Carnegie Mellon University
Software Engineering Institute

Using Model-Based Systems Engineering
(MBSE) to Assure a DevSecOps Pipeline
Is Sufficiently Secure

Timothy A. Chick
Scott Pavetti
Natasha Shevchenko

May 2023

TECHNICAL REPORT
CMU/SEI-2023-TR-001
DOI: 10.1184/R1/22592884

CERT Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution.

http://www.sei.cmu.edu

A\

Design: REV-03.18.2016.0 | Template: 01.04.2023

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA
01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM23-0444

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table of Contents

Acknowledgments

Abstract

1 Introduction

2 Approach and Validity

3 DevSecOps Platform Independent Model (PIM) Overview

4 Managing Risk

5 Assurance Cases and Defeaters

6 Structuring a DevSecOps Pipeline Assurance Claim Using MBSE
7 Summary

Appendix A MBSE Model with Cybersecurity Extension

Appendix B: Building and Modeling Threat Scenarios

Abbreviations and Acronyms

Bibliography

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

11

13

42

43

49

62

64

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Development, Security, and Operations Integration
Business Mission, Capability Delivery, and Products
Business Mission, Capability Delivery, and Products Attack Surface
DevSecOps Infinity Diagram

DevSecOps PIM Content Diagram

DevSecOps Equities

DevSecOps Capabilities as Stated in the PIM
DevSecOps Pipeline Top-Level Assurance Claims
DevSecOps Configuration Management Assurance Case
Test Process and Results Defeater

High-Priority Activity Threats Defeater

Incomplete and Inconsistent Capability Requirements Defeater
Capability to Requirement Mapping

Capability to Requirements Traceability Matrix

Threats Traced to Capabilities via Operational Activities
Configuration-Management Capability Behavioral Map
Requirement Diagram

Requirements-Satisfy Matrix
Threat-to-Operational-Activity Matrix
Capability-to-Operational-Activity Matrix

Threats with Attributes

Threat-Modeling Diagram for Write Code Operational Activity (Example)

Flow Diagram for Design Product Operational Activity (Example)
Threat-to-Attack Matrix

Threat-to-Role Matrix

Example of Requirements Representation in Diagrams from the PIM

DevSecOps Capabilities Representation in Diagrams from the PIM

Example of Operational Activities Representation in Diagrams from the PIM

Example of Roles Representation in Diagrams from the PIM

Example of Security Elements Representation in Diagrams from the PIM

Threat-Modeling Custom Profile Diagram

Involvement Profile Custom Profile Diagram

List of Tables

Table 1: Three Kinds of Defeaters [Goodenough 2012] 11
Table 2: DevSecOps Capability Definitions as Stated in the PIM 14

Table 3: Mapping DevSecOps Capabilities to DevSecOps Pipeline Top-Level Assurance Claims 16

Table 4: Threat-Scenario Template Definitions 49
Table 5: Threat-Scenario Example 50
Table 6: Threat-Scenario-Generation Workshop 50
Table 7: Process-Specific STRIDES Threat-Modeling Taxonomy 53
Table 8: Modeling Threats in UAF 56

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Acknowledgments

We are grateful for the comments from those who reviewed various drafts of this report: Bob El-
lison, Tim Morrow, Mary Popeck, and Carol Woody.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abstract

Many enterprises and government programs are concerned that adversaries may abuse weaknesses
in a DevSecOps pipeline to inject exploitable vulnerabilities into their products and services. This
report presents an approach using model-based systems engineering (MBSE) and the DevSecOps
Platform Independent Model (PIM) to evaluate and mitigate the cybersecurity risks associated
with a given enterprise’s or government program’s DevSecOps pipeline(s). The analysis ap-
proaches this report describes focus on ensuring that the DevSecOps pipeline and its associated
products are implemented in a secure, safe, and sustainable way; are sufficiently free from vulner-
abilities; and the capabilities only function as intended. Ultimately, the PIM provides analysts
with a minimum set of MBSE tools to assist with threat identification, analysis, documentation,
and subsequent mitigations.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1 Introduction

Organizations struggle in applying DevSecOps practices and principles in a cybersecurity-constrained environ-
ment because they lack a consistent basis for managing software-intensive development, cybersecurity, and
operations in today’s embedded and distributed systems-deployment scenarios. They typically focus on creat-
ing pipeline functionality to produce output quickly and efficiently and applying some controls to show that
they addressed compliance mandates. Organizations are challenged in addressing basic security questions,
such as “Are the right controls in place to meet the appropriate cybersecurity needs?”” and “Are these controls
applied appropriately in the pipeline?”

An authoritative reference model that is augmented to consider system assurance, such as the DevSecOps Plat-
form Independent Model (PIM) [CMU SEI 2022], enables organizations to fully design and execute an inte-
grated DevSecOps strategy that addresses stakeholder needs with cybersecurity in all aspects of the
DevSecOps pipeline. An assurance case can demonstrate the adequacy for both the pipeline and the embedded
or distributed system. While builders of embedded and distributed systems desire to reap the flexibility and
speed expected when applying DevSecOps, they need reference material and a repeatable, defensible process
to confirm a given DevSecOps pipeline is implemented in a secure, safe, and sustainable way.

Modeling allows extensive verification through model-based systems engineering (MBSE) tools before effort
is wasted to “burn” chips, select and install specific tools, and execute physical tests. The DevSecOps PIM
provides embedded and distributed DevSecOps system builders the ability to select from the information pro-
vided by experts to

« specify the DevSecOps requirements to the lead system integrators who need to develop a platform-spe-
cific solution that includes the designed system, simulation or testing platforms, and continuous integra-
tion/continuous deployment (CI/CD) pipeline

« assess and analyze alternative pipeline functionality and feature changes as the system evolves

o apply DevSecOps principles to complex systems that do not follow well-established software architectural
patterns used in industry

e provide a basis for threat and attack-surface analysis that can establish a cyber assurance case for structur-
ing evidence to demonstrate that a system and DevSecOps pipeline are sufficiently free from vulnerabili-
ties and function only as intended

« confirm the selected platform-specific solution has sufficient cyber assurance

In this report, we focus on the use of the DevSecOps PIM to frame a cyber assurance case, showing how the
evidence we gathered can be combined into an argument demonstrating that the risks associated with a given
DevSecOps pipeline instance have been adequately addressed. Using the PIM as guidance, an organization, or
project, can develop a platform-specific assurance case to demonstrate whether key cyber aspects are ad-
dressed, how they are addressed, and how well the corresponding solution handles known DevSecOps cyberse-
curity risk. This, in turn, provides the organization with the basis for making risk-based decisions tied to the
adequacy of the security controls and processes selected and deployed. This approach structures pathways and
guidance for automated systems testing or collecting other evidence, such as scenarios where hardware-in-loop
(HIL) is used for quality assurance. Actual testing provides the evidence needed to support the assurance
claims, but the DevSecOps PIM defines the assurance case structure.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 1

2 Approach and Validity

As depicted in Figure 1, DevSecOps is an approach that integrates development of features (Dev), defensibility
or security (Sec), and stable delivery/operations (Ops) of software systems to reduce the time required to move
from need to capability and provide CI/CD with high-quality software [Morales 2020]. The DevSecOps pipe-
line is a socio-technical system made up of a collection of both software tools and processes [Bass 2015]. It is
not a computer-based system to be built or acquired; it is a personal, team and organizational mindset that re-
lies on defined processes for the rapid development, fielding, and operations of software and software-based
systems utilizing automation where feasible to achieve the desired throughput of developing, fielding, and sus-
taining new product features and capabilities.

Defensibility

DEVSECOPS

Stability Features

Figure 1: Development, Security, and Operations Integration

Since enterprise architecture and MBSE are the best practices for designing and formalizing a description of a
complex information system in a social context, we created the DevSecOps PIM. The PIM can now be used to
effectively design, develop, and sustain a secure and stable DevSecOps pipeline. We define a DevSecOps
pipeline as “a socio-technical system composed of both software tools and processes. As the capability ma-
tures, it seamlessly integrates the three traditional factions that sometimes have opposing interests: develop-
ment, which values features; security, which values defensibility; and operations, which values stability. A
DevSecOps pipeline emerges when continuous integration of these three factions is used to meet organiza-
tional, project, and team objectives and commitments” [CMU SEI 2022].

To begin a cybersecurity risk analysis of a specific DevSecOps pipeline, it is necessary to define a reference
architecture for DevSecOps. The purpose of a reference architecture, such as the DevSecOps PIM, is to capture
the organization, mission, people, processes, and systems (hardware and software) necessary to fully realize a
mature DevSecOps-oriented enterprise or program. This provides a framework for identifying and mitigating
security risks that should be considered in a specific pipeline instantiation.

The value of using enterprise architecture and MBSE approaches is based on an assertion that DevSecOps
pipelines are complex systems. By definition, a system is “an assemblage or combination of things or parts
forming a complex or unitary whole” [Dictionary.com 2023]. Thus, DevSecOps is a system. It also possesses
the characteristics of a socio-technical system [SEBoK 2022] and a computer-information system, since
DevSecOps pipelines are composed of people, processes, and computer technology that are “designed to col-
lect, process, store, and distribute information” [Wikipedia 2023a]. If we add to this definition that DevSecOps
pipelines are composed of independently developed, independently maintained, likely physically and logically

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

distributed, task-dedicated, interoperable components, then we can affirm that DevSecOps pipelines are com-
plex socio-technical computer information systems.

The idea of applying MBSE methods to socio-technical systems is not new [Asan 2014, Haskins 2007, Miller
2012, Oosthuizen 2018, Palmer 2016]. In addition to the cited publications, companies have adopted the use of
MBSE and virtual modeling tools in their everyday practices [Dassault Systémes 2023]. It is a standard prac-
tice [Object Management Group 2010] to use model-based approaches such as business-process modeling
(BPM) to design or describe patterns of human activities as a context of the functioning of a computer infor-
mation system (i.e., business process). As we identified that a DevSecOps pipeline combines characteristics of
both socio-technical and computer-information systems, using BPM and MBSE approaches are the logical
next step.

As articulated in Figure 2, all DevSecOps-oriented enterprises, or government programs, are driven by three
concerns:

1. business mission
2. capability to deliver value

3. products

The business mission captures stakeholder needs and channels the whole enterprise, or program, in meeting
those needs. The business mission is owned by the organization’s core executive and is supported by various
business functions depending on the domain in which the enterprise, or program, operates. This part of the or-
ganization can answer the questions “Why and for whom does the enterprise, or program, exist?”’

The capability to deliver value in a DevSecOps organization covers the people, processes, and technology nec-
essary to build, deploy, and operate the enterprise’s or program’s products. In general, this consists of the soft-
ware factory and product operational environments; however, it does not consist of the products themselves. In
the DevSecOps PIM, this is commonly referred to as the “system” and is synonymous to a DevSecOps pipe-
line.

Products generically are the units of value the organization delivers. In a DevSecOps-oriented organization,
these products are the components, applications, services, and outputs that the organization delivers and de-
ploys for customers to use. These products utilize the capabilities the software factory and operational environ-
ments deliver. In the DevSecOps PIM, this is commonly referred to as the “product under development.”

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Captures stakeholder

H Teal needs and channels the
Busmess MISSIO“ whole enterprise towards
meeting those needs

Capablllty DEIlVEfy The people, processes,
and technology necessary
to build, deploy, and
operate the enterprise's
products (i.e., the software
factories)

Mission Systems or services
that are delivered, deployed,
and operated for use by the
warfighters

DevSecOps

Oriented Enterprise
Application Business Case Platform
Shared Services Requirements Infrastructure

Figure 2: Business Mission, Capability Delivery, and Products

The enterprise, or government program, provides the business case and requirements to each of the other con-
cerns that are responsible for providing the capability to deliver value and the value itself. Both capability de-
livery and product development execute a DevSecOps process using different process steps to achieve their
planned outcomes. However, they need to synchronize with each other periodically to ensure that the software
factory and operational environments remain capable of meeting the needs of the products under development.
Security is improved when duties are separated, providing another reason for segregation.

As visualized in Figure 3, an attack surface is the accumulation of all possible attack vectors in which a threat
actor can access a system and perform unauthorized actions. The smaller the attack surface, the easier it is to
protect. The tight integration of business mission, capability delivery, and products using integrated processes,
tools, and people increases the attack surface of the product under development. Traditional products are oper-
ated or deployed in environments segregated from the environment in which they were developed. Thus, tradi-
tional cybersecurity practices have focused on protecting the final delivered product. With the adoption of
DevSecOps tools and techniques and the increased coupling between the product being built and the tools used
to build them, the attack surface of the product continues to grow, incorporating segments of the development
environment. Threat analysis helps to focus the builders’ attention to areas of greatest concern for security
risks and identify attack opportunities that could require additional mitigations.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Un-patched
Vulnerabilities,

. Pa&swo?d
‘ ___--X_Policy
DevSecOps

i '*ﬁ Oriented Enterprise

Application Business Case Platform

Targeted
Attack

Shared Services Requirements Infrastructure

Physical
Theft

Figure 3: Business Mission, Capability Delivery, and Products Attack Surface

The DevSecOps PIM helps establish security requirements that builders can apply consistently to pipeline ca-
pabilities, which, in turn, can make the product more secure. This allows the DevSecOps pipeline to become a
part of the enterprise architecture of the system being built, in contrast to current practices where the
DevSecOps pipeline is not included in the overall system architecture and does not effectively integrate with

the compliance and operational context of the products and services.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 DevSecOps Platform Independent Model (PIM) Overview

Most literature discussion around DevSecOps depicts the concepts using some variation of the infinity diagram
shown in Figure 4. This high-level conceptual diagram is generally used to visualize the cultural and engineer-
ing practices that break down barriers and open collaboration between the development, security, and opera-
tions organizations using automation to focus on rapid, frequent delivery of secure infrastructure and software
to production.

pevelop Deploy,

oy i fig. o
- Composition Anajyc, ety Config. e gq,
) - ged ity

"

Software

gt
Security o

Monitor

Figure 4: DevSecOps Infinity Diagram

The DevSecOps PIM takes the DevSecOps Infinity Diagram concepts and implied interaction and explicitly
defines the people, tools, processes, and associated interactions needed to instantiate a DevSecOps pipeline
(e.g., system) and a product under development. Figure 5 provides a high-level view of the model’s content,
which follows the Unified Architecture Framework (UAF). The DevSecOps PIM is broken down into six sec-
tions:

1. Dictionary — This defines key terms unique to the model and references to source material used in the cre-
ation of the PIM.

2. System requirements — These define the DevSecOps requirements in terms of shall statements. The re-
quirements are broken down into seven categories: governance, requirements, architecture and design,
development, test, deliver, and system infrastructure.

3. Strategy — Given the system requirements, what are the capabilities a DevSecOps pipeline (or system)
needs to provide? To answer this question, the model defines 10 capabilities needed to achieve the desired
effect. Capabilities define the ways and means the system will use to implement the requirements.

4. Operational — This captures how the DevSecOps pipeline (e.g., system) and product under development
work at operational and logical levels. It consists of operational-process, structural, and connectivity
viewpoints. The operational-process views capture the flow of major activities and the data and resources

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

needed to perform the given activity. The structure and connectivity views capture the logical organiza-
tions of the activities and performers.

5. Personnel — This captures the human views associated with the DevSecOps pipeline (e.g., system) and
product under development instantiations. This viewpoint was extended with an Involvement custom pro-
file that implements a version of a responsible, accountable, consulted, and informed (RACI) matrix (see
Appendices A and B).

6. Security — This captures the cybersecurity aspects, including results of threat modeling activities, such as
threats and threat scenarios, attack types, and relationships with corresponding threat actors. This view-
point was extended with the threat-modeling custom profile (see Appendices A and B).

For more information, the DevSecOps PIM and associated introduction material can be found at https://cmu-
sei.github.io/DevSecOps-Model/ and https://www.sei.cmu.edu/go/DevSecOpsPIM.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://cmu-sei.github.io/DevSecOps-Model/
https://cmu-sei.github.io/DevSecOps-Model/
https://www.sei.cmu.edu/go/DevSecOpsPIM

Personnel

Content Diagram DevSecOps PIM [;2] Content Diagram 1)
Strategy

Dictionary System Requirements
1
Organizational Structure

1 1 1 1 Strategic Taxonomy
Bibliography 1 2 i 3 it and 4
Design

H N 1 \

pLlcarphy Organization
1 Governance 2Requirements 4Development Post Dm:r:;ﬂo"
) e
SR ¢ DiagramTableMapToDataSource» Responsibilities
Capability Definitions.
)

Maturity Levels Glossary

| 5Test 6 Delivery 7 System

DevSecOps ol Infrastructure =

Maturity Level = Strategic Taxonomy ‘Taxonomy High

n L= 4

Definitions @ = Level
5 Test 6 Delivery l% Pe " o ‘Poste with
o Requirements to with Responsibilties, Goals and Posts with Responsibilities
Infrastructure Maturity Levels. Responsibilities
Traceabllity Strategic Traceability
«DiagramTableMapToDataSource» Roles an
Responsibilities Table

Personnel Structure - Posts Roles Causes Threats Table

Capability to Opr. Activity

TTT
1 c-p-unn;-wmwmnu iy
Requirements by Req nts Requirements. IHu System .
Maturity Levels Containment Map Diagram Requirements Table Requirements
Capability Individual Traceability
Gritical Roles -
Responsibilities, Goals
and Questions.
Requirements Requirements Requirements All Requirements Trace Requirements Copy —r Software
Derived Matrix Dependency Matrix Relationships Matrix Matrix Matrix _m:m""’m Assurance

Operational
aa [—)
Threat Modeling

Operational Processes Operational Structure Attack Types

Security

[Process.
Operational Activities and Flow Diagrams DevSecOps Structure Involvement Matrix
&
Plan DevSecOps Phase Operational
Structure Requirements to Op
‘Activity Matrix

DevSecOps Model Overview Operational Processes

VRN

—1
Create Business @
DevSecOy
e SExtegyand Performers Library Table of mapping
Tactical Plans between performers
and activities
Compromise
Mapping to Op.
to Assets. ey

‘Gapability Delivery
Model

Performers.

