
De novo design of new chemical entities with
AI methods

Maria Korshunova

May 4, 2022
CMU-CB-22-101

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Olexandr Isayev, PhD, Chair
Christopher Langmead, PhD

David Koes, PhD
Alexander Tropsha, PhD

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Maria Korshunova

This research is funded in part by the grants from the National Science Foundation (NSF CHE-1802789 and CHE-
2041108); Eshelman Institute for Innovation (EII) award. M.K. acknowledges The Molecular Sciences Software
Institute (MolSSI) Software Fellowship and NVIDIA Graduate Fellowship. We also gratefully acknowledge the
support and hardware donation from NVIDIA Corporation. Computational experiments are supported by the
Pittsburgh Supercomputer Center (PSC), Extreme Science and Engineering Discovery Environment (XSEDE) award
CHE200122, funded by the NSF grant number ACI-1053575.

The department specifically disclaims responsibility for any analyses, interpretations, or conclusions. The views and
conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, donors or the U.S. Government.

Keywords: Drug discovery, de novo molecular design, computational chemisty, deep learning,

generative neural networks, reinforcement learning, design of kinase inhibitors

I dedicate my dissertation work to the victims of Russian invasion of Ukraine in February of 2022.

vi

Abstract

This thesis describes novel deep generative neural networks and their applica-

tions for the de novo design of molecules with optimized properties. It discusses

the background and motivation for using deep generative models for de novo drug

design, covering the advantages and limitations of existing techniques such as virtual

screening of molecular libraries, genetic algorithms, and combinatorial enumeration

of molecules from a set of building blocks. Next, it describes novel deep genera-

tive neural network architectures for producing molecules in three commonly used

molecular representations – SMILES strings, 2D molecular graphs, and 3D molecular

graphs, with details of the design, implementation, and computational experiments.

It continues with a slight detour portraying how a generative model can provide an

empirical estimate for the number of bioactive compounds in the chemical space and

describes the experiment performed to obtain such an estimate. Next, it introduces

Reinforcement Learning based strategy to optimize the values of a property of in-

terest for generated molecules. It also proposes several heuristics for more efficient

exploration of the chemical space. Finally, it describes how the proposed models

and optimization algorithms were used to virtually design and then experimentally

confirm novel hits for multiple kinase proteins.

viii

Acknowledgments

I would like to thank my supervisor Dr. Olexandr Isayev who guided me through

my PhD training. He was the best mentor I could imagine and my achievements and

this work wouldn’t be possible without him. I would also like to thank my committee

members for making my defense an enjoyable moment and for all the insightful

comments and suggestions.

I would also like to give a special thanks to Dr. Alexander Tropsha for hosting

me as a visiting research scholar from Russia in 2016. My PhD journey wouldn’t be

possible without his support and encouragement.

Finally, I would like to thank my family (including my cat and dog) and friends

for being with me during these years and patiently listening to me talking about

science.

Contents

1 Introduction 1

1.1 Significance . 1

2 Deep generative models for molecules 5

2.1 Background . 5

2.2 1D SMILES-based generative models . 8

2.2.1 Methods . 8

2.2.1.1 Stack-augmented recurrent neural network 10

2.2.2 Results . 12

2.2.2.1 Generation of chemicals with novel structures 12

2.2.2.2 Ablation study for augmented memory stack 13

2.2.2.3 Novelty and synthetic accessibility of the generated molecules . 14

2.2.2.4 Model analysis . 16

2.3 2D graph-based generative models . 17

2.3.1 Methods . 17

2.3.1.1 Background: GraphRNN model 17

2.3.1.2 MolecularRNN . 18

2.3.1.3 Valency-based rejection sampling 19

2.3.1.4 Structural penalty . 20

2.3.2 Results . 21

2.3.2.1 Unsupervised likelihood training 21

2.4 3D graph-based generative models . 24

2.4.1 Methods . 24

x

2.4.2 Results . 28

2.5 Empirical estimation of size of bioactive chemical space with generative models . 30

2.5.1 Introduction . 30

2.5.2 Results . 30

2.5.3 Methods . 40

3 Optimizing properties of generated molecules 43

3.1 Reinforcement learning for property optimization 43

3.1.1 Introduction . 43

3.1.2 Methods . 45

3.1.2.1 Reinforcement learning formulation for SMILES strings 46

3.1.2.2 Reinforcement learning formulation for molecular graphs . . . 47

3.1.2.3 Structural penalty for MolecularRNN 48

3.1.3 Results . 48

3.1.3.1 Generation of property value biased libraries with the RL system

and SMILES-based generative model 48

3.1.3.2 Visualization of new chemical libraries 55

3.1.3.3 Property optimization with reinforcement learning and Molecu-

larRNN . 56

3.2 Heuristics for improving property optimization 59

3.2.1 Introduction . 59

3.2.2 Methods . 61

3.2.2.1 Exploration and exploitation trade-off. 62

3.2.3 Results . 65

4 Applications of deep generative models for design of novel kinase inhibitors 75

4.1 Background . 75

4.2 EGFR case-study . 77

4.2.1 Methods . 77

4.2.2 Results . 78

xi

4.2.3 Generation and selection of hit compounds. 78

4.2.3.1 Experimental Validation. 79

4.3 CSNK2A2, DYRK1B, MKNK2 case study . 81

4.3.1 Virtual screening of AI-COSMOS library with ML models 81

5 OpenChem: a Deep Learning toolkit for Computational Chemistry and Drug Design 87

5.1 Background . 87

5.2 Methods . 89

5.2.1 OpenChem design . 89

5.3 Results . 91

5.3.1 Case study 1: Graph Convolution Neural Network for predicting logP . . 91

5.3.2 Case study 2: Tox21 Challenge . 94

5.3.3 Case study 3: Generation of molecular graphs with maximized melting

temperature . 97

6 Conclusion 101

Bibliography 107

List of Figures

2.1 Types of molecular representations . 5

2.2 SMILES-based generative model. 10

2.3 Distributions of SMILES’s strings lengths . 12

2.4 A sample of molecules produced by the SMILES-based generative model. 13

xii

2.5 Performance of stack augmented GRU and “Vanilla” GRU 14

2.6 Distribution of Synthetic Accessibility Score (SAS) for the full ChEMBL21

database (1.5M molecules), random subsample of 1M molecules from ZINC15

and generated dataset of 1M molecules with baseline generator model G. 15

2.7 Examples of Stack-RNN cells with interpretable gate activations. 16

2.8 MolecularRNN model. The model consists of NodeRNN that unrolls across

atoms, predicting the type of the next atom in the molecular graph, and EdgeRNN

that for every atom is initialized with NodeRNN hidden state, and unrolls across

preceding atoms to predict bond types. 20

2.9 Schema of MolecularRNN 3D model. 25

2.10 Distributions of RMSDs. 29

2.11 The workflow of the library generation process. 31

2.12 Extrapolation of the trend for chemical compounds. 33

2.13 Extrapolation of the trend for chemical compounds. 34

2.14 Distribution of properties for AI-COSMOS, ChEMBL, Enamine, and Drugbank. . 36

2.15 The Tanimoto similarity (Tsim) between AI-COSMOS diversity set and ChEMBL. 37

2.16 . Synthetic accessibility assessment results for the AI-COSMOS and ChEMBL

libraries . 38

2.17 The internal similarity of subsets processed with retrosynthetic model. 39

3.1 Distributions of QED score for molecules from various sources 45

3.2 General pipeline of a reinforcement learning system for novel compounds generation. 45

3.3 Melting temperature optimization RL experiment. 50

3.4 LogP optimization RL experiment. 51

3.5 JAK2 optimization RL experiment. 52

3.6 Evolution of generated structures as chemical substrcture reward increases for

number of substitutents (top) and benzene rings (bottom). 53

xiii

3.7 Property distributions for RL-optimized versus baseline generator model. 54

3.8 Clustering of generated molecules by t-distributed stochastic neighbor embedding

(t-SNE). 55

3.9 Top 3 molecules for MolecularRNN optimized with policy gradient 57

3.10 Distribution of maximized QED for MolecularRNN and GCPN. 57

3.11 Melting temperature maximization . 59

3.12 EGFR model training pipeline. 65

3.13 Combined effects of fine-tuning and reinforcement learning. 67

3.14 Combined effects of fine-tuning and reinforcement learning. 67

3.15 Evolution of active and valid fractions over training. 70

3.16 The 12 most common Bemis-Murcko scaffolds for models trained from different

libraries. 72

3.17 Distributions of Tanimoto similarities for libraries generated after different points

in training. 73

4.1 Time-lapse distribution of active class probability values during training. 79

5.1 OpenChem pipeline. 89

5.2 Main OpenChem objects. 91

5.3 OpenChem case study 1 config examples. 93

5.4 Scheme of multitask SMILES2Label model. Input SMILES string is converted

to a matrix of embeddings by the dictionary of learnable embeddings. Next, the

matrix of embeddings is passed to the RNN encoder with LSTM layer. The RNN

encoder converts the matrix of embedding to a representation vector, which is

used by the multilayer perceptron to make predictions for the input SMILES. . . 95

5.5 OpenChem case study 2 config examples. 96

5.6 OpenChem case study 3 config examples. 99

xiv

List of Tables

2.1 Statistics for training datasets. 22

2.2 Statistics for 1 million molecules generated by 3 models pretrained on 3 training

datasets . 23

2.3 Comparison of MolecularRNN, GCPN [1] and JT-VAE [2]. Models are trained

on ZINC 250k dataset. Statistics are calculated for 30000 generated molecules. . 23

2.4 Comparison of property values for AI-COSMOS, ChEMBL, Enamine, and Drug-

Bank libraries. 35

2.5 . Results of the retrosynthetic assessment of AI-COSMOS, ChEMBL, and Enam-

ine libraries. 40

3.1 Comparison of statistics for generated molecular datasets. 49

3.2 Comparison of the top 3 scores for penalized logP and QED. 57

4.1 Data for EGFR kinase inhibiton of compounds 1-4. 80

4.2 Data for CSNK2A2 kinase inhibition. 84

4.3 Data for DYRK1b kinase inhibition. 85

4.4 Data for MKNK2 kinase inhibition. 86

xv

xvi

Chapter 1

Introduction

1.1 Significance

The analysis of recent trends in drug development and approval presents a bleak picture [3].

The approval of new drugs has been flat over the last two decades. Less than one out of every

10,000 drug candidates become an approved marketed drug. Only three out of every 20 approved

drugs bring in enough revenue to cover developmental costs. Moreover, it takes approximately

10-15 years and an average cost of $1-3 billion to develop each new drug. Many promising drug

candidates fail in phase II and phase III—later stages of the clinical development process. These

high attrition rates incurred at later phases of the pipeline are primarily responsible for the high

cost of drug discovery; this high failure rate effectively implies that most molecules making it into

later phases should have been filtered out early in the process. On the other hand, the attempts

to implement “fail early, fail cheap” concept [4] by employing multiple computational filters

developed to be applied to early-stage drug candidates proved to be ineffective in increasing the

success rate [5], possibly due to oversimplification of the structural determinants of undesired

drug properties [6, 7]. Thus, the pharmaceutical industry is currently challenged to increase the

efficiency of drug development.

The combination of big data and artificial intelligence (AI) was referred to by the World

Economic Forum as the fourth industrial revolution and can radically transform the practice of

scientific discovery [8]. AI is revolutionizing medicine [9] including radiology, pathology, and

1

other medical specialties [10]. Deep learning (DL) technologies are beginning to find applications

in drug discovery [11, 12] including areas of molecular docking [13], transcriptomics [14],

reaction mechanism elucidation [15], and molecular energy prediction [16, 17]. Drug discovery is

well positioned to be the next frontier for a potential breakthrough. When it comes to optimizing

or discovering new molecules, human intuition currently drives the design. The resulting data

sets tend to be clustered, sparse, and incomplete, especially in that humans tend to favor inclusion

of ”successful” data and tend to forget ”failed” experiments. The comprehensive incorporation

of all data is the strength of machine intelligence. With sufficient data, an AI-driven machine

can more effectively choose the next step in experiments or simulations than humans, speeding

up the optimization of a given property. A key benefit is achieving a better balance between

the exploration of new parameter space, and the exploitation of already promising areas. The

methodology presented in this thesis is a paradigm shift for early-stage drug design. It disrupts

the whole pipeline of how hit and lead compounds are discovered and optimized.

The crucial step in many new drug discovery projects is the formulation of a well-motivated

hypothesis for new lead compound generation (de novo design) or compound selection from

available or synthetically feasible chemical libraries based on the available structure-activity

relationship (SAR) data. The design hypotheses are often biased toward preferred chemistry

[18] or driven by model interpretation [19]. Automated approaches for designing compounds

with the desired properties de novo have become an active field of research in the last 15 years

[20, 21, 22]. The diversity of synthetically feasible chemicals that can be considered as potential

drug-like molecules was estimated to be between 1030 and 1060 [23]. However, these estimates

are combinatorial and may be overoptimistic. In this thesis we will revisit the estimate of the

size of the bioactive chemical space in Section 2.5. Great advances in computational algorithms

[24, 25], hardware, and high-throughput screening technologies [26] notwithstanding, the size of

this virtual library prohibits its exhaustive sampling and testing by systematic construction and

evaluation of each individual compound. Local optimization approaches have been proposed, but

they do not ensure the optimal solution, as the design process converges on a local or “practical”

optimum by stochastic sampling or restricts the search to a defined section of chemical space that

can be screened exhaustively [20, 25, 27].

2

Notably, a method for exploring chemical space based on continuous encodings of molecules

was proposed recently [28]. It allows efficient, directed gradient-based search through chemical

space but does not involve biasing libraries toward special physical or biological properties.

Another very recent approach for generating focused molecular libraries with the desired bioac-

tivity using recurrent neural networks (RNNs) was proposed as well [29]; however, properties

of produced molecules could not be controlled well. An adversarial autoencoder was proposed

[30] as a tool for generating new molecules with the desired properties; however, compounds

of interest are selected by means of virtual screening of large libraries, not by designing novel

molecules. Specifically, points from the latent space of chemical descriptors are projected to the

nearest known molecule in the screening database, which are regarded as hit compounds.

This thesis attempts to develop a new computational drug design platform that is based on

the innovative applications of AI approaches to the task of the generation of structurally novel

compounds with optimized properties. Benefiting both from the availability of Big Data on

multiple properties of significance to drug discovery and novel algorithms, our goal is to develop

“shotgun” computational models that accomplish, in one sweep, the design of realistic molecular

structures that possess desired properties “at birth”.

3

4

Chapter 2

Deep generative models for molecules

2.1 Background

Figure 2.1: Types of molecular representations

Deep generative models can be classified by

the types of molecular representation gener-

ated. The fundamental differences in these

approaches lie in types of molecules represen-

tation. In this thesis, we define three ways to

represent a molecule in a model based on the

amount of information this representation pro-

vides about the molecule – SMILES strings,

molecular graphs and 3D conformer (see Fig-

ure 2.1).

Arguably, the most well-studied way to rep-

resent a chemical molecule is a simplified molecular-input line-entry system (SMILES) string

[31]. A SMILES string consists of symbols corresponding to nodes of the molecular graph in

their depth-first order, unambiguously describing the composition and structure of the chemi-

cal molecule. SMILES string can be considered a 1D representation of a molecule based on

underlying data dimensionality, a vector of character tokens. SMILES string notation in its

nature is similar to a natural language. The grammar of SMILES language includes various

5

bracket types, and a valid SMILES string must contain a balanced parenthesis string. Multiple

models for SMILES string generation have been proposed in literature [32, 33, 34]. All these

approaches adapted techniques from deep neural networks for dealing with natural language and

use a recurrent neural network of some kind to learn a language model of SMILES. Probably

the biggest limitation of these methods is imperfect validity (i.e. some of the generated samples

are not chemically valid molecules) due to a challenge of learning complex grammatical rules.

Another limitation is that SMILES-based approaches cannot be naturally extended to scaffold

optimization when a generation process starts from a given core of the molecule and the task is

to find a molecule with better properties and pattern of substituents while maintaining the same

molecular core. In this thesis, we developed a deep generative model for SMILES, i.e. RNN with

augmented memory stack, capable of learning the complex grammar of SMILES language. We

talk about this model in section 2.2.1.

Another way to represent a chemical molecule is through its molecular graph. A graph is a

natural representation of a chemical molecule. Each node in a graph corresponds to an atom, and

each edge corresponds to a bond. Different types of atoms (carbon, oxygen, nitrogen, etc.) are

encoded as different kinds of nodes in a graph. The same applies to edges to represent different

types of bonds (single bond, double bond, triple bond, and aromatic bond).

Graph-based approaches typically do not suffer from the problem of invalidity of generated

molecules. It is also possible to enforce physical constraints on the valency, i.e., how many

neighbors each atom can have depending on the atom type. Moreover, these models are more

interpretable and more intuitive to chemists. Various algorithms for generating molecular graphs

have been developed [2, 35]. Jin et al. [2] proposed a junction tree variational autoencoder. This

model first generates a junction tree where every node corresponds to a structural fragment rather

than a single atom. Then, the junction tree is converted into a valid molecule with a sampling

procedure. This approach produces valid molecules by design; however, there is ambiguity in

the process of converting a generated junction tree into a molecule due to sampling. While

this is not a problem for the unconstrained generative process, it may cause difficulties with

property optimization because molecules with the same junction tree may have a drastic difference

in property value. [2] argue that it is beneficial to generate a graph from fragments, however,

6

atom-by-atom models have already proven as a strong baseline [1, 36, 37].

In [35] the process of graph generation is sequential. Nodes are generated one at a time and

then connected to the existing partial graph. With a sequential process, the same graph can be

generated with multiple sequences of steps due to the node order permutation. This work does not

address the problem of node order permutation. Another limitation of this work is the constraints

on the graph size. Only molecular graphs with at most 20 heavy atoms were considered which is

not enough for any practical purpose.

In [1], the procedure of molecular graph generation is presented as a Markov Decision Process.

The model uses graph convolutional network (GCN) model for goal-directed graph generation

with reinforcement learning and adversarial training. This work, similar to [2], only reports top

3 molecules, while top 3 may not represent the model performance as well as the distribution

of a properties obtained from a large number of generated samples. Recently, the GraphRNN

model [38] was proposed for the generation of undirected graphs. In this thesis we extend

GraphRNN to include node and edge type predictions and adapted this approach to molecular

graph generation. We talk about our model, MolecularRNN, in section 2.3.

Finally, a molecule can be represented as a conformer in 3D space. Several deep learning

models addressed the problem of 3D conformer generation. In one of the first works [39] authors

developed a model for 3D linker design. This model is trained as VAE to reconstruct the linker

between 2 fragments of molecules in 3D. However, this model only considers the distance and

relative angle between two seed fragments, and is not capable to produce molecules from scratch

or generate 3D conformations to existing 3D molecules. Another work [40] proposed shape-based

variational autoencoder based on SMILES and information about shape of the molecule. In

this work Convolutional Neural Network (CNN) was coupled with a shape captioning network

consisting of a separate CNN used to condition a recurrent neural network (RNN). In this

framework, 3D information was only provided implicitly to seed the RNN, and the method does

not allow any further control over generated compounds. As a result, such generative model

frequently changed the entire molecule and recovered fewer than 2% of the seed molecules. One

more VAE-based model was proposed in [41]. This model is designed to generated 3D molecular

structure conditioned on the protein’s binding site. The protein information is passed to the model

7

as a feature vector and VAE uses this vector as condition. The drawback of this approach is that

the model produces ligands as ligand density grids and not explicit molecules. Two other works

[42, 43] reported in the literature utilize reinforcement learning methods to generated molecules

with 3D conformations from scratch. However, both of the models can only generate molecules

from a pre-defined set of atoms called ”buckets”. Each configuration of buckets requires training

a separate model. The resulting molecules do not contain more than ten heavy atoms, which is

not sufficient for real-life applications. One more model we want to mention is TorsionNet [44].

This model also uses reinforcement learning algorithms and message passing neural networks,

and only addresses conformer generation for a given molecule and does not tackle generation of

novel molecules from scratch. The evaluation of the model was only performed for alkanes and

lignins and authors did not show how well TorsionNet can generated conformation for drug-like

molecules.

In this thesis, we further extended the MolecularRNN model for 3D graphs generation and

described it in section 2.4.

2.2 1D SMILES-based generative models

2.2.1 Methods

Generative model for SMILES as a language model A Generative model for SMILES strings

is a language model [45]. The generative model has two modes of processing sequences – training

and generating. At each time step, in the training mode, the generative network takes a current

prefix of the training object and predicts the probability distribution of the next character. Then,

the next character is sampled from this predicted probability distribution and is compared to the

ground truth. Afterwards, based on this comparison the cross-entropy loss function is calculated

and parameters of the model are updated. At each time step, in generating mode, the generative

network takes a prefix of already generated sequences and then, like in the training mode, predicts

the probability distribution of the next character and samples it from this predicted distribution. In

the generative model, we do not update the model parameters.

To generate a valid SMILES string, in addition to correct valence for all atoms, one must

8

count ring opening and closure, as well as bracket sequences with several bracket types. Regular

RNNs such as long short-term memory (LSTM) [46] and gated recurrent unit (GRU) [47] are

unable to solve the sequence prediction problems because of their inability to count. One of the

classical examples of sequences that cannot be properly modeled by regular RNNs are words

from the Dyck language, where all open square brackets are matched with the respective closed

ones [48]. Formal language theory states that context-free languages, such as the Dyck language,

cannot be generated by model without stack memory [49]. As a valid SMILES string should at

least be a sequence of all properly matched parentheses with multiple types of brackets, RNNs

with an additional memory stack present a theoretically justified choice for modeling SMILES.

Another weakness of regular RNNs is their inability to capture long-term dependencies, which

leads to difficulties in generalizing to longer sequences [50]. Therefore, memory-augmented

neural networks such as Stack-RNN or Neural Turing Machines are the appropriate choice for

modeling these sequence dependencies.

The Stack-RNN defines a new neuron or cell structure on top of the standard GRU cell (see

Figure 2.5). It has two additional multiplicative gates referred to as the memory stack, which

allow the Stack-RNN to learn meaningful long-range interdependencies. Stack memory is a

differentiable structure onto and from which continuous vectors are inserted and removed. In

stack terminology, the insertion operation is called a PUSH operation and the removal operation

is called a POP operation. These traditionally discrete operations are continuous here, since

PUSH and POP operations are permitted to be real values in the interval (0, 1). Intuitively,

we can interpret these values as the degree of certainty with which some controller wishes to

PUSH a vector v onto the stack or POP the top of the stack. Such an architecture resembles a

pushdown automaton, which is a classic framework from the theory of formal languages, capable

of dealing with more complicated languages. Applying this concept to neural networks provides

the possibility to build a trainable model of the language of SMILES with correct syntaxes, proper

balance of ring opening and closures, and correct valences for all elements.

