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ABSTRACT

Architects and designers desire to put real-life scenes in the digital world to assist
their work, such as experimenting with textures, meshes, and lighting conditions.
Artists may create prototypes of art pieces based on digital scenes. The above
practices mutually require 3D-style transfer technology. However, existing 3D
reconstruction method such as photogrammetry suffers from slow computation,
defects for large scenes with sparse inputs, and lacks support to content-aware post-
processing. Existing style transfer mainly focuses on the 2D image style transfer,
which does not work well in the 3D scene. This thesis aims at a lightweight
and simple method to solve problems and meet practical needs. It takes Neural
Radiance Field(NeRF) as a backbone and combines the 2D style transfer with the
photo-realistic 3D scene from NeRF to achieve 3D style transfer. In methodology,
it discusses the generation of the dataset and different approaches to combine NeRF
and Style transfer network, optimization to improve the results. Besides, this thesis
shows a valid comparison of different approaches from both analytic and aesthetic
aspects. It further explores the applications that can utilize such techniques to
achieve architecture design and art creation in a fashion of 3D-aware style control.

Keywords: NeRF, Style Transfer, 3D Reconstruction, Rendering, Photogrammetry,
Computational Design
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C h a p t e r 1

INTRODUCTION

This thesis discusses a series of experiments and applications around 3D recon-
struction and style transfer technology in the domain of architecture, design, and
computer science. Before I dive into it, let’s first think about two questions: Why
does 3D reconstruction matter? Imagining an ongoing construction site, the en-
vironment evolves along the construction procedure, and each dynamic phase is
irreversible. One solution to reconstruct such a dynamic environment is to set up
a series of cameras on tripods to capture the scene simultaneously. It can certainly
provide valid information, but the angle of the camera view is limited, and it doesn’t
always cover all of the regions of interest.

Now, think about a solution that allows us virtually reconstruct a 3D site that is not
only as high-fidelity as physical ones but takes only a few minutes for computing the
memory shot of the entire scene. This proposal sounds intriguing since architects
would find it easier to research the structure and textures of existing architectures,
and interactively modify the environment for different effects and compatibility!

And the second question: why does the style transfer matter? One can get a photo-
realistic 3D reconstruction from the above methods but they can’t really do much of
it – they can only view it, and maybe delete some part of it. Style transfer provides
a way to modify the material, color tone, and surrealistic transformation to the
real scene. From the artists’ perspective, once the 3D reconstructed environment
is adjustable, it means creative works can be conducted, and if the solution is fast
enough, it can become a valuable tool.

Let’s come back to talk about the solutions to style transfer in a 3D environment. To
research the methods to approach the above proposals, the geometric structure from
the motion and the radiance field neural network methods are experimented with and
compared. From the experiment, it is clear that the learning-based NeRF(Neural
Radiance Fields) has proven itself a better solution regarding fidelity, computing
efficiency, and flexibility. Therefore, the NeRF-based method, which was first
published in 2020 and became a popular topic in the academic circle focused on
computer vision, becomes the focus and backbone of this research. The novel
overfitting neural model opens a gate of reconstructing 3D scenes, re-rendering in
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free views, generative 3D models, and 3D style control, leaving lots of open end
topics to explore and research.

The previous solutions either focus on 2D style transfer or 3D reconstruction, this
thesis proposes and experiments with a series of new methods for combining the 2D
style transfer with a 3D radiance field to achieve a 3D style transfer solution. To give a
taste of it, the radiance fields to store spatial information enable the direct processing
and embedding of extra information into the latent space, and here this thesis aims
at mixing the feature from 2D style images into the photo-realistic 3D scene, which
can be proceeded to not only reconstruct the physical world environment but also
change the style variance, control the weight, combine multiple styles, and convert
the 3D scene to styled meshes, styled point clouds to fuse with other scenes. And I
believe such technology can benefit artists, designers, and architects in their creative
tasks.

In the end, academic analysis is performed around the methods’ performance of
time efficiency, accuracy, artifacts and things to be improved in the future. And art
pieces generated from such methods are presented to validate that they can assist
in designing and creating art pieces. As an assistive tool for creating art, I also
present my own art pieces as a programmer with no art background, and there is
a VR application to experience the 3D stylish world as an example of the practical
usage of such technologies.
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C h a p t e r 2

BACKGROUND

2.1 Challenges and Demands from Applications
3D reconstruction is a popular topic in both computer science and architecture
domains. From the perspective of uses, the capability of free navigation inside a
3D authentic scene can solve spatial problems in AR/VR applications, for example,
instead of building all the fine-shaped 3D models and rendering them in real-time
in a VR device, the 3D scene can reduce memory to store the complex shape model
but a much-compressed radiance field and support VR user to walk around the scene
with their feet. Another application of AR example is object reconstruction, think
that I reconstruct a 3D model of a dancer, and what I expect most is their unique
movement, one way to do this is motion capturing the dancer and aligning the motion
to their pre-built digital twin. It requires not only expensive motion capture devices
but also 3D model artists to fine-tune the motion with models. With the learning
method, I can use multiple cameras to capture the dynamic object simultaneously
per frame. This allows cheaper investment and higher fidelity, and I can posit the
3D kinetic dancer in any plane via an AR device. Let’s also think about the problem
from an architect designer’s perspective, the omnivore of physical-world objects is
frequently referred to by architects and designers, however, a 3D model of large-scale
architecture can be hard to access. The learning-based method allows users to scan
the architecture with a phone camera or a drone, and reconstruct the scene in minutes,
the designer can directly build content upon the reconstructed models. What’s more,
a 3D scene can be used for Forensic research and photographer post-processing, and
a 3D model can be used by designers and architects for visualization, fitting parts
to other models, supervising the construction site, and even putting into a game
environment. Last but not least, in computer vision research tasks, the flexibility
of the RGB dataset is always a pain because the field of view is constrained by the
camera angle used in the capture session, what if I want a different view of the same
scene? I can use the reconstruction method instead of finding the exact same sensor
and going to the exact spot to capture it again. In summary, 3D reconstruction plays
an important role in various applications in our life.
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2.2 Limitation of Geometry 3D Reconstruction Method
The traditional SfM(Structure From Motion) methods are constrained by heavy and
slow computation for dense clouds, and such reconstructed 3D models have arti-
facts that easily discriminate them from realistic objects. Besides, the rendering task
with such 3D models takes extra effort in tuning lumination and environment set-
tings. The geometric-based photogrammetry method has been matured and widely
used as an industrial-level solution, for example, software Agisoft Metashape, Vi-
sualSFM[20, 19], and ColMap[15, 16]. Such methods extract features of RGB
images, match across different frames, and get 3D position by calculating triangula-
tion from the correspondence of matched feature points, and use bundle adjustment,
loop closure, and graph optimization methods to adjust the map and camera pose
to be more accurate. The method requires a large number of features from each
image and goes through matching for each feature, when the input resolution is high
and the scene is significant (such as a teaching building), it takes tens of hours to
calculate even with modern high-performance GPU and CPU. Although the recon-
structed model is proven to have great details, it suffers from reconstructing the
background(incompleteness because of insufficient data points or occlusion), the
incoherence of textures through the different light conditions and color temperature,
difficulty in re-rendering an authentic scene from the reconstructed model.

2.3 Development of Learning Method
As deep learning in computer vision tasks has developed rapidly during the past 10
years, some state-of-the-art learning-based methods have boomed up. They look
at the 3D reconstruction problem from different perspectives: Take the first NeRF
work published in 2020[10] as an example, their network is trained with a sequence
of RGB images and their camera poses and the network is unique in a way to aim
at over-fitting the model with a specific scene so that the network’s parameters
become a storage of 3D spatial information, as known as Radiance Field. In the
test, it takes 5-dimensional inputs including 3D location and 2D viewing directions
as input, the 5D tells the network model from which the virtual camera pose and
angle to render the image and interpolate between keyframes to output a successive
video, which provides customized camera angle different from the dataset used
for training. Besides, they introduce the volumetric rendering method that can
accurately render physically realistic images in a reasonable time(tens of hours)
with modern GPU. The volumetric storage is differentiable and critical as a deep
learning model. Compared to the geometric method[10], the two types of solutions
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have a similarly heavy computation time but the learning methods have a higher
fidelity and can solve certain challenges of traditional geometric methods, such as
glossy surfaces, mirrors, and the accuracy of complex geometry.

