

vegetation,  cropland, and forests.
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Figure 17: The study locations marked on the 2016 Copernicus Land Use Land Cover map of the United States and India 
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3.5 AREA OF INTEREST (AOI) – THE URBAN-RURAL DELINEATION 

Landsat 8 data scenes and the MYD11A2 LST data need the cropping to this study's area of interest 

(AOI) – rural area boundary. This study customized the existing methodology of defining urban 

boundaries based on urban area maps and LULC. Including the surrounding urban sprawl areas 

and using concurrent LULC or urban extent data based on the year of analysis are the main 

differences between the urban-rural delineation methodology proposed in this study and the 

existing urban-rural delineation methodologies in the literature. To date, there is no standardized 

definition of "urban" and "rural" across the SUHI studies (Giridharan & Emmanuel, 2018; Weng, 

2009), and the use of non-concurrent data sets could affect the ΔT(D. Zhou et al., 2018). A detail 

on this is in Section 2.5.1 of Chapter 2. 

In India, the urban built-up areas often extend beyond the city's administrative boundaries and 

sometimes the district (see Figure 18). Therefore, it is essential to use concurrent LULC data to 

identify the urban areas in India. To address this, based on the year of analysis, concurrent LULC 

data from IRS AWiFS sensors (available from 2005 onwards) at 56 m resolution (Bhuvan/ISRO, 

n.d.)was used to create urban boundaries. Urban built-up area land use for each city was 

polygonized, and then a bounding box was created around these polygons to include the spillovers 

that exist in urban built-up land use, as shown in Figure 18. In the US, due to the lack of up-to-

date LULC data when this data were processed, urban area extents data (US Census Bureau, 2019) 

from the concurrent year, based year of analysis, were used to define the urban boundaries similar 

to those done for Indian cities. In both countries, the rural boundary was an equal area buffer zone 

around the urban area.  
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The Landsat 8 bands and the MYD11A2 LST data scenes were extracted into urban and rural areas 

for each of the 42+32 study locations with these urban-rural boundary polygons developed using 

this methodology. In the methodology used here, the urban boundary includes the spill-offs and 

urban sprawl – all the areas that might have a direct impact from the main urban built-up areas, as 

seen in Figure 15.  

 

Figure 18: Administrative city and district boundaries marked on the Land Use Land Cover map (2016-17) (Bhuvan/ISRO, n.d.) 

for A: Ahmedabad and B: Mumbai. Examples show that neither the district nor city boundaries accurately represent built-up 

across Indian cities. C. Example of Pune showing urban-rural boundaries in the current study. 

3.6 LAND SURFACE TEMPERATURES AND ΔT CALCULATION 

While MYD11A2 data are directly an LST product and need no further processing, the Landsat 8 

data, which are digital number format in various bands, must be processed to extract the LSTs. 

This section details the process of extracting LSTs from the AOI-cropped Landsat 8 bands. 

3.6.1 LST from Landsat 8 data 

Figure 19 provides an overview of the LST calculation methodology used in this study. The LST 

calculation in this study uses the method specified in (Barsi, Schott, Palluconi, & Hook, 2005). 

This method uses a radiative transfer equation to calculate the atmospheric correction variables 

that are, in turn, used to calculate LST. A step-by-step process of the LST calculation is as follows: 
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1. Landsat 8 thermal band (Band 10) data was used to calculate the top of the atmosphere 

spectral radiance (LTOA) using equation 1 and Landsat 8 thermal band (Band 10) data. In 

equation 1, ML and AL are band-specific multiplicative and additive rescaling factors, 

respectively, available in  Band 10 metadata. Qcal is the Band 10 data in digital numbers.  

𝐿𝑇𝑂𝐴 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿      Equation 2 

2. In the second step, the NDVI maps for each AOI were developed by inputting Landsat 8 

Band 5 and Band 4 data into equation 2. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 =  

𝐵𝑎𝑛𝑑 5−𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 5+𝐵𝑎𝑛𝑑 4
     Equation 3 

3. Next, the emissivity values across AOI are calculated based on the NDVI range developed 

by (Valor & Caselles, 1996). These NDVI-based emissivities were also used for LST 

calculations across similar prior studies (Kikon, Singh, Singh, & Vyas, 2016; R. Sharma 

& Joshi, 2014). 

Table 8: Emissivity values used based on NDVI ranges 

NDVI Emissivity (ε) 

NDVI < -0.18 0.985 

0.157>NDVI<0.727 1.0094+0.0047ln (NDVI) 

-0.18>NDVI<0.157 0.955 

NDVI >0.727 0.99 

 

4. The atmospheric correction variables- atmospheric transmission (τ), upwelling radiance 

(Lu), and downwelling radiance (Ld) were calculated using the NASA Atmospheric 

Correction parameter calculator (NASA, 2019). This web-based calculator requires 

latitude, longitude, date, and time of data collection as inputs (see Appendix A). 
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5. To calculate the surface-leaving radiance (LT), LTOA, emissivity(ε), and the atmospheric 

correction variables (τ, Lu, and Ld) that were calculated in the previous steps are input into 

equation 3.  

𝐿𝑇𝑂𝐴 = 𝜏𝜀𝐿𝑇 + 𝐿𝑢 + 𝜏(1 − 𝜀)𝐿𝑑     Equation 4 

6. Planck's law was then applied to LT to calculate LST (in Kelvin), as shown in equation 4, 

and are subtracted by 273.15 to convert to Celcius. In equation 4, k1 and k2 are the thermal 

conversion constants for Band 10 of Landsat 8 data available in the metadata file. 

𝑇 =
𝑘2

𝑙𝑛(
𝑘1
𝐿𝑇

+1)
      Equation 5 

 

Figure 20 and Figure 21 show examples of the LST maps generated using Landsat 8 data during 

summer daytime. In Figure 20, the LST map of Delhi and Guwahati from India shows possible 

LST patterns across Indian cities. Similarly, the LST maps from Chicago and Phoenix show the 

possible LST differences across these cities.
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Figure 19: Overview of Land Surface Temperature Extraction Methodology
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Figure 20: LST maps of Delhi and Guwahati showing urban and the surrounding rural areas. Delhi shows higher LSTs in rural 

areas compared to urban areas, and Guwahati shows higher LSTs in urban areas compared to surrounding rural areas 

 

Figure 21: LST maps of Chicago and Phoenix showing urban and the surrounding rural areas. Chicago shows higher LSTs in 

urban areas than rural areas, and Phoenix has higher LSTs across the area, with slightly lower LSTs in urban areas.  

3.6.2 ΔT Calculation 

In this study, ΔT  represents the SUHI magnitude in each city. The ΔT calculation method remains 

the same for Landsat 8 and MYD11A2 datasets. In both cases, ΔT is the difference between the 
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urban and rural mean LST from the LST maps generated in the previous step. As shown in 

Equation 6, ΔT of each city is the difference between urban and rural LST means. 

∆𝑇𝑆 = 𝐿𝑆𝑇𝑢𝑟𝑏𝑎𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐿𝑆𝑇𝑟𝑢𝑟𝑎𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     Equation 6 

3.7 QUANTIFICATION OF VEGETATION AND BUILT-UP AREAS 

The common ways of quantifying vegetation and built-up areas in remote sensing studies are 

through spectral indices or variables such as impervious surface area. Spectral indices are ratios 

calculated for each pixel (representing a 30m x 30m parcel of land in Landsat 8) using digital 

number (a representation of spectral reflectance) data from two or more wavelengths. This study 

reports two spectral indices, NDVI (Normalized Difference Vegetation Index) and IBI (Index 

Based Built-Up Index), to quantify the vegetation and built-up surface densities, respectively. 

Landsat 8 data were used to calculate NDVI and IBI for all the study locations. Further, a global 

artificial impervious area (Gong et al., 2020) dataset was used to quantify and represent built-up 

areas across the study locations, as discussed in the following sections. 

3.7.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is one of the most used vegetation indices across remote sensing studies and is calculated 

by inputting Landsat 8 band data into Equation 2 (The Earth Observatory, 2000). NDVI represents 

the ratio of green vegetation in each pixel calculated using data from near-infrared (Band 5) and 

red (Band 4) wavelengths, as seen in Equation 2. Chlorophyll in green vegetation strongly reflects 

light in near-infrared (NIR) wavelengths and absorbs visible light (in red wavelength). The 

presence of chlorophyll corresponds to green vegetation and results in higher NDVI values (a more 

considerable difference between Band 5 and Band 4 in the numerator of Equation 2). However, 

dry, diseased, or deciduous non-green vegetation, referred to as non-photosynthetic vegetation 
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(NPV), has different reflectance properties than green vegetation. As a result, NPV has lower 

NDVI values (a more negligible difference between Band 5 and Band 4 lowers the value in the 

numerator of Equation 2) compared to green vegetation. 

NDVI values range between -1 to +1. Negative NDVI values represent land covers such as water 

and snow, and values close to zero are observed for rock and barren soil. While lower NDVI values 

(0.2-0.3) are commonly observed across sparsely vegetated shrubs or grasslands, higher values 

(>0.6) represent green forests. In SUHI studies, NDVI is therefore valuable for identifying cooler 

(low LST) green vegetation (with high NDVI values) compared to hotter (high LST) sparsely 

vegetated or impervious built-up areas (with close to zero NDVI value). Figure 22B and Figure 

23B show the example maps of NDVI from India (Delhi) and the US (Pittsburgh), respectively. In 

both countries, the LST is high for low NDVI values, as seen in  Figure 22A and Figure 23A. 

3.7.2 Index Based Built-Up Index (IBI) 

The Index Based Built-Up Index (IBI) was developed (H. Xu, 2008)to estimate the amount of 

built-up land while eliminating the impact of vegetation and water; and is calculated by inputting 

Landsat 8 band data into Equation 6 (written as Equation 7 using Landsat 8 bands). In equation 6, 

NDBI stands for Normalized Difference Built-Up Index, NDVI is Normalized Difference 

Vegetation Index, and MNDWI stands for Modified Normalized Difference Water Index 

corresponding to the built-up surface, vegetation, and water densities, respectively. Built-up 

surfaces have high reflectance in the Short-Wave Infrared (SWIR) wavelength and absorb in NIR 

wavelength (Zha et al., 2003), unlike green vegetation that reflects in NIR wavelengths. Band 6 

(SWIR1) and Band 5 (NIR) data are essential in identifying built-up land, as seen in the NDBI 

calculation in Equations 7 and 8.   
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𝐼𝐵𝐼 =  
𝑁𝐷𝐵𝐼−[(𝑁𝐷𝑉𝐼+𝑀𝑁𝐷𝑊𝐼)/2]

𝑁𝐷𝐵𝐼+[(𝑁𝐷𝑉𝐼+𝑀𝑁𝐷𝑊𝐼)/2]
    Equation 7 

𝐼𝐵𝐼 =  

2∗𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
− 

𝑁𝐼𝑅

𝑁𝐼𝑅+𝑅𝑒𝑑
+

𝐺𝑟𝑒𝑒𝑛

𝐺𝑟𝑒𝑒𝑛+𝑀𝐼𝑅
 

2∗𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
+ 

𝑁𝐼𝑅

𝑁𝐼𝑅+𝑅𝑒𝑑
+

𝐺𝑟𝑒𝑒𝑛

𝐺𝑟𝑒𝑒𝑛+𝑀𝐼𝑅
 
= 

2𝐵𝑎𝑛𝑑6

𝐵𝑎𝑛𝑑6+𝐵𝑎𝑛𝑑5
− 

𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑5+𝐵𝑎𝑛𝑑4
+

𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑3+𝐵𝑎𝑛𝑑6
 

2𝐵𝑎𝑛𝑑6

𝐵𝑎𝑛𝑑6+𝐵𝑎𝑛𝑑5
+ 

𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑5+𝐵𝑎𝑛𝑑4
+

𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑3+𝐵𝑎𝑛𝑑6
 
 Equation 8 

This study uses IBI to quantify the built-up areas. Compared to existing built-up indices (see 

Section 2.4.3 of Chapter 2), IBI is expected to limit the impact of vegetation and water on the built-

up index calculations. IBI ratios range between -1 to +1, and higher positive values represent dense 

built-up land within the pixel. Zero or negative values, which mean higher values in the numerator 

of Equation 2, occur in the presence of other LULC types, such as green vegetation (high NDVI 

value) and water (high MNDWI value). Figure 22A and Figure 23A show that the LST is high for 

high IBI values. Figure 22C and Figure 23C show the example maps of IBI from India (Delhi) and 

the US (Pittsburgh), respectively. 

3.7.3 Impervious Surface Area (ISA) 

Across SUHI literature, impervious surface areas primarily represent built-up areas such as 

buildings, roads, pavements, driveways, and other non-pervious surfaces. They are commonly 

quantified to study the impact of built-up land use on LSTs and ΔT. While there are different ways 

of quantifying ISA using different data, this study used the global artificial impervious areas 

(GAIA) dataset (Gong et al., 2020) to represent the artificial ISA or the built-up land use. Here, 

‘artificial’ represents the human-made ISA, not the naturally occurring impervious surface areas 

such as barren rock or termite mounds. In this dissertation, the ISA and built-up area terms are 

used interchangeably, and both are quantified using the GAIA data unless otherwise specified. 

GAIA data's primary advantage is its spatial and temporal resolution. These data have been made 

available at a 30m spatial resolution (similar to Landsat 8) for over 30 years (1985-2018) and were 

shown to have more than 90% accuracy in identifying artificial impervious areas. A random visual 
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analysis was conducted across multiple cities in India and the US by comparing GAIA data with 

Google Earth imagery and the LULC data. This visual analysis showed that the GAIA data 

appropriately indicates the built-up areas and shows only the artificial (human-made) impervious 

surfaces, not natural ones. This accuracy of GAIA in Indian cities is also evident in the example 

in Figure 22. This visual comparative analysis of GAIA is only for cross-checking the data, and 

its accuracy testing isn’t in the scope of this work. Chapter 6 of this dissertation further discusses 

the ISA maps and the relevant statistics from the GAIA data.  Here, it is essential to mention that 

GAIA data were included in this research based on the finding related to the built-up spectral 

indices in the daytime LST and SUHI analysis in Chapter 4. Therefore, it has been used in this 

research's latter stages that quantify the temporal changes in ΔT (Chapter 6) and urban built-up 

LST (Chapter 7). 

Examples of the daytime summer LST maps, along with the NDVI, IBI, and ISA from India and 

the US, are shown in Figure 22 and Figure 23, respectively. Figure 22 is the LST, NDVI, IBI, and 

ISA maps of Delhi, India, cropped to its administrative boundaries. Similarly, Figure 23 is the 

LST, NDVI, IBI, and ISA maps of Pittsburgh, US, cropped to its administrative boundaries. These 

figures show when the data are cropped to administrative boundaries and do not represent urban 

boundaries considered in this study. As discussed in Section 3.5, the study areas in this work are 

the urban and rural areas created using LULC data, as seen in Figure 18. Hence, Figure 22 and 

Figure 23 are only visual examples of the LST, NDVI, IBI, and ISA data generated in this work. 

As seen in Figure 22, in India, the LST increases with a decrease in NDVI and an increase in IBI. 

However, this visual correlation isn’t obvious between LST and ISA. The LSTs are high even in 

places where non-ISA exist (southwest corner of the city). There is also a difference between the 

IBI and ISA. In the southwest corner of Delhi, IBI represents built-up however the GAIA data 



Chapter 3: Data and Methods 

Surface Urban Heat Island: A Comparative Study between India and the United States 
90 90 

shows non-impervious surface areas. A visual cross-check using Google Earth imagery, and the 

LULC data showed that the southwest corner of Delhi is primarily a non-built-up area, indicating 

higher accuracy of the GAIA data, as seen in Figure 22. Unlike Delhi, Pittsburgh shows more 

definitive visual trends, and the IBI and ISA maps look more comparable than those of Delhi. 

Chapter 4 of this dissertation discusses these indices and their correlations with LSTs.  

.
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Figure 22: The A. Summer daytime LST, B. NDVI, C.IBI, D.ISA, D: Google Earth maps, and F: Three locations zoomed in to show the built-up and non-built-up land uses of Delhi, India, cropped to 

its city administrative boundary 
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Figure 23: The A. Summer daytime LST, B. NDVI, C.IBI, and D.ISA maps of Pittsburgh, US, cropped to its city administrative 

boundary. 
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4 DAYTIME LAND SURFACE TEMPERATURES AND THE 

SURFACE URBAN HEAT ISLAND PHENOMENON 

4.1 OVERVIEW 

This chapter analyzes the daytime surface urban heat island (SUHI) magnitude and its association 

with vegetation and built-up areas across 42 cities in India and 32 cities in the US. A comparative 

analysis between urban-rural mean land surface temperature (LST) differences (ΔT) in India and 

the US showed how the daytime ΔT trends in India differ from the conventional SUHI observed 

in the US. A correlation analysis discusses the variation in LST and ΔT with vegetation and built-

up areas in India and the US. Analyzing the observed ΔT trends and correlations involved utilizing 

the spectral reflectance properties of the Land Use Land Cover (LULC) in India and the US. In 

this chapter, the Normalized Difference Vegetation Index (NDVI) and Index Based Built-Up Index 

(IBI) (refer to Section 3.7 of Chapter 3) quantify vegetation and built-up areas, respectively. This 

section used the Landsat 8 data (refer to Section 3.3.1 of Chapter 3) LSTs calculated using the 

methodology discussed in Section 3.6.1 of Chapter 3. Section 3.5 of Chapter 3 discussed the urban 

and rural delineation and ΔT calculation methodology used in this chapter. 

4.2 DAYTIME LST AND URBAN-RURAL LST DIFFERENCE (ΔT) 

The daytime LST maps show that a conventional SUHI pattern with warm central urban areas 

surrounded by cooler rural areas exists in the US. In India, however, central densely built urban 

areas have lower LSTs than rural surroundings. Figure 24 and Figure 25 present the LST maps of 

typical cities in India and the US during summers and winters, respectively. Unlike in the US, 
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during the summers and winters, the LST increased from city centers to rural areas in India, as 

seen in Figure 24 and Figure 25.  However, the cities in India are warmer compared to the US. In 

this example, shown in Figure 24, LST in Ahmedabad, India [350C, 610C] is higher compared to 

Minneapolis, US [150C, 410C]. During winters in India, there is a slight decrease in LST in the 

rural areas, making the LSTs more even across the urban-rural areas, as seen in Figure 25 in Surat, 

India. Also, in the US, the LST distribution across urban-rural areas is more homogenous during 

winters, as seen in Figure 25. 

 
Figure 24: Daytime summer LST maps of Ahmedabad (ΔT = -0.9), India, and Minneapolis (ΔT = 1.6), US, show lower LST in 

central urban areas of India,  higher LSTs in the central urban areas of the US. 

 

Figure 25: Daytime winter LST maps of Surat (ΔT = -0.3), India, and St. Louis (ΔT = 0.4), US, show low variation in LST across 

urban-rural areas 
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Summer and winter daytime ΔT show surface urban cool island (SUCI) pattern in India compared 

to surface urban heat island (SUHI) in the US, as seen in Figure 26. During summers, 34/42 cities 

showed SUCI with ΔT as large as -4.50C (Tiruchirappalli); during winter, 25/41 locations showed 

SUCI with the maximum ΔT of -1.70C (Tiruchirappalli). The mean ∆T (∆𝑇) across Indian locations 

were negative both during summers (-0.9 ± 1.20C, n=42) and winters (-0.3 ± 0.80C, n =41). 

However, conventional SUHI exits across the US cities with warmer urban surfaces compared to 

the rural ones. Unlike in India, in the US ∆𝑇 values were positive for both summer (1.7 ± 1.60C) 

and winter (0.7±1.20C, n= 32). In the US, only 4/32 cities show SUCI and the magnitude of ΔT 

was much smaller (average of -0.60C) than that observed in India. In the US, the maximum ∆T is 

5.30C (Houston) during summers and 4.90C during winters (Portland). The maximum noted ∆T in 

India is 1.60C during summer (Coimbatore) and 1.10C during winter (Lucknow). For both India 

and US, the magnitudes of SUHI/SUCI are lower during winters than in summers. 