Library
Matrix of performers
to activities

relationship

System Development Lifecycle

Threat to Attack Threats with
Mapping Activities Mitigations

Product Under Development Lifecycle

Map of performers to
activities _bﬁ

Processes Libraries

Product Under
Daoprant ot an
Lifecycle ’;l

Data Model
Disrupted Monitoring

Operational Traceability

Patch Software Scenario

«OperationalActivity» 1)
«BPMNProcess»

P18
Patch Software
Scenario

Figure 5: DevSecOps PIM Content Diagram
CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

4 Managing Risk

Many business and government sectors have compliance, legal requirements, and processes and frameworks
for managing risk. Examples include

o Federal Information Security Management (FISMA)

o General Data Protection Regulation (GDPR)

o Health Insurance Portability and Accountability (HIPAA)
o International Electrotechnical Commission (IEC)

o International Organization for Standardization (ISO)

o National Institute of Standards and Technology (NIST)

o Payment Card Industry Data Security Standard (PCI DSS)

While using such standards is a good starting point, most implementations are focused on the product’s com-
pliance, which does not explain why the requirements are in the standard to begin with. What risks are the
standards trying to mitigate? Does a given implementation mitigate the risks better than another? What is the
cost and return on investment between the various implementations? The questions continue. Additionally, the
standards focus only on the final product and miss the fact that the pipeline used to build and maintain the
product must also meet security criteria.

Threat modeling is an analysis technique frequently used by cybersecurity experts to provide the context
needed to identify and reduce the cyber risks and assure the software and overall system function only as in-
tended [Shevchenko 2018]. However, most threat modelers focus on the product and miss the pipeline in their
analysis. Threat modelers need to focus on the entire attack surface. DevSecOps can be seen as one form of
modern software engineering practices and tools that encompasses the full software development lifecycle.
Given the tight coupling of development and operations, the product has become a continuation of the
DevSecOps pipeline where security aspects carry over from the pipeline to the product. Threat modeling aug-
ments secure development practices and tools, along with security automation techniques and security opera-
tions for the full system lifecycle. When done well, the overall risks associated with the DevSecOps pipeline
and associated products will be reduced, and the compliance and legal requirements will naturally be addressed
within the engineering lifecycle.

Understanding risk is hard. In cybersecurity alone, the Open Risk Manual [Open Risk Manual n.d.] has identi-
fied over 70 categories of risk, such as access control, data breach, denial of service, malware, situational
awareness, vulnerability assessments, and so forth. Without being able to quantify or reason around the cyber-
security risks associated with a given product and DevSecOps pipeline, one will not be able to properly bal-
ance features, defensibility, and stability and make necessary tradeoffs so that those properties are optimally
maintained to achieve a given organization’s or project’s mission and vision in a cost-effective way. As shown
in Figure 6, one must consider the properties in a way that balances risk, quality, and benefits within their time,
scope, and cost constraints. The DevSecOps PIM is designed to set the stage by defining what must be consid-
ered such that a platform-specific DevSecOps pipeline can balance the properties within reasonable constraints
to meet a given mission and vision.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 9

TIME

BENEFITS

S FEATURES

TABILITY
L Y
SCOPE CoST

QUALITY

Figure 6: DevSecOps Equities

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

5 Assurance Cases and Defeaters

Builders and evaluators can use an assurance case to reason about the degree of security for both the pipeline
and the product. It is a structured approach used to argue that available evidence supports a given claim, thus
explaining why a claim about the system property holds true. The DevSecOps PIM can incorporate the ele-
ments needed to frame a software assurance case by showing how gathered evidence can be combined into an
argument demonstrating that the risks associated with a given pipeline instance have been adequately ad-
dressed. This, in turn, provides the organization with the basis for making risk-based choices that assure the
pipeline functions only as intended. “Confidence in the truth of a hypothesis or claim increases as reasons for
doubting its truth are identified and eliminated. Possible reasons for doubting the truth of a claim arise from
analyzing an assurance case using defeasible reasoning concepts” [Goodenough 2012]. This approach provides
logical pathways and guidance for automated systems testing or other evidence-collection techniques used for
quality assurance. Actual test results provide the evidence needed to support the assurance claims.

Assurance cases are composed of the following elements:

o Claims — Claims are “assertions put forward for general acceptance. They are typically statements about a
property of the system or some subsystem. Claims that are asserted as true without justification become
assumptions and claims supporting an argument are called subclaims” [Bloomfield 2014].

e Arguments — Arguments “link the evidence to the claim” [Bloomfield 2014] by stating the assumption(s)
on which the claim and the evidence are built.
« Evidence — “Evidence is used as the basis of the justification of the claim. Sources of evidence may in-

clude the design, the development process, prior field experience, testing, source code analysis or formal
analysis” [Bloomfield 2014].

o Defeaters — Defeaters are “possible reasons for doubting the truth of a claim” [Goodenough 2012]. Table 1
below defines the three types of defeaters for which evidence would be used to counter or confirm.

Table 1: Three Kinds of Defeaters [Goodenough 2012]

Kind of Defeater Definition

Rebutting Defeaters that eliminate belief in a claim by providing information that contradicts the claim
Undercutting Defeaters that specify conditions under which the claim is not necessarily true even if the premise is true
Undermining Defeaters that invalidate one or more of the premises (in which case, even if the inference rule is valid and

all rebutting defeaters have been eliminated, we still have a reduced basis for believing in the truth of the
associated claim)

An assurance case is considered complete when no credible new information would change the degree of be-
lief in the claim. There are three criteria one can use in evaluating an assurance case:

1. Positive — The soundness of the argument can be logically validated or checked using credible evidence
and reasoning. This forces one to contemplate defeaters at the evidence level.

2. Negative — One must actively search for and resolve defeaters.

Residual doubts — One must assess the risk of consequences and the likelihood of potentially valid defeat-
ers that cannot be fully resolved.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The concept of using assurance cases with software is not new. Since software is a core component of many
safety-critical systems, one can reference several guidance references or standard documents in building soft-
ware-safety assurance cases (IEC 62304, ISO 26262, MIL-STD-882D, SAE ARP4754/ARP4761, RTCA DO-
178C). There are even a few focused on system and information security, such as the RTCA’s Airworthiness
Security Certification Course (RTCA DO-326, DO-355, and DO-356). For safety, the software must mitigate
all possible hazards that may compromise the safety attributes of the given system. These hazards are usually
caused by a failure, which is a deviation from the intended behavior caused by errors in the functioning of one
or more system components. Failures can result from a combination of many sources, including human error,
poor processes, defective software, and inadequate hardware maintenance. The system must be designed to
handle the hazardous conditions appropriately in addition to delivering the intended functionality.

The same concepts used in safety assurance can be applied to cybersecurity assurance. Cybersecurity assurance
can be defined as the “application of technologies and processes to achieve a required level of confidence that
software systems and services function in the intended manner, are free from accidental or intentional vulnera-
bilities, provide security capabilities appropriate to the threat environment, and recover from intrusions and
failures” [Mead 2010]. Traditionally, cybersecurity assurance is addressed through process-based standards,
such as the NIST Risk Management Framework (SP 800-53). As systems become more complicated and inter-
connected, process-based standards fail to assure system owners that the system functions only as intended un-
der all operational circumstances. For example, they fail to answer how the system will

« behave outside of normal operating conditions, particularly for ad hoc and adverse conditions
« account for constant change in the people, technology, and software

» adapt to changing threat landscapes

Applying safety assurance case practices to cybersecurity takes a property-based approach focusing on intent,
correctness, and risk. This allows the organization to establish and maintain the appropriate security bounda-
ries and constraints needed to assure the system functions only as intended throughout the life of the product.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

6 Structuring a DevSecOps Pipeline Assurance Claim Using MBSE

The DevSecOps PIM provides the foundational architecture model of the socio-technical components and in-
teractions of a DevSecOps pipeline that builders and evaluators need to structure critical claims and arguments
regarding the pipeline’s ability to function only as intended and mitigate cybersecurity risks. While the PIM
provides a foundational structure to build an assurance case, the complete analysis and evidence needed to
complete the assurance case is beyond the scope of the PIM and must be addressed within the instantiated sys-
tem itself. The evidence used to support the claims and arguments should be specific to the people, process,
and technology of the system or products. In addition to provided claims, sub-claims, and arguments, builders
and evaluators can use analysis to identify defeaters for functionality and ways in which threat mitigations
might be defeated, thereby reinforcing the confidence that the assurance case is sound.

As noted earlier, the DevSecOps pipeline is a socio-technical system made up of both a collection of software
tools and processes [Bass 2015]. The DevSecOps PIM maps the complex relationships between the capabili-
ties needed to fulfill the requirement, the operational processes and activities that demonstrate how the system
exhibits the capabilities, and the people and roles performing the processes. Builders and evaluators must un-
derstand the complex socio-technical relations of the DevSecOps pipeline before they can begin to adequately
derive arguments and evidence that rationalize an assurance case to the point in which no credible new infor-
mation would change the degree of belief in the claim that the pipeline functions only as intended. While the
PIM provides the framework for an assurance case, it is insufficient in deriving and providing the evidence
needed to complete the assurance case. Builders and evaluators need a well-understood instantiated
DevSecOps pipeline to complete the assurance case of a given pipeline, as it will include the exact configura-
tion and specific details of the pipeline one needs to test to yield the necessary evidence.

The claim selected to initiate the assurance case is of critical importance in setting the context for establishing
confidence. When building a safety-assurance case, the top claim is typically something related to the system,
such as “The system is safe.” This high-level claim would then be broken down into sub-claims with argu-
ments and evidence in support of the top claim that the system is safe. When applying assurance case concepts
to security, one could start with a top claim such as “The system is secure,” but this cannot be specifically
demonstrated to show that no insecure issues exist.

Using the definition of cybersecurity assurance we previously referenced, an appropriate top claim could be
“The software systems and services function only in the intended manner.” A top claim more specific to
DevSecOps would be “The DevSecOps pipeline only functions as intended.” This claim can be assured if one
can prove that all the pipeline’s key business services and functionality perform as intended. The key business
services and functionality (or, in other words, capabilities) should have been identified during the require-
ments-analysis process (see Appendix A). Figure 7 depicts the capabilities identified during this process and
Table 2 defines the capabilities developed as an output to the process.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Strategic Taxonomy [\ZDE Strategic Taxonomy High Level])

«Capability» ©
DevSecOps Pipeline

«Capability»
Planning & Tracking

Quality Assurance Solution Development

© ‘ | «Capabiliy» © ‘ ‘ «Capabilty» © ‘ | «Capabilly» © ‘ ‘ «Capabilty» © ‘

«Capability» © «Capability» © «Capability» © «Capability» © «Capabilty» ©
Integration Verification & Validation Deployment Monitor & Control Hosting Services

Figure 7: DevSecQOps Capabilities as Stated in the PIM

Table 2: DevSecOps Capability Definitions as Stated in the PIM

Capability

Definition

Configuration
Management

Configuration management is the set of activities used to establish and maintain the integrity of the system and
product under development and associated supporting artifacts throughout their useful lives. Different levels of
control are appropriate for different supporting artifacts and implementation elements and for different points in
time. For some supporting artifacts and implementation elements, it may be sufficient to maintain version con-
trol of the artifact and element that is traced to a specific instance of the system or product under development
in use at a given time, past or present, so that all information related to a given instance, or version, is known. In
that case, all other variations of the artifacts and elements can be discarded as subsequent iterations are gener-
ated or updated. Other supporting artifacts and implementation elements may require formal configuration, in
which case baselines are defined and establish at predetermined points in the lifecycle. Baselines, and subse-
quent changes, are formally reviewed and approved, which will serve as the basis for future efforts.

The configuration management capability of a system matures as the consistency and completeness of the in-
tegrity controls are put in place to capture all supporting artifacts and implementation elements associated with
the system and product under development while keeping pace with the DevSecOps pipeline through automa-
tion and integration with all aspects of the lifecycle. This includes (1) monitoring the relationship between arti-
facts and elements for a given instance, or version, of the system or product under development; (2) capturing
sufficient information to identify and maintain configuration items, even if those who created them are no longer
available; (3) defining the level of control each artifact and element requires based on technical and business
needs; (4) systematically controlling and monitoring changes to configuration items; and (5) enforcing and log-
ging all required relevant stakeholder reviews and approvals, based on the organization, project, and team poli-
cies and procedures.

Deployment

Deployment is the set of processes related to the delivery or release of the product under development into the
environment in which users interact with it. The deployment capabilities of the system mature with increased
levels of automation and advanced rollback and release functionality.

Hosting
Services

Hosting services are made up of the underlying infrastructure and platforms that both the system and product
under development operate upon. This includes the various cloud providers, on-premises bare metal and virtu-
alization, networks, and other software as a service (SaaS) that is utilized along with the management, configu-
ration, access control, ownership, and personnel involved.

Integration

Integration is the process of merging changes from multiple developers made to a single code base. Integration
can be made manually on a periodic basis, typically by a senior or lead engineer, or it can be made continu-
ously by automated processes as individual changes are made to the code base. In either case, the purpose of
integration is to assemble a series of changes, merge and deconflict them, build the product, and ensure that it
functions as intended and that no change broke the whole product, even if those changes worked in isolation.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Capability

Definition

Monitor &
Control

Monitor and control involves continuously monitoring activities, communicating status, and taking corrective ac-
tion to proactively address issues and consistently improve performance. More mature projects automate as
much of this as possible. Appropriate visibility enables timely corrective action to be taken when performance
deviates significantly from what was expected. A deviation is significant if it precludes the project from meeting
its objectives when left unresolved. Items that should be monitored include cost, schedule, effort, commitments,
risks, data, stakeholder involvement, corrective action progress, and task and work-product attributes (e.g.,
size, complexity, weight, form, fit, or function).

Planning &
Tracking

Planning and tracking is the set of practices one uses to define tasks and activities. It also includes the re-
sources one needs to perform those tasks and activities, achieve an objective or commitment, and track pro-
gress (or lack thereof) towards achieving the given objective. It provides the mechanisms required to inform rel-
evant stakeholders where an effort currently is within the process and whether it is on track to provide the
expected outcomes. These mechanisms allow relevant stakeholders to determine what has been accomplished
and what adjustments or corrective actions need to occur to account for impediments and other unforeseen is-
sues. Ideally, impediments and issues are proactively identified and addressed. Practices include documenting
activities and breaking them down into actionable work to which one can assign resources, capturing depend-
ence, forecasting, mapping work to requirements, collecting data, tracking progress to commitments, and re-
porting status. The planning and tracking capability of a system matures as the automation and integration of
associated practices increases.

Quality
Assurance

Quality assurance is a set of independent activities (i.e., free from technical, managerial, and financial influ-
ences, intentional or unintentional) designed to provide confidence to relevant stakeholders that the DevSecOps
processes and tools are appropriate for and produce products and services of suitable quality for their intended
purposes. It assumes that the organization’s, team’s, and project’s policies and procedures have been defined
based on all relevant stakeholder needs, which will result in a value stream that consistently produces products
and services that meet all relevant stakeholder expectations. The quality assurance capability of a system ma-
tures as its ability to assess adherence to and the adequacy of the defined policies and procedures improves.

Software
Assurance

Software assurance is the level of confidence that software functions only as intended and is free from vulnera-
bilities either intentionally or unintentionally designed or inserted as part of the software throughout the full soft-
ware lifecycle. It consists of two independent but interrelated assertions:

1. The software functions only as intended. It exhibits only functionality intended by its design and does not ex-
hibit functionality not intended.

2. The software is free from vulnerabilities, whether intentionally or unintentionally present in the software, in-
cluding software incorporated into the final system.

It is the responsibility of the DevSecOps system to ensure that software that meets the organization’s threshold
for software assurance is allowed to be deployed and operated.

Solution
Development

Solutions development determines the best way of satisfying the requirements to achieve an outcome. Its goals
are to evaluate baseline requirements and alternative solutions to achieve them, select the optimum solution,
and create a specification for the solution. Each development value stream develops one or more solutions,
which are products, services, or systems delivered to the customer, whether internal or external to the enter-
prise.

Verification &
Validation

Verification and validation is the set of activities that provides evidence that the system or application under de-
velopment has met the requirements and criteria that are expected. The scope includes the general realm of
testing, verifying, and validating activities and matures as automation, feedback, and integration with other ele-
ments increase.

If we are saying that the DevSecOps pipeline cybersecurity assurance claim is “The DevSecOps pipeline only
functions as intended,” and the above capabilities (Figure 7) represent the functionality of the pipeline, we can
make a next step and break the top-level cybersecurity assurance claim into sub-claims based on the 10

DevSecOps capabilities as a starting point for the analysis (Figure 8). See the mapping between the capabilities

and the sub-claims in Table 3.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C1.0 The DevSecOps pipeline
only functions as intended

X

(

[

[

1

]

C1.1 The DevSecOps pipeline
provides Planning & Tracking
services and functionality

C1.2 The DevSecOps pipeline
provides Quality Assurance
services and functionality

C1.3 The DevSecOps pipeline
provides Software Assurance
services and functionality

C1.4 The DevSecOps pipeline
provides Configuration
Management services and
functionality

C1.5 The DevSecOps pipeline
provides Solution Development
services and functionality

C1.6 The DevSecOps pipeline

C1.7 The DevSecOps pipeline

C1.8 The DevSecOps pipeline

C1.9 The DevSecOps pipeline

C1.10 The DevSecOps pipeline

provides Integration services and
functionality

provides Verification & Validation
services and functionality

provides Deployment services
and functionality

provides Monitor & Control
services and functionality

provides Hosting services and
functionality

Figure 8: DevSecOps Pipeline Top-Level Assurance Claims

Table 3: Mapping DevSecOps Capabilities to DevSecOps Pipeline Top-Level Assurance Claims

DevSecOps Pipeline C1.0 The DevSecOps pipeline functions only as intended.