There are certain limitations[9] of the primary NeRF and geometric methods, where
they can not process the occlusion and blind spots caused by collisions or the sparsity
of inputs so well, which can lead to artifacts because the network can’t present
the scene it doesn’t know. Methods such as PixelNeRF[21] and IBR-Net[18] are
generative versions of NeRF that pre-trained models accept different scenes’ raw and
sparse images and still guarantee an authentic output by using prediction models
to interpolate the "unknown" area based on the information gathered from the
neighborhood pixels.

Another big issue of the dataset to feed to NeRF network is its variance in illu-
mination and disturbance from the dynamic outlines, for example, while holding a
camera to capture around architecture, the cloud blocks the direct sunlight and leads
to different lumination on different camera angles; and in a popular sightseeing
spot, lots of pedestrians can intrude in the camera view, and adds extra occlusion,
even with prediction model, the model can’t tell if the pedestrians are part of the
architecture or not, it will eventually output shadows or the unwanted humans. To
solve such an issue, a variant of NeRF like NeRF-W[9] effectively smooths out the
illumination variance and removes the pedestrians.

And considering the perspective of 2D style transfer, the limitations are that the
generated style is randomized, meaning one can not get exactly the same two outputs
by running twice with the same input. This makes it impossible to use 2D style
transfer on a 3D scene, since every view has a totally different style, and the
overlapped area doesn’t maintain its consistency.

Last but not least, with the most recent research and engineering work from NVIDIA,
they present Instant-NGP[12] as a "5 seconds" open source CUDA implementation
to change the game, it solves one of the biggest computation speed issues of such
methods. Besides, it combines Normal maps, depth maps, and 3D models altogether,
which opens lots of possibilities for my further research.

To conclude the above points, NeRF-related works present a brand new way by
using a radiance field to represent the 3D information and using ray tracing methods
to render the image. It makes great use of modern GPU and achieves a better
performance than the traditional geometric.
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Table 2.1 summarizes the brief advantages and disadvantages of the major 3D
reconstructions mentioned above. And these are also the major methods that will
be explored in this thesis.

Type Advantages Disadvantages Year

MetaShape SfM Friendly UI
Accuracy Hard to batch-process & Slow 2010

ColMap SfM Nice API
Accuracy Slow even using GPU 2016

NeRF-W NeRF Pytorch: easy
to change code

Slow with high resolution
hard to visualize 2021

Instant-ngp NeRF Good visualization
Well optimized

CUDA: Hard to
change code 2022

Table 2.1: Summary of existing 3D reconstruction methods.

2.4 Art-oriented Learning Method
To extend the backbone NeRF network, the artistic style transfer method is explored.
There are different ways to insert the style embedding into the existing network: an
image-based neural style transfer with constraints from the nearby frames to maintain
the smoothness and coherency; and a radiance field level processing of end-to-end
methods to take raw images input and camera poses and outputs, and an art image
as reference to guide the overall style, and output the artistic videos and 3D models.

The first image-based methods can be embedded into the existing NeRF backbone in
different positions, it can either pre-process the images before feeding them into the
network, can also post-process the outputs from the NeRF, both ways are explored
in this thesis to compare their performance. A typical style transfer network such
as Stylizing Video by Example[6] provides a toolkit pipeline to allow artists to fine-
tune several example frames with a painting tool and then propagate to the rest via
computer graphics method of finding correspondence among adjacent frames. Such
a method requires certain user input together with the art style reference in exchange
for accurate and elaborate stylization among the frames. And there are also more
automatic ways of relying on deep learning networks. For example, Real-Time
Style Transfer[7] and Artistic Style Transfer for Videos[14] use neural style transfer
model to automatically transfer a style from one image to a video without changing
the content of the video. Such work takes the correlation of adjacent frames as
constraints to maintain the coherency and avoid artifacts among frames.
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The second end-to-end way can further automate the pipeline, and the radiance field
embedding can not only provide a more distinguishable style alignment for different
contents but also allow other purposes of 3D style change such as modifying the
3D model’s appearance, where video rendering is a part of the output. Such work
includes Artistic Radiance Fields[22], UPST-NeRF[2], and Stylizing 3D Scene via
Implicit Representation and HyperNetwork[3] which all consider the problem from
the perspective of latent space of NeRF model, i.e. the radiance field, and train
the style embedding network at the same time along the NeRF network. However,
introducing another network bring more difficulties in tuning the architecture and
hyper-parameters, and slows down the network training.

Table 2.2 summarizes the brief advantages and disadvantages of each style transfer
solution, and the first three methods will be discussed and explored in this thesis.

Type Advantages Disadvantages Year
2D style transfer 2D Real-time Inconsistency 2015

Video style transfer 2D Consistency among
short frames

Hard to deal
with long input 2016

ARF 3D Good 3D art style Train network
2 times 2022

UPST-NeRF 3D Consistency among views Less art style 2022

Table 2.2: Summary of existing style transfer methods.

2.5 Multiple Network Combination
This research task involves multiple learning-based neural networks, therefore the
combination and concatenation of different networks together as a universal pipeline
are also explored and discussed. my goal is eventually an applicable end-to-end
development without requiring users to worry about intermediate data, as long as
they follow the easily understandable tutorial for capturing the dataset.

The methods of combining different networks are separated into two types in this
thesis, one is end-to-end concatenation, and another is embedding the feature latent
variables from different networks, training the loss of different networks together,
and then outputting the styled 3D representations in the rendering section. Compar-
ing the defects and performance of different combination methods would determine
which is my final approach to be developed as an application. Overall, combining
different networks is a challenging task because each network has a different scale,
loss function, propagation method, and its own hyper-parameters, it’s a tricky task
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to find in which position to combine two networks, how to turn two types of data
into the same format, how to define the loss function, and if I need to freeze part of
the network during the training, etc. Luckily, the style transfer network has a unique
pattern to follow, and with the help of lots of related papers and open-source code,
this challenge becomes solvable.

2.6 Novel Ideas
I have discussed the advantages of NeRF and the limitation of 2D style transfer.
What would happen if I mix them together? This thesis conducts research on
reconstruction problems based on the backbone NeRF network and combines it
with 2D style transfer methods to explore the possibility of generating 3D-styled
scenes. Although there are other works published in 2022 and 2023 focusing on
similar topics, this thesis stands on its unique ways of comparison of different
methods with a good number of experiments running with the same dataset that
makes the results more convincing, a novelty in the combination of 2D style transfer
and NeRF and apply post-processing to optimize the results. It also proposes and
explores the potential applications of such methods to further deliver the practical
use of these concepts.
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C h a p t e r 3

HYPOTHESIS

Research Questions
Based on the exploration from the last chapter, it is not hard to come to the research
question: how can we combine existing solutions of 2D style transfer and Neural
radiance field together to make the 3D style transfer possible? And how are such
solutions different from the existing works, what are the advantages and disadvan-
tages? And lastly, How does it benefit in developing related applications, and what
application can be developed?

Importance
Why does it matter? A style-adjustable 3D scene will change the way people create
3D art pieces, view 3D scenes. For computational designers, it’s a research topic
combining art design and computer science, it’ll be a handy tool to use code to do
3D art and also can be a backbone to develop more features.

Solutions
To address the above questions, this thesis first proposes 4 approaches to experiment
with the idea of combining the 2D style transfer with neural radiance field, including
concatenation of output of style transfer with NeRF, video style transfer with NeRF,
concatenation of output of NeRF with style transfer, and embedding style feature and
radiance field in latent space. It also explores the way to improve the consistency of
adjacent styled frames and the denoising method.

Tests & Practices
Since the output is more leaned to the subjective sense, it is not easy to compare
different methods, this thesis discusses the criteria of 3D style transfer by comparing
4 approaches with each other to show the improvements and limitations.

In the end, it uses one of the most fitting approaches to generate pieces of art and put
them in a VR environment as a way to deliver its practical usage. And it proposes
potential applications with such techniques that can have a great impact on the
industry and the possible approaches to achieve them.
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C h a p t e r 4

METHOD

Overview
The method of this thesis research consists of two parts as shown in Figure 4.1:
3D reconstruction and style transfer. Each part contains multiple approaches to
demonstrate the progress of exploration and comparison to find the best approach
for my specific tasks.