 

Figure 26: Daytime ΔT across all the Indian and US cities during A: Summer, and B: Winter, showing SUCI phenomenon 

predominantly across the Indian cities (>60% of studied locations) and SUHI across the majority of the US (>85% of studied 

locations) cities. 
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4.3 VARIATION IN LST WITH VEGETATION AND BUILT-UP AREAS  

The two most important factors contributing to UHI formation are the decreased latent heat due to 

low vegetation and increased sensible heat due to high built-up surface densities (Oke, 1988, 

1987). Using NDVI and IBI as spectral representations of existing vegetation and built-up areas, 

correlations show the association of LST with vegetation and built-up areas. 

4.3.1 Correlation between NDVI and LST 

Overall, Spearman's rank correlation coefficients (rs) show vegetation's impact on LST was higher 

across the US than in India, especially during summers. A negative correlation was observed 

between NDVI and LST during summers, suggesting that as NDVI increases, LST decreases 

across all the cities in India and US, as seen in Figure 27. In India, 3/42 cities show a moderately 

strong negative correlation (rs > 0.5, p-value <0.05), while this was in 26/32 cities in the US. In 

the winter, while the number of cities with this moderately strong negative correlation increased 

in India (7/41), it was substantially reduced among the US cities (3/32). In winter, in India, 12/41, 

and in the US, 14/32 cities showed weak (rs ≤ 0.4, p-value <0.05) positive correlation. There were 

four cities in the US with low urban mean LST (8-140C < overall urban mean of 170C) that showed 

moderate to strong positive correlation (rs >0.4, p-value <0.05). These winter results from the US 

indicate that further investigation is needed to understand the variation in LST with vegetation, 

specifically in winters of cold climates.   
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Figure 27: Spearman's rank correlation coefficient (rs) between LST and NDVI across the urban areas of all the studied locations 

in India and the US. During summers, a strong correlation (rs> 0.5) was observed across most of the US cities, while this is weak 

(rs< 0.4) in the majority of the Indian cities. During winter, however, the correlation got stronger in India and weaker in the US. 

 

4.3.2 Correlation between IBI and LST 

The rs (IBI, LST) values in Figure 28 show that a stronger correlation (rs ≥ 0.5, p<0.001) exists 

between IBI and LST across most of the cities in this study compared to the correlation between 

NDVI and LST (see Figure 27). As seen in Figure 28, during summers, most cities in India (30/42) 

and in the US (29/32) show a strong positive correlation (rs ≥ 0.5, p<0.001) between urban IBI and 

LST. However, during winters, while 29/41 Indian cities show a strong positive correlation, this 

falls to 4/32 in the US. A negative correlation between IBI and LST was also noticed in the US 

(10/32) during winters, showing some season dependency. Interestingly, most of these are the 

same cities that showed a positive correlation between NDVI and LST. Therefore, this could be 

because of the lack of vegetation during winters in the US, resulting in low NDVI values that alter 

the IBI values (see Equation 6 in Chapter 3). The results from the winters across US locations 

show that the LULC types and their performance vary and need further investigation and analysis 

beyond this study's scope. 
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Figure 28: Spearman's rank correlation coefficient (rs) between LST and IBI across the urban areas of all the studied locations 

in India and the US. A strong positive correlation (rs> 0.5) was observed across most locations in US and India during summers. 

The number of cities showing a strong correlation is lower in winter than in summer, especially in the US. Some US cities also 

show a negative correlation between urban LST and IBI during winters. 

4.4 VARIATION IN ΔT WITH VEGETATION AND BUILT-UP AREAS 

Linear regression analysis showed how the urban-rural differences in vegetation and built-up areas 

impact ΔT. In Figure 29, the independent variables on the x-axis are  ΔNDVI  -the difference 

between urban and rural mean NDVI and ΔIBI – the difference between urban and rural mean IBI 

and are correlated with ΔT. Across Indian cities, the linear correlation between ΔNDVI and ΔT 

was negative and weak during summers (R2 = 29.6%) and winters (R2 = 36.5%). In the US cities, 

however, in summer, there was a stronger (R2=54.3%) negative correlation (ΔT = 0.7547 – 42.27 

(ΔNDVI)) that got weaker (10.3%) in winter. The negative correlation between ΔNDVI and ΔT 

shows that as urban greenery increases, the ΔT decreases. These results are consistent with prior 

studies conducted across locations from North America and China (J. Wang et al., 2015; D. Zhou 

et al., 2014) and one from 419 big global cities (Peng et al., 2012). A positive correlation between 

ΔIBI and ΔT shows that as the built-up area increased, the ΔT increased. Table 9 shows the R2 

values and the linear regression fit equations between ΔIBI and ΔT. The strongest (R2 = 70.5%) 

and weakest (R2 =15.2%) correlations are observed for the US in summer and winter, respectively. 
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In India, the correlation between ΔIBI and ΔT was moderately strong both in summer (R2 = 41.2%) 

and winter (R2 = 55.8%) and was stronger than the correlation between ΔNDVI and ΔT (see Figure 

29).  

 

Figure 29: Linear regression line fitted between A.) ΔNDVI (urban-rural mean NDVI) and ΔT (urban-rural mean LST) for all the 

cities in India (top) and the US (bottom) during summers and winters. The negative slope shows that as the difference between 

urban and rural vegetation increases, the corresponding temperature difference decreases, reducing the SUHI/SUCI magnitude. 

B.) ΔIBI (urban-rural mean IBI) and ΔT. The positive slope shows that as the difference between urban to rural built-up surface 

densities increases, the corresponding temperature difference increases, increasing the SUHI/SUCI magnitude. 

 

Table 9: ΔT and ΔIBI linear regression line fit R2 values and equations for India and US during summers and winters 

Country Season R2 Equation 

US Summer 70.5%  ΔT = -1.571+41.79 ΔIBI 

Winter 15.7% ΔT = 0.8889+18.70 ΔIBI 

India Summer 41.2% ΔT = -0.3208+58.80 ΔIBI 

Winter 55.8% ΔT = -0.6052+28.48 ΔIBI 

4.5 VARIATION IN ΔT, LST, AND THE CORRELATIONS WITH THE LAND USE LAND 

COVER  

The results of this study showed some conventional and expected observations in the case of the 

US. These include 1.) SUHI phenomenon across the US cities, 2.) Strong inverse correlation 

between vegetation (NDVI) and LST or ΔT during summers, and 3.) During summers, a strong 
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positive correlation exists between the built-up areas and LST or ΔT. However, in the case of India, 

1.) The rural areas appear hotter than urban surfaces (SUCI), 2.) The correlation of vegetated 

(NDVI) and built-up (IBI) areas with LST and ΔT was moderate to weak in both seasons. These 

results are counterintuitive to the general understanding of UHI, which increases with 

urbanization. Therefore, this prompts an exploration of the factors contributing to such 

observations.  

SUCI studies across some of the tropical and dry locations of the world (Ali et al., 2017; Faqe 

Ibrahim, 2017; Kumar et al., 2017; Mathew et al., 2018; Rasul et al., 2015; Zareie, Khosravi, 

Nasiri, & Dastorani, 2016) attributed its occurrence to the land surface characteristics. Prior 

literature showed how LST and ΔT varied with land use land cover (LULC) classification and 

spectral indices (especially NDVI) (see Section 2.4.3 of Chapter 2). However,  a discussion of the 

spectral properties of the LULC types and how they impact LST, spectral indices values, and 

correlations are limited. This section discusses the vegetation and other LULCs of India and the 

US, their thermal and spectral characteristics, and how they contribute to the observed ΔT trends 

and correlations. 

4.5.1 NDVI values linked to ΔT and Correlations. 

An increase in vegetation mitigates SUHI. Though this broad trend existed across the cities in the 

US, in India, vegetation seems to have a lower impact on LST and ΔT due to its poor quality (less 

greenness). Figure 30 shows the average NDVI values across urban areas of India and the US 

during summers and winters. As seen in Figure 30, the average NDVI values across urban areas 

of India are lower than in the US during summers. In the winter in India, NDVI values increased 

in some northern and eastern states. The summer and winter NDVI values from India are still low 

compared to those observed in the urban US during summers. They are, however, comparable with 
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the NDVI values in winters in the US, when vegetation across many cold locations of the country 

sheds its leaves. 

In India, across the cities with SUHI, the average NDVI (𝑁𝐷𝑉𝐼) in rural areas is higher than in 

urban areas both in summers (by 14%) and winters (by 27%). However, in cities with SUCI, 

ΔNDVI is positive (NDVIurban > NDVIrural) or close to zero (e.g., ΔNDVI = 0.01 in Tiruchirappalli, 

the city with maximum -ΔT). Also, increasing greener vegetation (NDVI >0.3) lowers the LSTs. 

For example, in Coimbatore in summer (ΔT = +1.70C), 32% of the rural area (𝑁𝐷𝑉𝐼=0.26) has 

NDVI > 0.3 compared to the 18% of urban areas (𝑁𝐷𝑉𝐼= 0.22). In some cities (16/34 in summer 

and 23/25 in winter) in which urban areas are cooler (-ΔT),  the rural 𝑁𝐷𝑉𝐼 is slightly (-0.01 - -

0.04) higher compared to the urban. In this case, it can be hypothesized that the impact of 

surrounding non-green rural areas is higher on ΔT and might not mean that the urban areas are 

'cooler.'
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Figure 30: Average NDVI across urban areas of A: India in summer, B: India in winter, C: US in summer, and D: US in winter 
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Vegetation greenness and quantity also impact the correlations studied. Figure 31 shows vegetation 

quantity (area) under four categories based on greenness - the average NDVI value across the 

urban and rural areas of typical cities in India and the US. The cities presented here are based on 

each country's min, max, and mean ΔT. Figure 31 also mentions Spearman's correlation coefficient 

rs between (NDVI, LST) and (IBI, LST) for each case. From the figure, 

• The NDVI values are higher in the US compared to India. 

• In urban and rural regions of India, the NDVI value increases during winters (e.g., 

Tiruchirappalli and Lucknow). In contrast, the NDVI value in the US decreases in winters 

compared to summers (e.g., Austin and Portland). 

• In both the US and in India, for locations with high positive ΔT (>1σ), rural areas are 

greener (NDVI > 0.3 in India, and NDVI > 0.4 in the US), e.g., Lucknow, India, and 

Portland, US. 

• The correlations strengthen with an increase in NDVI. For example, the correlations were 

weak in summers (rs (LST, NDVI) = -0.27, rs (LST, IBI) = 0.46) when Tiruchirappalli AOI 

(urban + rural) has only 6% of the land with NDVI >0.3. The correlations became stronger 

(rs (LST, NDVI) = -0.67, rs (LST, IBI) = 0.85) in winter when 22% of the land area has 

NDVI > 0.3. 

• Similarly, in Lucknow, India, correlations became stronger from summers (rs (LST, NDVI) 

= 0.0, rs (LST, IBI) = 0.42) to winters (rs (LST, NDVI) = -0.63, rs (LST, IBI) = 0.73) when 

the land area with NDVI>0.3 increased from 2% to 25%. 

• Also, correlations weaken in the US as vegetation greenness decreases in winter. For 

example, in Austin, the correlations get weaker as the land area with NDVI> 0.3 decreased 
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from 55% in summers (rs (LST, NDVI) = -0.68, rs (LST, IBI) = 0.62) to 4% in winters (rs 

(LST, NDVI) = -0.10, rs (LST, IBI) = 0.44).  

The NDVI variable in IBI calculation (see Equation 6 in Chapter 3) alters the correlations between 

IBI and LST or ΔT. With the increase in NDVI, the correlations between (NDVI, LST) and (IBI, 

LST) are strengthening. In India, the correlations strengthened when an NDVI of 0.3 or greater 

existed in higher quantities across the urban or rural areas. The prevalence of non-green vegetation 

in high quantities across cities in India impacts the NDVI and the IBI values, hence the 

correlations. Comparing the vegetation and other LULC in India and the US and understanding its 

thermal and spectral performance provide more insights into the spectral indices values and the 

results observed. 
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Figure 31: NDVI ranges and land area in each NDVI range in urban and rural areas of typical cities in India and the US during summers and winters. The darker the 'green' 

higher the NDVI and greenness of the vegetation. The US has higher quantities of green vegetation than India, and the quantities of green vegetation increase in winters in India 

and decrease in winters in the US. 
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4.5.2 LULC in India and the US  

In both countries, most of the land cover is vegetation, however different kinds of vegetation. Over 

60% of the land area in India is croplands. In contrast, in the US, it is forest (39%), herbaceous3 

vegetation (28%), and shrublands (9%), as seen in Figure 17. In India, 2.3% of its land area is 

built-up compared to 1.5% in the US. 

4.5.2.1 Vegetation-NDVI in rural India and the US 

The greenness and quantity of vegetation and the NDVI value vary with seasons. In India, there 

are two main crop-growing seasons, Rabi and Kharif. The rabi season is from November to March, 

and the Kharif is between June -October. Prior studies (de Jong, de Bruin, de Wit, Schaepman, & 

Dent, 2011) showed that NDVI varies with the vegetation development stages. The studies show 

that NDVI peak occurs mid-season, and the lowest values are during the start and end of the 

growing season. A recent study(Kashyap, Pandey, & Kuttippurath, 2022) shows that the 

photosynthetic activity in India peaks during post-monsoon months (September, October, 

November) and is the lowest during summers (March, April, and May). Another study (Revadekar, 

Tiwari, & Kumar, 2012) from India found that NDVI in India peaked in October. This study 

showed that temperatures and rainfall impact NDVI. The amount of rainfall from a year also 

impacted the NDVI of the following year. Depending on the temperatures and amount of rainfall, 

different regions of the country could have different levels of greenery. NDVI values in this study 

align with the observations from the literature indicating the high quantity of non-green vegetation 

during the summer and winter months in India (see Figure 30). Based on the literature, most 

months except a few monsoon and post-monsoon months between August-November would have 

 
3 “Plants without persistent stem or shoots above ground and lacking definite firm structure. Tree and shrub cover is 

less than 10 %.” (Buchhorn et al., 2020) 

 



Chapter 4: Daytime LST and SUHI 

Surface Urban Heat Island : A Comparative Study Between India and the United States  
107 107 

non-green or low-green vegetation in India. In the US, while the evergreen forests remain green 

throughout the year, the deciduous forests and the shrublands show seasonal variation, with peak 

greening during the summers. All except the desert and xeric shrubland biome (e.g., Phoenix, AZ, 

Las Vegas, NV) of the US showed higher NDVI (>0.3) values during summer(Imhoff et al., 2010).  

The growing season of croplands in the US (most locations except the southwest) also coincides 

with summers being the mid-season for most crops harvested in the fall. Therefore, in the US, 

vegetation is greener in summers than in winters(Chun & Guldmann, 2018), resulting in higher 

NDVI values during summers, as noted in this study. Across all these vegetative land cover types, 

brown or dry non-photosynthetic vegetation (NPV) and leaf litter could also exist. Brown or dry 

NPV and leaf litter are prevalent in the croplands during non-cropping/non-growing seasons 

(summers) in India and the deciduous forests of the US during fall and winter. Therefore, low 

NDVI values and NPV across urban and rural areas of India potentially increase LSTs compared 

to US ones. 

4.5.2.2 Soil moisture in India and the US 

Non-growing seasons (summers) or the non-monsoon seasons (such as winters) in India also mean 

low soil moisture levels. Prior studies (Jiang et al., 2015; Mohammad & Goswami, 2021) showed 

the impact of soil moisture on LSTs and ΔT. A decrease in soil moisture increased LSTs. The soil 

moisture also affects evapotranspiration(Sebastian, Murtugudde, & Ghosh, 2023).  

Evapotranspiration - the evaporation of water through plants into the atmosphere, is a widely 

documented phenomenon that impacts UHI formation(Besir & Cuce, 2018; Shastri et al., 2017; 

Haider Taha, 1997). A decrease in soil moisture decreases evapotranspiration which in turn 

increases the temperatures. 
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Figure 32 shows an example of soil moisture levels in India and the US. The figure visually 

compares India and the US soil water index (SWI4 – an indicator of soil moisture) during the 

summer and winter of 2016. The SWI data(Copernicus Global Land Service, 2018) used here is 

only for visual comparison, and this study doesn’t analyze it quantitatively, nor is it used in any 

other analysis presented. As seen in the figure, during summers (May in India and July in the US), 

the soil moisture in the US is higher than in India. In this figure, during winters, though the data is 

missing some US locations (3/32 studied locations), the northeastern, northwestern, and 

midwestern US  show slightly higher SWI compared to India.  Compared to India, the soil moisture 

in the US is higher across most locations (except some southwestern and western locations) during 

all the months except the monsoon months of India (August – October)(Climate Prediction Center 

Internet Team, 2020). In India, the soil moisture peaks in the monsoon season (June-Septermber) 

when most (about 80%) of the rainfall occurs and then declines after a short lag (Pangaluru et al., 

2019; Sebastian et al., 2023). Changing rainfall patterns are shown to increase drought conditions 

in India(Mishra & Liu, 2014), which in turn is leading to groundwater depletion, and around 42% 

of India's cultivable cropland lies in these drought-prone regions. Growing urban areas in already 

drought-prone regions of the country, and the high demand (90% of total water needs) for 

groundwater for the irrigation of crops, are creating water stress and scarcity in India(Dhawan, 

2017). Water scarcity and groundwater depletion could add to the already low soil moisture levels 

during the non-monsoon season in India. A recent global study(W. Li et al., 2022) also showed a 

decreasing trend in vegetation (quantified using leaf area index) with decreasing soil moisture. The 

sensitivity of vegetation to soil moisture was more evident across dry locations like India and the 

southwestern US, and other drought-prone regions of the world, facing reduced precipitation levels 

 
4 SWI “describes the relation between surface soil moisture and profile soil moisture as a function of time.” 

(Copernicus, 2018) 
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and relying on groundwater resources. Though there is a difference in the soil types between India 

and the US(NASA LDAS, 2022), the soil moisture levels seem to have a more significant impact 

on the LSTs(Sandholt, Rasmussen, & Andersen, 2002; Weng et al., 2004). 
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Figure 32: The visual comparison of soil moisture using the soil water index in A. India during summer(May), B. US during summer (July), C: India during winter(December), 

and D: US during winter (December)of 2016. 
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4.5.2.3 Thermal characteristics of rural and urban LULC in India and the US 

Some thermal properties of surfaces that explain the heat transfer to and from a surface are 1. 

Thermal admittance (the ability of the surface to accept or release heat), 2. Thermal diffusivity (the 

ability of the surface to diffuse heat), 3. Heat capacity (amount of heat required to change temp. 

by 1 K), and 4. Thermal conductivity (the ability of a surface to conduct heat). For most soil types, 

the soil moisture and its thermal properties are positively correlated (see Figure 2.5 of (Oke, 

1987)). Broadly, moist soils take time to accept heat (high admittance), diffuse the heat faster ( 

high diffusivity), need a higher amount of heat to change temperatures (high heat capacity), and 

transfer more heat (high conductivity). Appendix B of this dissertation details the thermal 

properties of the conventional building and natural materials found in urban and rural LULC types 

in India and the US.  

Therefore, most rural areas in India with NPV and unsaturated soils during summers and winters 

gain heat faster during daytime with solar radiation, showing higher LSTs. Urban areas in India 

predominantly have concrete and brick, which have a higher capability to transfer heat and require 

more heat to change temperature than dry soil (see Appendix B). Due to this, the urban areas heat 

up slowly compared to the rural areas in India, resulting in lower urban LSTs than rural LSTs (see 

Table 10 ) during the daytime. A remote sensing and in-situ measurement-based study for two 

cities in India (Mathew et al., 2018) also showed such LST patterns. In that study, SUCI  in Jaipur 

and weak SUHI in Ahmedabad, India, was noted during the daytime. The prevalence of barren 

land in rural/suburban areas of Jaipur that tend to heat up quickly during daytime resulted in SUCI. 

