

Suggestions for Documenting
SOA-Based Systems

Stephany Bellomo

September 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-041
ESC-TR-2010-106

Acquisition Support Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library/).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library/

CMU/SEI-2010-TR-041 | i

Table of Contents

Acknowledgements v

Abstract vii

1 Introduction 1

2 The History of Software Documentation Practice 3
2.1 Software Documentation Practices in the 1980s and 1990s 3
2.2 Software Documentation Practices Today 3

3 Overview of V&B Key Concepts 5
3.1 A Consistent Documentation Approach 5
3.2 A View-Based Approach 7
3.3 Views That Describe the Key Aspects of the Architecture 11
3.4 Architectural Patterns and Reference Models 11

4 A Brief Introduction to SOA 13

5 Challenges in Documenting SOA 15
5.1 SOA Views Are Often Vague or Incomplete 15
5.2 Future QoS Needs Are Not Known at Design Time 15
5.3 Addition of Future Consumers May Necessitate Extensive Rework 16
5.4 What Documentation Can (or Should) Be Auto-Generated? 16
5.5 SOA Vendor Tool Access Challenges 16
5.6 Lack of Technical Governance Limits Interoperability 16
5.7 Semantic Mismatch for SOA System Data Exchange 17

6 Suggestions for Documenting SOA-Based Systems 19
6.1 Include SOA Style Guide and Documentation Guidelines in Governance Strategy 19
6.2 Use Ranges to Capture Service QoS Characteristics 21
6.3 Structure SOA Documentation to Accommodate Future Consumer Service Uses 21
6.4 Auto-Generate Static Information; Manually Document Architectural Decisions 23
6.5 Use SOA Vendor-Agnostic Tools to Make SOA Documentation Accessible 23
6.6 Establish Technical Governance as Part of the SOA Governance Framework 24
6.7 Develop a Common Semantic Ontology for Core Data 25

7 Summary 27

8 References 29

CMU/SEI-2010-TR-041 | ii

CMU/SEI-2010-TR-041 | iii

List of Figures

Figure 1: Software Architecture Documentation Timeline 3

Figure 2: Template for a View 6

Figure 3: Documentation Beyond Views Template 7

Figure 4: Module View 8

Figure 5: Component and Connector View (Process View) 9

Figure 6: Allocation View 10

Figure 7: The Organizational Structure for the V&B Approach 10

Figure 8: Primary Presentation with Emphasis on Quality Attributes 11

Figure 9: Technical Reference Models and Architectural Patterns 12

Figure 10: SOA Runtime Diagram Example 13

Figure 11: SOA Governance Artifacts for Consistency 19

Figure 12: An Example SOA Runtime View from the J2EE Adventure Builder Tutorial 21

Figure 13: View Package Service-Consumer Capability 22

Figure 14: View Package SOA Infrastructure View Package 23

Figure 15: Magic Quadrant for Enterprise Architecture Tools, April 2006 24

Figure 16: OASIS Technical Reference Model Descriptive Diagram 25

CMU/SEI-2010-TR-041 | iv

CMU/SEI-2010-TR-041 | v

Acknowledgements

The report is based upon a presentation given at the 27th SIGDOC1 in October 2009. The
presentation was developed in collaboration with Ed Morris and Paul Clements, both of the
Carnegie Mellon® Software Engineering Institute (SEI). In addition, the information presented in
this report draws largely from the book titled Documenting Software Architecture: Views and
Beyond (V&B) [Clements 2010] and the corresponding course, developed by the SEI.2

1 The 27th ACM International Conference on Design of Communication Special Interest Group on Design of

Communication (SIGDOC) was held in Indianapolis, Indiana in October 2009.
® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
2 The course titled “Documenting Software Architecture” is offered regularly at the SEI. For more information, visit

the SEI website (www.sei.cmu.edu/training/p33.cfm).

http://www.sei.cmu.edu/training/p33.cfm

CMU/SEI-2010-TR-041 | vi

CMU/SEI-2010-TR-041 | vii

Abstract

This report provides suggestions for documenting service-oriented architecture-based systems
based on the Views & Beyond (V&B) software documentation approach. The V&B
documentation approach is a lightweight and flexible approach to documenting software
architecture developed by Carnegie Mellon University’s Software Engineering Institute.

This report also includes an overview of several well-known service-oriented architecture (SOA)
documentation challenges and suggestions for tailoring and augmenting the V&B approach to
address those challenges.