First, it explores the 3D reconstructions with geometric and learning-based methods
and compares them for each one’s strengths and weaknesses. The geometric methods
have been quite mature for the past 10 years and put into industrial applications,
yet the learning method has rapidly grown for the recent 2 years and gained lots of
attention from researchers under the wave of deep learning. my approach focuses
on the learning-based solution for its great potential of adjustable 3D data.

Secondly, it experiments with the style transfer network and seeks to drive from
2D style transfer to 3D style transfer with the backbone of learning-based 3D
reconstruction methods. Similarly, 2D style transfer is a mature solution for the
past 5 years, yet 3D style transfer still has wide space for exploration. And then it
uses different solutions to deal with defects during the experiment to improve the
performance.

Thirdly, it shows examples of applications that can benefit from such techniques to
validate the value of such approaches. And I comprise a pipeline from acquiring
the dataset to training the network and getting the final result for practical purposes.

4.1 Geometric 3D Reconstruction
A traditional solution of 3D reconstruction aims at finding the same pattern from
multiple 2D maps captured by various sensors, and estimating the 3D data, such
a method is generally referred to as Structure from Motion(SfM) or Multi-view
Geometry(MVG), as shown in Figure 4.2. Depending on the types of 2D maps,
the RGBD data and stereo-RGB data directly provide the depth information, which
can reduce the computation and improve the accuracy; the mono-RGB data would
calculate the depth by finding the correspondence among nearby keyframes and
doesn’t have the scale information. And because of the popularity and convenience of
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Figure 4.1: Diagram of 3D style NeRF pipeline.
(Image by the author)

the mono-RGB sensor, lots of popular photogrammetry platform provides accurate
and high-fidelity solution for mono-RGB data. Examples are Agisoft Metashape[1],
ColMap[19, 20], OpenMVG[11]. In this thesis, I use Agisoft to 3D reconstruct the
same dataset as a comparison with the learning-based methods.

Figure 4.2: Structure from Motion.
(Shervais, K. (2016, October 18). Structure from Motion (SfM) Photogrammetry Field Methods Manual for Students.

Education AT Unavco.Org. [pdf])

4.1.1 Structure from Motion
To illustrate the geometric 3D reconstructions mentioned above, it is necessary to
look at the core algorithm of them – Structure from Motion. The SfM can explain
how the geometric solutions work, show us why certain camera movements during

https://d32ogoqmya1dw8.cloudfront.net/files/getsi/teaching_materials/high-rez-topo/sfm_field_methods_manual.v2.pdf
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the capture are bad for reconstruction, and give instructions for preparing the dataset
for this thesis.

I will only give a brief introduction to SfM since it’s general knowledge in computer
vision and not my focus of this thesis. As shown in Figure 4.3, 𝑐 and 𝑐′ represent
the center of two camera viewpoints. One can use any different feature extractors
to process the image, here I focus on a popular one – Scale-invariant Feature
Transform(SIFT). By comparing the features of two images, SIFT can find the
matched feature, called correspondence, e.g. 𝑥 and 𝑥′ in the graph, then 𝑋 is the
3D point of my goal. However, it doesn’t know the relative position from 𝑐′ to 𝑐,
thus it couldn’t directly get 𝑋 , because it only knows 𝑋 is a point along the line that
connects 𝑐 and 𝑥. Now if it knows the epipolar line that connects 𝑒 and 𝑒′, it is able
to get accurate 𝑋 .

Figure 4.3: Demonstration of Epipolar lines.
( Deep Singh, C. (n.d.). Structure from motion. From https://cmsc426.github.io/sfm/)

In order to get the epipolar line to get the correct 𝑋 as shown above, one solution
is to take many sample-matched feature points in two images and use the Random
sample consensus(RANSAC) to filter out outliers(mismatched points) and use the
function below to calculate the relative pose from 𝑐′ to 𝑐. Since the Fundamental
Matrix 𝐹 has 8 degrees of freedom, it at least requires 8 pairs of matched points.
Once getting 𝐹, one can get 𝑒𝑒′ and 𝑋 , as shown in Equation 4.1. Such progress
applies to every point and image during the SfM algorithm, and it gives coordinates
of both 3D points and cameras.

[𝑥′, 𝑦′, 1]

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33



𝑥

𝑦

1

 = 0 (4.1)

https://cmsc426.github.io/sfm/
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4.1.2 Data Preparation
On the other hand, the exploration of SfM methods prepares for the dataset pro-
cessing for the deep learning methods. In other words, this thesis will still rely
on the SfM method to estimate the pose of the camera since most of my data are
mono-RGB that doesn’t have localization data. To capture the data, one can either
mount the camera on the robot or hand-hold the phone camera depending on the
scenario of applications. For example, if one wants to apply it to a construction
site, it would be ideal for mounting it on the robot to gather the dataset while it’s
automatic navigation and assistance. And if one just tries to reconstruct a casual
scene, they can simply use their phone. The critical part of dataset preparation is
to maintain the intrinsic camera parameters identical throughout the entire process
of capture, any lens adjustment, aperture, and shutter change can lead to false pose
estimation for the later process. And since I use mono-RGB as input, there are also
limitations for pure rotation movements that are hard for the SLAM algorithm to
calculate triangulation.

Figure 4.4: Dataset preparation examples of good captures(up) and bad
captures(down).

(EveryPoint. (2022). NVIDIA instant nerf advanced tips. From YouTube:_xUlxTeEgoM)

With the RGB data captured by the phone camera, I experimented with ColMap
to get results in Figure 4.5, the reconstruction data will be compared with learning
methods, and also the camera pose will be used for training the learning methods
that will be discussed in the next section.

https://www.youtube.com/watch?v=_xUlxTeEgoM
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Figure 4.5: Scotty dataset(left) with SfM, and the output(right) of point clouds and
camera poses.
(Image by the author)

4.2 Learning-based 3D Reconstruction
A series of learning-based methods have taken over top conferences since 2020 and
constantly becoming faster and more accurate, such methods are generally called
Neural Radiance Field(NeRF). As the NeRF has developed so fast, more novel
research papers have proved to outperform the first network I used at the beginning
of this project. So you will see a couple of learning-based NeRF networks get
experimented with in this thesis until a solid back-bone network is found.

NeRF network generally aims at training a neural network to store the RGB and
density information from the given dataset of RGB images and 5D camera poses.
And for rendering, it uses Volume Rendering to accumulate the density and RGB
value along each ray to get images from any perspective, as shown in Figure 4.6.

Figure 4.6: Neural Radiance Field.
(Karagiannakos, S. (2022, November 25). How Neural Radiance Fields (NeRF) and Instant Neural Graphics Primitives

work. Sergios Karagiannakos. https://theaisummer.com/nerf/ )

Notice in the graph, 𝐹\ represents the neural network that contains the radiance field
information, the forward passing of the network converts the input of (𝑥, 𝑦, 𝑧, \, 𝜙),

https://theaisummer.com/nerf/


15

where 𝑥, 𝑦, 𝑧 is the position of the camera, \, 𝜙 is used to describe the direction of
one ray from the camera position. I use𝐶 to represent the RGB value of a pixel, 𝜌 to
represent the density, 𝑟 = 𝑜 + 𝑡𝑑 to represent the ray for rendering a pixel, Δ means
the distance between two sampling points along the ray, 𝑡𝑘 means the kth sampling
point along the ray, I can get the equation 4.2.

𝐶 (𝑟) = 𝑅(𝑟, 𝑐, 𝜌) =
𝐾∑︁
𝑘=1

𝑇 (𝑡𝑘 )𝛼(𝜌(𝑡𝑘 )Δ(𝑘))𝑐(𝑡𝑘 ) (4.2)

𝛼(𝑥) = 1 − 𝑒−𝑥 , 𝑇 (𝑡𝑘 ) = 𝑒−
∑𝑘′=𝑘−1

𝑘′=1 𝜌(𝑡𝑘′ )Δ(𝑡𝑘′ ) (4.3)

The above equation mainly describes that it accumulates the RGB and density from
the camera’s original point to the 3D radiance field to get the final RGB for a pixel.

And for the loss function, I can think of it this way, for each pixel of a given camera
position, I can render an RGB value from the above forward propagation, and then
I take the images of this position as ground truth and calculate their difference.

