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Abstract 

This report provides suggestions for documenting service-oriented architecture-based systems 
based on the Views & Beyond (V&B) software documentation approach. The V&B 
documentation approach is a lightweight and flexible approach to documenting software 
architecture developed by Carnegie Mellon University’s Software Engineering Institute.  

This report also includes an overview of several well-known service-oriented architecture (SOA) 
documentation challenges and suggestions for tailoring and augmenting the V&B approach to 
address those challenges.  

The author hopes that the suggestions presented in this report will help SOA developers avoid 
some of the common documentation pitfalls and produce higher quality SOA documentation. 
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1 Introduction 

This report introduces an approach for documenting service-oriented architecture-based systems 
based upon the Views & Beyond (V&B) software documentation approach, which was developed 
by Carnegie Mellon’s Software Engineering Institute (SEI). The V&B documentation approach is 
a lightweight and flexible approach to documenting software architecture [Clements 2010]. This 
report also includes an overview of several well-known SOA documentation challenges followed 
by a section containing suggestions for tailoring and augmenting the V&B approach to address 
those specific challenges. 

The structure of this report is as follows: 

• Section 2 briefly outlines the evolution of software documentation practice. 

• Section 3 provides an overview of the SEI’s V&B approach for documenting software. 

• Section 4 briefly discusses SOA as an enabling technology. 

• Section 5 presents some of the unique challenges to documenting SOA-based systems. 

• Section 6 includes suggestions for documenting SOA-based systems. 

The author hopes that the suggestions presented in this report will help SOA developers to 
produce higher quality SOA documentation and avoid some of the common documentation 
pitfalls. 
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3 Overview of V&B Key Concepts 

For those unfamiliar with it, V&B is a lightweight and flexible approach for documenting 
software architecture. Because the V&B approach is not architecture specific, the SEI’s V&B 
approach for documenting software works well for documenting SOA-based systems.  

As an introduction to the V&B approach, a brief overview of some of the key V&B principles are 
described in the next sections. It is important to note that this overview covers just a few key 
points from the V&B method. The V&B approach is described in detail in a book in the SEI 
Software Engineering Series titled Documenting Software Architectures: Views and Beyond 
[Clements 2010]. 

3.1 A Consistent Documentation Approach 

A key concept of documenting software architecture emphasized in the V&B approach is that 
organizations should use a consistent documentation approach across an enterprise. To illustrate 
why this is important, we will use the Department of Defense Architecture Framework (DoDAF) 
as an example.  

While the DoDAF prescribed the use of a set of views, often the organization provided little 
guidance about suggested or valid elements that could be used in views. In other words, although 
two parts of an organization created the same type of view, the views were not necessarily 
understandable by the other party because element types were not clearly defined. 

Suggestions for improving consistency in documentation practices include advocating the use of 
style guides and enterprise-wide templates. Style guides improve understandability across 
independently developed views by defining suggested elements and notations for each view type. 
Precisely defined notations not only provide both guidance and structure for the reader, they can 
also improve accuracy and completeness in their design documentation [Bass 2003]. In addition 
to using a style guide to define a common notation for your views, the authors of the SEI book 
titled Documenting Software Architectures: Views and Beyond recommend basing your 
documentation on an agreed-upon template or format [Clements 2010].  

The V&B view template is shown in Figure 2. It is not important that you adopt this specific 
template, but it is important to use a template. Choose the template that best fits your needs. The 
key is to have and follow a consistent format for documenting your architecture across the 
enterprise.  
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Figure 2: Template for a View 

Although not required, most modern software documentation templates use a view-based 
documentation approach. The V&B approach emphasizes that a view is not just a graphic or 
picture. There must be accompanying text to describe the important architectural information the 
view is intended to convey to the reader, as well as any key design decisions.  

Views should also contain overarching documentation that provide system context and describe 
how the views fit together. The V&B approach includes a template for documentation (shown in 
Figure 3) that captures this type of information 
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Figure 3: Documentation Beyond Views Template 

3.2 A View-Based Approach 

Another key concept from the V&B approach, and a well-accepted practice in the software 
community, is to use a view-based documentation approach. Views provide an illustration or 
snapshot of a key piece of the architecture. In the V&B method, the view is captured in the 
primary presentation graphic. The primary presentation is the picture described in the first part of 
the view template (see Figure 2). The primary presentation should be a graphic that is intended to 
communicate something important about the architecture. For example, a view may describe how 
the architecture supports achievement of critical security or performance requirements.  