In-situ surface temperature measurements of different LULC types: road, vegetation, soil, concrete 

block, and concrete showed higher temperatures of soil compared to other urban land covers- road 
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or concrete during the daytime. These findings align with the LST observations from this study 

(see LST from Table 10). 

In the US, however, the higher soil moisture and greener vegetation in the rural areas keep the 

rural area LSTs lower than urban areas. Urban buildings are in concrete, wood, and glass. Urban 

roofs of commercial buildings are in concrete or metal and finished using single-ply membranes, 

modified bitumen, or asphalt surface coating. Sloped residential roof finishes include fiberglass 

asphalt shingles, wood shakes, clay, or concrete tiles(Hashem Akbari & Kolokotsa, 2016). These 

urban materials in the US have lower thermal admittance- heating up faster (see Appendix B), 

compared to the green and moist rural areas, and thus have higher LSTs than rural areas (see Table 

10). Though less common, there are few locations in the US with mean rural LSTs higher or equal 

to urban LSTs. Such a trend existed in locations where rural areas are less forested and more 

shrublands or croplands (e.g., San Diego, CA, Las Vegas, NV). Prior studies also showed similar 

observations for locations in dry regions (L. Zhao et al., 2014) or desert and xeric shrublands 

(Imhoff et al., 2010). In winter, though, SUHI in many US cities could be impacted by other LULC 

types, such as snow and ice. More analysis is needed to understand SUHI during winters in the US 

and its variation with LULC, which is not the focus of this study.  

Daytime heating up of non-green and low saturated rural areas in India could result in negative 

ΔT. In contrast, in the US, forested and moist rural areas with lower daytime LSTs than urban 

areas result in higher ΔT values. 

4.5.3 Spectral Reflectance of common LULC, Spectral Indices, and the Correlations 

To further understand the impact of LULC on ΔT and the spectral indices, the spectral properties 

of common LULC types, including vegetation and built-up surfaces in India and the US, were 

analyzed. This knowledge is instrumental in understanding how the spectral indices perform. 
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The spectral reflectance properties (Baldridge, Hook, Grove, & Rivera, 2009; Meerdink, Hook, 

Roberts, & Abbott, 2019) of the common LULC types are plotted in Figure 33 to understand how 

different LULC types reflect and absorb the different wavelengths (horizontal axis of Figure 33). 

For instance, NDVI (Equation 2 in Chapter 3) uses Band 4 and Band 5 data, and this is because 

green vegetation with chlorophyll absorbs most of the radiation in Band 4 and reflects most in 

Band 5, as seen in Figure 33. So, when vegetation is greener, the NDVI value is higher. However, 

as seen in Figure 33, NPV, soil, and concrete absorb in Band 4 wavelengths and reflect highly in 

Band 5, which could result in equal or close to equal NDVI values for these land covers. Likewise, 

for IBI (Equation 6 in Chapter 3) or NDBI (Section 2.4.3), Band 6 wavelengths are typically 

considered to represent concrete, which reflects highly in this band. However, the spectral 

reflectance curves of concrete, soil, and NPV in Band 6 are similar and could interfere with 

accurately representing built-up areas using IBI values. This interference would be higher for 

locations where barren soils or sparse vegetations are more prevalent, like in the case of India. 

Therefore, the prevalence of croplands in rural India alters the ΔT, spectral indices, and 

correlations compared to the US.  

To support these theories of the impact of LULC and vegetation on the observed ΔT trends, indices, 

and correlations, the spectral indices (NDVI, IBI, and NDBI) values and LSTs in summer across 

the LULC types in Ahmedabad (India) and Minneapolis (the US) were quantified. Summer ΔT in 

Ahmedabad and Minneapolis is approximately equal to the mean across all cities studied in India 

and US, respectively. The global land cover data of 2016 from Copernicus Global Land Service 

(Buchhorn et al., 2020) was used to classify the LULC types in Ahmedabad and Minneapolis AOI 

(urban+rural).  Table 10 shows the average NDVI, IBI, NDBI values, and the average LST for 

different LULC classes in Ahmedabad and Minneapolis during summers, along with the 
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percentage land area (of AOI) of each class. As seen in Table 10, the difference between average 

NDVI, IBI, and NDBI for each LULC type is lower in the case of India compared to the US. Also, 

the average IBI and NDBI values remain the same for built-up, cropland, and herbaceous 

vegetation classes in Ahmedabad, India. In Minneapolis, though, the difference in average IBI 

between croplands (greener, NDVI= 0.42 compared to NDVI = 0.20 in Ahmedabad) and built-up 

areas is higher. Therefore, India's lack of green vegetation seems to be confounding the 

correlations between LST and IBI and ΔT and ΔIBI- making them invalid. Further, as seen in 

Table 10, in India, the mean LST in croplands (53.060C) is higher compared to the mean LST in 

urban built-up areas (51.210C), unlike in the US, where urban-built-up areas have the highest mean 

LST (29.780C). It is therefore hypothesized that the negative ΔT in Indian cities is due to the 

prevalence of such high LST rural croplands - for instance, in the case of Ahmedabad, 90% of the 

rural area is cropland compared to 43% in Minneapolis.  

 

Figure 33: Spectral reflectance curves showing the total energy (%) reflected in each wavelength (band 1-9 of Landsat 8) by the 

common LULC types. Notice the similar curve trend for NPV, soil, and concrete compared to green vegetation. 
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The LST, NDVI, and IBI patterns were also visually and spatially analyzed, as shown in Figure 

34. The LST maps show that the SUCI and SUHI patterns of Ahmedabad and Minneapolis are 

distinct. Visually NDVI in urban areas is lower, as expected, in both cities. However, the quantity 

of green vegetation (NDVI > 0.3) is deficient (4% of AOI) in Ahmedabad compared to 

Minneapolis (71% of AOI). Higher IBI values in the rural areas of Ahmedabad in Figure 34A 

show the limitation of IBI in differentiating fallow croplands from built-up areas. These maps 

visually support the observed results and the unconventional patterns of LST and IBI in 

Ahmedabad and show the conventional spatial pattern of SUHI (LST decreasing from the city core 

towards the rural) in Minneapolis. As seen in the LST maps of Figure 34 and the mean LSTs in 

Table 10, though Indian cities seem cooler compared to their rural counterparts, the absolute LSTs 

were high. The average LST in Indian urban areas was 10-120C higher than in the US.  

 

Figure 34: Summertime LST, NDVI, and IBI maps of A: Ahmedabad, India, and B: Minneapolis, US. 
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Table 10: Average NDVI, IBI, NDBI, and daytime summer LST across the predominant LULC classes in Ahmedabad and Minneapolis in summer. Equal or close to equal indices 

values (in bold) across built-up, cropland, and herbaceous vegetation classes, especially in India, resulting in ambiguity in the representation of the LULC type using spectral 

indices. *LULC definition from (Martins, Trigo, & Freitas, 2020) 

LULC Type Ahmedabad Minneapolis LULC definition*  

% AOI NDVI IBI NDBI LST(0C) % AOI NDVI IBI NDBI LST (0C)  

Urban/Built-Up 25% 0.13 0.00 -0.01 51.21 10% 0.27 -0.11 -0.14 29.78 Land covered by buildings 

and other man-made 

structures 

Cropland 72% 0.20 0.00 -0.01 53.06 32% 0.42 -0.18 -0.21 24.85 Lands covered with 

temporary crops followed by 

harvest and a bare soil 

period 

Herbaceous 

vegetation 

1% 0.13 0.00 -0.01 50.43 14% 0.36 -0.13 -0.15 26.62 Plants without persistent 

stems or shoots above 

ground and lacking definite 

firm structure. Tree and 

shrub cover is less than 10 

%. 

Closed forest, 

deciduous 

broad leaf 

0% - - - - 10% 0.40 -0.18 -0.21 23.54 Tree canopy >70 % consists 

of seasonal broadleaf tree 

communities with an annual 

cycle of leaf-on and leaf-off 

periods. 

Open forest, 

unknown 

1% 0.24 0.04 -0.06 49.83 22% 0.36 -0.14 -0.17 25.67 Open forest not matching 

any of the other definitions 
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This analysis, therefore, suggests that the impact of the urban built-up environment (human-made) 

on LST across Indian cities cannot be analyzed using the conventional ΔT calculation method and 

the built-up spectral indices. Instead, these measures and methods shift the focus towards rural 

areas and their impact on LST.  

4.6 CONCLUSION 

The main findings of this study are 1.) SUCI exists in India both during summers (∆𝑇= -0.9) and 

winters (∆𝑇= -0.3) compared to conventional SUHI in the summers (∆𝑇= 1.70C) and winters (∆𝑇= 

0.70C) of the US. Primarily, 60% of the land area in India is cropland which might stay dry or 

sparsely vegetated during non-growing seasons. This cropland can have higher LSTs compared to 

the built-up areas. However, rural areas in the US are more likely to be greener (NDVI >0.3) and 

moist forested or croplands, resulting in lower LSTs than built-up areas. 2.) In India and the US, 

the negative correlation between NDVI and LST strengthens as NDVI increases. In India, cities 

with rs (LST, NDVI) > -0.5 increased from 3 in summer to 7 in winter. However, in the US, as the 

vegetation greenness decreased in winter, cities with rs (LST, NDVI) >-0.5 decreased from 26 in 

summer to 3 in winter. Further, the negative correlation between ΔNDVI (NDVIurban – NDVIrural) 

and ∆T is strongest in the US during summers than in India. Therefore, the greenness and quantity 

of green vegetation change the correlation strength. 3.) In India, the average built-up indices (IBI 

and NDBI) values were similar across the built-up areas, croplands, and sparse vegetative land 

covers during summers and winters. Similar concrete, NPV, and soil spectral reflectance curves 

could result in similar built-up indices values.  Therefore, India's non-built-up land use 

characteristics (low vegetation and soil moisture) during summers and winters are confounding 

correlations between IBI and LST, making them invalid. Since rural areas in India aren't like those 
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of North America or Europe from where the UHI research originated, customizing the definition 

of 'rural' is needed to estimate the impact of urbanization on UHI. Studies that showed urban areas 

are cooler in India could all be using methods that mask the impact of urban built-up areas on the 

UHI. There is, therefore, a need to develop localized ΔT calculation methods and spectral indices 

for Indian and similar type LULC types to appropriately estimate the impact of urban built-

environment on the temperatures. Prior studies(Deilami et al., 2018; D. Zhou et al., 2018) 

emphasize the importance of studying UHI during daytime summers when the impact could be 

maximum. In India, understanding the variation of LST, ΔT, and LULC characteristics during 

monsoon and post-monsoon months could provide a wholesome understanding of SUHI/SUCI 

trends. With greener and more moist rural areas during monsoon seasons in India, most cities 

across India could show SUHI similar to the summers in the US. However, the limited availability 

of cloud-free satellite data during the monsoon months could impact such analysis. Using measures 

such as percentage impervious surface area instead of built-up indices and extending the temporal 

scale (day and night, seasonal, annual) of this daytime analysis could provide more insights into 

this comparative analysis of the Surface Urban Heat Island phenomenon. This daytime analysis of 

LST and ΔT led to two peer-reviewed journal articles (Tetali, Baird, & Klima, 2019, 2022) and a 

conference paper. 
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5 NIGHTTIME AND DIURNAL ANALYSIS OF THE SURFACE 

URBAN HEAT ISLAND PHENOMENON 

5.1 OVERVIEW 

This chapter extends the daytime SUHI analysis to the night and other seasons of the year. Since 

the daytime analysis from Chapter 4 of the dissertation indicated the shortcomings of the built-up 

indices in differentiating Indian LULC, this analysis quantified the total built-up area from the 

Copernicus LULC data from 2016 to show the variation in ΔT with the area of built-up land use. 

Statistical t-tests discussed the significance of diurnal and seasonal ΔT variation in both countries. 

They showed if a populous and highly urbanizing country like India would behave differently than 

the US. This chapter also attempts to explain the diurnal variation in ΔT using India and the US's 

land use land cover (LULC) characteristics. In this chapter, the ΔT is the mean LST difference 

between urban and rural areas (refer to  Section 3.6.2 of Chapter 3) calculated using LST data from 

MODIS (MYD11A2) data from 2016. The urban and rural boundaries were defined using the 

urban and rural delineation methodology discussed in Section 3.5 of Chapter 3. Analysis metrics, 

such as the percentage area of cropland in rural areas, the percentage area of built-up areas in 

urban, and the normalized difference vegetation index (NDVI), were used in this chapter to 

correlate land use land cover properties with ΔT.  

5.2 COMPARISON OF DAYTIME ΔT CALCULATED USING LANDSAT AND MODIS 

MODIS data are available daily for both day and night at a 1km resolution (refer to Section 2.3.2 

for more on MODIS  data). Landsat 8 data are available only for daytime with a temporal resolution 
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of once every 16 days (refer to Section 2.3.1 for more on Landsat 8 data). Chapter 4 of this 

dissertation presented the daytime ΔT using Landsat 8, 30m resolution data. This section provides 

a statistical comparison of the daytime ΔT from Landsat 8 and MODIS- MYD11A2 data to check 

the fidelity of this 1km resolution data in calculating the daytime ΔT trends. The MODIS daytime 

ΔT was calculated from the monthly average LST using MYD11A2 data using the exact urban 

and rural delineation and ΔT calculation methodology shown in Section 3.5 of Chapter 3. Based 

on a particular city's date of the Landsat 8 data (as seen in Appendix A), the month for MODIS 

ΔT for each city was chosen. For example, Landsat 8 LST data for Ahmedabad, India, is from 

05/19/2016, so the MODIS ΔT for Ahmedabad uses the LST average for May. MODIS monthly 

LST for  ΔT  calculations also helps understand if the Landsat 8 LST from a single day and time 

represents the month. A normality check of the data using the Ryan-Joiner (similar to Shapiro-

Wilk)  normality test showed that all the data – ΔT from Landsat8 and MYD11A2 dataset in India 

and the US during both summers and winters followed a normal distribution (RJ value > 0.97, and 

p-value  > 0.05). A two-sample t-test then compared the  ΔT from Landsat 8 and MYD11A2 

datasets.  

Table 11 shows the results from the two-sample t-test. From these results, with 95% confidence, 

there is not enough evidence to reject the null hypothesis of μ1 – μ2 = 0, where μ1 = mean ΔT 

calculated using Landsat 8 and μ2 = mean ΔT calculated using MYD11A2. Therefore it is safe to 

assume that there is no statistically significant difference between Landsat 8 and MYD11A2 

calculated daytime ΔT means in India and the US. 
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Table 11: T value, degrees of freedom, p-values, and the ΔT mean from the two-sample t-test comparing ΔT from Landsat 8 and 

MYD11A2 datasets. 

 T value P value μ1 (0C) μ2 (0C) 

 India 

Summer 1.0 0.31 -0.9 -0.6 

Winter 1.9 0.06 -0.3 0.1 

 US 

Summer 1.1 0.27 1.7 1.4 

Winter 0.9 0.35 0.7 0.7 

5.3 NIGHTTIME URBAN-RURAL LST DIFFERENCE  (ΔT) 

Nighttime ΔT calculated using MYD11A2 data from 2016, and the urban-rural delineation 

methodology discussed in Section 3.5 of Chapter 3 showed the SUHI phenomenon in India and 

the US, as shown in Figure 35. The ΔT calculated using monthly average LST from April and July 

represent summer in India and the US, respectively. The winter ΔT uses the monthly average LST 

from January for India and the US. Cloudfree data availability was the highest during these chosen 

summers and winter months across locations in India and the US. During summers and winters, 

urban LSTs in India and US were higher than rural LSTs, resulting in SUHI. In India, during both 

seasons, the ΔT was ≥ 0.0 0C. However, in the US, 3/32 cities showed negative ΔT (< 0.00C) 

during winters.  

 

Figure 35: Nighttime ΔT across all India and the US cities during A: Summer and B: winter, showing the SUHI magnitude 

across the cities. 
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The 𝛥𝑇 in India, during summer (1.20C ±0.70C)  and winter nights (1.20C ±0.60C)  was greater 

than the 𝛥𝑇 in the US. The minimum ΔT (00C) across Indian cities was in Tiruchirapalli and 

Coimbatore in summers and winters, respectively. The maximum ΔT of 2.60C and 2.50C in 

summers and winters occurred in Jaipur, India. In the US, the 𝛥𝑇 was 1.00C ±0.60C and 0.70C 

±0.70C during summers and winters, respectively. Minimum ΔT occurred in San Diego (0.10C) in 

the summer and St.Louis (-0.60C) in the winter, while the maximum ΔT occurred in Las 

Vegas(2.60C)  in the summer and Los Angeles(2.20C) in the winter. Overall, while both in India 

and US clear SUHI exist, the nighttime ΔT seems higher in India compared to the US. 

5.4 DIURNAL AND SEASONAL ΔT IN INDIA AND THE US 

The summer and winter ΔT analysis was extended to other seasons to understand and compare the 

day and night variation in ΔT across seasons. Until now, the daytime ΔT analysis used Landsat 8 

data discussed in Chapter 3 of this dissertation. The nighttime ΔT analysis shown in Section 5.3 

used the MYD11A2 dataset. In this section, the diurnal and seasonal ΔT calculations all use 

MYD11A2 data (from 2016) to improve the ease of comparison. The ΔT calculation uses the exact 

urban-rural boundaries and ΔT calculation method from Section 3.6.2. Due to the LST data 

limitation in India's monsoon season, this analysis does not include the monsoon season. This 

analysis, therefore, discusses the ΔT calculated for India's summers, winters, and post-monsoon, 

and the US's spring, summer, autumn, and winter. Table 12 shows the month of analysis and the 

season it represents in India and the US. The day and night ΔT uses the monthly average LST  

from the months specified in Table 12. 
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Table 12: Seasons in India and the US and each season's corresponding months. ΔT is from the average monthly LST of each 

month specified (MYD11A2 data from 2016) 

Season India US 

Summer April July 

Winter January January 

Post-monsoon November - 

Spring - April 

Autumn - October 

Figure 36 shows the diurnal and seasonal ΔT values across cities in India and the US. As seen in 

the figure, the ΔT values show that during daytime in India, there are several cities with higher 

rural LSTs compared to urban LSTs (- ΔT values). The mean ΔT of 42 cities in India is close to 

zero or negative (in summers), indicating the occurrence of daytime surface urban cool islands 

(SUCI). However, this occurrence of negative ΔT is not common in the US. In the US, the 

conventional SUHI phenomenon with warmer urban areas compared to rural surroundings exist 

during both day and night across all the seasons. The 𝛥𝑇  values also show that diurnal differences 

are higher for cities in India than in the US. The following sections in this dissertation detail these 

seasonal and diurnal differences in ΔT and provide a statistical discussion of the variations. 