𝑙𝑜𝑠𝑠𝑛𝑒𝑟 𝑓 = | |𝐹\ (𝑥, 𝑦, 𝑧, \, 𝜙) − 𝐶𝑔𝑡 | | (4.4)

4.2.1 NeRF-W
At the beginning of the project, I experimented with NeRF-W[9] published in 2021,
it has a faster computation compared to the first NeRF paper[10] by Ben Mildenhall
and Pratul P. Srinivasan, et al. The more important factor I considered in this
thesis is that my goal includes the 3D reconstruction of the outdoor environment.
In the outdoor environment, the color temperature, shadow, and lightness change
frequently by both time and position of the camera, on the other hand, mobile objects
such as pedestrians and other occluders are something not interesting in the scope
of this thesis.

NeRF-W is built based on NeRF and has the capability of removing the disturbances
such as pedestrians in the reconstruction by adding noise at the bottom of the image
where the occluders appear most frequently and smoothing out the illumination
and white balance by introducing the Generative Latent Optimization to replace the
color embedding with an image dependent color radiance so that they can interpolate
color between frames. In detail, one major difference between NeRF-W from NeRF
is that they replace 𝑐 with 𝑐𝑖, where 𝑐𝑖 is image-dependent for each index of image 𝑖.
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I was able to reconstruct the customized video sequence of the MMCH building on
the CMU campus. However, it took over 10 hours simply train the network and
render the photo-realistic images with 640x480 resolution in a modern GPU 2080
Super with 8GB memory. And there are certain defects in the output, so I decided
to move to a better network.

4.2.2 Instant-ngp
In 2022, Nvidia published a state-of-the-art paper and open source code Instant-
ngp[12]. From the perspective of the algorithm, it uses hash-coded multiresolution
latent variables to speed up the computation, which simply means that each reso-
lution layer has a pre-defined hash table, so when calculating the pixel in different
resolutions, it doesn’t have to maintain a large network with float points, but in-
stead, just check the table with a smaller network, a smaller network means more
parameters can be put into parallel computing and also faster computation itself.
Besides, by doing so, it allows the network to learn the coarse and fine features
altogether, which improves the quality and details of the radiance field. And from
the perspective of engineering, it’s implemented in CUDA to further fully use the
computation units of the modern GPU to achieve faster computation.

I experimented with the code for reconstructing high-resolution photo-realistic ren-
dering, 3D mesh, normal maps, depth maps, etc. And compare it with the geometric
solution, I came to the conclusion that Instant-ngp is a better option for my goal
to embed artistic 3D style in the 3D data. Therefore, the rest of the research and
experiment in this thesis takes Instant-ngp as the backbone. Figure 4.7 below briefly
summarizes the function of the NeRF.

Figure 4.7: NeRF functionalities.
(Image by the author)
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4.3 2D Neural Style Transfer
Next, I move toward style transfer. Image-to-image style transfer is not a new topic
and has developed into a mature technology, such as Neural Artistic Style[4] and
Real-Time Style Transfer and Super-Resolution[8]. Generally, the style transfer
neural network contains two parts: style feature and content feature, two similar
VGG-19 layers are used to extract the two features separately, and then the network
embeds two features in the convolution layers, and the balance between style and
content is fine-tuned by weight hyperparameters.

In detail, the loss function of content and style are composed differently. For content,
I want to generate an image that has similarity to the original image, therefore I can
pick a hidden layer in the middle, or just take the output image to do the pixel-level
difference. Here I take the hidden layer 𝑙 so that the loss can be calculated by
Equation 4.5. 𝑃𝑙

𝑖 𝑗
means the generated features in layer 𝑙, 𝑄𝑙

𝑖 𝑗
means the features of

original RGB image in layer 𝑙.

𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
1
2

∑︁
𝑖 𝑗

(𝑃𝑙𝑖 𝑗 −𝑄𝑙𝑖 𝑗 )2 (4.5)

The loss of styles can’t be calculated with the difference between generated images
and style images, because I don’t want the generated image shows content level
similarity with the style image, but I want a certain pattern to be applied to the
generated image. Therefore, I take the Gram Matrix of the style image to show
the overall distribution of the features. I still take hidden layer 𝑙, where there are 𝑘
channels, and 𝐻 is the height, 𝑊 is the width, I can calculate the loss function in
Equation 4.6. 𝑔 is the generated feature, 𝑠 is the style feature in latent space. 𝐴 is
the value of one element of one filter in latent space.

𝑙𝑜𝑠𝑠𝑠𝑡𝑦𝑙𝑒 =
∑︁
𝑙

𝑤𝑙 𝑙𝑜𝑠𝑠𝑙𝑠 (4.6)

𝑙𝑜𝑠𝑠𝑙𝑠 =
1
𝐻𝑊

𝐻∑︁
𝑖

𝑊∑︁
𝑗

(𝐺 𝑙
𝑖 𝑗 (𝑠) − 𝐺 𝑙

𝑖 𝑗 (𝑔))2 (4.7)

𝐺 𝑙
𝑖 𝑗 =

∑︁
𝑘

𝐴𝑖𝑘 (𝐼)𝑙𝐴𝑙𝑗 𝑘 (𝐼) (4.8)

After I get both losses, I can calculate the total loss by Equation 4.9. 𝛼 and 𝛽 refer
to the weight.
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𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑙𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝑙𝑜𝑠𝑠𝑠𝑡𝑦𝑙𝑒 (4.9)

In this thesis project, I first implemented a neural style transfer network in PyTorch
and then referred to the open-source style transfer https://github.com/crowsonkb/style-
transfer-pytorch to improve my model. The development of 2D style transfer serves
as a benchmark to evaluate my 3D solutions, and also be repeatedly used in 3D
exploration. The diagram of 2D style transfer is shown in Figure 4.8.

Figure 4.8: 2D style transfer functionalities.
(Image by the author)

4.4 3D Style Transfer
To step into the 3D style transfer, first, it is reasonable to think about why it is a
challenge to do style transfer in a 3D environment. Intuitively, 2D style transfer
has done a great job and it even works in real-time videos, it seems the 2D image
plus 3rd timeline dimension works well. But not really, if you look closely into
such type of work, you can discover the inconsistency among frames, each image is
styled in different details, and when two frames have no overlapping pixels, the same
object doesn’t have a consistent style pattern. Therefore, I explore three methods
to combine the previous research and experiments for 3D style transfer, so that it
applies the style to the object itself instead of just one image.

4.4.1 Style Transfer Concatenated with NeRF
The first experiment is to concatenate the output of the 2D style transfer network with
the input of NeRF as shown in Figure 4.9. As the most intuitive way of thinking, the

https://github.com/crowsonkb/style-transfer-pytorch
https://github.com/crowsonkb/style-transfer-pytorch
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NeRF network trains with a photo-realistic dataset and generates a photo-realistic
3D scene for free viewpoints of rendering. I can expect that the NeRF network
trains with the stylish dataset and generates 3D stylish scenes. Therefore, I first use
the 2D style transfer network to generate the 2D style images and feed them into
the NeRF network. Since the inconsistency of the pixels among adjacent 2D stylish
images lead to failure of finding the correspondence in calculating the camera poses,
I still use the camera poses of the photo-realistic ones, and experiment with how
well NeRF can handle the inconsistency.

Figure 4.9: Framework of the concatenation of style transfer and NeRF.
(Image by the author)

In detail, it first calculates the camera pose of each RGB image by ColMap and then
applies style transfer for each RGB image with the same resolution, and uses the
camera pose and generated style RGB to train the NeRF.

There are 4 experiments proposed and conducted in this thesis to pursue the idea of
3D style transfer, a summary is shown in Table 4.1.

Descriptions
Expt. 1 Concatenate output of 2D style transfer to input of NeRF
Expt. 2 Similar to Expt. 1, add adjacent consistency to style transfer
Expt. 3 Concatenate output of NeRF to input of 2D style transfer
Expt. 4 Embed 2D style feature and radiance field from NeRF in latent space

Table 4.1: Summary of four experiment methods.

4.4.2 Adding Video Style Transfer Constraints
From the first experiment, I already notice the potential issues that directly using 2D
stylish images in NeRF can cause to the training process. I consider the methods
that can maintain consistency among adjacent frames, a typical type of related work
is either to train the long sequence of multiple frames together and add constraints to
the style loss, such as Artistic Style Transfer for Videos and Spherical Images[13].
And a different way to train is to give the network a sample of the stylish frame
and spread this style to its adjacent frames, such as EbSynth[5]. I experimented
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with both as shown in Figure 4.10, and get to the conclusion that such methods
don’t handle the 360 degrees of the scene so well, the ideal condition for video style
transfer to effectively spread the consistency of styles is planar movement without
many rotations.