Different types of views are appropriate for communicating different aspects of the architecture. 
For example, module views (see Figure 4) are good for reasoning about how the software 
architecture supports qualities such as portability and modifiability. Process views (see Figure 5) 
are good for reasoning about how the software architecture supports performance. Allocation 
views (see Figure 6) are good for reasoning about the relationship between the physical 
environment and software components in the architecture. 
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Figure 4: Module View 
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Figure 5: Component and Connector View (Process View) 

People often wonder how to know what views to create. A rule of thumb is to develop the views 
that meet the needs of the highest number of key stakeholders. For example, if a deployment view 
helps the systems administrator reason about physical configuration and helps the software 
architect reason about performance, then it makes sense to create a deployment view. 

The V&B approach suggests that documenting a software architecture is a matter of documenting 
the relevant views and then adding information that applies to more than one view. The 
organizational structure for the V&B approach is illustrated in Figure 7. 

Documentation beyond views provides overarching information that describes how the 
documentation is organized, what the documentation is, and why the documentation is the way  
it is.  
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Figure 6: Allocation View 

 

Figure 7: The Organizational Structure for the V&B Approach 
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5 Challenges in Documenting SOA 

There are several unique characteristics of the service-oriented architectural style that make 
documenting SOA-based systems challenging. Some of the more common SOA documentation 
challenges are listed below. 

5.1 SOA Views Are Often Vague or Incomplete 

There are a couple of reasons that SOA views can be vague, confusing, and incomplete. One 
problem is that often SOA views only provide a picture and do not include the supporting textual 
description that is necessary to understand why the view is important. Readers are then left to 
guess why the architect chose to capture a particular view. The reader might wonder why a 
picture-only view was created, whether it is intended to convey an important architectural 
decision, and whether it communicates something important about how a quality attribute is 
achieved.  

With SOA, the audience for runtime views is often expanded to other stakeholders, such as 
enterprise leaders, business analysts, or requirements managers since they are trying to reason 
about how SOA will promote reuse or interoperability. Since these people are not engineers, the 
cryptic and confusing formal notations for documenting runtime views can be frustrating. To 
compensate for this, SOA documenters tend to use informal views. The increased use of informal 
notation in SOA views helps readers create pictures that are easy to understand. However, this 
type of notation is sometimes vague and that often confuses people (such as architects) who need 
a more precise understanding of the architecture.  

5.2 Future QoS Needs Are Not Known at Design Time 

Another challenge is that, unlike traditional systems development, SOA software architects do not 
necessarily know how their services will be used by all potential future consumers when the 
service is developed. This means that service developers must speculate about future service 
consumers and allow for some degree of variability in the quality of service (QoS) provided by 
the service.  

For example, imagine that a credit card service provides credit card authentication to a large 
online store such Amazon.com. Then imagine that the same credit card service is used by a small 
“mom and pop” business. Amazon.com may require a fast response time for credit card 
authentication, such as 5 seconds per transaction, and in order to get that quality of service 
Amazon.com may be willing to pay the credit card authentication provider $1.00 per credit card 
authentication.6  The mom and pop business, on the other hand, may be able to live with a 10-
second response time. Because of the reduced quality of service (10 seconds instead of 5 seconds 
per transaction) the mom and pop store may only be charged $.50 per transaction. The point is 

 
6  Please note that these are not real response times and fees. 
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that SOA documentation approaches should provide a way to compensate for unpredictability and 
variability in QoS needs. 

5.3 Addition of Future Consumers May Necessitate Extensive Rework 

Designers of SOA-based systems expect that there will be future consumers that are unknown at 
design time. Because of this, SOA documenters know that the documentation approach they use 
for SOA-based systems must accommodate future consumer usage scenarios without requiring a 
“ground up” overhaul of the documentation. This means that the structure of the documentation 
requires forethought and, like SOA, needs to be extensible and adaptable. 

5.4 What Documentation Can (or Should) Be Auto-Generated? 

SOA vendor tools allow developers to auto-generate some aspects of SOA documentation. For 
example, Web Services Description Language (WSDL) files are typically auto-generated and are 
human readable artifacts. Because of this, WSDLs can be used as documentation. While WSDL 
files do a good job of describing the syntax of a service interface, they do not effectively describe 
the quality attributes supported by the service. Examples of this are response time or security 
levels that are supported by a particular service interface. Additionally, automatically generated 
files will not describe the design rationale behind a specific service implementation. Because of 
this, SOA documenters should determine what to auto-generate versus what they should 
document manually. 