 

Figure 36: Compares the diurnal and seasonal urban-rural LST difference (ΔT) across cities in A: India and B: United States. In 

India, daytime ΔT is negative across most cities (urban LST < rural LST). Nightime ΔT in India is positive (urban LST > rural 

LST) in all seasons showing SUHI. In the US, irrespective of the time of day, most cities show SUHI. Daytime ΔT is higher in the 

US; however, nighttime ΔT is higher in India. The diurnal differences in ΔT are higher across Indian cities compared to the US. 
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5.4.1 Diurnal variation in ΔT 

Figure 36 shows seasonal daytime and nighttime ΔT values and the mean ΔT (∆𝑇) across all the 

cities in India and the US. Table 13 and Table 14 present the descriptive statistics of the day and 

night ΔT  across the different seasons in India and the US, respectively. During the daytime, several 

cities (35-66% of the cities) in India show negative ΔT values across seasons, indicating warmer 

rural areas than their respective urban areas, resulting in the SUCI phenomenon. However, at night 

time in India, the conventional SUHI phenomenon exists. During nights in India the 

∆𝑇𝑁𝑖𝑔ℎ𝑡 values increased, showing higher urban LSTs compared to rural LSTs, with maximum 

∆𝑇𝑁𝑖𝑔ℎ𝑡  of 1.30C during post-monsoon nights, as shown in Table 13. One factor influencing these 

diurnal ΔT variations could be the LULC characteristics of the rural areas. As seen in Section 4.5.2 

of Chapter 4, rural areas in India have non-green croplands, which could heat faster in the daytime 

with solar radiation and cool faster with the sunset. Section 5.6.2 of this chapter discusses this in 

more detail. Similarly, in the US, though a few cities (3-4 cities out of 32 cities) show negative ΔT 

during daytime in all seasons (see Figure 36), this number of cities with negative ΔT is meager 

(≈12% of the cities) compared to that of India. Therefore, in the US the ∆𝑇𝐷𝑎𝑦  show SUHI 

phenomenon across all the seasons, and the nighttime ΔT values were also primarily positive or 

close to zero showing nighttime SUHI. These results show a more predominant and consistent 

SUHI phenomenon in the US during daytime and nighttime. In India, though, nighttime SUHI 

magnitude seems higher than in the US. The nighttime ΔT was higher in Indian cities [0,4] 

compared to the US cities [0,2.5], which could be indicating differences in urban and rural LULC 

between India and the US or the higher nighttime anthropogenic effect of urban areas on LSTs in 

India compared to the US, or both.  
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Table 13: The mean, minimum, maximum day and night ΔT (in 0C) across different seasons in India. 

India 

 Summer Winter Post-monsoon  
Day Night Day Night Day Night 

# of cities (N) 42 42 42 42 42 42 

Mean  -0.5 1.2 0.2 1.2 0.2 1.3 

St Dev 1.3 0.7 1.0 0.6 0.8 0.7 

Min -3.0 0.0 -2.2 0.0 -1.8 0.2 

Max 2.0 2.6 2.7 2.5 1.4 3.1 

 
Table 14: The mean, minimum, maximum day and night ΔT (in 0C)  across different seasons in the US 

US 

 Spring Summer Fall Winter  
Day Night Day Night Day Night Day Night 

# of cities (N) 32 32 32 32 32 32 32 32 

Mean  1.3 0.9 1.8 0.9 0.8 0.8 1.0 0.7 

St Dev 1.3 0.6 1.6 0.6 1.0 0.6 1.1 0.7 

Min -0.5 -0.4 -3.4 0.1 -1.0 -0.2 -0.8 -0.6 

Max 5.5 2.3 4.7 2.6 3.6 2.3 4.7 2.2 

This diurnal data was further statistically analyzed. After checking the data for normality, t-tests 

showed that the diurnal ΔT variation is statistically significant. Figure 37 and Figure 38 show the 

distribution of ΔT data in India and the US, respectively. For India, a Ryan-Joiner normality test 

resulted in an RJ value > 0.98 and p-value >0.05 showing that the ΔT data follows a normal 

distribution in all six scenarios (Summer: day and night, winter: day and day and night, post-

monsoon: day and night). Similarly, the ΔT  data from the US followed a normal distribution ( RJ 

> 0.96 and p-value>0.05), as shown in Figure 38. The paired t-test showed that, in India, the day-

to-night mean ΔT  difference is not equal to zero (p value<0.05) in all three seasons. In the US, 

however, the day-to-night mean ΔT difference is statistically significant (p value<0.05)  only 

during summers. Table 15 presents the results from the t-test.  

  



Chapter 5: Nighttime and Diurnal Analysis of SUHI 

Surface Urban Heat Island : A Comparative Study Between India and the United States 
126 126 

 

Table 15: Results from paired t-test with a null hypothesis (μ_difference = 0): the difference between day and Night ΔT equals 

zero. The  T-value and p-value in cases where the null hypothesis is rejected with 95% confidence are in bold. 

 India US 

T-value P value μ_difference  

(day-night) in 0C 

T value P value μ_difference 

(day-night) in 0C 
Summer 8.34 0.00 0.7 6.02 0.00 0.9 

Winter 5.16 0.00 1.0 0.1 0.92 0.3 
Post-monsoon 6.33 0.00 1.1 - - - 
Spring - - - 1.8 0.09 0.4 
Fall - - - 0.32 0.75 0.0 

With 95% confidence, the null hypothesis (μ_difference = 0, where μ_difference is the difference 

between ∆𝑇𝐷𝑎𝑦  and ∆𝑇𝑁𝑖𝑔ℎ𝑡 ) was rejected in India during all seasons showing statistically 

significant variation in day and night ΔT. In the US, with 95% confidence, the null hypothesis 

(μ_difference = 0, where μ_difference is the difference between∆𝑇𝐷𝑎𝑦  and ∆𝑇𝑁𝑖𝑔ℎ𝑡) was rejected 

only during summers. The differences in LULC characteristics between India and the US could 

lead to differences in diurnal ΔT variations between India and the US. Therefore, day and night 

variations in ΔT are more significant in India compared to the US. 
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Figure 37: ΔT data distribution during A. Summer day, B.Summer night, C: Winter day, D: Winter night, E: Post-monsoon day, 

and F: Post-monsoon Night in India 



Chapter 5: Nighttime and Diurnal Analysis of SUHI 

Surface Urban Heat Island : A Comparative Study Between India and the United States 
128 128 

 

Figure 38: ΔT data distribution during A: Spring Day, B: Spring Night, C: Summer Day, D: Summer Night, E: Fall Day, F: Fall 

Night, G: Winter Day, and H: Winter Night in the US. 

 

5.4.2 Seasonal variation in ΔT  

In India, the mean daytime ΔT (∆𝑇𝐷𝑎𝑦 ) values and range [-0.5, 0.2] are small (see Figure 36) 

across the seasons, indicating lesser differences between urban and rural LSTs. The daytime ΔT 

values are positive and higher during post-monsoon ( ∆𝑇𝐷𝑎𝑦  = 0.20𝐶 ) and winters ( ∆𝑇𝐷𝑎𝑦  =

0.20𝐶 ) compared to the summers ( ∆𝑇𝐷𝑎𝑦  = − 0.50𝐶 ), as seen in Table 13. Also, the number of 

cities showing daytime SUCI phenomena is lowest in post-monsoon (15/42), followed by winters 

(17/42) and summers (28/42). Cities with SUCI in both post-monsoon and winters are a subset of 

the 28 cities with SUCI during summers. In the US, the seasonal variation in daytime ΔT is more 
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prominent. The ΔT is highest during summer ( ∆𝑇𝐷𝑎𝑦  = 1.80𝐶 ), followed by spring ( ∆𝑇𝐷𝑎𝑦  =

1.30𝐶 ), winters ( ∆𝑇𝐷𝑎𝑦  = 1.00𝐶 ), and autumn ( ∆𝑇𝐷𝑎𝑦  = 0.80𝐶 ), as shown in Table 13. The 

cities showing negative ΔT (refer to Figure 36) are more in autumn (5/32) compared to the rest of 

the seasons (3 or 4/32), though the magnitude of SUCI is low (< -1.00C). As seen in the case of 

India, the non-green vegetation and low soil moisture could impact ΔT during autumn in the US. 

Nighttime ΔT ranges were consistent across seasons in India [0,3.0] and the US [0,2.6]. Nighttime 

mean ΔT were also similar across the seasons in both India (summer, winter ∆𝑇𝐷𝑎𝑦  = 1.20𝐶 , and 

post-monsoon ∆𝑇𝐷𝑎𝑦  = 1.30𝐶 ) and the US [0.7,1.0]. 

A one-way ANOVA test showed the effect of season on mean ΔT. Figure 37 and Figure 38 from 

Section 5.4.1 show the normal distribution of the data. Results, as seen in Table 16, show 

statistically significant (p-value < 0.05) variation in seasonal daytime ΔT means (refer to Table 13 

and Table 14) in both India and the US. However, there is no statistically significant difference in 

nighttime ΔT means across seasons in India and the US. Table 16 shows the results from the 

ANOVA test for the daytime. These seasonal differences in ΔT only in the daytime might indicate 

that the thermal characteristics of different LULC types vary with seasons only in the presence of 

solar radiation. With 95% confidence, the null hypothesis (all means are equal) is rejected during 

the daytime but not at nighttime. 

Table 16: Results from the ANOVA test show that the difference in mean daytime ΔT across seasons is statistically significant in 

India and the US. 

 F value P value 

India 6.07 0.003 

US 17.58 0.000 
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Furthermore, a paired t-test comparing daytime ΔT from two seasons shows no statistically 

significant (p-value <0.05) difference between winter and post-monsoon daytime ΔT in India and 

between winter and fall daytime ΔT means in the US. With 95% confidence, the null hypothesis 

of μ_difference = 0, where μ_difference: population means of (Winter Daytime – PostMonsoon 

Daytime) in India cannot be rejected. Similarly, with 95% confidence, the null hypothesis of 

μ_difference = 0, where μ_difference: population means of (Fall Daytime – Winter Daytime) in 

the US, cannot be rejected. These t-tests, therefore, show the similarity in the daytime ΔT means 

between winters and post-monsoon in India and fall and winters in the US. 

The diurnal and seasonal variations in ΔT show the dynamic nature of this phenomenon and how 

the factors influencing it can vary with the time of the day and season. Though seasonal 

understanding of ΔT and the factor influencing it is helpful, for India-US comparisons, summers 

and winters are the focus of this dissertation. 

5.5 THE DIFFERENCE IN ΔT BETWEEN INDIA AND THE US 

Figure 36 shows that ΔT and its mean differ in India compared to the US. A two-sample t-test 

confirmed this statistically significant difference in mean ΔT between India and the US. All the 

data follows a normal distribution, as shown in Figure 37 and Figure 38 and discussed in Section 

5.4.1. With 95% confidence, the null hypothesis (μ1 – μ2 = 0) is rejected during daytime and 

nighttime, both in summer and winter. Table 17 and Table 18 show the results from the two-sample 

t-tests from daytime and nighttime, respectively. 
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Table 17: Results from two-sample t-tests showing statistically significant difference in daytime ΔT means from India and the US  

 
T value P value 

𝛥𝑇_India (μ1) 

in 0C 

𝛥𝑇_US (μ2) 

in 0C 

Summer 6.64 0.000 -0.5 1.8 

Winter 3.09 0.003 0.2 1.0 

 

Table 18: Results from two-sample t-tests showing statistically significant difference in nighttime ΔT means from India and the US  

 
T value P value 

𝛥𝑇_India (μ1) 

in 0C 

𝛥𝑇_US (μ2) 

in 0C 

Summer 2.3 0.025 1.2 0.9 

Winter 2.78 0.007 1.2 0.8 

From these results, it is safe to conclude that the ΔT means of India and the US are not the same 

and that the mean nighttime ΔT in India is higher than in the US. India and US have different ΔT  

trends that may be associated with the differences in  LULC and urbanization trends.  

5.6 THE LULC AND THE DAY-NIGHT VARIATION IN ΔT  

5.6.1 Overview 

Chapter 4 of this dissertation discussed how ΔT, LST, and the spectral indices values changed with 

LULC (see Table 10). The prevalence of non-green and unsaturated croplands in rural areas of 

India seems to result in negative ΔT – SUCI phenomenon during daytime (refer to Section 4.2). 

The LULC of India and the US are revisited in this chapter to understand how they impact the day 

and night variation in ΔT. The thermal performance analysis of different Land Use Land Cover 

(LULC) types in India, and the US explains the diurnal variation in ΔT. Further, correlations 

discuss the association between the LULC areas and ΔT. 
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5.6.2 LULC characteristics 

As in the case of canopy-level air temperatures, the time of measurement of LST might make a 

difference in ∆T, and it is essential to understand how surfaces perform at a given time. SUCI is 

most common across some of the tropical and dry locations of the world (Rasul, Balzter, and Smith 

2015, Ibrahim 2017, Ali, Marsh, and Smitha 2017, Kumar et al. 2017, Zareie et al. 2016). A few 

prior studies showed its occurrences even in some parts of the US (Imhoff et al. 2010, Zhao et al. 

2014, Li et al. 2019, Chow and Svoma 2011). Results from this work align with prior research 

(Kumar et al., 2017) in observing daytime SUCI and nighttime SUHI in India.  

The LULC of India is different compared to the LULC of the US (see Figure 17 in Section 3.4 in 

Chapter 3). Rural areas in India are croplands, whereas, in the US, the rural areas include dense 

forest vegetation across many locations. Figure 39 shows the urban and rural boundaries overlayed 

on the LULC map of a typical Indian (Hyderabad) and a US (Houston) city. Figure 40  shows the 

percentage of croplands in rural areas across cities in India and the US. Figure 39 and Figure 40 

show that US rural areas have fewer croplands than Indian rural areas. In this study, on average, 

rural areas of India are 77% of cropland, whereas, in the US, 19% of the rural area is cropland. 
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Figure 39: Land Use Land Cover (LULC) within the urban and rural boundaries of  A: Hyderabad, India, and B: Houston, US. 

The LULC stats within the rural boundaries of C: Hyderabad, India, and D: Houston, US, show 82% of rural Hyderabad is 

cropland and 60% of rural Houston is forested. 

 

 

Figure 40: The percentage of cropland land use type in the rural areas of cities in India and the US. The % cropland in rural 

areas averages 77% and 19% in India and the US, respectively. 
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As discussed in Chapter 4, the croplands in India are seasonal and irrigation dependent. The soil 

type varies, and saturation level could be low, especially during summers and winters, the non-

monsoon seasons across most of the country. Table 19 lists and compares the thermal 

characteristics of the standard surface material types in the urban and rural areas of India and the 

US and the variation in their performance with the time of the day (refer to Appendix B for the 

thermal properties of the conventional LULC material types). As discussed in Section 4.5.2.3 of 

Chapter 4, rural India tends to gain heat quickly with sunrise and lose heat quickly with sunset; 

however, the green vegetation in the rural US stays at a relatively constant temperature throughout 

the day. With all the tree canopy, the heat loss from rural US happens slower than in rural Indian 

areas and could lead to lower nighttime ΔT compared to India. These variations in the thermal 

performance of different LULCs lead to differences in ΔT between India and the US, as shown in 

Table 19. A correlation analysis further showed if and how the LULC type links to ΔT.
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Table 19: Standard materials that constitute Indian and US urban and rural areas, and the variation in their thermal performance with the time of the day 

 India US 

 Urban Rural Urban Rural 

Material type Concrete, glass, asphalt, 

brick 

Peat, clay, or sandy soils – 

unsaturated during summers 

and winters 

Concrete, glass, asphalt, 

brick, wood 

Saturated soils, swamps, 

wooded forests 

Thermal 

characteristics 

Thermal admittance is 

greater than rural 

Lowest thermal admittance 

across all other material 

compared here 

Thermal admittance is lower 

than in rural 

Highest thermal admittance 

Heat transfer DAY: Heat gain at a 

lower rate compared to  

rural 

NIGHT: Heat loss  at a 

lower rate compared to 

the rural 

DAY: Heat gain happens 

quickly with radiation  

NIGHT: Tends to lose heat 

immediately after sunset 

DAY: Heat gain at a higher 

rate compared to  rural 

NIGHT: Heat loss  at a 

faster rate compared to the 

rural 

Heat gain is prolonged, and 

so surfaces are lower 

temperatures compared to 

urban areas  

Variation across 

the day 

High variation in surface thermal performance with the 

time of the day 

Low variation in surface thermal performance with the time 

of the day in rural areas 

Temperatures DAY: Urban LST < Rural LST 

NIGHT:  Urban LST > Rural LST 

DAY: Urban LST > Rural LST 

NIGHT: Urban LST > Rural LST 

Urban-Rural 

Temperature 

Differences (ΔT) 

DAY: -ΔT 

NIGHT: +ΔT 

DAY: +ΔT 

NIGHT: +ΔT  
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5.6.3 Rural and Urban LULC, and ΔT: A correlation analysis for India 

A Spearman’s correlation between the percentage of croplands in rural areas of India and the ΔT 

showed that the amount of cropland in rural areas does not impact the daytime ΔT. However, 

during nighttime, there is a statistically significant (p-value<0.05) correlation between the 

percentage of cropland and ΔT, as seen in Figure 41. The Spearman’s correlation shows a 

moderately positive correlation between % cropland and nighttime ΔT in summers(rs= 0.44) and 

winters (rs= 0.33)  in India. As the % of cropland land use increases in rural areas, the nighttime 

ΔT increase. These results support the theory discussed in Section 5.6.2. Rural areas in India lose 

heat faster and reach lower LSTs in the nighttime, increasing the difference between urban and 

rural LSTs (higher nighttime ΔT). Daytime, a statistically significant (p-value<0.05) correlation 

exists between the 'greenness' of the rural areas and ΔT, as seen in Figure 42. This correlation is 

stronger than those observed between ΔNDVI and ΔT (refer to Section 4.4) or NDVI and LST 

(Section 4.3.1). Based on these correlations, in India, daytime and nighttime ΔT has a stronger 

correlation with the 'greenness' of rural areas and not the greenness in urban areas. 

 

Figure 41: Spearman’s correlation between % cropland in a  rural area and nighttime ΔT (0C) in India during A: Summers and 

B: Winters 

Figure 42 shows Spearman’s correlation between NDVI (the higher the value, the greener the 

vegetation) of the rural areas and ΔT. As seen in Figure 42, during the daytime, a moderate to 
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strong positive correlation exists between rural NDVI and ΔT in both summers (rs = 0.63) and 

winters (rs = 0.4). Therefore, when rural area greenness increases, the actual impact of urban areas 

on ΔT appears. Higher LSTs in urban areas are apparent compared to green rural areas, increasing 

the daytime ΔT. Lack of greenness in rural areas in India, therefore, masks the impact of urban 

areas on ΔT, deceptively showing them cooler. During the nighttime, although a statistically 

significant correlation (p-value <0.05) exists, the strength of the correlation decreases both during 

summers (rs = -0.35)  and winters (rs = -0.39) and is negative. So, when the rural area greenness 

increases, these rural areas are warmer than non-green rural areas, decreasing the difference 

between urban-rural LST (nighttime ΔT). These correlations from India can also explain the 

observed ΔT trends in the US. Since rural areas are greener in the US, the daytime difference 

between urban-rural LST is higher (high ΔT), and the nighttime difference between urban-rural 

LST is low (lower ΔT).  

 

Figure 42: Spearman’s correlation between NDVI  in rural areas and ΔT during A: Summer days, B: Winter days, C: Summer 

nights, and D: Winter nights. When NDVI in rural areas increases at night, the ΔT decreases since green rural areas lose heat 

slower and stay at a higher LST than non-green rural areas. During the daytime, as NDVI increases in rural areas, ΔT increases, 

showing the actual impact of urban built-up areas of ΔT. 
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However, all these show how a 'rural' area impacts ΔT and don’t provide insight into how the 

urban built-environment impacts ΔT. Furthermore, it shows the need for a standardized definition 

of rural areas to estimate ΔT across multiple cities and develop suitable regional and national 

policies to mitigate UHI. Despite the importance of 'rural' in ΔT trends, urban built-up areas 

significantly impact ΔT. Figure 43 shows Spearman’s correlation between the percentage of built-

up land use within an urban area and ΔT. There is a statistically significant (p-value <0.05) 

correlation between % of built-up areas within the urban areas and ΔT, and it is always positive. 

As the amount of built-up land use increased, the ΔT increased. In the daytime, these correlations 

are weak to moderate in summers (rs= 0.3) and winters (rs= 0.34). During the nighttime, the 

correlation strength increased compared to the day in both summers (rs= 0.38)  and winters (rs= 

0.46). Unlike the built-up indices used in Chapter 4 that come with limitations in representing 

built-up areas, these correlations show that as built-up areas increase, the ΔT increase. 

 

Figure 43: Spearman’s correlation between the percentage of built-up land use type within the urban area and ΔT in A: Summer 

days, B: Winter Days, C: Summer Nights, D: Winter Nights. ΔT increased as the percentage of the built-up area within the urban 

area increased. 
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5.7 CONCLUSION 

Some key observations from this analysis are 1.)The nighttime ΔT is positive in India and the US, 

resulting in SUHI, unlike during daytime when SUCI exists across most cities in India. 2.)The 

magnitude of nighttime SUHI is higher in India compared to the US, and there is a statistically 

significant difference in ΔT means of India and the US during all seasons and day and night. 3.) 