Planning & Tracking C1.1 The DevSecOps pipeline provides Planning & Tracking services and functionality.

Quality Assurance C1.2 The DevSecOps pipeline provides Quality Assurance services and functionality.

Software Assurance C1.3 The DevSecOps pipeline provides Software Assurance services and functionality.

Configuration Management C1.4 The DevSecOps pipeline provides Configuration Management services and functionality.

Solution Development C1.5 The DevSecOps pipeline provides Solution Development services and functionality.

Integration C1.6 The DevSecOps pipeline provides Integration services and functionality.

Verification & Validation C1.7 The DevSecOps pipeline provides Verification & Validation services and functionality.

Deployment C1.8 The DevSecOps pipeline provides Deployment services and functionality.

Monitor & Control C1.9 The DevSecOps pipeline provides Monitor & Control services and functionality.

Hosting Services C1.10 The DevSecOps pipeline provides Hosting services and functionality.

The sub-claims in Figure 8 can be further subdivided until one reaches a level where there is sufficient evi-
dence to support the claims. Evidence is considered sufficient when no credible new information would change
the degree of belief in the associated claim. Only an instantiated DevSecOps pipeline can provide evidence to
the lower level of sub-claims that requires details on the pipeline’s implementation. The PIM can support
higher level claims, assist with building the case, and provide a structure for collecting the evidence. To con-
trol scope, the rest of this report will use the configuration management capability as an exemplar of how to do
an assurance case using the PIM—specifically the corresponding assurance case for C1.4. The DevSecOps
pipeline provides configuration management services and functionality (see Figure 8 and Table 3). This claim
is further broken down in Figures 9 through 12. Please note that, to complete the DevSecOps pipeline assur-
ance case C1.0, all 10 elements in Figure 8 would need to be broken down into sub-claims with sufficient ar-
guments and evidence

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C1.4 The DevSecOps pipeline
provides Ceonfiguration
Management (CM) services and
functionality

'A1.4 The DevSecOps pipeline meets
all of CM reguirements and addresses,
all identified abuse cases

Jt

(

C1.4.1 The CM requirements are
met

|

r

A1.4 The DevSecOps Fipeline meets
all of CM requirements and addresses,
all identified abuse cases

D4 The capability requirements are
incomplete and inconsistent

P

D2 Test process and results are
not sound

Key:

A= Argument
C = Claim

D = Defeater

]

]

C1.4.2 All DevSecOps threats
associated with operational
activities are structured and

performed in support of CM have

been mitigated

X

f

C1.4.1.1 CM requirements have
been satisfied

C1.4.2.1 All operational activities
associated with performing CM
requirements have been identified

Figure 9: DevSecOps Configuration Management Assurance Case

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Evidence

activities)

]

A1.4.2 CM threat mitigations are
proven by showing the threats and
how they are mitigated for all CM,
supporting activities

X

[

C1.4.2.1 Critical high-priority
threats associated with CM
activities have been identified

J—

D3 Mot all high-priority activity threats
have been identified

D1.42.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

|

C1.4.2.2 Mitigations have been
taken to neutralize each identified
threat

Contrary
evidence

17

Key:

D2 Test process and results are A= Argument
not sound. C = Claim
D = Defeater
A
[1

D2.2 Test results do not reflect the
current version of ihe DevSecOps
pipeline.

D2 1Test process is not sound.

Contrary
evidence

Contrary
evidence

Figure 10: Test Process and Results Defeater

Key:
A= Argument
C = Claim D3 Mot all high-priority activity threats
D = Defeater have been identified.
(

N

03.2 Missing threats to the design
and construction of operational
activities

D3.1 Migzing threats to activities

C3.2 Appropriate threat analysis
has been performed with
appropriate expertize.

A

A

[

C3.2 1 Appropriate engineering
analysis and implementation have
been performed with appropriate

experiise.

Contrary
evidence

Contrary

evidence

Figure 11: High-Priority Activity Threats Defeater

C3.2.1 Common weaknesses that
are applicable to the pipeline have
been identified.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

18

Key:

A = Argument
C = Claim D4 The capability requirements are
D = Defeater incomplete and inconsistent.

(

]

C4.1 Requirements are based on
industry-accepted standard
practice.

C4.2 Arange of experts have
reviewed the requirements for
completeness and consistency.

Figure 12: Incomplete and Inconsistent Capability Requirements Defeater

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

19

The first argument on

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

I\

f

C1.4.1 The CM requirements are
met

J\

(

A1.4 The DevSecOps Pipeline meets
all of CM requirements and addresses,

D4 The capability requirements are
incomplete and incensistent

]

C1.4.2 All DevSecOps threat:
associated with operational
activities are structured and

performed in support of CM ha

been mitigated

(

C1.4.1.1 CM requirements have
been satisfied

C1.4.2.1 All operational activities
asseociated with performing CM
reguirements have been identified

all identified abuse cases

7

Evidence

D2 Test process and results are

not sound activities)

Key:

A= Argument
C = Claim

D = Defeater

Figure 9 stated, “A1.4 The DevSecOps pipeline meets all of configuration management (CM) requirements
and addresses all identified abuse cases.” This argument requires an architect to make sure that all require-
ments and abuse cases related to CM have been accounted for. Views within the PIM can help address this ar-
gument; however, the system requirements and abuse cases are represented by different elements and reside in
different viewpoints. Thus, the analysis must be split in half.

We will start our analysis with the requirements. As described in Appendix A, the PIM contains a dedicated
viewpoint for system requirements, which makes it easier to locate them and perform requirements engineering
and analysis, including traceability of the requirements to the rest of architecture. Since the CM aspect of the
DevSecOps system is represented in the PIM with the CM capability, CM-related requirements should be
linked with CM capability. Looking at Figure 13, which depicts a collapsed view of the traceability matrix, one
can see that CM capability mapped to 28 requirements from the system-requirements package. Figure 14
shows the same matrix expanded, exposing the linkage between CM capability and specific requirements.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

/

C1.4.2.1 Critical I
threais associate
activities have bes

p—

D3 Nota
I

D142
aS50CI8
reguire:

Evide

3 suawalnbay waisAs []

28
10
37
50
34
17
|65
41
25

[System Requirements

2p07) sB umanAseyul 29 sis [
Alowanu 1SSy 1'575AS [
[NBYUOY BIMDRISELU] 0 SAS [
Uan099Y UISESIA 7 S 5AS [
IN325 LONBULIOJY] £'7' S SAS [
MO 01 PRN 7775 5AS [
AUIQRIBUINA 7' 2554 [1]
0] sEANog 11725 As @]
o uopeWLO TS SAS [
[21035 UOIYeULIOJU] 25 SAS]
uonez|[ensia 6o 2 1S 7sAS [
sBO7 agEINWIL [1'5 54 [1]

[SBOTWaYSAS 15545]
[wabeuel UoReWIO] 5 SAS [
UONBIUNWIWOY SAS [E]]
BUILOISIARId PRIBWAINY 77 5AS]
1bay [BUONIUNJUON S,WLSAS T 545 (]

2 L 7 System Infrastructure

AuiBR1U] W) UONRINYUOD 97 (a0]
AI3A0YRY WASAS 5 (20 (]

AJBA0IRY NP0 b2 [

230195 ABojouy 3 L 18Ul 7 (2]
wawRbeURN AsRRRY 1 |20 [E]

[6 Delivery

IRy UONEULIOM BUNSa] 9 59|]
521 ZZN4 PUR UOINRNAUDG <52 | [€])
2BBI9A0Y BPOY ¢ 50| [E]
uoneneA3 Ajenp v 21 [
WIQRedWoD (001 153] £'¢ SeL]
5 uonexddy JIWRUAQ 75 59|]
A0SBL PRIBWIOINY UM 1€ 5oL]

1 Bupisa) parewoiny ¢ o) (@]
UONBIDOSSY aWaInbay 7752 [{]
21 6UNSaL [enURR S £ 7591]
synsey1sel [enuelw 7 1 s [{]
95D 1531 [BNURW 117551 (]

m Bupysay [enuep 1 s3] [F]

B L5 Test

JOIBINW BIBMPIRH 11 A9 [E]
SUOREINWIS 3NPesd 01 420]
Y LoieWLO| WawWdo(arq 6 a0 [E]
U3 JUBLIdD|BARQ PaIRIBAIL| § a0 [E]
102U0D UOISIBA 91"/ A0],
MBIBAIU| BPOT RIS ST/ Aec] [
16BNGeqa 1/ 4eq @]
uonewoINY ping £1°'/ ARc]
1d.au) pue sapdwiod 71/ Aed)]
J0UP3 PO UN0S 11"/ Awd] []
3 pazioyineun 101"/ Aed [E]
m D pazueyneun 01°2 430 &
NSIBA BQEINWIWY ['6'/ ABe] @]
m \PeISND Jo uleyd 6'2 430]
= 002y 2BMLOS WAISAS 2/ a0 [E]
m loysoday 159 WasAS /4 hec) [E]
5 sodey DRYLY wRAsks o/ Ae0 E]
S § BPOD 30UINOS WRASAS &' Ao [E]
G rdey armwayos npoid v/ e]
" ousoday 1591 NP £ 2 A E]
£ soday PRyLY oI 2L Aed]
[E1 2pod 2unes npedd 12 420]
o
AUNGEN0IY 2NPoId + 1 o0 B
siskjRuy P00 d0eS £ A]
sisAjeUY WBLQ T+ Ao0] [E]
[0 A3 BIBMYOS BINIS & A [E]
5153 01 Bulddep £ Aeq [E]
2umey2y ol Buiddew 7 req]
Swawaanbay 01 buiddel 1 4eq [E]

agement

c
5

M

G [4 Development

lonezuOUNY SwRWAINbaY 9~ bay]
35230, SWAWBNNDYY TS bay [E]

[0 WawRBRUEY 3BUBYY S by [
uoiEpiBA SWAWRANDYY 4 bay []
uonezZnUOL SBWBINbaY £ bey]
| uonIBASGY SWRWAINbAY 2 bay [E]
ejILY SWaWaNNbay 71 bay [E]
FAGRIA WNWILIA ST 17 b2y [

1SSy NDBYILY 411 2y [
by 11T bey [

[widctely €717 bay [

m e Bujuue|d £'7°T bay @]
B2Y 40 uomUYyag 2 T T by [
uoREPOSSY1SaL 111 bay [E]

[I8 WAWAINDYY T°T by [

@ awainbay wawndeq T by @

B [2 Requirements

2NPoId 01 BUFRIBUT 2'0 7400 [E]
UO paseg SUOISSILLIBG 0'0 40D [@]
AIGEUN022Y WalsAs < 0 Ao]
3p0D SB BININASBYU| £'9 400 []
Ju3 BULIGYUOW WRSAS 19400]
[0 2URINSSY Washs 9 40D [@]
2 UONEIYIDD BIBMYOS &5 40D [E]
£ 46a1e0g wawmunseaw £ 5 400 [
D)iqisuodsay pue saoy 55 40D []
S nbeyewseiby 745 Ao E]
w 4By 2dUBUBWIRI [S A00 [E]
£ 1 1500 pUe 5310135 b5 400
H 224224 2/eM0S £ 5 400 [T
2
§

e

=
<

£ 2 59P)j0d paIUBLINIOg 7'5 40D []
¥ sabrurl sbuRyd £ 1 s 00 [
aue suondwnssy 2'1°< 400 [E]

[E] m eiL pue Bujuue|d 15 40D]

i)
palepossy SaBUELD YIBLL T /0D []

2 L 1 Governance

Capability to Requirement Mapping

@ Verification & Validation

@ Configuration Management
@ Solution Development

@ Deployment

@ Quality Assurance
@ Software Assurance

(©) Hosting Services
(©) Integration

(©) Monitor & Control
(©) Planning & Tracking

Legend
" Trace

= (C) DevSecOps Pipeline [Strategic Taxonom

Figure 13

Legend

/' Trace

A7
21

IR EEE

4

11113

Vavas

IR

PPLPPPP AP

T P [[R [P [[[|

15

I 2

TR

283 7

Capability to Requirements Traceability Matrix

i Configuration Management

[£1(C’) DevSecOps Pipeline

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

& = Strategic Taxonomy

Figure 14

The abuse cases in the PIM are represented by threat elements within the “security” viewpoint (see Appendices A and B). Threats do not directly link to a capability in the
PIM. To see the association, one needs to look at the Capability-Operational Activity Threat chain.

In Figure 15, the CM capability traces to several requirements and to operational activities connected to threats (below the operational activities).

Loy T T - AT TR e - = =
il G ot with tha st wittin i Ssam s aseccidd wiha crfiguralon of al gurcs L o e atd with it cati o i all arifacts asciand wih r;" m"““&"“” L‘:‘“ m"“’"d ahall L
. g : : b Inatan & of tha ? Al gt st of i bl i trace tast antifacts o temanaga chan e b
ol s shallba maitinad 5 [y — ghart i aftha cxnefiguration dams and ; ! 5 mghiag L
el PETT T peaductundar devebiormnt” iicluda e i tha SEOM [y e
F ! ' ¥ ¥ ¢= -1 F ¥
| | I ¥ L3 ¥ i i
i i
| \ 1 | 1
! | | . I | ! ! v
s I BT I ! s i s ST Bl rirarerts i B i rmirarnt i Primbi
Miburiby L vl 2= i Maduriy Laval 32 | 1 aMaduriy vl 3> I Mty L vl 2= I el 1 | eMatur by Laval 1> | aMaduriy Ll 1 | bty Laval = | Link A tomated
Tt Ry pary
Unastharized Changes || Memthormed Camge Mt || e mrrarts | Infemtruchure o Gada Ganfiguation itam Inegrity | | - | | fuman | I Link Ma st Teating b0 | Chaga | Satwara inaf
A menrar ! fe=wzar | diuturty Ll 2 v Configurian = e | e | | sotwar matance | ey | Mt o | Hearan:
Shain of Gt 5 = - 5 =
Tait = "Tha gy shall ba Tast= "Tha galm shall | = "9 5.0 | |Tat = Tha gtam shall | [T ar ratrucurs || ="Tha iadam shalba | I = "Tas_13 | Tast= "Tha gapm shall ba I |a=maq 11317 ! Taset = "Tha gatud
ke 1 noifyagans | | [i0= e 190 U Tt Tha sstam shall | |nsaara tha invagrizy ofal amfgurainplanshal ba i M Tut ="Tha Spsamahaiba | | alda b capre, rtn and | |Tast ="The geaism shall ba | [abie b asmeciate
iy @y ursauth o ed | of | |Tast= "Tha sysam shall i maaintsin infrasine Lra a5 configuration itens in rarsk | | e | |eenfiguation efall mat ! abda b ascias manual trach the SN of wdftwan | |k neaty evgnears of | it Ao tad o
changas o @ configuation ||tz chan ges te a | |maintsina chain of cusety | e sing aeoniguratos ! |andigarmity any [el | [Roiilcs mmeciand wiha | mstrebs o wcie ! ant icarsing and R ——
L oo tam | [torat eontiusation zama.” h riagarm ant apph st o " | |imaittn st hangas s & | |amagustoninm: | |k Ratinesoftha | iratan & ot gatem & | [— Y | | guirenints as thay rakaba ! s um orpradu]
¥ | ¥ * ¥ || dupheyd conpuraion i | . - — | Redistunde duwbeman® || ot cn.* [T | |dwskemant®
| I i E F A
A T AL et L R . R e T A A
| |
| | X | 1 | | | | [
| | | | | | | h , | | | | | | | |
i i i l i
| i i i i i i i
! . ! . ! - ! ! . - . . . ' . !
| | |
| : | I— : re— ! s : Am | dmas | e : Angas | o : e | e : o | o | o | Ao : A= : Bt : -t : Ay :
ety]
B p—
|
|
|
|
|
|
i < Tt Mg L s T st b T st i SHpTeCapatity AMTECARENY e gt eapatings Moga T aputiy s MA LR bY g T paciin b T ki bl T i b Tokagabity s iaa Tenput iy 4 bsgTeCaqubilty i sagaT . » abisp T upneal
——————————————— 4—-——-————— - - —— T — - - —— T - — T T —— g ——— —T——— 7 — — — —————v—————[——l———1————————————,—————————————1———————--
! | ! | | | ! | 1 | | s AT O | Mgy T | | |
| ! | ! oo | e ! ! | ! - - | ' | -
|
| | | | | | i i [| | | | | | 1 | X 1 !
| ! | ! ! [| i b ! pr—— | T ! ! ! | ! X
i | i i 1 | X | [| [ty i | | | S, ot Ree, [re=———y ! | | |
| | | | X X [| |omdie Amg 1 I g s s | |Gt Promc 1 | ! | |
: | : | | | X X [| et Lol 1| emociated Tase i | | : | 1
| | | 1 | | i L 1
i \ i
! |
o= ===l " o o o = 1 = L aCprairaiici [+ I
\ - o o
| (Gkam Rl 1| Pt Gonmes, Fianfor aats Craate Low-Luvsd Gmsta BaminslipimaGash | || | Priodss o . e Agaregate, Sxraand Repartan | s o
| Pt Comgunton | [Archilstam md S ' Eatra Pracint sk O Pt iog b T Cotestnd orior g, rming | e
|| [—— ! Licarming Marmgamant Dmign 1| bmgs i tarm R i e | ———— X
Syt Man Fow | | T 1 T |
i | i
l - |
i | [I |
| i
, T T | I [|] Cpammal i e P ik
4 S, Pattorm Canlig)
| l preerm— = e RN 1 e [
| [I bt e | |
| ! ®1 1 1
| ! ! | i | 4 rormismes
|
| | N 1 | 1
| 1 1]
|
| | I i 1
i X 1 | 1
L ™ __1 i
| ! i |
l ! | L
<Corpromesess | | et | e “Thaa
4 - Dimupbad Manitarng
e Trmat 174 T [Tt AT P Pt o facick i, s e ety I
B e it e b e r 14 24 Bt exEargon o maks o 1% 2 Pammning deta whils smragang it T i e st s - i,
cavarsd by ohar defestide et e R = ", recpirarmant i mirdsrpradesd by e devalopar el ing ina Rt = "An el brsad ater, hrgh =T
= et i 1w st Lo s o et hortznciacaa, poon. dota L £ s = x iy
Ly =27, [P e—— oty o carupd chers o, e ack ion, o ?
(Tt = o cosh rasw proceas Teot =~ clvaioper st arpests n mcdmment, eaviing n ackeain Ry,
b 1.0 by chowvalopers 1o racun affort Amrrmbvaly, g,
eting et pm g Frouch s R popar b chin Took = “An sl k. theah Uuneforizsd scsm.
n-u%ﬂ'-l d i b o i iy o mal b st of o iy, Themdors, i ko chia s bor operalions i degrads s
Ses i ol e of st Do oD g wynderea
Taat = Dawwlopers bypona the LU code roakes e puiary sosier iosopiol. This incresma e | sl hood of prcsama
it o . a1y o o i sl ks of vl .
et prming Frovon sl mures
)