The author hopes that the suggestions presented in this report will help SOA developers avoid
some of the common documentation pitfalls and produce higher quality SOA documentation.

CMU/SEI-2010-TR-041 | viii

CMU/SEI-2010-TR-041 | 1

1 Introduction

This report introduces an approach for documenting service-oriented architecture-based systems
based upon the Views & Beyond (V&B) software documentation approach, which was developed
by Carnegie Mellon’s Software Engineering Institute (SEI). The V&B documentation approach is
a lightweight and flexible approach to documenting software architecture [Clements 2010]. This
report also includes an overview of several well-known SOA documentation challenges followed
by a section containing suggestions for tailoring and augmenting the V&B approach to address
those specific challenges.

The structure of this report is as follows:

• Section 2 briefly outlines the evolution of software documentation practice.

• Section 3 provides an overview of the SEI’s V&B approach for documenting software.

• Section 4 briefly discusses SOA as an enabling technology.

• Section 5 presents some of the unique challenges to documenting SOA-based systems.

• Section 6 includes suggestions for documenting SOA-based systems.

The author hopes that the suggestions presented in this report will help SOA developers to
produce higher quality SOA documentation and avoid some of the common documentation
pitfalls.

CMU/SEI-2010-TR-041 | 2

2 The History of Sof

To illustrate where we have been
practices, this section provides a b
from the 1980s to today.

2.1 Software Documentation

The practice of software architect
decades. In the 1980s, the softwar
systems, and architecture docume
software requirements were essen
Software documentation was an a

In the 1990s, the interest and focu
continued to increase. Software m
(UML) specification and requirem
the Object Management Group al

2.2 Software Documentatio

As shown in Figure 1, software d
Today software documentation m
and reuse across an enterprise. Th
practices in an effort to identify w
change, and which are now irrelev

Figure 1: Software Architecture Do

SOA is an architectural style that
technology for systems-of-system
relatively new software developm
are not well established.

CMU/SEI-2010-

ftware Documentation Practice

and where we are today with respect to evolving docum
brief history of the evolution of software documentation

Practices in the 1980s and 1990s

ture documentation has matured significantly over the pa
re development community began developing standalone
entation practices were ad hoc and informal. At that time
ntially lists of system specifications or “shall statements.”
afterthought.

us on software documentation and software modeling app
modeling notations such as the Unified Modeling Langua
ments documentation techniques such as use cases as def
lso began to emerge [OMG 2010].

on Practices Today

ocumentation practices must now extend to the enterpris
must accommodate notions of system-of-systems interope
he software community has begun to reevaluate documen
which conventional practices are still useful, which requir
vant.

ocumentation Timeline

can promote interoperability; as such, it is an enabling
ms development. Because the SOA-based architectural sty
ment approach, documentation practices for SOA-based s

-TR-041 | 3

mentation
practice

ast few
e
,
”

proaches
age
fined by

se level.
erability
ntation
re

yle is a
systems

CMU/SEI-2010-TR-041 | 4

CMU/SEI-2010-TR-041 | 5

3 Overview of V&B Key Concepts

For those unfamiliar with it, V&B is a lightweight and flexible approach for documenting
software architecture. Because the V&B approach is not architecture specific, the SEI’s V&B
approach for documenting software works well for documenting SOA-based systems.

As an introduction to the V&B approach, a brief overview of some of the key V&B principles are
described in the next sections. It is important to note that this overview covers just a few key
points from the V&B method. The V&B approach is described in detail in a book in the SEI
Software Engineering Series titled Documenting Software Architectures: Views and Beyond
[Clements 2010].

3.1 A Consistent Documentation Approach

A key concept of documenting software architecture emphasized in the V&B approach is that
organizations should use a consistent documentation approach across an enterprise. To illustrate
why this is important, we will use the Department of Defense Architecture Framework (DoDAF)
as an example.

While the DoDAF prescribed the use of a set of views, often the organization provided little
guidance about suggested or valid elements that could be used in views. In other words, although
two parts of an organization created the same type of view, the views were not necessarily
understandable by the other party because element types were not clearly defined.

Suggestions for improving consistency in documentation practices include advocating the use of
style guides and enterprise-wide templates. Style guides improve understandability across
independently developed views by defining suggested elements and notations for each view type.
Precisely defined notations not only provide both guidance and structure for the reader, they can
also improve accuracy and completeness in their design documentation [Bass 2003]. In addition
to using a style guide to define a common notation for your views, the authors of the SEI book
titled Documenting Software Architectures: Views and Beyond recommend basing your
documentation on an agreed-upon template or format [Clements 2010].