9

(a) Training mode

(b) Inference mode

Figure 2.2: SMILES-based generative model.

2.2.1.1 Stack-augmented recurrent neural network

This section describes a generative model with augmented memory stack in more details. We

assume that the data is sequential, which means that it comes in the form of discrete tokens, i.e.,

characters as in the case of SMILES strings. The goal is to build a model that is able to predict the

next token conditioning on all previous tokens. A regular recurrent neural network has an input

layer and a hidden layer. At time step t the neural network takes the embedding vector of token

10

number t from the sequence as an input and models the probability distribution of the next token

given all previous tokens, so that the next token can be sampled from this distribution. Information

of all previously observed tokens is aggregated in the hidden layer. This can be written down as

follows:

ht = �(Wixt +Whht�1),

where ht is a vector of hidden states, ht�1 – vector of hidden states from the previous time

step, xt – input vector at time step t, Wi – parameters of the input layers, Wh – parameter of the

hidden layer and � – activation function. The stack memory is used to keep the information and

deliver it to the hidden layer at the next time step. A stack is a type of persistent memory, which

can be only accessed through its topmost element. There are three operations supported by the

stack: POP operation, which deletes an element from the top of the stack, PUSH operation, which

puts a new element to the top of the stack; and NO-OP operation, which performs no action. The

top element of the stack has value st[0] and is stored at position 0:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1] + at[NO �OP]st�1[0],

where D is 1 ⇥ m matrix and at = [at[PUSH], at[POP], at[NO � OP]] is a vector of stack

control variables, which define the next operation to be performed. If at [POP] is equal to 1, then

the value below is used to replace the top element of the stack. If at [PUSH] is equal to 1, then

a new value will be added to the top and all the rest of the values will be moved down. If at

[NO-OP] equals 1 then stack keeps the same value on top. Similar rule is applied to the elements

of the stack at a depth i > 0:

st[i] = at[PUSH]st�1[i� 1] + at[POP]st�1[i+ 1] + at[NO �OP]st�1[i].

Now the hidden layer ht is updated as:

ht = �(Uxt +Rht�1 +Dsk
t�1),

where D is a matrix of size m×k and sk
t�1 are the first k elements for the top of the stack at

11

time step t� 1.

2.2.2 Results

2.2.2.1 Generation of chemicals with novel structures

The generative network was trained with structures from the ChEMBL21 database [51]. ChEMBL

includes approximately 1.5 million SMILES strings; however, we only selected molecules with

length of SMILES string of fewer than 100 characters. The length of 100 was chosen because

more than 97% of SMILES in training dataset had 100 characters or less. The distribution of

SMILES string lengths is shown in Figure 2.3.

(a) Initial (b) Truncated

Figure 2.3: Distributions of SMILES’s strings lengths

The objective of training was to learn the rules of organic chemistry that define SMILES

string corresponding to realistic chemical structures. To demonstrate the versatility of the baseline

(unbiased) Stack-RNN, we generated over one million (1M) of compounds. Random examples of

the generated compounds are illustrated in Figure 2.4.

A known deficiency of approaches for de novo molecular design is frequent generation of

chemically infeasible molecules [28, 34]. To address this possible issue of concern, we have

established that 95% of all generated structures were valid, chemically sensible, molecules. The

validity check was performed by the structure checker from ChemAxon (https://chemaxon.com/).

12

Figure 2.4: A sample of molecules produced by the SMILES-based generative model.

We compared the 1 million de novo generated molecules with those used to train the generative

model from the ChEMBL database and found that the model produced less than 0.1% of struc-

tures from the training dataset. Additional comparison with the ZINC15 database [52] of 320

million synthetically accessible drug-like molecules showed that about 3% (approximately 32, 000

molecules) of de novo generated structures could be found in ZINC.

2.2.2.2 Ablation study for augmented memory stack

To assess the importance of using a stack memory augmented network as described in section

2.2.1.1, we compared several characteristics of chemical libraries generated by models developed

either with or without stack memory. For this purpose, we trained another generative recurrent

13

neural network with the same architecture but without using stack memory. Libraries were

compared by the percentage of valid generated SMILES, internal diversity, and similarity of

the generated molecules to those in the training dataset (ChEMBL). The model without stack

memory showed that only 86% of molecules in the respective library were valid (as evaluated

by ChemAxon) compared to 95% of valid molecules in the library generated with stack memory

network. As expected, in the former library, syntactic errors such as open brackets, unclosed

cycles and incorrect bond types in SMILES strings were more frequent. Based on the analysis

of respective sets of 10000 molecules generated by each method (See Figure 2.5a), the library

obtained without stack memory showed a decrease of internal diversity by 0.2 units of the

Tanimoto coefficient and a four-fold increase in the number of duplicates, from just about 1% to

5%. In addition, Figure 2.5b shows that the number of molecules similar to the training dataset

(Tsim > 0.85) for the library obtained without stack memory (28% of all molecules) is twice that

obtained with stack memory (14%). These results clearly highlight the advantages of using neural

network with memory for generating the highest number of realistic and predominantly novel

molecules, which is one of the chief objectives of de novo chemical design.

(a) Internal diversity of generated libraries (b) Similarity of generated libraries to training dataset

Figure 2.5: Performance of stack augmented GRU and “Vanilla” GRU

2.2.2.3 Novelty and synthetic accessibility of the generated molecules

In order to further characterize the structural novelty of the de novo generated molecules, we

compared the content of the Murcko scaffolds [53] between the ChEMBL training set and the

14

virtual library generated by our system. Murcko scaffolds provide a hierarchical molecular

organization scheme by dividing small molecules into R-groups, linkers, and frameworks, or

scaffolds. They define the ring systems of a molecule by removing side chain atoms. We found

that less than 10% of scaffolds in our library were present in ChEMBL. Overall, this analysis

suggests that the generative Stack-RNN model did not simply memorize the training SMILES

sequences but was indeed capable of generating extremely diverse yet realistic molecules as

defined by the structure checker from ChemAxon. In addition to passing the structure checker, an

important requirement for de novo generated molecules is their synthetic feasibility. To this end,

we employed the synthetic accessibility score (SAS) method [54], which relies on the knowledge

extracted from known synthetic reactions and adds a penalty for high molecular complexity.

For ease of interpretation, SAS is scaled to be between 1 and 10. Molecules with high SAS

values, typically above 6, are considered difficult to synthesize, whereas molecules with low SAS

values are easily synthetically accessible. The distribution of SAS values calculated for 1 million

molecules generated by the SMILES-based generative model is shown in Figure 2.6.

Figure 2.6: Distribution of Synthetic Accessibility Score (SAS) for the full ChEMBL21 database
(1.5M molecules), random subsample of 1M molecules from ZINC15 and generated dataset of
1M molecules with baseline generator model G.

To illustrate the robustness of the de novo generated chemical library, we compared its SAS

15

distribution with that of the SAS values both for the full ChEMBL library (1.5M molecules) and

for a 1M random sample of molecules in ZINC. Similar to typical commercial vendor libraries,

the distribution of SAS for the generated library is skewed towards more easily synthesizable

molecules. Median SAS values were 2.9 for ChEMBL and 3.1 for both ZINC and the generated

library. Over 99.5% of de novo generated molecules had SAS values below 6. Therefore, despite

their high novelty, the vast majority of generated compounds can be considered as synthetically

accessible.

2.2.2.4 Model analysis

Model interpretation is a highly significant component in any ML study. In this section we

demonstrate how Stack-RNN learns and memorizes useful information from the SMILES string

as it is being processed. More specifically, we have manually analyzed neuron gate activations of

the neural network as it processes the input data.

Figure 2.7: Examples of Stack-RNN cells with interpretable gate activations.

Figure 2.7 lists several examples of cells in neural networks with interpretable gate activations.

16

In this figure, each line corresponds to activations of a specific neuron at different SMILES

processing time steps by the pre-trained baseline generative model. Each letter is colored according

to the value of tanh activation in a cool-warm colormap from dark blue to dark red, i.e., from �1

to 1. We found that our RNN has several interpretable cells. These cells can be divided into two

groups – chemically sensible groups, which activate in the presence of specific chemical groups or

moieties, and syntactic groups, which keep tracks of numbers, bracket opening and closure, and

even of SMILES string termination when the new molecule is generated. For instance, we saw

cells reflecting the presence of a carbonyl group, aromatic groups or NH moieties in heterocycles.

We also observed that in two of these three examples there were counter-cells that deactivate in the

presence of the aforementioned chemical groups. Neural network-based models are notoriously

uninterpretable [55] and the majority of cells were indeed in that category. On the other hand, the

possibility of even partial interpretation offered by this approach could be highly valuable for a

medicinal chemist.

2.3 2D graph-based generative models

2.3.1 Methods

The core of our approach is a MolecularRNN model, which extends the GraphRNN [38] model for

generating graphs with node and edge types. Section 2.3.1.1 gives background on GraphRNN, and

the extension is described in Section 2.3.1.2. We introduce a method of valency-based rejection

sampling in Section 2.3.1.3 that yields 100% validity in inference mode.

2.3.1.1 Background: GraphRNN model

GraphRNN [38] was introduced for generation of undirected graphs G = (V,E) with a set

of n nodes V = (v1, . . . , vn) and a set of undirected edges E = ({vi, vj}|vi, vj 2 V) between

those nodes. Under some node ordering ⇡ this graph is represented with its adjacency matrix

A⇡ 2 {0, 1}n⇥n with A⇡

i,j
= 1 iff (⇡(vi), ⇡(vj)) 2 E. The model generates graphs as sequences

of adjacency vectors S⇡

i
2 {0, 1}i�1 from node ⇡(vi) to previous nodes under ⇡. Thus, S⇡

i
=

17

�
A⇡

1,i, . . . A
⇡

i�1,i

�T , and likelihood p(S⇡) can be modelled sequentially, being decomposed as

p(S⇡) =
n+1Y

i=1

p(S⇡

i
|S⇡

1 , . . . , S
⇡

i�1) =
n+1Y

i=1

p(S⇡

i
|S⇡

<i
) (2.1)

with the special end of sequence token (EOS) as an extra node n+ 1.

State-transition function carries the information from step i� 1 to step i, generating a node,

and output function predicts the parameters for sampling current adjacency vector S⇡

i
of edges.

According to GraphRNN, we consider recurrent neural networks for both state-transition function

(NodeRNN) and output function (EdgeRNN). Thus, NodeRNN unrolls across nodes, updating its

hidden state, while EdgeRNN unrolls across edges from i to previous nodes, creating parameters

✓i,j with the use of a small MLP head with sigmoid activation, which models S⇡

i
as a dependent

Bernoulli sequence:

hnode

i
= NodeRNN(hnode

i�1 , S⇡

i�1), hnode

0 = 0

hedge

i,j
= EdgeRNN(hedge

i,j�1, S
⇡

i,j�1), hedge

i,0 = hnode

i

✓i,j = EdgeMLP(hedge

i,j
)

(2.2)

One of the key insights of the method is to re-order the nodes with breadth-first search (BFS),

starting from ⇡(v1), which gradually reduces the space complexity for graph representations.

Moreover, BFS order also reduces the number of edge predictions that have to be made, limiting

the size of S⇡

i
to M dimensions, which appears to be a small number in practical tasks. Thus, for

our modified MolecularRNN (Section 2.3.1.2) we empirically establish M = 12.

2.3.1.2 MolecularRNN

In order to represent a molecule with a graph, atoms are mapped to nodes, while bonds are mapped

to edges. Now, adjacency vector entries represent categorical bond types S⇡

i,j
2 {0, 1, 2, 3},

corresponding to no, single, double, and triple bonds (molecules are modeled in kekulized form

as defined in RDKit [56]). Similarly, a categorical type C⇡

i
2 {1, 2, . . . , K} (oxygen, nitrogen,

chlorine, etc.) is assigned to each node. Notice that here a node always has a valid atom class.

That is, there is no ”terminal node” class, as terminal node notion is already incorporated into S⇡

i
.

18

Specifically, when a node is generated that has no edges to any of the previous nodes, such a node

is terminal. Atom class prediction is ignored for this node in our setting.

The Likelihood in Equation 2.1 is rewritten accordingly for MolecularRNN:

p(S⇡, C⇡) =
n+1Y

i=1

p(C⇡

i
|S⇡

<i
, C⇡

<i
)p(S⇡

i
|C⇡

i
, S⇡

<i
, C⇡

<i
), (2.3)

with p(Cn+1|S<n+1, C<n+1) ⌘ 1 for the terminal node n+ 1.

In our model, once the sub-graph on the first i� 1 nodes under permutation ⇡ is completed,

NodeRNN can momentarily decide on the atom type of the following node i. Thus, the process

represents a dependent multivariate distribution. Accounting for the sub-graph, as well as the

i-th atom type, the model switches to EdgeRNN that links the newly generated node to the

set {1, . . . , i � 1}. That step is in turn modeled with a dependent multivariate distribution, as

EdgeRNN is unrolled across nodes that precede i. Overall MolecularRNN structure is shown in

Figure 2.8. The model uses embeddings for categorical inputs, and a two-layer MLP with softmax

output activation is added on top of hidden states hnode and hedge for categorical prediction, so

Equation 2.2 is modified:

input
i�1 = [emb(S⇡

i�1), emb(C⇡

i�1)]

hnode

i
= NodeRNN(hnode

i�1 , input
i�1), hnode

0 = 0

 i = NodeMLP(hnode

i
)

hedge

i,j
= EdgeRNN(hedge

i,j�1, emb(S⇡

i,j�1)), hedge

i,0 = hnode

i

�i,j = EdgeMLP(hedge

i,j
),

(2.4)

In our BFS ordering the first node is always a Carbon atom, since every organic molecule

contains at least one such atom.

2.3.1.3 Valency-based rejection sampling

As we have seen, MolecularRNN samples edge types on each sub-step from a multinomial

distribution with parameters coming out of softmax predictions. Even when the model is trained

well for producing valid molecules, the softmax layer prediction will always have nonzero values,

19

Figure 2.8: MolecularRNN model. The model consists of NodeRNN that unrolls across atoms,
predicting the type of the next atom in the molecular graph, and EdgeRNN that for every atom is
initialized with NodeRNN hidden state, and unrolls across preceding atoms to predict bond types.

so if sampling is arbitrarily long, any graph can be sampled from the support space. However,

real molecules have valency constraints. That is, per-atom valency has to be respected to satisfy

chemical constraints. Consequently, in each step, we can ensure that the current sum of all bonds

does not exceed the allowed valency. When generating an edge corresponding to a bond of order

k between i and j we check the rejection sampling constraint for both atoms:

X

j

A⇡

i,j
+ k valency

C
⇡
i

and
X

i

A⇡

i,j
+ k valency

C
⇡
j

(2.5)

For the final molecule, atoms that have not filled up their valencies are complemented with

Hydrogens. Notice that valency can be directly enforced only for graphs, unlike SMILES

representation, where intermediate sub-strings are not chemically meaningful.

2.3.1.4 Structural penalty

Valency-based rejection sampling can be used in inference, as was already described. However,

the invalid intermediate structures that are obtained during training can provide a useful signal

to the model. For example, a molecule can be almost realistic except for few invalid bonds. We

introduce an additional structure penalty for the atoms that disrespect valencies. Thus, instead

of providing a penalty for the whole molecule, we target specific atoms, which results in the

modification of parameters that respect valency constraints.

20

2.3.2 Results

To validate the quality of our results and compare those to the state-of-the-art methods we use

validity, uniqueness, novelty, internal diversity, synthetic accessibility score (SAS) [54] and

drug-likeness score (QED) [57]. Validity is the percentage of chemically valid molecules. While

it is important that the model demonstrates a high validity rate, we do not think that the validity

of 100% is essential. Moreover, without external constraints (that might be an integrated part of

the model) it is not possible to reach perfect validity for a probabilistic generative model due to

sampling. Uniqueness is the percentage of unique molecules in the generated pool. Notice that

uniqueness is highly dependent on the pool size and may significantly drop for a large generated

library. In our experiments, we report uniqueness in up to a million of generated samples. Internal

diversity, as proposed in the MOSES benchmark [58], is a quantitative metric of the richness

of the generated library and is calculated as the average pairwise distance between all pairs of

molecules in the library. However, we do not agree that this is a good measure of dataset diversity.

Imagine a synthetic dataset that consists of 1 million molecules, but only 20 of them are unique

and each molecule is repeated 50 thousand times. It is obvious that such a dataset is very poor as

only negligible part of the whole library is unique and an adequate diversity metrics should reflect

this fact. However, the value of this commonly used metric will be around 0.85. The highest

possible value for this metrics is 1.0 and the internal diversity of a rich dataset such as ChEMBL

is around 0.895. So, this metric might not be a good indicator of the diversity of the generated

pool of molecules.

SAS is an estimation of how hard is to synthesize a given molecule, which also reflects

its structural complexity. Molecules with a higher score will be more complex and harder to

synthesize. However, molecules with very low score might be not complex enough to have the

desired property. The values of interest for this metric are in the range between 2 and 4. Finally,

QED is a measure of drug-likeness in the range from 0 to 1.

2.3.2.1 Unsupervised likelihood training

We first pretrain MolecularRNN on a large unlabeled dataset of molecules to teach the model

to generate diverse realistic samples. Three training datasets are used: ChEMBL [51], random

21

250k molecules from ZINC [59] and MOSES [58]. These three datasets have different statistics.

The statistics are shown in Table 2.1. The ChEMBL dataset contains around 1.5 million of real

bioactive molecules (every molecule has at least one experimental bioactivity measurement) and

is the most diverse out of all three datasets that we considered. The ZINC 250k random dataset

contains 250 thousand molecules randomly selected from a database of commercially available

compounds [59]. The MOSES dataset contains almost 2 million molecules that were selected from

the ZINC database based on several filters to only include molecules with drug-like properties.

Table 2.1: Statistics for training datasets.

ChEMBL ZINC MOSES

Number of molecules 1507869 249456 1936962
Mean molecular weight 389± 103 331± 62 307± 28
QED score 0.56± 0.21 0.73± 0.14 0.81± 0.09
SA score 2.88± 0.80 3.05± 0.83 2.45± 0.46

We considered the 9 most common elements (C,N,O, F, P, S, Cl, Br, I) and 3 bond types

(single, double and triple). The number of atoms in the molecule is restricted to be from 10 to

50, which is chosen based on thef ChEMBL dataset, where 96% of molecules lie in this range.

EdgeRNN is unrolled (as discussed in subsection 2.3.1.1) for M = 12 steps for each atom. The

following architectural parameters are used in all our settings: node embedding of size 128, edge

embedding of size 16, NodeRNN with 4 GRU layers of hidden size 256 each, 2 layer NodeMLP

with 128 hidden size and ReLU nonlinearity after the first layer, and EdgeRNN with 4 GRU

layers of hidden size 128 each. During the unsupervised phase, models are trained with the Adam

optimizer for 250 epochs on 4 GPUs with a per-GPU batch size of 512. The starting learning

rate is 0.001 with a multiplicative drop of 0.999 every k iterations, and k is chosen based on the

dataset so that the learning rate drops to 10�5 by the end of the training. MolecularRNN trained

with the likelihood maximization on the training datasets achieves validity rate of 65% without

valency-based rejection sampling. We further used the structural penalty described in subsection

3.1.2.3 to shift the model towards generating molecules that respect valency constraints. To that

end, every atom that violates its valency constraints is assigned a penalty of �10, and then the

model is optimized with the policy gradient method. After training with the structural penalty,

22

our model achieved a validity rate of 90% without valency-based rejection sampling. Enabling

valency-based rejection sampling results in 100% valid rate for all models.

Table 2.2: Statistics for 1 million molecules generated by 3 models pretrained on 3 training
datasets

Training set Valid Unique Novel IntDiv
(p=1)

IntDiv
(p=2) SA score QED

ChEMBL 100 % 99.2% 99.3 % 0.895 0.890 3.67± 1.20 0.56± 0.20
ZINC 250k 100 % 99.8 % 100 % 0.892 0.887 3.60± 1.01 0.68± 0.16
MOSES 100 % 99.4 % 100 % 0.881 0.876 3.24± 0.97 0.74± 0.14

Table 2.2 summarizes the results of unsupervised likelihood training of MolecularRNN on

the three datasets. Statistics are calculated on 1 million generated graphs, which is a much larger

scale than previously reported. For comparison, Jin et al. [2] sample 5 thousand graphs, and Li

et al. [35] evaluate a 100 thousand set. In all cases, the model produces novel diverse realistic

molecules.

We also compare our model with GCPN [1] and JT-VAE [2] in Table 2.3 on 30K molecules

generated from each method. MolecularRNN produces comparable results to the baselines in

terms of validity, uniqueness, and novelty. GCPN tends to generate overly complex, hard to

synthesize molecules (high SA score). Samples from our model are more realistic, and also have

higher internal diversity than the ones from JT-VAE.

Table 2.3: Comparison of MolecularRNN, GCPN [1] and JT-VAE [2]. Models are trained on
ZINC 250k dataset. Statistics are calculated for 30000 generated molecules.

Valid Unique Novel SA score QED InvDiv

JT-VAE [2] 99.8% 100 % 100% 3.37 0.76 0.85
GCPN [1] 100% 99.97% 100% 4.62 0.61 0.90
MolecularRNN 100% 99.89% 100% 3.59 0.68 0.89

23

2.4 3D graph-based generative models

2.4.1 Methods

MolecularRNN 3D model description. MolecularRNN3D, similarly to MolecularRNN de-

scribed in Section 2.3, is an auto-regressive generative model, meaning that molecules are

generated atom-by-atom, connecting the newly generated atom to the previously generated ones

and placing atoms in 3D space. Starting from a single carbon atom, at every time step, the model

first predicts the next atom type given the previously generated 3D graph. Then, the model decides

on the set of adjacent atoms and the bond types. Lastly, it also predicts bond lengths, valence

and dihedral angles for the sets of 4 connected atoms forming a dihedral angle. As additional

features for predicting atom’s 3D coordinates, we use Atomic Environment Vectors (AEVs) [16]

for 3 out of 4 atoms in the dihedral angle. In more detail, since the molecule is generated in an

auto-regressive manner, i.e., atom-by-atom, at any specific time step, we only have information

about part of the molecule that has been generated so far. Thus, to predict the next dihedral angle,

we can only calculate AEVs for three prior atoms in the dihedral angle since the 4th atom has

not been generated and added to the molecule yet. These AEVs are concatenated with the 2D

representation of a molecular graph computed by the neural network and the embedding vector for

the 4th atom type. The generative process is over when the model predicts that the next atom is

not connected to any previously generated atoms. Figure 2.9 illustrates the generative process of

new 3D molecular graphs. Unlike models previously proposed in the literature, MolecularRNN3D

does not have any restrictions on molecule size and tackles both problems of novel molecules

generation and prediction of 3D conformations for existing molecules.