Figure 15: Threats Traced to Capabilities via Operational Activities

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The PIM can present this information in several different views. For example, Figure 16 is a behavioral map
that shows the linkage from the CM capability to the threats via connection to the operational activities. On
Figure 19 (which illustrates matrix threats to operational activities) and Figure 20 (which illustrates matrix op-
erational activities to the CM capability), an analyst can see the traceability from the other direction—from

threats to operational activities to capability.

|

(C) Configuration Management. EI<

Legend
Compromised By
Maps To Capability

4 [Decrease Document Markings
J’ % 2 Disrupted Monitoring

I, F 4 Inadequately configures system logging

V [Z 11 Insert Malicious Code in tool chain, code repository, build artifact

/ [6 Intentionally locks out accounts responsible for recovering, investigating, of repairing the system

/.~ 15 intentionally misconfiguring
——~ [7 Intentionally misconfiguring 2
[8 Intentionally misconfiguring 3
[12 Patch Teols in the pipeline

P2-1-7-13 Add Metadata to Backlog tems and Tasks

3 p2-1

[1 Reduced monitoring

<3 P2-1-7-6 Break Down Product Backlog ltems into Tasks

3 P2-1-7-15 Closeout Project \: [%13 Slow Approval Process
\ [3 Unauthorized Access /Modifies logs to divert attribution

210 Unauthorized Access/Modifies logs to divert attribution 2

P38 Configure
<y P2-1-2-1 Cn

£3P2-7-9 Create Information Product

cOps System

Architecture Design

(3 P2-1-2-2 Create Low-Level Desigr
4 P2-1-7-1 Create, Update, Refine, and Remove Product Backlog Items and Associated Tasks
(3 P4-6 Define Business Requirements

1 Define MVP

Deploy

B4 ments exploration and documentaion

P18 Production data (configurations, tokens, accounts, Pl) Is used in non-production systems, data not sanitized

e e
————————— 17 Resuis from analysis are disclosed for effect

timate Product Backlog ltems
3P2-2-7 Execute Dev Tests
>P2-7-7 Generate Indicators

Dependencies Among Backlog ltems

P2-1-7-4 Identify and Assoc

— [E 29 8uild tooks are misconfigured
suls of the analysis
cting Practces

es measurement Metrics

__— F298uid

T~ 27 Misinterpreting the resuls of the analysis

P 26 Misleading Contracting Practices

= 25 Modifies measurement Metrics

S

ve code idioms

d for items not covered by other defect identification processes

ria and or poor coding standards

73P2-2-1 Select Unit of Work
03 P2-2-1 Select Unit of W

nd Artifacts B

Y3P2-14 Store a

V{2p2-2-8 Store and Ma ted Monitoring Data

"< P239 System Main Fl

143P2-1-2-3 Validate Architecture and Design
¥4 p2-7-3 Validate Raw Data

Y3 P2-2-4 Write Code lm———————

rized data, pros

TCp2-2-5 Write Dev Tests .
——— [34 Vendor's PKI has been compromised

Figure 16: Configuration-Management Capability Behavioral Map

Analysis of these views will produce evidence to support argument A1.4 that all CM requirements and abuse
cases have been accounted for.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

23

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

To support sub-claim C1.4.1, which states, “The CM requirements are met” (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

I\

C1.4.2 All DevSecOps threat:

C1.4.1 The CM requirements are associated with operational
met activities are structured and

performed in support of CM ha

been mitigated

C1.4.2.1 All operational activities
41.4 The DevSecOps Fipsline mesis D4 The capability requirements are C1.4.1.1 CM requirements have associaled with performing CM
all of CM requirements and addresses, incomplete and incensistent been satisfied requirements have been identriied
all identified abuse cases Z

7

Evidence C1.4.2.1 Critical |
threais associate

activities have bes

p—

D2 Test process and results are

not sound activities)

Key: D3 Nota
A= Argument '
C = Claim

D = Defeater

D142

BSS0CIE

M requirel

Evidel

Figure 9), the traceability matrix (Figure 13) shows 28 specific requirements traced to the CM capability. The
PIM cannot produce final evidence that the requirements are met. This is the job of verification & validation
activities within the given DevSecOps pipeline instance. Although an analyst can use this matrix to analyze
capability-to-requirements mapping, the analyst must make sure corresponding requirements are complete and
consistent.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Also, the PIM can provide an analyst with additional tools to help with the analysis. For example, an expert can examine each requirement in detail using
a requirements diagram (Figure 17). These types of diagrams depict all elements and connections directedly related to a requirement, such as require-

ments decomposition, derivation, and copy and trace as well as traceability to capabilities and documentation. This view can help one analyze the require-
ments for completeness and consistency to provide evidence to a sub-claim.

o it ot atn Waracarmart g Lo Wardgumart|

Figure 17: Requirement Diagram

Even though the PIM cannot produce final evidence that the requirements are met, it can provide the intermediate evidence that the presented architecture will
satisfy CM requirements. The PIM is process-centric and uses operational activities to satisfy DevSecOps requirements. To find evidence for sub-claim

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 25

C1.4.1.1, which states, “CM requirements have been satisfied” (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

I\

f

C1.4.1 The CM requirements are
met

J\

(

A1.4 The DevSecOps Pipeline meets
all of CM requirements and addresses,
all identified abuse cases

D4 The capability requirements are
incomplete and incensistent

7

D2 Test process and results are
not sound

Key:

A= Argument
C = Claim

D = Defeater

]

1

C1.4.2 All DevSecOps threats
associated with operational
activities are structured and

performed in support of CM have
been mitigated

)\

f

C1.4.1.1 CM requirements have
been satisfied

C1.4.2.1 All operational activities
asseociated with performing CM
reguirements have been identified

A1.4.2 CM threat mitigations are

proven by showing the threats and

how they are mitigated for all CM
supporting activities

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[

C1.4.2.1 Critical high-priority
threais associated with CM
activities have been identified

—

D3 Not all high-priority activity threais
have been identified

Evidence

activities)

D1.4.2.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

26

|

C1.4.2.2 Mitigations have been
taken to neutralize each identified
threat

Contrary
evidence

Figure 9), an analyst can use requirements to the operational activities mapping shown on Figure 18. This requirements-satisfy matrix depicts mapping
specifically for CM.

Legend T [System Requirements
A Satisfies & [1 Governance & [2 Requirements 5 8 L 4 Development @ L5 Test & L 6 Delivery _
7 @ A 6 [Gov 5 Knowledge Management 1 [Gov 6 System Assurance NG HE HHEEEEE 2 @ [Dev_7 Configuration Management g mga gEimiggisgagneEna
Seg Stwygw g 2 @ Gov 3] trEp E 5889 g; 2f2eczu B} Bk SE $ -8 PRI £
238 aviis8: & - | R - - R Sg zE:td : HEER S §iiScactEEisi
B8 3 2I88%ea E B3 2oL I0ctaaE88E8 8 ®gg gE 285% 2 5§38 2 3EgeEcsgeges g
FEE o] AANm e mE T ghinnnnnNsNnedE2s 48 IS =g 2£2 I o222 2ESS A8 553 &8E 3
Y333 33 i iiiii i i Fri i iiiiiiziiiiiiiiziiii g 733 7% 33323333 ¥ 453 I3 zedvEINYy
5888 5823383838888 38 3383¢8388383¢88883888¢888888838 & g in &2 i gpe BREENE5555558
EEE] EEEEEEEEE EEE FEHEEEHECAEEEAEEEEEEEEEEEEEEEE © EEE Bl EE B _EEE EEEE IBEEEEEEE
F 7 Plan DevSecOps Phase 33 6 11 3 1 4 1 2 422 1 2 111 12 2 2 4 2
= ™7 Product Under Development Lifecycle 15 48 27 7 27 2 162 34 1011 11619 41413295125 5 1 9 122 4 427 22 711711111 13 22 9 46 4 5 2 5 4 2
duct Under Development Main Flow
32 7 7 1 1
17 s 7 7 7 7 7 27 7 10
Create Architecture Design 3 e ~ A7 2 2 2 2 21 2 1 1
Create Low-Level Design mwa 727 27 7 7 7 2
Validate Architecture and Design 77 7 7 1 7 7 7
lan for Measurement 1 521 1 2 2 2 2 2 1 5 20
Plan for Contracts, Procurement and Licensing |18 16 27 2/ 3 7 7 2 7 227 1 2 e
Plan for Configuration Management 19 10 2,7 27 7 7 7 3 1 7 1 1 1 1 /4 13
Plan Backlog and Tasks 34534108 5 6 4 188 13 8 8 83 1 3112 6512511122 4432 2 1 2 2
1 C* F2-2 Develop Product 2 632 4 3 SN EEEE s 32 T 1 1 1 3 22 1 1 11 21 6 3
1 ¥ P2-4 Validate Product 633 6 s 3 s 3 3 T ZIENEIE 3 2 1 1 T 2 12 5 27
eploy Product 76 7 1 7 7 7 1 7 6 7 5 4 22
Perform Integrity Check 2817 2,7 2 1 2 d | 2 A7 1 1 5 1 43 7 1, 2 2
Provide Feedback on Failure 2616 a7 2 1 7 7 727 A7 11 1 7 7/ 5 7 2 2
eploy using Selected Deployment Strategy (17 10 7 1 7 7 7 7 77 5 7
{3 P2-5-4 Identify Deployment Stategies 43 2 d d 1 1
lonitor Product 37 26 a7 2 3 6 7 2 7 2 7 7 7 727 5 1 41 7 5 1 22
Injest Raw Data 127 2 7 7 7 7 7 2 227 3 3
Obtain Measurement Definition 9 7 2 7 7 7 7 7 2 2
lidate Raw Data 127 2 7 7 7 7 7 2 7 7 3 3
Normalize Data 0 7 2 7 7 7 7 7 1 7 2 2
E erive Data 0 7 2 2 2 2 » 2 1 2 2 2
s Perform Analysis & Modeling 10 8 2 2 2 2 2 2 1 2 2
E Generate Indicators 29 ~ 2 2 2 2 » 2 1 1 2 2 2
< pply Decision Criteria and Context 97 2 » ~ ~ A » 2 2
{ Create Information Product 10 5 2 7 7 7 2 1 7 3 3
P lanage Contracts, Licenses and Agreements 2218 727 2 3 7 7 3 7 727 7 1 1 1 3 3
P Perform Configuration Management 2311 a7 2 7 7 7 727 6 1 7 12 7 1 1 1 d 22
P Store and Manage Code and Artifacts 5014 7 . 2 7 72 7 r 27 22227 7 7 1 Ve | Al aravavavavarare | 27 74 72 5 32
{*P2-15 Aggregate, Store and Report on Product Collected NOE68 " 8 6 6 ~ "3 3 / 3 6 27 2 7 2 7 P PP P22 72727 Pl Yavavd . | Vd 7 7 21 7 04 73 7 7 16 7 7 2

Figure 18: Requirements-Satisfy Matrix

Argument 1.4.1, “Test results showing all 28 CM requirements are verified,” and defeater D2, “Test process and results are not sound,” can only be fully
addressed by a well-understood, instantiated DevSecOps pipeline. This can be accomplished by demonstrating how the requirements in the PIM have
been satisfied with supporting evidence.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

In support of analyzing claim C1.4.2, “All DevSecOps threats associated with how operational activities are structured and performed in support of CM have been

mitigated” (
C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality
A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases
C1.4.2 All DevSecCps threais
C1.4.1 The CM requirements are associated with operational
met activities are structured and
performed in support of CM have
been mitigated
f] [
C1.4.2.1 All operational activities
A1.4 The DevSecOps Fipeline meets D4 The capability requirements are C1.4.1.1 CM reguirements have associated with performing CM A1.4.2 CM threat mitigations are
all of CM requirements and addresses, incomplete and inconsistent been satisfied reguirements have been identified proven by showing the threats and
all identified abuse cases how they are mitigated for all CM,
supporting activities

P

C1.4.21 Critical high-priority C1.422 Mitigations have been
threats associated with CM taken to neutralize each identified
D2 Test process and results are activiies have been identified threat

not sound activities)

—

Key: D3 Mot all high-priority activity threats
A= Argument have been identified

C =Claim

D = Defeater

D1.4.2.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

Contrary
evidence

Figure 9), the threat-to-operational-activity matrix (Figure 19) can be used to identify applicable threats that should be mitigated.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

E = Product Under Development Lifecycle Sl System [
El < # P2 Product Under Development Main Flow B {J P239
B ¥ P2-1 Plan Product B P2 -2 Develop Pri

Legend
/" Compromises

.
z

=]
|

P2-4 Validate Product

=]
=%
c
Il
a2

lan for Mea @
lan for Contras
lan for Quality
lan for ConfigL
lan Backlog

2-5 Write Dev Test:

w2 P2-7-0 Review Code a

F2-10 Perform Quality Ass

FZ-11 Perform Data Analy
P2-12 Monitor Developme
F2-13 Perform Configurati

P2-1-1 Plan for SecL

=1 #p2-1-2 Design Pro [
p2-2-1 Select Unit of W<
F2-2-2 Plan and Detail

o0 H P22 -4 Write Code
F2-2-7 Execute Dev [Fl
F2-72-8 Store and Mana
P2-2-9 Release Code f
PZ-4-3 Deliver to Testi

o # p2-4-4 Perform Dynam
P28 Manage Contracts, Li
P2-9 Provide Feedback

=¥ P2-14 Store and Manage €

St tu tutuw N w w ww w | P2o1s Aggregate, Store an

F239-1 Design System

P239-2 Plan System
< ¥ P239-3 Implement System

P2-1-2-1 Create Ar
F2-1-2-2 Create Lo
PZz-1-2-3 Validate #
F2-1-2-4 Review Ar
P2-4-1-1 Perfor @
PZ-4-1-1-1 Perf
P2-4-1-2 Perforr 1
P2-4-1-3 Perform C
P2-4-1-4 Petform 2
F2-4-1-5 Generate
P2-4-1-6 Aggregats
FZ-6 Operate Product
P2-7 Monitor Product

=l # P2-4-2 Build and Pack:

P2-1-3 P
P2-1-5P
P2-1-6 P
P2-1-7 P

P14 p
{ # P2-4-5 Deliver to Prodi

=7 Plan DevsecOps Phase
{ ¥ P2-5 Deploy Product

o
.
P
.
P
B
S
<
o
.
S
F:
b
<
P
.
P
B
e
.
S
F:
{2 P2
P
B
S
<
o
.
b
<
P
.
P
B
S
<
o
.
S
F:
o
.
P
.
S
F:
o
.
b
<
P
.
P
B
S
<
o
.
S
F:
s
<
o
.

w8 pp-4- 1 Perform St: @ <

£l [Threats
= 1 Reduced monitoring
= 2 Disrupted Monitoring
3 Unauthorized Access/Modifies logs to divert attribution
4 Inadequately configures system logging
5 Intentionally misconfiguring
& Intentionally locks out accounts responsible for recovering, inv
7 Intentionally misconfiguring 2
 Intentionally misconfiguring 3
9 Decrease Document Markings
10 Unauthorized Access/Modifies logs to divert attribution 2
11 Insert Malicious Code in tool chain, code repository, build art
Patch Tools in the pipeline
Slow Approval Process
Disable the static analysis
5 Alters Automated analysis reports
16 Configures analyzer in a way that is not best practice
17 Results from analysis are disclosed for effect
& Production data (configurations, tokens, accounts, Pll, etc) is
% Development productivity tool generates code based on mod
0 Tool generates code based on predetermined code snippets
21 Perform a code review without sufficient security review crite
2 Review is skipped for items not covered by other defect ider]
3 Poisoning data while aggregating it
4 Requirements exploration and documentation
25 Modifies measurement Metrics
26 Misleading Contracting Practices
27 Misinterpreting the results of the analysis
2& Using careless or naive code idioms
Build tools are misconfigured
30 Upstream activity provide false /modified data
1 Tampering without data
2 Data is intercepted between activies
33 Miscategorized data, providing unnecessary data
Vendor's PKl has been compromised
Injects vulnerable work items /user stories 1
Compromises a vendor
7 Injects exploitable /malicious code into upstream open sourc
£ Encryption

(RIS UNR RN RN R AL

=Rl

RINR Uy RIRL

[e e e e e e e e e S S S T S

NSRRI R R

NN N NN e e e
N N NNy
NN YN NN

-
AN

—-
N Ny

=
=
=
=
=
=
=

(RIR]

Figure 19: Threat-to-Operational-Activity Matrix

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

In support of sub-claim C1.4.2.1, “All operational activities associated with performing CM requirements have been identified” (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

I\

f

C1.4.1 The CM requirements are
met

J\

(

A1.4 The DevSecOps Pipeline meets

all of CM requirements and addresses,

all identified abuse cases

7

D2 Test process and results are
not sound

D4 The capability requirements are
incomplete and incensistent

Key:

]

1

C1.4.2 All DevSecOps threats
associated with operational
activities are structured and

performed in support of CM have

been mitigated

)\

f

C1.4.1.1 CM requirements have
been satisfied

C1.4.2.1 All operational activities
asseociated with performing CM
reguirements have been identified

A= Argument
C = Claim
D = Defeater

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Evidence

activities)

30

A1.4.2 CM threat mitigations are

proven by showing the threats and

how they are mitigated for all CM
supporting activities

[

C1.4.2.1 Critical high-priority
threais associated with CM
activities have been identified

—

D3 Not all high-priority activity threais
have been identified

D1.4.2.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

|

C1.4.2.2 Mitigations have been
taken to neutralize each identified
threat

Contrary
evidence

Figure 9), the threats traced to the CM capability via operational activities in Figure 15 can be used as evidence that all operational activities associated

with performing CM have been identified. Alternatively, the capability-to-operational-activity matrix (Figure 20) illustrates the linkage between CM

capability and corresponding operational activities and can provide the missing information. Analysts can also use it as a tool to effectively identify and

correct inconsistences in the model.

