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Abstract

This thesis centers on the topic of how to automatically combine multiple

heuristics. For most computationally challenging problems, there exist multiple

heuristics, and it is generally the case that any such heuristic exploits only a

limited number of aspects among all the possible problem characteristics that

we can think of, and by definition, is not infallible. Thus, if the situation en-

countered does not align well with the nature of the employed heuristic, the

algorithm can progress very slowly or get trapped in a bad local optimum. In

order to compensate for this, researchers have been investigating and experi-

menting with the idea of combining multiple heuristics. The development of

this idea is also motivated by the fact that we have progressed to a point at

which we started to consider more complex problems that have subproblems

or facets similar to simpler and more-studied problems. In this case, it is very

natural to attempt to reuse the heuristics that we developed for those more-

studied problem domains. In this study, we intend to build on this approach of

combining multiple heuristics. At the broadest level, we would like to explore

possible ways to synthesize effective search processes for solving combinatorial

optimization problems. The specific strategies we consider will be based on

using existing heuristics as algorithmic components and combining them in an

automatic fashion. Furthermore, this research will have an emphasis on creat-

ing and utilizing collaborations among heuristics as an underlying means. This

leads to several research questions such as how to set up an environment so

that collaborations among heuristics can emerge, how do we reuse the collab-

orated efforts, and how do we adjust the search process so that the benefit of

collaboration can be amplified.

In this thesis, we develop two types of integration architectures, each of

which is specific to a broad class of heuristics. The first part of this thesis

focuses on studying possible ways of combining neighborhood-based heuristics,

which operate based on the idea of iteratively searching for improvements in

the neighborhood of the current solutions. We will first present a basic archi-

tecture that we use as a foundation for enabling cooperation among multiple



neighborhood-based heuristics. The fundamental idea of this architecture is to

chain multiple heuristics in a pipelined fashion so that we can utilize the in-

teraction between heuristics. Based on that, we will proceed to examine some

simple learning mechanisms that adjust the behavior of the search algorithm

based on the collected data. Finally, we will explore how to learn more ex-

plicit collaboration patterns among the neighborhood-based heuristics, and we

will evaluate the benefit of using these learned patterns in a more rigorous

cross-validation assessment.

The second part of this thesis looks at how to combine multiple sampling-

based heuristics, which compose a solution by sampling a probabilistic model

that encodes the structures of potentially good candidate solutions. We will

propose a method that uses a linear interpolation to combine multiple sampling-

based heuristics. The weights associated with the participating heuristics are

estimated automatically based on observed data and dynamically changed from

iteration to iteration. Finally, by analyzing this approach, we will further distill

a generalized framework for combining sampling-based heuristics.
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Chapter 1

Introduction

Many computational problems that emerge from the real-world situations are NP-hard,

and thus unlikely to admit efficient solving procedures from a worst-case point of view.

Although these problems are widely believed to be intractable in the worst case, it is

often possible to approach even very large instances of such problems with well-crafted

heuristics. The artificial intelligence (AI) and operation research (OR) communities have

achieved great success in designing and deploying heuristics. Many approaches in AI and

OR rely on heuristic methods, in part or in whole, to achieve good performance.

Even though heuristic approaches typically do not have a worst-case guarantee, the

resulting algorithms can nevertheless be very effective. This is because the design of these

heuristics generally takes into account the particular structures of the problem domain, or

special characteristics of the group of problem instances that will actually be encountered

in the application.

It is also typical that for most computationally hard problems, there exist multiple

heuristics. And it is generally the case that any such heuristic exploits only a limited num-

ber of aspects among all possible problem characteristics, either for the concern of program

efficiency, or for the ease of implementation. As a result, if the situation encountered does

not align well with the nature of the employed heuristic, the algorithm can progress very

slowly or get trapped in a bad local optimum.

From this point of view, the effectiveness of a heuristic can be seen as being bounded

to some particular subsets of situations. And depending on the situation, it might be the

case that another heuristic, with more appropriate search bias, will progress more rapidly
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toward better solutions than the employed heuristic.

In order to compensate for such performance variations and make heuristic approaches

more robust, AI and OR research communities have been investigating and experimenting

with the idea of combining multiple heuristics (e.g. [14, 42, 96].) This idea can be traced

back to the 1960s when Fisher and Thompson proposed the idea of combining multiple

heuristic dispatching rules for production scheduling [37]. They showed that an unbiased

random combination of these dispatching rules can outperform any of them taken inde-

pendently. More recently, in the satisfiability domain, researchers have also taken this

concept and developed successful portfolio approaches (e.g., [79, 105]) that utilize multiple

preexisting algorithms.

The development of this concept is further motivated by the fact that the state of re-

search has progressed to a point at which more complex problems are being considered that

have facets similar to simpler and more-studied problems. In this case, it is very natural

to attempt to reuse the heuristics developed for those more-studied problem domains. For

example, we can see the line of research in routing domains moves from traveling salesman

problem (TSP) to TSP with time windows, and then to vehicle routing problems and orien-

teering problems (also called the prize-collecting TSP.) Thus, it can be very beneficial if we

are able to reuse some of the heuristics developed for TSP and for constrained scheduling.

Extending from this example, we can also see that many real-world problems are struc-

tured as several simpler subproblems coupled together. Thus, the research on how to

combine multiple preexisting heuristics from different domains has a potentially broad

range of applications.

1.1 Research Objectives

In this thesis, we intend to build on this view of combining multiple heuristics. At the

broadest level, we would like to explore possible ways to synthesize effective search processes

for solving combinatorial optimization problems. The specific strategies we consider will

be based on using existing heuristics as algorithmic components and combining them in an

automatic fashion. In this thesis, we place a particular focus on the automation aspect of

the techniques that we develop. Many previous studies have utilized the idea of combining
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multiple heuristics. However, many of them use fixed, manual specifications to create the

combinations. This can require significant trial-and-error and experimentation. For this

thesis, we emphasize more on learning-based and data-driven approaches, and we believe

that this perspective can potentially reduce the labor spent on figuring out the appropriate

way to combine heuristics for solving different types of problems.

Methodologically, this research will emphasize the creation and the use of collabora-

tions among heuristics as an underlying mechanism to assist problem solving. Generally

speaking, in order for a behavior to be deemed a collaboration, we think the following two

elements are essential:

1. Information passing or sharing must occur among the participating heuristics; and

2. Through this information passing or sharing, at least one of the participating heuris-

tics will have a higher chance of achieving the intended goal, relative to the prospects

that any of the constituent heuristics would have individually.

In short, we would like to create a synergy among heuristics so that better results can be

achieved.

The above intention leads to several research questions such as how to setup an environ-

ment so that patterns of collaborations can emerge, how do we recognize those patterns,

and once we have those patterns, how frequently should we use one pattern versus an-

other to compose the entire search process. In this research, we intend to look into those

questions and provide some possible approaches to address them.

In this thesis, we develop two types of integration architectures, each is specific to a

broad class of heuristics. In the first part of this thesis, we will look at possible ways

for combining neighborhood-based heuristics, which operate based on the idea of iteratively

searching for improvements in the neighborhood of the current solution. In the second part

of this thesis, we will study how to combine sampling-based heuristics, which compose a

solution by sampling a probabilistic model that encodes the structures of potentially good

candidate solutions. In both cases, we will develop methods that automatically combine

the participating heuristics. And, although not explored in this thesis, these two types of

heuristics can be further hybridized to create potentially more effective search procedures.
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1.2 Road Map

In this chapter, we described the motivation behind this research and pointed out the

objectives of this thesis. Our focus is on developing automated procedures for combining

multiple heuristics and on the cooperative aspect of utilizing multiple heuristics.

In the following chapter, we will begin with a review on the background and establish

some terminology that will be used throughout this thesis. We will also review some

research areas related to this thesis, and contrast them with our intended research.

After the chapter on background reviews, we will begin with a study on combining

multiple neighborhood-based heuristics. In Chapter 3, we first present a basic architecture

that we use as a foundation for enabling cooperation among multiple neighborhood-based

heuristics. The fundamental idea of this architecture is to chain multiple heuristics in a

pipelined fashion so that we can utilize the interaction between heuristics. Based on that,

in Chapter 4, we examine some simple learning mechanisms that adjust the behavior of

the search algorithm based on the collected data. In Chapter 5, we explore how to learn

more explicit collaboration patterns among the neighborhood-based heuristics. We will

also discuss a setting that has a distributional assumption over the problem instances, and

evaluate the learned policies with a more rigorous cross-validation assessment.

In Chapter 6, we switch to the topic of combining multiple sampling-based heuristics.

We develop a method that uses a linear interpolation to combine multiple sampling-based

heuristics. The weights associated with the participating heuristics are estimated automat-

ically based on observed data and dynamically changed from iteration to iteration. Based

on that, in Chapter 7, we further assess this dynamic adjustment approach by offering

comparisons with other alternatives.

Finally, Chapter 8 concludes this thesis by summarizing its contents and discussing

important directions for extensions.
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Chapter 2

Background

In this chapter, we will provide some review on the background of this research and de-

fine two classes of heuristics that we consider in this thesis: neighborhood-based heuristics

and sampling-based heuristics. We will first look at the neighborhood-based heuristics

and point out why this class of heuristics are convenient to work with in a collaborative

context. Following that, Section 2.3 and 2.4 review some research areas related to our

study of combining neighborhood-based heuristics. Next, we briefly describe the sampling-

based heuristics in Section 2.5, and characterize them as using handcrafted or estimated

probabilistic models. We also review a field related to sampling-based heuristics called

Estimation of Distribution Algorithms in Section 2.6. Finally, Section 2.7 summarizes this

review.

2.1 Combinatorial Optimization Problems

A deterministic optimization problem can be defined as

minimize f(x) s.t. x ∈ X ,X ⊆ S

where f is a real-valued objective function, S is the solution space (or search space) that

contains all the candidate solutions, and X is the set of feasible solutions of which x is a

member. Note that we can focus on minimization without loss of generality because the

maximization cases can be converted to minimization by negating the objective function,
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i.e., by minimizing f ′(x) = −f(x). If the objective is to minimize, f is often called a cost

function, and a solution x∗ ∈ X is an optimal one if

f(x∗) ≤ f(x),∀x ∈ X

that is, a feasible solution with the least cost.

If S is a finite or countably infinite set, a combinatorial optimization problem is defined.

If S = Rn, we call it a continuous optimization problem. In this thesis, we focus on

combinatorial optimization problems, though some of the techniques investigated here will

also be applicable to continuous optimization.

2.2 Neighborhood-based Heuristics

In the first part of this thesis, we will investigate the task of combining neighborhood-

based heuristics. This class of search heuristics has a common trait: Given a solution x,

the heuristic can modify a portion of x to produce another solution x′. To represent the

idea that a solution x′ can be obtained by changing a portion of a given solution x, we

introduce a neighboring relation on the search space. That is, x′ is a neighbor of x if x′ can

be obtained by modifying some parts of x. We use x x′ to denote that x′ is a neighboring

solution of x, and N (x) to represent the neighborhood of x, i.e., the set {x′|x x′}. Thus,

a mapping N : S → 2S encodes the set of modifications under consideration and is called

a neighborhood function or a neighborhood structure. In this way, we can characterize each

heuristic by the sets of modifications it considers, and represent this characterization in a

unified manner by the notion of neighborhood functions.

In general, we can specify a broad class of heuristics around the concept of neighborhood

functions. We call them neighborhood-based search heuristics. To differentiate each member

of this class, we identify three elements that together can be used to describe a heuristic

in this class:

1. the neighborhood structure it considers,

2. the transition rule it uses, and

3. the iterating condition of the process.
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To demonstrate this specification, consider a simple optimization procedure that starts

from some initial solution x and evaluates a predefined set of modifications that it can

perform on x, which corresponds to a neighborhood structure N . Of all the members

of N (x), it chooses the solution x′ with the best objective value (with the premise that

f(x′) < f(x)), then switches to consider x′ and the neighbors of x′. This process iterates

until there is no further improvement in the objective value.

Here, the neighborhood structure corresponds to the set of predefined modifications

that this heuristic considers to perform on a solution. The transition rule is to switch to

the best solution in the neighborhood if it is an improvement over the current solution.

And the iterating condition is to iterate until no improvement is possible.

Note that changing the employed neighborhood structure will lead to a different heuris-

tic. Thus, we can specify a range of heuristics by supplying different kinds of neighborhood

structures.

The above procedure is often called a best-improvement local search. A related pro-

cedure called first-improvement local search can be obtained by changing the transition

rule: We can put a priority on the members of N (x), and examine them sequentially based

on this priority. If the neighbor x′ being evaluated is better than x, then we switch to

x′ without further considering other solutions in N (x). This can be used for efficiency

purpose, especially when the neighborhood size is huge.

Note that since these two procedures only take transition to a better solution and will

iterate until no further improvement is possible, the resulting solution from the process

will be a local optimum with respect to the employed neighborhood structure N , that is,

a solution x+ with the property that f(x+) ≤ f(x),∀x ∈ N (x+).

To have a general sense of the variety of the heuristics in this class of neighborhood-

based search heuristics, we provide the following categorization to each of the above three

elements:

• The neighborhood structure can be either static or dynamically-defined.

• The transition rule can be either deterministic or stochastic.

• The iterating condition can be based on time, e.g., run it for 10 minutes, or based on

repetition, e.g., run for a single transition/10 transitions/until no further improve-

ment. . . etc.
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Static neighborhood structures correspond to predefined modifications to solutions, and

are usually memoryless. On the other hand, dynamically-defined neighborhood structures

take historic data about the search process into account. For example, a Tabu Search

[38, 39] keeps a record of recently visited solutions and avoids considering solutions similar

to those solutions.

A deterministic transition rule specifies transitions without any randomness, and this is

the case for most of the local searches. In contrast, a stochastic transition rule will choose

a neighbor based on some probability distribution, either specified explicitly or implicitly.

Iterating conditions admit a much looser classification. Here, we distinguish them by

whether they are based on time or based on repetition. However, we recognize that for

iterating condition, there are other possibilities. For example, it can be that the heuristic

will iterate until the improvement is sufficiently small. Another more sophisticated example

is using late acceptance strategy [12] as a termination condition.

With this categorization, we can further compare and contrast the heuristics in this

class. As we will see later, a lot of optimization procedures mentioned in this thesis are

(or have components of) this kind of heuristic. For example, a perturbation operation

in Iterated Local Search [64] (and see Section 2.4.2) can be described as using a static

neighborhood structure, adopting a stochastic transition, and it only takes one transition.

A Variable Neighborhood Descent [10, 46] (and see Section 2.4.3) can be described as using

a dynamic neighborhood structure, adopting a deterministic transition rule, and iterating

until no further improvements.

In summary, in this thesis, we will consider a range of heuristics, each of which can

be thought of abstractly as a process that imposes a topology on top of the search space

and performs a walk based on this topology. This unified view gives us a foundation to

architect mechanisms that can foster and promote collaboration among these heuristics.

2.2.1 Comparison to Branching-based Search Heuristics

As a comparison to the neighborhood-based heuristics, in this section, we briefly describe

another category of heuristics called branching-based heuristics, which are also popular in

AI and OR applications.

With a branching-based heuristic, the search process is structured as a tree. In this tree,
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a node n is a child of another node m if we can extend the partial solution corresponding to

m to get the partial solution corresponding to n, and a terminal node represents a complete

solution. This implies that there is some decomposition of the problem so that a complete

solution can be viewed as several “parts” assembled together. And each extension to the

tree corresponds to adding one more part to a partial solution, resulting in one more node

adding to the search tree.

Ideally, we would like to explore only a small portion of such a tree to get a high-

quality or even optimal solution. This can be done by making intelligent choices on which

branch should we follow. And the branching-based heuristics are techniques intended to

manifest such intelligent choices. Popular methods in this category, such as A*, branch-

and-bound, and beam search, implement priorities on which branch we should proceed to

explore and/or whether we should ignore the exploration of certain branches.

2.2.2 Heuristics in Collaborative Settings

In this section, we discuss some of the advantages of neighborhood-based heuristics in col-

laborative settings, and we will also make some comparisons to branching-based heuristics

to illustrate our perspectives.

First of all, the neighborhood-based paradigm provides a natural and unified interface

for heuristics to collaborate with each other. That is, by sending and receiving complete

solutions. By definition, a neighborhood-based heuristic can pick up a complete solution

and modify it to generate a new solution. No complicated or heuristic-specific internal

state needs to be sent and parsed by the receiving heuristic. Thus, it is straight-forward

to chain the efforts of different heuristics.