Figure 4.10: Framework of the concatenation of NeRF and video style transfer.
(Image by the author)

In detail, the video style transfer is very similar to the 2D style transfer loss function
discussed above, except that they add one more loss constraint called temporary
loss in Equation 4.10, which aims at adding constraints among the adjacent frames
by detecting the consistency from forward-backward optical flow, it can be either
short-term or long-term.

𝑙𝑜𝑠𝑠𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 (𝑥𝑖, 𝑤𝑖𝑖− 𝑗 (𝑥𝑖− 𝑗 ), 𝑐(𝑖− 𝑗 ,𝑖)) =
1

𝑊 ∗ 𝐻 ∗ 𝐶

𝑊,𝐻,𝐶∑︁
𝑘=1

𝑐𝑘 ∗ (𝑥𝑘 − 𝑤𝑘 )2 (4.10)

𝑥𝑘 refers to the current styled image with k index, 𝑥𝑖− 𝑗 is the i-j frame styled image,
𝑤𝑖
𝑖− 𝑗 (𝑥𝑖− 𝑗 ) is the forward-backward optimal flow consistency weight, 𝑐(𝑖− 𝑗 ,𝑖) means

the weights between frame 𝑖 and frame 𝑖 − 𝑗 , where it is set to 0 in dis-occluded
region else it is set to 1.

4.4.3 NeRF Concatenated with Style Transfer
The third experiment is inspired by the first experiment – How about I flip the order
of concatenation? I concatenate the output of the NeRF with the input of the 2D style
transfer network, as shown in Figure 4.11. This method doesn’t directly generate
3D scenes but can be taken as a comparison and reference of how other methods
make their difference.

In detail, I first train the NeRF with camera pose acquired from ColMap and original
RGB images, and for the output of rendering, I apply style transfer for each of them.
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Figure 4.11: Framework of the concatenation of NeRF and style transfer.
(Image by the author)

4.4.4 Embedding Style and Radiance Field in Latent Space
The fourth experiment is inspired by the structure of the 2D style transfer neural
network. In the 2D style transfer, it extracts the content feature and style feature and
embeds them together in the latent space. Similarly, I can embed the 2D style feature
and latent space of the 3D scene in NeRF together and train them together, as shown
in Figure 4.12. Similar works have been published just in 2021 and 2022, such as
Stylizing 3D Scene via Implicit Representation and HyperNetwork[3], ARF: Artistic
Radiance Fields[22], and UPST-NeRF: Universal Photorealistic Style Transfer of
Neural Radiance Fields for 3D Scene[2]. In this thesis project, I refer to the work
of ARF.

Figure 4.12: Framework of the embedding style feature in 3D latent space.
(Image by the author)

In detail, similar to the 2D style transfer’s losses equations I discussed above, it uses
the same way to extract the content feature and calculate the content loss in Equation
4.11, where 𝑅 is rendered image from NeRF, and 𝐼 is the original RGB image.

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
1
2

∑︁
𝑖 𝑗

(𝑅𝑙𝑖 𝑗 − 𝐼 𝑙𝑖 𝑗 )2 (4.11)
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The difference is the way to calculate the style loss. In the ARF paper, they use
the Nearest Neighbor Feature Matching(NNFM) instead of the Gram Matrix, since
Gram Matrix considers the global features, it can ignore local information, and the
local information is important in maintaining the consistency in the 3D scene. This
NNFM can focus more on the local features, the Equation 4.12 shows the style loss.
𝑆 refers to the feature of the style image, and 𝑅 refers to the feature of the rendered
image. 𝐷 (𝑥, 𝑦) calculates the distance of vector 𝑥 and 𝑦.

𝐿𝑠𝑡𝑦𝑙𝑒 =
1
𝑁

∑︁
𝑖 𝑗

min
𝑖, 𝑗

𝐷 (𝑅𝑙𝑖 𝑗 − 𝑆𝑙𝑖 𝑗 ) (4.12)

𝐷 (𝑥, 𝑦) = 1 − 𝑥𝑇 𝑦

𝑥𝑇𝑥𝑦𝑇 𝑦
(4.13)

And I can calculate the full loss by Equation 4.14.

𝑙𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑙𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝑙𝑠𝑡𝑦𝑙𝑒 (4.14)

Such a method requires training the NeRF network twice, for the first time, it trains
the NeRF with the photo-realistic dataset and then renders the image from the train
scene. And for the second time, it trains with the style feature and content feature
together to generate a new radiance field. I can acquire good consistency among
different frames since the style feature is added to the radiance field of the 3D scene.
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C h a p t e r 5

RESULTS

Overview
In this chapter, I put the experiment results together and compare their differences.
The experiment divides into two parts: 3D reconstruction experiments and 3D style
transfer experiments. And I analyze the performance and efficiency and choose the
solution to conduct my own art pieces, show the demo of a potential VR application,
and discuss the solutions and results.

Most of the experiments are run in a Windows system with a 3070Ti GPU, and 8GB
VRAM computer, except the 4th experiment, which is run on an EC2 server with
g4dn.4xlarge cloud server on Amazon.

And the dataset, as shown in Figure 5.1, is the hand-held capture of Scotty Statue on
the campus of Carnegie Mellon University, Pittsburgh. The total number of input
images is 561, each image has 1080*1920 resolution, in a wide lens mode(with
distortion on the edge), in the same exposure, white balance, and focal lens, captured
in portrait mode by iPhone 13 Pro. For the rest of the experiment that uses the Scotty
Statue as a dataset, the parameters are all the same. The dataset for the NeRF-W
experiment is captured in the same parameters except for the landscape mode and
the number of images as 50.

Figure 5.1: Dataset of hand-held capture of Scotty Statue at CMU.
(Image by the author)

5.1 3D Reconstruction Experiments
As the first part of the experiment, one geometric solution and two learning solutions
of 3D reconstruction are conducted. I use 3D mesh and rendered images as examples
to demonstrate the comparison of the results of such methods.
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5.1.1 Geometric Method
I chose Agisoft Metashape as a representation of Structure from the Motion algo-
rithm for the experiment. The geometric method has advantages in good granularity,
smooth mesh, yet I will focus on its drawbacks. The major issue with such a method
is the defects in incorrect 3D information for distant backgrounds and the collapse
of the mesh for the area that has few correspondences from the inputs. Figure 5.2
demonstrates the defects mentioned above.

Figure 5.2: Defects of geometric methods.
(Image by the author)

From the circles on the left, I can see the background is in the wrong position, the
sky, and the distant building is reconstructed in a very close place to the Scotty
Statue. And the circles on the right show the large area of the background has no
meshes or wireframes. And I will see the comparing rendered outputs from NeRF
discussed below that have a better performance.

5.1.2 NeRF-W
The first experiment of NeRF I used was the code of NeRF-W, and because it was at
the early stage of NeRF works, it suffers from computing efficiency and resolutions
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issues, which doesn’t help it outperform the geometric solution in the area I are
interested in, therefore I use it as an illustration of how to train the NeRF and using
a small dataset with only 50 images.

To train the dataset in NeRF network, I first need to pre-process the raw RGB images
to get camera poses by ColMap. And during the rendering, I customize any camera
positions and orientations as inputs, shown on the left of the 5.3, and outputs the
rendered graph on the right.

I can tell that the outputs are photo-realistic but in a very low resolution. And if I
increase the resolution, the GPU throws exceptions as running out of memory and
also takes an extremely long time. Therefore, I didn’t move further to train other
datasets, but moved on to the Instant-ngp.

Figure 5.3: The input(left) and output(right) of the NeRF-W training, the example
takes data of MMCH building in CMU.

(Image by the author)

5.1.3 Instant-ngp
I can use the exact same steps of pre-processing the dataset as described in NeRF-W.
And this time I used the same Scotty Statue dataset as the geometric solution to
better show the difference between the two solutions, because Instant-ngp has a
better-optimized network architecture and usage of GPU.

And this network can not only generate photo-realistic images but generate mesh,
normal maps, and depth maps. The examples of output from Instant-ngp can be
found in Figure 5.4. And not only the resolution is 1920 ∗ 1080 but also the
rendering is at the second level, meaning that it is a valid backbone for the 3D style
topic exploration.