El 2phoeyr wawidopaaq woishs L|
AIUQ PRAIQD 1NPOIJ LD LIOGRY PUE 24015 ‘ABBUBBY S1-7d £
SDEJLY PUE 3P0 SBBUB PUE BI0IS #1-72d |

1UBWIABEURY UONBINBUOD WIOLDd €124 £ 3

JUBLILONAUT 1§31 PUB JUBLICO[2AQ JONUOW 7T-7d & 3]
SISA/BUY B1EQ WIOLRd [1-74 £

DURINSSY AIBND) WIOLR 0T-2d £ 31

APEGPOR BPIAOI G-Zd £

S1UBWIARABY PUB S3SUIIT 'SIBINGD IBBUBN 2-7d £ 3

1N PO.J UONBWLIOJU 31831 6/ 24 £

21107 pUE BLIAULD U0ISAA Alddy 8/ 7d L

SAOIRIIPU| URIBUBY /-2 £}

BUIBPOIN 1 SISA|BUY WLIOKB O/~ 7d £

=] PIRQ BNIBG S/ 7d £ ¥
¥RQ DZYBULION /- 2d

BIBQ MBY DIBPIEA £/ 7d £

UORIUYRQ JUBWRINSBIN WRIAO 7/~ 7d £

wIRQ MBY ISl -/~ 2d £

7 Moniter Product
22222 DEONEEE
v v

A arard Iarararars

A REEE

m
PNpoid R0 5-7d 7
saiBa1e.ng waLAo|deq AP 4574 £
AB1RAG WALIAO|GRA PRI BUISN AGIURQ £-5-2d £
BIN|IE4 U0 HPRGPBRS BPIAOLY 7-5- 74 £
>3 ABBILI WIOMB T-5-7d £

[12npoig Aojdaq §-7d &>
UONINPOId 01 IBAIRA S b~ 7d =)
SISAIRUY HWBUAQ WAGYRd v 2d £ ¥
U1 swswuo.AUZ BuIBEIS/BUnSs | 01 198G - b7 £
2P0 IBEYIBY PUB PING 7+ 7d £ 3
SISA[RUY JDRIE AANQLSIQ PUR 101§ ‘AL6AIBBY O [-2d £
Lodoy sisheuy aeleUaD S -4
SISATBUY WIOMRd b1
2poD WopRd £~ 1-4-2d £ 3
v
v

IR EEEE

1 Z 13497 SISATEY 30D 33105 INBIS WI0IRd 7T
AlEUy P03 33IN0G RIS WIOKAY [~ T
[eUY DNBIS Ulopad T--7d >

P2-4 Validate Product

<

LONEPI[EA 10} 20D BSEB[RY §-7
®I¥Q GULIONUOW PAAIBII0D BBRUBIN PUB 24018 8274 &3
BuUNSa L N Wioyad [-/-7

[51521 ABQ AINBXT /22 >
SPRYILY PUR 30T MBIASY O

=]
223 2
1

51591 ABQ WM C-7-
2POD WM 774 3

P2-2 Develop Product

40M 40 uN UBISAQ 112 PUE LEld 7
HOM 4O LUN 13RS T

[aked

10014 095013 5 1~/

SIDPIOYBHTIS IUBADIDY LM UBLY SIENOBON T/
©{sBL pUe sWway Boppeg 01 BIEPTIA PPY €1/
SiseL wiep

240 smyeg pue ‘sysiy ‘suelq peqpasy aieys
B pereossy pue sysiy suyey ‘srepdn ‘a1Eeid 01~/

NN EENEE

T
T
= UIOWDg SAPUIPUSLAQ ATBID0SSY PUT AYILIP] 8-/ T
SYSEL 21PWNST £/ 1
SSE 0JUl SWaY| BOYIEG 15NPOIJ UMOQ HeIg 9/ 1
swall Boppeg 1N POId BIBWNST S-/-T-2d 3|
T
T
T
T

Plan Backlos

- g BUOWY S21UIPUBIRQ ABID0SSY PUR AIIP] &/

. 0 puB S12/qRU3 AJIUAP| 01 SARWPEOY 1eN[EA £/
swia Bopideg 1NPOIJ dZNUOLY 7-/
251 1NPoig 3r0WaY pu ‘3uyRY ‘ARpdn 2RI [/
o

WIRUIDIFRUEN UONEINBIUOD J0) UBld 9-T-7d & 5| Ny
IURINSSY AR J0J U] 5T~ 2 7 2/
BUISURIM PUE WALIBIMIOIY ‘SISO 10 UPld b1~ 74 £
SPNASUOY UILUSINSLIN SAOAT &£~ 1-72d & ¥
SI01IIPUI BAOAT £~ (- T-2d £
sUONSAND AEPAN/AURA 7-£-T1-2d &
s|eoD 21zpdn/auipseg [-£-1-2d 7
o RN JOJ URId €T -7d £ 5

22111212

JINDAUYIIY MIARY -7~ 2d £ ¥}

ubisaq pue o ¥ 91EPI[EA 7T
UBISQ [2AR1-MOT B98I 771724 £ ¥

UBISDQ SMOIYYIY eI [-7-T-2d 4%

5! 1Npaid UBISSQ 7-T-7d £3

L@ DUBINSSY ALAIS 10§ Rl [-T-2d £

o

P2 Product Under Development Main Flow
1 Plan Product
22021

@
1

2 7 Product Under Development Lifecycle

46

seAnelq HBR1TAS BUYSA 9T~ el £ 3|m

Uy SSaUISNg B1RRIY G1-bd £
PUNLBUYIIY 1NPOLY AO[PABA #1- dl £ 3|m
UOISIA HB3BAS YA £T-Fd £

BUIULE|g URWIIU| DNPUOD 2T+ 7 ¥
dAN BUYRA T1-5d A3

BUNPAYY SH0I5A2Q 40[3ABQA 01 e 7 3|t
1dadu0D 1NpoId dojeada 6-+d £ 3]
SNV B4l £
dopMmQ L-kd fN N

SWAWARIBY PUE ‘SDRALO] 'SSS01 §
ng e 9-bd £ 3| N
FZARUY S 7|t
uuopRd - bd
suP|d WeIbold dO[ARA £ bd £
SPaBN SSAUISNg SSISSY 7-hd £

4 Create Business Strategy and Tactical Plans

1

[l 7 Operational Activities and Flow Diagrams
E B T Plan DevSecOps Phase

2> SUORTZIUEBAO [RUONIUNS dBALSI008 T—d £ %
ot
-
f MIAIRAD [2POW SA0295420 L_| -
=
£
N rs:_ &
Z Eafzt
= Ea5235
2 gas m o5
2 F882EE
3 L5558 g
2 22 =
P g A WS
a god <
£ = A (o) =
EE : 7
232 I o
i -

Figure 20: Capability-to-Operational-Activity Matrix

31

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

In support of argument A1.4.2, “CM threat mitigations are proven by showing the threats and how they are mitigated for all CM-supporting activities,” (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

I\

f

C1.4.1 The CM requirements are
met

J\

(

A1.4 The DevSecOps Pipeline meets

all of CM requirements and addresses,

all identified abuse cases

7

D2 Test process and results are
not sound

D4 The capability requirements are
incomplete and incensistent

Key:

]

1

C1.4.2 All DevSecOps threats
associated with operational
activities are structured and

performed in support of CM have

been mitigated

)\

f

C1.4.1.1 CM requirements have
been satisfied

C1.4.2.1 All operational activities
asseociated with performing CM
reguirements have been identified

A= Argument
C = Claim
D = Defeater

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Evidence

activities)

32

A1.4.2 CM threat mitigations are

proven by showing the threats and

how they are mitigated for all CM
supporting activities

[

C1.4.2.1 Critical high-priority
threais associated with CM
activities have been identified

—

D3 Not all high-priority activity threais
have been identified

D1.4.2.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

|

C1.4.2.2 Mitigations have been
taken to neutralize each identified
threat

Contrary
evidence

Figure 9), analysts can use several views from the PIM depending on which point of view they believe best supports the argument. Figure 21 provides a

view of threats in the model with their attributes and relationships, including mitigations (see the “Mitigated By” column).

= Name
=
L = Reduced monitoring
=
2 =" Disrupted Monitoring
3 = Unauthorized Access/Modifies logs to divert
I~ = attribution
4 = Inadequately configures system logging
5 = Intentionally misconfiguring
A = Intentionally locks out accounts responsible for
- — recovering, investigating, or repairing the system

Text

A threat actor is made aware of a monitoring system's
reduced capacity resulting in regular service outages leaving
an open window of opportunity for an unobservable amack.

A threat actor spoofs a legitimate account (user or service)
and injects falsified data into the monitoring system to
disrupt operations, create a diversion, or mask the artack.

A threat actor gains unauthorized access to logging data,
alters system logs to conceal illicit activity from forensic
audits, automated responses and alerts, or to divert
auribution.

A threat actor has configured the collection of system logs in
a way that limits the effectiveness of forensic audit activities.

A threat actor has configured the collection of system logs in
a way that limits the effectiveness of forensic audit activities
in order to conceal subsequent activities.

A threat actor spoofs an individual’s account in order to
create user action logs with the objective of making a
targeted user in violation of security policy and reducing the
targeted individual's organizational effectiveness.

Unit testing is insufficient to cover the requirements and
abuse cases. A software or site reliability engineer doesn’t

Effect

Compromises

72-15 Aggregate, Store and

Reduced or misconfigured monitoring allows for nefarious -, Report on Product Collected

activity to eccur

MONITORING: falsified data injected /spoofing, tampering,

<

integrity, injects falsified data into the monitoring system to <

disrupt

Logs: insider threat modifies the logs to conceal activity

Accidentally misconfiguring Logging - can’t perform
forensics work against what is captured

Intentionally misconfiguring the svstem

Targeting Individual with the intent that their login is
denied, locking out individuals who should have access

<

E

E

-
<

Monitoring, Planning and
Feedback Data

°2-15 Aggregate, Store and

., Report on Product Collected
Monitoring, Planning and
Feedback Data

22-15 Aggregate, Store and

., Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and

., Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and

., Report on Product Collected
Monitoring, Planning and
Feedback Data

P2-15 Aggregate, Store and

., Report on Product Collected
Monitoring, Planning and
Feedback Data

°2-15 Aggregate, Store and
Report on Product Collected

Realized By Attack
¥ 607 Obstruction

161 Infrastructure
T‘Mamnwam:m

161 Infrastructure
™ Manipulation

#* Configuration/Environment
Manipulation

176
= Configuration/Environment
Manipulation

= 212 Functionality Misuse

Caused By
& Insider Threat

& Advanced Persistent Threat
& Insider Threat

A7 Architect

FT Cybersecurity Engineer

& Insider Threat

AT site Reliability Engineer

T Cybersecurity Engineer

T software Developer

& Insider Threat

& Insider Threar

A7 software Developer

Mitigated By

- 5C1 Mitigation
“ Strategy 1

Documen!
Much of this was pulled fron
CAPEC info hups://capec.m
org/data/definitions/1000.

Keep at the Meta Level and
better explained in the “sta

Could be 1617 Most signific:
improper configuration

Could be a CAPEC - 184 So
Attack

Figure 21: Threats with Attributes

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

33

Only a well-understood, instantiated DevSecOps pipeline can fully address sub-claim C1.4.2.2, “Mitigations have been taken to neutralize each identified threat” (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

J\
[)

C1.4.2 All DevSecOps threats
C1.4.1 The CM requirements are associated with operational
met activities are structured and
performed in support of CM have
been mitigated

J\ !
] [

C1.4.2.1 All operational activities
asseociated with performing CM
reguirements have been identified

(

A1.4 The DevSecOps Pipeline meets
all of CM requirements and addresses,
all identified abuse cases

C1.4.1.1 CM requirements have
been satisfied

A1.4.2 CM threat mitigations are

proven by showing the threats and

how they are mitigated for all CM
supporting activities

D4 The capability requirements are
incomplete and incensistent

7

Evidence

[

C1.4.2.1 Critical high-priority
threais associated with CM

|

C1.4.2.2 Mitigations have been
taken to neutralize each identified

D2 Test process and results are activities have been identified threat

not sound

activities)

—

Key: D3 Mot all high-priority activity threais
A= Argument have been identified

C = Claim

D = Defeater

D1.4.2.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

Contrary
evidence

Figure 9). An analyst can accomplish this by demonstrating how threats have been identified and mitigated with supporting evidence.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The requirements-satisfy matrix (Figure 18) can assist an analyst with defeater D1.4.2.1.1, “Operational activities associated with performing CM requirements are
incomplete or insufficient” (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

C1.4.2 All DevSecCps threais
C1.4.1 The CM requirements are associated with operational
met activities are structured and
performed in support of CM have
been mitigated

J\ X
] [

C1.4.2.1 All operational activities
associated with performing CM
reguirements have been idenfified

(

A1.4 The DevSecOps Pipeline meets
all of CM reqguirements and addresses,
all identified abuse cases

C1.4.1.1 CM requirements have
been satisfied

A1.4.2 CM threat mitigations are

proven by showing the threats and

how they are mitigated for all CM,
supporting activities

D4 The capability requirements are
incomplete and inconsistent

P

[

C1.4.2.1 Critical high-priority
tnreats associated with CM

]

C1.4.2 2 Mitigations have been
taken to neutralize each idenfified

D2 Test process and results are activities have been identified threat

not sound

activities)

—

Key: D3 Mot all high-priority activity threats
A= Argument have been identified
C = Claim
D = Defeater
D1.4.2.1.1 Operational activities
iated with performing CM .
| o pemng S Comrary
insufficient
CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 9) as well as with defeater D3.1, “Missing threats to activities” (Figure 11). Additionally, an analyst can find a combined analysis of the threat-
modeling diagram (like Figure 22) and operational-activity flow diagram (like Figure 23) helpful for finding evidence for or against defeater D3.1.

Operational ity [) Write Code Operational Activity i J
fud wo O] P E o <rostr o o Al | & E3 & OpermonaPeromen 2
Requirements to Op Activity Matrix <Grnteat Roes <cotcalRoien cCrtcaiRoies <Crtai Roen <crtial Roler “ptattorm» “organizatonais “Platorm> Development and Test Domain
User Experience Release Engineer Architect e Site ity Engl Version Control ;
T
I ! ! |] I T | dscapatieToPeriorms
I | " ncasrlputoms ‘ |
I
! I | | e Lo !
| | | " ‘
! | ! I I IsCapableToPerform
| | | |
I | |] el s]
7777777777777777777777 Write Code
! |
«Compromises» «Compromises» | «Compromises» | cCasss (Compromises»
—————— Q- mmmm e m e —m e —— -
1 | |
[|
1 | | |
L y !
= F e e E =
I = 33 Miscategorized data, providing 1d = 35 Injects vulnerable work 1 = 19 Dovelopment productivity tool I = 34 Vendor's PKI has been
unnecessary data items/user stories generates code based on model or ‘compromised
e et o Saice ranenmts deta 1o (Efoct =An APT group njects vulnerable heuristic instructions Etioct =*A Compromised Vendors PKi
another User or Service that is not required (o user stories through unauthorized access {Effect = A developer uses a code productivity is disclosed and a threat actor modified
perfor the acivty resuiting i violaton of st o the issus ST ST their binary and signed itwith a
privilege and information disclosure.”, i produce known vulnerabilities, | compromised key that has elevated
la= "33, infecied into the privieges and has access ©
Text = A User or Service transmits data to product or disrupt development activities.”, code base.”, | organizational resourc
ancthor User or Sonvica that s ot equired to 18=735" 1 ="1g, Id ==,
perform the activity resulting in violation of least Text = "An threat actor njects vulnerable Text = "A developer uses a code productivity Text = *A threat actor modifies code or
priviege and information dsclosura) user sories code, bt the fool 15 xecutablo artfacts for a Compromised e ———-=
™ 1 o the issue o produce known vulnerabilies, [Vendor's PKI and signed it with a | «Causess
injected into the compromised key that has elevated |
I | malicious work item to compromise a code base.") privieges and has access to
]) product 9 S resourcos.”) I
x I
causess | | I |
| ecauses I
5 | «RealizesAttacks I |
«Crtical Role» [| Realzeshtiack |
e ‘ T | hoakcechtincics | Reslizesattacks
“posts
| e ks X ! oo
| Advanced Persistent Threat ! ! s
2 2 v
«Atacko. <Atacks «httackr
Malicious Logic Insertion Modification During Manufacture Malicious Logic Insertion
Abstraction = Meta Abstraction = Meta Abstraction = Meta
d="441" Id ="438" 1d ="441"
Link = "https-/icapec. mitre.org/dataldefinitions/441 htei* Link = mitre. htr® Link =" mitrg himi"
Text = "An adversary installs or adds malicious logic Text = "An attacker modifies a technology, product, or Text = "An adversary nstalls or adds malicious logic
(also known as malware) into a seemingly benign component during a stage in its manufacture for the (also known as malware) into @ seemingly benign
component of a fielded system. This logic is often purpose of carrying out an attack against some entity component of a fielded system. This logic is often
hidden from the user of the system and works behind involved in the supply chain lfecycle. There are an hidden from the user of the system and works behind
the scenes to achieve negative impacts. With the almost limitiess number of ways an attacker can the scenes to achieve negative impacts. With the
proliferation of mass digital storage and inexpensive modify a technology when they are involved in its proliferation of mass digital storage and inexpensive
mulimedia devices, Bluetooth and 802.11 support, manufacture, as the attacker has potential inroads to multimedia devices, Bluetooth and 80211 support,
new attack vectors for spreading malware are the software composition, hardware design and new attack vectors for spreading malware are
‘emerging for things we once thought of as innocuous assembly, firmware, or basic design mechanics. emerging for things we once thought of as innocuous
greeting cards, picture frames, or digital projectors. Additionally, manufacturing of key components is greeting cards, picture frames, or digital projectors.
This pattern of attack focuses on systems already often outsourced with the final product assembled by This pattern of attack focuses on systems already
fielded and used in operation as opposed o systems the primary manufacturer. The greatest risk, however, fielded and used in operation as opposed 1o systems
and their components that are still under development is deliberate manipulation of design specifications to and their components that are still under development
and part of the supply chain.” produce malicious hardware or devices. There are and part of the supply chain.”
! bilions of transistors in a single integrated circuit and
studies have shown that fewer than 10 transistors are
required to create malicious functionalty.”