Diurnal variation in ΔT  is predominant in India across all the seasons and only observed during 

summers in the US. Peak summers in the US, when the urban built-up areas are heated and hold 

on to heat compared to the rural green areas, could result in summer ΔT variations. During other 

seasons in the US, the snow cover, leaf cover, and non-green rural areas could all impact ΔT. 

4.)While there was a statistically significant difference in daytime ΔT means across seasons in 

India and the US, the nighttime ΔT means were not statistically different across seasons. The 

urban-rural LULC differences between India and the US impact the ΔT and its variation. 

The diurnal variation in ΔT is associated with the non-green croplands and the urban built-up land 

use in India. A larger cropland area in a rural and a larger built-up area in an urban both mean 

higher nighttime ΔT in a city. However, while the cropland area relates with the nighttime ΔT, it 

does not significantly impact daytime ΔT. Daytime ΔT correlates with the NDVI  in the rural areas 

and the % of the built-up area within the urban. As the NDVI of rural areas increases, the variation 

in rural LST between day and night decreases, resulting in lower ΔT during nighttime, as seen in 

the US. Therefore, this analysis indicates that the lack of green rural areas in India, compared to 

the US, impacts ΔT diurnal variation. However, the  %  urban built-up land use explains at least 

30% of the variation in ΔT in India during summers and winters' day and night.    
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6 TEMPORAL CHANGE IN SURFACE URBAN HEAT ISLAND 

MAGNITUDE 

6.1 OVERVIEW 

While the diurnal analysis in Chapters 4 and 5 of this study showed the variation in LST and 

SUHI/SUCI, a temporal analysis of ΔT could show the change in ΔT with the increase in built-up 

land use (urbanization) over time. Today, more than 50% of the world's population lives in urban 

areas. An increase in urbanization also means an increase in built-up areas. Section 4.6.3 of 

Chapter 4 shows that the built-up area land use positively correlates with ΔT. This chapter 

discusses the increase in built-up land use over 15 years quantified using the GAIA dataset and its 

correlation with SUHI. Section 3.7.3 of Chapter 3 describes the Global Artificial Impervious Area 

(GAIA) dataset (Gong et al., 2020) used in this study.  The change in ΔT over 15 years is 

statistically analyzed and correlated with the %ISA within an urban area. With the relatively recent 

availability of remote sensing data with high spatial and temporal resolution (refer to Section  2.4.2 

of Chapter 2), the knowledge of historical and inter-annual variability of SUHI is scant(D. Zhou 

et al., 2018). However, global temporal studies using remote sensing data have recently gained 

prominence(T. Chakraborty & Lee, 2019; Z. Liu et al., 2022). This chapter presents the impact of 

urbanization on SUHI over the recent years and how comparable it is in a rapidly urbanizing 

country India and a more developed nation, the US. SUHI is quantified using MYD11A2 data and 

the urban and rural delineation and ΔT calculation method detailed in Section 3.5 of Chapter 3. 

This study compared the ΔT (Mean Urban LST – Mean Rural LST) from two different periods 

instead of the LSTs to control the impact that climate change and weather would have on 
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temperatures over the years. Further, to minimize the effect of weather anomalies on ΔT, a 5-year 

average LST of 2003-2007 and 2018-2022 was used to calculate ΔT in the 15-year interval. 

Throughout this chapter, the average ΔT of 2003-2007 is ΔT2003, and the average of 2018-2022 is 

ΔT2018. Summer and winter ΔT for two different periods 15 years apart explain the seasonal inter-

annual change in ΔT. Summers are average April and May for India and July and August for the 

US (refer to Section 3.2.2.1 of Chapter 3 for seasons). Winter represents the average LST from 

January and February for both India and the US. 

6.2 CHANGE IN IMPERVIOUS SURFACE AREA (ISA) OVER 15 YEARS 

As the name suggests, unlike vegetation or most natural soils, the impervious surface area 

represents surfaces that do not let water penetrate. The impervious surface areas, therefore, 

primarily represent the built-up areas. Hence, the %ISA has been one of the most widely used 

variables to understand the impact of built-up areas on SUHI (Imhoff et al., 2010; Mathew et al., 

2019; D. Zhou et al., 2018). In this study, the impervious surface areas within the cities in India 

and the US were quantified using the annual GAIA dataset (refer to Section 3.7.3 of Chapter 3) 

available for 30 years (1985-2018) (Gong et al., 2020). Figure 44 shows the percentage increase 

in ISA within the urban boundaries (as discussed in Section 3.5 of Chapter 3) from 2003 to 2018 

across cities in India and the US. This plot in Figure 44 shows that the increase in %ISA within 

the urban areas is higher in India compared to the US. The maximum increase in ISA is 

150%(Pune, India) in India compared to 60% (Jacksonville, US) in the US over 15 years. The 

minimum increase in ISA is 22% (Amritsar, India) in India compared to 4% (Los Angeles, US) in 

the US. On average, the increase in ISA over the 15 years is 68% in India and 29% in the US. 

Therefore, understanding how ΔT changed over the 15 years and correlating it with the %ISA 

could provide insight into how urbanization impacts ΔT.  
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Figure 44: The percentage increase in ISA from 2003 to 2018 across India and the US cities. The average increase in ISA across 

Indian cities is 68% compared to 29% in the US. 

One way to visualize the urbanization trends in India and the US is to see the ISA maps of example 

cities from India and the US. Figure 45 shows the ISA maps of one big city each from India 

(Hyderabad, India, with > 10 million population) and the US (Chicago, US, with > 9 million 

population). In Hyderabad, India, there is a 58% increase in the ISA over 15 years compared to 

33% in Chicago. Figure 45 visually explains the urban expansion pattern and intensity across these 

cities. As seen in Figure 45, while Hyderabad city is expanding outwards, in Chicago, there seems 

to be a change in land use also within the urban region. This difference in ISA increase patterns 

provides an insight into each city's existing landscapes and built-up densities. Densely built-up 

cities in India with no scope to build within the city boundaries start to expand outwards. However, 

like many other US cities, non-ISA spaces within the urban region could be converted into built-

up areas, as seen in Chicago. Section 7.2.5 of Chapter 7 discusses more on these urbanization 

patterns and how they might impact LSTs. 
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Figure 45: Impervious surface area in A: Hyderabad, India, and B: Chicago, US, 2003 and 2018 (new impervious surface areas after 2003 shown in red). The ISA increased by 58% in Hyderabad, 

India, and 33% in Chicago, US, over the 15-year 
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6.3 CHANGE IN ΔT OVER 15 YEARS 

The surface urban heat island magnitude (ΔT) for 2003 and 2018 was calculated for all cities in 

India and the US using the 5 years average LST mentioned in Section 6.1. Figure 46 shows the ΔT 

difference (ΔT2018- ΔT2003) in summers and winters during daytime and nighttime across India and 

the US cities. As seen in the figure, the difference in ΔT is positive across most cities during all 

time, indicating higher ΔT in 2018 than in 2003. During the daytime, though a few cities (12/42 

in India and 7/32 in the US) showed higher ΔT  in 2003, mean ΔT  shows an increase in ΔT over 

the 15 years. During the nighttime in India, the increase in ΔT over the 15 years is more 

pronounced, as seen in Figure 46B. Overall, the average ΔT change over the 15 years shows an 

increase in ΔT in India and the US. 

6.3.1 Change in ΔT in India.  

The ΔT from 2003 is statistically compared with ΔT from 2018 using paired t-test. Table 20 

presents the results from the paired t-test for India. The paired t-test results show a statistically 

significant (p-value < 0.05) difference between the mean ΔT of 2018 and 2003 in the nighttime of 

summers and daytime and nighttime of winters. Therefore, except during summer daytime, the 

null hypothesis (μ_difference = 0, where μ_difference = mean(ΔT2018- ΔT2003)) can be rejected 

with 95% confidence, indicating ΔT changed over time. As seen in Table 20, the mean ΔT values 

show an increase in ΔT over time in India. This ΔT increase during summer nighttime is 0.30 ± 

0.190C (mean ± one standard deviation) and is highest compared to winter daytime (0.23 ± 0.440C)  

and winter nighttime (0.27 ± 0.170C).  

These results align with observations from a recent study(Mohammad & Goswami, 2021) from 

India. The study showed that ΔT increased in a few cities in the daytime while decreasing in others; 
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however, in the nighttime, ΔT increased across most of the 150 cities studied. However, this study 

focused on the annual trend of ΔT  over time and did not quantify the change in ΔT. Another global 

temporal study(Z. Liu et al., 2022) that quantified the decadal increase in LST showed that urban 

core LSTs increased at 0.50 ± 0.20 K·per decade and showed the background climate change to 

be the most significant contributor. Although, 5% of the studied locations, mainly from China and 

India, showed a 0.23 K per decade increase in urban core LST due to urban expansion. This study 

also showed a global mean SUHI increase of 0.16 ± 0.093 K per decade during the day and 0.060 

± 0.033 K per decade at night and noted a decrease in ΔT in some north Asian locations. However, 

it is essential to note that though the mentioned study uses the same MYD11A2 LST data as used 

in this study, the ΔT change mentioned is a global average (for 2000 urban clusters) and was 

quantified differently than in this study. The key observation from this study mentioned is that the 

urban core areas are warming more than the rural surroundings, and global SUHI is increasing 

with time. Studies like these show the need to understand how urban built-up areas impact 

temperatures and how urban built environment needs to be modified to mitigate the UHI 

phenomenon. 

Table 20: Results from paired t-test show a statistically significant difference between ΔT mean of 2018 and 2003 in India, except 

during summer daytime. 

 
T value P value Mean ΔT(2018) Mean ΔT(2003) 

DAYTIME 

Summer Not significant -0.36 -0.44 

Winter 3.36 0.002 0.41 0.18 

NIGHTTIME 

Summer 9.8 0 1.09 0.80 

Winter 10.43 0 1.24 0.96 
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6.3.2 Change in ΔT in the US 

Paired t-tests show the statistical significance of the ΔT change over the years. Table 21 shows the 

results from the paired t-test for the US. The difference in mean ΔT between 2018 and 2003 is 

statistically significant (p-value <0.05), except during winter nighttimes. Therefore, except for the 

winter nighttime, the null hypothesis (μ_difference = 0, where μ_difference = mean(ΔT2018- 

ΔT2003) can be rejected with 95% confidence. As seen in Table 21, there is an increase in the ΔT 

means from 2003 to 2018. The ΔT increase during summer daytime is 0.14 ± 0.28 0C, during the 

summer nighttime is 0.06 ± 0.150C, and in the winter daytime is 0.15 ± 0.290C. This daytime 

higher increase in ΔT observed in this study across the US is similar to the temporal change in ΔT 

observed in prior literature(T. Chakraborty & Lee, 2019; Z. Liu et al., 2022). However, these 

studies mentioned above are global studies with different sample sizes and ΔT calculation methods 

compared to this study. Therefore, though the overall trends in temporal changes in ΔT  align, the 

absolute values cannot be compared. One of these studies (T. Chakraborty & Lee, 2019) used 

urban extent data that did not match the LST and SUHI analysis year. Such differences could 

underestimate the ΔT and the impact of built-up areas, especially in locations with recent rapid 

development, like India. More literature on this is in Section 2.5.1 of Chapter 2. 

Table 21: Results from paired t-test show a statistically significant difference between ΔT mean of 2018 and 2003 in the US, 

except during winter nighttime. 

 
T value P value Mean ΔT(2018) Mean ΔT(2003) 

DAYTIME 

Summer 2.75 0.01 1.73 1.59 

Winter 2.87 0.007 1.20 1.06 

NIGHTTIME 

Summer 2.07 0.047 0.87 0.81 

Winter Not significant 0.56 0.49 
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Figure 46: The ΔT difference (ΔT 2018 - ΔT 2003) in summers and winters during daytime and nighttime across India and the US cities. In all the cases – Summer daytime, winter 

daytime, summer nighttime, and winter nighttime, there is an increase in ΔT over the 15 years in India and the US. The increase in ΔT is more consistent across cities in India 

during the nighttime than daytime or the nighttime in the US. 
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6.3.3 Comparison of India and the US: Change in ΔT in 15 years 

Table 20 and Table 21 show that the change ΔT from 2003 to 2018 is higher in India than in the 

US. The nighttime and the winter daytime increase in ΔT in India seem higher than in the US. 

However, only the nighttime ΔT difference between India and the US was statistically significant. 

The average nighttime ΔT increase is higher in India than in the US by ≈ 0.20C. A two-sample t-

test comparing this increase in ΔT in India and the US showed a statistically significant (p-value 

<0.05) difference between the ΔT increases in India and the US during the nighttime. During the 

daytime, this difference is statistically insignificant. As shown in Table 22, with  95% confidence, 

the null hypothesis (μ1-μ2=0; where μ1= ΔT change in India and μ2 = ΔT change in the US )can 

be rejected.  

Table 22: Two-sample t-test results show statistically significant differences between India and the US in the nighttime ΔT 

change. 

 
 T value P value Mean ΔT Change in 

India over 15 years  

(2018-2003 ) 

Mean ΔT Change in 

the US over 15 years  

(2018-2003 ) 

Summer Day Statistically 

insignificant 

0.08 0.14 

Night 5.96 0.000 0.296 0.055 

Winter Day Statistically 

insignificant 

0.23 0.14 

Night 4.35 0.000 0.274 0.065 

6.4 CORRELATION BETWEEN %ISA AND ΔT 

An increase in city size increases SUHI (Imhoff et al., 2010). The built-up area land use positively 

correlates with  ΔT in India (see Figure 43 ). Similarly, a statistically significant (p-value <0.05) 

positive correlation exists between %ISA and nighttime ΔT in India and the US (only in summer) 

in both 2018 and 2003. The correlation strength was higher in India compared to the US, and the 

%ISA explains ≈ 60% of the nighttime ΔT in India.    



Chapter 6: Temporal change in SUHI 

Surface Urban Heat Island: A Comparative Study Between India and the United States 
149 149 

6.4.1 Correlation between %ISA and ΔT in India 

Figure 47 shows Spearman’s rank correlation between %ISA within the urban areas and ΔT in 

2018 and 2003 in India during summers and winters. In India, the correlation between %ISA and 

nighttime ΔT is stronger in summers (rs= 0.63 in 2018, rs = 0.65 in 2003) than in winters (rs= 0.55 

in 2018, rs = 0.56 in 2003), as seen in Figure 47. A prior study(Mathew et al., 2016) from 

Chandigarh, India, showed an increased LST with an increased %ISA. As the %ISA increased, 

LST increase also in a hot desert climate like Abu Dhabi, where the LST difference between ISA 

and sand decreased as the %ISA increased(Lazzarini, Marpu, & Ghedira, 2013). This study's 

impervious surface areas represent the built-up areas and their anthropogenic effects. ISA metric 

overcomes the limitations with spectral indices - vegetation index NDVI that is season dependent 

(Yuan & Bauer, 2007) and quantity of vegetation dependent and built-up indices that aren't 

appropriately differentiating Indian LULC (Tetali et al., 2022). Therefore, as urbanization 

increases, the impervious surface areas increase (see Figure 45), increasing SUHI. A Spearman's 

rank correlation also showed that in India, the increase in %ISA from 2003-2018 correlates (p-

value <0.05) with the increase in ΔT over the 15 years, as seen in Figure 48. Thus, in India, a 

moderate to strong positive correlation exists between %ISA and ΔT. 
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Figure 47: The Spearman's rank correlation between %ISA within an urban area and nighttime ΔT in India during A.) 2018 

Summer, B.) 2003 Summer, C.) 2018 Winter, and D.) 2003 Winter. 

 

 

Figure 48: The Spearman's rank correlation between the increase in  %ISA and the increase in nighttime ΔT in summers of India 

over the 15 years.  
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6.4.2 Correlation between %ISA and ΔT in the US 

Figure 49 shows Spearman's rank correlation between % ISA within the urban areas and nighttime 

ΔT in 2018 and 2003 in the US during summers. In the US, during summers, the correlation 

between %ISA in urban areas and ΔT is moderate (rs= 0.58 in 2018, rs = 0.43 in 2003), as shown 

in Figure 49. There was no statistically significant correlation between %ISA and ΔT during 

daytime and winter nighttime. Therefore, the %ISA increase explains up to 58% of the increase in 

summer nighttime ΔT. Prior literature from the US showed that an increase in urban size increased 

SUHI(X. Li et al., 2017). However, only a few US studies analyzed the correlation between ISA 

and SUHI (ΔT). The observations from a study from Pheonix (C. Wang et al., 2016) align with the 

results presented here. 

 

Figure 49: The Spearman's rank correlation between %ISA within an urban area and nighttime ΔT in the US during A.) 2018 

Summer and B.) 2003 Summer. 

 

Most prior literature correlated %ISA with LST, not ΔT like in this study, probably due to the 

differences and non-standardized methodologies of ΔT calculations that could impact the results. 

However, quantifying ΔT instead of LST and correlating it with %ISA for temporal comparative 

studies like this could help limit the background climatic disturbances on the observed trend. Such 

ΔT calculation methodology could also impact this study's daytime correlations between %ISA 
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and ΔT. As discussed in Chapter 4 and Chapter 5 of this dissertation, the impact of non-built-up 

LULC types on ΔT seems to be higher during the daytime. This impact of LULC on ΔT could 

change with the ΔT calculation methodology and the urban/rural definition.  

Overall, stronger correlations exist between ISA and ΔT during nighttime in India than in the US. 

Chapter 5 of this dissertation showed a stronger correlation between daytime ΔT and rural 

vegetation than the % of built-up areas. Similarly, in this analysis, the contribution of urban built-

up areas on nighttime ΔT is significant and seems higher compared to the daytime, especially in 

India. However, as the city increases (or increasing %ISA), the quantity of vegetation decreases, 

and hence the benefits of vegetation decrease, as seen in Section 4.3.1 and Section 4.5.1 of Chapter 

4. A recent global study(Liu et al., 2022) also noted a similar observation on LST change.   

6.5 CONCLUSION 

Some key observations in this temporal analysis of ΔT are 1.) There is a statistically significant 

increase in SUHI over 15 years, except during summer daytime in India and winter nighttime in 

the US. 2.) The nighttime SUHI increase over 15 years is higher in India by 0.20C than in the US. 

3.) The correlation between %ISA  and nighttime ΔT is stronger in India compared to the US. In 

India, %ISA explains up to 60% of the nighttime SUHI. Also, the nighttime SUHI increase over 

the 15 years positively correlates to the increase in %ISA in India.  

The impact of non-built-up area land use, such as croplands or snow-covered surfaces, could be 

more substantial during the daytime summers in India and the nighttime winter in the US, 

respectively. The dominant thermal performance of such land use (as discussed in Section 4.5.2 of 

Chapter 4) could result in a statistically insignificant change in the ΔT in summer daytime in India 

and winter nighttime in the US. Therefore, different LULC types other than urban built-up impact 
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ΔT. To more precisely estimate the impact of urban built-up areas on SUHI, the conventional way 

of SUHI quantification (urban-rural) is unsuitable for India. 

Prior studies showed increased LST with urbanization/increase in impervious surface area. 

However, studies showing the temporal changes in ΔT are limited. This study shows the increase 

in ΔT in India compared to well-researched locations in the US. The impact of increasing ISA is 

higher in India than in the US. The higher increase in nighttime ΔT and the stronger correlations 

with %ISA in India can all be due to the higher rate of urbanization in India compared to the US. 

This urbanization trend is also clear from the increase in the %ISA seen over the 15 years (see 

Figure 44) in India compared to the US.  

Table 22 shows that the average nighttime ΔT increase is higher in India than in the US by ≈ 0.20C. 