26

Figure 5.4: Different types of outputs from Instant-ngp network, including the
RGB rendering, position map, normal map, and isolated object.

(Image by the author)

To compare the performance between the geometric method and the learning method,
I first take the rendered RGB from a similar perspective and compare their difference,
as shown in Figure 5.5.

Figure 5.5: Comparison of RGB rendering generated from SfM and NeRF.
(Image by the author)

In the graph, the green annotations show the advantages of NeRF compared to SfM,
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the lighting, and illumination of the Scotty Statue from the NeRF are more photo-
realistic, and the pillar from the SfM is distorted because it’s a mesh-based solution,
the optimization of the shape can inevitably distort the shape, whereas NeRF stores
the RGB and density value directly. And the red annotations show the drawbacks
of the NeRF, as mentioned above, NeRF stores the RGB and density directly, and
such value can have a bias if the input has certain occlusion from certain views, or
it is a result of interpolation between frames where the lighting condition changes,
for example, the shadow of the tree might change because of the sun movement or
wind, whereas the geometric method unwraps the texture on the mesh, therefore it
gets less impact.

On the other hand, I compare the generated mesh of two methods, as shown in Figure
5.6. Note that both meshes are open in Blender software without any mesh-level or
shape-level post-processing(They are what are generated from each method). From
the overview, the meshes are nearly close, and in detail, the mesh from SfM has
smoother surfaces. However, such a technique of smoothing the surface can be
used as a post-processing of the mesh output of NeRF to achieve the same effect.
Therefore, I can think the mesh from the NeRF has the same level of detail and
qualities as the one from SfM.

Figure 5.6: Comparison of mesh generated from SfM and NeRF.
(Image by the author)

From the perspective of computing efficiency, I record the related data for the three
experiments mentioned above, as shown in Table 5.1. The column refers to the
number of images for training, the time cost for training the resolution of the output
respectively.

The above two comparisons and the table prove that NeRF can nearly finish the same
task that SfM can do, and even do better in the aspects of background, photo-realistic
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Number of Images Time Cost Resolution of Output
SfM 561 20 hrs 1920x1080

NeRF-W 50 14 hrs 640x480
Instant-ngp 561 5 mins 1920x1080

Table 5.1: Computation efficiency of SfM and NeRF.

rendering, and computing efficiency. Besides, the NeRF allows us to manipulate
the stored 3D information for the next section of the experiment with style transfer.

5.2 Style Transfer Experiment
Now I come to the second part of the experiment. I first experiment with 2D style
transfer and then combine 2D style transfer with NeRF with 4 separate experiments.

5.2.1 2D Style Transfer
The 2D style transfer is implemented with VGG19 as a feature extractor and LBFG-S
as an optimizer, the weights of style, and content is a hyper-parameter that can be
tuned, and I used content weight as 0.015, style weight as 1. Figure 5.7 shows the
input and output of the 2D style transfer. On the left, two example images are Snow
at Argenteuil by Claude Monet and The Starry Night by Vincent van Gogh, and the
content image of Scotty Statue; the right is the generated style images.

5.2.2 3D Style Transfer
Experiment 1
The experiment extends to 3D style transfer first by directly concatenating the 2D
style transfer to the NeRF network. Since the 2D style transferred results do not
have consistency among adjacent frames for the correspondences, using ColMap
to calculate their poses can lead to drift, I use the same poses calculated from the
photo-realistic ones.

Figure 4.11 shows examples of output, and it shows a good style transfer already,
however, because of the randomized style, such work adds more noise and blur to
the rendering.

Experiment 2
Based on the issue of noise and floaters observed in the first experiment, I think
about methods to improve the consistency of styles among adjacent frames. The
second experiment focuses on adding constraints among the frames and tries to
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Figure 5.7: Input and output of 2D style transfer.
(Image by the author)

Figure 5.8: Output of method that concatenates output of style transfer with NeRF.
(Image by the author)
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maintain the style pattern for the same part of the object. Video style transfer has the
advantage of maintaining the pattern because it has the loss function for a sequence
of frames. I use EbSynth to select keyframes as style references and propagate the
style for the rest of the frames.

I compare the result from style transfer and video style transfer in Figure 5.9. The
green box in the graph shows the positive sides of video style transfer, it maintains
the style pattern on the Scotty Statue, whereas style transfer is just the randomized
patterns. The red box shows the drawbacks of video style transfer, since it tries to
maintain the style pattern, when the camera rotates at a sharp angle, much of the
information in the background is lost, and the algorithm fills the style pattern in an
interpolation way so that it becomes flat strips. And this becomes a severe issue for
NeRF to reconstruct the background.

Figure 5.9: Comparison of input processing of 2D style transfer and video style
transfer.

(Image by the author)

The output of combining video style transfer and NeRF is shown in Figure 4.12. And
I can tell that the front Scotty statue has a good style from different perspectives,
and less noise and floaters are there compared to the first experiment. For the
background, the near wall is also well maintained, but the distant objects such as
trees and buildings from the right top image, lose their content shape.

The video-style transfer is more viable for cases with less rotation but more trans-
lation and is good for spreading the style for the front objects. For the 360-degree
dataset, it fails in maintaining the distant background.
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Figure 5.10: Output of method that concatenates output of video style transfer with
NeRF.

(Image by the author)

Experiment 3
The third experiment is inspired by experiment 1, I just flip the concatenation of
style transfer and NeRF, using the output of NeRF as input of style transfer. And I
get the result as shown in Figure 4.13. The style is delicate, and it is recognizable
to tell what style image is used for training, but if you watch closely, the pattern is
always applied in the same position in terms of the image, it is always right side
has more yellow stars and the left side has more blue sky. It barely maintains any
consistency. This leads to a jumpiness for video visualization, however, as an art
generation work, this type of defect can also mean a unique expression.

Experiment 4
The fourth experiment refers to the paper ARF [22], it is similar to the idea of 2D
style transfer, to extract the content feature and style feature and embed them in
latent space, but this time the content feature is extracted from the photo-realistic
3D radiance field.

Therefore, I first train the photo-realistic scene with the same Scotty dataset and then
train the style transfer with style images together. I changed the hyper-parameters
of resolution to 512 ∗ 512 ∗ 512 and the number of background layers to 32 to fit in
the 16GB GPU memory limits. And the output is shown in Figure 4.14.
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Figure 5.11: Output of method that concatenates output of NeRF with style
transfer.

(Image by the author)

Figure 5.12: Output of method that embeds style feature with radiance field.
(Image by the author)

I can tell from the graph, the pattern has a good consistency among frames. How-
ever, it shows different types of noises in the image of the 360-degree dataset, the
background shows a "zoom in" style blur, there are empty holes in the top right
image, and most important of all, the pattern of style is almost lost, that the starry
sky barely can be told from it.
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To further explore this method, I experiment with different style images, and get
the output in Figure 5.13. I can tell that for the last row, the snowy style is turned
into strip lines on the Scotty statue and almost lose all of the semantic styles. And
I can tell the same problem from other rows, it is just because others have a more
distinguishable pattern that makes the output seem reasonable. And because this
NeRF backbone is not a neural network, and is less optimized than Instant-ngp, it
is also a hard engineering topic to achieve the same efficiency, needless to say it
requires two pieces of training.

Figure 5.13: Demos of styled 3D scene.
(Image by the author)

So far, I have experimented with different methods and compared the results, and
Table 5.2 of computation efficiency can further compare the 3D style transfer meth-
ods. The output is ∗19201080 resolution, 30 seconds with 30 fps. The ARF network
is slow in radiance field training but fast in style transfer, The rest experiments are
very fast in training the radiance field, but slow in style transfer except for video
style transfer in experiment 2. And the rendering takes almost a similar time.

Denoise
Considering the output, compatibility, and efficiency, experiment one has the rela-
tively best performance. Therefore, I added a denoise method to utilize the depth
information, and decrease the RGB and density for the area between the camera and
the object, since most of the floaters from this experiment exist in the air. And as
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Time Cost NeRF Style Transfer Rendering
Experiment 1 5mins 6hrs 40mins
Experiment 2 5mins 10mins 40mins
Experiment 3 5mins 6hrs 40mins
Experiment 4 3hrs 3hrs 1hrs

Table 5.2: Computation efficiency of four 3D style transfer experiments.