In contrast, there is no unified mechanism that allows one branching-based heuristic

to pick up the work done by other heuristics. The difficulty comes from the fact that a

branching-based heuristic often maintains an internal state that records the progress of

the search and uses it to direct future decisions. However, it is often nontrivial how to

initialize this state based on the work done by other heuristics. In order to do this, one

might have to consider different formulation to the decomposition, different ordering of the

decomposition, and different kinds of information evaluated by each heuristic. In general,

it is more difficult to devise such a mechanism.
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Another advantage of a neighborhood-based framework is that it copes well with dif-

ferent formulation of the same problem. Given that a problem can often be formulated

in different ways, it is possible to include switches from one formulation to another in the

optimization process. Each formulation should have a set of neighborhood-based heuristics

that is “natural” to that formulation, and they can work together the same way since a

complete solution found in one formulation can be easily transformed to its equivalent in

another formulation.

Of course, such a strategy will make a difference only when heuristics associated with

different formulations behave differently. For example, [77] presents a study on the Cir-

cle Packing Problem (CPP). It is shown there that a stationary point for a nonlinear

programming formulation of CPP in Cartesian coordinates is not necessarily a stationary

point in polar coordinates. They used this observation to devise a method that system-

atically alternates between different formulations. The results were comparable to the

best-known values, but it provides a substantial speedup to the alternative single formu-

lation approach. A similar idea was presented in [50] for solving graph coloring problems.

They also observed that switching between different formulations1 has an advantage over

single-formulation alternatives.

2.3 Algorithm Portfolios

Another field of research related to this thesis is the study of algorithm portfolios [42,

43]. This field also considers the question of how to utilize multiple heuristics2. Previous

works from this field noted that for most computationally hard problems, there exists

multiple solving approaches, and it is typical that none of them completely dominates all

others across multiple problem instances. Based on this observation, the goal of algorithm

portfolios is to use this kind of performance variation to create an ensemble such that the

weakness of one algorithm is covered by the other algorithms. In other words, the idea

is to accept that no single algorithm will offer the best performance on all instances and

instead, we gather a set of complementary algorithms and devise a strategy for choosing

1They referred to different formulations as different “search spaces” in [50].
2Note that algorithm portfolio generally does not restrict the component heuristics to be neighborhood-

based.
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among them.

As noted by Streeter and Smith [97], the problem of designing algorithm portfolios has

both a prediction aspect3 and a scheduling aspect. It is perhaps most straight-forward to

consider only the prediction aspect, in which we use a set of features of the target problem

instance to attempt to predict which algorithm will yield the best performance, then simply

run that algorithm exclusively. The prediction model is usually learned through some

historic data about the past performance of each algorithm. For example, Leyton-Brown

et al. [62] use a regression model to estimate how much time each algorithm needs for

solving a target problem instance, and then run the algorithm with the shortest estimated

duration. This kind of approaches has been successfully applied to satisfiability domains,

resulting in systems such as SATzilla [105] and ArgoSmArT [79]. However, its main

weakness is that there is no way to mitigate a poor selection, that is, the system cannot

recover if the chosen algorithm exhibits poor performance on the given problem instance.

Alternatively, we can also consider the scheduling aspect of the algorithm portfolio: we

can construct a schedule that specifies an ordering and time budget according to which we

run all or a subset of the algorithms. For stochastic algorithms, we can further consider

the questions of whether and when to restart the algorithms. For example, Gomes et al.

[44] demonstrated that we can boost the performance of a heuristic solving method by

randomizing the method’s decision making heuristics and running this randomized version

with an appropriate restart schedule.

The earliest works on this scheduling aspect measure the performance of a schedule in

terms of its competitive ratio (e.g., the time required to solve a given problem instance

using the schedule, divided by the time required by the optimal schedule for that instance).

Results include the universal restart schedule of Luby et al. [69] and the schedule of Kao

et al. [56] for allocating time among multiple deterministic algorithms subject to memory

constraints.

To further utilize the capability of this scheduling aspect, one needs to solve the problem

of how to compute schedules that perform well on average over a target distribution of

problem instances. In reality, this distribution is usually approximated by a collection of

problem instances, treated as training data. Independently, Petrik and Zilberstein [85]

3It was called machine learning aspect in [97]. However, we think the term “prediction” would be more
accurate.
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and Sayag et al. [92] addressed this problem for two classes of schedules: task-switching

schedules and resource-sharing schedules. For each of these two classes of schedules, the

problem of computing an optimal schedule is NP-hard. Streeter et al. [96] presented a

polynomial-time 4-approximation algorithm for computing task-switching schedules.

Although research in algorithm portfolio has looked at scenarios comprising multiple

heuristics, the setting they consider generally ignores the possibility of allowing component

heuristics to interact with each other. That is, they assume that each component heuristic

functions independently and there is no information passing or sharing among the com-

ponent heuristics. In contrast, this thesis has a special focus on the collaboration among

heuristics. We would like to look at scenarios in which there will be information passing

between heuristics and study how synergy among heuristics can emerge, be extracted, and

be utilized to improve the optimization process.

Another minor difference between the work in this thesis and algorithm portfolios is that

the research on algorithm portfolio has been mostly focused on solving decision problems,

such as satisfiability domains. In such cases, the performance of an algorithm is usually

evaluated by the amount of time it needs to find a valid solution. On the other hand,

in this thesis, we work primarily on combinatorial optimization problems, for which the

natural evaluation criterion is the quality of the resulting solution. Although these two

types of problems can usually be transformed from one to another, this transformation

can be unnatural or not intuitive, and might not match well with the heuristics under

consideration.

2.4 Extensions to Local Search

In Section 2.2, we mentioned a general and intuitive optimization strategy called local

search. A local search takes an initial solution x and descends to a nearby local optimum

x+ according to the provided neighborhood structure N . However, the resulting local

optimum is usually not a global minimum, and if we would like to improve upon this, we

will need to resort to some other means.

In the following sections, we will review some previous works that are relevant to this

proposal. One way to look at them is that these methods were created to address the
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Figure 2.1: The distribution of costs (objective values) of solutions drawn randomly from
the search space versus the distribution of costs obtained from running a local search with
randomly selected initial solutions.

problem of how to continue the search after descending to (and hence being trapped in) a

local optimum.

2.4.1 Random Restart

Perhaps the simplest approach to improve upon a cost found by local search is to run

it again with some other starting point. If we draw the initial solutions randomly and

independently from the search space, then every local optimum generated as the result of

the local search will also be independent. Thus, we can reduce the chance of having only

found a poor local optimum by repeating this “sampling” process.

To have a more “visual” understanding of the process, Figure 2.1 illustrates two dis-

tributions. Let the dashed line represent the distribution of objective values of solutions

drawn randomly from the search space. Now, if we pass each random draw through a

local search, the resulting distribution will normally look like the one depicted by the solid

line. Note that the average cost shifts to a lower value and the distribution is now more

concentrated. So even if we are in a situation where the local search output a poor local

optimum, as illustrated in Figure 2.2, the subsequent run of the local search will have

a high probability of finding a solution that surpass that local optimum because of this

concentration and shifting.
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Figure 2.2: The benefit of random restart: if the local search outputs a poor local optimum,
illustrated here as x+ with a cost value f(x+), then restarting the local search from another
initial point will have a large probability (shaded area) of finding an improvement over
f(x+).

Figure 2.3: An illustration of the progression of repeated random restarts. The probability
of finding yet another improvement diminishes rapidly.

As we repeat the process of this random restart, we will find increasingly better and

better solutions, which corresponds to gradually moving the cost bar to the left, as shown

in Figure 2.3. However, with each move, the probability of finding another improvement

diminishes accordingly, and the rate of this decrement is usually rather fast. Thus, it may

still be difficult for random restarts to find a solution that is significantly better than the

mean cost of the distribution.
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Furthermore, such a random restart approach might not scale well as the problem size

grows. This is because the tail of the cost distribution tends to collapse as we consider

larger and larger problem instances, i.e., the distribution becomes more concentrated.

For example, [93] shows empirically that local search algorithms on large graph bisection

problems lead to cost distributions that (i) have a mean that is a fixed percentage away

from the optimum cost; (ii) are increasingly peaked around the mean cost as the size of

the problem grows. This will make it very difficult for random restarts to find a solution

whose cost is even a little bit percentage-wise lower than the typical cost.

2.4.2 Iterated Local Search

This section provides a short review of Iterated Local Search (ILS) [28, 63, 64]. ILS is a

conceptually simple framework that has led to the development of many optimization pro-

cedures that exhibit the state-of-the-art performance for many combinatorial optimization

problems (e.g. [45], [74], [90], [98].)

An ILS relies on two component heuristics: a local search and a perturbation heuristic.

They are also called the descent operation and perturbation operation in the ILS framework.

The same as before, the local search of an ILS takes in a solution x and iteratively moves

to a better neighbor according to its neighborhood function NL. This process typically

iterates until no further improvement is possible. On the other hand, a perturbation

operation, equipped with its own neighborhood structure NP, takes as input a solution x

and randomly outputs a solution x′ from NP(x). This process usually doesn’t involve any

checking on the quality of x′ and is performed only once, i.e., no iteration is involved. That

is, a perturbation can be seen as an operation that stochastically changes a portion of x.

In short, instead of doing random restarts, an ILS tries to continue the search after

descending to a local optimum x+ by first perturbing x+ to get a slightly modified solution

y, and then performing a local search from y to get a new local optimum y+. If the new

local optimum y+ is better than x+, we switch to y+ and iterate from there. Otherwise,

we return to x+. This process is listed in Algorithm 1.

To see why we may want to use an ILS instead of a random restart, consider the

following assumption,

Common Parts Assumption: It is observed very often in combinatorial optimization
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Algorithm 1 Basic Iterated Local Search (Basic ILS)

Require: objective function f , neighborhood structures NL & NP

1: x← initial solution
2: x+ ← LocalSearch(x,NL)
3: repeat
4: y← Perturbation(x+,NP)
5: y+ ← LocalSearch(y,NL)
6: x+ ← y+ if f(y+) < f(x+)
7: until termination criteria are met

that, for a locally optimal solution x+, there exists a better solution that shares

common parts with x+.

This commonality may appear in the form that both solutions have the same assignment

to a subset of variables, or it can be in the form that both solutions exhibit some similar

structures. For example, in a scheduling problem, it can be that both solutions have the

same precedence ordering over some subset of jobs.

This implies that a local optimum has the potential to provide components that can be

used to construct an even better solution. However, it is usually unknown in advance which

components are such. Since these components cannot be discerned easily or automatically,

some trial-and-error or exploratory process is needed. The way ILS approaches this problem

is by performing a perturbation followed by a local search. Conceptually, we may think of

a perturbation as an operation that aims to change a portion of the solution which is not

part of these common structures. As a follow-up, the local search tries to improve upon

the perturbed solution and/or revert some part of the perturbation that did more harm

than good.

Another view on the ILS can be described by the cost distributions. Let the dashed line

in Figure 2.4 represent the cost distribution of solutions obtained from a local search with

starting points drawn randomly from the whole search space. Assume that the current

best solution is a local optimum x+, then ideally the cost distribution resulted from a

perturbation on x+ followed by the local search will be of the form depicted by the solid

line. Note that this second cost distribution has probability mass that is more concentrated

around the cost of x+. This translates to a higher probability of finding an improvement

(illustrated by the larger shaded area to the left of f(x+) under the solid line) compared to
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Algorithm 2 General Iterated Local Search (General ILS)

Require: objective function f , neighborhood structures NL & NP

1: x← initial solution
2: x+ ← LocalSearch(x,NL)
3: repeat
4: y← Perturbation(x+,NP)
5: y+ ← LocalSearch(y,NL)
6: x+ ← AcceptanceCriterion(x+,y+)
7: until termination criteria are met

using a random restart (area to the left of f(x+) under the dashed line.) This can explain

why a well-designed ILS may be less likely to stagnate than a random restart approach

especially when the search moves away from the mean cost of the local search distribution.

Note that the above describes the “ideal” situation for an ILS. In practice, depending

on the perturbation used, the probability mass may not distribute equally on both sides of

f(x+) or it can even degenerate to a single spike at at the location of f(x+) (this happens

in the case in which no matter what modification the perturbation has done to x+, the

following local search will systematically undo it.) In general, this view also relies the

assumption that small changes on the solution tends to correspond to small changes on the

objective value. Otherwise, there is no reason for the probability mass to be concentrated

around f(x+).

The above basic ILS can be further generalized. In practice, the conditional in line

6 of Algorithm 1 is often replaced by some other criterion for the purpose of greater

performance. This modification usually aims to explore a broader range of the search

space by accepting a y+ that is not necessarily better than x+. For example, acceptance

criteria similar to Simulated Annealing [32, 59] can be used. We can abstract this extension

into a function called AcceptanceCriterion. This generalized ILS is shown as Algorithm 2.

The performance of an ILS is crucially dependent on the interaction between its three

components: LocalSearch ( · ,NL), Perturbation( · ,NP), and AcceptanceCriterion( · , · ). For

example, Lourenço and Zwijnenburg [65, 66] used ILS to tackle the job shop scheduling

problem under the makespan criterion. They performed extensive experiments comparing

different methods for generating initial solutions, various local searches, different pertur-

bation heuristics and three acceptance criteria. They found that while the initial solution

had only a limited influence, the other components turned out to be very important, and
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Figure 2.4: Randomly restarting a local search vs. performing a perturbation followed
by a local search. The dashed line depicts the cost distribution of solutions obtained
from a local search with initial points drawn randomly from the search space. The solid
line corresponds to an ideal cost distribution of solutions obtained by first perturbing the
current solution x+ and then applying a local search on the perturbed version. Ideally,
with small perturbation, this distribution spreads narrowly around f(x+). Shaded areas
represent the probability of finding an improving solution over the current solution x+, i.e.
a solution with a lower cost than f(x+).

better results can be obtained by tuning the combination.

In general, in order for an ILS to efficiently explore alternative candidate solutions,

the perturbation should offer changes that cannot be systematically undone by the follow-

ing local search. Otherwise, it will fall back to the previous local optimum just visited.

However, if the perturbation is too aggressive, the ILS will behave more like a random

restart, and reduce the probability of finding a better solution. So the type and degree

of the modification performed by the Perturbation( · ,NP) is considered very important for

constructing an effective ILS.

Furthermore, choosing an appropriate perturbation heuristic is not an isolated decision.
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An intelligent choice of Perturbation( · ,NP) will depend on the choice of the accompanying

LocalSearch ( · ,NL). And similarly, the choice of AcceptanceCriterion( · , · ) will depend on

both Perturbation( · ,NP) and LocalSearch ( · ,NL). In [64], Lourenço et al. offered a loose

guideline for such decisions:

• The perturbation should not be easily undone by the local search; if the local search

has obvious shortcomings, a good perturbation should compensate for them.

• Large perturbations are only useful if the resulting new solutions can be accepted,

which occurs only if the acceptance criterion is not too biased toward better solutions.

Given that there exists such relations between these algorithmic components, and for

each component, there are usually quite a few options, a practitioner can spend a con-

siderable amount of effort on finding a combination in which the chosen options interact

effectively and generate positive behavior for the search. In this thesis, we consider auto-

mated procedures that can potentially reduce this inconvenience.

We are interested in developing automated methods that can extract patterns of ben-

eficial interactions between heuristics. Moreover, our interest is not limited to finding just

one such useful configuration of interaction, as in the case of ILS, but we would like to

consider a set of potentially useful interaction patterns and mechanisms which utilize them.

Furthermore, we think it will be potentially helpful to consider other types of com-

bination besides the perturbation—local search, as in the case of ILS. This can also be

generalized to a combination of more than two heuristics, as we shall see in the later

sections.

2.4.3 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [47, 48] refers to a collection of methods that share a

common paradigm of systematically switching between multiple neighborhood structures

during the search. This section briefly reviews two such procedures.

Basic VNS [76] has an algorithmic structure similar to an ILS: it also alternates between

Perturbation and LocalSearch . In some sense, it is a generalization of the Basic ILS scheme.

With Basic VNS, we augment the perturbation step so that it will now switch between

different neighborhood structures in a predefined order.

This augmentation is created in attempt to address the situation in which a local opti-
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Algorithm 3 Basic Variable Neighborhood Search (Basic VNS)

Require: objective function f , a neighborhood structure NL for local search, and a set of
neighborhood structures {N k

P}k=1...K for perturbation.
1: x← initial solution
2: x+ ← LocalSearch(x,NL)
3: k ← 1
4: repeat
5: y← Perturbation(x+,N k

P )
6: y+ ← LocalSearch(y,NL)
7: if f(y+) < f(x+) then
8: x+ ← y+

9: k ← 1
10: else
11: k ← k + 1
12: if k > K then k ← 1 end if
13: end if
14: until termination criteria are met

mum might trap a certain kind of perturbation operation, i.e., the perturbed solutions will

constantly fall back to the originating local optimum after the ensuing descent operation.