The V&B view template is shown in Figure 2. It is not important that you adopt this specific
template, but it is important to use a template. Choose the template that best fits your needs. The
key is to have and follow a consistent format for documenting your architecture across the
enterprise.

CMU/SEI-2010-TR-041 | 6

Figure 2: Template for a View

Although not required, most modern software documentation templates use a view-based
documentation approach. The V&B approach emphasizes that a view is not just a graphic or
picture. There must be accompanying text to describe the important architectural information the
view is intended to convey to the reader, as well as any key design decisions.

Views should also contain overarching documentation that provide system context and describe
how the views fit together. The V&B approach includes a template for documentation (shown in
Figure 3) that captures this type of information

CMU/SEI-2010-TR-041 | 7

Figure 3: Documentation Beyond Views Template

3.2 A View-Based Approach

Another key concept from the V&B approach, and a well-accepted practice in the software
community, is to use a view-based documentation approach. Views provide an illustration or
snapshot of a key piece of the architecture. In the V&B method, the view is captured in the
primary presentation graphic. The primary presentation is the picture described in the first part of
the view template (see Figure 2). The primary presentation should be a graphic that is intended to
communicate something important about the architecture. For example, a view may describe how
the architecture supports achievement of critical security or performance requirements.

Different types of views are appropriate for communicating different aspects of the architecture.
For example, module views (see Figure 4) are good for reasoning about how the software
architecture supports qualities such as portability and modifiability. Process views (see Figure 5)
are good for reasoning about how the software architecture supports performance. Allocation
views (see Figure 6) are good for reasoning about the relationship between the physical
environment and software components in the architecture.

CMU/SEI-2010-TR-041 | 8

Figure 4: Module View

CMU/SEI-2010-TR-041 | 9

Figure 5: Component and Connector View (Process View)

People often wonder how to know what views to create. A rule of thumb is to develop the views
that meet the needs of the highest number of key stakeholders. For example, if a deployment view
helps the systems administrator reason about physical configuration and helps the software
architect reason about performance, then it makes sense to create a deployment view.

The V&B approach suggests that documenting a software architecture is a matter of documenting
the relevant views and then adding information that applies to more than one view. The
organizational structure for the V&B approach is illustrated in Figure 7.

Documentation beyond views provides overarching information that describes how the
documentation is organized, what the documentation is, and why the documentation is the way
it is.

CMU/SEI-2010-TR-041 | 10

Figure 6: Allocation View

Figure 7: The Organizational Structure for the V&B Approach

3.3 Views That Describe the

It is essential that the views comm
designing, developing, and/or ma
however, too often a list of requir
and developing views becomes a
architectural decisions.

Figure 8 shows that key aspects o
Good architectural views are imp
for change, and maintaining the s

Figure 8: Primary Presentation wit

3.4 Architectural Patterns a

Another key concept for documen
reference models. Architectures a
previously applied to similar prob
reusing architectural design soluti
improve understandability and fo
even across an enterprise.

Technical reference models (see F
(e.g., Oracle database managemen
general in nature, and they typica
architectural pattern.

CMU/SEI-2010-T

e Key Aspects of the Architecture

municate something that is important to the stakeholders
aintaining the system. This seems like an obvious suggest
red views (e.g., DoDAF views) are mandated by an organ
checklist activity rather than an important step in capturi

of the architecture may be illustrated in the primary prese
ortant artifacts for educating people about the system, an
ystem.

th Emphasis on Quality Attributes

and Reference Models

nting software architecture is to use architectural pattern
are seldom built from scratch, but rather evolve from solu
blems. Architectural patterns represent a current approach
ions. Taking this approach in architectural documentatio
ster architectural consistency across systems, and someti

Figure 9) are typically well established and environment
nt system reference model). Architectural patterns are mo

ally do not include technical details. SOA is an example o

TR-041 | 11

who are
tion;
nization
ing key

entation.
nalyzing

ns and
utions
h to

on can
imes,

specific
ore
of an

Figure 9: Technical Reference Mo

CMU/SEI-2010-T

odels and Architectural Patterns

TR-041 | 12

4 A Brief Introductio

SOA is not a technology or a piec
architectural pattern, a service-ori
ways for different purposes. Ther
recommend. There are, however,
runtime depiction of a SOA patter
pattern include Service Consumer
Lookup Service).