Figure 22: Threat-Modeling Diagram for Write Code Operational Activity (Example)

In support of sub-claim C3.2.1, “Appropriate engineering analysis and implementation have been performed with appropriate expertise,” and against
defeater D3.2, “Appropriate threat analyses have been performed with appropriate expertise” (Figure 11), an analyst will need to analyze the threat-mod-
eling diagram for an operational activity and its flow, as demonstrated in Figure 23. They will also need to analyze the sub-activity with their correspond-
ing threat-modeling diagram, such as the one shown in Figure 22. This is like the analysis performed for defeater D3.1.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

|
|
___________________________ .
|
I aOperationalActivityhcons | |
e
| Aggregate, Store and
Report en Product
«OperationalParame ters plans and processes (‘.,—‘ba—l\ feadback M g,
in Plans and Pr Create 4 = assurance controls and plans — Planning and
I Design {— architecture documentation | N =h
«OperationalParameters product plan [collected data
in Product Plan
|
W
(«OperationalActivityAcions ! :\ architecture documentation
Create Low-Level Design ™~ | |
[archijecture and design documenation
- J
I collected data
| ~
«OperationalActivityAcions J 5 collected data
and Design [architecture and design documenation
[|
architecture design and validation documentation
e 5&)
(‘.,—‘f%\ collected data
Review e | hi design and validation d
- 2
| design
| design
| . 4
/\1,4\ risk data
O)
p A

Figure 23: Flow Diagram for Design Product Operational Activity (Example)

The views of threat relationships in the PIM that the threat-to-attack matrix (Figure 24) and the threat-to-role matrix (Figure 25) provide can help with
sub-claims C3.2, “Appropriate threat analysis have been performed with appropriate expertise,” and C3.2.1, “Common weaknesses that are applicable to
the pipeline have been identified” (Figure 11). The threat-to-attack matrix (Figure 24) can be used to identify which threat scenario or abuse case used
which attack. Additionally, this matrix can be used to identify complex scenarios, such as ones that utilize more than one technique.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Legend
/" RealizesAttack

#1532 Input Data Ma
DA

= 151 Identity Spoofi
#® 157 Sniffing Attack
= 153 Sniffing Netwo
150 Redirect Acce!
= 1709 Calling Micro—
#* 130 Exploiting Incc
= 151 Flash File Over
#= 152 Flash Injection
= 153 IMAP/SMTP Ct
=% |54 Software Integ
= 157 Malicious Auto
#® 155 Reverse Engin

¥ 177 Create files wi
#® 175 Cross-Site Fla:

145 Checksum Spc
#1465 XML Schema F
% 147 XML Ping of th
o ¥ 148 Content Spoof
= 140 Explore for Pre
#= 150 Collect Data fr
154 Resource Loca
™ 155 Screen Tempe
160 Exploit Script-
¥ 151 [nfrastructure
#= 162 Manipulating +
¥ 163 Spear Phishing
#= 164 Mobile Phishin
#= 165 File Manipulati
#™ 166 Force the Syst
¥ 157 White Box Rey
#1658 Windows
= 150 Footprinting
= 170 web Applicati
= 173 Action Spoofin
#= 174 Flash Paramet
¥ 175 Code Inclusior
o ¥ 176 Configuration/

= 185 Malici

B [Threats

= 1 Reduced monitoring

Disrupted Monitoring

Unauthorized Access/Modifies logs to dive
Inadequately configures system logging
Intentionally misconfiguring

Intentionally locks out accounts responsible
Intentionally misconfiguring 2
Intentionally misconfiguring 3 A
Decrease Document Markings
10 Unauthorized Access/Modifies logs to div A
Insert Malicious Code in tool chain, code r
Patch Tools in the pipeline

Slow Approval Process

Disable the static analysis

Alters Automated analysis reports
16 Configures analyzer in a way that is not b
17 Results from analysis are disclosed for efi A
Production data (configurations, tokens, a
19 Development productivity tool generates
20 Tool generates code based on predeterm A
1 Perform a code review without sufficient s
Review is skipped for items not covered b
Poisoning data while aggregating it A
Requirements exploration and document
Modifies measurement Metrics
26 Misleading Contracting Practices
7 Misinterpreting the results of the analysis
28 Using careless or naive code idioms
Build tools are misconfigured

20 Upstream activity provide false/modified
i1 Tampering without data
37 Data is intercepted between activies A
33 Miscategorized data, providing unnecess
Vendor's PKI has been compromised
35 Injects vulnerable work items/user stories
& Compromises a vendor
37 Injects exploitable /malicious code into up
38 Encryption

NN

[RRl

AV

7

=4
=
=
=
=
=
=
=
=,
=
=,
=
=
=
=
=
=
=

SRR

NN YN

[IS IR USRI

(SR UNRIRL

(NRIERL

Figure 24: Threat-to-Attack Matrix

Analyzing internal and external threat actors with the threat-to-role matrix (Figure 25) and types of attack in the threat-to-attack matrix (Figure 24) can
help an analyst identify the types of weaknesses related to a specific scenario, operational process, or technology.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Legend 17 Organization Posts
/' Causes

Infrastructure Architect
Infrastructure Operatar
AT Internal User

AT Legal
Relevant Stakeholders

. Infrastructure Engineer
;QT Sales

. DevsecOps Champion
AT

AT Database Administrato

' DevOps Engineer

o
A Quality Assurance Engir

AT Network Operations Sp
=| AT Release Engineer

T Cyber Legal Advisor
HT Cybersecurity Analyst
H owner

;QT Program Manager
T Project Manager

A Security Champion
=| A7 site Reliability Engineer

| AT software Developer

AT Architect

[

. Business Analyst
;QT Compliance

FT contract Specialist
H' customer

;QT External User

AT Financier

AT

T Marketing

T Product Manager
AT Product Owner
AT security Architect

o
AT

. User
T User Experience

H' Technical Support Spec

;QT Test Engineer
—1 Threat Modeling Actc

FT system Administrator
= ‘ Advanced Persistent TH

AT subject Mattar Expart
H systems Analyst

;QT Supplier
T systems Engineer

AT solution Manager
AT UIfUX Designer
By

& Industrial spy

& Hactivist

& Hacker
~| @, Oraganized Crime

w| @ Threat Actor
| @ vendor

| AT Business or Mission Do
a

= ;QT Cybersecurity Engineer

B [Threats

= 1 Reduced monitoring
2 Disrupted Monitoring
3 Unauthorized Access/Modifies |
4 Inadequately configures system
5 Intentionally misconfiguring
6 Intentionally locks out accounts
7 Intentionally misconfiguring 2
& Intentionally misconfiguring 3
9 Decrease Document Markings
10 Unauthorized Access/Modifies
1 Insert Malicious Code in tool ch
Patch Tools in the pipeline
Slow Approval Process
* Disable the static analysis
5 Alters Automated analysis rep
& Configures analyzer in a way t
7 Results from analysis are disch
& Production data (configuration
9 Development productivity tool
0 Tool generates code based on
21 Perform a code review without
Review is skipped for items no)
5 Poisoning data while aggregati
24 Requirements exploration and
Modifies measurement Metrics|
& Misleading Contracting Practice
27 Misinterpreting the results of ti
Using careless or naive code id
29 Build tools are misconfigured
Upstream activity provide false
1 Tampering without data
2 Data is intercepted between a
i Miscategorized data, providing
* Vendor's PKl has been comprg
5 Injects vulnerable work items /|
Compromises a vendor
37 Injects exploitable /malicious ¢
Encryption

-

e

P
LN

~
LN

[

-

i

[
LN

-
~

R
LN

-

B L B L R L L L L L L L L L R L L R L (W R L a U [R U m R (R USSR (AR U (R LR UNR

N
-

R,
SRR G| @ Insider Threat

-~

_N N
NN

[
LN

[
NS
LN

N W e
NNN

Figure 25: Threat-to-Role Matrix

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Sub-claim C1.4.2.1 (

C1.4 The DevSecOps pipeline
provides Configuration
Management (CM) services and
functionality

A1.4 The DevSecOps pipeline meets
all of CM requirements and addresses,
all identified abuse cases

I\

f

C1.4.1 The CM requirements are
met

J\

(

A1.4 The DevSecOps Pipeline meets
all of CM requirements and addresses,
all identified abuse cases

D4 The capability requirements are
incomplete and incensistent

7

D2 Test process and results are
not sound

Key:

A= Argument
C = Claim

D = Defeater

]

1

C1.4.2 All DevSecOps threats
associated with operational
activities are structured and

performed in support of CM have
been mitigated

)\

f

C1.4.1.1 CM requirements have
been satisfied

C1.4.2.1 All operational activities
asseociated with performing CM
reguirements have been identified

A1.4.2 CM threat mitigations are

proven by showing the threats and

how they are mitigated for all CM
supporting activities

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[

C1.4.2.1 Critical high-priority
threais associated with CM
activities have been identified

—

D3 Not all high-priority activity threais
have been identified

Evidence

activities)

D1.4.2.1.1 Operational activities

associated with performing CM

requirements are incomplete or
insufficient

40

|

C1.4.2.2 Mitigations have been
taken to neutralize each identified
threat

Contrary
evidence

Figure 9) and defeater D3 (Figure 11) are related to high-priority threats. The first round of prioritization can be done after an analyst initially analyzes
the threats. Other rounds should occur with the help of a well-understood, instantiated DevSecOps pipeline where one can create similar diagrams and
views as those shown in Figures 13—25 with implementation-specific information.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

7 Summary

The DevSecOps PIM provides reference material in support of a repeatable defensible process so that organi-
zations can be confident that a given DevSecOps pipeline and its associated products are implemented in a se-
cure, safe, and sustainable way. The PIM provides a basis for threat and attack-surface analysis forming the
basis of a cyber-assurance case for structuring evidence to demonstrate that a product and DevSecOps pipeline
are sufficiently free from vulnerabilities and function only as intended. The PIM also confirms that the selected
platform-specific solution has sufficient cyber assurance. The PIM identifies specific threats to the DevSecOps
pipeline, but it is not an exhaustive list. The PIM helps analysts identify potential threats to the system that
should be addressed by the processes or technology in the instantiated DevSecOps pipeline. It provides a mini-
mum set of MBSE tools to assist with threat identification, analysis, and documentation of a given DevSecOps
pipeline (or system).

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 42

Appendix A MBSE Model with Cybersecurity Extension

This section introduces the techniques that we used to build the DevSecOps PIM. The DevSecOps PIM was
built as an MBSE digital model. We constructed several views from the UAF to model DevSecOps as a socio-
technical and information system.

Requirements — We defined the DevSecOps requirements in terms of “shall” statements and broke them
down into seven categories: governance, requirements, architecture and design, development, test, deliver,
and system infrastructure.

Capability/Strategic — Given the system requirements, what are the capabilities a DevSecOps pipeline or
system needs to provide? To answer this question, the model defines 10 capabilities needed to achieve the
desired effect. Capabilities define the ways and means the system will use to implement the requirements.

Operational — This captures how the DevSecOps pipeline (e.g., system) and product under development
work at an operational and logical level. It consists of operational, structural, and connectivity viewpoints.
The operational-process views capture the flow of major activities and the data and resources needed to
perform the given activity. The structure and connectivity views capture the logical organizations of the
activities and performers.

Personnel — This captures the human views associated with the DevSecOps pipeline (e.g., system) and
product under development instantiations. This viewpoint was extended with a custom involvement profile
that implements a version of the RACI matrix [Prince 2022].

Security — This captures the cybersecurity aspects, including the results of threat-modeling activities such
as threats or threat scenarios, attack types, and relationships with corresponding threat actors. We extended
this viewpoint with the threat-modeling custom profile.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Requirements Viewpoint
We organized all requirements into categories based on logical and functional groupings:

e governance
e requirements

e architecture and design
o development

e test

o delivery

o system infrastructure

We engineered and analyzed requirements using MBSE methodology and different relationships (derive, de-
pends, copy, trace).

In diagrams, such as Figure 26, we present the requirements as a light pink box or as a light pink rectangle icon
with the letter “R” in it.

wrequirements
aMaturity Level 1»
Product and System areguirements
Boundaries sraquirements sMaturity Level 2»
«Maturity Level 2» .
id = "Arc_4.2.1" unmm:uL 2 . Disaster Recovery
Text = "The system shall be ok Id="Sys 524"
able to clearly ideniify and ld="Sys_ 511" Text = "A disaster recovery
document trust boundaries Text = "The gystem plan shall be documented
between the system and the transaction logs should be to provide mitigations in the
product under development " immutable.” event of a disaster.”
Ll ' .))
I I I
areguirements i wrequiramants | areguiremants | sraquiremean
wMaturity Level 1» I #Maturity Level 3» I «Maturity Level 3» I «Maturity Leve
Secure Usage Policy as Code | Security Assurance Dynamic Applic
| | Security Testi
Id="Gov_6414" d="8ys 52.11" Id ="Gov_g 4" SECIViAseT
Text = "The system shall be | Text = "The system shall I Text = "The sysiem shall be J Id="Tes 32"
capable of ensuring the | implement policy as code.” | capable of supporting an | Text = "The system
product is used in a secure | = | |independent security | able o support the |
manner.” assurance review or audit of dynamic code analy
0 | I activities and work products | in order to test the s
| | |associated with security |
! | | |assurance claims." I against runtime wulr
| Ty 5 scenarios.”
| l |- ! I - &~
|
|
| ' | | ' |
| ' | | ' [
| ' | : ! [
| ' | | ' |
| ' | | : |
| l I | I
| ' | , . |
| ' | | : |
| ' , |
| ! ' [
I alracan | alfacan alraces | wlrace » | alrace » I wiracas
| |
N B SRS PR, ! .

Figure 26: Example of Requirements Representation in Diagrams from the PIM

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

44

Capability/Strategic Viewpoint

To architect or model a complex system on an enterprise level, we used capabilities to represent a strategic
view of the system’s functionality. A capability is a high-level concept that describes the ability of a system to
achieve or perform a task or a mission.

The following DevSecOps capabilities were identified:

o planning and tracking

o quality assurance

o software assurance

o configuration management
e solution development

e integration

« verification and validation
o deployment

e monitor and control

o hosting services

We allocated all requirements in the DevSecOps PIM to corresponding capabilities. This allocation allowed
modelers to perform a gap analysis on the requirements. Capabilities on diagrams will be presented as a green
box (as seen in Figure 27) or with a yellow circle icon with the letter “C” in it.

uCapabiityn (1
DevSecOps Pipeline

iy (0] | “Capatinys T [] [—— e Gy (O o () e (O Ty (O prr—
Hosting Services | | | Planning & Tracking Quality Assurance [Monitor & Control Verification & Validation Solution Development Software Assurance

Figure 27: DevSecOps Capabilities Representation in Diagrams from the PIM

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Operational Viewpoint

An operational model for a system describes the behavior of the system to conduct enterprise operations. It
should be “material independent” [DoD Deputy CIO 2010]. The main operational processes for DevSecOps
include development processes for the product as well as the DevSecOps process itself. These processes are
modeled by the “operational activity” element and are represented by a light lilac box or by a light-yellow
rhombus icon with an arrow-like outline (see Figure 28).