The principle behind the Basic VNS is that a local optimum may trap certain kinds of

perturbation operations but probably not all kinds of perturbations. Thus, by systemati-

cally switching from one neighborhood structure to another, we decrease the risk of being

trapped permanently. The Basic VNS is shown in Algorithm 3.

The idea of adopting multiple neighborhood structures can also be used in construct-

ing descent operations. The Variable Neighborhood Descent (VND) [10, 46] presents one

possibility to such an idea. Similar to the Basic VNS, a VND switches from one neighbor-

hood structure to another in a predefined order. If the local search operating on the kth

neighborhood structure does not find a better solution, it will advance to the (k + 1)-th

neighborhood structure. On the other hand, once it has found an improved solution, it

switches back to the first neighborhood structure. This process is illustrated in Algorithm 4.

The concept of the VND is based on the following two facts:

1. A local optimum with respect to one neighborhood structure is not necessarily a local

optimum with respect to another neighborhood structure.

2. A global optimum is a local optimum with respect to all possible neighborhood

structures.
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Note that a VND will stop at a solution that is a local optimum with respect to all K

neighborhood structures that we build into it, and hence we will be more likely to get a

global optimum than using just a single neighborhood structure.

Algorithm 4 VND

Require: objective function f , and a set of neighborhood structures {N k
L }k=1...K .

1: x← initial solution
2: while k ≤ K do
3: x+ ← LocalSearch(x,N k

L )
4: if f(x+) < f(x) then
5: x← x+

6: k ← 1
7: else
8: k ← k + 1
9: end if

10: end while

One view on the VND is that it can be regarded as an aggregated local search. This

view can be used to extend the Basic VNS. We can now replace the LocalSearch on line

6 of Algorithm 3 by a VND, taking a separate set of neighborhood structures {N j
L}j=1...J .

This General VNS framework has led to some of the most successful applications in the

VNS literature [2, 10, 18, 19, 46, 49, 88].

Compared to ILS (and also to the vanilla local search), VNS provides an extended idea

that we can perform systematic switches among a set of predefined neighborhood struc-

tures. This allows more heuristics, defined as perturbations and local searches operating

on different neighborhood structures, to interact within the search process. On one hand,

these interactions can take the form of Perturbation—LocalSearch similar to what we dis-

cussed before on the ILS. On the other hand, it can happen during the iterations within

a VND in which ideally, the employed neighborhood structures present complementary

coverage of to different descent possibilities.

However, similar to the problem of finding an appropriate pair of perturbation and

local search for an ILS, the construction of a VNS requires decisions on what neighborhood

structures to be included in the algorithm. It can still be a considerable amount of effort to

decide how to compose the set of neighborhood structures {N k
P} and/or {N j

L} for a VNS

if done manually.
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Furthermore, as we can see in the Basic VNS, the algorithm applies the set of pertur-

bation heuristics in a round-robin fashion. However, if some perturbation heuristics are

on average more effective than others, would it still be ideal to apply them with roughly

equal opportunity? It is obvious that for most of the cases, maintaining a diverse set of

heuristics is still preferable. But perhaps we can make the mechanism more flexible than a

round robin. Later in this thesis, we will see that we can approach this problem by putting

a distribution on the set of heuristics that we consider to apply, and choose which heuristic

to apply next by sampling this distribution. Thus instead of a rigid round robin, we now

have a mechanism that can encode our belief of how effective a heuristic (or a cooperation

pattern of heuristics) might be for the current situation.

Also note that although VNS considers a wider range of interactions between component

heuristics, these interactions still follow two fixed patterns:

1. the perturbation—local search interaction, and

2. the complementary coverages from different local search heuristics.

For this thesis, we would like to develop algorithms that generalize beyond this. We are

particularly interested in mechanisms that allow useful interactions to emerge flexibly, and

methods for mining and extracting the patterns of these interactions so that we can later

use them for improving the optimization procedure.

2.5 Sampling-based Heuristics

In the second part of this thesis, we will switch to investigating the topic of combining

multiple sampling-based heuristics. With this class of heuristics, the process of constructing

a solution is based on sampling some explicit probabilistic model rather than imposing

perturbations on an existing solution like the case of neighborhood-based heuristics. Such

probabilistic models can be hand-crafted or estimated from some data source.

Hand-crafted probabilistic models have been used in previous search frameworks such

as Bresina’s HBSS [9] and Cicirello and Smith’s VBSS [25]. In general, these frameworks

use probabilistic models that are backed by some heuristic function. Such a heuristic

function assigns a value to each possible candidate (partial) solution, which is then used

to calculate the probability mass to be placed on selecting a particular (partial) solution.
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The algorithm then iteratively samples the probabibilistic model to compose a solution.

As an example, in Chapter 6, we will develop our discussion using the Traveling Sales-

man Problem (TSP) as the demonstrative combinatorial optimization problem. A hand-

crafted probabilistic model for forming a solution to a TSP can be

P (wi|wi−1) =
d(wi−1, wi)

−10∑
v∈V d(wi−1, v)−10

where wi is a possible city to be placed as the next city in the current partial tour, wi−1 is

the city that we picked in the previous step, d(u, v) is the distance between city u and city

v, and V is the set of remaining cities to be picked. In this place, we use the distance as our

heuristic function and create a probabilistic model accordingly. This basically expresses

the simple heuristic that the shorter the link between two cities, the more likely that link

will be adopted in the solution.

In addition to handcrafting probabilistic models, another approach is to use models

estimated from some data source. This data source usually contains a group of good solu-

tions so that the resulting model can potentially learn or encode their particular features.

And sampling the learned model corresponds to a recombination of those features found in

different good solutions. A representative framework of this category is that of Estimation

of Distribution Algorithms, which we will briefly review in the next section.

2.6 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are a class of population-based stochastic

search techniques that search the solution space by learning and sampling probabilistic

models [60, 68, 83, 84]. To find an optimal solution, an EDA iteratively updates a popu-

lation of candidate solutions and adjusts its search direction based on promising solutions

found along the way. To perform the update, an EDA builds a probabilistic model based on

the promising solutions in the current population and then samples the constructed model

to generate new candidate solutions. These new solutions replace some existing solutions

in the current population according to some replacement strategy, which aims to increase

the average solution quality of the population.

The general procedure of an EDA is outlined in Algorithm 5. The initial population is
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Algorithm 5 General Procedure of an EDA

Initialize a population P with a set of solutions.
Evaluate the solutions in P.
t← 1.
while the stopping criterion is not met do

Mt ← build a probabilistic model based on promising solutions in P.
St ← sample Mt to generate new candidate solutions
Evaluate the solutions in St.
Incorporate St into P using some replacement strategy.
t← t+ 1.

end while

usually formed by sampling a uniform distribution over admissible solutions, but it could

also be generated by using a distribution biased by some prior knowledge. The algorithm

then iterates through steps of model building, sampling, evaluating and replacing solutions

until some termination criterion is met. This could be, for example, when a solution of

satisfactory quality has been found or when the algorithm has visited a maximum allowable

number of solutions.

Historically, EDAs have grown out of the work on Evolutionary Algorithms [33], and are

especially connected to Genetic Algorithms (GAs) [41, 52]. One may think of an EDA as

a GA with traditional variation operators, such as mutation and crossover, being replaced

by the process of building and sampling a probabilistic model. This replacement enables

an EDA to use techniques from machine learning and statistics to automatically discover

patterns exhibited in promising solutions. This information is summarized in the resulting

model. Through sampling the learned model, these patterns can be effectively recombined

to produce possibly better candidate solutions. Compared to information-blind crossover

operators, this process is more likely to reproduce promising partial solutions and reduce

the chance of disrupting good patterns.

In past studies, EDAs have been applied to a wide variety of academic and real-world

optimization problems [60, 84], achieving competitive results in many scenarios: bioin-

formatics [3], chemical applications [73, 91], power systems [22, 57], and environmental

resources [31, 82], to name a few. Most of these studies focus on domains in which a solu-

tion can be naturally represented as a fixed-length string with no ordering dependencies.

However, many combinatorial optimization problems do not fit naturally into this kind of
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encoding. In the later chapter on combining multiple sampling-based heuristics, we will

develop our method using sequencing and routing problems as the demonstrative problem

domain. For this kind of problem, a solution can be more naturally represented as an

ordering of items.

2.7 Summary

In this chapter, we have given introduction to the types of heuristics that we will use

as elementary components in the studies described in the following chapters. We also

reviewed some research areas related to this thesis and gave comparisons between them

and our intended studies. In the following chapter, we begin with a basic architecture that

serves as the foundation of our study on neighborhood-based heuristics. Then in Chapter 6,

we will switch to the topic of combining multiple sampling-based heuristics.
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Chapter 3

An Architecture for Combining

Neighborhood-based Heuristics

In this chapter, we present a basic architecture that will serve as the underlying foundation

for the first part of this thesis. It functions by passing the work of one heuristic to another

in the form of a complete solution. This complete solution will be used by the receiving

heuristic for initializing its own operation. As mentioned in the previous chapter, the

class of heuristics that we consider in the first part of this thesis are neighborhood-based

heuristics. One characteristic of the neighborhood-based heuristics is that they can pick

up a complete solution and modify it to generate a new solution. Thus, we can design a

high-level flow that chains the effort of multiple heuristics in a pipelined fashion. In this

way, we can create an environment that allows heuristics to collaborate with each other.

Another view on this idea is that we are essentially structuring the exploration of the

search space as a process that constructs many solution chains. Each solution chain is

formed by successively applying one of a set of heuristics (chosen by certain policy) to the

current solution to generate the next solution. The algorithmic description of this idea is

shown in Algorithm 6. In this algorithm, we assume that we are given a set of heuristics

H, a policy L for choosing the chain length, and a policy H for choosing among the given

heuristics. Every iteration starts with picking a number ` based on the policy L. This `

will bound the length of the next solution chain. The algorithm then goes on constructing

a chain of solutions by applying a sequence of heuristics (selected according to policy H)

successively, as illustrated in Figure 3.1. If any solution encountered during this process is
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Algorithm 6 A Basic Architecture for Heuristic Collaboration

Require: a set of heuristics H, a policy L for choosing lengths, and a policyH for choosing
heuristics.

1: x← initial solution.
2: while stopping criteria not met do
3: `← a length chosen according to L
4: x0 ← x
5: for i = 0 to (`− 1) do
6: hi+1 ← a heuristic chosen from H according to H.
7: xi+1 ← hi+1(xi)
8: if xi+1 is better than x then
9: break

10: end if
11: end for
12: if the best among x1,x2, ...,x` is better than x then
13: x← the best among x1,x2, ...,x`
14: end if
15: end while

better than the incumbent solution x, we break out of the inner loop and replace x with

the better solution. Otherwise, this process repeats. Note that since in most cases, we

have stochastic heuristics included in H, we can also think of this process as sampling a

solution chain.

For this research, we mainly consider the situation where the set of heuristics H is

predefined and is given to us from some external source. Thus, we can think of a problem

domain as a combination of an optimization problem and a set of heuristics designed for

that problem. Apparently, there are still two elements that we need to supply to make

Algorithm 6 functional: the policy L for choosing the chain lengths and the policy H for

choosing the heuristics. For this preliminary study, we will mainly focus on the policy L.

Specifically, we will center our discussion on a setting that makes two agnostic assumptions:

1. We assume that we do not have detailed knowledge about the problem domain being

solved, except that we have access to the objective function (treating it as a black-

box) and a set of predefined heuristics.

2. We assume that we have no information about the amount of time allocated for

running our algorithm.

We develop our discussion based on these two assumptions and will come back to the
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x0 x1

h1

x2

h2

· · · · · ·
h3

x`

h`

Check if xi is better than
incumbent solution x.

If it is, we terminate this chain at xi.

Figure 3.1: Sampling a solution chain. This process starts with a solution x0. Each
following step consists of selecting a heuristic hi+1 from the set of provided heuristics
H and applying hi+1 to the previous solution xi to get a new solution xi+1. If xi+1 is
better than the incumbent solution x, we terminate this process and replace x with xi+1.
Otherwise, we proceed until reaching the bound `. Since in most cases, we have stochastic
heuristics included in H, and hence the xi’s are generated stochastically, we can think of
this process as sampling a solution chain.

issue of designing H in the following chapters. For simplicity, the following discussion will

use a policy Hu that makes a uniformly random choice among the provided heuristics H

each time it is consulted. We should emphasize that this particular policy is for illustrative

purpose. The techniques presented in the following generalizes to arbitrary H. And in

the next chapter, we will start exploring mechanisms that automatically derive H policies

from data.

Conceptually, we can see that this architecture is an algorithmic template that we can

plug different policies into to make it behave differently. It also relates to a growing research

field called hyper-heuristics. In the following section, we will start by briefly reviewing the

field of hyper-heuristics and connecting our algorithm to this field.

3.1 Hyper-heuristics

The term “hyper-heuristics” [14, 16, 21] refers to a set of methods that aim at achieving

the following objective: given a set of heuristics (or building blocks that can be used to

construct heuristics), automatically produce an adequate combination that handles the

given problem. This framework has a two-layer structure: At the lower level, there is

a set of heuristics or building blocks for constructing heuristics, and the top level corre-
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sponds to a mechanism that utilizes the lower-level components in combination to solve a

given problem. The term “hyper-heuristics” was first introduced by Cowling et al. [26] as

“heuristics to choose heuristics.” Its definition has since been extended. Broadly speak-

ing, hyper-heuristic approaches can be roughly categorized into two classes: methods that

harness a pre-existing set of heuristics, and methods that generate new heuristics. In the

first category, the hyper-heuristics are equipped with a set of predefined low-level heuris-

tics, and the task is to decide which low-level heuristic to apply at a given point during

the optimization. The second category corresponds to methods that build new heuristics

from a set of components, usually via genetic programming (e.g. [11], [51], [58].) For our

purposes here, we focus on the connection to the first category.

Most of the methods from the first category follow an iterative procedure: Given

an initial solution (either generated randomly or heuristically), the hyper-heuristic loops

through the steps of (i) selecting a heuristic from the set of provided heuristics (usually

neighborhood-based heuristics), then (ii) applying the selected heuristic to the incumbent

solution to generate a new solution, and finally (iii) deciding whether the new solution

should be accepted as the new incumbent solution. This process iterates until the termi-

nation criteria are met.

Another dimension for classifying hyper-heuristics is based on the learning mechanisms

they employ. A common classification is to categorize them as online learning, offline

learning or no learning at all. An online learning hyper-heuristic adjusts itself based on

the feedback received during the search process and dynamically biases the selection prob-

abilities (e.g. [75], [72], [61]). Offline learning, in contrast, takes place before the actual

search starts (e.g. [71], [4]). While most of the recent hyper-heuristics employ some forms

of learning, in this chapter, we will focus on the no-learning cases because it simplifies our

discussion. Furthermore, as we will see in Section 3.4, a no-learning algorithm can still be

pretty competitive when comparing to more elaborated, learning-based hyper-heuristics.

Hyper-heuristics without a learning mechanism were among the first hyper-heuristics

to appear. In their initial paper, Cowling et al. [26] proposed a no-learning hyper-heuristic

called Simple Random which chooses a low-level heuristic uniformly randomly at each step.

The authors experimented with two acceptance strategies: All Moves (AM) and Only

Improving (OI). AM accepts new solutions regardless of their quality, while OI accepts
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only better solutions, and if the new solution is inferior than the incumbent, it is simply

discarded.

Now consider the algorithm that was previously presented as Algorithm 6. If we use

a simple policy Hu that selects a heuristic uniformly at random each time it is consulted,

then it can be seen as an extension to the Simple Random with OI. And instead of a single-

step heuristic application, in Algorithm 6 we consider the accumulated effect of applying

multiple heuristics. More specifically, we consider the exploration of solutions within a

chain of limited length. As described before, this solution chain is formed by successively

applying a randomly chosen heuristic to the previous solution to generate the next solution.

For this setup, the only unspecified element of the algorithm is how to make choices on

the bounding length `, and the algorithm can be viewed as a procedure which at each

iteration of the inner loop, samples a solution that is at most ` operations (i.e. heuristic

applications) away from the incumbent solution x. In the following, we will often use the

word “operation” to refer to the action of applying a heuristic.

In this chapter, we discuss policies for choosing `. One can imagine that this choice can

have a significant impact on the algorithm. For example, if the nearest improving solution

is k operations away, then choosing an ` < k will not yield any improvement. On the

other hand, if we choose an ` that is much larger than needed, we can waste a significant

amount of time exploring unpromising regions. Furthermore, proper choice of ` may vary

during the optimization process, possibly making rigid policies (e.g. always choose ` = 10)

inefficient or ineffective.