5.5 SOA Vendor Tool Access Challenges 

It is good that there is much tool support for developing SOA-based systems; this speeds up 
development and provides a seamless, integrated environment for the developers. However, these 
tools can lead to isolated “SOA islands,” which limit the sharing of documentation and artifacts 
outside the development team if access to documentation requires a vendor software license or 
login. If licensing or access controls restrict people who need access to the documentation from 
getting to artifacts, then regardless of its positive attributes you may need to consider alternative 
approaches to sharing documentation. An example of a critical artifact that must be widely 
accessible to service consumers is the list of available services. If access to service lists is limited 
to a select set of users, this severely limits the likelihood that the services will be reused across an 
organization. Therefore, SOA documenters need to reason about whether or not the tools they are 
using to develop and share documentation allow for adequate access to documentation for all 
potential documentation users. 

5.6 Lack of Technical Governance Limits Interoperability 

SOA is an architectural pattern that fosters interoperability. However, if there is no governance 
over things like enterprise-wide SOA security architecture or web service standards, it is entirely 
possible to end up with a group of independent service-oriented systems that cannot effectively or 
safely interact. If this happens, the organization may be worse off than before it moved to a 
service-oriented development approach. For that reason, it is important to consider establishing 
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technical governance—including recommended standards, patterns, and SOA reference models—
as part of the SOA Governance Framework. 

5.7 Semantic Mismatch for SOA System Data Exchange 

Many organizations adopt a service-oriented architectural approach to foster interoperability. For 
example, organizations may plan to exchange data among independent systems by exposing 
legacy functionality through service interfaces. Organizations might also share data with multiple 
consumers through that same set of services. While interoperability through services is a major 
benefit to organizations that have critical data residing in stove-piped systems, there are also 
challenges with achieving interoperability. One such challenge is getting both parties to agree on 
the semantics of the data being exchanged using services.  
  



 

CMU/SEI-2010-TR-041 | 18  

 



 

CMU/SEI-2010-TR-041 | 19  

6 Suggestions for Documenting SOA-Based Systems 

In this section, we provide suggestions for documenting SOA-based systems. Some of these 
suggestions are based on best practices defined in the V&B documentation approach (with a 
specific focus on documenting SOA-based systems). Other suggestions are based upon common 
industry practices or SEI experiences with the Department of Defense (DoD) and other 
government programs developing SOA-based systems.  

Several suggestions for documenting SOA-based systems are included below.  

6.1 Include SOA Style Guide and Documentation Guidelines in Governance Strategy 

Defining consistent documentation guidelines should be part of an overarching SOA governance 
strategy that is managed by a governance body at the enterprise level. Two artifacts that need to 
be developed to establish consistency across the enterprise are the SOA Documentation Style 
Guide and SOA Architecture Documentation Guidelines, shown in red in Figure 11.7 

 

Figure 11: SOA Governance Artifacts for Consistency 

The enterprise SOA style guide should define informal notations used in SOA views, SOA-related 
elements, and relationships among elements. SOA architecture documentation guidelines should 
provide information related to structuring SOA documentation such as suggested templates. In 
addition, it is recommended that enterprise-wide SOA standard (e.g., WS* standards) guidelines 
also be provided as part of the SOA Governance Framework. 

 
7  Items in Figure 11 that are not emphasized have been intentionally grayed out. 
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As part of the SOA governance strategy, it is important to establish a suggested enterprise SOA 
view template. Because it is lightweight, flexible, and easily adapted to SOA-based system 
documentation, we suggest using the V&B approach for SOA-based systems. One of the benefits 
of the V&B template is that it promotes inclusion of accompanying text sections with views that 
describe key SOA architectural decisions, elements (service interfaces), and relationships (SOA 
messages). In addition, the template promotes completeness and accuracy in developing SOA 
views. 

There are three places in the V&B template where one can capture information about the quality 
attributes that are promoted in the architecture. Quality attributes are attributes of a particular 
architecture. Examples of quality attributes are performance, reliability, and security. Quality 
attributes are often referred to as QoS characteristics in SOA-based systems. 

The first place to document how qualities are achieved using the V&B template is the primary 
presentation. The second place to capture QoS information is in the element behavior section of 
the template. For example, you may specify that a service provides a response time of two 
seconds. Service Level Agreements (SLAs) may also be captured in the Element Behavior 
section. The third place to capture QoS information is the Design Rationale section of the V&B 
template. This section may contain design rationale behind selected SOA patterns or impactful 
architectural decisions. 