Figure 5.14 shows, the left image is the output from experiment 1, and the right
image is the output of denoise method. I can tell the floaters get removed to some
extent and the background and front objects become more clear.

Figure 5.14: Denoise comparison. Red circles represent the noise from experiment
1(left). Green circles represent the effects of denoise(right).

(Image by the author)

Styled Mesh
I also generate the 3D mesh from styled 3D scenes to demonstrate the 3D style
transfer further, as shown in Figure 5.15. The left four mesh images are generated
from the photo-realistic scene in NeRF, and the right four mesh images are from the
denoised method. I can tell that the mesh manages to maintain its shape and style
at the same time, although it is less smooth than the left one, yet a smooth surface
technique can be applied as post-processing to relax this issue. This step proves the
experiment of style transfer is three dimensions since the previous demos are only
2D rendered images.
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Figure 5.15: Comparison of mesh generated from NeRF and styled NeRF.
(Image by the author)

5.3 Artistic Pieces
I use the method(Experiment 1 + Denoise) explored above to create some art pieces
as a demonstration of the practical use of this thesis research. As shown in Figure
5.16, the first two rows use style weight as 1.0 and content weight as 0.015 to keep
more style for the output. The last two rows use style weight as 0.7 and content
weight as 0.1 to keep more content for the output. This practice shows that one
can tune the strength of the 3D-style scene based on their goals, for example, if one
wants to create strong art styles, one can increase the style weight; if one wants to
slightly change the color theme, one can increase the content weight.
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Figure 5.16: Demos of artistic pieces. The left side is style images, the first row of
the right side is photo-realistic rendering, and the second row is styled rendering.

(Image by the author)
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5.4 Applications
Based on the experiments and results mentioned above, this thesis proposes two
applications that further demonstrate the uses of 3D style transfer.

3D Style VR
First, I propose the VR application with 3D style transfer, the demonstration graph is
shown in Figure 5.17. The idea is to put the 3D-styled scene into the VR environment,
and the users can navigate through the scene with controllers. Controllers support
the function of zoom in/out, rotation, and moving. Another ideal function would be
a switcher to pick different styles or show the photo-realistic scene, however, this
function requires more engineering work that this thesis can not implement with
limited time.

Given the above functions, any user can have an immersive experience by exploring
the 3D scene. Designers and architects can change the style to experiment with
different textures or materials for the same object, the navigation function also allow
them to explore the entire scene freely to understand the geometric structure for
reference and design purposes. On the other hand, artists can use it as a tool to
design a creative VR experience or a 3D artistic scene.

3D Toy Blocks
The second proposed application is toy blocks, as shown in Figure 5.18. The idea of
VR is to change the whole scene and have free manipulation of the camera view, and
the idea of toy blocks is to manipulate the individual objects and combine multiple
objects or scenes together.

The challenge in this application is how to combine multiple NeRF scenes together,
here I take assumptions that all of the candidate NeRF scenes are trained with the
same NeRF network, meaning their weights have the same network architecture.
Currently, there are no promising solutions to combine multiple scenes together,
although there is work like Block-NeRF from Waymo [17], which mainly focuses
on decomposing a large-scale scene into multiple blocks and training each individual
block separately, it does not work well to blending multiple scenes together. To do
so, I first need to set up a unified scale and world coordinate standard for each scene.
Since the mono-RGB input does not generate scale information, the scale parameter
can also be tuned by users manually. And the second step is to set up the bounding
box of the interested region, for example, I only want to extract the Scotty statue
from the entire scene, embed it into the CodeLab scene, and then choose the priority
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Figure 5.17: VR application diagram.
(Image by the author)

of layers to decide to use one NeRF’s weight parameters to replace another, here
Scotty statue should have the higher layer. Similarly, I can combine multiple objects
into one scene, or merge two different scenes together.

If I can manage those challenges properly, this application can have a good potential
to allow us to scan and generate digital twins of daily objects, changing their styles,
and placing them freely in the digital environment. Architects can bring any objects
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into their 3D scene design without searching for if such objects have a 3D model
or manually simulate one, but can just simply use their phones. And designers can
now build art upon real objects easily, and create art scenes more efficiently.

Figure 5.18: Toy block application diagram.
(Image by the author)

5.5 Discussion
In this chapter, I present 4 experiments of 3D style transfer and each of them shows
a different way of combining 2D style transfer and NeRF, including concatenation
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of style transfer and NeRF head to tail and vice versa, video style transfer to add
constraints to the consistency among adjacent frames, and embedding style feature
into radiance field in latent space.

Given the same dataset, the output is compared by the quality of style and content
distribution, and also the time consumption for the data pre-processing, training,
and rendering. It shows that the video consistency method has the degeneration
of styles for big rotations since there are rare overlaps for the algorithm to deduct,
and the embedded solution requires a large amount of GPU and has the "zoom-in"
defects for a 360-degree scene. Besides the above reasons, I further evaluate the
results from both perspectives of subjective art sense and engineering difficulties
and choose experiment 1 for further development. The denoise processing is used
to improve the quality of output.

Different outputs are presented from the experiments, and I also use them to produce
some art pieces as a demonstration of the results of this research. It finds an
interesting and valid way to make use of NeRF and 2D style transfer and deliver the
idea of 3D style transfer. As the community of NeRF grows rapidly, and there are
already some great publications focusing on the same direction as this research, I
believe it still shows its contribution to the community.

In the end, this thesis discusses two proposed applications of immersive VR and toy
blocks to show that such 3D style transfer can be a good potential to assist architects,
designers, and artists in their creative work, and for non-professionals to have an
immersive experience. Immersive VR is achieved at the level of free navigation
with controllers, and it already receives positive feedback from user tests. There
are proposed functions of real-time style switchers in the VR application. in the
toy blocks application, the functions of NeRF scene merging require more research
and engineering that goes beyond the scope of this thesis. However, I believe this
application idea will become possible in the near future.
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C h a p t e r 6

CONCLUSION

6.1 Achievements
As proposed at the beginning of this thesis, this thesis aims at exploring a lightweight
and easy-to-implement solution for 3D style transfer, by conducting various experi-
ments, it manages to build up a pipeline to train a neural network containing the 3D
styled scene, and it allows anyone to use their smartphone as a data caption tool, to
generate their own styled scenes. Users don’t need to address the issue with code
or the architecture of the network, instead just input images for 3D scenes and the
style respectively.

On the other hand, it aims at combining neural radiance field with 2D style transfer
to achieve 3D style transfer to achieve a relatively fast process. The experiment
shows that the time consumed in 3D reconstruction and style transfer is faster than
traditional solutions of the sum of each, although there is an extra great amount of
time spent in the data pre-processing sections, which can be potentially optimized
with enough engineering solutions. From the aspect of the quality of the results,
although there are outstanding papers got published during this thesis research,
it still provides value in comparing and quantifying different solutions from both
analytic and aesthetic perspectives, and the optimization methods are valid to be
applied for different NeRF-related works.

Last but not least, it proposes potential applications that can be further developed
into an application or a product. And it suggests its potential for non-professional
designers and professionals to take it as an assistive tool.

6.2 Limitations
As a new and upsoaring technique, there are many limitations in terms of research
and engineering, some might be solved soon, and some are still worth exploring:

• Incompatibility between different NeRF networks. Since most NeRF is neural
networks, almost every NeRF has a different architecture, meaning the radi-
ance field is stored in a different format. The transformation of weights from
one network to another is as difficult as creating a new architecture. If there
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is a method that can solve this issue, NeRF community will expand and unite
in a better way.

• GPU memory. NeRF is a type of neural network that becomes possible based
on the development of modern GPU. Therefore, implementing algorithms on
top of the NeRF requires even more GPU. A very frequent problem during
the training is GPU out of memory.

• Performance. Although state-of-arts Instant-ngp has greatly improved the
performance of NeRF training, another part of the algorithm has not, such as
ColMap, style transfer. Such limitations make it hard to become an end-to-end
solution.

• Noise. Although some companies such as LumaAI have shown a solution
to remove the noise to their best, such a solution is not open-sourced. And
it doesn’t always promise a clean reconstruction. It’s part of the features in
NeRF work, and it brings difficulties for the advanced algorithms built on top
of it.

6.3 Further Work
This type of work has a huge potential for various applications from my personal
view. During the research and experiment, I believe the below applications are
possible with enough engineering effort.