In the following section, we first define the scenario that we consider, with its two ag-

nostic assumptions. Based on that, Section 3.3 presents a strategy for choosing ` which has

an asymptotic guarantee. Following that, Section 3.4 shows the result of our preliminary

experiments. We offer some further discussion of the results in Section 3.5. And finally,

Section 3.6 summarizes this chapter.

3.2 An Agnostic Setting

To make our results as general as possible, we impose two kinds of agnostic requirements

to our discussions. This setup will allow us to derive a widely applicable policy for the
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L component, which we will then use as a foundation for further developing learning

mechanisms on the H component.

The first agnostic requirement concerns the amount of information that we have on

the problem domain. As mentioned before, we define the concept of a problem domain

as a combination of an optimization problem and a set of heuristics designed for that

problem. To promote generality, we will treat both of these as black-boxes. This setting

has been studied in previous hyper-heuristic research, often under the name of cross-domain

optimization (e.g. [4], [53], [15], [13].) The main goal of this line of research is to design

optimization methods that can operate on different problem instances and domains. The

two-layer structure of hyper-heuristics provides a logical separation between lower-level

domain-specific heuristics and a higher-level control policy, which makes it possible to

change the domain-specific components while retaining the higher-level policy. In this

way, a hyper-heuristic has the potential to be widely-applicable.

The second agnostic assumption that we make reflects the amount of computational

resource that we have for solving a given problem. Most previous research has assumed

that we are given a fixed amount of computing power for solving the given problem, and

this amount is known beforehand (e.g. the algorithm implementation will be run for 10

minutes on some specific machine.) However, we argue that this assumption essentially

corresponds to a preference for methods that are tuned to a specific amount of computing

power. It may very well be the case that a method that performs well with a particular

amount of computational resource will compare unfavorably if the resource is doubled

or halved. For example, [87] compared several hyper-heuristics and noted that the best

performing hyper-heuristics depended on the allotted CPU time. Furthermore, this tuning

can be specific to a particular problem domain, and might not be ideal if we change to

a different problem domain. In the following theoretical discussion on L, we consider the

situation in which we do not know beforehand the amount of time allocated for running

our algorithm. The algorithm has to function properly under the assumption that it does

not know when will it be terminated externally, hopefully yielding a satisfactory result

upon termination. In short, we would like the algorithm to have a good anytime profile1.

Consequently, under this condition, we would like our algorithm to find an improving

1This can be of important concern when the search and execution are tightly coupled (e.g. dynamic
vehicle routing problems.)

32



Algorithm 7 A Modified Version of Algorithm 6

Require: a policy L for choosing lengths
1: x← initial solution
2: while stopping criteria not met do
3: `← a length chosen according to L
4: if (x′ ← FindImprovement(x, `)) 6= null then
5: Replace x with x′

6: end if
7: end while

Procedure 8 Search by Sampling a Solution Chain

Require: a set of heuristics H and policy H for selecting heuristics.
1: procedure FindImprovement(x, `)
2: x0 ← x
3: for i = 0 to `− 1 do
4: hi+1 ← a heuristic chosen from H according to H
5: xi+1 ← hi+1(xi)
6: if xi+1 is better than x then
7: return xi+1

8: end if
9: end for

10: return null
11: end procedure

solution as soon and as often as possible. If we look at Algorithm 6 from this perspective,

the objective will be to find the next improvement using as few operations (heuristic ap-

plications) as possible, assuming each operation takes an equal amount of time2. However,

the situation is actually more involved. It relates to the probability that the inner loop

terminates with an improving solution, and also relates to the length of each inner loop

execution. This can be better understood by folding line 4 through 11 of Algorithm 6

into a procedure and rewriting it as Algorithm 7. Ideally, we would like a call to FindIm-

provement to have a high probability of returning a better solution (equivalently, having a

non-null return.) One way to increase this probability is to use a larger `. However, a larger

` also corresponds to a higher expected number of operations per call to FindImprovement

and on average, will take more time.

2Note that in reality, different heuristics take different amounts of time, but because they are selected
randomly and independently, we can take the expectation on the execution time and make this simplifi-
cation.
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Also note that this probability depends on the incumbent solution x. For example, for

a local optimum x, because there is no immediate neighbor that is better in quality3, using

` = 1 will have a zero probability of finding an improvement, while for other x, there will be

a non-zero probability for ` = 1. Furthermore, every time we change to a new incumbent

solution, this probability is likely also going to change, making techniques such as multi-

armed bandit procedures unsuitable, since they assumes a fixed reward distribution4.

3.3 Choosing Sampling Lengths

In this section, we discuss the policy for choosing the sampling lengths. As mentioned in

the previous section, we would like to have a policy L so that we can find an improving

solution as fast as possible. For this scenario, we can describe the task as follows: For each

new incumbent solution x, the policy L decides on an infinite sequence S = (`1, `2, `3, . . .)

which represents the sampling lengths for the subsequent iterations. And we call FindIm-

provment according to this sequence until it yields an improving solution. This process is

summarized as Algorithm 9.

Note that we can think of each of these infinite sequences as corresponding to a dif-

ferent strategy for exploring the search space. In the following, we will often use the term

“strategy” to refer to such an infinite sequence, i.e. a sequence (`1, `2, `3, . . .) where each

`j ∈ Z+ ∪ {∞}.

Now let YS(x) be the random variable representing the number of operations accu-

mulated from successive calls to FindImprovement under strategy S until it returns an

improvement over x. Our objective can be stated as to minimize the expected value of

YS(x) by choosing a good strategy S. In the following, we will first investigate the sit-

uation in which for any `, we have the knowledge of how probable it is that a call to

FindImprovement(x, `) will return an improvement, and describe an optimal strategy un-

der this condition. This will serve as the basis for further discussion on other strategies.

3Here, we assume that it is a local optimum with respect to all heuristics in the set H.
4Another reason that renders multi-armed bandit algorithms unsuitable is that the number of choices

for ` can be large or potentially unbounded, which corresponds to having a large number of arms (if not
infinite) and cannot be efficiently addressed by the conventional multi-armed bandit algorithms.

34



Algorithm 9 A Modified Version of Algorithm 7

1: x← initial solution
2: while stopping criteria not met do
3: Decide a strategy S = (`1, `2, `3, . . .)
4: for j = 1 to ∞ do
5: if (x′ ← FindImprovement(x, `j)) 6= null then
6: Replace x with x′

7: break
8: end if
9: end for

10: end while

3.3.1 Optimal Strategy when Success Probabilities are Known

We start with the assumption that if we know, for any `, the probability that a call to

FindImprovement(x, `) will successfully return an improving solution, then this informa-

tion will in theory enable us to construct an optimal strategy that achieves the minimal

E[YS(x)].

Theorem 1. Assume that we are given an incumbent solution x, and let q(`) be the

probability that FindImprovement(x, `) returns an improving solution. Then the fixed-

length strategy S`∗ = (`∗, `∗, `∗, . . .) where

`∗ = arg min
`<∞

1

q(`)

(
`−

∑
`′<`

q(`′)

)

is an optimal strategy for minimizing E[YS(x)].

Proof. The key is to recognize that FindImprovement(x, `) is a Las Vegas algorithm if

we set ` to ∞, i.e. whenever FindImprovement(x,∞) halts, it provides an improving

solution. However, the number of operations it executed is a random variable5. Let p(`)

be the probability that FindImprovement(x,∞) stops after applying exactly ` operations

and note that q(`) is the cumulative distribution function of p, we can prove the above

theorem by reducing it to Theorem 3 of [69].

5Also note that it can be the case that FindImprovement(x,∞) will run forever. Either because
x is a global optimum, or because the set of operations cannot provide enough variation to enable the
algorithm to reach certain points in the search space. We ignore these situations for simplicity.

35



Of course, the assumption of having detailed knowledge of q(`) is unrealistic. However,

we present this theorem because we would like to provide guarantees on other strategies

in terms of this theoretically optimal behavior. In the following, we will denote the above

theoretically minimal E[YS(x)] as mx (or m when the binding to x is implicitly assumed.)

3.3.2 Balanced Strategies for Unknown Distributions

In this subsection, we consider the situation in which q(`) is unknown and describe a

“balanced” strategy that tries many different choices of ` and spends on each chain length

a roughly equal amount of heuristic applications. Specifically, this strategy is an infinite

sequence of the form:

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2 . . .

It can be defined recursively as

`j =

2k−1, if j = 2k − 1;

`j−2k−1+1, if 2k−1 ≤ j ≤ 2k − 1.

This sequence was proposed by Luby et al. [69] and we will refer to it as Luby’s sequence

or Luby’s strategy. Using Luby’s strategy in Algorithm 9, we have the following theorem.

Theorem 2. Given an incumbent solution x, let mx = minS E[YS(x)]. If we make calls to

FindImprovement(x, `) using Luby’s strategy SLuby, then we have an asymptotic bound on

E[YSLuby(x)] as O(mx logmx). Furthermore, O(m logm) is the best asymptotic guarantee

we can hope to achieve if we assume an unknown q(`).

Proof. This theorem can be proved similar to the proof of Theorem 1 by first recognizing

that FindImprovement(x,∞) is a Las Vegas algorithm, and defining p(`) accordingly.

With this condition, we can invoke Theorem 5 and 7 of [69] to prove the above theorem.

Note that this bound is provided without the assumption that we know q(`), and hence

can be applied easily. Furthermore, Luby’s strategy is regarded as “universal” in the
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sense that it will eventually extend to long enough sampling lengths if shorter lengths are

insufficient6.

Two variations can be introduced while still retaining the asymptotic guarantee: First,

we can change the geometric factor. For example, using 4 as the geometric factor will give

the sequence: (1, 1, 1, 1, 4, 1, 1, 1, 1, 4, . . .) The second variation is that we can scale the

sequence by a constant s, i.e. (s, s, 2s, s, s, 2s, 4s, s, s, . . .). Adopting these two variations

will change the leading constant but will not affect the term m logm. That is, if we write

the bound as O(c ·m logm) for some constant c, adopting any or both of these variations

will change the constant c, but not the term m logm.

3.3.3 Mixing Luby’s Strategy with Other Strategies

For some scenarios, we might have the knowledge that a particular strategy performs

well on a good portion of the problem instances but is not robust across all instances.

For example, if we define each operation in FindImprovement to have the form of a

perturbation followed by a local search, for certain domains, we will have a relatively high

probability of finding an improving solution by applying just a few operations7. In this

situation, a fixed-length strategy S` = (`, `, `, . . .) with a small ` can perform reasonably

well. However, this strategy will fail catastrophically when the assumption is not met (e.g.

when the nearest improvement is `+ 1 operations away.)

To hedge against this situation, we propose the idea of mixing strategies without a

guarantee with the Luby’s strategy. For example, a mixture of S1 = (1, 1, 1, . . .) and SLuby
will be the sequence:

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1 . . .

where the underlined elements are from the Luby’s sequence while others are from S1.
This sequence is constructed in a way such that at any point in the sequence, the sum

of the numbers from S1 is roughly equal to the sum of the numbers from SLuby. Note

6Note that one can devise other universal strategies by growing the sampling length in certain ways,
but as stated in Theorem 2, O(m logm) is the best asymptotic guarantee one can hope to achieve if we
assume unknown q(`).

7This is also one of the reasons for the popularity of iterated local search [63], which basically employs
this kind of operation.
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that we can similarly construct a mixture of unequal proportion. As long as we allocate a

fixed proportion of computational budget (here, the execution of operations) to the Luby’s

strategy, we can still retain the asymptotic guarantee from the previous theorem, albeit

with the constant term c changing accordingly (e.g. the sequence above will change the

constant term to 2c.)

3.4 Experiments

This section describes the setting and results of our preliminary experiments on using

Luby’s strategy as the L policy. We first go over HyFlex, a software framework that

the hyper-heuristics research community developed for testing hyper-heuristics. We then

describe our implementation of Algorithm 9 with Luby’s strategy within HyFlex. Imple-

menting our algorithm on HyFlex enables us to compare our algorithm with other hyper-

heuristics that participated in the 2011 Cross-domain Heuristic Search Challenge (CHeSC),

which was based on the HyFlex framework. We should point out upfront that most of the

hyper-heuristics that participated in CHeSC were based on some sorts of learning dur-

ing optimization, while on the contrary, our algorithm simply selects heuristics uniformly

at random. However, the results suggest that although we could not clinch top spots,

our no-learning algorithm is nevertheless very competitive when compared to most of the

hyper-heuristics that participated in the CHeSC.

3.4.1 HyFlex and CHeSC 2011

HyFlex is a software framework that was created to aide in the development and test-

ing of hyper-heuristics [80]. It was designed to emphasize the concept of cross domain

optimization. To promote this concept, HyFlex features a common interface for dealing

with different combinatorial optimization problems. This interface encapsulates problem

specific details, such as solution representations and how each heuristic actually works,

from the user of the framework8. It was expected that the designer of a hyper-heuristic

will come up with some mechanism that utilizes these encapsulated heuristics based on the

feedback of their performance during the search process.

8Note that is corresponds exactly to our first agnostic assumption described in Section 3.2.
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Table 3.1: Categorical Summary of Heuristics in CHeSC 2011

SAT BP PS FS TSP VRP
MU 0–5 0,3,5 11 0–4 0–4 0,1,7
RR 6 1,2 5–7 5,6 5 2,3
HC 7,8 4,6 0–4 7–10 6–8 4,8,9
XO 9,10 7 8–10 11–14 9–12 5, 6

Although the HyFlex’s interface hides most details of these heuristics, it reveals a

categorical description of them by classifying each heuristic as a mutation (MU) which

modifies a solution in some way with no guarantee of improvement, a ruin and recreate

(RR) heuristic which destructs a portion of the given complete solution and then recon-

struct it in certain fashion, a hill climber (HC) which performs a local search returning

a solution that has the same or better quality than the original solution, or a crossover

(XO) which creates a new solution by combining some parts from two given solutions. In

addition, HyFlex also provides a parametric control over the intensity of the mutation and

ruin and recreate heuristics, as well as the depth of the search in the hill climbing heuristics.

However, for this preliminary study, we only use the default settings for these parameters

and do not perform any further tuning.

HyFlex was used as the underlying framework for CHeSC. And for this competition,

it provides six problem domains: personnel scheduling (PS), one-dimensional bin packing

(BP), permutation flow shop problem (FS), the optimization version of boolean satisfiabil-

ity problem (SAT), traveling salesman problem (TSP) and vehicle routing problem (VRP).

Table 3.1 provides a categorical summary of the heuristics implemented for each problem

domain. Each heuristic from a domain is identified by a unique ID number and classified

to a category as described above. Besides these two pieces of information, the framework

exposes no further details of the heuristic to the participants of the competition.

The ranking method used at CHeSC was inspired from the Formula 1 point scoring

system. For each problem instance, the top eight contestants are determined by comparing

the median objective values that the contestants achieved over 31 runs where each run lasts

for 10 minutes on the organizer’s benchmark machine. Each algorithm is then awarded a

score according to its ranking. The winner receives 10 points, the runner up gets 8 and

then 6, 5, 4, 3, 2 and 1, respectively. In the case of a tie, the corresponding points are added
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together and shared equally between each algorithm. In CHeSC, each domain contains 5

instances for the final scoring. The winner is the one which has the highest accumulated

score from the 30 instances across 6 problem domains.

Twenty teams submitted their algorithms to the CHeSC. The results, along with the

description of each algorithm, are available from the website of the competition9. In

the following, we will compare the results of our algorithm with the 20 contestants that

participated in the CHeSC.

3.4.2 Implementation Details

Basically, our algorithm implementation follows the structure of Algorithm 9. Inside the

FindImprovement procedure, we use a uniformly random policy, Hu, for choosing heuris-

tics. And we use Luby’s sequence SLuby as the strategy for choosing the sampling lengths.

(Note that every time we find a better solution to replace the current incumbent solu-

tion, we will restart the Luby’s sequence, i.e., jump back to the beginning of the Luby’s

sequence.)

One augmentation that we have done for testing on CHeSC was to also consider an

“amplified” version of each original heuristic provided by the HyFlex. Let x′ = h(x)

represent an application of some heuristic h to some solution x, yielding another solution

x′. We can amplify this process by applying h multiple times. If an application yields an

x′ that is worse than x, then it is simply discarded. Otherwise, we replace x with x′. This

process repeats for a period of time10 and returns the final x.