Notation. Before moving into describing the MolecularRNN3D model, we want to introduce

necessary mathematical notation.

Difference between 3D and 2D version of MolecularRNN model is that 3D version contains 3

additional feed-forward layers for predicting bond lengths, valence angles and dihedral angles. To

address the problem of non-unique representation of graphs, similarly to MolecularRNN model

described in 2.3, this model sorts the nodes in the breadth-first search order, thus introducing an

24

Figure 2.9: Schema of MolecularRNN 3D model.

ordering of the atom. So, given a molecule M with N atoms, the permutation of a molecule’s

atoms can be denoted as:

⇡(M) = {a1, a2, . . . , aN}.

The adjacency matrix of molecule M is a matrix A with size N ⇥ N , where element Aij

defines the existence of a bond between atoms ai and aj and the type of this bond if it exists:

Aij =

8
>>>>>><

>>>>>>:

0, if no bond between atoms ai and aj,

1, if single bond between atoms ai and aj,

2, if double bond between atoms ai and aj,

3, if triple bond between atoms ai and aj.

Since the ordering of the atoms in the molecule ⇡(M) is defined by the breadth-first search

algorithm, for each atom an starting from n = 4, we can find 3 atoms ai, aj and ak preceding an

in the permutation ⇡(M) and forming a dihedral angle \(ai, aj, ak, an):

8n � 4 9 i, j, k : n > i, n > j, n > k, Aij 6= 0, Ajk 6= 0, Akn 6= 0.

25

We will denote the set of atom quadruplets forming dihedral angles in a molecule M as D:

D = {(ai, aj, ak, an) : 9\(ai, aj, ak, an), n > i, j, k, n = 4 . . . N}

Notably, it is possible that there will be multiple quadruplets forming a dihedral angle for

atom an. In this case, we only keep 1 quadruplet per each an, denoting this new ”de-duplicated”

set with exactly N � 3 elements as eD:

| eD| = N � 3

The set represents values of dihedrals angles from eD:

 = { 4, 5, . . . , N} ,

where n = \(ai, aj, ak, an), n = 4, . . . , N . Numbering of the elements in this set start from

4, since at least 4 atoms in a molecule are necessary to form a dihedral angle.

The set � is defines values of valence angle for atom quadruplets from eD as follows:

� = {�3, . . . ,�N�2} ,

�3 = \(ai, aj, ak), ai, ajak 2 (ai, aj, ak, a4),

�n = \(aj, ak, an), n = 4, . . . N.

Similarly, the set R defines the bonds’ lengths:

R = {r2, . . . , rN�1} ,

r2 = dist(ai, aj), r3 = dist(aj, ak), ai, ajak 2 (ai, aj, ak, a4)

rn = dist(ak, an+3), n = 1, . . . N � 3.

In the definitions above, �3 is a special case of a valence angle, and r2 and r3 are special cases

of bond lengths formed by atoms in the first dihedral angle from eD. The numbering of elements in

� and R starts from 3 and 2 respectively, because at least 3 atoms are necessary to form a valence

angle, and at least 2 atoms are necessary to form a bond.

26

3D coordinates prediction. After all the necessary notations have been introduced in the

previous paragraph, we can move to describing the process of 3D coordinates prediction.

Since the generation process is auto-regressive, let us assume that n� 1 atoms have already

been added to the molecule. During time step n after the next atom’s type an and its connectivity

is generated by the 2D part of MolecularRNN described in section 2.3, MolecularRNN3D predicts

triplets (rn,�n, n). For this purpose, the model computes the atomic environment vectors (AEVs)

for atoms ai, aj and ak and concatenates them with the hidden vectors hn and hN from the 2D

part of the model. We will denote the resulting vector as h(n)
3D :

h(n)
3D = [AEV (ai), AEV (aj), AEV (ak), hn, hN].

These new hidden vectors h(n)
3D describe both the local 3D environment and the 2D topology

around the dihedral angle of interest.

Next, h(n)
3D is passed into 3 separate feed-forward layers, which predict a triplet (rn,�n, n). In

more detail, bond length prediction is handled as a regression task – the feed forward layers predict

normalized value of the bond length between atoms ak and an, which after de-normalization will

be used to compute the coordinates of the atom an in 3D space. Valence angle prediction and

dihedral angle prediction are handled as classification tasks – the angles are discretized with a step

of 3�, which results into 60 classes for valence angles and 120 classes for dihedrals angles. The

predicted classes are converted into values of angles in degrees, which together with the predicted

bond length are used to compute (x, y, z) coordinates of atom an.

Computing coordinates for atoms a2 and a3 are special cases, due to the fact that dihedral angle

for a2 and a3 and valence angle for a2 are not defined. So, after the atom a2 and its connectivity is

generated, MolecularRNN3D predicts bond length between atoms a1 and a2, denoted as r2. For

this purpose, the model computes the atomic environment vector for atom a1. Since no previous

atoms were defined, we assume that the atomic environment vector for 2 previous atoms are zero

vectors and the h1
3D is defined as:

h(1)
3D = [AEV (a1),

�!
0 ,

�!
0 , h1, hN].

27

Similarly, during the second time step only bond length and valence angle will be predicted

and the h(2)
3D is defined as:

h(1)
3D = [AEV (a2), AEV (a1),

�!
0 , h2, hN].

2.4.2 Results

Data collection. Obtaining a training dataset with high-quality low-energy conformation is

essential for training a reliable conformer generator model. For this purposes, we used 1.5M

molecules from ChEMBL dataset [60] which contains from 9 to 56 heavy atoms. Values of

9 and 56 correspond to a 1st and 99th percentiles and ensure that no outliers are included

into the training data. First, we generated up to 5 initial 3D conformations per molecule with

OEOmega (https://www.eyesopen.com/omega). Next, we performed the optimization of this initial

conformations with the AIMNet model [61]. These computations resulted in 9M conformations.

For the final dataset we only picked one conformation per molecule – the one with the lowest

energy.

The data was randomly split into train and test – 100K molecules went into test and the rest

were assigned to train.

Model training. Model training was split into 2 stages. During the first stage we pretrained the

2D part of the MolecularRNN to teach the model to generate realistic molecular graphs. During

the second stage, we froze the model weights in the 2D part and only trained 3D part which

include 3 layers for predicting bond lengths, valence angles and dihedral angles. The technical

details of training the 2D part are described in Section 2.3.

For the 3D coordinates prediction, each layer consisted of 4 feed-forward layers with ReLU

activations and 512, 256 and 128 neurons in the first 3 layers and the number of classes in the

last layer (1 for bond lenghts, 60 for valence angles and 120 for dihedral angles). The model

was trained for 200 epochs with Adam optimizer starting from the learning rate of 0.002 and

exponentially decaying it after each training epoch with a decay factor of 0.95.

28

Assesing quality of the generated conformers. We assessed the quality of the generated

conformers in 2 modes. In the first mode, we generated both the 2D molecular graph and the 3D

conformation from scratch. The reference conformation was then computed for the 2D molecule

using RDKit’s force filed algorithm MMFF94. Figure 2.10a shows the distributions of RMSD

between the generated conformations and the reference conformation. The median of the RSMD

is equal to 1.1Å and the vast majority of the conformers had RMSD < 2.0.

In the second mode, we compared how MolecularRNN3D can generate conformers for existing

molecular graphs. For this purposes, we used molecules from our test subset and compared the

generated conformation with the well-optimized conformations from the test set. The distribution

of RMSD is shown in Figure 2.10b. The median of RMSD is equal to 1.3Å and most conformers

had RMSD < 2.0.

(a) RMSD between generated and FF-optimized con-
formations.

(b) RMSD between generated and test conformations.

Figure 2.10: Distributions of RMSDs.

29

2.5 Empirical estimation of size of bioactive chemical space

with generative models

2.5.1 Introduction

Although multiple theoretical estimates for the size of chemical space (CS) have been provided

[23, 62], there is still no consensus in estimating the number of realistic bioactive molecules: the

results vary from 1023 to 10180. Furthermore, these estimates are primarily combinatorial and do

not consider how realistic the molecules are. For example, according to Bohacek et al. [62], the

number of compounds consisting of thirty C, N, O, S atoms and having up to 4 cycles and ten

branch points is about 1060. On the other hand, Polischuk et al. [23] provide the number 1033,

which was obtained by calculating how many molecular graphs satisfy the classical Lipinski’s

”rule of five” [63].

In this section, we address the question of the size of bioactive chemical space. We propose a

procedure for empirically estimating the number of bioactive molecules with a deep generative

model. We use a SMILES-based recurrent generative network trained on the ChEMBL database

to produce novel molecules with bioactive properties. Using this approach, we generated AI-

COSMOS – AI-designed COllection of Small MOleculeS, which consists of 10 billion unique

compounds and 4.5 billion unique Bemis-Murcko scaffolds in the form of canonical SMILES

strings. We thoroughly assess the properties and synthetic accessibility of the molecules from

the AI-COSMOS library. We demonstrate that the statistics of this library match the statistics of

ChEMBL, and molecules are novel and diverse. Based on the AI-COSMOS library, we empirically

predict lower bounds for the number of unique canonical SMILES strings and Bemis-Murcko

scaffolds that can potentially be bioactive. Additionally, we perform an experimental study to

demonstrate how the AI-COSMOS library can be used to find potential hits for protein targets.

2.5.2 Results

Library generation. Figure 2.11 illustrates the overall workflow of the AI-COSMOS 10 bil-

lion library generation process. First, we trained the deep generative recurrent neural network

30

architecture introduced in 2.2.1 on SMILES strings from the ChEMBL [60] database. To train the

model efficiently, we removed 1% of the shortest and 1% of the longest SMILES strings from the

training pool, giving us a range of SMILES strings lengths between 10 and 100 characters. Next,

we removed molecules that contained atoms from other than ten most common atom types (H ,

C, N , O, F , P , S, Cl, Br, I). As a result, the trained model can mainly produce valid SMILES

strings, with a validity rate of 90%. Next, we ran this model in inference mode to generate

a vast library of molecules. In more detail, the generation process was run on a cluster with

NVIDIA Volta V100 16Gb GPUs. We used a batch size of 56, meaning that 56 SMILES strings

were generated in parallel at a time. The generation speed was about 1 million SMILES strings

per hour. Overall, we generated 17 billion SMILES strings, which took approximately 17000

GPU hours. Postprocessing the initial library included two steps – removal of invalid SMILES

strings, SMILES strings standardization, and deduplication. The RDKit [56] sanitization filters

defined SMILES strings validity and canonical form. Additionally, we calculated Bemis-Murcko

scaffolds for all valid generated molecules. Removal of invalid SMILES resulted in 15 billion

valid SMILES strings corresponding to 6 billion Bemis-Murcko scaffolds. After deduplication, we

obtained 10 billion unique, valid SMILES strings and 4 billion unique Bemis-Murcko scaffolds.

Figure 2.11: The workflow of the library generation process.

31

Chemical space size estimation. We calculated how the proportions of unique canonical

SMILES strings and unique Bemis-Murcko scaffolds change with library size growth during

the deduplication step. After removing invalid entries and standardization, we split the library

into 100 million canonical SMILES strings blocks. Each block could contain duplicates. Next,

we computed the cumulative curves, showing the proportion of unique molecules in each 100

million block given the previously generated sublibrary. Then, we approximated the data with

a logarithmic trendline y = A ln(x) + B using the least-squares method, where x is a number

of unique canonical SMILES strings that have been generated so far, and y is the proportion

of unique compounds or Bemis-Murcko scaffolds in a newly generated block of 100 million

canonical SMILES strings. To justify that the logarithmic function is an adequate approximation

functional form for the data, we calculated Pearson correlation coefficients (PCC) for (y, ln(x))

pairs for compounds and Bemis-Murcko scaffolds, and p-values of observing such results under

the null hypothesis that y and ln(x) are not linearly correlated. We obtained PCC < �0.99 and

p-value < 10�162 for both compounds and Bemis-Murcko scaffolds, which indicates practically

perfect linear correlations. These correlations are shown in Figure 2.12a and 2.12c for compounds

and Figure 2.13a and 2.13c for scaffolds. Additionally, we computed 5% confidence intervals

for the fitted trendlines. Both trendlines for SMILES strings and Bemis-Murcko scaffolds were

computed with a coefficient of determination of R2 > 0.99, which again demonstrates that

logarithmic functional form is a good choice for this problem. Finally, to estimate the total number

of unique canonical SMILES strings that our generative network can produce, we solved the

following equation:

Aln(x) + B = 0. (2.6)

The solution of this equation provides the total number of valid unique canonical SMILES

strings that need to be produced before a newly generated block of 100 million SMILES strings

would contain 0 unique compounds. We repeated these computations for both canonical SMILES

strings and Bemis-Murcko scaffolds and obtained the following estimates:

Number of unique canonical SMILES strings = 4.0 · 1015 ± 0.2 · 1015,

32

(a) Full scale (b) Full scale extrapolated

(c) Log scale (d) Log scale extrapolated

(e) Legend

Figure 2.12: Extrapolation of the trend for chemical compounds.

Number of unique Bemis-Murcko scaffolds = 4.1 · 1012 ± 0.9 · 1012.

Figures 2.12 and 2.13 summarize the steps described above. Moreover, using simple math-

ematical derivations and L’Hopital’s rule, one can demonstrate that the logarithmic function

provides a lower estimate than some other adequate monotonic functions that can approximate

this data, such as power, exponential, or loglog. Thus, we conclude that the estimate we provide

above can serve as a lower bound estimate for the number of biologically active compounds and

corresponding Bemis-Murcko scaffolds.

33

(a) Full scale (b) Full scale extrapolated

(c) Log scale (d) Log scale extrapolated

(e) Legend

Figure 2.13: Extrapolation of the trend for chemical compounds.

AI-COSMOS diversity set. Due to the large size of AI-COSMOS library, we constructed the

AI-COSMOS diversity set to use in further analysis. This diversity set was constructed during

the deduplication process by randomly sampling 10000 canonical SMILES strings from each 100

million block of SMILES and removing duplicates afterwards. The final selection includes 1.3

million unique canonical SMILES strings.

Analysis of the AI-COSMOS library. Next, we took a closer look at the AI-COSMOS library

by computing a set of typical properties of interest and comparing distributions of those properties

34

to existing molecular libraries. The comparison included AI-COSMOS diversity set, full ChEMBL

library [60], Enamine Diversity Set [64], and Drugbank [65]. For the properties, we chose

Quantitative Estimate of Druglikeness (QED) [57], Crippen’s Log P [66], and properties from

the Lipinski’s rule-of-five [63], which constitute % of molecules with Log P values within [0, 5]

region, molecular weight, number of hydrogen bond acceptors and number of hydrogen bond

donors. As expected, distributions for the chosen properties look similar for generated molecules

and ChEMBL since ChEMBL was used as training data. However, distributions for Enamine

Diversity set look slightly different because molecules in the set were manually selected to satisfy

Lipinski’s rule-of-five (Mw < 500Da, logP < 5, NHBD < 5, NHBA < 10). Molecules from

DrugBank also have a wider range of values for the chosen properties. These observations are

presented in Table 2.4 and Figure 2.14.

Table 2.4: Comparison of property values for AI-COSMOS, ChEMBL, Enamine, and DrugBank
libraries.

QED Log P
Log P
within
[0, 5]

Molecular
weight

Hydrogen
bond

acceptors

Hydrogen
bond

donors

AI-COSMOS 0.55± 0.23 3.65± 2.02 75% 397± 117 4.87± 2.10 1.58± 1.41
ChEMBL 0.55± 0.23 3.32± 2.24 78% 422± 244 5.54± 4.47 1.90± 3.37
Enamine 0.74± 0.11 2.69± 1.36 97% 356± 62 4.79± 1.66 1.07± 0.88
DrugBank 0.50± 0.23 1.85± 3.32 67% 381± 304 5.60± 6.30 2.69± 0.89

The next question we addressed is how similar (or dissimilar) are the generated molecules

to training molecules from ChEMBL. To answer this question, we calculated pairwise similarity

between the AI-COSMOS diversity set and the entire ChEMBL library. For each molecule in the

AI-COSMOS diversity set, we computed its median Tanimoto similarity to all molecules from

ChEMBL and Tanimoto similarity to the nearest neighbor from ChEMBL. These distributions are

shown in Figures 2.15a and 2.15b. The median value of Tanimoto similarity (Tsim) to the nearest

neighbor from ChEMBL is 0.62, indicating that most molecules from the AI-COSMOS library

are not exact replicates of molecules from ChEMBL.

Additionally, we looked at the examples of molecules with low similarities to the nearest

neighbor from ChEMBL. We took 1% of molecules with the lowest Tanimoto similarities to

35

(a) Mol Log P (b) Molecular weight

(c) Hydrogen bond donors (d) Hydrogen bond acceptors

(e) QED score

Figure 2.14: Distribution of properties for AI-COSMOS, ChEMBL, Enamine, and Drugbank.

36

the nearest neighbor and randomly sampled 15 molecules. These molecules and their Tanimoto

similarities are shown in Figure 2.15c.

(a) Median Tsim. (b) Maximum Tsim .

(c) Examples of molecules from bottom 1% of maximum Tsim to ChEMBL.

Figure 2.15: The Tanimoto similarity (Tsim) between AI-COSMOS diversity set and ChEMBL.

Analysis of synthetic accessibility of the generated molecules. Since the AI-COSMOS

library is entirely virtual, it is critical to demonstrate that compounds from this library are

synthetically accessible. Although it is impossible to perform extensive experimental synthesis,

several computational tools are available to address this question, such as Synthetic Accessibility

Score (SAS) [54] and IBM Rxn4Chemistry [67]. SAS is a widely used method to numerically

estimate ease of synthesis for druglike molecules based on fragment contributions and complexity

penalty. Molecules from catalogs of commercial compounds have a typical range for SAS between

37

2 and 5 [54]. The advantage of this method is its computation speed. However, it can only provide

a qualitative assessment and does not return a synthetic route or a number of reaction steps

required to synthesize the input molecule. We used the Molecular Transformer [68] retrosynthetic

model from IBM Rxn4Chemistry [67] utility to better address this question. This tool is capable

of suggesting possible retrosynthetic routes for a given input molecule. This exercise compares

predictions of these computational tools made for the AI-COSMOS library to the ones made for

known synthetically accessible druglike compounds such as molecules from ChEMBL [60] or

Enamine [69].

We compared SAS results for the AI-COSMOS diversity set to the whole ChEMBL database.

Distributions of SAS for both sets are shown in Figure 2.16a. As this figure shows, both distri-

butions match closely with the mean SAS value around 3.0 and standard deviation of 0.87 for

generated compounds and 1.03 for ChEMBL. The shape of the distributions is also similar, with

heavy tails towards high values of SAS. This leads us to conclude that our generative network

produces SMILES string from the same distribution as the training data.

(a) Synthetic Accessibility Score (SAS) distributions (b) Distribution of the number of steps returned by
the retrosynthetic model

Figure 2.16: . Synthetic accessibility assessment results for the AI-COSMOS and ChEMBL
libraries

Next, we performed an experiment to assess the retrosynthetic paths for the generated com-

pounds using the IBM Rxn4Chemistry API tool. We randomly selected 11000 from the AI-

COSMOS library, ChEMBL and Enamine. To assess the diversity of the selected compounds,

we computed the internal similarity for each compound as its Tanimoto distance to the nearest

38

neighbor. For Tanimoto distance calculation, we chose RDKit topological fingerprints. The vast

majority of compounds had Tanimoto distance to its nearest neighbor of less than 0.5, which

allows us to conclude that the selected compounds represent diverse subsets. The distributions of

internal similarity for all of the chosen subsets are shown in Figure 2.17.

Figure 2.17: The internal similarity of subsets processed with retrosynthetic model.

Next, we computed retrosynthetic paths for the selected compounds using the IBM Rxn4Chemistry

tool. This tool takes a query molecule and returns all retrosynthetic paths found by the Molecular

Transformer model. Each retrosynthetic path is also assigned a confidence score by the model. A

confidence score between 0 and 1 reflects the model’s certainty about how feasible the proposed

path is. Paths with a score above 0.5 are considered high confidence. IBM Rxn4Chemistry tool

uses the eMolecules [70] database of purchasable compounds as building blocks for synthesis.

However, sometimes the model couldn’t find a retrosynthetic route using commercial building

blocks only. In such cases, the retrosynthetic paths also contained non-commercial building blocks.

The overall results of the retrosynthetic assessment of the AI-COSMOS library and comparison

39

to ChEMBL and Enamine are shown in Table 2.5. As Table 2.5 shows, approximately 80% of

generated compounds have retrosynthetic paths marked with high confidence by the model, and

half of the paths contained only commercial building blocks. Similar results were obtained for

molecules from the ChEMBL database. However, we see higher percentages of high confidence

routes and routes containing commercial building blocks only for molecules from the Enamine

library. This observation can validate the IBM Rxn4Chemistry Molecular Transformer model

since the Enamine library is a combinatorial library.

Next, we compared the number of steps in the retrosynthetic routes predicted by the Molecular

Transformer model. Since the IBM Rxn4Chemistry tool can return multiple routes for one

molecule, we only included the shortest route in this comparison. These distributions for the

AI-COSMOS, ChEMBL, and Enamine libraries, are shown in Figure 2.16b. The vast majority of

molecules from the Enamine subset are predicted to be synthesized in 2 steps, which is consistent

with the Enamine library design and can validate the Molecular Transformer model’s predictions.

Most of the predicted routes for molecules from the AI-COSMOS and ChEMBL libraries contain

up to 5 steps, with a median of 2 steps for ChEMBL and 3 steps for the AI-COSMOS.

Table 2.5: . Results of the retrosynthetic assessment of AI-COSMOS, ChEMBL, and Enamine
libraries.

Total number
of compounds

Compounds with high
confidence

Compounds with high confidence
+ commercial building blocks

AI-COSMOS 11000 8689(79%) 4999(45%)
ChEMBL 11000 9077(83%) 6990(64%)
Enamine 11000 10693(97%) 10397(94%)

2.5.3 Methods

Generative RNN. We used a unidirectional recurrent neural network with GRU [47] layer and

augmented memory stack described in Section 2.2.1.1. The size of the hidden layer is 1500. Stack

width is 1500, and stack depth is 120. The model was trained with an SGD optimizer, with a

learning rate of 0.0002 and batch size of 56 for 100 epochs. The model was implemented with the

PyTorch [71] framework. For both training and inference, we used NVIDIA Volta V100 16Gbs

40

GPUs.

Retrosynthetic model. We used IBM Rxn4Chemistry Python wrapper [72] to obtain retrosyn-

thetic routes for molecules from AI-COSMOS, ChEMBL, and Enamine libraries. We set the time

limit of 2 minutes for the API to make predictions, which means that if the server didn’t return

results within the time limit for a molecule, this molecule was discarded from consideration. As

a result, 63% of molecules were processed within the set timeframe: to obtain 11000 synthetic

routes per library, we had to submit roughly 17500 queries to the IBM Rxn4Chemistry server

through the Python wrapper per library.