• Integrating the 3D style transfer network such as ARF into Instant-ngp.
Instant-ngp provides multiple handy features for both research and appli-
cation, besides it has a promising quality of trained radiance field. The
integration can make the 3D style transfer one step further to an application.

• Further developing the denoise feature. As mentioned in the limitations
section, noise is a unique feature of NeRF that distinguishes it from other 3D
reconstruction methods. The method of denoising used in this thesis is rather
simple, remove the RGB and density in low-confident areas that are between
the camera and objects predicted by the depth. But it doesn’t remove all types
of noise, there should be a better solution.

• Developing features to combine multiple radiance fields. As one of the
proposed applications in this thesis, the ability to combine multiple scenes
and adjust their relative coordinates can make it a very useful tool to assist
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architecture, designers, and artists. And thanks to its fast reconstruction speed,
this technique can massively change the way I virtualize and interact with the
environment.
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A p p e n d i x A

DEVELOPMENT FILES AND CODES

This chapter gives important snippets and command lines as samples, the rest of the
code can be referred to GitHub https://github.com/CaoYuchen/NeRF3DStyle.

Command Lines
Below are the major command lines to use for 2D style transfer, Instant-ngp, and
3D ARF code, respectively.

1 # Batch processing style transfer

2 for i in $(ls data/scotty/images); do style_transfer data/scotty/

images/${i} data/styles/14.jpg -o data/scotty_output1/${i} --

devices cuda:0 -s 1920 -sw 0.5; done

Listing A.1: Style transfer command lines

1 # Generate dataset from video, 1 minute uses --video_fps 2 to get

50-150 frames.

2 python /scripts/colmap2nerf.py --video_in <filename of video> --

video_fps 2 --run_colmap --aabb_scale 16 --out <>

3

4 # Training to generate NeRF with Instant-ngp

5 ./build/testbed --mode nerf --scene [path to training data folder

containing transforms.json]

6

7 # Rendering mp4 video from the scene

8 python scripts/run.py --mode nerf --scene data/nerf/fox --

load_snapshot data/nerf/fox/base.msgpack --video_camera_path

data/nerf/fox/base_cam.json --video_n_seconds 5 --video_fps 60

--width 1920 --height 1080

Listing A.2: Instant-ngp command lines

1 # train photo-realistic and style NeRF together:

2 ./launch.sh <exp_name > <GPU_id> <data_dir > -c configs/custom.json

3 # Colmap for customized dataset:

4 bash proc_colmap.sh <img_dir>

Listing A.3: ARF command lines

https://github.com/CaoYuchen/NeRF3DStyle
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Snippet Codes
Below are the major codes of the loss function of style transfer, and the hyperpa-
rameters for tuning the ARF.

1 # Content loss function

2 class ContentLoss(nn.Module):

3 def __init__(self, target, eps=1e-8):

4 super().__init__()

5 self.register_buffer(’target’, target)

6 self.loss = ScaledMSELoss(eps=eps)

7

8 def forward(self, input):

9 return self.loss(input, self.target)

10 # Stlye loss function

11 class StyleLoss(nn.Module):

12 def __init__(self, target, eps=1e-8):

13 super().__init__()

14 self.register_buffer(’target’, target)

15 self.loss = ScaledMSELoss(eps=eps)

16

17 @staticmethod

18 def get_target(target):

19 mat = target.flatten(-2)

20 # The Gram matrix normalization differs from Gatys et al.

(2015) and Johnson et al.

21 return mat @ mat.transpose(-2, -1) / mat.shape[-1]

22

23 def forward(self, input):

24 return self.loss(self.get_target(input), self.target)

25 # Sum loss function

26 class SumLoss(nn.ModuleList):

27 def __init__(self, losses, verbose=False):

28 super().__init__(losses)

29 self.verbose = verbose

30

31 def forward(self, *args, **kwargs):

32 losses = [loss(*args, **kwargs) for loss in self]

33 if self.verbose:

34 for i, loss in enumerate(losses):

35 print(f’({i}): {loss.item():g}’)

36 return sum(loss.to(losses[-1].device) for loss in losses)

Listing A.4: Style transfer loss functions
(crowsonkb. (n.d.). GitHub - Crowsonkb/style-transfer-pytorch: Neural style transfer in PyTorch. )
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1 {

2 "reso": "[[128, 128, 128], [256, 256, 256], [512, 512, 512]]",

3 "n_iters": 102400,

4 "background_nlayers": 32,

5 "background_reso": 1024,

6 "cam_scale_factor": 0.9,

7 "upsamp_every": 25600,

8 "near_clip": 0.35,

9 "lr_sigma": 3e1,

10 "lr_sh": 1e-2,

11 "lr_sigma_delay_steps": 0,

12 "lr_fg_begin_step": 1000,

13 "thresh_type": "weight",

14 "weight_thresh": 1.28,

15 "lambda_tv": 5e-3,

16 "lambda_tv_sh": 5e-3,

17 "lambda_tv_background_sigma": 5e-3,

18 "lambda_tv_background_color": 5e-3,

19 "lambda_beta": 1e-5,

20 "lambda_sparsity": 1e-11,

21 "background_brightness": 0.5,

22 "tv_early_only": 0,

23 "tv_decay": 0.5

24 }

Listing A.5: ARF hyperparameters
(Zhang, K., et al. (2022). ARF: Artistic radiance fields. In Lecture Notes in Computer Science (pp. 717–733). Springer

Nature Switzerland. http://dx.doi.org/10.1007/978-3-031-19821-2_41)
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A p p e n d i x B

OBSERVATIONS OF APPLICATION IN SOCIAL CONTEXT

This thesis proposes three applications of the research topic 3D style transfer. Be-
cause I only bring one of three proposals to the practice, I can observe directly for
the practical one and indirectly for the rest two by describing the applications to
others and gaining feedback.

For the VR application, users generally take a short time to get used to how to navigate
through the scene by the controller without external hints. The positive feedback is
that they feel immersive in the scene, can tell what style images are applied in the
3D scene, and appraise the visual effect of the scene. A couple of users are from
art and architecture backgrounds that claim it is helpful to observe the scene from
different perspectives and they can imagine it being used in immersive design cases.
Due to the limited boundary of the scene, I observe it happens frequently that users
go outside of the scene and take a while to find the way back because the region
outside of interest consists of floating noise that gives little information about the
direction.

For the toy block application, architecture students feel it is a good idea if they can
combine multiple scenes quickly from daily objects into 3D software, such as Rhino,
and Unity. They recommend turning this technique into an API that can directly be
called from 3D software to bind processes from capture to generation in one click.
And if it can work well, it can help them improve their efficiency.

For the 3D print-styled mesh application, because 3D color printing is quite ex-
pensive and time-consuming, I haven’t found an easy way to test the demo. But
some experienced architecture students observe the generated 3D mesh from this
thesis, and predict that the printed model would be rough and might lead to defects
because the 3D printer can’t incarnate the complex surface very well, but if given
some post-processings to smooth out the surface and reduce the polygons, it can be
as close to a high-fidelity one.


	Abstract
	Acknowledgements
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Background
	Challenges and Demands from Applications
	Limitation of Geometry 3D Reconstruction Method
	Development of Learning Method
	Art-oriented Learning Method
	Multiple Network Combination
	Novel Ideas

	Hypothesis
	Method
	Geometric 3D Reconstruction
	Learning-based 3D Reconstruction
	2D Neural Style Transfer
	3D Style Transfer

	Results
	3D Reconstruction Experiments
	Style Transfer Experiment
	Artistic Pieces
	Applications
	Discussion

	Conclusion
	Achievements
	Limitations
	Further Work

	Bibliography
	Development Files and Codes
	Observations of Application in Social Context
	yuchenca_MSCD_SoA_2023.pdf
	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Background
	Challenges and Demands from Applications
	Limitation of Geometry 3D Reconstruction Method
	Development of Learning Method
	Art-oriented Learning Method
	Multiple Network Combination
	Novel Ideas

	Hypothesis
	Method
	Geometric 3D Reconstruction
	Learning-based 3D Reconstruction
	2D Neural Style Transfer
	3D Style Transfer

	Results
	3D Reconstruction Experiments
	Style Transfer Experiment
	Artistic Pieces
	Applications
	Discussion

	Conclusion
	Achievements
	Limitations
	Further Work

	Bibliography
	Development Files and Codes
	Observations of Application in Social Context