This particular design stems from our desire to promote collaboration among heuris-

tics. Typically, it is very often the case that a stochastic heuristic will only modify a

randomly-chosen small portion of the given solution, and this small portion might have

very little relation to the modification done by the previous heuristic. Thus, consecutive

heuristics might have very little chance to create a collaborated effort. For example, in

the SAT domain, we can have the situation that one heuristic flips a variable and the

next heuristic flips another variable that has no overlapping clauses with the previously

flipped variable. Thus, the two operations are largely independent. Our idea of creating

9http://www.asap.cs.nott.ac.uk/external/chesc2011
10For example, in our implementation, it is set to 10 milliseconds.
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an amplified heuristic out of a heuristic defined by HyFlex is to increase the chance of

putting consecutive heuristics to work on related pieces of a solution. With this addition,

we double the size of our heuristic set, H, with each original heuristic accompanied by its

amplified version. (Also note that for this preliminary study, we do not use the crossover

heuristics provided by the HyFlex, for they require two solutions as input, and thus do not

fit naturally to our framework.)

Another algorithmic modification that we have made is to allow the incumbent solution

to be replaced by a solution of equal quality. This is implemented as follows. When a

chained exploration fails to discover an improving solution, we will examine the solution

chain x1,x2, . . . ,x` to see if there is a solution xi that has the same objective value as the

incumbent solution. If multiple solutions were found, we pick the one that is furtherest

down the chain, and replace the incumbent solution with this solution. We chose to do this

to alleviate stagnation. Note that after performing such kind of replacement, we do not

reinitialize the Luby’s strategy as we do when we found an improving solution. (Another

view of this is that we are treating the group of solutions that are of the same quality as

an equivalence class.)

Finally, for implementation convenience, we bound the Luby’s sequence at 210 instead

of growing arbitrarily. i.e., when `i = 210, the following sequence will be a repetition from

the beginning of the sequence to `i. In our experiments, this bound is rarely reached and

should be long enough a chain length for most situations.

3.4.3 Results

As mentioned previously, we use problem domains implemented in CHeSC as a benchmark

and compare our results with the algorithms that participated in that contest. For fair

comparisons, the CHeSC organizer provides a calibration software that reports, for a user’s

machine, the time budget equivalent to 10 minutes on the organizer’s machine that was

used for holding the competition. We performed our experiments on Amazon Web Service’s

EC2 c4.large virtual machines, for which the calibration software reports a 346 seconds time

budget. In accord with CHeSC, we performed 31 runs for each problem instance and took

the median values.

Table 3.2 shows the scores achieved by our algorithm, denoted as Luby, if it was
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Table 3.2: Ranking and Scores if participated in CHeSC

Method SAT BP PS FS TSP VRP Total

AdapHH 33.60 40.00 8.00 36.00 40.25 15.00 172.85

VNS-TW 33.60 2.00 37.50 34.00 19.25 6.00 132.35

ML 10.50 8.00 31.00 39.00 13.00 21.00 122.50

Luby 23.60 43.00 12.50 12.00 4.00 9.00 104.10

PHUNTER 7.50 2.00 11.50 9.00 25.25 33.00 88.25

EPH 0.00 6.00 10.00 19.00 33.25 12.00 80.25

HAHA 31.60 0.00 24.00 1.50 0.00 13.00 70.10

NAHH 11.50 17.00 2.00 22.00 12.00 5.00 69.50

ISEA 3.50 24.00 14.50 1.50 11.00 4.00 58.50

KSATS-HH 21.85 7.00 8.00 0.00 0.00 21.00 57.85

HAEA 0.00 1.00 1.00 8.00 11.00 26.00 47.00

ACO-HH 0.00 16.00 0.00 8.00 8.00 1.00 33.00

GenHive 0.00 10.00 6.50 5.00 3.00 6.00 30.50

SA-ILS 0.25 0.00 17.50 0.00 0.00 4.00 21.75

DynILS 0.00 9.00 0.00 0.00 12.00 0.00 21.00

AVEG-Nep 10.50 0.00 0.00 0.00 0.00 8.00 18.50

XCJ 3.50 10.00 0.00 0.00 0.00 5.00 18.50

GISS 0.25 0.00 8.00 0.00 0.00 6.00 14.25

SelfSearch 0.00 0.00 3.00 0.00 3.00 0.00 6.00

MCHH-S 3.25 0.00 0.00 0.00 0.00 0.00 3.25

Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.3: Using Luby’s Sequence vs. Using S1

Method SAT BP PS FS TSP VRP Total Rank

Luby 23.60 43.00 12.50 12.00 4.00 9.00 104.10 4/21

Length 1 0.00 33.00 10.00 21.00 0.00 4.00 68.00 8/21
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competing with other contestants in CHeSC. As can be seen, it ranks 4th overall. Although

this was not a spectacular performance, it is nevertheless very interesting. It is interesting

because most of the other algorithms that participated in the CHeSC employ some sorts of

learning or adaptation during the search. On the other hand, our algorithm has no such a

learning component: Hu is just a uniformly random selection, and SLuby is a fixed sequence.

From our point of view, this can be seen as evidence that the principles underlying the

approach are indeed effective.

To further evaluate the contributing factors of our algorithm, we also tested a version

with the sampling length constantly setting to 1, i.e., using a strategy S1 = (1, 1, 1, . . .).

This is equivalent to performing single-step explorations. Table 3.3 lists the scores and the

rank of the algorithm if it had participated in CHeSC. From the result, we can see that

using Luby’s sequence has an advantage over the length-1 strategy. This can be seen as a

further proof that Luby’s strategy contributes positively to the algorithm.

3.5 Discussion

The results presented in the last section point out an interesting case: Our approach that

uses a no-learning Hu policy ranked quite high in the CHeSC benchmark. The flip side of

this observation is the question that why some of the learning-based approaches performed

relatively poorly?

To have a discussion on this matter, we need to first have an (abstract) idea on what

these learning mechanisms introduce into the search process. In essence, the actions of a

learning mechanism in this context is to change the behavior of the search procedure based

on some observed data. Doing this is equivalent to modifying the algorithm so that it will

have a different kind of search bias. However, this learning process can go wrong in at

least two ways. First note that both the quantity and quality of the collected data have a

decisive impact on the outcome of the learning. For example, it is well-known that a good

search algorithm should strike a balance between exploration and exploitation. If we learn

from a too limited amount of data, the resulting policy can consequently be directed to

focus on the limited number of patterns presented in the collected data, and thus put too

much emphasis on exploitation (i.e. focusing on using only a small group of patterns.)
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Secondly, we can face the problem of not knowing how much we should learn from the

collected data. Ideally, we would like to learn prominent patterns in the data, which are

more likely to be still applicable in the future, i.e. patterns that generalize. However,

different learning models have different capacity for learning patterns. So if we adopt a

learning model that is capable of memorizing more details than appropriate, it can be the

case that it will encode overly specific behaviors into the resulting policy, i.e. the learning

mechanism can result in an overfitting to the collected data. This can also lead to a

situation similar to over emphasizing exploitation, but in this case, we are likely to use

overly complicated patterns that don’t generalize well.

Finally, using a more complicated learning mechanism will inevitably lead to more

computation, which can take up a larger portion of the total time budget. This will leave

a smaller time budget for actually executing the heuristics that perform the search in the

solution space.

3.6 Summary

In this chapter, we described an architecture that allows us to chain multiple heuristics in a

pipelined fashion. We laid out this architecture to provide a framework for thinking about

the issue of how to combine multiple neighborhood-based heuristics in a more principled

manner. Based on this architecture, we looked at the algorithmic component (denoted as

L) for choosing the lengths of the pipelines, and discussed a strategy for performing this

task. In the next chapter, we will start to look at the H component in our architecture,

which specifies how to choose heuristics. More specifically, we would like to explore how

to derive useful H policies from prior experience. And based on our discussion in the last

section, we will first start with simple learning mechanisms.
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Chapter 4

Fitting Simple Policies for Choosing

Heuristics with a Warm-up Period

In the previous chapter, we proposed a framework for combining multiple neighborhood-

based heuristics. This framework, presented as Algorithm 6, has two policy components:

H and L, which specify how to pick heuristics for applications and how to to choose the

length limit of a solution chain, respectively. With this framework, We demonstrated that

by employing a good L policy, we can achieve a relatively good performance even in the

case that we just pick heuristics uniformly at random. We also hypothesized that the

relatively poor performance of some other “learning-based” approaches that participated

in the CHeSC competition could be due to employing overly-complex learning models that

are prone to introduce overfitting and thus making the overall optimization process unable

to achieve a good balance between exploration and exploitation. Furthermore, complex

learning mechanisms also require more computation and thus can take up a larger portion

of our fixed computation budget.

In this chapter, we start to explore how to reasonably derive an H component that

can enhance the performance of the overall search algorithm. Based on our previous

hypothesis, we will restrict ourselves to simple learning mechanisms first, which are less

prone to overfitting and thus are better at avoiding learning random patterns presented in

the data.

We adopt the following procedure for collecting the data for learning: For each run,

we will allocate a period of time at the beginning of the run as a warm-up period. In this
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warm-up period, we will execute the baseline algorithm, which is just the configuration

that uses Luby’s strategy for the L component and uniformly random selection as the H
policy (exactly the same algorithm that we presented in the previous chapter.) We will

collect relevant data during this warm-up period, and at the end of this warm-up period,

we will feed the collected data into a learning mechanism to derive a learned H policy,

which will then be used for the remaining of the run.

In the following sections, we will look at some simple learning mechanisms that instan-

tiate H policies based on the collected data. As in Chapter 3, we will use the CHeSC

benchmark as an assessment of the performance.

4.1 Pruning Heuristic Set

Perhaps the simplest mechanism that we can add to our algorithm is to keep an eye on

whether a heuristic has ever participated in the creation of a solution chain that led to

the discovery of an improving solution. This data gathering is done during the warm-

up period of a run. Then after the warm-up period, we prune away the heuristics that

have never showed up in such a record, reducing the size of the heuristic set H. This is

equivalent to setting the probability of selecting those heuristics to zero and redistributing

the probability mass equally to the remaining heuristics. Note that as a safeguard against

making pruning based on insufficient information, we do not prune any heuristics that had

not been applied for more than 15 times in the initial warm-up stage.

Table 4.1 shows the scores obtained by our algorithm with the addition of the above

simple pruning mechanism (denoted as Pruning in the table), comparing again to the

methods originally participated in the CHeSC. As before, our experiments are performed

on Amazon Web Service’s EC2 c4.large virtual machines, and we set the warm-up period

to one minute. As can be seen, our procedure now obtains a higher total score and is

ranked second overall according to the CHeSC scoring rules.

This demonstrates that depending on the problem domain or a particular instance of

the problem domain, it might be the case that not all heuristics contribute positively to

performance. It pays to be discretionary on which heuristics to apply and in this way, we

can be more efficient about spending our search time budget.
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Table 4.1: Performance of a Simple Pruning Mechanism

Method SAT BP PS FS TSP VRP Total

AdapHH 34.25 40.00 8.00 35.00 40.25 14.00 171.50

Pruning 21.00 43.00 18.50 26.75 14.00 12.00 135.25

VNS-TW 34.25 2.00 37.50 30.00 18.25 6.00 128.00

ML 11.00 8.00 31.00 36.00 13.00 21.00 120.00

PHUNTER 7.50 2.00 11.50 7.00 24.25 33.00 85.25

EPH 0.00 6.00 9.00 18.00 33.25 12.00 78.25

HAHA 32.25 0.00 22.50 1.25 0.00 13.00 69.00

NAHH 11.50 17.00 1.00 21.00 11.00 5.00 66.50

KSATS-HH 22.00 7.00 7.00 0.00 0.00 21.00 57.00

ISEA 3.50 24.00 14.50 1.50 10.00 3.00 56.50

HAEA 0.00 1.00 1.00 5.75 10.00 25.00 42.75

ACO-HH 0.00 16.00 0.00 7.75 7.00 1.00 31.75

GenHive 0.00 10.00 6.00 5.00 2.00 6.00 29.00

SA-ILS 0.25 0.00 17.50 0.00 0.00 4.00 21.75

DynILS 0.00 9.00 0.00 0.00 10.00 0.00 19.00

AVEG-Nep 10.50 0.00 0.00 0.00 0.00 8.00 18.50

XCJ 3.50 10.00 0.00 0.00 0.00 5.00 18.50

GISS 0.25 0.00 8.00 0.00 0.00 6.00 14.25

SelfSearch 0.00 0.00 2.00 0.00 2.00 0.00 4.00

MCHH-S 3.25 0.00 0.00 0.00 0.00 0.00 3.25

Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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4.2 Learning the Frequency of Selection

A natural generalization of the above pruning mechanism is to use a degree of frequency

instead of a crisp inclusion or exclusion. To implement this idea, we will first run the

uniformly random selection for one minute as before. During this warm-up period, if

a solution chain leads to an improving solution, we record the corresponding sequence of

heuristics that has generated that solution chain. This process will give us a log of sequences

and we can accordingly make an estimation of the frequency of applying each heuristic.

That is, at the end of the warm-up period, we will construct a simple probabilistic model

which is essentially a table describing the probability of applying each heuristic. And

for the rest of the run, we will use this model for selecting heuristics instead of choosing

heuristics uniformly at random.

In our implementation, in order to achieve a more accurate modeling, we also adopt the

following extension: We split the sequence log into two collections. One collection contains

the singleton sequences, i.e., the sequences of length 1, and the other contains all the other

sequences that are of length 2 or longer. We then estimate two separate models based on

these two collections. With this specialization, our policy for choosing heuristics can now

be conditioned on the length of the heuristic chain. That is, when the length policy L
suggests that the next heuristic chain should be of length 1 (i.e. ` = 1), we will use the

singleton model for choosing heuristics. On the other hand, if ` > 1, we will use the model

built on sequences of length 2 or more to select heuristics.

One pitfall of the above idea of estimating probabilistic models is that it only works

well when we have collected a large enough set of sequences. If that is not the case, the

model may be biased to some random fluctuations and may impact performance negatively.

To alleviate this situation, in our experiments, we adopt a simple strategy: if the number

of sequences is less than 10, we will use a fallback heuristic selection policy which for

the first heuristic in the sequence, selects a random perturbation heuristic (in the HyFlex

terminology, a MU or RR heuristic), and for the following heuristics in the sequence, it

selects only the hill climber heuristics (also choosing them uniformly at random.) This

fallback heuristic selection policy is based on the operations of the popular Iterated Local

Search [64].

The same as previously, we perform the experiment on the CHeSC benchmark. Ta-
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Table 4.2: Performance of Using Frequency Learning

Method SAT BP PS FS TSP VRP Total

AdapHH 32.35 40.00 7.00 35.00 39.25 15.00 168.60

Frequency 25.95 43.00 28.50 26.50 21.00 10.00 154.95

VNS-TW 32.85 2.00 37.00 29.50 18.25 6.00 125.60

ML 11.00 8.00 29.50 36.00 13.00 21.00 118.50

PHUNTER 8.00 2.00 11.00 7.00 22.25 32.00 82.25

EPH 0.00 6.00 8.50 18.00 31.25 11.00 74.75

HAHA 29.85 0.00 21.50 1.50 0.00 13.00 65.85

NAHH 11.50 17.00 1.00 21.00 10.00 5.00 65.50

ISEA 3.50 24.00 14.00 1.50 9.00 5.00 57.00

KSATS-HH 21.20 7.00 6.00 0.00 0.00 21.00 55.20

HAEA 0.00 1.00 1.00 6.00 11.00 26.00 45.00

ACO-HH 0.00 16.00 0.00 8.00 6.00 1.00 31.00

GenHive 0.00 10.00 4.50 5.00 2.00 6.00 27.50

SA-ILS 0.60 0.00 15.50 0.00 0.00 4.00 20.10

DynILS 0.00 9.00 0.00 0.00 10.00 0.00 19.00

AVEG-Nep 10.50 0.00 0.00 0.00 0.00 8.00 18.50

XCJ 3.50 10.00 0.00 0.00 0.00 5.00 18.50

GISS 0.60 0.00 8.00 0.00 0.00 6.00 14.60

SelfSearch 0.00 0.00 2.00 0.00 2.00 0.00 4.00

MCHH-S 3.60 0.00 0.00 0.00 0.00 0.00 3.60

Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.3: The Contribution of the Fallback Mechanism

Method SAT BP PS FS TSP VRP Total Rank

Frequency 25.95 43.00 28.50 26.50 21.00 10.00 154.95 2/21

w/o Fallback 29.35 43.00 14.50 28.00 22.00 12.00 148.85 2/21

Fallback Only 11.00 33.00 23.50 18.50 27.60 6.00 119.60 4/21

ble 4.2 shows the performance of adopting the above idea of estimating the frequency of

each heuristic (denoted as Frequency in the table). As we can see, it obtains a higher

number of points than the previous Pruning strategy (154.95 vs. 135.25), showing the

effectiveness of using the probabilistic models.