In SOA-based systems, informal notation is often used to create runtime views. Figure 12 shows 
an example of a SOA runtime view using informal notation from the J2EE Adventure Builder.8 

As discussed in the previous section, informal views such as the one shown in Figure 12 are 
popular with SOA architects because they are easy to understand. However, informal 
documentation can lead to vague or confusing views. For that reason, it is imperative that all 
elements and relationships among elements are described in a SOA enterprise style guide or, at a 
minimum, a SOA view key. 

 

 
8  The J2EE Adventure Builder is available on the Java website (https://adventurebuilder.dev.java.net/). 

https://adventurebuilder.dev.java.net/
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Figure 12: An Example SOA Runtime View from the J2EE Adventure Builder Tutorial 

6.2 Use Ranges to Capture Service QoS Characteristics 

As mentioned earlier, one challenge in documenting SOA-based systems is that the QoS needs for 
future consumers are unknown at design time; these needs may also vary among consumers. One 
way to deal with this is to provide a QoS range instead of a discrete value for the QoS variables. 
For example, a service may provide a response ranging between 2 and 10 seconds depending on 
factors ranging from how much the consumer is willing to pay for the service to how much 
bandwidth is available between the service consumer and service provider. These ranges can be 
included in the element behavior section of the template described above. More about this topic is 
available in Chapter 6, “Advanced Concepts” in the book Documenting Software Architecture: 
Views and Beyond [Clements 2010]. 

6.3 Structure SOA Documentation to Accommodate Future Consumer Service Uses 

It is relatively straightforward to describe how services are used by known consumers in a view. 
The tricky part is making SOA views flexible enough to accommodate new, unknown consumers 
easily. To make the documentation approach easily extendible, we suggest creating a view 
package for each service-consumer capability.  
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Group believes that Telelogic’s System Architect is arguably the most capable for documenting 
SOA-based systems.9  

 

Figure 15: Magic Quadrant for Enterprise Architecture Tools, April 2006 

Another option for making your SOA documentation widely accessible is to create your own web 
structure based on the V&B templates. The SEI report titled Creating and Using Software 
Architecture Documentation Using Web-Based Tool Support provides some examples [Stafford 2004]. 
Whether you use web pages or an enterprise architecture tool, it is important to remember that the 
documentation needs to be widely available.  

6.6 Establish Technical Governance as Part of the SOA Governance Framework 

To promote interoperability for SOA-based systems, it is helpful to define recommended SOA 
patterns and technical reference models for the enterprise. The idea is not to mandate that only 
certain SOA patterns must be used within an enterprise; rather it is to provide guidance to lead 
architects toward a common way of doing things to promote interoperability across independently 
developed SOA systems. SOA developers will likely leverage many other patterns or tactics to 
achieve functional requirements and quality attributes. Some of the patterns used in a SOA-based 
architecture may be SOA-specific and others may not. A data service hosted as part of the SOA 

 
9  Figure 15 was excerpted from the Gartner RAS Core report titled Magic Quadrant for Enterprise  Architecture 

Tools [Handler 2009]. 



 

CMU/SEI-2010-TR-041 | 25  

infrastructure using a publish-subscribe pattern is an example of a pattern that is often used to 
support SOA-based design. As illustrated in Figure 16, technical reference models can provide 
reference architectures and package patterns for SOA developers [OASIS 2006]. 

 

Figure 16: OASIS Technical Reference Model Descriptive Diagram 

6.7 Develop a Common Semantic Ontology for Core Data 
A significant challenge for those developing SOA-based systems to support interoperability is 
getting both parties to agree upon the semantics of the data being exchanged between systems. 
More on interoperability challenges can be found in the SEI report titled System-of-Systems 
Navigator: An Approach for Managing System-of-Systems [Brownsword 2006]. Some enterprises 
invest significant resources developing a common ontology that can be shared among 
organizations or within an enterprise. If an enterprise-wide common ontology for a core set of 
data is developed, it should be captured in documentation, accurately maintained, and made 
widely accessible. The development of an enterprise ontology should also be included in the SOA 
governance strategy. 
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7 Summary 

Much research remains to be done in the field of SOA documentation practices. The SEI is 
researching the viability of using tool-based SOA documentation techniques as well as concepts 
for designing and documenting using QoS ranges. While many questions are yet to be answered, 
we hope that this report presented a useful approach for structuring SOA-based documentation. 
We also hope the report provided useful suggestions that developers may use to help SOA 
documenters avoid common SOA-documentation pitfalls.  
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