41

42

Chapter 3

Optimizing properties of generated

molecules

3.1 Reinforcement learning for property optimization

3.1.1 Introduction

Deep and reinforcement learning in drug discovery. The development and application of

deep generative models for de novo design of molecules with desired properties have emerged

as an important modern research direction in Computer-Assisted Drug Discovery (CADD) [73,

74, 75, 76]. Deep generative models can be categorized by the types of molecular representation

employed in model development. The most commonly used representations are SMILES strings

[31] and molecular graphs. Multiple models for generating SMILES strings [28, 29, 32, 34] and

molecular graphs [2, 77, 78, 79, 80] corresponding to synthetically feasible novel molecules have

been proposed, including models proposed in this thesis in sections 2.2.1 and 2.3.1.2. Initially,

these models are typically trained on a diverse dataset of molecules so that they can generate a

broad distribution of molecules. We shall denote a naı̈ve unbiased generative model as a model

that has been trained on a generic dataset prior to any specific property optimization.

Reinforcement learning (RL) [32, 81, 82] has been a popular strategy for optimizing prop-

erties of the generated molecules. For example, Olivecrona et al.[34] and Blaschke et al.[83]

43

proposed the REINVENT algorithm and memory-assisted reinforcement learning, respectively,

and demonstrated how these approaches could maximize the predicted activity of generated

molecules against the 5-hydroxytryptamine receptor type 1A (HTR1A) and the dopamine type

2 receptor (DRD2). Another recent example is the RationaleRL algorithm proposed by Jin et

al.[84] The authors used RationaleRL to maximize the predicted activity of inhibitors against

glycogen synthase kinase-3 beta (GSK3�) and c-Jun N-terminal kinase-3 (JNK3). Born et al.[85]

proposed performing optimization with RL on a merged protein/ligand latent spaced constructed

by the VAE. Unfortunately, the aforementioned studies included no experimental validation of

the proposed computational hits. Notably, Zhavoronkov et al.[86] not only proposed a novel

generative tensorial reinforcement learning algorithm, but also used their method to design potent

DDR1 kinase inhibitors, and performed experimental validation of virtual hits.

Most theoretical studies on de novo molecular design employ optimization tasks for properties

LogP [2] and Quantitative Estimate of Druglikeness (QED) [57], or the benchmark collection

proposed in GuacaMol [87]. Such tasks employ objective metrics obtained directly from a

molecule’s SMILES [31] or underlying molecular graph through a scoring function. These

scoring functions return continuous values that can be used to assign a reward to generated

molecules. For example, the Quantitative Estimate of Druglikeness score (QED) has values

between 0 and 1.0, with 0 being least drug-like and 1.0 being most drug-like. In such a case, every

generated molecule would receive a continuous score: the bigger score values will correspond to

bigger reward values, and vice versa. Moreover, a naı̈ve generative model pre-trained on a dataset

of drug-like compounds such as ChEMBL [60] would produce molecules with relatively high

QED values (see Figure 3.1). In this case, optimization of the generative model via reinforcement

learning will proceed efficiently as every generated molecule would get a score. Indeed, the

efficient optimization of the QED score has been demonstrated many times in the literature

[1, 2, 32]. These benchmarks are unable to simulate tasks with sparse rewards, such as designing

molecules with high activity against a specific protein target. In such a case, only a small fraction

of generated molecules possess the target property, which leads to reward sparsity during model

training.

44

Figure 3.1: Distributions of QED score for molecules from various sources .

3.1.2 Methods

Figure 3.2: General pipeline of a reinforcement learning system for novel compounds generation.

45

3.1.2.1 Reinforcement learning formulation for SMILES strings

The idea is to combine both generative G and predictive model D into one reinforcement learning

system. The set of actions A is defined as an alphabet of SMILES notation. The set of states

S is defined as all possible strings in the alphabet with lengths from 0 to some T . The state s0

with length 0 is unique and considered to be an initial state. The state sT of length T is called

terminal state and it causes episode of molecule generation to end. The subset of terminal states

S⇤ = {sT 2 S} of S which contains all the states sT with length T is called the terminal states

set. Reward r(sT) is calculated in the end of an episode, when the terminal state is reached.

Intermediate rewards r(st), t < T are equal to 0. In these terms the generator network G can be

treated as a policy approximation model. At each time step t, 0 < t < T, G takes previous state

st�1 as an input and estimates probability distribution p(at|st�1) of the next action. Afterwards,

the next action at is sampled from this estimated probability. Reward r(sT) is a function of the

predicted property of sT by the predictive model D:

r(sT) = f(D(sT)),

where f is chosen expertly depending on the task. Some examples of the functions f are provided

further in the computational experiment section. Given these notations and assumptions, the

problem of generating chemical compounds with desired properties can be formulated as a task of

finding a vector of parameters ✓ of policy network G which maximizes the expected reward:

J(✓) = E[r(sT)|s0, ✓] =
X

sT2S⇤

G(sT)r(sT) ! max.

This sum iterates over the set S⇤ of terminal states. In our case this set is exponential and

the sum can not be exactly computed. The trick is to approximate this sum as a mathematical

expectation by sampling terminal sequences from the model distribution:

J(✓) = E[r(sT)|s0, ✓] = Ea1⇠p✓(a1|s0)Ea2⇠p✓(a2|s1) . . .EaT⇠p✓(aT |sT�1)r(sT).

So, the procedure for J(✓) estimation is following: sequentially sample at from the model G for t

46

from 0 to T . The unbiased estimation for J(✓) is the sum of all rewards in every time step which

in our case equals to the reward for the terminal state as we assume that intermediate rewards are

equal to 0. As this quantity needed to be maximizes, we need to compute its gradient. This can be

done with a REINFORCE algorithm [31] which uses approximation of mathematical expectation

as a sum, which we provided above, and the following trick:

@✓f(✓) = f(✓)
@✓f(✓)

@✓
= f(✓)@✓[log f(✓)].

So, the gradient of J(✓) can be written down as:

@✓J(✓) =
X

sT2S⇤

[@✓p✓(sT)]r(sT) =

=
X

sT2S⇤

p✓(sT)[@✓ log p✓(sT)]r(sT) =
X

sT2S⇤

p✓(sT)

"
X

t=1T

@✓ log p✓(at|st�1)

#
r(sT) =

= Ea1⇠p✓(a1|s0)Ea2⇠p✓(a2|s1) . . .EaT⇠p✓(aT |sT�1)

"
X

t=1T

@✓ log p✓(at|st�1)

#
r(sT),

which gives as an algorithm for @✓J(✓) estimation.

3.1.2.2 Reinforcement learning formulation for molecular graphs

While generating realistic molecules is an appealing goal, our ultimate aim is to shift the distri-

bution of the generated samples for some desired property. To optimize the chosen property, we

use the policy gradient algorithm. In this formulation, MolecularRNN acts as a policy network

that outputs the probability of the next action given the current state. The set of actions is defined

as the set of atom labels times the set of combinations of possible generated atom connection to

the existing graph. The set of states is defined as all possible sub-graphs of graphs with up to a

fixed number of N nodes. Consistently with the BFS ordering in MolecularRNN, initial state

s0 is a graph of a single carbon atom. The set of final states is defined as the set of all graphs

that correspond to a valid molecule with up to N heavy atoms. The reward r(sN) for a final state

sN (without loss of generality sN is used even if n < N in the generated graph) is calculated

47

with a critic. We distributed the final reward to all intermediate steps, with the discounting factor,

which proves to show more stable convergence in our experiments. Thus, intermediate rewards

r(si), 0 < i < N are obtained by discounting the final reward with a fixed factor �.

The transition probabilities p(si|si�1; ✓) are the elements of the product in Equation 2.3. Given

those, we can write down the loss function for the policy gradient optimization algorithm by

Williams [88], which is designed to maximize the expected reward:

L(✓) = �
NX

i=1

r(sN) · �i · log p (si|si�1; ✓). (3.1)

3.1.2.3 Structural penalty for MolecularRNN

Valency-based rejection sampling can be used in inference, as was already described. However,

the invalid intermediate structures that are obtained during training can provide a useful signal

to the model. For example, a molecule can be almost realistic except for few invalid bonds. We

introduce an additional structure penalty for the atoms that disrespect valencies. Thus, instead

of providing a penalty for the whole molecule, we target specific atoms, which results in the

modification of parameters that respect valency constraints.

3.1.3 Results

3.1.3.1 Generation of property value biased libraries with the RL system and SMILES-

based generative model

To explore the utility of the RL algorithm in a drug design setting, we have conducted case studies

to design libraries with three controlled target properties:

• physical properties considered important for drug-like molecule;

• specific biological activity;

• chemical complexity.

For physical properties, we selected melting temperature (Tmelt) and n-octanol/ water partition

coefficient (LogP). For bioactivity prediction, we designed putative inhibitors of Janus protein

kinase 2 (JAK2) with novel chemotypes. Finally, the number of benzene rings and the number

48

of substituents (like –OH , �NH2, �CH3, –CN , etc.) was used as a structural reward to design

novel chemically complex compounds. Figure 4 shows the distribution of predicted properties of

interest in the training test molecules and in the libraries designed by our system. In all cases,

we sampled 10, 000 molecules by the baseline (no RL) generator and RL-optimized generative

models, and then calculated their properties with a corresponding predictive model. Values of the

substructural features were calculated directly from the 2D structure. Table 3.1 summarizes the

analysis of generated molecules and the respective statistics.

Table 3.1: Comparison of statistics for generated molecular datasets.

Property Valid Mean
SA score

Mean
molar
mass

Mean
property

value

ZINC15
matches

ChEMBL
matches

Tmelt

baseline 95 % 3.1 435.4 181 4.7% 1.5%
min 31% 3.1 279.6 137 4.6% 1.6%
max 53% 3.4 413.2 200 2.4% 0.9%

JAK2
baseline 95% 3.1 435.4 5.70 4.7% 1.5%
min 60% 3.85 481.8 4.89 2.5% 1.0%
max 45% 3.7 275.4 7.85 4.5% 1.8%

logP baseline 95% 3.1 435.4 3.63 4.7% 1.5%
optimized 70% 3.2 369.7 2.58 5.8% 1.8%

Nbenzene

baseline 95% 3.1 435.4 0.59 4.7% 1.5%
max 83% 3.15 496.0 2.41 5.5% 1.6%

Nsubs

baseline 95% 3.1 435.4 3.8 4.7% 1.5%
max 80% 3.5 471.7 7.93 3.1% 0.7%

Melting temperature (Tmelt). In this experiment, we set two goals, i.e., either to minimize

or to maximize the target property. Upon minimization, the mean of the distribution in the de

novo generated library was shifted by 44�C as compared to the training set distribution (Figure

3.3c). The library of virtually synthesized chemicals included simple hydrocarbons like butane,

as well as poly-halogenated compounds like CF2Cl2 and C6H4F2. The molecule with the

lowest Tmelt = �184�C in the produced dataset was CF4. Clearly, this property minimization

strategy was extremely effective, as it allowed for the discovery of molecules in the regions of the

chemical space far beyond those of the training set of drug-like compounds. In the maximization

49

regime, the mean of the melting temperature was increased by 20�C to 200�C. As expected, the

generated library indeed included substantially more complex molecules with the abundance of

sulphur-containing heterocycles, phosphates, and conjugated double bond moieties.

(a) Tmelt minimization reward (b) Tmelt maximization reward

(c) Tmelt distribution before and after optimization

Figure 3.3: Melting temperature optimization RL experiment.

Designing a chemical library biased toward a range of lipophilicity (LogP). Compound

hydrophobicity is an important consideration in drug design. One of the components of the

famous Lipinski’s rule of five is that orally bioavailable compounds should have the octanol-water

partition coefficient LogP less than 5 [89]. Thus, we endeavored to design a library that would

contain compounds with LogP values within a favorable drug-like range. The reward function in

this case was defined as a piecewise linear function of LogP with a constant region from 1.0 to

4.0 (see Figure 3.4a). In other words, we set the goal to generate molecules according to a typical

Lipinski’s constraint. As is shown in Figure 3.4b, we have succeeded in generating a library with

88% of the molecules falling within the drug-like region of LogP values.

50

(a) LogP optimization reward
(b) LogP distribution before and after optimiza-
tion

Figure 3.4: LogP optimization RL experiment.

Inhibition of JAK2. In the third experiment, which serves as an example of the most common

application of computational modeling in drug discovery, we have employed our system to design

molecules with the specific biological function, i.e., JAK2 activity modulation. Specifically, we de-

signed libraries with the goal of minimizing or maximizing pIC50 values for JAK2. While most of

drug discovery studies are oriented toward finding molecules with heightened activity, bioactivity

minimization is also pursued in drug discovery to mitigate off-target effects. Therefore, we were

interested in exploring the ability of our system to bias the design of novel molecular structures

toward any desired range of the target properties. JAK2 is a non-receptor tyrosine kinase involved

in various processes such as cell growth, development, differentiation or histone modifications. It

mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm it also

plays an important role in signal transduction. Mutations in JAK2 have been implicated in multiple

conditions like thrombocythemia, myelofibrosis or myeloproliferative disorders [90]. The reward

functions in both cases (min and max) were defined as exponential functions of pIC50 (see Figures

3.5a, 3.5b). The results of library optimization are shown in Figure 3.5c. With minimization, the

mean of the predicted pIC50 distribution was shifted by about one pIC50 unit and the distribution

was heavily biased toward the lower ranges of bioactivity with 24% of molecules predicted to

have practically no activity (pIC50 4). In the activity maximization exercise, properties of

generated molecules were more tightly distributed across the predicted activity range. In each

case, our system virtually synthesized both known and novel compounds, with the majority of

de novo designed molecules being novel compounds. The generation of known compounds (i.e.

51

not included in the training set) can be regarded as model validation. Indeed, the system retro-

spectively discovered 793 commercially available compounds deposited in the ZINC database,

which constituted about 5% of the total generated library. Importantly, as many as 15 of them

(exemplified by ZINC263823677 -http://zinc15.docking.org/substances/ZINC000263823677/

and ZINC271402431 - http://zinc15.docking.org/substances/ZINC000271402431/) were actually

annotated as possible tyrosine kinase inhibitors.

(a) JAK2 minimization reward (b) JAK2 maximization reward

(c) Distribution of pIC50 of JAK2 before and after opti-
mization

Figure 3.5: JAK2 optimization RL experiment.

Substructure bias. Finally, we also performed two simple experiments mimicking the strategy

of biased chemical library design where the designed library is enriched with certain user-defined

substructures. We defined the reward function as the exponent of

• the number of benzene rings (-Ph);

• total number of small group substituents.

52

Among all case studies described, structure bias was found to be the easiest to optimize. The

results of the library optimization study are shown in Figures 3.7b and 3.7d. Furthermore, Figure

3.6 illustrates the evolution of generated structures as the structural reward increases. Indeed,

we see that the model progresses toward generating increasingly more complex, yet realistic

molecules with greater numbers of rings and/or substituents.

Figure 3.6: Evolution of generated structures as chemical substrcture reward increases for number
of substitutents (top) and benzene rings (bottom).

We expect that designing structurally biased libraries may be a highly desirable application

of the ReLeaSE approach as researchers often wish to generate libraries enriched for certain

privileged scaffold(-s) and lead compounds optimization [91]. Conversely, the system also allows

to avoid particular chemical groups or substructures (like bromine or carboxyl group) that may

lead to undesired compound properties such as toxicity. Finally, one could implement certain

substructure, or pharmacophore similarity, reward to explore additional chemical space. Table 3.1

shows a decrease in the proportion of the valid molecules after the optimization. We may explain

this phenomenon by the weaknesses of predictive models P and the integration of predictive

and generative models into a single design system. We presume that the generative model G

53

tends to find some local optima of the reward function that correspond to invalid molecules, but

predictive model P assigns high rewards to these molecules. This explanation is also supported by

the results of structure bias optimization experiments, as we did not use any predictive models in

these experiments and the decrease in the proportion of valid molecules was insignificant. We

also noticed, that among all experiments with predictive models, those with LogP optimization

showed the highest proportion of valid molecules and, at the same time, the predictive model

for LogP estimation had the highest accuracy R2 = 0.91. Probably it is harder for RL system

to exploit high quality predictive model and produce fictitious SMILES strings with predicted

properties in the desired region.

(a) Number of benzene rings maximization reward

(b) Distribution of number of benzene rings before and
after optimization

(c) Number of substituents maximization reward

(d) Distribution of number of substituents before and after
optimization

Figure 3.7: Property distributions for RL-optimized versus baseline generator model.

54

(a) Partition coefficient, logP (b) Melting temperature, Tmelt,

(c) Predicted activity, pIC50

Figure 3.8: Clustering of generated molecules by t-distributed stochastic neighbor embedding
(t-SNE).

3.1.3.2 Visualization of new chemical libraries

In order to understand how the generative models populate chemical space with new molecules,

we used t-Distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality reduction [92].

We selected datasets for three endpoints used in our case studies (Tm, LogP, JAK2) that were

produced with corresponding optimized generative models G. For every molecule, we calculated

a latent vector of representation from the feed-forward layer with ReLU activation function in the

predictive model P for the respective property and constructed 2D projection using t-SNE. These

projections are illustrated in Figure 3.8. Every point corresponds to a molecule and is colored

according to its property value.

For libraries generated to achieve a certain partition coefficient distribution (Figure 3.8a), we

can observe well-defined clustering of molecules with similar LogP values. In contrast, for melting

temperature (Figure 3.8b) there are no such clusters. High and low Tmelt molecules are intermixed

55

together. This observation can be explained by the fact that melting temperature depends not

only on the chemical structure of the molecule, but also on intermolecular forces as well as

packing in the crystal lattice. Therefore, plotting molecules in this neural net representation

could not achieve good separation of high vs. low Tmelt. In the case of the JAK2 model

(Figure 3.8c), we could observe two large non-overlapping areas roughly corresponding to

inactive (pIC50 < 6) and active(pIC50 6) compounds. Inside these areas, molecules are

typically clustered around multiple privileged scaffolds. Specifically for JAK2 we see abundance

of compounds with 1,3,5-triazine, 1,2,4-triazine, 5-Methyl-1H-1,2,4-triazole, 7H-pyrrolo[2,3-

d]pyrimidine, 1H-pyrazolo[3,4-d]pyrimidine, thieno-triazolo-pyrimidine and other substructures.

Overall, this approach offers a rapid way to visualize compound distribution in chemical space in

terms of both chemical diversity and variability in the values of the specific prediction endpoint.

Furthermore, joint embedding of both molecules in the training set and those generated de novo

allows one to explore differences in the chemical space coverage by both sets and establish

whether structurally novel compounds also have the desired predicted property of interest.

3.1.3.3 Property optimization with reinforcement learning and MolecularRNN

We performed experiments on the properties optimization of generated molecules starting with

our strong pretrained model with the policy gradient algorithm (section 3.1.2.2). We choose

maximization of penalized logP as defined in [2] and QED [57] starting from MolecularRNN that

is likelihood-pretrained on ZINC 250k dataset. We also performed an additional experiment with

maximization of melting temperature. This is an appealing exercise because it requires training

an additional model for melting temperature prediction, while logP and QED can be computed

directly from the molecular graph structure. This experiment mimics realistic drug discovery

scenario, where toxicity or bioactivity is optimized. It paves the way for further research in this

important direction.

Penalized logP and QED maximization. As in [1, 2], we independently maximize two proper-

ties – penalized logP and QED score. MolecularRNN is tuned for 300 iterations with a generated

batch size of 512 and Adam optimizer with a constant learning rate of 10�5. The objective

56

function in Equation 3.1 maximizes the following rewards:

r(mol) = 5 · logPpen(mol)

r(mol) = 10 ·QED(mol).

We use discount factor � = 0.97. The best 3 molecules after optimization for both properties

are shown in Table 3.2, and demonstrates the distribution shift. In this experiment, our model

outperforms all baselines in both tasks. The top 3 molecules are shown in Figure 3.9. Samples

with high logP values are very realistic, as the model learned to grow a chain of aromatic rings

that would very strongly bind to a lipid membrane (high lipophilicity). This is an indicator that

the model learned some underlying physics about relationship between molecular structure and

properties.

Table 3.2: Comparison of the top 3 scores for penalized logP and QED.

Penalized logP QED score

Methods 1st 2nd 3rd Valid 1st 2nd 3rd Valid

ZINC 4.52 4.30 4.23 100% 0.948 0.948 0.948 100%
[81] 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%
JT-VAE [2] 5.30 4.93 4.49 100% 0.925 0.911 0.910 100%
GCPN [1] 7.98 7.85 7.80 100% 0.948 0.947 0.946 100%
MolecularRNN 10.34 10.19 10.14 100% 0.948 0.948 0.947 100%

(a) penalized logP (b) QED

Figure 3.9: Top 3 molecules for MolecularRNN optimized with policy gradient

Figure 3.10: Distribution of maximized
QED for MolecularRNN and GCPN.

We took a step further and not only looked at

molecules with top 3 scores but also considered the full

distribution of the maximized QED for libraries gen-

57

erated with our MolecularRNN and GCPN [1] as the

best baseline. We argue that reporting only the top 3

scores is not the most informative benchmarking metric,

since top 3 may not reflect the real performance of the

model. Instead, we encourage reporting the statistics of

the optimized distribution. Figure 3.10 shows that Molec-

ularRNN shifts the distribution father to the maximum

values of QED compared to GCPN.

Melting temperature maximization. We train a graph convolution regression model introduced

in [93] for predicting the melting point of a molecule. Training and test datasets were 37940

and 9458 objects correspondingly; with Tmelt ranging from �196�C to 517�C. The model has 4

layers with hidden sizes of 128. We use Adam optimizer, starting with a learning rate of 0.001

and exponential decay with � = 0.8 after every epoch. The model is trained with a batch size

of 32 for 30 epochs. The model converges to RMS error of 39.5�C, that is comparable to the

state-of-the-art for the same dataset [94]. This model is then used to assign a reward function

r(mol) = exp(tpred(mol)+1), where tpred(mol) is the normalized predicted melting temperature

for a molecule.

For this experiment, we used a model pretrained on ChEMBL dataset and optimized it with the

same settings as in the previous experiments – 300 iterations with a batch size of 512 and Adam

optimizer with a constant learning rate of 10�5. Figure 3.11a shows the relative distribution shift

of predicted property for the molecules sampled from the pretrained model and for the molecules

sampled from the optimized model. Example of generated molecules with predicted values of

Tmelt are shown in Figure 3.11b. Interestingly, in this experiment, MolecularRNN rediscovered

two known chemical phenomena. First, fusing multiple aromatic rings significantly increases the

Tmelt. Second, the presence of C=O, OH, NH2 and heterocyclic nitrogens make molecules more

polar. This usually enhances dipole-dipole interactions and subsequently increases Tmelt as well.