In addition to the above experiment, we also performed an auxiliary experiment that

compares and evaluates the effect of incorporating the fallback strategy. The results are

listed in Table 4.3. We can see that although the fallback strategy doesn’t help in terms

of the ranking, it does help the algorithm to achieve a higher score. Most notably, there

was a good improvement in the PS domain. A post-experiment analysis reveals that

the operations in the PS domain are generally very time-consuming, which leads to the

situation that we often cannot collect enough sequences for learning. In this situation,

adopting a fallback strategy seems to be a reasonable approach and compensates well for

the performance.

4.3 Learning the Bigram Statistics

A natural question following the above experiment is whether we can gain more improve-

ment by adopting a more elaborate probabilistic model. In this section, we experiment

with a simple extension that models the conditional probability of selecting a heuristic

based on the heuristic applied in the previous step. That is, using the notation presented

in Figure 3.1, we want to model P (hi|hi−1). As before, we estimate the model based on

the relative frequencies observed in the log of sequences that we collected during the first
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minute of the run. A maximum likelihood estimate can be specified as follows:

P (hi|hi−1) =
C(hi−1hi)∑
h∈H C(hi−1h)

where C(hi−1hi) denotes the number of occurrences of a particular adjacent pattern of

heuristics hi−1hi observed in the sequence log. Such kind of adjacency modeling is often

used in the tasks relating to natural language processing (NLP), and is referred to as the

bigram model in the NLP field [70].

Table 4.4 shows the results of adopting such a model (denoted as Bigram in the table.)

We can see that the scores are further improved and now our method places at the top

spot compared to other algorithms participated in the CHeSC. This shows that modeling

the sequential dependences can contribute positively and it can be beneficial to adopt such

a consideration into the policy for choosing heuristics.

4.4 Summary

In Chapter 3, we experimented with a dispatching policy Hu that each time select a

heuristic uniformly at random from the set of available heuristics. Using this uniformly

random policy as a baseline, in this chapter, we have examined three simple learning

mechanisms that changes its behavior for choosing heuristics based on the collected data.

This data collection is done in a warm-up period of a run. Then after the warm-up period,

the algorithm switches to a learned policy for choosing heuristics. We showed that even in

the case of just using a simple learning mechanism, we can achieve a high rank in the CHeSC

benchmark. Also note that, for the experiments, we didn’t attempt an intensive tuning

on the algorithm parameters such as the length of the warm-up period, the criterion for

pruning, etc. The value of these parameters are mostly picked arbitrarily. So it’s possible

to get an even better result by changing the values of these parameters.

Reviewing the methods defined and tested in this chapter, we can see that the learning

processes presented in this chapter are mostly based on (variations of) learning the fre-

quency of applying each heuristic. However, besides the frequency, we may also wonder

whether the structure can also be an important factor. As we saw in the last section, mod-
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Table 4.4: Performance of Using Bigram Learning Mechanism

Method SAT BP PS FS TSP VRP Total

Bigram 29.70 43.00 28.00 37.00 26.00 12.00 175.70

AdapHH 31.43 40.00 7.00 34.00 37.25 14.00 163.68

VNS-TW 31.93 2.00 37.00 29.00 18.25 6.00 124.18

ML 11.00 8.00 29.50 34.50 12.00 21.00 116.00

PHUNTER 8.00 2.00 11.00 6.00 22.25 32.00 81.25

EPH 0.00 6.00 8.50 16.00 31.25 11.00 72.75

HAHA 28.43 0.00 21.50 0.83 0.00 13.00 63.77

NAHH 11.50 17.00 1.00 19.50 9.00 5.00 63.00

ISEA 3.50 24.00 14.00 1.50 9.00 4.00 56.00

KSATS-HH 20.70 7.00 6.50 0.00 0.00 21.00 55.20

HAEA 0.00 1.00 1.00 5.33 10.00 26.00 43.33

ACO-HH 0.00 16.00 0.00 6.33 6.00 1.00 29.33

GenHive 0.00 10.00 4.50 5.00 2.00 6.00 27.50

SA-ILS 0.60 0.00 15.50 0.00 0.00 4.00 20.10

DynILS 0.00 9.00 0.00 0.00 10.00 0.00 19.00

AVEG-Nep 10.50 0.00 0.00 0.00 0.00 8.00 18.50

XCJ 3.50 10.00 0.00 0.00 0.00 5.00 18.50

GISS 0.60 0.00 8.00 0.00 0.00 6.00 14.60

SelfSearch 0.00 0.00 2.00 0.00 2.00 0.00 4.00

MCHH-S 3.60 0.00 0.00 0.00 0.00 0.00 3.60

Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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eling the sequential dependencies between heuristics can also be beneficial to the overall

search performance. However, by using a bigram model, we can only capture the struc-

tural properties implicitly. In the next chapter, we will propose a method that explicitly

captures the structures present in the sequences and thus learns a more comprehensive

model that describes the collaboration patterns of the heuristics presented in the data.
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Chapter 5

Learning Explicit Collaboration

Patterns from Run Logs

In the previous chapters, we have developed and experimented with a high-level frame-

work for combining multiple neighborhood-based heuristics. The fundamental idea of this

framework is to chain multiple heuristics in a pipelined fashion so that we can utilize the

interaction between heuristics. To derive a concrete algorithm from this framework, one

needs to supply two user-defined components: 1) a policy H for selecting heuristics, and

2) a policy L for choosing the length of the pipeline that chains the selected heuristics.

In Chapter 3, we offered a theoretical discussion on the design of the L component and

described a policy that has an asymptotic guarantee. In Chapter 4, we experimented

with some simple learning mechanisms that derive adjusted H policies from data collected

during a warm-up period. Those learning mechanisms were mostly based on learning the

frequency for applying each heuristic. In this chapter, we explore a way to more explicitly

capture the collaboration patterns among heuristics, and investigate whether using an H
policy that utilizes these collaboration patterns offers any advantage.

Our proposal is based on an idea similar to the previous chapter that we can first run

the simple baseline algorithm presented in Chapter 3, and record the positive experiences

encountered during its execution. By analyzing this record of positive experiences, we can

potentially extract useful interaction patterns among the heuristics, and accordingly, use

this knowledge to construct a better H policy.

In this chapter, in addition to the overall search performance, we are also interested in
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whether our policy construction procedure can produce policies that generalize well. This

generalization ability is an indication on whether we are learning useful information or just

merely capturing non-reusable patterns presented in the data. To reasonably assess this

generalization aspect, we need to first lay out the underlying assumptions properly. So in

the next section, we will begin with a description on our distributional assumption on the

problem instances. Following that, Section 5.2 describes our policy construction algorithm.

The experiments and results are then presented in Section 5.3, and Section 5.4 offers some

discussion. Finally, Section 5.5 concludes this chapter.

5.1 Distributional Assumption

In this chapter, we investigate the issue of how to construct a policy for choosing how to

apply a given set of heuristics. Previously, we have experimented with a baseline policy

Hu, which simply selects a heuristic uniformly randomly from the set of heuristics each

time it is consulted. Using Hu as a baseline, in this work, we would like to study how to

come up with a better policy, and more importantly, how to automate its construction.

However, in order to proceed, we need to define what it means to be a better policy.

Apparently, if we don’t limit the scope of applicability, it can be challenging to give a

definition that is both reasonable and easy to work with. It can be a daunting task to

search for a “universally good” policy because this definition amounts to enumerating “all

possible problem domains1,” which is itself abstract to begin with. So instead, we will

handle the construction of policies in a per-domain fashion.

More importantly, we will proceed with a distributional assumption that we are given

a set of problem instances for training, and the future problem instances will be from

the same distribution that we drew the training set from. To elaborate more on this, we

implicitly assume that the future problem instances will have similar characteristics as

those in the training set. Hence, there is a reason to hope for the possibility that a policy

derived from the training set may generalize well to the future instances.

1As mentioned previously, we define a problem domain as a set of heuristics together with a mechanism
to evaluate the quality of a solution. These objects are treated as black-boxes and we assume no detailed
knowledge was revealed about the inner work of these objects. Note that with this definition, with a
different set of heuristics, we will have a different problem domain, even if the underlying combinatorial
optimization problem is in fact the same.
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To state more explicitly, we define our task as follows: With a fixed set of heuristics,

construct a dispatching policy H based on a set of problem instances drawn from a target

distribution D so that the algorithm using H will have a good expected performance over

the future instances drawn from D. With this notion of expected performance over a

target problem instance distribution, we can formally compare two policies and make

statistical statements about our observations. Empirically, this setup also allows us to use

cross-validation to assess the effectiveness of our policy construction procedure, which we

introduce in the following section.

Note that since we intend to evaluate the generalization ability with the above setting,

using the CHeSC evaluation protocol as we did in the previous chapters becomes inap-

propriate. This is because 1) in the CHeSC evaluation protocol, each run is considered

independent, and there is no notion of the “future problem instances.” 2) CHeSC bench-

mark adopted problem instances that tend to be eclectic, and this property does not fit

well with our distributional assumption. Thus, for the experiments, we will instead use a

setup that allows us to assess performance using cross-validations. However, we will keep

using the HyFlex API, which we review in Section 5.3.1, as the experimentation platform

to take advantage of its collection of implemented heuristics.

5.2 Automated Policy Construction

Our idea for an automated policy construction procedure is that it will take the set of

training problem instances and perform the following operation: For each training problem

instance, it will attempt to solve it using the configuration that employs Hu as heuristic

selection policy and Luby’s strategy as length selection policy (basically, the same baseline

algorithm that we developed in Chapter 3.) During a run, if the solver created a solution

chain that led to an improving solution (i.e. a solution that is better than the previous

best solution), we will record the corresponding sequence of heuristics that generated that

solution chain. This process will give us a log of sequences. And because these sequences

are the ones that had led to improving solutions, we believe it is possible to construct a

better policy through analysis of this log.

For example, suppose that by running the baseline algorithm, we collected a small log
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like the one shown in the Figure 5.1a, in which each number maps to a heuristic from

a problem domain. In this example, the problem domain has 11 heuristics and they are

indexed from 0 to 10. Each line of this log represents a sequence of heuristics that had

created an improving solution. By inspecting this log, we can observe some interesting

patterns that seem to occur more frequently than others. Our hypothesis is that each

of these patterns corresponds to an effective processing flow, and more importantly, it

can be thought of as a “heuristic macro” representing a collaboration of the participating

heuristics. If we can segment them out, like what are shown in Figure 5.1b, then by simple

counting, we can estimate a probabilistic model that encodes these structures, such as the

one shown in Figure 5.1c. The idea is that by sampling this model instead of sampling

uniformly randomly like Hu, we will be able to reuse those patterns and compose new

sequences of heuristics with these “heuristic macros” embedded as sequence components.

This can potentially improve the efficiency of the search2.

However, it is not immediately obvious how to come up with such a segmentation

without manual intervention. As mentioned above, our goal is a fully automated procedure

for constructing policies, so solving this issue is necessary. Our idea for proceeding is to

recognize that if someone handed us a probabilistic model, then we would be able to divide

a sequence into its most probable segmentation using dynamic programming. On the other

hand, once we have such a segmentation for every sequence in the log, we can estimate

a probabilistic model by simple counting. These two steps seem to form an Expectation-

Maximization (EM) loop. So we think it is possible to iteratively build a model based on

an EM procedure.

The dynamic programming procedure for segmenting the sequences is listed in Algo-

rithm 10. It takes as input a model M of the same form as the one shown in Figure 5.1c

and divides the given sequence s = s0s2 . . . sn−1 into parts so that the resulting parts in

combination has the highest probability according to M. Note that in Algorithm 10, we

index the elements of a sequence starting from 0 instead of 1, and and we use M[ · ] to

denote a query to the probability table of the model M. For example, M[0 8] will yield

2Also note that although there were 11 heuristics, not all of them are included in the model. This is
because some of the heuristics were never part of any sequences that had led to an improving solution and
hence, are being left out of the model. This can be seen as a way to prune the ineffective heuristics, an
idea that we also experimented with in the Chapter 4.
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Algorithm 10 Segmenting a Sequence Given a Model

Input: a sequence s and a model M.

1: n← the length of sequence s

2: k ← the length of the longest pattern in model M
3: p← an array of length n (for keeping probabilities)

4: b← an array of length n (for keeping backpointers)

5: for j = 0 to n− 1 do

6: p[j]←M[s0s1 · · · sj]
7: b[j]← 0

8: for i = max(j − k + 1, 1) to j do

9: if M[sisi+1 · · · sj] 6= 0 then

10: if p[j] < p[i− 1]×M[sisi+1 · · · sj] then

11: p[j]← p[i− 1]×M[sisi+1 · · · sj]
12: b [j]← i

13: end if

14: end if

15: end for

16: end for

17: d← a stack (for recording the segments of s)

18: j ← n− 1

19: while j ≥ 0 do

20: i← b [j]

21: Push sisi+1 · · · sj as a unit to d

22: j = i− 1

23: end while

24: return d

60



0.1 by the model shown in Figure 5.1c.

To explain the core idea of this algorithm, note that for a partial sequence s0s1 · · · sj, if

we consider a tail part sisi+1 · · · sj as a unit, then the optimal probability of the modelM
generating the partial sequence s0s1 · · · sj (with the tail part sisi+1 · · · sj as a unit) is the

probability of the most probable segmentation of s0s1 · · · si−1 timesM[sisi+1 · · · sj]. With

this observation, we can recursively define the optimal segmentation given a model and

use a dynamic programming approach to solve for it.

Equipped with the above algorithm for segmenting sequences, we can now construct an

EM procedure as follows: First, we initialize a model by collecting all the sub-sequences

appearing in the sequence log as patterns3, with the premise that the number of appear-

ances is higher than certain threshold θ.4 Each pattern’s initial probability is set to be

proportional to the number of appearances in the log. With this initial model, we then

run Algorithm 10 to obtain a segmentation for each sequence in the log. Based on the

segmented version of the log, we re-estimate a model by counting the frequency of each

pattern. Finally, we proceed to the next iteration by performing a segmentation using the

new model. This process iterates until we get a re-estimated model that is identical to the

old one.

5.3 Experiments and Results

This section describes the implementation details and the results of an experimental anal-

ysis of our policy construction algorithm. We will first provide a brief review on HyFlex, a

software framework upon which we built our programs. We then describe the implementa-

tion details of our approach. Following that, we will show the results of experiments and

compare the proposed approach to two alternatives.

3We can also set a bound on the length of the patterns for efficiency purposes.
4Note that we do not impose this threshold restriction on sub-sequences of length 1. Otherwise, it may

result in an error when we apply the initial model to the task of segmenting sequences, i.e., the situation
that the model doesn’t contain a heuristic that appears in the sequence.
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5.3.1 HyFlex and Its Extensions

HyFlex is a software framework that was developed to facilitate the research of hyper-

heuristics [80]. The benefit of using HyFlex is that it offers a common interface for dealing

with different combinatorial optimization problems. This interface encapsulates problem

specific details, such as solution representations and how each heuristic actually works,

from the user of the framework. Thus, it provides a convenient platform on which we can

experiment with our ideas.

The initial HyFlex software package has four problem domains built into it: max-

imum satisfiability, one-dimensional bin packing, permutation flow shop and personnel

scheduling. Later, for the purpose of the CHeSC competition, two more problem domains

(Traveling Salesman Problem and Vehicle Routing Problem) are added into the standard

package. Each of these problem domains has an implementation consisting of a set of prob-

lem specific heuristics ready to be called from a unified interface. Note that HyFlex also

offers a parametric control over some tunable aspects of the defined heuristics. However,

for simplicity, we will only use the default parameters and will not perform any further

tuning on them.

Since its initial release, HyFlex has being extended, e.g., [1, 104]. In this work, we also

use an extension [1] that offers an implementation of the quadratic assignment problem.

As mentioned in Section 5.1, our approach makes a distributional assumption about the

problem instances from a domain. However, the default collections of problem instances

in both the original HyFlex and Adriaensen et al.’s extension [1] don’t seem to follow

this assumption: For each domain, they tend to put together problem instances that are

characteristically dissimilar to each other, which violates our distributional assumption.

To create our target setting, we modified their code so that we can load problem instances

from sources that follow more closely to our distributional assumption.

Specifically, we will test our approach with three problem domains: permutation flow

shop problem, 1-D bin packing and quadratic assignment problem (they will be denoted

as FS, BP, and QAP, respectively.) The descriptions of these problem domains and the

implementation details of their accompanying heuristics can be found in [54], [103] and [1].