This increase in ΔT (0.1-0.20C) in both India and US is comparable to the 0.180C increase per 

decade in global surface temperatures since 1981(LINDSEY & DAHLMAN, 2023), leading to 

climate change. Though 0.20C appears low, this temperature increase can increase extreme weather 

events such as flooding and heat waves (Wuebbles et al., 2017). The impact of such weather events 

can be higher across megacities with a population> 10 million. India hosts 6/44 megacities of this 

world compared to 3 in the US. Hence, such weather events affect a more significant number of 

people when happening in India. 

This impact of urbanization on ΔT shows an immediate need to develop and implement UHI 

mitigation strategies in India and the US. However, with the rate at which ISA is increasing in 

India, and with the existing limited vegetation in India (as discussed in Chapter 4 and Chapter 5), 

it is essential to evaluate if standard measures such as increasing urban vegetation (irrigated and 

maintained green) are practically possible. Instead, it might be vital for the urban buildings and 

communities to become 'greener' to mitigate the UHI.
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7 VARIATION IN DAYTIME URBAN BUILT-UP AREA LAND 

SURFACE TEMPERATURES WITH THE CONSTRUCTION 

PERIOD AND LAND USE OF SPATIAL NEIGHBOR 

7.1 OVERVIEW 

Chapter 6 of this dissertation discussed the increase in built-up areas in India and the US and the 

increase in ΔT. Adding to that analysis of built-up area impact on ΔT, this chapter discusses the 

daytime summer LST of urban built-up areas in different scenarios. Summer daytimes are critical 

regarding high urban LSTs(Z. Liu et al., 2022) and SUHI magnitude(Imhoff et al., 2010; Peng et 

al., 2012; D. Zhou et al., 2014), and extreme heat events.  This chapter, therefore, focuses on 

summer daytime when temperatures and their impact are maximum and when the conventional 

ΔT calculation showed cooler urban areas compared to rural surroundings in India. This chapter 

primarily consists of two parts. The first showed how the daytime summer LST of the built-up 

area varied with its construction period. The second part of the chapter discusses the variation in 

daytime summer LST of built-up areas with the land use of its spatial neighbor. In the first part, 

the LSTs in two categories – old (constructed before 2007) and new (constructed between 2007-

2016) show how the city's expanding 'new' built-up areas compare to the 'old' in terms of their 

thermal performance – LSTs in this case. The second part of this chapter discusses the variation in 

urban built-up area LSTs with the change in the spatial neighboring land use, mainly vegetation. 

Depending on the spatial neighbor’s land use type, the built-up area LSTs in four scenarios showed 

how 'green' vegetation could alter surrounding built-up area LSTs. All 42 cities from India and 32 

from the US were analyzed using the summer daytime LST data from 2016. 
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The annual GAIA (Gong et al., 2020) data represents the built-up land use for this analysis. The 

old and new areas were identified using the annual GAIA data available at 30m spatial resolution. 

LST from 2016 uses Landsat 8 data with 30m resolution. Landsat 8 data is more relevant in this 

analysis than MODIS 1km resolution data since higher spatial resolution can help quantify LSTs 

based on LULC more accurately. Landsat 8 data are only available for daytime, and this chapter 

presents the daytime summer urban built-up area LSTs – also when ΔT was negative in India. 

Therefore, this analysis of built-up area LST during summer daytime provides insight into the 

thermal performance of India and the US urban areas, which wasn’t evident from the ΔT analysis 

for India. 

7.2 LST COMPARISON OF NEWER AND OLD URBAN BUILT-UP AREAS 

7.2.1 Overview  

The main objective of this analysis is to understand if the newer areas of cities are any better than 

the older areas in terms of their thermal performance - LSTs. The average LSTs of newer and older 

urban built-up areas were calculated and compared.  Figure 44 of Chapter 6 shows the increase in 

artificial impervious areas within India and the US urban boundaries. As the cities grew, there has 

been an ongoing improvement in the building construction codes worldwide. Several initiatives 

began worldwide to reduce the impact of the urban built environment on the ecosystem. Some of 

such attempts are improving the building construction codes and standards – in terms of materials, 

construction technology, and energy efficiency, and the green building rating systems for buildings 

and urban communities. 

 In 2007, India launched the Energy Conservation Building Code (ECBC), its first energy code for 

commercial buildings, as the residential (IECC 2006) and commercial building (ASRAE 90.1) 
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energy codes in the US also gained prominence. The start of green building rating systems dates 

back to the 1990s (the first in Europe). However, a surge in their adoption occurred only in the 

2000s and relatively later in India compared to the US(Shan & Hwang, 2018). Though the first 

LEED-rated green building in India was in 2003, from 2003-2007, there were only 20 LEED 

projects, with 10 registered in 2007(GBIG, 2023). Around this time, India saw a rapid increase in 

the adaption of green buildings and other energy efficiency standards. Therefore, in this study, the 

built-up areas before 2007 are considered 'old,' and those built-over 10 years between 2007-2016 

are considered 'new' built-up areas. Though 2007 does not have similar significance in the US as 

in India, for ease of comparison, built-up areas across the cities in the US were also divided based 

on the same construction period. New is 2007-2016, and old is before 2007. Figure 50 shows the 

new-to-old built-up land use ratio in India and the US. As seen in Figure 50, in India, the average 

new built-up area is 45% of the old built-up area, while in the US, the average new built-up area 

is 22% of the old. As expected, the increase in built-up areas is higher in India compared to the 

US. 

 

Figure 50: The ratio of the area of new to old built-up land use in India and the US 
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This section compares summer daytime LSTs from 2016 of old and new built-up areas across 42 

cities in India and 32 cities in the US. Prior literature that studied the impact of greener buildings 

on urban temperatures is minimal (Donghwan, Yong, & Hyoungsub, 2015; Shin, Kim, Gu, & Kim, 

2017) and none from India. Therefore, it is most relevant for a country like India to understand if 

the newer built-up areas would have a lower thermal impact on the outside environment than the 

older ones. 

7.2.2 Built-up area clustering for calculating average LST  

For this analysis, the average LST of built-up land use is calculated from the Landsat 8 2016 

summertime LST calculated using the methodology detailed in Section 3.5 of Chapter 3. The list 

of cities in India and the US and the data date are in Appendix A. Using the GAIA data, the built-

up areas of each city are clustered based on the construction period.  All the ISA from before 2007 

were considered the old built-up areas, and the ISA between 2007-2016 was the newly built-up 

area.  

The GAIA data (Gong et al., 2020) at 30m spatial resolution shows all the small and big land 

parcels of impervious surface areas. As seen in Figure 45 of Chapter 6, it is not uncommon for 

several small parcels of newer ISA to exist away from the city core across Indian cities and a few 

US cities (e.g., Houston). New construction also happened in small land parcels within the urban 

city core, as seen in Chicago, US (see Figure 45 of Chapter 6). To limit the heterogeneity in built-

up areas that come with the year of construction and the impact of neighboring pixel land use, in 

this analysis, the built-up area clusters that are less than 90m x 90m are excluded from the average 

LST calculations. 

Figure 51 shows the two alternatives used to calculate the average LST of the built-up areas. The 

figure shows that the alternative 8N considers all the built-up area pixels, which have at least 8 
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neighbors from the same construction period (old /new), forming a total built-up area of 90 m x 

90m. The second alternative, 24N, considers all the built-up areas with at least 24 built-up area 

neighbors from the same construction period (old/new), forming an area of 150m x 150m. The 

average LST of old and new built-up areas was calculated for the alternative, 8N, and 24N. The 

difference in LST (ΔLST = Avg LSTnew - Avg LSTold) using both alternatives was compared to 

understand if the area of the built-up cluster considered makes any difference in the average LST 

of the total built-up area. 

 

Figure 51: Visual representation of the built-up area parcels (from GAIA data) in two different alternatives, 8N, and 24N, used 

to calculate the average LST of old and new built-up areas  

7.2.3 Comparing LSTs from two different built-up area cluster sizes 

First, the LST difference (ΔLST = average LST of new– average LST of old built-up areas of each 

city) calculated using 8N and 24N are independently tested for statistical significance- to check if 

the ΔLST is non-zero. Then the ΔLST using the 8N and 24N alternatives is compared. For both 

alternatives, 8N and 24N, one sample t-test showed that with 95% confidence, the null hypothesis 

(μ = 0, where μ is the mean ΔLST) could be rejected in India and the US. Table 23 shows results 

from one sample t-test for alternatives 8N and 24 for India and the US. These results show that the 

mean ΔLST from alternatives 8N and 24N is non-zero across both countries. 
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Table 23: One sample t-test results showing that the mean ΔLST (0C) values from alternative 8N and 24N are statistically significant  

 Alternative 8N Alternative 24N 

 T-value P-value T-value P-value 

India 4.79 0.000 3.82 0.000 

US 3.97 0.000 2.37 0.024 

 

Figure 52 shows the LST difference (ΔLST = average LST of new– average LST of old built-up 

areas of each city) between new and old built-up areas calculated using alternative 8N and 24 for 

each of 42 cities in India and 32 in the US. Figure 52 shows that the variation in ΔLST calculated 

using 8N and 24N is minimal in the case of India. This variation is higher in the case of the US 

than in India. However, the difference between mean ΔLST is statistically insignificant for both 

India and the US. A two-sample t-test comparing the mean ΔLST of 8N and 24N showed that with 

95% confidence, the null hypothesis (μ1-μ2 = 0, where μ1 = mean ΔLST using 8N, and μ2= mean 

ΔLST using 24N) could be accepted. Figure 52 shows the results from the t-test comparing 8N 

and 24 in India and the US. As seen in Table 24, a p-value >0.05 indicates acceptance of the null 

hypothesis and shows that the difference between ΔLST means of 8N and 24N is statistically 

insignificant. This ΔLST comparison indicates that the size of the built-up area cluster considered 

(8N or 24N) makes no difference in the overall mean LST of the built-up area. Further analysis in 

this section presents alternative 8N results and discussion. 

 

Table 24:The t-value and p-value from a two-sample t-test comparing mean ΔLST from alternative 8N and 24N show no 

statistically significant difference. 

 T value P value 8N: μ1 (Mean ΔLST in 0C) 24N: μ2 (Mean ΔLST in 0C) 

India 0.09 0.925 0.73 0.76 

US 1.05 0.296 -0.76 -0.47 
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Figure 52: Comparison of the ΔLST (new built-up area LST – old built-up area LST) calculated using 8N and 24N alternatives of 

built-up area parcels in A: India and B: US. The data show low to no difference in ΔLST calculated using 8N and 24N. 
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7.2.4 Comparing LST of New and Old built-up areas 

Since the difference between the LST means calculated using each of these alternatives is not 

statistically significant, LST results from alternative 8N for India and the US are shown in Figure 

53 and Figure 54, respectively. In India, as seen in Figure 53, the summer daytime LST is higher 

in the newly built-up areas across most cities (33/42), with an average ΔLST (new-old) of 1.10C. 

In 9/42 cities, the new built-up areas were cooler than the old ones, with an average LST difference 

(new-old) of -0.40C. However, in 25/32 cities of the US, the newly built-up areas have lower LST 

than the old, with an average ΔLST of -1.20C. In 7/32 cities of the US, the LST of newly built-up 

areas was higher than the old, with an average ΔLST of  0.730C. There isn't any obvious pattern 

related to the city size, population, or climate across the two categories –cities with warmer new 

built-up areas and cities with cooler new built-up areas. Overall, in India, the mean LST across the 

newly built-up areas (45.70 ± 6.10C) was higher than the old ones (45.97± 6.00C). The LST range 

was similar for the new and old built-up areas, with a maximum LST of 640C and a minimum of 

280C. The built-up area LSTs in the US are lower than in India, as noted in Chapter 4. In the US, 

the mean LST across the newly built-up areas (40.44 ± 6.50C)  was lower than the old ones(41.20 

± 6.20C). For both new and old areas, LSTs ranged between 550C and 290C. Across all the cities, 

the average LST difference between the newly built-up areas and the old ones was 0.73 ± 0.990C 

in India and -0.76± 1.090C in the US. Figure 54 shows the LST difference between the newly built-

up areas and the old across all 42 cities of India and 32 cities in the US. 

As discussed in Section 7.2.3, these ΔLSTs (new-old) are statistically significant (p-value <0.05). 

These mean ΔLST values, therefore, show that the newly built-up areas in India are warmer than 

the old ones, but in the US, it is the inverse. In the US, newly built-up areas are cooler than the old 
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ones. This variation in the ΔLST could be due to several factors influencing LSTs. A discussion 

of the plausible factors influencing these results is in Section 7.2.5. 

7.2.5 Built-up LST variation in the US with the construction period 

Unlike in the case of India, 2007 does not have a specific significance in the US, yet it demarcates 

this study's new and old areas also in the US. To assess whether 2007 impacted observed trends of 

LST in the US- average LSTs of built-up areas segregated based on construction periods were 

quantified, as shown in Figure 55. As seen in Figure 55, the average LST of built-up areas that 

existed before 1986 is 41.540C, compared to 40.940C of built-up areas that came into existence 

between 1986-2006, and 40.440C compared to built-up areas that came into existence between 

2007-2016. This trend indicates that the built-up areas from different construction periods 

progressively have lower LSTs.  So, though 2007-2016 need not necessarily indicate ‘new’ built-

up areas in the US, it can be supported by the overall trend of newer built-up areas having lower 

LSTs than the older ones in the US. Therefore, these findings support the results from Section 

7.2.4 and show that the newer built-up areas in the US are better regarding their LSTs.  However, 

the difference between average LSTs of 1986-2006 built-up areas and 2007-2016 built-up areas is 

lower compared to the built-up areas before 1986, and this reduction in LST with construction 

time could also plateau at some point. Further analysis of LST variation with the construction 

period is needed to provide more insight into if and when this trend could change or plateau, which 

is a future work scenario.
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Figure 53: The average LST in the new and old built-up areas of A: India and B: United States. In India, the newly built-up areas are warmer than the old ones; however, in the 

US, the newly built-up areas are cooler than the old ones. 

 

Figure 54: The difference between new and old built-up area LSTs in A: India and B: US. 
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Figure 55: Average LST of built-up areas across the 32 cities in the US, segregated based on the construction period. 

 

7.2.6 A qualitative discussion of the results 

When the satellite and the LST calculation method are the same, the factors impacting LST at a 

given time include the location's climatic, biophysical, and social characteristics. In this case, while 

the land use (built-up) and background climate remain constant for a city, the micro and 

neighborhood scales' urban building design differences can change the built-up area LSTs. Urban 

building design alters the micro-climate(Bueno, 2012) and can impact the LSTs(L. Zhao et al., 

2014). The differences in the urban development type and surroundings, the building design, the 

energy codes, their adoption, and other relevant green building ratings between the new and old 

built-up areas can alter the LSTs. Buildings can alter the LSTs. The urban development type could 

also impact the LSTs. While various other factors could impact the built-up LSTs, this discussion 

focuses on the urban development type, building design, building codes, and rating systems, which 

could directly or indirectly impact the built-up area LSTs. Differences in all such factors between 

India and the US could lead to differences observed in built-up area LSTs in this study. 
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7.2.6.1 Urban development and densities 

Rapid urbanization in India is causing an explosive increase in built-up areas across the country's 

cities. Recent studies (S. Chakraborty, Maity, Dadashpoor, Novotnẏ, & Banerji, 2022; Güneralp, 

Reba, Hales, Wentz, & Seto, 2020) showed that urban densities are reducing as the cities grow 

outward across several global south locations of the world, like India. Infill urban development is 

less common in India than in the US. Such differences in urban expansion patterns – infill vs. 

extension vs. leapfrog could impact LSTs(Tran et al., 2017). A prior study(Güneralp et al., 2020) 

also highlighted the inefficiencies in urban expansion across India, with agricultural land converted 

into urban areas. The study indicated that the conversion of bare soils to urban areas in India also 

exists across the country's arid and semi-arid lands. As seen in Chapters 4 and 5 of this study, the 

croplands and bare soils in India could reach higher LSTs than the vegetated areas of the US. 

Therefore, LSTs of the newly built-up areas in less green regions could be higher than LSTs of the 

newly built-up areas within the vegetated suburban surroundings in the US. Figure 56 highlights 

the location of the newly built-up areas in a city from India and the US overlayed on the existing 

LULC. Figure 56 presents examples of cities in India and the US that are rapidly urbanizing. As 

seen in Figure 56, differences exist in the surrounding LULC of the new built-up areas, which 

could impact built-up area LSTs. 
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Figure 56: The new (in red) and old (in white) built-up areas in Hyderabad, India, and Austin, US showing surrounding 

croplands in India and forested areas and shrublands in the US. 
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Even so, the current urban densities 

in India are still higher than in the 

US(Güneralp et al., 2020). 

Increasing building density increases 

SUHI and LST (L. Shi et al., 2021; 

Y. Shi et al., 2019; Zheng et al., 

2019). Higher urban built-up and 

population densities in India (as seen 

in the example in Figure 57) could also mean increased anthropogenic heat in the urban 

environment, increasing the overall urban LSTs compared to those in the US (most cities) with 

lower densities, population, and human and vehicular traffic. Section 3.2.1 of Chapter 3 provides 

a comparative discussion of the population densities in India and the US. 

7.2.6.2 Urban building design 

Buildings in India were traditionally low to mid-rise. However, newer buildings across the 

megacities are high rises (see Figure 58). Traditional single-story courtyard homes and low/mid-

rise commercial buildings with no to low glass use changed to skyscrapers like in the West (Ciara, 

2022). The need for more urban floor area within less time could be one reason for the conventional 

low-rise, thick-wall buildings to change to high-rise, lighter-weight construction. A few studies 

from China discussed the LST variation with building height. A Beijing study (Zheng et al., 2019) 

showed that LSTs are sensitive to building height, density, and vegetation cover.  

 

 

 
Figure 57: A representative image of built-up areas in India (Dimitry, n.d.) 
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The authors showed that the LSTs decreased 

as the residential building height increased. In 

another study(J. Li et al., 2011) from 

Shanghai, China, higher LSTs were noted in 

low-mid-rise residential areas compared to 

high-rise buildings. However, it is essential to 

understand how many of India's newly built-

up areas are high-rise buildings before 

drawing conclusions based on this literature. 

High-rise buildings (>10 floors) are mostly 

seen only across mega-cites and are still not 

common in most cities. Segregation of urban 

buildings based on design elements might be 

necessary to understand the impact of building 

design on LSTs. Further, buildings in India (mainly residential) changed from more naturally 

ventilated to air-conditioning-dependent buildings. Anthropogenic heat release from building air 

conditioning systems also increases outdoor temperatures(Salamanca, Georgescu, Mahalov, 

Moustaoui, & Wang, 2014) and could impact LSTs. All such changes in building design that 

happened with time can impact the built-up area LSTs in India noted in this study. The newer built-

up areas in India were warmer than the older ones, so the newer building design seems less suitable 

for reducing LSTs. Such a massive shift in building design is not typical in the US. However, there 

could be building improvements that could have happened with changes in construction 

technology, material, and the adaptation of building energy codes and standards. 

 
Figure 58: Highrises amidst traditional low to medium-rise 

buildings in India ( Photo by Vaishnav Chogale on Unsplash) 

https://unsplash.com/@vshnv_c?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/509aAyMoMtQ?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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7.2.6.3 Building energy codes 

In India, a national-level energy efficiency code was first launched in 2007 for commercial 

buildings, while a residential energy building code was launched in 2021. However, in India, the 

urban residential floor space growth is projected to be higher than the commercial floor area 

growth(Yu et al., 2017). In the US, residential buildings comply primarily with the International 

Energy Conservation Code (IECC), and commercial buildings adhere to the ASHRAE 90.1 

standard. These IECC and ASHRAE 90.1 codes are revised every three years, making them more 

stringent to achieve higher energy efficiency in buildings(Energy.Gov, 2022). However, in India, 

after ECBC’s launch in 2007, the code was updated only in 2017. Further, in the US, the building 

energy codes also apply to building renovations, which isn’t the case in India – though building 

renovations in India are less common than in the US. 