Define Strategic
Objectives

Develop Business
Processes, Contracts,
and Agreements

«MapsToCapabiitys «MapsToCapabiitys «MapsToCapabiitys «MapsToCapabiltys «MapsToCapabiitys sMapsToCapabiitys «MapsToCapabilitys
_________ o o — —
|
| | | | ! | |
|
e == [N | [[! | |
| DevSecOps Model Overview | | | | | | | |
I
| 1 - | | | | | | |
wOperaionalfctivitys sl | | |
I Configure DevSecOps System | | | I I I
|
I | | | I ‘ I
\ |
N - - — - — | | | I I |
|
| | [! ! |
|
_____ T
| Plan DevSecOps Phase | |
1 |
aOperationalActivitys 1
l pBDn hc MR «OperationalAcivitys £ 3 l ‘
Ve . .
| P Define Business | |
DevSecOps 3
3 Requirements
| Architecture I |
| | |
| | |
|
I
|
|
|
-

v

«Operafonalictivitys 3
Analyze
1 Business Risks
«Operafionalctivitys {\/'
Assess
Business Needs

|

|

|

|

|

|
" .] " g Y
uOperationalfcivitys % | «OperationalAchvitys =

|

|

|

|

|

«OperafionalActivitys %
Develop Product
Architecture

Figure 28: Example of Operational Activities Representation in Diagrams from the PIM

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Personnel Viewpoint

We used UAF’s personnel viewpoint to model an organization structure that supports the socio part of a DevSecOps system. We implemented a RACI
matrix in the model where we identified critical and non-critical roles and responsibilities for the operational processes that may be involved in or impact
an operational behavior of the system. Unfortunately, this viewpoint is not standard within UAF, thus a custom profile was created to introduce additional
new elements and relationships that enable modeling more aspects of cybersecurity and the overall socio-technical relationships within DevSecOps.

On the diagrams and other views from the model, the role elements are depicted as an orange box (Figure 29) or as a white or green human-like icon.

< & <O
Bk it d & Mid sites e
davsecops champon raladsa angnaar siba raiabiity enginaar archimet
Pl I Poab. I Poab. & <Peats. i Pmb S
il Piokas. sCriical Pk sCrikcalPi. «Crikcal Pickecs cCriieal Pl
Busirnss or Mission Dermain Expart DunSecOpy Champicn Faluass Ergirmr Site Aeliabilty Eegirmar Arekisec

I
I
I
I
I
. id ! . T
Bt i Ay st | IS oo JSd Ball @2t
I
“Poate - | aPoate
Compliary T s o ot w Dipr ater
I
Pz | “Prab ;
o2 | g ¢ aliit | Ik et s Ersire s
4 i = H
Emcutiv | Sy bt Adiniay ates
Pk I
I
sPaan [|
Lagal I
I
I

Figure 29: Example of Roles Representation in Diagrams from the PIM

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 47

Security Viewpoint

The security viewpoint serves to address “the security constraints and information assurance attributes” [OMG
Unified Architecture Framework 2020]. It provides architects with a way to define security aspects (including
risks, security processes, and mitigations) and trace their implementation throughout the architecture. Unfortu-
nately, this viewpoint does not support more detailed security practices to analyze the system’s operational and
solution architecture, such as threat modeling. To fill this gap, this viewpoint was extended with the threat-
modeling custom profile (see Appendix B), which introduced additional new elements and relationships that
enable modeling more aspects of cybersecurity.

To gather the information needed to populate the DevSecOps security viewpoint, the team performed a threat-
modeling workshop that identified threats and threat actors that may compromise the DevSecOps system’s
processes. See Appendix B: Building and Modeling Threat Scenarios for more details regarding the workshop.
The workshop concentrated on the operational aspects of the system where several threat scenarios and their
effects were identified. In addition, workshop participants determined compromised operational processes and
threat actors. Further analysis resulted in participants identifying one or more cyber attack types for each threat
scenario. We used the Common Attack Pattern Enumeration and Classification (CAPEC) catalog [Mitre 2023]
as a library of attack types. After the workshop, we modeled the results for each threat scenario with standard
UAF security viewpoint elements and a threat-modeling custom profile (see Appendix B for details).

In the model, and as a result in this report, threats and other security-related elements are depicted as blue
boxes with red flag or blue shield icons, and attack types are depicted as pink boxes with lightning icons or just
lightning icons (Figure 30).

3, g L
o = el T ==
«CrscalRoles | _ _ _ _ _ _ _ _ _ _ _, |
«|sCapablaToPerforms
Software Developer | |
! V]
slmplementsn | e w——] M
wlsCapableToPerforms ~
uSystem O [Operatonaberomens ;p,| _tisCepatielobedem: L | Aggregate, Store and
Monitoring System Monttoring Domain Report on Product
T » 5] Collected Monitoring, [€ — — — —
OperationalPeriormeny 'y o —
Pty ?| _ sisCapsieToPertorms | planning and
Monitoring Platform ekt
T

sinformationElements |1 |
Business Needs -

|
|
|
|
|
|
| |
2l aCompromisass| |
| N | H «Compromises» o
G whffectsn | g ST e e T ===
|
‘ - H ! [
| : |
v (I
| wThreats = aThreats =
| Id = 2 Disrupted Monitoring 1d = 3 Unauthorized AccessiModifies
—————— [Taxt ="A tiveat actor spoofs a legitimate account - wxmnition)
© waffoctss (user or service) and injacts falsified data into the {Text ="A threat actor gains unauthorized
) moritoring system to disrupt operations, create a acoess ta logaing data, alters system lags ta
diversian, or mask the attack "} conceal illicit activity from forensic audits,
L automated respanses and alerts, or ta divert
- | atribution."}
| T T
[| | |
wPost [
aThreat, A C:“”i ———q JrT— | «RealizasAttacks | | aCauseas
e - T
IS rwat I cRealizesAttacks | !
|
ot @] cases [I
«Threat Adors | " 'y
______ 4 K
e Threat Actors
Persistent 1 Insider Threat
Threat uSecurityControln il wAttacks ™~
Mitigation Strategy 1 Infrastructure Manipulation
ld="3" Id = "161"
Text="" Text = "An attacker exploits characteristics of the infrastructure of

a network entity in order to perpetrate attacks or information
(gathering on network objects or effect a change in the ardinary
information flow between network objects. Most often, this
involves manipulation of the routing of network messages so,
instead of arriving at their proper destination, they are directed
towards an entity of the attackers’ choosing, usually a server
controlled by the attacker. The victim is often unaware that their
messages are not being processed correctly. For example, a
targeted client may believe they are connecting to their own bank
but, in fact, be connecting to a Pharming site controlled by the
attacker which then collects the user's login information in order
o hijack the actual bank account.”

Figure 30: Example of Security Elements Representation in Diagrams from the PIM

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 48

Appendix B: Building and Modeling Threat Scenarios

Table 4 details a structured approach to building threat scenarios using a piecewise construction technique. The
method is to first identify the components of the threat scenario, and then construct the statement from the
components. Threat statements can be used to help create software assurance cases and build resilient systems.
Table 5 illustrates an example of how we used the different elements of the threat scenario to create the state-
ment. Construction of threat scenarios will require a PIM or a well-understood, instantiated DevSecOps pipe-
line as inputs to the method. Without an architecture to reference, any threat scenario created as an outcome of
this process may not be specifically applicable to a real implementation.

Threat scenarios have been defined to consist of six parts using the following structure:
[Actor] [Action] [Attack] [Asset] ([Effect] | [Objective])

The terms of the threat scenario structure are defined in Table 4, below. Using this structure along with a few
adjectives and prepositions, one can form a threat-scenario statement as follows:

An [actor] performs an [action] to [attack] an [asset] to achieve an [effect] and/or an [objective].
An example of a completed threat scenario using this structure can be seen in Table 5 below.

Table 4: Threat-Scenario Template Definitions

Part Description

Activity The activity diagrammed in the PIM or of a well-understood instantiated DevSecOps pipeline. There can be
more than one activity applied to the threat scenario.

Actor The person or group that is behind the threat scenario. Threat actors can be malicious or unintentional, and
they may be a person or group internal to an organization structure. Developing a standard set of actors is
beneficial for this step. Persona non grata could be useful in determining malicious actors.

Action A potential occurrence of an event that might damage an asset, a mission, or a goal of a strategic vision.

Attack An action taken that utilizes one of more vulnerabilities to realize a threat to compromise or damage an as-
set, a mission, or goal of a strategic vision.

Asset A resource, person, or process that has value.
Effect The desired or undesired consequence resulting from the attack.
Objective The threat actor’'s motivation or objective for conducting the attack.
Statement Structured prose summarizing the six-part security scenario.
CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 5: Threat-Scenario Example

Part Description

Activity Develop product, static and dynamic analysis

Actor Insider threat

Action Results from analysis are disclosed for effect

Attack Information disclosure

Asset Analysis results

Effect Damaged organization, vulnerabilities publicly enumerated for a product under development

Objective Develop a targeted exploit for the product under development, financial attack

Statement An insider threat publicly releases the results of static and dynamic analysis to the public to damage the or-

ganization’s reputation.

Table 6 outlines the process developed for creating threat scenarios in a team setting. This process is presented

in the format of a workshop involving 10 steps and includes specific entry and exit criteria. The model used as

input can be either a PIM or a well-defined instantiated DevSecOps pipeline. PIM-generated threat scenarios

may apply to the instantiated DevSecOps pipeline but may be more generic and lack the expressive power and

specificity of threat scenarios created using documentation associated with an instantiated DevSecOps pipe-

line.

Table 6: Threat-Scenario-Generation Workshop

Purpose

Identify threat scenarios for a given system.

Entry criteria

The following UAF-defined views have been created for the system under evaluation:
e requirements diagrams

e operational-process flows

* relationships between operational activities and system requirements

e operational resource structure, posts (i.e., roles), and corresponding responsibilities, including the
involvement relationships

General

As the system architecture and associated system instantiation evolves, so will the threats and corre-
sponding mitigations. While this process defines an approach to systematically define applicable threat
scenarios for the given system, threats should be identified, evaluated, and captured continuously out-
side this process.

During the structured and unstructured brainstorming activities, there are no right or wrong ideas. The
goal is to identify any reasonable action that can be taken to exploit the various activities within the
system to ultimately impact the final product. The ideas will be evaluated later in the process.

Step

Activities Description

Planning o |dentify relevant stakeholders. Participants must contain a mix of engineering,
operational, user, business, and cybersecurity experience.

¢ Schedule a date and time or series of events in which all relevant stakeholders
can actively participate.

Kick-off Event e Review the workshop process and introduce participants.
e Discuss the goals and objectives of the workshop.

¢ Introduce participants to the concept of system threats and review a few exam-
ple threat scenarios that follow the format of the threat-scenario template.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 System and Outline the system’s purpose and constraints.
Architectural Review the system’s architectural views and relationships.
Overview .
— Requirements
— Strategy
— Personnel
— Operational
4 Operational Select an operational-process flow to focus the threat scenario generation.
Process Flow Review the selected operational-process flow to gain an understanding of the
Focus Area process, data flow between operational activities, and performers involved.
This may include reviewing associated requirements to understand the scope
and context of the various operational activities.
5 Unstructured Select an operational activity within the operational-process flow.
Brainstorming Either working individually or in pairs, brainstorm threats for the selected oper-
ational activity and write them down. Threats can bridge multiple operational
activities. The brainstormed ideas should be captured in the individual’s natu-
ral language.
Using an affinity diagram, organize the threats identified by the whole group
and remove duplicates.
Create a list of potential threats to the system.
6 Structured Use the same operational activity as in step 5.
Brainstorming Break into groups of two—three people.
In small groups, identify ways that the operational activity may be exploited to
interrupt the confidentiality, integrity, and/or availability of the system. Utilize
the process-specific Spoofing, Tampering, Repudiation, Information Disclo-
sure, Denial of service, and Elevation of privilege (STRIDE) threat-modeling
taxonomy to reduce individual bias and to holistically identify threats to the
given activity.
Using an affinity diagram, organize the threats identified by the whole group
and remove duplicates.
Add new threats to the list of potential threats to the system created in step 5.
7 Threat-Scenario If this is the first time any of the participants have written threat scenarios, se-
Definition lect a threat from the list and complete the threat-scenario template as a
group. Repeat until everyone understands how to complete the threat-scenario
template.
Break into small groups of three—four people.
Divide the list of potential threats to the system among the small groups. Alter-
natively, create a pull system in which the small groups claim a potential threat
from a centralized list as needed.
In small groups, complete the threat-scenario template for each assigned or
pulled potential threat.
Review and update all completed threat scenarios as a whole group, removing
or consolidating duplicates.
8 Operational Select the next operational activity within the selected operational-process
Activity Threat flow.
Identification Repeat steps 5-7.
Repeat step 8 until threats have been identified for all operational activities
within the selected operational-process flow.
9 Operational-Pro- Repeat steps 4-8 until threats have been identified for all operational-process
cess Flow Threat flows for the given system.
Identification
10 Consolidation Consolidate all threat scenarios into a central list.
and Review Review and accept the threat scenarios.
CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Exit Criteria Create a list of structured threat scenarios that cover the operational activities in
the given system.

STRIDE is a model used for identifying computer security threats. Table 7 represents a STRIDE taxonomy
developed in the context of UAF, which is the enterprise architecture representation used by the DevSecOps
PIM. The DevSecOps PIM specifically uses UAF’s operational viewpoint that addresses operational processes.
The scarce (missing or insufficient) process was added to the traditional STRIDE mnemonic; thus, STRIDES
is represented in the Table 7 columns. This adaptation was derived from Adam Shostack’s book, Threat Mod-

eling: Designing for Security [Shostack 2014].

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 7: Process-Specific STRIDES Threat-Modeling Taxonomy

wrong activity is
communicated
with

been called by
current activity

cess to

an internal ac-
tivity and use
its privilege

Element Interaction Spoofing Tampering Repudiation Information disclo- Denial of service | Elevation of Scarce (missing
(modifying, cor- sure privilege or insufficient)
rupting, losing, process
destroying)

Process Process has out- | Downstream- Tampering with Current activity pro- An activity is
bound data flow data-managing outgoing data vides to data-manag- skipped entirely
to data manag- activity is ing-activity data of
ing process spoofed, and wrong classification

main process (e.g., unauthorized

writes to the distribution of con-

wrong place trolled data)
Process sends Downstream ex- Downstream ex- An external activity re- | Current activity is An external
output to exter- ternal activity is ternal activity ceives data that it not available due activity can
nal process spoofed, and the claims not to have | should not have ac- to corrupted state | impersonate

Process sends
output to exter-
nal interactor
(human)

A role that is per-
former, ap-
prover, contribu-
tor, or observer
for the activity is
spoofed

Role disclaims
seeing the output

Unauthorized
user/role gets access
to an activity

Current activity is
not available due
to responsible role
unavailability

Process has in-
bound data flow
from data-man-
aging process

Upstream data
managing activ-
ity is spoofed

Activity is cor-
rupted by data
read from a
data-managing
activity

Current activity is
not available due
to data flow inter-
ruption

Current activ-
ity internal
state is cor-
rupted based
on data read
from upstream
activity

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

53

process

upstream activity

data from current
activity

ruption

to change the
internal flow of
the current ac-
tivity

Element Interaction Spoofing Tampering Repudiation Information disclo- Denial of service | Elevation of Scarce (missing
(modifying, cor- sure privilege or insufficient)
rupting, losing, process
destroying)

Process has in- Current activity Tampering with Downstream ex- Current activity is An activity
bound data flow believes it is get- | data incoming ternal activity de- not available due passes data
from a trusted ting data from an | into activity nies receiving to control flow dis- | that allows it

Process has in-
bound data flow
from external
process

Current activity

believes it is get-
ting data from an
upstream activity

Data flow (com-
mands/re-
sponses)

Crosses ma-
chine boundary

Tampering with
data incoming
into activity (hu-
man-in-the-mid-
dle attack)

Data that passes from
activity to activity is
sniffed “on the wire”
(intercepted by an un-
authorized actor)

The data flow be-
tween activities is
interrupted by an
external entity

Data store (da-
ta-
base/backend)

Process has out-
bound data flow
to data store

Tampering with
incoming data
(corrupted in a
data store)

Current activity
claims not to have
provided data to
data-managing
activity

Data was disclosed
by data-managing ac-
tivity, such as mishan-
dling of data or unau-
thorized access to the
activity

Process has in-
bound data flow
to data store

Current activity
claims not to have
received data
from data-manag-
ing activity

Data was disclosed
by data managing ac-
tivity, such as mishan-
dling of data or unau-
thorized access to the
activity

Data managing
activity fails to
store information

External activ-
ity (an activity
that is part of a
separate pro-
cess/flow)

External interac-
tor passes input
to process

Main activity is
confused about
the identity of the
performer/con-
tributor role

Current activity
claims not to have
received data

Current activity re-
ceives unnecessary
data

Data managing
activity fails to
provide author-
ized data access

External interac-
tor gets input to
process

Performer/con-
tributor role is
confused about

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

54

Element

Interaction

Spoofing

Tampering
(modifying, cor-
rupting, losing,
destroying)

Repudiation

Information disclo-
sure

Denial of service

Elevation of
privilege

Scarce (missing
or insufficient)
process

the identity of the
current activity

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

55

The following table (Table 8) outlines a process for capturing threats and mitigations within the

UAF standard. While UAF includes a security viewpoint, it was extended with a threat-modeling
custom profile that introduced additional new elements and relationships that allow modeling of
the various nuances of cybersecurity.

Table 8: Modeling Threats in UAF

Purpose Capture threats and mitigations in UAF views.
Entry criteria The following UAF-defined views have been created for the system under evaluation:
e requirements diagrams
e operational-process flows
e personnel structure for the operational organization
o relationships between operational activities and system requirements
o relationships between operational activities and posts (i.e., critical roles), including the in-
volvement relationships
General As the system architecture and associated system instantiation evolves, so will the threats and
corresponding mitigations. Threats should be identified, evaluated, and captured continuously
outside this process.
Step Activities Description
1 Identify threats Complete threat-scenario templates for the operational activities within the

UAF model using the threat-scenario generation workshop.