Figure 10: SOA Runtime Diagram E

One of the reasons for the current
integrating systems of systems.4 S
service interfaces and a common
architectural style include the foll
• There is software reuse and r
• Cross-enterprise communica
• An enterprise can expose leg

You can learn more about SOA o
Software Architectures: Views an
systems [Clements 2010].

3 This graphic was taken from the SE
4 For more information about system
5 www.sei.cmu.edu/architecture/rese

CMU/SEI-2010-T

on to SOA

ce of software; rather it is an architectural pattern. As wit
iented architectural pattern can be instantiated in many d
refore, there is no one service-oriented architecture to use
systems that are based upon the SOA architectural patte
rn is shown in Figure 10.3 Key elements in the SOA arch
rs, SOA Infrastructure (ESB) and Services (e.g., Custom

Example

t popularity of SOA is that it is an enabling technology fo
SOA can allow disparate systems to exchange data throu
communication infrastructure. Benefits of the service-or
lowing:
rapid application development.
ation is supported.
gacy functionally through service interfaces.

on the SEI’s website5 or in the new release of Documentin
nd Beyond, which contains a section on documenting SOA

EI’s “Migrating Legacy Systems to SOA Environments” course [SEI

ms of systems, refer to Section 2.2 on page 3 of this report.

earch/soa/index.cfm

TR-041 | 13

th any
different
e or
rn. A
hitectural

mer

for
ugh
riented

ng
A-based

 2010].

http://www.sei.cmu.edu/architecture/rese

CMU/SEI-2010-TR-041 | 14

CMU/SEI-2010-TR-041 | 15

5 Challenges in Documenting SOA

There are several unique characteristics of the service-oriented architectural style that make
documenting SOA-based systems challenging. Some of the more common SOA documentation
challenges are listed below.

5.1 SOA Views Are Often Vague or Incomplete

There are a couple of reasons that SOA views can be vague, confusing, and incomplete. One
problem is that often SOA views only provide a picture and do not include the supporting textual
description that is necessary to understand why the view is important. Readers are then left to
guess why the architect chose to capture a particular view. The reader might wonder why a
picture-only view was created, whether it is intended to convey an important architectural
decision, and whether it communicates something important about how a quality attribute is
achieved.

With SOA, the audience for runtime views is often expanded to other stakeholders, such as
enterprise leaders, business analysts, or requirements managers since they are trying to reason
about how SOA will promote reuse or interoperability. Since these people are not engineers, the
cryptic and confusing formal notations for documenting runtime views can be frustrating. To
compensate for this, SOA documenters tend to use informal views. The increased use of informal
notation in SOA views helps readers create pictures that are easy to understand. However, this
type of notation is sometimes vague and that often confuses people (such as architects) who need
a more precise understanding of the architecture.

5.2 Future QoS Needs Are Not Known at Design Time

Another challenge is that, unlike traditional systems development, SOA software architects do not
necessarily know how their services will be used by all potential future consumers when the
service is developed. This means that service developers must speculate about future service
consumers and allow for some degree of variability in the quality of service (QoS) provided by
the service.

For example, imagine that a credit card service provides credit card authentication to a large
online store such Amazon.com. Then imagine that the same credit card service is used by a small
“mom and pop” business. Amazon.com may require a fast response time for credit card
authentication, such as 5 seconds per transaction, and in order to get that quality of service
Amazon.com may be willing to pay the credit card authentication provider $1.00 per credit card
authentication.6 The mom and pop business, on the other hand, may be able to live with a 10-
second response time. Because of the reduced quality of service (10 seconds instead of 5 seconds
per transaction) the mom and pop store may only be charged $.50 per transaction. The point is

6 Please note that these are not real response times and fees.

CMU/SEI-2010-TR-041 | 16

that SOA documentation approaches should provide a way to compensate for unpredictability and
variability in QoS needs.

5.3 Addition of Future Consumers May Necessitate Extensive Rework

Designers of SOA-based systems expect that there will be future consumers that are unknown at
design time. Because of this, SOA documenters know that the documentation approach they use
for SOA-based systems must accommodate future consumer usage scenarios without requiring a
“ground up” overhaul of the documentation. This means that the structure of the documentation
requires forethought and, like SOA, needs to be extensible and adaptable.