Along with building energy codes, in the US, several other national-level standards (e.g., 

ASHRAE's AEDG, Zero Energy Guide) and local policies (e.g., CALgreen, NYStretch-2020) 

focus on reducing building energy consumption and are moving towards net zero energy 

possibility. Also, the US building envelope material testing, rating, and labeling systems could 

improve building envelope performance (including surface finishes). However, such building 

materials rating and labeling system is non-existent in India (Evans, Roshchanka, & Graham, 

2017). 

While developing building codes is essential, a lack of adoption of such codes wouldn’t help 

achieve the energy efficiency goals. In India, compliance with the commercial building code, 

ECBC, was voluntary and left to the local governments for enforcement. Only 2 states mandate 

the code, and a little more than 50% of the states (18/28) notified the code at the state level, leaving 

its enforcement to local municipalities(BEE NITI, 2017; Kwatra, Madan, & Korsh, 2021). In 
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comparison, in the US, 41/50+1 states adopted IECC 2009 or above for residential buildings, and 

only two states do not have any statewide commercial code. In the US, 49/(50+1) states either have 

state-specific commercial codes (8/50) or can comply with either ASHRAE 90.1 (41/50) or IECC 

(32/50)(Energy.Gov, 2022). Code implementation and comprehensive policies addressing energy 

and environmental aspects are still limited in developing countries like India, compared to the 

US(Chandel, Sharma, & Marwaha, 2016; Nejat, Jomehzadeh, Taheri, Gohari, & Muhd, 2015). 

Lack of penalties/incentives to comply with codes, lack of tools, and lack of training for 

stakeholders can all impact the implementation of the codes. A 2017 global study(Evans et al., 

2017) showed that while several countries – including the US- have such penalties, incentives, 

tools, and training opportunities to improve code compliance, none exist in India. Further, it also 

highlighted the lack of building checks in India during the design and construction phase that could 

ensure code compliance. 

Though all this is relevant, it is essential to understand that such building energy codes have more 

indirect impacts on LSTs. Previous studies showed the interdependence between building energy 

efficiency on canopy-level air temperatures(Bueno, 2012)and LSTs(Faroughi et al., 2020; L. Zhao 

et al., 2014). At the same time, most of these codes suggest building surface treatments – increasing 

surface reflectance (e.g., cool roofs), which reduces LSTs(Hashem Akbari & Kolokotsa, 2016; 

Santamouris et al., 2017; T. Xu et al., 2012). Therefore, lesser market penetration of building 

energy codes in India, compared to the US, could impact the LSTs – higher LSTs in newer built-

up areas than old ones in India and lower LSTs in newer built-up areas than the old ones in the 

US.  
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7.2.6.4 Green rating systems 

The green building rating systems (e.g., LEED US, LEED India, IGBC India, GRIHA India) focus 

on improving a building or community's environmental (indoor and outdoor) and energy 

performance. Like the building energy codes, the green rating system could also, directly and 

indirectly, impact the LSTs.  Some popular UHI mitigation measures from such rating systems 

include cool roofs, green roofs, green walls, adding vegetation within site, using cover parking, 

vegetated pavers, and cool pavements, all of which can impact LSTs.  Surface treatments like cool 

roofs (T. Xu et al., 2012), cool pavements, green walls, and green roofs (H Akbari et al., 2001; 

Hashem Akbari & Kolokotsa, 2016) are all shown to reduce surface temperatures. Urban built-up 

areas implementing these surface UHI mitigation measures could result in lower LSTs. The 

existing research on the outdoor environmental performance of green buildings – their impact on 

outdoor temperatures, is minimal. Out of the existing few studies, two showed a reduction in 

outdoor temperatures (Fahmy, Ibrahim, Hanafi, & Barakat, 2018; Shin et al., 2017) surrounding 

green buildings, and another(Donghwan et al., 2015) concluded that there isn't any significant 

impact of green buildings on the outdoor temperatures.  

Despite the possible benefits, these green rating systems in India and the US are voluntary. Hence, 

the number of new buildings that comply with such rating systems is still meager compared to the 

number of new buildings, which is even lower in India(Yu et al., 2017). For example, at the end 

of 2016, there were 42,623 LEED-certified projects in the US compared to 397 in India. Therefore, 

differences in the number of new buildings complying with such rating systems and standards 

could also lead to differences in the observed LSTs across the two countries. 

All these factors could be associated with the differences in ΔLST between India and the US. 

However, future studies should further investigate the characteristics of buildings and the 
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surrounding built environments to quantify their impact on LSTs. The results from this section 

show that the built-up area LST range from India is different from the US. The newly (between 

2007-2016) built-up areas in India have higher LSTs than old built-up areas (before 2007), but 

vise-a-versa in the US. In the US, the newer built-up areas seem cooler than the old ones. 

Therefore, there is a potential and need to improve the thermal performance of the urban built 

environment in India. 

7.3 CHANGE IN BUILT-UP LSTS WITH ITS SPATIAL NEIGHBORS’ LAND USE  

When built-up areas in each city of India and the US were categorized as new and old based on 

the construction period, their LSTs varied, and ΔLST was different in India than in the US, as 

shown in Section 7.2. This section analyzes the LST of built-up clusters by categorizing them 

based on their spatial neighbors' land use. The primary objective of this analysis is to identify if 

and how neighboring land use – built-up vs. non-built-up vs. vegetation changes the surrounding 

built-up land use LSTs. Such information could assist urban designers, planners, and policymakers 

identify design alternatives to improve the outdoor thermal performance of the urban built 

environment. As in Section 7.2, Landsat 8 spatial resolution is more appropriate for this LULC-

based spatial neighbor analysis. This analysis is, therefore, for daytime, during summers when 

urban surface LSTs peak, and for the time of the day when conventional ΔT analysis did not show 

the impact of urban areas on LSTs in India. 

7.3.1 Spatial neighbor-based clustering of built-up areas  

There are three datasets used for this custom clustering approach – 1.) Landsat 8 daytime summer 

LSTs of urban areas, 2.) Landsat 8 calculated NDVI within the urban areas, and 3.) The global 

artificial impervious area (GAIA) data. As in the previous sections of this dissertation, the GAIA 
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data represents the built-up areas. All eight spatial neighbors of each built-up area pixel (30m x 

30m) were checked for the land use type – built-up, non-built-up, or vegetation. The NDVI value 

of ≥ 0.3 represents green vegetation. The built-up land use was segregated into four scenarios 

based on its spatial neighbor’s land use, as shown in Figure 59. The surrounding 8 spatial neighbors 

are checked for land use in each scenario. Figure 59 shows the four scenarios where built-up area 

LSTs are calculated– 1.) Built-up_with_Built-up: all built-up (B) areas with all 8 immediate 

neighbors also of built-up land use, 2.) Built-up_with_NonBuilt-up: all built-up area pixels with 

at least one (of 8) immediate neighbors as non-built-up (NB) land use, 3.) Built-up_with_Green: 

all the built-up area pixels with at least one immediate neighbor of green vegetation (G) of NDVI 

≥ 0.3, and 4.) Built-up_with_NonGreen: all the built-up area pixels with at least one immediate 

non-green neighbor (NG) (NDVI < 0.3). The first scenario identifies all the built-up clusters using 

the GAIA data. Using the same GAIA data, the non-impervious areas were considered non-built-

up areas in the second case. In the third and fourth scenarios, the GAIA data was used in 

conjunction with Landsat 8 NDVI data to identify built-up areas with green and non-green 

neighbors. While the land use type in scenarios B_w_B and B_w_G are built-up and green 

vegetation, respectively, in the other two scenarios, it can be anything other than built-up and green 

vegetation. In the B_w_NB scenario, at least one spatial neighbor to the built-up pixel can be any 

non-built-up land use type such as cropland, forest, grassland, barren, fallow, or water bodies. In 

the fourth scenario, B_w_NG, at least one spatial neighbor could be any non-green land use with 

NDVI < 0.3, including built-up land use. The average LSTs of all the built-up clusters are 

calculated in all four scenarios and compared. 
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Figure 59: Built-up land use clusters in four scenarios based on the land use of the spatial neighbor 

7.3.2  Change in built-up area LSTs with change in land use of its spatial neighbor 

For this analysis, the average LST of all built-up land use clusters with all built-up area neighbors 

(B_w_B) represents a baseline urban scenario. The change in LST with the neighboring pixel is 

quantified using the LST difference between each scenario and the baseline (B_w_B). The  LST 

difference (ΔLST) between the average LST from each scenario and the baseline scenario(B_w_B) 

is calculated for 42 cities in India and 32 cities in the US, as shown in Figure 60. The one sample 

t-tests showed that all these LST differences are statistically significant (p-value <0.05). Figure 60 

shows that the ΔLST trends differ for India and the US, except for built-up with green neighbors. 

Cities across both countries show that having a green neighbor can reduce the LSTs of built-up 

areas, as seen in Figure 60. The built-up areas with green neighbors are 1.30C and 2.40C cooler 

than those with all built-up neighbors in India and the US, respectively.  

For the other two scenarios, in India, the ΔLST is positive (an increase compared to baseline) in 

some cities and negative (a decrease compared to baseline) in others. On average, both the 

scenarios – B_w_NB neighbor and B_w_NG neighbor are warmer than the baseline by 0.50C and 

0.30C, respectively. In the US, however, the B_w_NG neighbors are warmer (average ΔLST = 

1.00C), and B_w_NB neighbors are cooler (average ΔLST = -2.60C) than the baseline in all cities. 
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There is a clear difference between India and the US in the ΔLST trends for built-up areas with 

non-built-up neighbors. Such difference could be because non-built-up neighbors can be any land 

use, including vegetation. Based on the LULC of the US (see Figure 17 of Chapter 3), the chance 

of this non-built-up neighbor being green is higher than in India. These (maybe) green neighbors 

could reduce the overall built-up area LST compared to the baseline. In the case of non-green 

neighbors, the neighboring pixel is any non-green land use, including barren land or built-up. 

Therefore, non-green neighbors are increasing the built-up area LSTs in both countries and higher 

in the US. In India, the B_W_NB neighbor has the highest LST, indicating that the chances of 

green vegetation are low in India, and having a neighboring built-up area is better than any other 

non-built-up non-green land use. All these scenarios highlight the benefit of green spatial 

neighbors within built-up land-use clusters.  
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Figure 60: The variation in urban built-up area LST in A: India and B: United States, with three different neighbors (B_w_NB, 

B_w_G, and B_w_NG) compared to the urban built-up areas with a built-up neighbor(B_w_B). 
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7.3.3 Impact of vegetation on LSTs 

Figure 61 shows the built-up area LSTs in two scenarios – built-up with built-up neighbors and 

green neighbors in India and the US. In both countries, built-up areas with green neighbors have 

lower LSTs than those with built-up neighbors. In India, the mean LST in B_w_G is 44.0± 5.90C 

compared to 45.3± 6.10C in the case of B_w_B. In the US, the mean LST in B_w_G is 38.6± 5.90C 

compared to 41.0± 6.30C in the case of B_w_B. The reduction in built-up area LST due to green 

vegetation is higher in the US (2.40C) than in India (1.30C), possibly due to better quantities of 

greener vegetation. However, the mean LSTs are higher in India compared to the US. A two-

sample t-test also showed that the mean ΔLST (LST (B_w_G) – LST(B_w_B)) difference between India 

and the US is statistically significant (t-value = 6.54, p-value = 0.000). The reduction in built-up 

area LST due to green neighbors is 1.10C higher in the US than in India. 
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Figure 61: Comparison of built-up area LST in two scenarios, built-up with a built-up neighbor and a green neighbor, in A: 

India and B: United States. In both countries, built-up areas with green neighbors have lower LST than built-up neighbors. 

Figure 62 shows higher LSTs in three scenarios: built-up with built-up (B_w_B), non-

built(B_w_NB), and non-green(B_w_NG) neighbors compared to the built-up with the green 

(B_w_G) neighbor in India. The built-up areas with a built-up neighbor, non-built-up neighbor, 

and non-green neighbor are 1.30C, 1.80C, and 1.60C warmer than those with at least one green 

neighbor, respectively. In the US, as discussed in Section 7.3.2, though the built-up areas with a 
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built-up neighbor and non-green neighbor are warmer than built-up with a green neighbor, it is not 

the same in the case of built-up with a non-built-up neighbor as seen in Figure 62. Figure 62 shows 

that the LST of built-up with a non-built-up neighbor is higher than those with green neighbors in 

only 7/32 cities. In the rest of the 25 cities, LSTs of built-up areas with a non-green neighbor are 

cooler than those with a green neighbor. 

Interestingly, the 7/32 cities (e.g., Phoenix, Las Vegas, Denver, Salt Lake City, San Diego) in 

which LST of B_w_NB > B_w_G predominantly have herbaceous vegetation or scrublands in and 

around the urban built-up areas (see the US LULC map in Figure 17 of Chapter 3). These non-

forest, non-cropland LULC in these 7 cities could mean that in the rest of the 25 cities, the non-

built-up neighbor could most likely be vegetation or water land use resulting in lower LST than 

built-up areas with green neighbors. Therefore, Figure 60 - Figure 62 together shows that green 

vegetation can reduce the neighboring built-up area LSTs in India and the US. In India, having a 

built-up neighbor is better for LSTs than having a non-built-up non-green neighbor. 
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Figure 62: The variation in urban built-up area LST in A: India and B: United States, with three different neighbors (B_w_B, 

B_w_NB, and B_w_NG) compared to the urban built-up areas with a built-up green neighbor (B_w_G). 
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7.3.4 Discussion  

The impact of urban trees and vegetative surfaces on temperatures is well documented in the 

literature and is discussed in Section 2.5.2.2 of Chapter 2. Prior literature showed the impact of 

urban parks (Bowler, Buyung-Ali, Knight, & Pullin, 2010)  and green roofs(H. Chen, Ooka, 

Huang, & Tsuchiya, 2009) on surrounding air temperatures. However, studies on the impact of 

vegetation on surrounding land surface temperatures are scant, especially in India. Vegetation can 

decrease ambient air and surface temperatures due to evapotranspiration (ET). The higher the 

evapotranspiration, the lower the temperatures, and this ET is higher for denser vegetation than 

bare soil(Moreo, Laczniak, & Stannard, 2007). In this study, the observed reduction in built-up 

area LSTs with a green neighbor could be due to this evapotranspiration of vegetation creating an 

oasis effect(H Taha, 1997) and reducing neighboring LSTs. It could also be due to the shading of 

trees in urban areas. In a field study(Rosenfeld et al., 1995) conducted in Sacramento, trees reduced 

the cooling energy use by 30-35% when placed on the south and south-west facade of the building. 

In Athens(Papadakis, Tsamis, & Kyritsis, 2001), on a vertical wall, shading decreased the surface 

temperature by 8.50C compared to a surface directly exposed to solar radiation, and the ambient 

air temperature is 0.50C -3.00C cooler in the presence of trees. Future studies should focus on 

analyzing the type and quantity of vegetation in each of these urban areas to predict the vegetation 

characteristics reducing the surrounding built-up area LSTs more accurately.  

7.4 CONCLUSION 

Some of the key findings from this chapter are 1.) The newly (2007-2016) built-up areas in India 

are warmer (by 0.730C) compared to the old (before 2007); however, in the US, the more recent 

built-up areas are cooler (by 0.760C) than the old ones. 2.)At least one 30 m x 30m  green vegetative 

(defined as NDVI ≥ 0.3) spatial neighbor within a 90 m x 90m built-up cluster can reduce the LST 
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of the built-up land use. The urban built-up areas with green neighbors are 1.30C and 2.40C cooler 

than those with built-up neighbors in India and the US, respectively. This study's findings show 

the opportunities to improve urban building and neighborhood design and development, focusing 

on their impact on the LSTs. 

With the advent of various green building/community rating systems and energy and 

environmental standards for new construction, the newer built-up areas are expected to be 

'greener.' They might result in lower LSTs than the old built-up areas. However, this wasn't the 

case in India. The country is going through rapid urbanization and changes in construction type. 

High-rise buildings (with greater than 10 floors) are replacing traditional low-rise residential 

buildings and mid-rise commercial buildings. High-rise commercial spaces with high window wall 

ratio and increased need for air-conditioning became common. Such changes might adversely 

impact LSTs. There are several measures that new construction and possibly the old building 

should also adopt to limit the increase in LSTs. Some of such measures include the addition of 

cool roofs, green roofs, green walls, and green spaces in urban areas. Building energy codes from 

both countries focus on such measures. However, based on these results, the adaption or the 

benefits of such building codes seem limited in India, leaving a potential for future improvements. 

The second part of this study showed that having at least 30 m x 30m green areas with NDVI ≥ 

0.3 within a 90m x 90m built-up area land parcel could reduce the LSTs of built-up areas. The 

study showed that while green vegetation reduces built-up area LSTs, it is not the same for non-

green vegetation (NDVI < 0.3). Non-green and non-built-up neighbors result in higher LSTs than 

built-up or green neighbors in India. This finding, therefore, is essential, especially in the Indian 

context where maintenance of the 'greenness' of vegetation can be challenging with the existing 

high temperatures, pollution, and water scarcity. The evapotranspiration from green vegetative 
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surfaces impacts the micro-level air temperatures and could impact the LSTs of surrounding built-

up surfaces. In coordination with the results from the first part of this chapter, such findings could 

mean that changing construction trends, which could also be reducing the vegetated areas with an 

individual's parcel of land, might be increasing urban built-up area LSTs in India. Due to all the 

existing limitations associated with establishing and maintaining green vegetation in urban areas 

of India, building surface treatments might provide greater returns. However, having 'green' 

vegetation closers to built-up areas could be less challenging in the US with the greater availability 

of land area, greener vegetation, and water resources compared to India. Therefore, policies and 

initiatives focusing on urban built-up surface greening/treatments in India could be more effective 

than proposals on increasing and maintaining urban greenery.
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8 CONCLUSIONS  

The primary goal of this research was to understand the differences, if any, in SUHI and its 

association with the urban built environment across highly populated cities in India compared to 

the US. Analysis of the possible similarities or differences in SUHI between these countries is 

expected to show the relevance and applicability of SUHI research methods and mitigation 

measures from well-researched locations of the world in the Indian context. This dissertation, 

therefore, presents a qualitative and quantitative multi-city comparative analysis of land surface 

temperatures (LST) and the urban-rural LST difference (ΔT). This chapter discusses this study's 

main findings and contributions and explains the limitations and future work scope.  

8.1 RESEARCH CONTRIBUTION 

This dissertation has four main research contributions. 

1. This research determined the lack of relevance of the global conventional SUHI 

quantification method and definition in the Indian context.   

In Indian SUHI studies that aim to assess the impact of urbanization, geographically delineating 

urban and rural areas cannot show the impact of urban built-up areas on daytime temperatures; 

instead shifts the focus toward rural greenery. The conventional SUHI quantification method 

showed daytime Surface Urban Cool Islands –cooler urban areas compared to rural surroundings 

in India. However, during the nighttime, SUHI was observed. Since the rural areas in India differ 

from those of North America or Europe from where UHI research originated, the conventional 

definition of UHI with an implicit assumption that rural areas are cooler than urban areas needs 

reevaluation in the Indian context.  
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2. This study showed that the conventional spectral indices do not differentiate built-up land 

use from other land covers, such as NPV, dry soil, and barren lands, that are dominant in 

India. 

The popular built-up indices such as NDBI and IBI showed similar values across croplands, barren 

lands, and built-up land use in India, impacting the correlations in this study. The similar values 

across land use types such as concrete, NPV, and soil could be due to the similar spectral 

reflectance characteristics of these LULC types in the wavelengths used by conventional built-up 

indices to identify built-up land use. Therefore, such inadequate differentiation between LULC 

could also occur across similar locations with low vegetation or drought conditions experienced 

due to rapid urbanization or climate change. Further, the NDVI values across most of India's urban 

and rural areas are low (NDVI < 0.3), indicating non-green or no vegetation. Low NDVI values 

resulted in a weaker correlation between NDVI and LST. Such findings could miscommunicate 

the association between vegetation and LST or ΔT. Therefore, the conventional spectral indices 

have limitations in appropriately identifying the Indian LULC types.  