58

(a) Distribution of predicted melting temperature
for base and optimized models

(b) Examples of generated molecules with highest
melting temperature

Figure 3.11: Melting temperature maximization

3.2 Heuristics for improving property optimization

3.2.1 Introduction

The problem of sparse rewards in reinforcement learning. In contrast to physical properties

such as LogP that can be calculated directly from molecular structure, the biological activity of a

novel compound designed to bind the desired protein target cannot be predicted from its chemical

structure alone. A common way to predict the binding affinity of novel, untested ligands is by

using Quantitative Structure-Activity Relationship (QSAR) models [95, 96] trained on historical

experimental data for a protein target of interest using machine learning techniques. These models

have either continuous outputs (pKd, pIC50, etc.) for regression problems or categorical outputs

(active/inactive class label in a binary case) for classification problems. QSAR models could,

in principle, be used to construct a reward function for reinforcement learning to optimize the

binding affinity of generated molecules, as was shown, for instance, in section 3.1.2.2 of this

thesis. However, unlike physical molecular properties like LogP that every molecule possesses,

specific bioactivity is a target property that exists for only a small fraction of molecules, which

leads to reward sparseness in the generative models. This sparse rewards problem represents a

serious obstacle for the effective use of reinforcement learning for designing molecules with high

activity. Indeed, the low success probability often leads to the overwhelming majority of training

trajectories resulting in a zero reward, which implies that the reinforcement learning agent or

59

policy network struggles to explore the environment and learn the optimal strategy for maximizing

the expected reward [97, 98, 99]. Thus, a promising molecule with high bioactivity for a protein

of interest is unlikely to be observed if molecules are randomly sampled from a naı̈ve generative

model.

Training the generative network to optimize the potency of generated molecules against a

desired protein target is an excellent example of a reinforcement learning problem with sparse

rewards. There is a very low chance of observing a molecule with high potency when sampled

randomly from the distribution of unoptimized generative model. During training procedure

with RL, training examples are produced by the generative model. The model trained just on

negative examples (molecules with low potency values) is unlikely to discover positive examples

(molecules with high potency values). In this section, we demonstrate that the naı̈ve generative

model produces molecules predicted to be inactive in most cases. Under such a scenario, the naı̈ve

generative model rarely observes good examples and fails to maximize the active class probability

for generated ligands. We further address this problem by proposing a set of heuristic approaches

(a ”bag of tricks”) combined with reinforcement learning in the sparse rewards situation to increase

the efficiency of optimizing the structures of generated molecules to have higher predicted active

class probability. Using the epidermal growth factor receptor (EGFR) ligands as a case study,

we show that by combining a reinforcement learning pipeline for generative model optimization

with proposed heuristics, we could overcome sparse reward issues and successfully rediscover

known active scaffolds for EGFR using the feedback from the classification QSAR model only.

In addition to methodological advances, we also performed experimental bioassay validation of

the novel generated hit molecules, which confirmed the experimental activity of virtual hits which

will be covered in chapter 4 of this thesis in more detail.

Major findings. We performed a series of experiments that resulted in the following chief

observations:

1. The generative model trained with only the policy gradient algorithm could not discover

any molecules with high active class probability for EGFR due to sparse rewards.

2. The combination of policy gradient algorithm with proposed fine-tuning by

60

• transfer learning;

• experience replay;

• real-time reward shaping.

3. Experimental testing of selected computational hits that could be obtained from a commer-

cial source validated the efficiency of our proposed approach for discovering novel bioactive

molecules.

Below, we discuss how we arrived at the above observations. Overall, results of this study

consist of two main parts. In the first part covered in this chapter, we describe our computational

analysis concerning the first two observations. In the second part covered in chapter 4, we discuss

the generation, selection, and experimental bioactivity testing of computational hit compounds for

an important cancer biological target, epidermal growth factor receptor (EGFR). The most active

compound featured a privileged EGFR scaffold found in the known active molecules. Notably,

the training set was not enriched for this scaffold as compared to other scaffolds and this scaffold

was not used selectively as part of the reinforcement learning procedure.

3.2.2 Methods

In this section, we describe enhancements of deep learning and reinforcement learning approaches

used to generate virtual molecules with desired properties. Briefly, we employ the reinforcement

learning pipeline introduced in section 3.1.2.2 with several novel improvements to overcome the

problem of sparse rewards. Below we will talk about each part of the pipeline, introduce our novel

tricks and heuristics in more detail, and discuss an EGFR case study.

Generative model. For the generative model, we used a deep recurrent neural network with

an augmented memory stack described in sections 2.2.1 and 2.2.1.1. This network is trained to

produce novel molecules in the form of SMILES strings [31]. The network has two modes –

training mode and inference mode. In the training mode, the model receives a SMILES string

from the training set and tries to reconstruct it, starting from the given prefix. The model is

essentially trained as a multiclass classifier, where classes are represented as symbols in the

61

SMILES string alphabet. In the inference mode, instead of receiving prefix from the training

set, the model iteratively takes its output as new inputs to generate the next symbol based on

the previously generated ones. The generation stops when the network produces a unique stop

token interpreted as a command to end generation. The model is implemented as a part of

OpenChem [100] (https://github.com/Mariewelt/OpenChem) – an open-source deep-learning

toolkit for computational chemistry and drug design, which is discussed in detail in Chapter 5.

Reinforcement learning. For the method for shifting the distribution of predicted target active

class probability for generated molecules, we used the policy gradient algorithm [88]. We adapted

the problem to a reinforcement learning setting by treating the generative model as the policy

network. In this formulation, the generative model predicts the probability of the next action,

i.e., adding a new character to the SMILES string prefix. The set of actions is then limited to the

SMILES alphabet. The set of states is then limited to all strings in the SMILES alphabet with

lengths up to a specific limit N , where N is a hyperparameter defined by the maximum length

of SMILES strings from the training dataset. According to the policy gradient algorithm, the

objective function to be maximized is defined as the expected reward:

L(⇥) = �
NX

i=1

r(sN) · �i · log [p(si|si�1;⇥)] , (3.2)

,

where sN is the generated SMILES string, si, i = 1, . . . , N is the prefix of sN of length

0 < i < N , � is the discount factor, p(si|si�1;⇥) is the transition probability obtained from the

generative model, and r(sN) is the value of the reward function for the generated SMILES string

based on the output of the predictive model of active class probability for EGFR activity.

3.2.2.1 Exploration and exploitation trade-off.

An encounter of a molecule active against a specific target (e.g., EGFR) is a rare event, so the

generative model may very infrequently observe promising molecules. Such a scenario will result

in over-exploration – a situation when the model mostly experiences low rewards for inactive

62

molecules and receives insufficient signal to shift the distribution of the generated samples. At

the same time, the model should not over-exploit the historical data since our ultimate goal is to

generate novel active molecules. Thus, we do not want to over-exploit information about known

active molecules from the historical data, so that it can generate novel active molecules. We

address this problem by complementing the classic policy gradient algorithm with novel heuristics

detailed below to balance exploitation and exploration while training the model to maximize the

predicted activity active class probability of the generated molecules.

Fine-tuning by transfer learning on high-reward examples. The first algorithmic advance

we have explored was to fine-tune the model by transfer learning using generated molecules

with high rewards as training samples. Fine-tuning means training the model by minimizing

cross-entropy loss in the same manner as during the pretraining stage. A similar idea has already

been introduced in the literature [98]. Our approach differs from previous approaches through

our selection process for fine-tuning training samples. Whereas the previous work uses historical

data with high experimental activities, we used generated molecules as training samples, whereas

the previous work uses historical data with high experimental activities. Overall, fine-tuning by

transfer-learning results in high exploitation and low exploration. With sufficient rounds of fine-

tuning, the generative model produces molecules highly similar to those used for fine-tuning. Thus,

training on historical data results in the exploitation of already known chemical scaffolds instead of

discovering novel scaffolds. Such an approach could be suitable for the lead optimization process

when the goal is to optimize molecules with a prespecified scaffold. In contrast, fine-tuning on

generated molecules with high rewards results in the exploitation of scaffolds produced by the

generative network and highly scored by the predictive model. Generated scaffolds could be novel,

thus increasing their potential in drug discovery applications.

Experience replay on high-reward molecules. Another technique that we proposed addresses

the problem of sparse rewards while maintaining balancing the exploration-exploitation trade-off.

To perform experience replay, we save high-reward trajectories (molecules) to the replay buffer.

We randomly draw experience samples from the replay buffer during training and let the generative

network follow the experience trajectory through teacher forcing [101]. We then calculate the

63

expected reward maximization loss function and apply policy gradient updates to the generative

network parameters. The concept of using experience replay for reinforcement learning is not new

and has previously proven to be an effective training method in the reinforcement learning domain

[102, 103, 104]. We propose using this approach to deal with rare high-reward molecules while

avoiding over-exploitation. Like the fine-tuning scenario, we utilize generated molecules with

high rewards as training examples (or experiences) in the experience replay. Unlike the fine-tuning

scenario, experience replay does not directly enforce specific characters in the generated SMILES

string. Instead, it provides feedback in the form of a high reward at the end of the replay episode,

resulting in less exploitation.

Real-time reward shaping. Real-time reward shaping is one more of our proposed advance-

ments to train the neural network more efficiently in a situation when molecules with high rewards

are observed rarely. The idea behind this technique is to change the reward function over training

dynamically. We shall explain this concept using a threshold reward function and a predictive

model returning the active class probability as an illustrative example. A molecule is considered

active in these settings if the returned probability exceeds some threshold, such as 0.5. At the

beginning of the training process, very few generated molecules will have such a high probability;

instead, there often is a cohort of molecules with probabilities slightly higher than zero. The

real-time reward shaping technique helps the model exploit molecules with non-zero predicted

active class probabilities in the absence of good examples. We introduce the probability threshold

p0 to differentiate between good and bad examples in our threshold reward function:

R(s) =

8
<

:
rpos, if p(s) > p0,

rneg, otherwise,
(3.3)

where s is the generated molecule, p(s) is the probability of active class returned by the

predictive model, p0 is the probability threshold, rpos is the reward value for good examples, and

rneg is the reward value for bad examples. The probability threshold p0 is initialized to a small

value and dynamically increased during training. After several iterations of training, we generate a

large enough batch of molecules with the current model and predict active class probabilities with

64

the predictive model. The threshold p0 is increased if the big enough portion of molecules has

predicted active class probabilities bigger than the threshold’s current value. In our experiments,

we started with p0 = 0.05 and increased it by 0.05 when at least 15% out of 3000 generated

molecules have predicted probabilities of active class greater than p0.

3.2.3 Results

Model pipeline. Neural network optimization is a nontrivial task as a network’s hyperparameter

values define a training protocol. Due to the high number of hyperparameters, the training space

is vast. To complicate things further, neural network training is a computationally expensive

task that can last hours to days. The choice of training hyperparameters thus has a significant

influence on model quality. We sought to run a benchmark experiment to investigate how different

training techniques interact and how they affect model quality. As a case study, we performed

the optimization of the generative model with reinforcement learning to maximize the predicted

probability of active class for EGFR protein. The experimental training pipeline is shown in

Figure 3.12.

Figure 3.12: EGFR model training pipeline.

65

Model training consists of 2 stages – pre-training the generator from scratch on a vast dataset

such as ChEMBL [60] in a supervised manner to produce mostly valid SMILES strings without

any property optimization at this point. The second stage is training the model with RL to optimize

the property values of the generated molecules. We used the pre-trained ChEMBL model and

populated the experience replay buffer with generated predicted active molecules to initialize

training. The model was trained using different combinations of policy gradient, experience replay,

and fine-tuning. At the end of each substep, 3200 molecules were generated for intermediate

evaluation. If experience replay and/or fine-tuning were used, molecules with predicted active

class probability exceeding the probability threshold were admitted into the experience replay

buffer. In turn, the replay buffer influences training at the policy replay and fine-tuning steps in the

next epoch if used. At the end of the training, the model generated 16000 molecules for evaluation.

We first trained the model for a variable number of epochs and verified that the model learns

significantly after 20 epochs. Models were trained for 20 epochs for nine different combinations

of fine-tuning and experience replay with the following options: no fine-tuning, 20 iterations of

fine-tuning, or 100 iterations of fine-tuning; and no experience replay, 10 iterations of experience

replay, and 20 iterations of experience replay. The number of policy gradient steps was adjusted

so that each training epoch had 25 iterations of replay and policy gradient (e.g. 25 policy steps for

0 replay steps and 15 policy steps for 10 replay steps) (Figure 3.13).

We used Random Forest ensemble model as a predictor in this pipeline. The ensemble model

consists of 5 individual Random Forest models trained in a 5-fold cross-validation manner, and

the final prediction is the mean of predictions from each model in the ensemble.

Effect of fine-tuning vs. reinforcement learning. The bar chart shown in Figure 3.14 summa-

rizes the findings for four representative conditions:

• policy gradient only;

• policy gradient and fine-tuning;

• policy gradient and experience replay;

• policy gradient, experience replay, and fine-tuning.

We assessed the extent of overfitting by recording the fraction of the generated trajectories

66

Figure 3.13: Combined effects of fine-tuning and reinforcement learning.

Figure 3.14: Combined effects of fine-tuning and reinforcement learning.

that generate valid SMILES strings, which is defined as the ratio of valid and unique SMILES

strings over the total number of the generated trajectories. In more detail, the model can overfit

with respect to the property predictor. For example, if the QSAR model assigns high active class

67

probabilities to molecules with a specific chemical group, the generative model can discover and

exploit it by stacking multiple aforementioned chemical groups into a single molecule. Such

scenario often leads to decrease in validity. We use the ratio of valid and unique SMILES strings

over the total number of generated trajectories. This metric would detect mode collapse, since we

are discarding repeated molecules. We assessed the extent of model learning by recording the

fraction of the generated trajectories resulting in active chemical structures, which is defined as

the ratio of valid SMILES strings with predicted EGFR activity (with the arbitrary probability

threshold of 0.75) over the number of valid and unique SMILES strings generated. Training

without replay tricks has a near-zero “active” fraction and the highest “valid” fraction. This

observation is consistent with the sparse rewards hypothesis. In the absence of rewards from active

molecules, this model effectively trains on the classifier objective. Instead of learning to generate

active molecules, the model optimizes valid fraction. Training with a single trick (fine-tuning

or experience replay) teaches the model to generate active molecules, albeit at the expense of a

lower valid fraction. Training with only fine-tuning results in a lower fraction of valid molecules.

Training with both experience replay and fine-tuning yields the best results, with both high active

fraction and high valid fraction.

Mode collapse effect. Next, we analyzed the effect of fine-tuning steps on mode collapse

[105]. Mode collapse poses a significant challenge in generative models. Reinforcement learning

teaches generative models to produce output with high reward; however, it does not consider the

distribution of generated output. Thus, the model can discover a pathological local minimum in

the objective function by converging to generate a few instances with high reward; in such cases,

the model undergoes mode collapse. Such overfitted models explore limited regions of chemical

space and are undesirable for library generation.

Our experiments used the active fraction as a proxy for training progress and the valid and

unique fraction as a proxy for mode collapse. Two scenarios can decrease the valid fraction:

1. the model generates a larger fraction of invalid SMILES strings (fewer valid SMILES

strings);

2. the model suffers from mode collapse and generates many repeats of the same SMILES

68

string (fewer unique SMILES strings)

The first factor is caused by the restricted chemical space of higher activity molecules and is

specific to the reward function. The second factor is caused by the nature of training and can be

controlled.

To investigate how learning affects mode collapse, we ran several experiments where the

generative model was trained with 25 iterations of policy gradient and one of 0, 20, 50, 100, 200,

500, or 1000 iterations of fine-tuning per epoch. We recorded valid fraction and active fraction

after each epoch. The resulting trajectories are illustrated in Figure 3.15.

Figure 3.15a shows how active fraction, valid fraction, replay threshold, and average reward

change with training for a different number of fine-tuning steps used in training. Figure 3.15b

shows the joint trajectories of an active fraction and valid fraction change with training for the

different number of fine-tuning steps. Figure 3.15 shows that when the model uses no fine-tuning,

it fails to produce active molecules and maintains a high valid fraction. When the model uses

fine-tuning, it learns to generate active molecules at the expense of a lower valid fraction. All runs

with fine-tuning experienced a significant drop in a valid fraction in the first epoch of training.

This drop may represent a transient phase when the model cannot generate active molecules

and partially overfits to the initial molecules in the replay buffer. The decrease in the valid

fraction is more pronounced in models that use more fine-tuning iterations, consistent with this

proposal. Models with the fewest fine-tuning iterations have the lowest active fraction and the

lowest valid fraction. Over model training, the active fraction is negatively correlated with the

valid fraction, suggesting that the model suffers mode collapse as it learns to generate active

molecules. Models with higher fine-tuning iterations have progressively higher active fractions

and valid fractions. The model appears to increase valid fraction for the highest numbers tested

(500 and 1000 iterations) as it learns. Although models with higher fine-tuning iterations initially

experience a more considerable drop in valid fractions, they eventually have higher valid fractions

than models with lower fine-tuning iterations. Similarly, we analyzed the effect of the different

number of experience replay steps. Similar to the fine-tuning benchmark, the model with no

experience replay fails to generate active molecules and maintains a high valid fraction. Inclusion

of experience replay results in successful learning with a simultaneous decrease in valid fraction.

69

(a) Trajectory of training for different fine-tuning values.

(b) QED

Figure 3.15: Evolution of active and valid fractions over training.

Unlike the fine-tuning benchmark, however, the number of experience replay steps does not

clearly affect model quality. In these experiments, model quality is largely determined by the

presence or absence of experience replay steps.

Experience replay buffer effect. Finally, we investigated different initializations of the expe-

rience replay buffer. The experience replay library is typically filled with predicted molecules

70

generated by the model pretrained on the ChEMBL database, but our procedure enables us to use

an arbitrary replay library alternatively. Due to sparse rewards, model learning is initially dictated

by the replay library. We generated a second replay library with molecules from the Enamine

kinase library, which consists of 65000 small molecules with predicted activity against kinases

[106]. This library was chosen based on the expectation that general-purpose kinase inhibitors

should contain scaffolds suitable for EGFR kinases.

We first selected molecules with non-zero active class probabilities for EGFR, as predicted

by the random forest ensemble. We then filtered the active molecules to remove molecules with

Bemis-Murcko scaffolds [53] present in the historical EGFR data. This step ensured that the

replay buffer molecules were dissimilar from known molecules. The final Enamine replay library

had 219 molecules.

This experiment tested three different replay libraries: an empty replay library (Empty buffer),

the replay library from the model (Generated actives), and the Enamine library selected as above

(Enamine). Figure 3.16 shows the 12 most common Bemis-Murcko scaffolds [53] in the generated

libraries produced by each of the models. All scaffold calculations were done using the RDKit

[56] package.

In the generated library produced with replay buffer initialized with compounds from the

Enamine kinase library, the main quinazoline scaffold is notably absent. The Enamine-trained

library suffers from lower diversity, likely because the initial replay buffer selected from the

Enamine kinase library predominantly contains thiophene-fused rings. Such bias was introduced

by the predictive model used to select the initial replay buffer. The predictive model favored

compounds with thiophene-fused rings. This observation confirms that the initial selection of

molecules in the replay library greatly influences the regions of chemical space that the model

explores.

The library generated by the Empty buffer-trained model shows clear signs of overfitting, as 3

of the 12 most common scaffolds appear to be duplications of the quinazoline scaffold. The first

active molecules greatly influence the model admitted into the replay library. When the replay

library is initially empty, the model heavily exploits the first active molecules generated. As

a result, the empty buffer-trained model explores a very limited region in chemical space (See

71

Figure 3.16: The 12 most common Bemis-Murcko scaffolds for models trained from different
libraries.

Figure 3.17).

72

Figure 3.17: Distributions of Tanimoto similarities for libraries generated after different points in
training.

73

74

Chapter 4

Applications of deep generative models for

design of novel kinase inhibitors

4.1 Background

Discovery of chemical probes is a key step for unraveling the specific biological function of

protein kinases. Such probes are small molecules that potently inhibit the catalytic activity of

the target kinase, while minimally affecting the activity of the rest of the kinome [107, 108].

Kinase active sites are typically very similar as every kinase has an ATP binding site as part of the

catalytic site; thus, small molecule inhibitors tend to bind non-specifically throughout the kinome.

Balancing on-target potency with off-target selectivity when designing and optimizing kinase

inhibitors is a considerable barrier to achieving complete coverage of the kinome with useful

chemical probes. This makes designing chemical probes for all, but especially, for understudied

kinases where chemical genomics data is absent, especially challenging. Solving this challenge is

highly important as kinases play a critical role in health and disease [109].

Kinases represent a large group of enzymes that are implicated in many human diseases such

as developmental and metabolic disorders and cancer. Characterization of kinase functions and

kinase-oriented drug discovery is facilitated by chemical probes defined as “potent, selective and

cell-permeable inhibitors of protein function” [110]. In terms of available chemical genomics

data, kinases range from well-studied to understudied, or “dark”, kinases. The publicly accessible

75

[111] ChEMBL database [60], for instance, includes more than 1M bioactivity datapoints for

more than 60K targets. Yet, there are nearly 150 kinases recognized as understudied meaning

that there are no highly active compounds (and sometimes, no active compounds at all) known.

Importantly, even with the wealth of chemogenomics data for well-studied kinases, so far chemical

probes have been developed for 9 kinases [110] out of more than 500 functionally characterized

kinase enzymes. Computational approaches have been sought after in order to accelerate the

identification of kinase chemical probes. However, the use of these approaches is reliant on the

existence of sufficiently large experimental data collections. Traditional molecular modeling

approaches such as docking or QSAR require target-specific data, such as the knowledge of the

three-dimensional structure of the target kinase or chemical bioactivity data for a sufficiently large

set of molecules tested against a specific kinase. However, the historically relatively slow pace

of kinase probe discovery suggests that traditional approaches have not been very successful in

accelerating probe discovery even when wealth of data for well-characterized kinases is available.

Naturally, when there is a dearth of experimental chemogenomics data, the efficacy and utility

of computational approaches are significantly reduced. This dilemma of data is particularly

pronounced in the case of understudied kinases, where, as the very name suggests, there is limited

or no preexisting chemogenomics screening data or, with rare exception of orphan proteins, there

are no available crystal structures for these targets. The problem of modeling of both relatively

well-studied and understudied kinases thus demands innovative and revolutionary methodologies

that break free from the current paradigm.