5.4 What Documentation Can (or Should) Be Auto-Generated?

SOA vendor tools allow developers to auto-generate some aspects of SOA documentation. For
example, Web Services Description Language (WSDL) files are typically auto-generated and are
human readable artifacts. Because of this, WSDLs can be used as documentation. While WSDL
files do a good job of describing the syntax of a service interface, they do not effectively describe
the quality attributes supported by the service. Examples of this are response time or security
levels that are supported by a particular service interface. Additionally, automatically generated
files will not describe the design rationale behind a specific service implementation. Because of
this, SOA documenters should determine what to auto-generate versus what they should
document manually.

5.5 SOA Vendor Tool Access Challenges

It is good that there is much tool support for developing SOA-based systems; this speeds up
development and provides a seamless, integrated environment for the developers. However, these
tools can lead to isolated “SOA islands,” which limit the sharing of documentation and artifacts
outside the development team if access to documentation requires a vendor software license or
login. If licensing or access controls restrict people who need access to the documentation from
getting to artifacts, then regardless of its positive attributes you may need to consider alternative
approaches to sharing documentation. An example of a critical artifact that must be widely
accessible to service consumers is the list of available services. If access to service lists is limited
to a select set of users, this severely limits the likelihood that the services will be reused across an
organization. Therefore, SOA documenters need to reason about whether or not the tools they are
using to develop and share documentation allow for adequate access to documentation for all
potential documentation users.

5.6 Lack of Technical Governance Limits Interoperability

SOA is an architectural pattern that fosters interoperability. However, if there is no governance
over things like enterprise-wide SOA security architecture or web service standards, it is entirely
possible to end up with a group of independent service-oriented systems that cannot effectively or
safely interact. If this happens, the organization may be worse off than before it moved to a
service-oriented development approach. For that reason, it is important to consider establishing

CMU/SEI-2010-TR-041 | 17

technical governance—including recommended standards, patterns, and SOA reference models—
as part of the SOA Governance Framework.

5.7 Semantic Mismatch for SOA System Data Exchange

Many organizations adopt a service-oriented architectural approach to foster interoperability. For
example, organizations may plan to exchange data among independent systems by exposing
legacy functionality through service interfaces. Organizations might also share data with multiple
consumers through that same set of services. While interoperability through services is a major
benefit to organizations that have critical data residing in stove-piped systems, there are also
challenges with achieving interoperability. One such challenge is getting both parties to agree on
the semantics of the data being exchanged using services.

CMU/SEI-2010-TR-041 | 18

CMU/SEI-2010-TR-041 | 19

6 Suggestions for Documenting SOA-Based Systems

In this section, we provide suggestions for documenting SOA-based systems. Some of these
suggestions are based on best practices defined in the V&B documentation approach (with a
specific focus on documenting SOA-based systems). Other suggestions are based upon common
industry practices or SEI experiences with the Department of Defense (DoD) and other
government programs developing SOA-based systems.

Several suggestions for documenting SOA-based systems are included below.

6.1 Include SOA Style Guide and Documentation Guidelines in Governance Strategy

Defining consistent documentation guidelines should be part of an overarching SOA governance
strategy that is managed by a governance body at the enterprise level. Two artifacts that need to
be developed to establish consistency across the enterprise are the SOA Documentation Style
Guide and SOA Architecture Documentation Guidelines, shown in red in Figure 11.7

Figure 11: SOA Governance Artifacts for Consistency

The enterprise SOA style guide should define informal notations used in SOA views, SOA-related
elements, and relationships among elements. SOA architecture documentation guidelines should
provide information related to structuring SOA documentation such as suggested templates. In
addition, it is recommended that enterprise-wide SOA standard (e.g., WS* standards) guidelines
also be provided as part of the SOA Governance Framework.

7 Items in Figure 11 that are not emphasized have been intentionally grayed out.

CMU/SEI-2010-TR-041 | 20

As part of the SOA governance strategy, it is important to establish a suggested enterprise SOA
view template. Because it is lightweight, flexible, and easily adapted to SOA-based system
documentation, we suggest using the V&B approach for SOA-based systems. One of the benefits
of the V&B template is that it promotes inclusion of accompanying text sections with views that
describe key SOA architectural decisions, elements (service interfaces), and relationships (SOA
messages). In addition, the template promotes completeness and accuracy in developing SOA
views.

There are three places in the V&B template where one can capture information about the quality
attributes that are promoted in the architecture. Quality attributes are attributes of a particular
architecture. Examples of quality attributes are performance, reliability, and security. Quality
attributes are often referred to as QoS characteristics in SOA-based systems.