3. Due to the existing limitations with conventional SUHI research metrics in the Indian 

context, this research set up an alternative approach to analyzing the spatial and temporal 

variation in urban built-up land use LSTs and their variation with land use of spatial 

neighbors. 

This study analyzed the urban built-up LST in various scenarios based on the construction period 

and the land use of a spatial neighbor. In the first part, this study segregated each city’s built-up 

land use into new (2007-2016) and old (before 2007) clusters and compared the average LST 

across these clusters. Such comparisons of urban built-up LSTs showed the outdoor thermal 

performance (LST in this case) of newly built-up areas compared to old ones. 
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Further, this research categorized built-up land use clusters based on the spatial neighbor land use 

and NDVI value. The study compared the average LSTs of built-up land use, built-up land use 

with at least one non-built-up neighbor, built-up land use with at least one green (NDVI ≥ 0.3) 

neighbor, and built-up with at least one non-green (NDVI ≥ 0.3) neighbor. This analysis primarily 

showed the benefit of having a green vegetative spatial neighbor on built-up area LST reduction. 

4. This study presented a first-of-its-kind comparative analysis of LST and ΔT between a 

rapidly urbanizing country, India, and a developed nation, the US. 

This study's comparative analysis showed that the LST and SUHI/SUCI trends differ between 

India and the US—prominent differences in existing LULC are associated with the LST and 

SUHI/SUCI trends. However, a temporal analysis of ΔT showed an increase in SUHI in India and 

the US over 15 years. This ΔT increase during the nighttime is higher in India than in the US. 

Differences in the urban built-up areas between India and the US could contribute to such higher 

nighttime ΔT increase in India compared to the US. 

8.2 SUMMARY OF FINDINGS 

This study's comparative analysis of  SUHI showed that the findings from India and the US differ. 

While the US has been a well-researched location with several studies on UHI formation and 

mitigation measures for at least the last three decades, UHI research in India started gaining 

prominence only in the last decade. Therefore, this study attempts to address the existing 

knowledge gaps of UHI studies in India and the US and puts the findings from India in a global 

perspective through comparison with the US. Some of the key findings from this study are: 
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8.2.1 LST and ΔT in India and the US 

During the daytime, most of the cities in India exhibit SUCI – urban areas are cooler compared to 

rural surroundings. However, in the US, the conventional SUHI – urban areas warmer than rural 

surroundings was observed. During the nighttime, SUHI exists across cities in India and the US, 

and this SUHI is higher in India. The differences in land use in rural areas between India and the 

US seem to impact the SUHI/SUCI trends. The prevalence of dry, barren, fallow, or non-

photosynthetic vegetation land cover in rural areas of India is linked to higher rural LSTs in India 

during the daytime. Across India, the urban area LSTs are 10-120C higher than the US ones. 

Despite this, with the ΔT patterns, the urban areas seem cooler than the rural areas during the 

daytime, masking the impact of urban areas on urban temperatures.  

8.2.2 LST and SUHI variation with vegetation (quantified using NDVI) 

The correlation between NDVI and LST is stronger in the US during summer daytime than in 

India. Low or non-green vegetation, characterized by NDVI < 0.3, dominates urban and rural areas 

in India during summers and winters, weakening the correlations. For example, in India, the 

correlation between NDVI and LST strengthens in locations with at least 20% area as vegetation 

with NDVI ≥ 0.3. A correlation also existed between the NDVI of rural areas and ΔT. During the 

daytime, this correlation is negative, and at night, it is positive.  

While analysis of different urban landscape layouts and green areas is of interest in landscape 

architecture, this study is one of the first studies that quantified the impact of vegetation on 

neighboring built-up area LSTs. The results showed that having at least one moderately green 

vegetative area of 30m x 30m with NDVI ≥ 0.3 within a 90m x 90m cluster of built-up area land 

use could reduce the LST of built-up land use. However, non-green vegetation (NDVI < 0.3) does 

not provide the same benefits. Further, this reduction in built-up area LSTs due to neighboring 
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vegetation land use is higher in the US than in India. Such higher LST reduction in the US could 

be because there is greener vegetation in the US compared to India, as the average NDVI in US 

cities is higher than in Indian cities.  

8.2.3 Urban built-up land use- LST and ΔT 

This study showed a positive correlation between the area of built-up land use and ΔT, which is 

stronger during nighttime than daytime and in India than in the US. The LST of urban built-up 

land use showed that in India, the newly (2007-2016) built-up urban areas are warmer than the 

older (< 2007) ones. In the US, however, it is the inverse. Though further analysis is needed to 

understand the reason for such observations, these results from India indicate scope for 

improvement of urban built-up areas to reduce LSTs. The LST of urban built-up land use also 

changed with the land use of the spatial neighbor. In India and the US, the average urban built-up 

land use LST of all the existing 90m x 90m clusters is lower than that of 90m x 90m built-up 

clusters with at least one non-green (quantified as NDVI < 0.3) land use within the cluster. 

Therefore, these results indicate that having densely built-up land use is better (lower LSTs) than 

having non-green land use between built-up areas. 

8.2.4 Temporal change in SUHI 

Research on the temporal trends of SUHI is nascent in India and the US due to a relatively recent 

(the early 2000s) availability of satellite data with high temporal resolution (day and night, every 

day). This research, therefore, adds to the existing limited literature on how SUHI changes over 

time. The temporal analysis from this study showed that ΔT increased over 15 years in both 

countries. This increase in ΔT over 15 years is statistically significant except for summer daytime 

in India and winter nighttime in the US. The nighttime increase in SUHI over 15 years is higher in 

India than in the US and is statistically significant. This higher nighttime increase in ΔT in India 
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could be due to higher built-up densities, higher population densities, and already higher 

temperatures than in the US. 

8.3 IMPLICATIONS 

Some of the implications of this study at a broader level are: 

1. This research showed the need to develop more localized SUHI research methods and 

algorithms suitable for analyzing the impact of the urban built environment across LULC 

types like India. Increasing temperatures and drought conditions across several global 

locations (Carrão, Naumann, & Barbosa, 2016; Savelli, Rusca, Cloke, & Baldassarre, 

2022)make this even more relevant and improve the applicability of such methods and 

algorithms across multiple locations. 

2. While green vegetation reduced LSTs in both India and the US, the prevalence of green 

vegetation (NDVI > 0.3) itself seems questionable in India. This research showed that most 

of the locations in India have non-green or low-green vegetation (NDVI <0.3) in both urban 

and rural areas during summers and winters. Such observations, coupled with the already-

known water scarcity (Mekonnen & Hoekstra, 2016) and air pollution effects(Chaudhary 

& Rathore, 2018; Pandey & Agrawal, 1994), show that maintenance of urban greenery 

could cause additional pressure on the water budget of urban India like shown in Adelaide, 

Australia(Nouri, Chavoshi Borujeni, & Hoekstra, 2019). Therefore, urban greening might 

not be as practical as in the US in reducing urban temperatures in India, especially during 

the non-monsoon seasons and drought years. In a country like India, to reduce ambient air 

and surface temperatures, developing vegetated lands and maintaining them could be more 
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challenging and less efficient than treating built-up surfaces and reducing anthropogenic 

rejections from buildings.   

3. Increasing ΔT over time in both countries and the higher urban built-up LSTs in the newly 

built-up areas in India show the need and scope for improvement of the urban built 

environment and the UHI mitigation policies. Policymakers must reevaluate the UHI 

mitigation measures suggested in existing codes and standards and their adoption 

measures. This study also indicates a need for the design community to develop urban 

buildings and communities that address the increasing outdoor temperatures. Similar to 

buildings' indoor and energy performance, the outdoor thermal performance of buildings 

should be evaluated to create ‘micro-climate neutral’ or ‘zero UHI impact’ buildings. 

Coupling urban micro-climatic models with building whole-building simulations should 

become a new norm. 

4. The findings of this study indicate that the surrounding land use could increase or decrease 

the urban built-up LSTs. Such a finding could affect the urban planning and design of the 

new urban communities.  

5. Addressing the whole building performance through a systems integration approach could 

also be relevant in addressing the issues observed through this research. This study showed 

that vegetation decreases LSTs. However, urban greenery is scant in India. Since 

maintaining urban greenery in India could lead to water stress, improving and maintaining 

greenery at an individual building level or urban community scale could be more feasible 

through systems integration. Reusing greywater and rainwater collection are a few 

examples of reusing water from the site for irrigation. Therefore, designing buildings and 

communities integrating various systems could improve indoor and outdoor thermal 
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performance. Examples of systems integration in buildings include but are not limited to 

the Robert L Preger Intelligent Workplace (Hartkopf et al., 2017), the Phipps Conservatory, 

Pittsburgh, PA, and One PNC Plaza, Pittsburgh, PA.  

8.4 LIMITATIONS AND FUTURE WORK 

Canopy air temperatures (measured at 2m from ground level) directly impact the energy 

consumption of buildings (Santamouris, 2014b) and outdoor thermal comfort(Jamei, Rajagopalan, 

Seyedmahmoudian, & Jamei, 2016). The scope of this research is confined to studying land surface 

temperatures. However, to understand the interaction between the built environment and UHI, 

extending this SUHI analysis to a micro-scale analysis of canopy urban heat islands is essential. 

As of 2022, there aren't any SUHI and CUHI coupling studies for India. Integrating LSTs into 

urban micro-climate modeling (Bueno, 2012; Zhao et al., 2014)would be the next step toward 

analyzing UHI in India. Also, due to the existing heterogeneity across urban areas, urban 

parametrization is crucial for studying what type of built-up neighborhoods impact temperatures 

in what ways. This urban parametrization(Pigeon, Zibouche, Bueno, Le Bras, & Masson, 2014) is 

a parallel task with building and urban scale simulations. Such integration could help assess the 

local scale impacts of buildings and not limit them to a single canopy level UHI. 

This research quantifies SUHI by customizing the conventional SUHI quantification method that 

geographically delineates urban and rural areas using concurrent LULC data. Replicating this 

study using other urban-rural definitions and more recent concepts, such as the Local Climate Zone 

(LCZ) classification system, might help understand the role of urban built-environment on the 

temperatures in India compared with the US.  
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Further, in this research, the approach presented to estimate the variation in urban built-up land 

use is applied only to daytime. Though daytime is when the conventional ΔT calculation methods 

showed no SUHI effect in India, it is still relevant to understand the urban built-up area LST during 

the night and other seasons. Since Landsat 8 high spatial resolution data are only available for 

daytime, this analysis is limited to daytime in this dissertation. Other local high-resolution satellite 

data should be explored to extend this analysis to nighttime. Conducting the whole building energy 

simulations coupled with urban-scale climatic models is another way to address this limitation. It 

is also essential for future researchers to understand why and how the newly built-up areas in India 

are warmer than old ones and vice versa in the US. Quantifying the built-up area characteristics, 

such as albedo, might provide insights into this. However, a neighborhood-level analysis might be 

needed to identify the built-up area characteristics that influence LSTs precisely. 

Lastly, it could be beneficial to establish a correlation between LST and the air temperatures at the 

canopy level and compare them with the meteorological weather station data. Such analysis would 

help interpret how the meteorological air temperatures - used across building energy modeling 

(most times) and perceived by the public to comprehend weather- are similar or different from the 

actual urban area temperatures.  
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A: LIST OF STUDY LOCATIONS 

This section lists study locations from India and the US, along with their latitude, longitude, and 

date of acquisition of the Landsat 8 data. 

INDIA 

No. City Summer Data Date Winter Data Date Latitude (N) Longitude (E) 

1 Agra 5/21/2016 12/15/2016 27.1767 78.0081 

2 Ahmedabad 5/19/2016 12/29/2016 23.0225 72.5714 

3 Amritsar 4/6/2016 1/12/2016 31.634 74.8723 

4 Aurangabad 4/19/2016 1/30/2016 19.8762 75.3433 

5 Bareilly 5/14/2016 12/24/2016 28.367 79.4304 

6 Bengaluru 5/23/2016 1/16/2016 12.9716 77.5946 

7 Bhopal 5/14/2016 12/23/2016 23.2599 77.4126 

8 Bhubaneswar 4/9/2016 12/21/2016 20.2961 85.8245 

9 Chandigarh 5/28/2016 1/5/2016 30.7333 76.7794 

10 Chennai 4/23/2016 - 13.0827 80.2707 

11 Coimbatore 5/23/2016 1/16/2016 11.0168 76.9558 

12 Delhi 5/21/2016 1/30/2016 28.7041 77.1025 

13 Dhanbad 4/25/2016 1/4/2016 23.7957 86.4304 

14 Guwahati 3/3/2016 12/16/2016 26.1445 91.7362 

15 Gwalior 5/14/2016 12/24/2016 26.2183 78.1828 

16 Hyderabad 5/23/2016 12/17/2016 17.385 78.4867 

17 Indore 5/21/2016 1/30/2016 22.7196 75.8577 

18 Jabalpur 5/23/2016 12/17/2016 23.1815 79.9864 

19 Jaipur 5/12/2016 1/5/2016 26.9124 75.7873 

20 Jamshedpur 4/25/2016 1/4/2016 22.8046 86.2029 

21 Jodhpur 5/10/2016 1/19/2016 26.2389 73.0243 

22 Kolkata 4/11/2016 1/6/2016 22.5726 88.3639 

23 Kota 5/12/2016 1/5/2016 25.2138 75.8648 

24 Lucknow 4/21/2016 10/14/2016 26.8467 80.9462 

25 Ludhiana 6/14/2016 1/12/2016 30.901 75.8573 

26 Madurai 4/14/2016 11/24/2016 9.9252 78.1198 
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27 Mumbai 4/17/2016 12/29/2016 19.076 72.8777 

28 Mysore 3/20/2016 1/16/2016 12.2958 76.6394 

29 Nagpur 4/21/2016 12/17/2016 21.1458 79.0882 

30 Nashik 5/12/2016 12/22/2016 19.9975 73.7898 

31 Patna 4/16/2016 2/12/2016 25.5941 85.1376 

32 Pune 4/26/2016 12/22/2016 18.5204 73.8567 

33 Raipur 4/23/2016 1/2/2016 21.2514 81.6296 

34 Rajkot 5/17/2016 1/10/2016 22.3039 70.8022 

35 Ranchi 4/25/2016 1/4/2016 23.3441 85.3096 

36 Solapur 5/5/2016 1/30/2016 17.6599 75.9064 

37 Surat 4/17/2016 12/29/2016 21.1702 72.8311 

38 Tiruchirappalli 4/14/2016 12/26/2016 10.7905 78.7047 

39 Vadodara 5/3/2016 1/12/2016 22.3072 73.1812 

40 Varanasi 5/9/2016 2/3/2016 25.3176 82.9739 

41 Vijayawada 4/23/2016 2/19/2016 16.5062 80.648 

42 Visakhapatnam 5/2/2016 11/26/2016 17.6868 83.2185 

 

UNITED STATES 

No. City Summer Data Date Winter Data Date Latitude (N) Longitude (W) 

1 Atlanta 7/14/2016 2/4/2016 33.749 -84.388 

2 Austin 7/22/2016 1/12/2016 30.2672 -97.7431 

3 Boston 7/13/2016 11/18/2016 42.3601 -71.0589 

4 Chicago 9/12/2016 10/14/2016 41.8781 -87.6298 

5 Cincinnati 7/21/2016 2/28/2016 39.1031 -84.512 

6 Cleveland 6/21/2016 2/5/2016 41.4993 -81.6944 

7 Columbus 6/12/2016 2/5/2016 39.9612 -82.9988 

8 Dallas 7/7/2016 1/28/2016 32.7767 -96.797 

9 Denver 8/17/2016 3/10/2016 39.7392 -104.9903 

10 Houston 5/5/2016 10/28/2016 29.7604 -95.3698 

11 Jacksonville 7/9/2016 11/21/2011 30.3322 -81.6557 

12 Kansas City 8/16/2016 12/29/2016 39.0119 -98.4842 

13 Las Vegas 6/24/2016 12/17/2016 36.1699 -115.1398 

14 Los Angeles 9/26/2016 2/15/2016 34.0522 -118.2437 

15 Louisville 9/7/2016 12/28/2016 38.2527 -85.7585 
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16 Memphis 6/8/2016 12/1/2016 35.1495 -90.049 

17 Milwaukee 9/12/2016 10/14/2016 43.0389 -87.9065 

18 Minneapolis 9/8/2016 11/11/2016 44.9778 -93.265 

19 Nashville 6/10/2016 2/19/2016 36.1627 -86.7816 

20 New York City 6/9/2016 2/18/2016 40.7673 -73.97 

21 Orlando 5/6/2016 12/16/2016 28.5383 -81.3792 

22 Phoenix 7/12/2016 2/3/2016 33.4484 -112.074 

23 Pittsburgh 9/25/2016 11/5/2016 40.4406 -79.9959 

24 Portland 8/12/2016 9/13/2016 45.5122 -122.6587 

25 Raleigh 7/18/2016 11/23/2016 35.7796 -78.6382 

26 Richmond 7/2/2016 11/23/2016 37.5407 -77.436 

27 Sacramento 7/29/2016 11/18/2016 38.5816 -121.4944 

28 Salt Lake City 8/20/2016 11/8/2016 40.7608 -111.891 

29 San Diego 8/2/2016 2/8/2016 32.7157 -117.1611 

30 Seattle 8/12/2016 1/1/2016 47.6062 -122.3321 

31 St Louis 9/19/2016 11/6/2016 38.627 -90.1994 

32 Washington DC 7/2/2016 12/23/2016 38.9072 -77.0369 
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B: THERMAL PROPERTIES OF CONVENTIONAL BUILDING AND 

NATURAL MATERIALS 

The thermal admittance (m, ability of the surface to accept or release heat), thermal diffusivity (K, 

ability of the material to diffuse heat), and heat capacity (C, amount of heat required to change 

temp. by 1 K) are some of the vital thermal properties of any surface that explain the heat transfer 

to and from a surface. Table 25 in this section lists these thermal properties of the conventional 

building and natural material types seen across urban and rural areas of India and the US. 
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Table 25: Thermal properties of the conventional building and natural materials found across the urban and rural areas of India 

and the US. (Oke, 1987) 

Material Type ρ 

Density 

(kg m-3 x 103) 

c 

Specific heat 

(J kg-1 K-1 x 103) 

C 

Heat Capacity 

(J m-3 K-1 x 106) 

k 

Thermal 

conductivity 

(W m-1 K-1) 

K 

Thermal 

diffusivity 

(m2 s-1 x 10-6) 

μs 

Thermal 

admittance 

(J m-2 s-1/2 K-1) 

Natural Materials 

Clay Soil (40% 

pore space) 

Dry 1.60 0.89 1.42 0.25 0.18 600 

Saturated 2.00 1.48 2.96 2.20 0.74 2550 

Dry Peat soil 

(80% pore space) 

Dry 0.30 1.92 0.58 0.06 0.10 190 

Saturated 2.00 1.55 3.10 1.58 0.51 2210 

Sandy soil (40% 

pore space) 

Dry 1.60 0.80 1.28 0.30 0.24 620 

Saturated 2.00 1.48 2.96 2.20 0.74 2550 

Snow-fresh  0.10 2.09 0.21 0.08 0.10 130 

Snow-old  0.48 2.09 0.84 0.42 0.40 595 

Urban Construction Materials 

Asphalt  2.11 0.92 1.94 0.75 0.38 1205 

Concrete Dense 2.40 0.88 2.11 1.51 0.72 1785 

 Aerated 0.32 0.88 0.28 0.08 0.29 150 

Brick  1.83 0.75 1.37 0.83 0.61 1065 

Clay tiles  1.92 0.92 1.77 0.84 0.47 1220 

Wood Light 0.32 1.42 0.45 0.09 0.20 200 

Dense 0.81 1.88 1.52 0.19 0.13 535 

Insulation-

Polystyrene 

 0.02 0.88 0.02 0.03 1.50 25 

Steel  7.85 0.50 3.93 53.3 13.6 14475 

Glass  2.48 0.67 1.66 0.74 0.44 1110 

Gypsum board  1.42 1.05 1.49 0.27 0.18 635 

 