In this section, we address the challenging problem of identifying new kinase chemical probes

by using novel computational methodologies that employ the artificial chemical intelligence

methods described in Chapters 2 and 3. Specifically, we have chosen 4 kinase proteins as case

studies – EGFR, CSNK2A2, DYRK1b and MKNK2. While EGFR is a relatively well-studied

kinase with multiple FDA approved drugs and drug candidates in clinical trials, CSNK2A2,

DYRK1b and MKNK2 are understudied kinases.

For the EGFR case study our main goal is to demonstrate that we can re-discover known active

scaffolds using reliable QSAR models as a part of our reinforcement learning pipeline described

in Chapter 3.

76

For the CSNK2A2, DYRK1b and MKNK2 case studies our goal is to discover novel hit

molecules with previously unseen chemical structures that can serve as a starting points for

developing chemical probes for these understudied kinases.

4.2 EGFR case-study

This section describes how models developed in section 3.2 wer used to generate molecules

with maximized bioactivity for EGFR. I also covers selection and experimental validation of hit

candidates.

4.2.1 Methods

Generative model. The generative model was pretrained using the ChEMBL dataset [60],

which consists of approximately 2 million bioactive molecules. Notably, every molecule from

ChEMBL has reported experimental bioactivity for at least one protein target. The pretraining

step teaches the generative model to fit the distribution of molecules from the training data. Once

pretrained, the generative network is used to sample new molecules from this distribution. Thus,

we can assume that pretraining on a dataset of bioactive molecules such as ChEMBL ensures

that the generative model will be capable of sampling bioactive-like molecules. This feature is

essential to us since our ultimate goal is to produce active molecules to inhibit EGFR.

Activity data and predictive model. The predictive model was trained on historical exper-

imental data of activities for EGFR extracted from ChEMBL. The EGFR training dataset in-

cludes bioactivities extracted from ChEMBL[60] (Target ID CHEMBL203). We considered only

pChEMBL activities with a confidence score of 8 or greater for ’binding’ or ’functional’ human

EGFR assays. Replicate compounds with bioactivity differences larger than one unit on a log

scale were excluded. For similar replicate measurements, a single representative assay value was

selected for inclusion in the training dataset. Activity values were binarized according to the 1µM

cutoff. Chemical data were processed using the OpenEye chemistry toolkit. Standardizer was

used for structure canonicalization, JChem 18.2, 2018, ChemAxon (http://www.chemaxon.com).

77

The dataset was curated according to a well-known protocol [112].

For the predictive model, we used an ensemble of five random forest (RF) classifiers. For

features, we used 2,048-bit ECFP fingerprints as implemented in RDKit (https://www.rdkit.org/).

We trained five random forest models on a cross-validated dataset to solve a binary classification

problem. Each model in the ensemble returns the probability of class ”active” for an input

molecule. The resulting ensemble prediction is obtained by averaging predictions of all models

in the ensemble. An interesting observation about this dataset is the presence of a privileged

scaffold. Around 50% of active molecules that fall into the active class after binarization contain

the quinazoline chemotype [113], a known hinge binder in kinase inhibitors [114]. From the

crystal structures of know EGFR inhibitors, it is known that hydrophobic residues surround the

quinazoline ring. The aniline group substituted at the 4 position of quinazoline ring and itself

quinazoline ring of drugs like gefitinib and erlotinib are bounded by the hydrophobic pocket

[115, 116]. With such a 4-anilinoquinazoline prevalence, we expect to see a bias in the predictive

model’s predictions towards this specific chemotype.

4.2.2 Results

4.2.3 Generation and selection of hit compounds.

With the information obtained through computational analysis described in section 3.2, we fixed

the model training protocol. We trained the ChEMBL-pretrained model for 20 epochs, with 15

steps of policy gradient, 10 steps of experience replay, and 20 steps of fine-tuning by transfer

learning per epoch. Every 2 epochs, we produced snapshot libraries of 16000 molecules. Each

snapshot library included the distribution of active class probability for the generated molecules.

Figure 4.1 illustrates the time-lapse of this distribution. The prominent peaks at 0 and 1 suggest that

the model learns by increasing the fraction of highly active molecules, as opposed to generating

molecules with progressively higher activities. This observation is likely because the random

forest classifiers in the ensemble predictor were trained on the same dataset.

78

Figure 4.1: Time-lapse distribution of active class probability values during training.

4.2.3.1 Experimental Validation.

With few notable exceptions [86, 117], most of the current de novo design publications are purely

computational. However, it is important to know how many computationally predicted candidates

are experimentally validated by in vitro (at least) assays. For this test, we established the following

screening protocol.

The model described in section 3.2 was used to generate a large library of novel compu-

tational hits with high active class probabilities. To enable rapid testing of the computational

models all hit molecules were parsed through the Enamine REAL database (Release 2020q1-2,

https://enamine.net/library-synthesis/real-compounds/real-database) of 1.36B on-demand com-

mercially available molecules. The Enamine REAL (readily accessible) database is based on

the synthesis of ultra-large chemical libraries using two- or three-step three-component reaction

sequences and available starting materials with pre-validated (at least 80% synthesis success rate)

chemical reactivity [118].

Seventeen computational hit molecules were matched with Enamine REAL. All of the pre-

dicted active compounds were derivatives of 4-anilinoquinazoline, a chemotype that was well

represented in Enamine REAL. The predicted active compounds contained a few small substituents

79

on the quinazoline ring (positions 5–8: F , Cl, Br, OCH3) but a wide range of substituents on the

4-anilino group. As a negative control, we selected five molecules predicted to be inactive but

containing the same 4-anilinoquinazoline scaffold. The twenty two 4-anilinoquinazoline analogs

were dissolved in DMSO and sent to Reaction Biology (https://www.reactionbiology.com/) for

EGFR enzymatic assay screening. Two compounds in the predicted active series were insoluble

in DMSO; therefore, biological tests were not performed. The 4-anilinoquinazoline analogs were

initially tested in single-dose duplicate mode at a concentration of 1µM and percent inhibition

relative to DMSO control was determined. Staurosporine was used as a reference EGFR tyrosine

kinase inhibitor .

Table 4.1: Data for EGFR kinase inhibiton of compounds 1-4.

Catalog ID pIC50 Structure
Nearest

neighbor (NN)
from training

pChEMBL
for NN)

Z1192045732 7.5 7.6

Z1576525970 7.4 7.6

Z1182636554 6.7 7.3

Z1823625743 5.9 7.3

Most active
from ChEMBL 10.0

Four 4-anilinoquinazolines from the predicted hit set showed > 40% inhibition of EGFR

enzyme activity in the 1µM single dose assay (Table 4.1), while all five of the negative control

analogs were inactive. Notably, the four active compounds contained only small substituents

(Br, NH2, CH3) at the 4’ position of the 4-anilino group (Table 4.1) paired with halogen

80

substitution on the 5, 6, or 8 positions of quinazoline core. Surprisingly, however, the 4’-

fluroanilino-6-fluroquinazoline analog was not active. Notably, all of the analogs with large linear

or branched substituents at the 4’ position were inactive in the enzyme assay. The four active

compounds from the single-dose assay were further tested in 10-dose IC50 mode with 3-fold serial

dilution starting at 10µM to determine their EGFR inhibition potency. The 4-anilinoquinazolines

1 and 2 (Table 4.1) were potent EGFR inhibitors with IC50 < 100nM , comparable to the

potency of staurosporine (Table 4.1). The 4-anilinoquinazolines 3 was slightly less potent with an

IC50 = 210nM . Analog 4 was the least potent with IC50 = 1.4µM .

Each of the active compounds 1–4 had a 3’-halogen substituted 4-anilinoquinazoline as a close

neighbor in the training set that was reported to have a similar EGFR inhibition potency (Table

1). The most potent EGFR inhibitor from ChEMBL was N-(3-bromophenyl)quinazoline-4,7-

diamine (CHEMBL420624), which had activity at sub-nanomolar concentrations. Although all

five out of the negative control compounds were inactive in the EGFR enzyme assay, it should be

noted that they each contain large linear or branched substituents at the 4’-position of the aniline.

Analogs with the same or similar substitution on the aniline that were selected to be active in the

computational model were also shown to be inactive in the EGFR assay.

4.3 CSNK2A2, DYRK1B, MKNK2 case study

4.3.1 Virtual screening of AI-COSMOS library with ML models

Selection of hit candidates. In this section, we explored how the AI-COSMOS library can be

used for practical purposes of finding new hit molecules for protein targets. We chose three kinase

proteins of interest, namely CSNK2A2, MKNK2, and DYRK1b. We developed regression QSAR

models for each protein to predict the potency of new molecules based on historical data from

ChEMBL [60]. We used a concatenation of RDKit topological descriptors with maximum path

sizes of 5, 7, 9, and 11 as features for the regression models. Each regression model is an ensemble

of 5 XGBoost [119] models trained with a 5-fold cross-validation technique. Hyperparameters

of the models were chosen with the Bayesian hyperparameter optimization technique [120].

The resulting models yielded R2 of 0.76, 0.81, and 0.72 for CSNK2A2, MKNK2 and DYRK1b

81

respectively. Next, we used the trained models to virtually screen the AI-COSMOS library to

find potential hits for the proteins targets of interest. We only screened 250 million molecules

out of the 10 billion library for practical purposes. After that, we selected the top 1000 molecules

with the highest predictions made by the QSAR models. To address the synthetic accessibility

of the molecules and reduce the cost of this experiment, we ran a similarity search between our

1000 selected candidate molecules and Enamine REAL Space21 of 21 billion make-on-demand

molecules using the Feature Trees algorithm as a part of FTrees software package from BioSolveIT

[121]. Features Trees are special descriptors representing molecules as graphs with each ring

and functional group reduced to a single node. Each node has a property profile that stores the

physicochemical properties of that node. To calculate the similarity between two molecules,

the algorithm overlays the corresponding Feature Trees to preserve the topology. The similarity

between the two Feature Trees is a normalized sum of local Tanimoto distances between the

corresponding property profiles in two molecules. We set up a similarity cutoff of 0.9 to identify

molecules from Enamine REAL Space similar to the hits from the AI-COSMOS library. Next,

we screened the molecules returned by the similarity search with QSAR models developed for

virtual screening and filtered out molecules with predicted pKd < 6.0. Additionally, we trained a

QSPR model for LogS. We used this model to filter out potentially insoluble molecules removing

molecules with predicted LogS > �5.0. We also removed molecules that have Tanimoto

similarity Tsim > 0.75 to any known hit from the dataset we used for training QSAR models.

Finally, our goal was to select 50 molecules per kinase protein target for experimental validation.

To identify a diverse subset of molecules, we used a spherical clustering algorithm to subdivide

the pool of molecules into 50 clusters and then picked a molecule with the highest predicted pKd

from each cluster.

Although with this approach, we chose not to synthesize molecules directly from the AI-

COSMOS library due to high cost and time restrictions, the overall results would be hard to

achieve without the AI-COSMOS library. Enamine REAL Space contains 21 billion molecules,

which makes full virtual screening of this library an extensive computational task. Also, this

experiment should serve as a proof-of-concept to justify custom synthesis of molecules from

AI-COSMOS library in future studies.

82

Experimental validation of hit candidates. Selected molecules (50 molecules for each target)

were purchased from Enamine REAL space which is available on-demand. However, not all

molecules were successfully synthesized. Specifically, 48/50, 26/50 and 42/50 molecules were

successfully synthesized for CSNK2A2, DYRK1b and MKNK2 targets correspondingly.

Next, the remaining compounds were sent to Eurofins Scientific (https://www.eurofins.com/)

for enzymatic assay screening for 3 selected kinases. The screening was performed in two steps.

First, we measured enzymatic activity at a single protein concentration of 10µM for all available

compounds. Second, for the hits that showed kinase residual enzymatic of < 50% in the single-

dose assay we further performed a 10-dose IC50 experiment with 3-fold serial dilution starting at

10µM to determine their inhibition potency for the corresponding kinase.

Overall, 7/48 compounds for CSNK2A2, 7/26 compounds for DYKR1b and 9/42 compounds

for MKNK2 showed activity in a single-dose experiment. The corresponding IC50s together with

the compounds’ structures, structures of the nearest neighbors (NN) from the training set and %

of residual activity in a single dose experiment are shown in Tables 4.2, 4.3 and 4.4.

83

Table 4.2: Data for CSNK2A2 kinase inhibition.

Catalog ID
%

residual
activity

Structure
Nearest

neighbor (NN)
from training

pIC50 pIC50
for NN

Z5499030000 23% 6.2 8.0

Z5499163489 33% 5.6 7.2

Z5499029829 10% 5.5 8.0

Z5499173970 43% 5.2 > 6.0

Z5499030009 42% 5.2 7.2

Z5499029808 44% 5.0 8.0

Z5499030299 �4% > 4.5 7.4

84

Table 4.3: Data for DYRK1b kinase inhibition.

Catalog ID
%

residual
activity

Structure
Nearest

neighbor (NN)
from training

pIC50 pIC50
for NN

Z5499163408 17% 6.0 > 6.0

Z5499163447 18% 5.9 6.7

Z5499163493 16% 5.6 6.7

Z5499163516 13% 5.6 7.8

Z5499163504 33% 5.5 8.4

Z5499163514 37% 5.4 7.6

Z5499163463 47% 5.3 6.7

85

Table 4.4: Data for MKNK2 kinase inhibition.

Catalog ID
%

residual
activity

Structure
Nearest

neighbor (NN)
from training

pIC50 pIC50
for NN

Z5499173970 2% 6.3 6.3

Z3006785955 5% 6.2 > 6.0

Z5499173817 8% 6.1 6.0

Z650011466 18% 5.9 7.0

Z5499173972 22% 5.6 > 6.0

Z5499173979 17% 5.4 > 6.0

Z646116896 49% 5.1 7.0

Z5499173808 34% 5.1 8.0

Z5499173966 42% 4.9 7.6

86

Chapter 5

OpenChem: a Deep Learning toolkit for

Computational Chemistry and Drug Design

5.1 Background

Deep learning is undergoing a rise in various fields of computational chemistry, including chemical

reaction design, drug discovery, and material science. Machine learning has been a widely used

technique in computational chemistry for the past 70 years, but mainly for building models for

small molecule activity/property prediction from their chemical descriptors. Known as Quantita-

tive Structure-Activity Relationship/Quantitative Structure-Property Relationship (QSAR/QSPR)

[122], machine learning approaches have been applied to solving activity or property classi-

fication and regression problems. Both types of problems can be solved with deep learning

models; however, until recently, chemical data was not big enough to train robust and reli-

able neural networks. Currently, computational chemistry is entering the age of big data. For

instance, a repository of chemical bioactivity data known as Pubchem [123] comprises more

than 100M chemical structures, and more than 250M experimentally measured bioactivities

(https://pubchemdocs.ncbi.nlm.nih.gov/statistics). Thus, the use of deep neural networks to an-

alyze big bioactivity data becomes increasingly justified. Moreover, there are many interesting

classical problems in computational chemistry that have never been tackled with machine learning

before the deep learning era. An excellent example of such a problem is the de-novo generation

87

of molecules with optimized properties. Previously, this problem was attacked with combinatorial

methods [124, 125]. However, such an approach is not efficient since chemical space is big (with

estimates up to 1060 molecules [62]), and an efficient sampling technique should be “smart”,

which makes deep learning models a good fit for this problem. Models for de-novo molecular

design require a lot of unlabeled data, which is available at much less cost than labeled data. For

example, the Enamine REAL database (https://enamine.net/hit-finding/compound-collections/real-

database) contains 3.7 billion real organic molecules and can be used to train a deep generative

neural network as to how to generate new realistic molecules. There have been various flavors

of deep generative models for molecules in multiple representations, with most common ones

being SMILES and molecular graphs. Examples of such model have been described in Chapter 2.

There are also multiple property optimization strategies in the literature, such as reinforcement

learning (described in Chapter 3), Bayesian optimization, and optimization in the latent space

[32, 82, 126, 127].

From a practical perspective, there are two main frameworks used for developing deep learning

neural networks, which are PyTorch [71] and Tensorflow [128]. We decided to use PyTorch since it

is more suitable for easy experimentation and fast prototyping. In other words, we wanted to build

a tool that would let scientists to quickly try an idea with as little engineering efforts as possible.

Here comes another pitfall for computational chemists, who, in many cases, are not computer

scientists or software engineers. Even with focused deep learning libraries such as PyTorch

and Tensorflow, building a deep learning network does require extensive software engineering

background. There exist several community-maintained libraries for computational chemistry,

such as RDKit [56], DeepChem (https://deepchem.io) and ATOM Modeling Pipeline [129] which

extends DeepChem. RDKit offers functionality for manipulating chemical objects such as atoms,

bonds, and molecules. While this functionality is extremely useful for data processing, it is not

designed for building machine learning models. Another library we mentioned, DeepChem, is

aimed at building deep neural networks for chemistry and built upon Tensorflow. Developing a

new model with DeepChem requires writing a lot of Tensorflow code; furthermore, DeepChem

does not enable modular design features such as encapsulation and reusability of standard deep

neural network blocks, such as encoders, decoders, embedding layers, etc.

88

Another critical question is the reproducibility of computational experiments. Frequently,

results reported in papers cannot be reproduced by independent researchers. This could happen

due to various factors, including the absence of standardized package environments, well-tracked

log files, and protocols for reproducing the results, to name a few.

To address the issues discussed above, we developed OpenChem, a deep learning library

for computational chemistry built upon PyTorch framework. OpenChem offers modular design,

where building blocks can be combined, ease of use by letting the users define a model with a

single configuration file, and advanced deep learning features such as built-in multi-GPU support.

In this paper, we introduce OpenChem design and present three case studies. All data and models

to reproduce these examples are available from https://github.com/Mariewelt/OpenChem.

Figure 5.1: OpenChem pipeline.

5.2 Methods

5.2.1 OpenChem design

OpenChem is a deep learning toolkit for computational chemistry and drug design with PyTorch

backend. The primary purpose of OpenChem is providing computational chemists with a tool for

easy experimentation with deep learning models, i.e., quick implementation of architectures, fast

89

training, debugging, result interpretation and visualization, etc. The main idea is implementing a

toolkit as a set of building blocks with a unified API that will be combined into a single custom

architecture by a user.

OpenChem introduces several model types – Feature2Label, Smiles2Label, Graph2Label,

SiameseModel, GenerativeRNN, MolecularRNN and MolecularRNN3D. These high-level model

types consist of lower level modules, such as embeddings, encoders and multi-layer perceptron.

Modules are built from layers, which could be PyTorch or custom layers. Examples of custom

layers implemented in OpenChem are graph convolutions, convolutions combined with batch

normalization and ReLU, and stack augmentation. Another OpenChem object type is a Dataset.

OpenChem Dataset inherits from PyTorch Dataset and additionally provides features for convert-

ing inputs into tensors for OpenChem Model. OpenChem has dataset for converting SMILES into

feature vectors, tokens and molecular graphs and for converting protein sequences into tokens.

Overall, OpenChem is implemented to offer users a modular design, i.e., blocks with the same

input and output formats can be used interchangeably by adjusting the settings in the configuration

file. For example, there are several different options for encoder block, such as RNN encoder,

CNN encoder, or Graph CNN encoder, that could be used to calculate representation vectors for

molecules. OpenChem allows choosing these options from the configuration file. OpenChem

also supports built-in multi GPU training and offers several features for logging and debugging.

Figure 5.2 summarizes the types of models, modules, and tasks that are currently implemented

in OpenChem. Users can train predictive models for classification, regression, and multitask

problems as well as develop generative models for producing novel molecules with optimized

properties. OpenChem can work both with SMILES strings and molecular graphs. Data layers

offer utilities for data preprocessing, such as converting SMILES strings to molecular graphs and

calculating standard structural features for such graphs.

Models in OpenChem are defined in the Python configuration file as a dictionary of parameters.

The dictionary must contain parameters that define how to run/train/evaluate a model as well

as parameters defining model architecture. OpenChem provides scripts for model training, and

it also natively supports multi-GPU training. After the training process is finished, OpenChem

saves model parameters as well as log files to a designated folder, so that the experiment can be

90

Figure 5.2: Main OpenChem objects.

reproduced later.

Configuration file . The configuration file must define a model, which should be any class

derived from OpenChemModel and dictionary model params, which specifies model hyperparam-

eters. Detailed list of standard training parameters is provided in [100].

Below we consider three use cases, which will illustrate how models are defined and used in

OpenChem.

5.3 Results

5.3.1 Case study 1: Graph Convolution Neural Network for predicting logP

Data and model description In this case study, we built a Graph Convolution Neural Network

(GraphCNN) [93] for predicting the n-octanol/water partition coefficient (logP) from molecular

graphs. This task is an example of a regression problem, as logP covers a range of continuous

values. We used five atomic properties as node attributes – atom type, valence, charge, hybridiza-

tion, and aromaticity. OpenChem provides a module for declaring an attribute, where a user can

specify attribute type (node or edge), attribute label (e.g., categorical), list all possible values

91

for categorical attributes, etc. The GraphCNN model also requires a user-defined function for

calculating node attributes. It is a Python function that receives the RDKit atom object as an input

and returns a dictionary of atomic attributes for the input atom.

First, we loaded the logP dataset (described below) and split it into train and test subsets.

OpenChem provides function read smiles property file, that accepts path to the file and indices

of columns to be read from the file as arguments and returns a list where each element is a

column from the file. In this example, we loaded logP labels.csv file, read columns number

1 and 2, split the data into training and test subsets and saved the subsets into new files using

save smiles property file utility from OpenChem. Next, we created graph data layers from the

saved files with train and test subsets. OpenChem provides GraphDataset class, which can convert

SMILES strings to molecular graphs and calculate node and edge attributes. GraphDataset also

accepts a user-defined dictionary of atomic (node) attributes, such as valency, hybridization,

aromaticity, etc., and functions for computing these attributes. Other parameters to GraphDataset

include a path to the text file with data, a list of columns that will be read from the file, and column

delimiter.

Our model consists of 5 layers of Graph Convolutions with the hidden size of 128, followed

by 2 layers of multilayer perceptron (MLP) with ReLU nonlinearity and hidden dimensionalities

of 128 and 1. We trained the model for 100 epochs with Adam 18 optimizer with initial learning

rate of 0.01, and MultiStepLR learning scheduler with step size 15, and gamma factor of 0.5,

meaning that the learning rate is decreased by half every 15 epochs of training starting from

the initial learning rate of 0.01. For external evaluation, we used R2 score. We also printed the

intermediate progress report on the training and evaluation metrics every 10 epochs and saved the

model checkpoint every 5 epochs. We specified all these parameters in the dictionary in Figure

5.3.