The first place to document how qualities are achieved using the V&B template is the primary
presentation. The second place to capture QoS information is in the element behavior section of
the template. For example, you may specify that a service provides a response time of two
seconds. Service Level Agreements (SLAs) may also be captured in the Element Behavior
section. The third place to capture QoS information is the Design Rationale section of the V&B
template. This section may contain design rationale behind selected SOA patterns or impactful
architectural decisions.

In SOA-based systems, informal notation is often used to create runtime views. Figure 12 shows
an example of a SOA runtime view using informal notation from the J2EE Adventure Builder.8

As discussed in the previous section, informal views such as the one shown in Figure 12 are
popular with SOA architects because they are easy to understand. However, informal
documentation can lead to vague or confusing views. For that reason, it is imperative that all
elements and relationships among elements are described in a SOA enterprise style guide or, at a
minimum, a SOA view key.

8 The J2EE Adventure Builder is available on the Java website (https://adventurebuilder.dev.java.net/).

https://adventurebuilder.dev.java.net/

CMU/SEI-2010-TR-041 | 21

Figure 12: An Example SOA Runtime View from the J2EE Adventure Builder Tutorial

6.2 Use Ranges to Capture Service QoS Characteristics

As mentioned earlier, one challenge in documenting SOA-based systems is that the QoS needs for
future consumers are unknown at design time; these needs may also vary among consumers. One
way to deal with this is to provide a QoS range instead of a discrete value for the QoS variables.
For example, a service may provide a response ranging between 2 and 10 seconds depending on
factors ranging from how much the consumer is willing to pay for the service to how much
bandwidth is available between the service consumer and service provider. These ranges can be
included in the element behavior section of the template described above. More about this topic is
available in Chapter 6, “Advanced Concepts” in the book Documenting Software Architecture:
Views and Beyond [Clements 2010].

6.3 Structure SOA Documentation to Accommodate Future Consumer Service Uses

It is relatively straightforward to describe how services are used by known consumers in a view.
The tricky part is making SOA views flexible enough to accommodate new, unknown consumers
easily. To make the documentation approach easily extendible, we suggest creating a view
package for each service-consumer capability.

In Figure 13, the Patient Portal co
combination. For each service-co
documentation to describe a set o
there may be a set of views that d
Create Lab Test Order Service. O
Hospital App. The views in this p
include new ones. Again, there w
scenario to describe how the view
with their own version control.

Figure 13: View Package Service-C

In addition to providing the ability
to provide an extendible way to d
infrastructure is referred to in Fig
Keep in mind that the SOA infras
utility services, data transformatio

The SOA infrastructure may leve
provider needs. As with the consu
necessary to provide the overarch
related views fit together to form
usage packages, each set of packa

CMU/SEI-2010-T

onsumer usage (circled in red) shows one service-consum
nsumer combination, one may provide overarching

of associated views and how the views fit together. For ex
describe how the patient portal leverages services such as
One might create a second service-consumer package call
package may reuse services used in the Patient Portal or m

would be overarching documentation for the Hospital App
ws fit together. Each set of packages will evolve independ

Consumer Capability

y to easily add new service-consumer usages, it is also n
document the SOA infrastructure architecture. The SOA
gure 14 as the Enterprise Service Bus (ESB) and is circled
structure may contain more than just the ESB; it may also
on services, and security services.

rage many patterns to accomplish various service consum
umer-service usage documentation described above, it is
hing documentation, which will describe how the infrastr
the SOA infrastructure services. As with the service-con

ages will evolve independently with their own version co

TR-041 | 22

mer

xample,
s the
led
may
p usage
dently

necessary

d in red.
o contain

mer and
also

ructure-
nsumer
ontrol.