2 Model threat Create threat elements in the model for each threat scenario using the
scenarios threat-modeling profile:

e Use “action” field as the threat’s name.

o Use the “statement” field as the threat’s text.

o “Effect” and “objective” should be mapped to the corresponding threat’s
attributes.

e “Threat’s ID” may be autogenerated by the modeling digital tool or have
a preset custom structure.

3 Identify attacks Formalize the “attack” statement for each threat scenario. Use one of the
for the threats industry standards, like MITRE CAPEC, as a guide. One threat scenario
can be realized by more than one attack pattern.
4 Model attacks e For each identified attack, create an “attack” element in the model using
the threat-modeling profile.

e Connect attacks with corresponding threats with the “RealizesAttack” re-

lationship (from threat to attack).
5 Identify post as- | e By analyzing the “actor” field in each threat scenario, identify if the actor

sociated with is internal or external.

causing and mit- | f internal, determine which posts from the personnel viewpoint's organi-

igating threat zational structure, preferably marked as a “critical role,” will correspond
with the actor. Identified posts should have one of the involvement rela-
tionships with compromised operational activity; most likely, it is a per-
former. If there are no posts in the operational organization structure that
can be the actor in the scenario, then a new post needs to be created in
the model.

o [f the actor is external to the system’s organization, then it needs to be
created in the model in a separate package from the personnel view-
point, and the “threat actor” stereotype from the threat-modeling profile
needs to be applied to it.

¢ Identify which post from the organization structure should be responsible
for creating a mitigation strategy for the given threat. Identified posts

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

may have one of the involvement relationships with the compromised
operational activity; most likely, it is an observer.

6 Model post-to-
threat associa-
tions

¢ In the personnel viewpoint, create new posts that were identified during
step 5.

o For each threat element, create a "causes” relationship (from the threat-
modeling profile) with each post that represents an actor.

e For each threat element, create an “OwnsRisk” (UAF) relationship with

each post that was identified as responsible for the mitigation strategy
for the threat in step 5.

7 Create opera-
tional connectiv-
ity diagrams

¢ Using an operational connectivity diagram, create a 360 degree view for
each operational activity, and display on it

— corresponding posts that have the involvement relationships with the
activity

— all threats that compromise the activity

— attacks that realize those threats

— threat actors/posts that cause the threat

— posts that own (responsible for mitigation strategy) each threat

— if identified, elements of security viewpoint or systems architecture
that mitigate each threat

— if identified, elements of systems architecture that perform the activ-
ity, implement it, or have other relationships with the activity

Exit Criteria

Create operational connectivity views for each operational activity with
identified threats and associated metadata.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

57

Creating a Threat-Modeling Profile within UAF

As mentioned above, the UAF security viewpoint was extended to accommodate threat-modeling
aspects of cybersecurity. The extension includes the creation of a threat-modeling profile (Figure
31). It should be noted that this profile is not a stand-alone profile that can be recreated in any
SySML model, like SySML-Sec [Roudier 2015]. This profile will work well as an extension to
the UAF security viewpoint and with other UAF viewpoints.

New element and relationships implemented by the threat-modeling profile include

o threat element with main attributes

- ID

- name

- text

- effect

- objective

- riskOwner
« attack element with main attributes

- ID

- name

- text

— abstraction

- link
« threat-actor stereotype (to apply to post element representing external threat actors)
e security-requirement stereotype (to apply to requirement element)
« compromises relationship (from threat element to operational-activity element)
o RealizesAttack relationship (from threat element to attack element)

« causes relationship (from post element to threat element)

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

bdd [Profile] Threat Modeling Profile] Eﬁj Threat Modeling Proﬁle])

JiN

|
«profile»
Threat Modeling Profile

«stereotype» J_Z

«stereotype»
Risk < Threat
[Class] [Class]
attributes «stereotype» ‘
-Effect : String Threat Actor
-Objective : String [Element]
«stereotype» [R]
qui <
[Class] «stereotype» bl
Attack
[Class] «stereotype»
attributes Security Requirement
-Abstraction : Abstraction Type [Element]
-Link : String
«stereotype» «stereotype» «stereotype»
Compromises RealizesAttack Causes
[Abstraction] [Abstraction] [Abstraction]
«valueType»
Abstraction Type
Standard
Detailed
Meta
v v v
«stereotype» «stereotype» /; «stereotype» /,,%
Trace DeriveReqt OwnsRisk
[Abstraction] [Abstraction] [Abstraction]

Figure 31: Threat-Modeling Custom Profile Diagram

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

59

Creating an Involvement Profile Within UAF

Another custom profile was created to accommodate the complexity presented by different stake-
holders getting involved with the system’s processes. The profile is called the “involvement pro-
file.” There are several approaches to identifying the type of relationship between a relevant
stakeholder and an operational process, such as a relevant stakeholder-involvement matrix
(RSIM), stakeholder-role-assignment matrix (SRAM), or RACI matrix [Wikipedia 2023b]. The
involvement profile implements a version of the RACI matrix by adopting terms and definitions
to the PIM’s needs. Thus, the profile was designed using the following definitions:

e Producer — a role responsible for performing the activity or producing the deliverable. This
role’s action is to perform.

e Approver — a role accountable for approving the activity or deliverable. This role’s action is
to approve.

« Contributor — a role that needs to be given an opportunity to provide input on the activity or
deliverable before it is completed. This role’s action is to contribute.

o Observer — a role that needs to be informed of the activity or deliverable after it is completed.
This role’s action is to observe.

The involvement profile is an extension of the UAF. All roles can be modeled as a performer/op-
erational performer or any type of organizational resource (post, organization) from UAF. Addi-
tionally, UAF’s relationship “IsCapableToPerform” can be used to model the “to perform” action
for the producer. However, the other three actions cannot be easily mapped to any of UAF’s rela-
tionships. Thus, additional actions required that we create a custom profile. We created the in-
volvement profile (Figure 32) to implement three roles (approver, contributor, and observer) and
corresponding actions. Even though one can model approver, contributor, and observer roles with
UAF standard elements, we included new elements in the profile to model cases when these roles
needed to be modeled explicitly and exclusively from UAF standard elements. Thus, the involve-
ment profile contains the following new elements and relationships:

e approver element

o observer element

« contributor element

« approves relationship (from a role element to operational activity)
o observes relationship (from a role element to operational activity)

« contributesTo relationship (from role element to operational activity)

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

bdd [Profie] Involvement Profiel 3] Process Profie | |

«profilen
Involvement Profile
«stereotyper &
OperationalPerformer
[Class] «stereotyper
Role
[storcatypen 3])
05:3:::99 P\ T
[Class] | | l
p— [
1:u5tumlz:lu:n» hY Approver Observer Contributor
r:::,:,,,:,:m [Class] [Class] [Class]
customizationTarget = «Involvement Role:
hideMetatype = true
possibleOwners = [“lPackage
Approves Observes ContributesTo
7= «Customization» BN =
‘Q:\m;"r:::n:m S Observer A Contbutor -.a.ﬂfi?ﬂ’fﬂm ’
«Gustomizationn R Custouratas cumnizaﬁo;c;:g;tﬂi Contributor [E=scc)
customizationTarget = 8 Approver mmf;s;‘?ﬁ‘: = 8 Observer hideMetatype = rue
:gﬁs':‘;;ﬂm;?*’@ e B b Gwiners = P ackage possibleOwners = Package
Figure 32: Involvement Profile Custom Profile Diagram
CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abbreviations and Acronyms

BPM

Business-process modeling

Cl/ICD

Continuous integration/continuous deployment

CM

Configuration management

FISMA

Federal Information Security Management

GDPR

General Data Protection Regulation

HIL

Hardware in loop

HIPAA
Health Insurance Portability and Accountability Act

IEC

International Electrotechnical Commission

ISO

International Organization for Standardization

MBSE

Model-based systems engineering

NIST
National Institute of Standards and Technology

PCI DSS
Payment Card Industry Data Security Standard

PIM
Platform Independent Model

RACI

Responsible, accountable, consulted, and informed

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

RSIM

Relevant-stakeholder-involvement matrix

SaaS

Software as a service

SRAM

Stakeholder-role-assignment matrix

STRIDE(S)
Spoofing, tampering, repudiation, information disclosure, denial of service, elevation of privilege,
(scarce process)

UAF

Unified Architecture Framework

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Bibliography

[Asan 2014]

Asan, E.; Albrecht, O.; & Bilgen, S. Handling Complexity in System of Systems Projects — Les-

sons Learned from MBSE Efforts in Border Security Projects. Pages 281-299. 4" International

Conference on Complex System Design & Management. January 2014. https://www.re-

searchgate.net/publication/312753815_Handling_Complexity_in_System of Systems Projects -
Lessons_Learned from MBSE Efforts in Border Security Projects

[Bass 2015]
Bass, Len; Weber, Ingo; & Zhu, Liming. DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional. 2015. ISBN 978-0-13-404984-7.

[Bloomfield 2014]

Bloomfield, R. E. & Netkachova, K. Building Blocks for Assurance Cases. 2014 IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE). November 2014. https://ieeex-
plore.ieee.org/document/6983836

[CMU SEI 2022]

DevSecOps Platform Independent Model Portal. Carnegie Mellon University Software Engineer-
ing Institute GitHub. 2022. https://cmu-sei.github.io/DevSecOps-Model/

[Dassault Systémes 2023]
Dassault Systémes. Transforming Industries, Markets and Customer Experiences. 3Ds.com.
2023. https://www.3ds.com/industries

[Dictionary.com 2023]
System Definition and Meanings. Dictionary.com. 2023. https://www.dictionary.com/browse/sys-
tem

[DoD Deputy CIO 2010]

DoD Deputy Chief Information Officer (CI1O). DoDAF Viewpoints and Models. Chief Infor-
mation Officer, U.S. Department of Defense. August 2010. https://dodcio.defense.gov/Li-
brary/DoD-Architecture-Framework/dodaf20_operational/

[Goodenough 2012]

Goodenough, John B.; Weinstock, Charles B.; & Klein, Ari Z. Toward a Theory of Assurance
Case Confidence. CMU/SEI-2012-TR-002. Software Engineering Institute, Carnegie Mellon Uni-
versity. 2012. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=28067

[Haskins 2007]
Haskins, Cecilia. Using Patterns to Transition Systems Engineering from a Technological to So-
cial Context. Systems Engineering. Volume 2. Issue 11. 2007. Pages 147-155.

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://cmu-sei.github.io/DevSecOps-Model/
https://www.3ds.com/industries
https://www.dictionary.com/browse/system
https://www.dictionary.com/browse/system
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_operational/
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_operational/

[Mead 2010]

Mead, Nancy; Allen, Julia; Ardis, Mark; Hilburn, Thomas; Kornecki, Andrew; Linger, Richard,
& McDonald, James. Software Assurance Curriculum Project Volume I: Master of Software As-
surance Reference Curriculum. CMU/SEI-2010-TR-005. Software Engineering Institute, Carne-
gie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415

[Miller 2012]
Miller, Lori Ann. Modeling Forward Base Camps as Complex Adaptive Sociotechnical Systems.
Master’s Theses. 6943. 2012.

[MITRE 2023]
MITRE. Common Attack Pattern Enumeration and Classification. April 2023. https://capec.mi-

tre.org

[Morales 2020]

Morales, Jose A.; Turner, Richard; Miller, Suzanne; Capell, Peter; Place, Patrick R.; & Shepard,
David James. Guide to Implementing DevSecOps for a System of Systems in Highly Regulated En-
vironments. CMU/SEI-2020-TR-002. Software Engineering Institute, Carnegie Mellon Univer-
sity. 2020. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576

[Object Management Group 2010]
Object Management Group. About the Business Process Model and Notation Specification Ver-
sion 2.0. OMG.org. December 2010. https://www.omg.org/spec/BPMN/2.0/About-BPMN

[OMG Unified Architecture Framework 2020]

OMG Unified Architecture Framework. Unified Architecture Framework (UAF) Domain Meta-
model. OMG Document Number: formal/19-11-05. Object Management Group, Inc. 2020.
https://www.omg.org/spec/UAF/1.1/DMM/PDF

[Oosthuizen 2018]

Oosthuizen, R.; Venter, J. P.; & Serfontian, C. Model Based Systems Engineering Process for
Complex Command and Control Systems. 23rd International Command and Control Research
and Technology Symposium. November 2018.

[Open Risk Manual n.d.]
Cyber Risk Category. Open Risk Manual. n.d. https://www.openriskmanual.org/wiki/Cate-
gory:Cyber Risk

[Palmer 2016]

Palmer, Erika. Investigating Structural Gender Inequality in the Norwegian Pension System: An
Example of Using MBSE in the Evaluation of Social Systems. 26th Annual INCOSE Interna-
tional Symposium. July 2016. https://www.researchgate.net/publication/308092426_Investigat-
ing_structural_gender_inequality_in_the Norwegian pension system An_example of us-

ing MBSE in_the_evaluation_of social systems

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
https://capec.mitre.org/
https://capec.mitre.org/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576
https://www.omg.org/spec/BPMN/2.0/About-BPMN
https://www.omg.org/spec/UAF/1.1/DMM/PDF
https://www.openriskmanual.org/wiki/Category:Cyber_Risk
https://www.openriskmanual.org/wiki/Category:Cyber_Risk
https://www.researchgate.net/publication/308092426_Investigating_structural_gender_inequality_in_the_Norwegian_pension_system_An_example_of_using_MBSE_in_the_evaluation_of_social_systems
https://www.researchgate.net/publication/308092426_Investigating_structural_gender_inequality_in_the_Norwegian_pension_system_An_example_of_using_MBSE_in_the_evaluation_of_social_systems
https://www.researchgate.net/publication/308092426_Investigating_structural_gender_inequality_in_the_Norwegian_pension_system_An_example_of_using_MBSE_in_the_evaluation_of_social_systems

[Prince 2022]
Prince, Claudia. RACI. Project Management.com. September 2022. https://www.projectmanage-
ment.com/wikis/234008/RACI

[Roudier 2015]

Roudier, Yves & Apvrille, Ludovic. SysML-Sec: A Model Driven Approach for Designing Safe
and Secure Systems. 3rd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD). February 2015. https://ieeexplore.ieee.org/document/7323182

[SEBoK 2022]
Sociotechnical System (Glossary). SEBoK. October 2022. https://www.sebokwiki.org/wiki/Soci-
otechnical System (glossary)

[Shevchenko 2018]
Shevchenko, Nataliya. Threat Modeling: 12 Available Methods [blog post]. SEI Blog. December
3, 2018. https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/

[Shostack 2014]

Shostack, Adam. Threat Modeling: Designing for Security. Wiley. 2014. ISBN 978-1-118-80999-
0. https://www.wiley.com/en-br/Threat+Modeling%3 A+Designing+for+Security-p-
9781118809990

[Wikipedia.com 2023a]

Information System. Wikipedia.com. https://en.wikipedia.org/wiki/Information_system

[Wikipedia.com 2023b]
Responsibility Assignment Matrix. Wikipedia.com. https://en.wikipedia.org/wiki/Responsibil-

ity_assignment_matrix

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://www.projectmanagement.com/wikis/234008/RACI
https://www.projectmanagement.com/wikis/234008/RACI
https://ieeexplore.ieee.org/document/7323182
https://www.sebokwiki.org/wiki/Sociotechnical_System_(glossary)
https://www.sebokwiki.org/wiki/Sociotechnical_System_(glossary)
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://www.wiley.com/en-br/Threat+Modeling%3A+Designing+for+Security-p-9781118809990
https://www.wiley.com/en-br/Threat+Modeling%3A+Designing+for+Security-p-9781118809990
https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Responsibility_assignment_matrix
https://en.wikipedia.org/wiki/Responsibility_assignment_matrix

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE 3. REPORT TYPE AND DATES

(Leave Blank) April 2023 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Using Model-Based Systems Engineering (MBSE) to Assure a DevSecOps Pipeline is Suffi- FA8702-15-D-0002
ciently Secure

6. AUTHOR(S)
Timothy A. Chick, Scott Pavetti, Natasha Shevchenko

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Camegie Mellon University CMU/SEI-2023-TR-001
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
SEI Administrative Agent AGENCY REPORT NUMBER
AFLCMC/AZS nfa
5 Eglin Street
Hanscom AFB, MA 01731-2100

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Many enterprises and government programs are concerned that adversaries may abuse weaknesses in a DevSecOps pipeline to inject
exploitable vulnerabilities into their products and services. This report presents an approach using model-based systems engineering
(MBSE) and the DevSecOps Platform Independent Model (PIM) to evaluate and mitigate the cybersecurity risks associated with a given
enterprise’s or government program’s DevSecOps pipeline(s). The analysis approaches this report describes focus on ensuring that the
DevSecOps pipeline and its associated products are implemented in a secure, safe, and sustainable way; are sufficiently free from vul-
nerabilities; and the capabilities only function as intended. Ultimately, the PIM provides analysts with a minimum set of MBSE tools to
assist with threat identification, analysis, documentation, and subsequent mitigations.

14. SUBJECT TERMS 15. NUMBER OF PAGES
DevSecOps, Software Assurance, Threat Modeling 62

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified uL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

CMU/SEI-2023-TR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

	Acknowledgments
	Abstract
	1 Introduction
	2 Approach and Validity
	3 DevSecOps Platform Independent Model (PIM) Overview
	4 Managing Risk
	5 Assurance Cases and Defeaters
	6 Structuring a DevSecOps Pipeline Assurance Claim Using MBSE
	7 Summary
	Appendix A MBSE Model with Cybersecurity Extension
	Requirements Viewpoint
	Capability/Strategic Viewpoint
	Operational Viewpoint
	Personnel Viewpoint
	Security Viewpoint

	Appendix B: Building and Modeling Threat Scenarios
	Creating a Threat-Modeling Profile within UAF
	Creating an Involvement Profile Within UAF

	Abbreviations and Acronyms
	Bibliography