Results. We trained a GraphCNN for predicting the n-octanol/water partition coefficient (logP)

directly from the molecular graph. The modeling dataset of 14.5K molecules was obtained based

on the public version of the PHYSPROP database [130]. The dataset was curated according to

our well-established protocol [112] for structural standardization, the cleaning of salts, and the

92

Figure 5.3: OpenChem case study 1 config examples.

removal of mixtures, inorganics, and organometallics was performed using ChemAxon. In the case

of replicate compounds, InChI Keys were generated to resolve duplicates. In case of conflicting

93

property values, the entries were discarded. Using five-fold cross-validation, we obtained the

model accuracy expressed as R2 = 0.90 and root mean square error RMSE = 0.56. This is

significantly better than traditional QSPR models (R2 = 0.86 and RMSE = 0.78.) obtained on

the same dataset using physicochemical descriptors and E-state indices [131].

5.3.2 Case study 2: Tox21 Challenge

Data and model description. In this case study, we built a Recurrent Neural Network (RNN)

(see Fig 5.4). for multitask prediction of bioactivity for 12 receptors using data from the Tox21

challenge [132]. This model receives SMILES string 6 for a ligand as an input and returns a

vector of size 12, where each component is interpreted as a probability that the input ligand binds

to a corresponding receptor. In other words, multitask allows solving 12 independent binary

classification problems with a single model. Since any SMILES string is a sequence of characters,

we can use Recurrent Neural Networks to calculate a representation vector for a given molecule

[32]. Each symbol of the SMILES string st is processed sequentially. At each time step, the

model takes a single character st from the SMILES string, converts it to a numerical embedding

vector xt with a learnable embedding dictionary layer. Then xt is passed to the LSTM layer:

ht+1 = Wxxt + bx +Whht + bh,

where ht is the intermediate hidden state for the SMILES prefix of length t. When the whole

SMILES string is processed, hidden state hT from the final time step is used as a representation

vector for the next feed-forward layer, which outputs the vector of prediction for the input

SMILES.

Defining model in OpenChem. Tox21 dataset is available as a benchmark dataset, and it can

be loaded from the OpenChem GitHub with read smiles property file function. As Tox21 is a

multi-target dataset, some of the labels are not available and, therefore, left empty. To account

for dummy labels, we used MultitaskLoss from OpenChem, which is a binary cross-entropy loss,

averaged across multiple classes. MultitaskLoss also does not accumulate losses for dummy labels

to the final loss in backpropagation. We filled them with a dummy index, that was ignored during

94

Figure 5.4: Scheme of multitask SMILES2Label model. Input SMILES string is converted
to a matrix of embeddings by the dictionary of learnable embeddings. Next, the matrix of
embeddings is passed to the RNN encoder with LSTM layer. The RNN encoder converts the
matrix of embedding to a representation vector, which is used by the multilayer perceptron to
make predictions for the input SMILES.

training. We also extracted unique tokens from the whole dataset before splitting it into train and

test to avoid the situation when some of the tokens are not present in one of the pieces of the

dataset. After this step, we split data randomly into training and test and saved these subsets to

new files with OpenChem save smiles property file utility.

Next, we created the SMILES data layer from input files and added data augmentation by

SMILES enumeration [133] for training dataset. The idea behind it is to include non-canonical

notation for SMILES. Augmentation is enabled by setting the argument augment=True when

creating an object of class SmilesDataset. Since this task is multi-target, we needed to implement a

custom evaluation function for calculating classification accuracy separately for each task. As for

accuracy metrics, we used the AUC-ROC averaged across all classes. Next, we defined the model

architecture with Smiles2Label modality. This model consists of Embedding block, Recurrent

Encoder with 4 LSTM layers, and MLP. We also used dropout with a high probability to enable

regularization to avoid model overfitting. The configuration dictionary is shown in Figure 5.5.

Results. In this example, we trained a multitask model for predicting biological activity for 12

assays from the Tox21 challenge. The similarity (and dissimilarity) between the tasks is exploited

to enrich a model [134]. We obtained the mean AUC of 0.84 with the following per target AUC

values on the test set:

• NR-AR 0.85

• NR-AR-LBD 0.90

95

Figure 5.5: OpenChem case study 2 config examples.

• NR-AhR 0.87

• NR-Aromatase 0.84

• NR-ER 0.76

• NR-ER-LBD 0.82

• NR-PPAR-gamma 0.80

• SR-ARE 0.78

• SR-ATAD5 0.85

96

• SR-HSE 0.84

• SR-MMP 0.87

• SR-p53 0.86

These results are comparable to the results reported in the literature previously [132]. Our

single multitask model approached the accuracy of the winning model [135], which was a complex

ensemble combination of different models and descriptor schemes.

5.3.3 Case study 3: Generation of molecular graphs with maximized melt-

ing temperature

Data and model description. In the final case study, we built a MolecularRNN model described

in 2.3 for the generation of molecular graphs and further optimization of the specific property of

the generated molecules. This model generates molecular graphs in an auto-regressive manner,

i.e., atom by atom. At each time step, the model predicts the chemical type of a new atom and

the edge connections (including edge types) between the new atom and previously generated

ones. Here we only briefly mention the overall training pipeline. Please see the full example at

https://github.com/Mariewelt/OpenChem and detailed model description in 2.3.

Defining the model in OpenChem. The MolecularRNN model was pretrained on the curated

ChEMBL dataset [60] of 1.5M molecules. We performed optimization of model parameters to

maximize the melting temperature of the generated molecular graphs. The MolecularRNN model

had 4 GRU [47] layers with 256 hidden activations in both NodeRNN and EdgeRNN. The model

learns a dictionary of embeddings for 9 atoms types (C, N , O, F , P , S, Cl, Br, I) and three bond

types (single, double, and triple). We used the kekulized form of molecules according to RDKit

[56] which eliminated the need to specify aromatic bonds explicitly. We also defined structural

parameters of the molecular graphs, such as minimum and the maximum number of nodes and

valency constraints for each atom type.

The configuration dictionary is shown in Figure 5.6.

97

Results. Currently, common modeling frameworks do not allow simultaneous ML model

building, new compound generation, and property optimization. OpenChem library bridges this

gap. Briefly, to optimize melting temperature (Tmelt), we started with our pretrained model and

used the policy gradient algorithm. We trained a GraphCNN regression model to predict Tmelt.

The model has RMS error of 39.5 that is comparable to the state-of-the-art for the same dataset

of 54k molecules [94]. See section 2.3.1.2 complete technical details.

98

Figure 5.6: OpenChem case study 3 config examples.

99

100

Chapter 6

Conclusion

In this thesis, we have created and implemented multiple deep generative neural networks for

generation of molecules and a deep RL approach termed ReLeaSE for de novo design of novel

chemical compounds with desired properties.

We proposed a SMILES-based generative model for molecules with an augmented memory

stack. In a valid SMILES molecule, in addition to correct valence for all atoms, one must count

ring opening and closure, as well as bracket sequences with several bracket types. Therefore,

only memory-augmented neural networks such as Stack-RNN or Neural Turing Machines are the

appropriate choice for modeling these sequence dependencies. We demonstrated that the use of

augmented memory stack improves quality of the generated SMILES strings.

We then tried using a SMILES-based generative model in a ReLeaSE pipeline. As a proof

of principle, we tested our approach on three diverse types of end points: physical properties,

biological activity, and chemical substructure bias. The use of flexible reward function enables

different library optimization strategies where one can minimize, maximize, or impose a desired

range to a property of interest in the generated compound libraries. As a by-product of these

case studies, we have generated a data set of more than 1M novel compounds. Here, we have

focused on presenting the new methodology and its application for initial hit generation. However,

ReLeaSE could also be used for lead optimization, where a particular privileged scaffold is fixed

and only substituents are optimized. Our future studies will explore this direction.

We also proposed MolecularRNN, the model for generating realistic molecular graphs. Molec-

101

ularRNN learns diverse distributions through unsupervised pretraining, generating 100% valid

molecules in inference, while still receiving negative feedback from invalid ones during training.

Combined with policy gradient optimization, MolecularRNN solves the problem of generating

molecules with desired properties. We demonstrate that MolecularRNN pretrained on vast unla-

beled datasets learns diverse and realistic distributions over the space of molecular graphs. With

valency-based rejection sampling our model produces 100% valid molecules, and with structural

penalty we train the model to avoid making mistakes by providing the model a feedback from

negative samples. Optimized MolecularRNN outperforms other state-of-the-art methods on the

benchmark tasks.

Furthermore, we coupled MolecularRNN with the predictive model as a critic in a ReLeaSE

pipeline to optimize melting temperature, a property that cannot be calculated directly from

a molecular graph. In further studies we plan address problems of multi-objective property

optimization and completion of a molecular graph from a given scaffold.

Additionally, we extended MolecularRNN to not only generate 2D molecular graphs, but also

3D conformations. MolecularRNN3D version is capable of generating molecules in 3D space

from scratch, or just computing a conformation for a give 2D molecule. We demonstrated, that

generated conformations are realistic and close to the ones that can be obtained with a more

computationally extensive algorithms.

Furthemore, we showed how deep generative models for molecules coupled with property

optimization can be used to design novel hit molecules for kinase proteins. Herein, we proposed

several new improvements to the heuristics used to optimize properties of molecules created by

generative neural networks with reinforcement learning and sparse rewards. Sparse rewards are

commonly observed when maximizing the bioactivity of generated molecules for a specific target

protein. Thus, classic reinforcement learning algorithms such as policy gradient or Q-learning

are not sufficient for such tasks. In contrast, our proposed tweaks, i.e., fine-tuning with transfer

learning, experience replay, and real-time reward shaping, aim to extract informative feedback

from the sparse reward signal and keep a healthy balance between exploration and exploitation.

As a result of our study, we came up with a list of crucial points to consider when optimizing

generative models with reinforcement learning.

102

1. We recommend considering the sparsity of the rewards and the desired level of balance

between exploration and exploitation when selecting the right strategy for performing

optimization in each case. The real-time reward shaping can be helpful in a sparse rewards

scenario while unnecessary in cases when the reward feedback is sufficient (such as QED

or LogP optimization).

2. the fine-tuning by transfer learning achieves a high level of exploitation, especially when

used with known molecules. However, it will unlikely discover any chemotypes beyond the

ones used for training.

3. the experience replay requires a rich and diverse pool of experience trajectories. Otherwise,

this technique may also result in over-exploitation of replay examples. However, it can be a

powerful tool to explore the chemical space and deal with sparse rewards in tandem with a

policy gradient.

The optimized protocol was subject to a blind experimental validation. Out of fifteen tested

compounds that were predicted active, four were confirmed in an EGFR enzyme assay. Two out

of four compounds had nanomolar EGFR inhibition activity comparable to that of staurosporine.

The overall hit rate was 27%. Additionally, five compounds with the same scaffold as active

compounds but predicted as inactive were used as a negative control. All five compounds were

confirmed as inactive. The obtained hit rate is on par with traditional virtual screening projects

where molecule selection is guided by an expert medicinal chemist. However, in this work, we

show that a properly trained AI model can mimic medicinal chemists’ skills in the autonomous

generation of new chemical entities (NCEs) and selection of molecules for experimental validation.

This is a prime example of the transfer of the decision power from human experts to AI. Such

capabilities could be an important step toward true self-driving laboratories and serve as an

example of the synergy between machine and human intelligence. In summary, we do not think

there is a current universal recipe for optimizing the properties of generated molecules with

reinforcement learning. Each task is unique and requires thorough reward function engineering

and hyperparameter search. However, as we have demonstrated with the EGFR inhibitor design

example, with the right choice of the training protocol, generative models can be a powerful

technique for automated and inexpensive de novo molecular design that can be executed even

103

with limited computational and financial resources.

Additionally, we gave a lower bound for the size of chemical space using empirical estimation

with deep generative models. We generated a library of virtual molecules called AI-COSMOS

consisting of 10 billion drug-like molecules. Computational library design methods are often

criticized for their inability to control synthetic accessibility of de novo–generated molecules

(13). Computationally generated compounds are often quite complex; for instance, they may

include exotic substituents. In many cases, these compounds may require multistep custom

syntheses or could even be synthetically inaccessible with the current level of technology. In

the pharmaceutical industry, the ease of synthesis of a prospective hit molecule is of primary

concern as it strongly affects the cost of the manufacturing process required for the industrial-scale

production. In this experiment we used SAS [54] and IBM’s retrosynthetic tool RXN4Chemistry

[67] to assess the synthetic accessibility of the de-novo generated compounds and compare it to the

combinatorial libraries such as Enamine REAL. This analysis shows that synthetic accessibility

of the generated molecules does not differ much from the one of the aforementioned libraries.

We further used AI-COSMOS library to find novel hit molecules for 3 understudied kinases –

CSNK2A2, DYRK1b and MKNK2.

Finally, all the algorithms and methods developed in this thesis are presented in a form of

toolkit called OpenChem. Deep learning methods emerged as a powerful approach for a variety

of different tasks, including predictive, discriminative, and generative models. The OpenChem

library was created to enable high-performance implementations of deep learning algorithms for

drug discovery and molecular modeling applications. Built upon PyTorch framework, OpenChem

is optimized for execution on GPUs and large datasets. One could quickly train ML models

from datasets with hundreds of thousands or even millions of data points. OpenChem’s modular

API allows easy experimentation and fast model prototyping without substantial programming

effort. Calculations with OpenChem could be scaled in the Cloud and HPC clusters. It pro-

vides well-tracked log files and sharable protocols and models for reproducible results. We

described just three examples of practical tasks that can be solved with OpenChem. However,

the functionality of the proposed framework includes a wide variety of tasks, covering binary,

multiclass, multitask classification, regression, generative modeling, and property optimization.

104

In all three demonstrated examples, we quickly obtained a state-of-the-art performance of models

without extensive programming of each model. Our plans include extending the model list and

adding new tasks such as message passing neural networks and multi-property optimization with

reinforcement learning.

105

106

Bibliography

[1] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolu-

tional policy network for goal-directed molecular graph generation. In Advances in Neural

Information Processing Systems, pages 6410–6421, 2018. (document), 2.1, 2.3.2.1, 2.3,

3.1.1, 3.1.3.3, 3.2, 3.1.3.3

[2] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder

for molecular graph generation. arXiv preprint arXiv:1802.04364, 2018. (document), 2.1,

2.3.2.1, 2.3, 3.1.1, 3.1.3.3, 3.1.3.3, 3.2

[3] Jack W Scannell, Alex Blanckley, Helen Boldon, and Brian Warrington. Diagnosing the

decline in pharmaceutical r&d efficiency. Nature reviews Drug discovery, 11(3):191–200,

2012. 1.1

[4] Steven M Paul, Daniel S Mytelka, Christopher T Dunwiddie, Charles C Persinger,

Bernard H Munos, Stacy R Lindborg, and Aaron L Schacht. How to improve r&d produc-

tivity: the pharmaceutical industry’s grand challenge. Nature reviews Drug discovery, 9(3):

203–214, 2010. 1.1

[5] Jayme L Dahlin and Michael A Walters. How to triage pains-full research. Assay and drug

development technologies, 14(3):168–174, 2016. 1.1

[6] Stephen J Capuzzi, Eugene N Muratov, and Alexander Tropsha. Phantom pains: Problems

with the utility of alerts for p an-a ssay in terference compound s. Journal of chemical

information and modeling, 57(3):417–427, 2017. 1.1

[7] Vinicius M Alves, Eugene N Muratov, Stephen J Capuzzi, Regina Politi, Yen Low,

Rodolpho C Braga, Alexey V Zakharov, Alexander Sedykh, Elena Mokshyna, Sherif

107

Farag, et al. Alarms about structural alerts. Green Chemistry, 18(16):4348–4360, 2016. 1.1

[8] Yolanda Gil, Mark Greaves, James Hendler, and Haym Hirsh. Amplify scientific discovery

with artificial intelligence. Science, 346(6206):171–172, 2014. 1.1

[9] Chayakrit Krittanawong, HongJu Zhang, Zhen Wang, Mehmet Aydar, and Takeshi Kitai.

Artificial intelligence in precision cardiovascular medicine. Journal of the American

College of Cardiology, 69(21):2657–2664, 2017. 1.1

[10] Katie Chockley and Ezekiel Emanuel. The end of radiology? three threats to the future

practice of radiology. Journal of the American College of Radiology, 13(12):1415–1420,

2016. 1.1

[11] Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug

discovery with one-shot learning. ACS central science, 3(4):283–293, 2017. 1.1

[12] Erik Gawehn, Jan A Hiss, and Gisbert Schneider. Deep learning in drug discovery.

Molecular informatics, 35(1):3–14, 2016. 1.1

[13] Matthew Ragoza, Joshua Hochuli, Elisa Idrobo, Jocelyn Sunseri, and David Ryan Koes.

Protein–ligand scoring with convolutional neural networks. Journal of chemical information

and modeling, 57(4):942–957, 2017. 1.1

[14] Alexander Aliper, Sergey Plis, Artem Artemov, Alvaro Ulloa, Polina Mamoshina, and Alex

Zhavoronkov. Deep learning applications for predicting pharmacological properties of

drugs and drug repurposing using transcriptomic data. Molecular pharmaceutics, 13(7):

2524–2530, 2016. 1.1

[15] Marwin HS Segler and Mark P Waller. Modelling chemical reasoning to predict and invent

reactions. Chemistry–A European Journal, 23(25):6118–6128, 2017. 1.1

[16] Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural

network potential with dft accuracy at force field computational cost. Chemical science, 8

(4):3192–3203, 2017. 1.1, 2.4.1

[17] Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre

Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature

108

communications, 8(1):1–8, 2017. 1.1

[18] Volker Schnecke and Jonas Boström. Computational chemistry-driven decision making in

lead generation. Drug discovery today, 11(1-2):43–50, 2006. 1.1

[19] Ricardo Macarron. Critical review of the role of hts in drug discovery. Drug discovery

today, 7(11):277–279, 2006. 1.1

[20] Gisbert Schneider and Uli Fechner. Computer-based de novo design of drug-like molecules.

Nature Reviews Drug Discovery, 4(8):649, 2005. 1.1

[21] Harald Mauser and Wolfgang Guba. Recent developments in de novo design and scaffold

hopping. Current opinion in drug discovery & development, 11(3):365–374, 2008. 1.1

[22] Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan Aspuru-

Guzik. Optimizing distributions over molecular space. an objective-reinforced generative

adversarial network for inverse-design chemistry (organic). 2017. 1.1

[23] Pavel G Polishchuk, Timur I Madzhidov, and Alexandre Varnek. Estimation of the size

of drug-like chemical space based on gdb-17 data. Journal of computer-aided molecular

design, 27(8):675–679, 2013. 1.1, 2.5.1

[24] Jérémy Besnard, Gian Filippo Ruda, Vincent Setola, Keren Abecassis, Ramona M Ro-

driguiz, Xi-Ping Huang, Suzanne Norval, Maria F Sassano, Antony I Shin, Lauren A

Webster, et al. Automated design of ligands to polypharmacological profiles. Nature, 492

(7428):215–220, 2012. 1.1

[25] Daniel Reker, Petra Schneider, and Gisbert Schneider. Multi-objective active machine learn-

ing rapidly improves structure–activity models and reveals new protein–protein interaction

inhibitors. Chemical science, 7(6):3919–3927, 2016. 1.1

[26] Christopher Lipinski and Andrew Hopkins. Navigating chemical space for biology and

medicine. Nature, 432(7019):855–861, 2004. 1.1

[27] Nathan Brown, Ben McKay, François Gilardoni, and Johann Gasteiger. A graph-based

genetic algorithm and its application to the multiobjective evolution of median molecules.

Journal of chemical information and computer sciences, 44(3):1079–1087, 2004. 1.1

109

[28] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-

Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Tim-

othy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using

a data-driven continuous representation of molecules. ACS central science, 4(2):268–276,

2018. 1.1, 2.2.2.1, 3.1.1

[29] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating

focused molecule libraries for drug discovery with recurrent neural networks. ACS central

science, 4(1):120–131, 2017. 1.1, 3.1.1

[30] Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Van-

haelen, Kuzma Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads:

Applying deep adversarial autoencoders for new molecule development in oncology. Onco-

target, 8(7):10883, 2017. 1.1

[31] David Weininger. Smiles, a chemical language and information system. 1. introduction to

methodology and encoding rules. Journal of chemical information and computer sciences,

28(1):31–36, 1988. 2.1, 3.1.1, 3.1.2.1, 3.2.2

[32] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for

de novo drug design. Science advances, 4(7):eaap7885, 2018. 2.1, 3.1.1, 5.1, 5.3.2

[33] Francesca Grisoni, Michael Moret, Robin Lingwood, and Gisbert Schneider. Bidirectional

molecule generation with recurrent neural networks. Journal of chemical information and

modeling, 60(3):1175–1183, 2020. 2.1

[34] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular

de-novo design through deep reinforcement learning. Journal of cheminformatics, 9(1):48,

2017. 2.1, 2.2.2.1, 3.1.1

[35] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep

generative models of graphs. arXiv preprint arXiv:1803.03324, 2018. 2.1, 2.3.2.1

[36] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained

graph variational autoencoders for molecule design. In Advances in Neural Information

Processing Systems, pages 7795–7804, 2018. 2.1

110

[37] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with

conditional graph generative model. Journal of cheminformatics, 10(1):33, 2018. 2.1

[38] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec.

Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv preprint

arXiv:1802.08773, 2018. 2.1, 2.3.1, 2.3.1.1

[39] Fergus Imrie, Anthony R Bradley, Mihaela van der Schaar, and Charlotte M Deane. Deep

generative models for 3d linker design. Journal of chemical information and modeling, 60

(4):1983–1995, 2020. 2.1

[40] Miha Skalic, José Jiménez Luna, Davide Sabbadin, and Gianni De Fabritiis. Shape-

based generative modeling for de-novo drug design. Journal of chemical information and

modeling, 2019. 2.1

[41] Tomohide Masuda, Matthew Ragoza, and David Ryan Koes. Generating 3d molecular

structures conditional on a receptor binding site with deep generative models. arXiv

preprint arXiv:2010.14442, 2020. 2.1

[42] Gregor Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning

for molecular design guided by quantum mechanics. In International Conference on

Machine Learning, pages 8959–8969. PMLR, 2020. 2.1

[43] Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato.

Symmetry-Aware Actor-Critic for 3D Molecular Design. arXiv, nov 2020. URL http:

//arxiv.org/abs/2011.12747. 2.1

[44] Tarun Gogineni, Ziping Xu, Exequiel Punzalan, Runxuan Jiang, Joshua Kammeraad,

Ambuj Tewari, and Paul Zimmerman. TorsionNet: A Reinforcement Learning Approach

to Sequential Conformer Search. arXiv, jun 2020. URL http://arxiv.org/abs/

2006.07078. 2.1

[45] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Interspeech, volume 2, pages 1045–

1048. Makuhari, 2010. 2.2.1

[46] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

111

http://arxiv.org/abs/2011.12747
http://arxiv.org/abs/2011.12747
http://arxiv.org/abs/2006.07078
http://arxiv.org/abs/2006.07078

9(8):1735–1780, 1997. 2.2.1

[47] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014. 2.2.1, 2.5.3, 5.3.3

[48] Tristan Deleu and Joseph Dureau. Learning operations on a stack with neural turing

machines. arXiv preprint arXiv:1612.00827, 2016. 2.2.1

[49] John E Hopcroft and Jeffrey D Ullman. Formal languages and their relation to automata.