Figure 14: View Package SOA Infra

6.4 Auto-Generate Static Inf

To minimize documentation main
documentation from the actual SO
(e.g., interface specifications) is a
automatically generated. Interface
standard for generating document
Modeling tools to auto-generate s

However, there are limitations to
documentation needs to be augme
the rationale for key design decisi
achieved through the architecture
interface information, and then m
information about key architectur

6.5 Use SOA Vendor-Agnos

One of the SOA documentation c
important to make sure that the SO
widely accessible. A good alterna
documentation is to use SOA ven
SOA-based documentation. These
documentation and then link back

CMU/SEI-2010-T

astructure View Package

formation; Manually Document Architectural Decis

ntenance, tools can be used to auto-generate some parts o
OA operational artifacts. Documentation based on static
a good example of the type of documentation that can be
e specifications can be captured in WSDLS using XMI (o
tation). Alternatively, you can use JavaDoc and Business
some of your SOA documentation.

auto-generated SOA documentation. Auto-generated
ented in some places with manually created text descripti
ions and information about how key quality attributes are

e. We suggest auto-generating static information, such as
manually augmenting that auto-generated documentation w
ral decisions.

stic Tools to Make SOA Documentation Accessible

challenges introduced in the previous section is that it is
OA documentation that is developed using SOA vendor
ative to using proprietary SOA tools to capture and share
ndor-agnostic tools like IBM’s System Architect to share
e tools allow you to create an overarching structure for y
k to source documents. As you can see in Figure 15, Gart

TR-041 | 23

sions

of your
files

open
s

ions of
e
service

with

e

tools is
e SOA

your
your
tner

CMU/SEI-2010-TR-041 | 24

Group believes that Telelogic’s System Architect is arguably the most capable for documenting
SOA-based systems.9

Figure 15: Magic Quadrant for Enterprise Architecture Tools, April 2006

Another option for making your SOA documentation widely accessible is to create your own web
structure based on the V&B templates. The SEI report titled Creating and Using Software
Architecture Documentation Using Web-Based Tool Support provides some examples [Stafford 2004].
Whether you use web pages or an enterprise architecture tool, it is important to remember that the
documentation needs to be widely available.

6.6 Establish Technical Governance as Part of the SOA Governance Framework

To promote interoperability for SOA-based systems, it is helpful to define recommended SOA
patterns and technical reference models for the enterprise. The idea is not to mandate that only
certain SOA patterns must be used within an enterprise; rather it is to provide guidance to lead
architects toward a common way of doing things to promote interoperability across independently
developed SOA systems. SOA developers will likely leverage many other patterns or tactics to
achieve functional requirements and quality attributes. Some of the patterns used in a SOA-based
architecture may be SOA-specific and others may not. A data service hosted as part of the SOA

9 Figure 15 was excerpted from the Gartner RAS Core report titled Magic Quadrant for Enterprise Architecture

Tools [Handler 2009].

CMU/SEI-2010-TR-041 | 25

infrastructure using a publish-subscribe pattern is an example of a pattern that is often used to
support SOA-based design. As illustrated in Figure 16, technical reference models can provide
reference architectures and package patterns for SOA developers [OASIS 2006].

Figure 16: OASIS Technical Reference Model Descriptive Diagram

6.7 Develop a Common Semantic Ontology for Core Data
A significant challenge for those developing SOA-based systems to support interoperability is
getting both parties to agree upon the semantics of the data being exchanged between systems.
More on interoperability challenges can be found in the SEI report titled System-of-Systems
Navigator: An Approach for Managing System-of-Systems [Brownsword 2006]. Some enterprises
invest significant resources developing a common ontology that can be shared among
organizations or within an enterprise. If an enterprise-wide common ontology for a core set of
data is developed, it should be captured in documentation, accurately maintained, and made
widely accessible. The development of an enterprise ontology should also be included in the SOA
governance strategy.

CMU/SEI-2010-TR-041 | 26

CMU/SEI-2010-TR-041 | 27

7 Summary

Much research remains to be done in the field of SOA documentation practices. The SEI is
researching the viability of using tool-based SOA documentation techniques as well as concepts
for designing and documenting using QoS ranges. While many questions are yet to be answered,
we hope that this report presented a useful approach for structuring SOA-based documentation.
We also hope the report provided useful suggestions that developers may use to help SOA
documenters avoid common SOA-documentation pitfalls.

CMU/SEI-2010-TR-041 | 28

CMU/SEI-2010-TR-041 | 29

8 References

URLs are valid as of the publication date of this document.