For each problem domain, we will run experiments on multiple sets of problem instances

where each set follows a particular distribution. Table 5.1 shows the name of each instance
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Table 5.1: Problem Domains & Sets of Instances

Domain Instance Sets Source

FS 100x10, 100x20, 200x10, 200x20, 500x20 [99]

BP testdual4, testdual7, testdual8, testdual11 [17]

QAP tai45e, tai75e [30]

set and the source where we obtained them.

5.3.2 Implementation Details

Our implementation starts with an initial stage that collects a log of sequences. For an

instance set, we will run the baseline algorithm from Chapter 3 on each of the training

problem instances 31 times (with different random seeds) to collect sequences of heuristics

that lead to improving solutions. In our experiments, each run lasts for 3 minutes on an

Amazon Web Service’s EC2 c4.large virtual machine. The collected sequences5 are then

fed into a model construction procedure to produce a probabilistic model that will later

be used as the policy for selecting heuristics.

In order to achieve a more accurate modeling, we further adopt the following exten-

sion to the model construction procedure described in the previous section: We split the

sequence log into two collections. One collection contains the singleton sequences, i.e., the

sequences of length 1, and the other contains all the other sequences, which are of length

2 or longer. We then build two separate models based on these two collections. With this

specialization, our policy for choosing heuristics can now be conditioned on the length of

the heuristic chain. That is, when the length policy L suggests that the next heuristic chain

should be of length 1 (i.e. ` = 1), we will use the singleton model for choosing heuristics.

On the other hand, if ` > 1, we will use the model built on sequences of length 2 or more

to select among heuristics and heuristic macros.

Note that there is a parameter θ that needs to be set for the model construction

procedure. It specifies the minimal number of appearances in the log in order for a sub-

sequence to be considered as a pattern in the initial model. In order to account for the

5Note that this collection contains all sequences from all runs on all training problem instances from
the instance set.
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variations of the number of sequences in the log (denoted as N), we use the following

formula,

θ = max(3, N × ρ)

where we use ρ = 0.01 for all our experiments.

Once we have constructed a model, we will then use it as the policy for choosing

heuristics (i.e. theH component) and plug it into Algorithm 6. As for the length policy (i.e.

the L component), we will continue to use the Luby’s sequence in the following experiments.

5.3.3 Empirical Results

With our distributional assumption, we conducted experiments on each instance set sepa-

rately, and in order to assess the generalization aspect, the problem instances were used in

a leave-one-out fashion, e.g., if we want to assess the performance of the proposed method

on the first problem instance, we will use the second to the tenth instance (assuming there

are ten instances) as the training problem instances to collect sequences.

With a collection of sequences, we then built a policy H by performing the aforemen-

tioned policy construction procedure. With the resulting policy H, along side with Luby’s

strategy as the L component, we constructed an algorithm out of the template of Algo-

rithm 6. The resulting algorithm was then tested for 31 runs, each run lasting for 30

seconds. Note that the discrepancy between the amount of time allocated for the training

runs and the amount of time allocated for the testing runs is because 1) we would like

to collect a sufficient number of sequences, and 2) we would like to obtain patterns that

may only show up in the later stage of a run. Basically, our objective is that through

these experiments, we would like to see whether the proposed approach offers any speed-

up over the baseline approach, i.e., whether the algorithm with a learned policy can find

substantially better solution compared to the baseline algorithm at an earlier stage. In

this way, we can measure whether a constructed policy contains information that is useful

for enhancing the search ability of the algorithm.

As a further comparison, we also tested a configuration that uses what we call “plain”

models. This kind of model only considers individual heuristics and does not extend to

patterns of length 2 or more. Basically, it is just a frequency estimate on each of the
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individual heuristics. Note that for this configuration, we also used the singleton sequence

specialization mentioned previously, so that we can compare meaningfully on whether there

is an advantage from building a more elaborated model.

To provide a fair comparison, we also account for the effect of the initial solution by

synchronizing the three approaches to start with the same initial solution. That is, for the

i-th run of all three approaches, the same initial solution is used so that none will have

the advantage of starting from a better solution. This setting also allows us to use paired

t-test and Wilcoxon signed-rank test to statistically evaluate the results.

The results of the experiments on the FS instance sets are shown in Table 5.2. For each

target problem instance, we compare the results of (1) the proposed approach, denoted as

Macro, (2) the baseline policy (i.e. using uniformly random selection), denoted as Baseline,

and (3) the configuration that uses plain models, denoted as Plain. Each number listed

in these tables represents the Averaged Relatived Percentage Deviation (ARPD) over 31

runs:

ARPD =
1

31

31∑
i=1

objvali − bestknown

bestknown
× 100

where objvali is the final objective value obtained from run i, and bestknown represents

the objective value of the current best-known solution.

To ensure a sound analysis, we also performed statistical tests to see if there is a

significant difference between the results of different methods. The statistical tests are

arranged as follows: If the pairwise differences between the results of two approaches are

distributed normally (as certified by a normality test with p-value > 0.1), then we use a

paired t-test. Otherwise, we use the Wilcoxon signed-rank test. The results of the tests

are also shown in the tables: we use a + symbol to denote that the result is significantly

different (as determined by a p-value < 0.1) from the result of the baseline, and a ∗ symbol

to represent that there is a significant difference (also thresholded by p-value< 0.1) between

the result of the proposed approach and the result of the approach that uses plain models.

As shown in Table 5.2, for the FS domain, the proposed approach seems to have an

advantage over the baseline method, as supported by the generally better ARPD values.

Furthermore, the significance of this advantage appears to increase as the problem becomes

larger (i.e., increasing the number of jobs) or harder (i.e., increasing the number of machines
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Table 5.2: Results on Taillard’s FS Instance Sets

(a) 100x10

Instance Baseline Plain Macro
01 0.240398 0.182255+ 0.135294+∗

02 0.278014 0.230975+ 0.223738+

03 0.053991 0.051717 0.052854
04 0.866018 0.748280+ 0.735446+

05 0.741693 0.613062+ 0.604802+

06 0.124701 0.108277 0.094286+

07 0.132030 0.096861 0.089366+

08 0.642060 0.522607+ 0.487575+

09 0.410437 0.319229+ 0.262086+∗

10 0.285328 0.129695+ 0.093270+

(b) 100x20

Instance Baseline Plain Macro
01 2.640147 2.245373+ 2.102340+∗

02 2.160972 1.742551+ 1.671075+

03 1.870361 1.556576+ 1.482503+

04 1.849860 1.549355+ 1.515908+

05 2.125333 1.913311+ 1.731942+∗

06 2.196326 2.010807+ 1.958598+

07 2.155341 1.783766+ 1.758548+

08 2.436111 2.265775+ 2.055122+∗

09 2.163732 1.847063+ 1.791544+

10 1.829996 1.564772+ 1.459484+

(c) 200x10

Instance Baseline Plain Macro
01 0.192740 0.176406 0.159775+

02 0.585139 0.437084+ 0.405688+

03 0.525427 0.378343+ 0.367415+

04 0.038808 0.035549 0.034364
05 0.140386 0.123527 0.120768+

06 0.362899 0.264523+ 0.237040+

07 0.315031 0.276693 0.242218+

08 0.382106 0.290713+ 0.251030+

09 0.249399 0.207678+ 0.188826+

10 0.339654 0.348417 0.218478+∗

(d) 200x20

Instance Baseline Plain Macro
01 1.986774 1.773545+ 1.688830+∗

02 2.606157 2.311593+ 2.160424+∗

03 2.470325 2.252717+ 2.130902+∗

04 2.240183 2.047636+ 1.790716+∗

05 1.760885 1.355761+ 1.261786+∗

06 2.212979 1.956958+ 1.847276+∗

07 2.034019 1.660041+ 1.541913+∗

08 2.131184 1.978347+ 1.707110+∗

09 2.499481 2.294842+ 2.167735+∗

10 2.302188 2.008985+ 1.914965+∗

(e) 500x20

Instance Baseline Plain Macro
01 1.602195 1.398687+ 1.295943+∗

02 1.650002 1.440909+ 1.282538+∗

03 1.494799 1.286604+ 1.239142+

04 1.278690 1.094087+ 1.052021+

05 1.185883 0.975802+ 0.890545+∗

06 1.218708 1.020362+ 0.873065+∗

07 1.045157 0.888445+ 0.808010+∗

08 1.385299 1.258866+ 1.140813+∗

09 1.521296 1.334855+ 1.229168+∗

10 1.126722 0.990774+ 0.883844+∗
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Table 5.3: Results on Taillard’s QAP Instance Sets

(a) tai45e

Instance Baseline Plain Macro
01 6.580404 3.086954+ 1.595798+

02 5.339964 5.189194 3.429459
03 7.010209 2.943039+ 1.300211+∗

04 6.868685 5.049172 2.592011+∗

05 3.449316 3.267493 2.063026
06 6.064243 2.135901+ 1.969049+

07 4.913718 2.534868+ 1.453027+

08 8.285509 2.772993+ 2.239460+

09 6.608827 3.470362+ 1.746826+

10 4.267595 3.492093 1.391387+∗

(b) tai75e

Instance Baseline Plain Macro
01 19.109029 15.763880+ 11.862988+∗

02 20.694830 18.774176+ 14.406250+∗

03 18.232165 14.948470+ 13.158483+

04 17.519799 15.020942 9.616173+∗

05 18.173579 14.491593+ 12.517651+

06 19.500507 16.992233+ 12.266506+∗

07 18.260845 14.754167+ 10.938063+∗

08 22.025588 17.240534+ 14.025829+∗

09 16.053041 13.710570+ 11.782226+

10 16.564989 11.761283+ 9.898807+

from 10 to 20.) As for the comparison between the proposed approach and the approach

that uses plain models, we can observe a similar trend: the advantage also seems to increase

as the problem becomes larger or harder. Furthermore, although the plain approach gives a

better ARPD on one of the 50 instances, the difference for this instance is not statistically

significant.

The results of the experiments on the QAP domain are shown in Table 5.3. These results

are also represented in ARPDs. In the QAP domain, we observe the same phenomenon

as in the FS domain: overall, the proposed approach always gives a better result, and for

the larger problem instances (i.e., instances in tai75e) the differences between the proposed

approach and the plain approach are generally significant.

Table 5.4 shows the results of the experiments on the BP domain. In this case, problem

instances from all four instance sets are of the same size: they are all one-dimensional bin

packing problems containing 500 pieces. The difference lies in how the sizes of the pieces

are distributed. As described in [17], these instance sets were created by drawing pieces

from different pairs of Gaussian distributions. Note that for this domain, the results are

shown in objective values instead of ARPDs because we cannot find a published source of

best-known values.

As shown in the tables, both the plain approach and the proposed approach are better

than the baseline approach with statistical significance. Comparing the proposed approach

with the plain approach, we can see that for most of the problem instances, the proposed
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Table 5.4: Results on Burke et al.’s BP Instance Sets

(a) testdual4

Instance Baseline Plain Macro
00 0.089207 0.069133+ 0.068139+∗

01 0.091488 0.070113+ 0.069213+∗

02 0.093708 0.072988+ 0.071486+∗

03 0.090633 0.070524+ 0.069611+∗

04 0.089375 0.069370+ 0.068516+∗

05 0.092950 0.072249+ 0.071397+∗

06 0.094640 0.072804+ 0.071660+∗

07 0.097589 0.077429+ 0.076264+∗

08 0.090515 0.071128+ 0.070128+∗

09 0.089263 0.069609+ 0.068092+∗

(b) testdual7

Instance Baseline Plain Macro
00 0.028948 0.022164+ 0.020675+∗

01 0.028869 0.022314+ 0.020459+∗

02 0.029878 0.022866+ 0.021361+∗

03 0.029103 0.021700+ 0.020662+∗

04 0.029866 0.022316+ 0.021595+

05 0.030726 0.023608+ 0.021421+∗

06 0.029945 0.022211+ 0.021128+∗

07 0.032096 0.024515+ 0.022694+∗

08 0.030181 0.022947+ 0.021105+∗

09 0.030498 0.024017+ 0.022329+∗

(c) testdual8

Instance Baseline Plain Macro
00 0.097940 0.073250+ 0.072815+

01 0.095974 0.072190+ 0.070945+∗

02 0.096373 0.073214+ 0.072088+∗

03 0.094882 0.070756+ 0.070599+

04 0.094714 0.069339+ 0.069100+

05 0.099978 0.073889+ 0.073201+

06 0.094166 0.070222+ 0.069058+∗

07 0.093902 0.071990+ 0.070911+∗

08 0.095113 0.068894+ 0.068639+

09 0.097508 0.071883+ 0.071384+

(d) testdual11

Instance Baseline Plain Macro
00 0.036997 0.030537+ 0.027129+∗

01 0.034632 0.027890+ 0.025346+∗

02 0.035710 0.028108+ 0.025693+∗

03 0.035079 0.028418+ 0.025837+∗

04 0.036217 0.028120+ 0.027041+∗

05 0.035668 0.027843+ 0.025871+∗

06 0.036229 0.028726+ 0.025967+∗

07 0.037245 0.028298+ 0.027081+∗

08 0.034261 0.027077+ 0.024494+∗

09 0.035490 0.028428+ 0.026406+∗

approach offered statistically better results. However, for the tesetdual8 instance set, the

significance seems to drop. We suspect that this is because the problem instances from

this instance set are relatively easier to optimize because the pieces are drawn from a pair

of Gaussian distributions that have means and standard deviations of (50, 10) and (35, 5).

This makes the overall distribution of the 500 pieces look more unimodal than that of the

problem instances from the other instance sets.

5.4 Discussion

In the previous section, we evaluated whether a learned H policy offers any speed-up over

baseline methods, and furthermore, whether explicitly expressing the potentially useful
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collaboration patterns (i.e., what we called heuristic macros) offers any advantages. Note

that the aim of our experiments was not to solve the combinatorial optimization problems

to their state-of-the-art objective values since the proposed technique was fundamentally

constrained by the set of heuristics provided within HyFlex. Rather our intent is simply

to test whether the proposed learning method can be effective in the proposed setting.

However, we would like to point out that by adding the state-of-the-art neighborhood-

based heuristics into the algorithm (i.e., by adding them into the set of heuristics H), we

can incorporate their power and perhaps achieve an improvement over the state of the art.

Also note that the above experiments were conducted with a cross-validation setup in

which a learned policy was evaluated using problem instance that it has never been trained

on. This ensures that the improvement that we observed was due to having learned gen-

eralizable patterns. On the other hand, if we test the learned policy on problem instances

that it has been trained on, we would not be able to make such an assertion.

5.5 Conclusions

In this chapter, we developed a technique that allows us to automate the task of building

the policies for choosing heuristics. This technique distills potentially useful patterns of

interactions among heuristics, which are represented as a set of heuristic macros (i.e.

concatenations of several heuristics), along with an estimate for the frequency of using

each heuristic macro. The empirical results on three problem domains have shown that

the proposed approach is effective and has an advantage over the baseline methods.
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Chapter 6

A Study on Combining Multiple

Sampling-based Heuristics

In this chapter, we present a study on combining multiple sampling-based heuristics. The

main characteristic of this class of heuristics is that the process of forming a new candidate

solution is based on sampling some explicit probabilistic model that represents our tendency

to explore certain regions of the search space. In general, with a sampling-based heuristic,

the process of forming a new candidate solution is multi-step: At each step, we will sample

the heuristic’s probabilistic model to obtain a segment of the solution, and this sampling

can be conditioned on other segments obtained in prior steps. The steps proceed until

we obtain a full solution. And for the purpose of this research, we can further categorize

the sampling-based heuristics by whether they use handcrafted probabilistic models or

probabilistic models that were estimated from some data source. In this chapter, we will

develop a general technique that is capable of combining both heuristics that rely on

handcrafted probabilistic models and heuristics that use estimated probabilistic models.

To briefly recap, the idea of using handcrafted probabilistic models has been considered

before in other search frameworks such as Bresina’s HBSS [9] and Cicirello and Smith’s

VBSS [25]. These frameworks use probabilistic models that are backed by some handcrafted

heuristic functions. To sample a solution segment, such a heuristic function assigns a value

to each possible candidate for that segment, and then we transform that value to be the

probability associated with selecting that particular candidate.

As for heuristics that use estimated probabilistic models, in this chapter, we will use the
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Estimation of Distribution Algorithms (EDAs) framework [60, 68, 83, 84] as our template

for creating these kind of heuristics. In general, an EDA maintains a population of solu-

tions, which is then used as the set of data points on which to estimate the probabilistic

model. To explore the search space, an EDA samples the resulting probabilistic model to

generate new candidate solutions, and subsequently updates the population with the new

solutions. A more detailed review can be found in Section 2.6.