Addison-Wesley Longman Publishing Co., Inc., 1969. 2.2.1

[50] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learn-

ing to transduce with unbounded memory. Advances in neural information processing

systems, 28, 2015. 2.2.1

[51] A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light,

S. McGlinchey, D. Michalovich, B. Al-Lazikani, and J.P. Overington. Chembl: a large-scale

bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107,

2011. 2.2.2.1, 2.3.2.1

[52] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.

Zinc: a free tool to discover chemistry for biology. Journal of chemical information and

modeling, 52(7):1757–1768, 2012. 2.2.2.1

[53] Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frame-

works. Journal of medicinal chemistry, 39(15):2887–2893, 1996. 2.2.2.3, 3.2.3

[54] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-

like molecules based on molecular complexity and fragment contributions. Journal of

cheminformatics, 1(1):1–11, 2009. 2.2.2.3, 2.3.2, 2.5.2, 6

[55] Anh Nguyen, Jason Yosinski, and Jeff Clune. Understanding neural networks via feature

visualization: A survey. In Explainable AI: interpreting, explaining and visualizing deep

learning, pages 55–76. Springer, 2019. 2.2.2.4

[56] Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006. 2.3.1.2, 2.5.2, 3.2.3, 5.1,

112

5.3.3

[57] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L

Hopkins. Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

2.3.2, 2.5.2, 3.1.1, 3.1.3.3

[58] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,

Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladin-

skiy, Mark Veselov, et al. Molecular sets (moses): A benchmarking platform for molecular

generation models. arXiv preprint arXiv:1811.12823, 2018. 2.3.2, 2.3.2.1

[59] John J Irwin and Brian K Shoichet. Zinc - a free database of commercially available

compounds for virtual screening. Journal of chemical information and modeling, 45(1):

177–182, 2005. 2.3.2.1

[60] David Mendez, Anna Gaulton, A Patrı́cia Bento, Jon Chambers, Marleen De Veij, Eloy

Félix, Marı́a Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka,

et al. Chembl: towards direct deposition of bioassay data. Nucleic acids research, 47(D1):

D930–D940, 2019. 2.4.2, 2.5.2, 2.5.2, 2.5.2, 3.1.1, 3.2.3, 4.1, 4.2.1, 4.2.1, 4.3.1, 5.3.3

[61] R Zubatyuk, JS Smith, BT Nebgen, S Tretiak Nature . . . , and undefined 2021. Teaching

a neural network to attach and detach electrons from molecules. nature.com. URL

https://www.nature.com/articles/s41467-021-24904-0. 2.4.2

[62] R. S. Bohacek, C. McMartin, and W. C. Guida. The art and practice of structure-based

drug design: a molecular modeling perspective. Medicinal research reviews, 16(1):3–50,

1996. 2.5.1, 5.1

[63] Christopher A. Lipinski. Lead- and drug-like compounds: the rule-of-five revolution.

Drug Discovery Today: Technologies, 1(4):337–341, dec 2004. ISSN 17406749. doi:

10.1016/j.ddtec.2004.11.007. 2.5.1, 2.5.2

[64] Diversity Libraries - Enamine, . URL https://enamine.net/

compound-libraries/diversity-libraries. 2.5.2

[65] David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan

Tzur, Bijaya Gautam, and Murtaza Hassanali. DrugBank: a knowledgebase for drugs,

113

https://www.nature.com/articles/s41467-021-24904-0
https://enamine.net/compound-libraries/diversity-libraries
https://enamine.net/compound-libraries/diversity-libraries

drug actions and drug targets. Nucleic Acids Research, 36(Database issue):D901, jan

2008. ISSN 03051048. doi: 10.1093/NAR/GKM958. URL /pmc/articles/

PMC2238889//pmc/articles/PMC2238889/?report=abstracthttps:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2238889/. 2.5.2

[66] Scott A. Wildman and Gordon M. Crippen. Prediction of physicochemical parameters

by atomic contributions. Journal of Chemical Information and Computer Sciences, 1999.

ISSN 00952338. doi: 10.1021/ci990307l. 2.5.2

[67] IBM RXN for Chemistry, . URL https://rxn.res.ibm.com/rxn/sign-in.

2.5.2, 6

[68] Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter,

Costas Bekas, and Alpha A. Lee. Molecular Transformer: A Model for Uncertainty-

Calibrated Chemical Reaction Prediction. ACS Central Science, 5(9):1572–1583, sep 2019.

ISSN 23747951. doi: 10.1021/ACSCENTSCI.9B00576. URL https://pubs.acs.

org/doi/abs/10.1021/acscentsci.9b00576. 2.5.2

[69] Alexander N. Shivanyuk, Sergey V. Ryabukhin, Andrey V. Bogolyubsky, Dmytro M.

Mykytenko, Alexander A. Chupryna, William Heilman, Alexander N. Kostyuk, and An-

dreya Tolmachev. Enamine real database: Making chemical diversity real. Chimica Oggi,

2007. ISSN 0392839X. 2.5.2

[70] eMolecules. URL https://www.emolecules.com/. 2.5.2

[71] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas

Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,

high-performance deep learning library. In Advances in Neural Information Processing

Systems, 2019. 2.5.3, 5.1

[72] rxn4chemistry/rxn4chemistry: Python wrapper for the IBM RXN for Chemistry API, .

URL https://github.com/rxn4chemistry/rxn4chemistry. 2.5.3

[73] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using

114

https://rxn.res.ibm.com/rxn/sign-in
https://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00576
https://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00576
https://www.emolecules.com/
https://github.com/rxn4chemistry/rxn4chemistry

machine learning: Generative models for matter engineering. Science, 361(6400):360–365,

2018. 3.1.1

[74] Petra Schneider, W Patrick Walters, Alleyn T Plowright, Norman Sieroka, Jennifer List-

garten, Robert A Goodnow, Jasmin Fisher, Johanna M Jansen, José S Duca, Thomas S

Rush, et al. Rethinking drug design in the artificial intelligence era. Nature Reviews Drug

Discovery, 19(5):353–364, 2020. 3.1.1

[75] Michael Moret, Lukas Friedrich, Francesca Grisoni, Daniel Merk, and Gisbert Schneider.

Generative molecular design in low data regimes. Nature Machine Intelligence, 2(3):

171–180, 2020. 3.1.1

[76] José Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. Drug discovery with

explainable artificial intelligence. Nature Machine Intelligence, 2(10):573–584, 2020. 3.1.1

[77] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecular-

rnn: Generating realistic molecular graphs with optimized properties. arXiv preprint

arXiv:1905.13372, 2019. 3.1.1

[78] Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist,

Hongming Chen, and Esben Jannik Bjerrum. Practical notes on building molecular graph

generative models. Applied AI Letters, 1(2), 2020. 3.1.1

[79] N De Cao and T Kipf. Molgan: An implicit generative model for small molecular graphs,

2018. arXiv preprint arXiv:1805.11973. 3.1.1

[80] Jaechang Lim, Sang-Yeon Hwang, Seokhyun Moon, Seungsu Kim, and Woo Youn Kim.

Scaffold-based molecular design with a graph generative model. Chemical science, 11(4):

1153–1164, 2020. 3.1.1

[81] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha

Farias, and Alán Aspuru-Guzik. Objective-reinforced generative adversarial networks

(organ) for sequence generation models. arXiv preprint arXiv:1705.10843, 2017. 3.1.1, 3.2

[82] Evgeny Putin, Arip Asadulaev, Quentin Vanhaelen, Yan Ivanenkov, Anastasia V Aladin-

skaya, Alex Aliper, and Alex Zhavoronkov. Adversarial threshold neural computer for

molecular de novo design. Molecular pharmaceutics, 15(10):4386–4397, 2018. 3.1.1, 5.1

115

[83] Thomas Blaschke, Ola Engkvist, Jürgen Bajorath, and Hongming Chen. Memory-assisted

reinforcement learning for diverse molecular de novo design. Journal of cheminformatics,

12(1):1–17, 2020. 3.1.1

[84] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation

using interpretable substructures. In International conference on machine learning, pages

4849–4859. PMLR, 2020. 3.1.1

[85] Jannis Born, Matteo Manica, Joris Cadow, Greta Markert, Nil Adell Mill, Modestas

Filipavicius, Nikita Janakarajan, Antonio Cardinale, Teodoro Laino, and Marı́a Rodrı́guez

Martı́nez. Data-driven molecular design for discovery and synthesis of novel ligands: a

case study on sars-cov-2. Machine Learning: Science and Technology, 2(2):025024, 2021.

3.1.1

[86] Alex Zhavoronkov, Yan A Ivanenkov, Alex Aliper, Mark S Veselov, Vladimir A Aladinskiy,

Anastasiya V Aladinskaya, Victor A Terentiev, Daniil A Polykovskiy, Maksim D Kuznetsov,

Arip Asadulaev, et al. Deep learning enables rapid identification of potent ddr1 kinase

inhibitors. Nature biotechnology, 37(9):1038–1040, 2019. 3.1.1, 4.2.3.1

[87] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol:

benchmarking models for de novo molecular design. Journal of chemical information and

modeling, 59(3):1096–1108, 2019. 3.1.1

[88] R. Williams. A class of gradient-estimation algorithms for reinforcement learning in neural

networks. In International Conference on Neural Networks, 1987. 3.1.2.2, 3.2.2

[89] Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney. Ex-

perimental and computational approaches to estimate solubility and permeability in drug

discovery and development settings. Advanced drug delivery reviews, 23(1-3):3–25, 1997.

3.1.3.1

[90] Robert Kralovics, Francesco Passamonti, Andreas S Buser, Soon-Siong Teo, Ralph Tiedt,

Jakob R Passweg, Andre Tichelli, Mario Cazzola, and Radek C Skoda. A gain-of-function

mutation of jak2 in myeloproliferative disorders. New England Journal of Medicine, 352

(17):1779–1790, 2005. 3.1.3.1

116

[91] Matthew E Welsch, Scott A Snyder, and Brent R Stockwell. Privileged scaffolds for library

design and drug discovery. Current opinion in chemical biology, 14(3):347–361, 2010.

3.1.3.1

[92] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of

machine learning research, 9(11), 2008. 3.1.3.2

[93] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016. 3.1.3.3, 5.3.1

[94] Y. Tetko, I.V. ans Sushko, S. Novotarskyi, L. Patiny, I. Kondratov, A.E. Petrenko,

L. Charochkina, and A.M. Asiri. How accurately can we predict the melting points of drug-

like compounds? Journal of chemical information and modeling, 54(12):D1100–D1107,

2014. 3.1.3.3, 5.3.3

[95] Artem Cherkasov, Eugene N Muratov, Denis Fourches, Alexandre Varnek, Igor I Baskin,

Mark Cronin, John Dearden, Paola Gramatica, Yvonne C Martin, Roberto Todeschini, et al.

Qsar modeling: where have you been? where are you going to? Journal of medicinal

chemistry, 57(12):4977–5010, 2014. 3.2.1

[96] Alexander Tropsha. Best practices for qsar model development, validation, and exploitation.

Molecular informatics, 29(6-7):476–488, 2010. 3.2.1

[97] Maja J Mataric. Reward functions for accelerated learning. In Machine learning proceed-

ings 1994, pages 181–189. Elsevier, 1994. 3.2.1

[98] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation

for reinforcement learning agents. In International conference on machine learning, pages

1515–1528. PMLR, 2018. 3.2.1, 3.2.2.1

[99] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:

Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019. 3.2.1

[100] Maria Korshunova, Boris Ginsburg, Alexander Tropsha, and Olexandr Isayev. Openchem:

A deep learning toolkit for computational chemistry and drug design. Journal of Chemical

Information and Modeling, 61(1):7–13, 2021. 3.2.2, 5.2.1

117

[101] Ronald J Williams and David Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural computation, 1(2):270–280, 1989. 3.2.2.1

[102] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning. nature, 518(7540):529–533,

2015. 3.2.2.1

[103] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971, 2015. 3.2.2.1

[104] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,

David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control

suite. arXiv preprint arXiv:1801.00690, 2018. 3.2.2.1

[105] Hoang Thanh-Tung and Truyen Tran. Catastrophic forgetting and mode collapse in gans.

In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–10. IEEE,

2020. 3.2.3

[106] Kinase Library - Enamine, . URL https://enamine.net/hit-finding/

focused-libraries/kinase-library. 3.2.3

[107] Cheryl H Arrowsmith, James E Audia, Christopher Austin, Jonathan Baell, Jonathan

Bennett, Julian Blagg, Chas Bountra, Paul E Brennan, Peter J Brown, Mark E Bunnage,

et al. The promise and peril of chemical probes. Nature chemical biology, 11(8):536–541,

2015. 4.1

[108] Robert M Garbaccio and Emma R Parmee. The impact of chemical probes in drug

discovery: a pharmaceutical industry perspective. Cell chemical biology, 23(1):10–17,

2016. 4.1

[109] Susan Klaeger, Stephanie Heinzlmeir, Mathias Wilhelm, Harald Polzer, Binje Vick, Paul-

Albert Koenig, Maria Reinecke, Benjamin Ruprecht, Svenja Petzoldt, Chen Meng, et al.

The target landscape of clinical kinase drugs. Science, 358(6367):eaan4368, 2017. 4.1

[110] Chemical Probes — SGC. URL https://www.thesgc.org/chemical-probes.

118

https://enamine.net/hit-finding/focused-libraries/kinase-library
https://enamine.net/hit-finding/focused-libraries/kinase-library
https://www.thesgc.org/chemical-probes

4.1

[111] Piya Lahiry, Ali Torkamani, Nicholas J Schork, and Robert A Hegele. Kinase mutations in

human disease: interpreting genotype–phenotype relationships. Nature Reviews Genetics,

11(1):60–74, 2010. 4.1

[112] Denis Fourches, Eugene Muratov, and Alexander Tropsha. Trust, but verify: on the

importance of chemical structure curation in cheminformatics and qsar modeling research.

Journal of chemical information and modeling, 50(7):1189, 2010. 4.2.1, 5.3.1

[113] Alexander J Bridges, Hairong Zhou, Donna R Cody, Gordon W Rewcastle, Amy

McMichael, HD Hollis Showalter, David W Fry, Alan J Kraker, and William A Denny. Ty-

rosine kinase inhibitors. 8. an unusually steep structure- activity relationship for analogues

of 4-(3-bromoanilino)-6, 7-dimethoxyquinazoline (pd 153035), a potent inhibitor of the

epidermal growth factor receptor. Journal of medicinal chemistry, 39(1):267–276, 1996.

4.2.1

[114] Carrow I Wells, Hassan Al-Ali, David M Andrews, Christopher RM Asquith, Alison D

Axtman, Ivan Dikic, Daniel Ebner, Peter Ettmayer, Christian Fischer, Mathias Frederik-

sen, et al. The kinase chemogenomic set (kcgs): An open science resource for kinase

vulnerability identification. International journal of molecular sciences, 22(2):566, 2021.

4.2.1

[115] Jin H Park, Yingting Liu, Mark A Lemmon, and Ravi Radhakrishnan. Erlotinib binds both

inactive and active conformations of the egfr tyrosine kinase domain. Biochemical Journal,

448(Pt 3):417, 2012. 4.2.1

[116] Jennifer Stamos, Mark X Sliwkowski, and Charles Eigenbrot. Structure of the epidermal

growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline

inhibitor. Journal of Biological Chemistry, 277(48):46265–46272, 2002. 4.2.1

[117] Daniel Merk, Francesca Grisoni, Lukas Friedrich, and Gisbert Schneider. Tuning arti-

ficial intelligence on the de novo design of natural-product-inspired retinoid x receptor

modulators. Communications Chemistry, 1(1):1–9, 2018. 4.2.3.1

[118] Oleksandr O Grygorenko, Dmytro S Radchenko, Igor Dziuba, Alexander Chuprina,

119

Kateryna E Gubina, and Yurii S Moroz. Generating multibillion chemical space of readily

accessible screening compounds. Iscience, 23(11):101681, 2020. 4.2.3.1

[119] XGBoost Documentation — xgboost 1.5.2 documentation. URL https://xgboost.

readthedocs.io/en/stable/. 4.3.1

[120] Hyperopt Documentation. URL http://hyperopt.github.io/hyperopt/.

4.3.1

[121] Products • BioSolveIT. URL https://www.biosolveit.de/products/

#FTrees. 4.3.1

[122] Eugene N. Muratov, Jürgen Bajorath, Robert P. Sheridan, Igor V. Tetko, Dmitry Fil-

imonov, Vladimir Poroikov, Tudor I. Oprea, Igor I. Baskin, Alexandre Varnek, Adrian

Roitberg, Olexandr Isayev, Stefano Curtalolo, Denis Fourches, Yoram Cohen, Alan Aspuru-

Guzik, David A. Winkler, Dimitris Agrafiotis, Artem Cherkasov, and Alexander Trop-

sha. QSAR without borders. Chemical Society reviews, 2020. ISSN 14604744. doi:

10.1039/d0cs00098a. 5.1

[123] Yanli Wang, Stephen H Bryant, Tiejun Cheng, Jiyao Wang, Asta Gindulyte, Benjamin A

Shoemaker, Paul A Thiessen, Siqian He, and Jian Zhang. Pubchem bioassay: 2017 update.

Nucleic acids research, 45(D1):D955–D963, 2017. 5.1

[124] Sung Jin Cho, Weifan Zheng, and Alexander Tropsha. Rational combinatorial library design.

2. rational design of targeted combinatorial peptide libraries using chemical similarity probe

and the inverse qsar approaches. Journal of Chemical Information and Computer Sciences,

38(2):259–268, 1998. 5.1

[125] Valerie J Gillet, Wael Khatib, Peter Willett, Peter J Fleming, and Darren VS Green.

Combinatorial library design using a multiobjective genetic algorithm. Journal of chemical

information and computer sciences, 42(2):375–385, 2002. 5.1

[126] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization

of molecules via deep reinforcement learning. Scientific reports, 9(1):1–10, 2019. 5.1

[127] Hisaki Ikebata, Kenta Hongo, Tetsu Isomura, Ryo Maezono, and Ryo Yoshida. Bayesian

molecular design with a chemical language model. Journal of computer-aided molecular

120

https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
http://hyperopt.github.io/hyperopt/

design, 31(4):379–391, 2017. 5.1

[128] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}:

A system for {Large-Scale} machine learning. In 12th USENIX symposium on operating

systems design and implementation (OSDI 16), pages 265–283, 2016. 5.1

[129] Amanda J Minnich, Kevin McLoughlin, Margaret Tse, Jason Deng, Andrew Weber, Neha

Murad, Benjamin D Madej, Bharath Ramsundar, Tom Rush, Stacie Calad-Thomson, et al.

Ampl: a data-driven modeling pipeline for drug discovery. Journal of chemical information

and modeling, 60(4):1955–1968, 2020. 5.1

[130] J A Beauman and P H Howard. Physprop database. Syracuse Research, Syracuse, NY, USA,

1995. 5.3.1

[131] Igor V Tetko, Vsevolod Yu Tanchuk, and Alessandro EP Villa. Prediction of n-octanol/water

partition coefficients from physprop database using artificial neural networks and e-state

indices. Journal of chemical information and computer sciences, 41(5):1407–1421, 2001.

5.3.1

[132] Stephen J Capuzzi, Regina Politi, Olexandr Isayev, Sherif Farag, and Alexander Tropsha.

Qsar modeling of tox21 challenge stress response and nuclear receptor signaling toxicity

assays. Frontiers in Environmental Science, 4:3, 2016. 5.3.2, 5.3.2

[133] Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network

modeling of molecules. arXiv preprint arXiv:1703.07076, 2017. 5.3.2

[134] Rich Caruana. Multitask Learning. Machine Learning, 1997. ISSN 08856125. doi:

10.1023/A:1007379606734. 5.3.2

[135] Thomas Unterthiner, Andreas Mayr, Günter Klambauer, and Sepp Hochreiter. Toxicity

prediction using deep learning. arXiv preprint arXiv:1503.01445, 2015. 5.3.2

121

	1 Introduction
	1.1 Significance

	2 Deep generative models for molecules
	2.1 Background
	2.2 1D SMILES-based generative models
	2.2.1 Methods
	2.2.1.1 Stack-augmented recurrent neural network

	2.2.2 Results
	2.2.2.1 Generation of chemicals with novel structures
	2.2.2.2 Ablation study for augmented memory stack
	2.2.2.3 Novelty and synthetic accessibility of the generated molecules
	2.2.2.4 Model analysis

	2.3 2D graph-based generative models
	2.3.1 Methods
	2.3.1.1 Background: GraphRNN model
	2.3.1.2 MolecularRNN
	2.3.1.3 Valency-based rejection sampling
	2.3.1.4 Structural penalty

	2.3.2 Results
	2.3.2.1 Unsupervised likelihood training

	2.4 3D graph-based generative models
	2.4.1 Methods
	2.4.2 Results

	2.5 Empirical estimation of size of bioactive chemical space with generative models
	2.5.1 Introduction
	2.5.2 Results
	2.5.3 Methods

	3 Optimizing properties of generated molecules
	3.1 Reinforcement learning for property optimization
	3.1.1 Introduction
	3.1.2 Methods
	3.1.2.1 Reinforcement learning formulation for SMILES strings
	3.1.2.2 Reinforcement learning formulation for molecular graphs
	3.1.2.3 Structural penalty for MolecularRNN

	3.1.3 Results
	3.1.3.1 Generation of property value biased libraries with the RL system and SMILES-based generative model
	3.1.3.2 Visualization of new chemical libraries
	3.1.3.3 Property optimization with reinforcement learning and MolecularRNN

	3.2 Heuristics for improving property optimization
	3.2.1 Introduction
	3.2.2 Methods
	3.2.2.1 Exploration and exploitation trade-off.

	3.2.3 Results

	4 Applications of deep generative models for design of novel kinase inhibitors
	4.1 Background
	4.2 EGFR case-study
	4.2.1 Methods
	4.2.2 Results
	4.2.3 Generation and selection of hit compounds.
	4.2.3.1 Experimental Validation.

	4.3 CSNK2A2, DYRK1B, MKNK2 case study
	4.3.1 Virtual screening of AI-COSMOS library with ML models

	5 OpenChem: a Deep Learning toolkit for Computational Chemistry and Drug Design
	5.1 Background
	5.2 Methods
	5.2.1 OpenChem design

	5.3 Results
	5.3.1 Case study 1: Graph Convolution Neural Network for predicting logP
	5.3.2 Case study 2: Tox21 Challenge
	5.3.3 Case study 3: Generation of molecular graphs with maximized melting temperature

	6 Conclusion
	Bibliography