[Bass 2003]
Len Bass, Paul C. Clements, & Rick Kazman. Software Architecture in Practice, Addison-Wesley
Professional, 2003 (ISBN: 0321154959).
www.sei.cmu.edu/library/abstracts/books/0321154959.cfm

[Brownsword 2006]
Lisa Brownsword, David Fisher, Edwin J. Morris, James Smith, & Patrick Kirwan. System-of-
Systems Navigator: An Approach for Managing System-of-Systems Interoperability (CMU/SEI-
2006-TN-019). Software Engineering Institute, Carnegie Mellon University, 2006.
www.sei.cmu.edu/library/abstracts/reports/06tn019.cfm

[Clements 2010]
Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, & Judith A. Stafford. Documenting Software Architectures: Views and
Beyond, Second Edition. Addison-Wesley Professional, 2010 (ISBN: 0321552687).
www.sei.cmu.edu/library/abstracts/books/0321552687.cfm

[Handler 2009]
Robert A. Handler & Chris Wilson. Magic Quadrant for Enterprise Architecture Tools (Gartner
RAS Core Research Note G00172491). Gartner Research, November 2009.
http://imagesrv.gartner.com/media-products/pdf/reprints/ibm/external/volume4/article28.pdf

[OASIS 2006]
OASIS. Reference Model for Service Oriented Architecture 1.0,” August 2006.
www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[OMG 2010]
Object Management Group Website, September 2010. www.uml.org/

[SEI 2010]
Software Engineering Institute. “Migrating Legacy Systems to SOA Environments.” Software
Engineering Institute, Carnegie Mellon University, 2010. www.sei.cmu.edu/training/V06.cfm

[Stafford 2004]
Judith A. Stafford. Creating and Using Software Architecture Documentation Using Web-Based
Tool Support,” (CMU/SEI-2004-TN-037). Software Engineering Institute, Carnegie Mellon
University, 2004. www.sei.cmu.edu/library/abstracts/reports/04tn037.cfm

http://www.sei.cmu.edu/library/abstracts/books/0321154959.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tn019.cfm
http://www.sei.cmu.edu/library/abstracts/books/0321552687.cfm
http://imagesrv.gartner.com/media-products/pdf/reprints/ibm/external/volume4/article28.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.uml.org/
http://www.sei.cmu.edu/training/V06.cfm
http://www.sei.cmu.edu/library/abstracts/reports/04tn037.cfm

CMU/SEI-2010-TR-041 | 30

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2010

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Suggestions for Documenting SOA-Based Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Stephany Bellomo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-041

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2010-106

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report provides suggestions for documenting service-oriented architecture-based systems based on the Views & Beyond (V&B)
software documentation approach. The V&B documentation approach is a lightweight and flexible approach to documenting software
architecture developed by Carnegie Mellon University’s Software Engineering Institute. This report also includes an overview of several
well-known service-oriented architecture (SOA) documentation challenges and suggestions for tailoring and augmenting the V&B
approach to address those challenges.

The author hopes that the suggestions presented in this report will help SOA developers to avoid some of the common documentation
pitfalls and produce higher quality SOA documentation.

14. SUBJECT TERMS

Service-oriented architecture, SOA, SOA-based systems, SOA documentation

15. NUMBER OF PAGES

42

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Suggestions for Documenting SOA-Based Systems
	Table of Contents
	List of Figures
	Acknowledgements
	Abstract
	1 Introduction
	2 The History of Software Documentation Practice
	2.1 Software Documentation Practices in the 1980s and 1990s
	2.2 Software Documentation Practices Today

	3 Overview of V&B Key Concepts
	3.1 A Consistent Documentation Approach
	3.2 A View-Based Approach
	3.3 Views That Describe the Key Aspects of the Architecture
	3.4 Architectural Patterns and Reference Models

	4 A Brief Introduction to SOA
	5 Challenges in Documenting SOA
	5.1 SOA Views Are Often Vague or Incomplete
	5.2 Future QoS Needs Are Not Known at Design Time
	5.3 Addition of Future Consumers May Necessitate Extensive Rework
	5.4 What Documentation Can (or Should) Be Auto-Generated?
	5.5 SOA Vendor Tool Access Challenges
	5.6 Lack of Technical Governance Limits Interoperability
	5.7 Semantic Mismatch for SOA System Data Exchange

	6 Suggestions for Documenting SOA-Based Systems
	6.1 Include SOA Style Guide and Documentation Guidelines in Governance Strategy
	6.2 Use Ranges to Capture Service QoS Characteristics
	6.3 Structure SOA Documentation to Accommodate Future Consumer Service Uses
	6.4 Auto-Generate Static Information; Manually Document Architectural Decisions
	6.5 Use SOA Vendor-Agnostic Tools to Make SOA Document Assessible
	6.6 Establish Technical Governance as Part of the SOA Governance Framework
	6.7 Develop a Common Semantic Ontology for Core Data

	7 Summary
	8 References