In this chapter, we will develop our techniques using sequencing and routing problems

as the demonstrative problem domain. To provide some context, we begin with a review

on previous works of EDAs that targeted at this domain.

6.1 Background

As mentioned in Section 2.6, most of the EDA studies have focused on domains in which a

solution can be naturally represented as a fixed-length string with no ordering dependencies

(that is, identical to the conventional representations used by the Genetic Algorithm, e.g.

bit-string encoding of solutions.) However, many interesting and important combinatorial

optimization problems require other types of solution representations. The domain of

sequencing and routing provides canonical examples of such problems. In this domain, the

objective is to search for an optimal ordering of a set of items or to search for an optimized

sequence for performing a given set of operations. One classical example of this kind of

problem is the Traveling Salesman Problem (TSP). The objective of the TSP is to find the

shortest route for a traveling salesman who is on the mission to visit every city on a given

list precisely once and then return to the initial city. The problem is equivalent to finding

the Hamiltonian cycle that has the smallest cost in a complete weighted graph. The TSP

is celebrated because many scientific and engineering problems can be formulated as TSPs

and it has long been used to study sequencing and routing problems. In this chapter, we

will use the TSP as our model problem for illustration and evaluation purposes.

Some previous works can be found in the literature that deal with sequencing and rout-

ing problems by means of EDAs. However, most of these approaches are direct adaptations

of EDAs designed for discrete or continuous problems that have no ordering properties.

Earliest attempts [89] applied discrete EDAs, such as Univariate Marginal Distribution Al-
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gorithms (UMDA) [78], Mutual Information Maximization for Input Clustering (MIMIC)

[27] and Estimation of Bayesian Network Algorithm (EBNA) [35], as if a solution has no

sequential dependencies. The obvious drawback is that the information of relative ordering

among items is not explicitly considered in the constructed models. This deficiency may

be the cause of low success rate in finding the global optimum as reported in [89, 100, 101].

Adaptation of continuous EDAs [67, 89] has also been explored. Most of the research

in this direction uses the random keys representation [5]. With this scheme, a solution

is represented as a real-valued vector, in which the i-th item is associated with the i-th

value in the vector. To convert a real-valued vector into an ordering of the items, one sorts

the items according to their associated values. In this way, some of the information about

the relative ordering of the items can be encoded in the probabilistic model. Nevertheless,

with this type of construct, an algorithm has to search for solutions in a largely redundant

real-valued space. This inefficiency is reflected in their relatively inferior performance in

the review by [20].

The limitations of these direct adaptations of EDAs designed for problems without

ordering properties has encouraged the EDA community to invent other approaches that

specifically target sequencing problems [7, 8, 100, 101]. More relevant to this research is

the work done by Tsutsui et al. [101]. They proposed an approach called Edge Histogram

Based Sampling Algorithm (EHBSA) [100], which constructs an edge histogram matrix

by counting the number of occurrences that item i and item j appear consecutively in

the sequences. For TSP, this is how many times the link between the i-th and j-th city

is observed in the promising solutions. Based on these statistics, a probabilistic model is

estimated that gives conditional probability of the next item given the previous one. This

approach is equivalent to estimating a bigram model from the current population of good

solutions. In this chapter, we will look at sampling-based heuristics that estimate and

sample generalized n-gram models.

Although this generalization seems straightforward, as we will show empirically, the

naive approach of increasing the order of the model (e.g., using trigram instead of bigram)

does not work. Instead, we will develop a collaboration-based approach that utilizes mul-

tiple probabilistic models of different orders. The specific technique is to combine multiple

models in the form of a linear interpolation (in which each model has an associated weight),
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and use a holdout set to estimate the weight associated with each model. In this way, the

search can gradually shift the emphasis from a low-order model to higher order ones as

longer patterns emerge in the population. Furthermore, as shown in Section 6.5, this

technique is also general enough to incorporate heuristics with handcrafted probabilistic

models.

In the next section, we will describe the formulation of the n-gram models. After that,

Section 6.3 introduces our sampling-based heuristics derived from the EDA framework

that use n-gram models for guiding the search process. It also discusses the difficulty

encountered when moving from the bigram model to higher-order models. In Section 6.4,

we present a method that is able to combine multiple models of different orders, and thus

provides a smooth transition from a lower-order model to higher-order ones. Section 6.5

further demonstrates how a heuristic with a handcrafted probabilistic model can be easily

incorporated using the same technique. In Section 6.6, we will give some performance

comparisons showing the advantage of using a combination of multiple models compared

to a single model approach and also more traditional evolutionary algorithms. Finally,

Section 6.8 summarizes this chapter.

6.2 Modeling Sequences with n-gram Statistics

An n-gram is a pattern of n consecutive items, which is usually a segment from a longer

sequence. Such a construct is often used in the tasks of modeling statistical properties

of sequences, especially in the field of natural language processing (NLP). For example, a

classic task in NLP is to predict the next word given the previous words. Such a task can be

stated as attempting to estimate the conditional probability of observing some item wi as

the next item given the history of items seen so far. The n-gram approach to this estimate

is to make a Markov assumption that only prior local context—the last few items—affects

the next item. More formally, we are interested in estimating

P (Wi = wi|Wi−n+1 = wi−n+1, . . . ,Wi−1 = wi−1)

where the sequence w1, w2, · · · is some instantiation of a sequence of random variables

W1,W2 · · · . In the following, we will use P (wi|wi−n+1 · · ·wi−1) as a shorthand for this
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probability function.

The obvious first answer to the above formulation is to suggest using a maximum

likelihood estimate (MLE):

PMLE(wi|wi−n+1 · · ·wi−1) =
C(wi−n+1 · · ·wi−1wi)∑
v∈V C(wi−n+1 · · ·wi−1v)

where C(wi−n+1 · · ·wi−1wi) is the frequency of a certain n-gram in the training samples,

and V is the set of possible items. However, a drawback is that MLE assigns a zero

probability to unseen events, which effectively zeros out the probability of sequences with

component n-grams that just happened not appearing in the training samples. For our

scenario, this creates a risk of arbitrarily discarding some portion of the unexplored search

space. Thus, we need a more suitable estimator that takes previously unseen patterns into

consideration.

A simple solution to this problem is to smooth the distribution with some pseudocount

κ:

Pκ(wi|wi−n+1 · · ·wi−1) =
C(wi−n+1 · · ·wi−1wi) + κ∑
v∈V (C(wi−n+1 · · ·wi−1v) + κ)

where κ is usually set to a value smaller than 1. In this work, we use this simple method

to allocate probability mass for unobserved events, though more sophisticated estimators

are possible for this task.

6.3 Heuristics That Use Estimated n-gram Models

As mentioned previously, in this study, we will use the EDA framework to derive our

sampling-based heuristics. The main idea is that by following the EDA framework, we can

derive heuristics that use estimated probabilistic models, as opposed to handcrafted prob-

abilistic models. Specifically, we will work on sampling-based heuristics that use estimated

n-gram models.

To briefly review the operations performed by an EDA: At each iteration, we start with

a set of promising solutions. The algorithm then constructs a probabilistic model based

on statistics gathered from those solutions. Once a model is obtained, a number of new

solutions will be generated by sampling the model to replace solutions in the current pop-
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Algorithm 11 General Procedure of an EDA

Initialize a population P with a set of solutions.
Evaluate the solutions in P.
t← 1.
while the stopping criterion is not met do

Mt ← build a probabilistic model based on promising solutions in P.
St ← sample Mt to generate new candidate solutions
Evaluate the solutions in St.
Incorporate St into P using some replacement strategy.
t← t+ 1.

end while

ulation according to some replacement strategy. This replacement strategy is designed to

guide the growth of the average solution quality of the population. This general procedure

of EDA is summarized in Algorithm 11.

In this work, instead of generating an entire solution anew, we first take an existing

solution from the current population and randomly choose two points on the solution

string to extract a subsequence from that solution. This segment will then be taken as

the first part of the new solution and serve as the “history” on which the further sampling

is based. This kind of partial sampling technique has been used by previous researchers

such as [23, 24] and [101], achieving better usage of diversity and resulting in significant

improvement in performance. For our purpose, this has an additional benefit of providing

a convenient basis to initialize the sampling from the n-gram models.

Once we have the first part of the new solution, the remainder of the solution is gener-

ated by repeatedly sampling the n-gram model, with previous n− 1 items as the history.

In order to produce a valid solution, the set of possible items V may be varied as the

sampling goes on. For example, when dealing with the TSPs, the set of possible next cities

V has to be altered to exclude cities that have already been included in the constructed

partial solution.

As for the replacement strategy, we compare the quality of a newly generated solution

with the solution from which we took its segment for initialization. The better one of the

two is selected and placed into the next population. This strategy has a good effect in

preserving the diversity of the population and thus helps avoiding premature convergence.

In this work, we use replacement as the sole means for selecting promising solutions, i.e.
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better solutions are preserved under the replacement process. This is similar to the mecha-

nism used by the evolution strategies [6], in which every solution in the current population

is seen as a potentially good solution because they have survived previous replacement

competitions.

To summarize the overall flow of the algorithm: At each iteration, we slide a window

of size n through each solution in the current population to obtain the frequency counts

of n-gram patterns. These statistics are then used for estimating an n-gram model in the

form of a conditional distribution. To generate a new solution, we use partial sampling on

an existing solution in the current population. Each solution in the current population is

visited once for this sampling. Following each partial sampling, a replacement competition

is held between the new solution and the solution from which that new solution’s starting

segment was extracted.

As a first step, we examine the performance of using a bigram model

P2G(wi|wi−1) =
C(wi−1wi) + κ∑
v∈V (C(wi−1v) + κ)

for solving a 48-city TSP instance, gr48, taken from TSPLIB1 [86]. Let ` denote the

problem size. In this experiment, the population size N is set to 5`, the pseudocount is set

to κ = 0.01, and the termination criterion is when either the optimal tour is found or when

the algorithm reaches 50` iterations. We ran the algorithm 30 times to observe the average

performance. The result of the experiment is presented in Table 6.1. It shows the success

rate in finding the optimal tour and the average number of objective function evaluations

used by the algorithm among the successful runs. Here, we use the number of times that an

algorithm invokes the objective function to evaluate a solution as a measure of how much

computational resource was consumed by the algorithm. This measure is commonly used

in research concerning GAs and EDAs, in which the implicit assumption is that in order

to generalize the results, evaluating the objective function should be treated as the most

resource intensive bottleneck because it can correspond to some complex computation such

as running a simulation.

From Table 6.1, we can see that the bigram approach gives a pretty decent performance.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 6.1: Observations when solving gr48

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 277024 34535.4
3G 9/30 224640 118490.2

2G 800 iter.−−−−→3G 30/30 240032 20753.3

It shows a high success rate in finding the global optimum, and a reasonable usage of

function evaluations.

A tempting thought to proceed is to increase the order of the model. For example,

instead of using bigram, we could use a trigram model

P3G(wi|wi−2wi−1) =
C(wi−2wi−1wi) + κ∑
v∈V (C(wi−2wi−1v) + κ)

for learning the patterns. However, as shown in Table 6.1, this results in a significant drop

in success rate. Our explanation is that at early stage of a run, there are not so many long

patterns that are of good quality. If we attempt to use a higher-order model to learn longer

patterns when there are none, we will end up encoding mediocre patterns into the model.

Thus, a better way to proceed may be to use a low-order model like bigram model at the

beginning of a run and switch to higher-order ones after longer patterns have emerged in

the population. This will correspond to a form of collaboration among heuristics. More

specifically, the heuristics are exchanging information using the population of solutions as

a shared memory.

To provide some empirical support for this conjecture, we performed another experiment

with the following modification to the algorithm: it starts out with using a bigram model,

then it switches to using trigram model after 800 iterations. As shown in the third row

of Table 6.1, the success rate returns to the same level as using the bigram model and it

shows some improvement on function evaluations over the bigram approach. It seems that

we can use this technique to gradually move to higher-order models.

However, choosing an appropriate schedule to make such switches is a nontrivial task.

To address this issue and avoid having to choose a fixed switching point to elevate to

a higher-order model, we propose an approach that estimates multiple n-gram models

of different orders and combines those models into one composite model. The method
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automatically calibrates the degree of emphasis placed on each n-gram model. The detail

of our formulation is presented in the next section.

6.4 Combining Multiple Models with Linear Interpo-

lation

Specifically, we formulate the synthesis of multiple models as a linear combination of dis-

tributions

P (wi|hi) =
∑
j

λjPj(wi|hi) (6.1)

where hi represents the history of items we have seen so far, j is the index to a particular

model, and λj is the weight associated with the j-th model such that λj > 0 and
∑

j λj = 1.

A combination of bigram and trigram model will be

P2G+3G(wi|hi) = λ2GP2G(wi|wi−1) + λ3GP3G(wi|wi−2wi−1)

Assuming that we have K models that we want to combine together, for this formula-

tion, we have to determine K weights, λ1, λ2, . . . , λK , one associated with each model. In

order to do this, we reserve a portion of the population for the task of estimating appropri-

ate values for those λj’s. Suppose that there are M items in such a holdout set for which

we can give conditional probabilities. For each model Pj, we create a probability stream

pj = (pj1, pj2, . . . , pjM) where pji is the probability of item wi predicted by the model Pj,

i.e., pji = Pj(wi|hi). These K probability streams (each of length M) are then used as the

input to Algorithm 12 [55]. The resulting λj’s are the best fit with respect to those input

probability streams, i.e., these are the weights which optimize the average likelihood with

respect to this holdout set. For simplicity, we use maxj |λ(t)j − λ
(t−1)
j | < 0.001 as the con-

dition to terminate Algorithm 12. In all our experiments, the invocations of Algorithm 12

terminated within just a few iterations (usually less than 10), and didn’t seem to vary as

we incorporate more models. Thus, the computation requirement for finding the weights in

this way only grows linearly with M and similarly, linear with K as we need to prepare the

probability stream of each model. Note that M is usually small (a tenth of the population
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Algorithm 12 Estimating the Weights λj’s

Input: A set of probability streams {p1,p2, . . . ,pK},
such that each pj = (pj1, pj2, . . . , pjM) is of length M .

Initialize Λ(0) = {λ(0)1 , λ
(0)
2 , . . . , λ

(0)
K } s.t. each λ

(0)
j > 0 and

∑K
j=1 λ

(0)
j = 1

repeat from t = 0

For j = 1 . . . K, update λj using λ
(t+1)
j = 1

M

∑M
i=1

λ
(t)
j pji∑K

k=1 λ
(t)
k pki

t = t+ 1
until the difference between Λ(t) and Λ(t−1) is small
return Λ(t)

Table 6.2: Parameter Settings

(a) For problem size ` < 70

Parameters Value
population size N = 5`
pseudocount κ = 0.01
size of holdout set R = bN

10
c

max iterations 50`

(b) For problem size ` >= 70

Parameters Value
population size N = 5`
pseudocount κ = 0.001
size of holdout set R = bN

10
c

max iterations 80`

size in our experiments), so this extra computation is quite manageable.

To illustrate the search behavior, Fig. 6.1 shows the variation of weights in a typical

run that uses a combination of the bigram and trigram models. The weight for the bigram

model starts out with a high value and gradually decreases. On the other hand, the weight

of the trigram model will begin to dominate in later part of the search, meaning that we

do more and more sampling with the trigram model. Based on this self-adaptive behavior,

which adjusts the weights automatically, we call our proposal the “evolving mixture.”

To evaluate the effectiveness of our proposal, we performed a set of experiments on ten

TSP instances from TSPLIB. In the following, we will denote the problem size (the number

of cities) as `. The parameters to the algorithms are listed in Table 6.2. As before, the

termination criterion is when either the optimal tour is found or when an algorithm reaches

maximal number of iterations. Again, we ran each algorithm included for comparison for

30 times to give the average performance. The outcomes are presented in Table 6.3. In

each table, we listed the success rate of each algorithm and its average usage of function

evaluations among the successful runs. Note that the trailing number in each instance’s

name represents the number of cities in that instance.
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Figure 6.1: Typical variation of weights associated with bigram and trigram model. This
illustration is from a run on gr48 with population size N = 450 and 30% of the population
as holdout set.

The result of using the evolving mixture to combine bigram and trigram is listed in

the third row of each table. Comparing to the trigram approach (second row of the ta-

ble), it gives a significantly better success rate, which is at the same level of the bigram

approach. On the other hand, when compared with the bigram approach, the evolving

mixture approach generally uses less function evaluations on average.

6.5 Incorporating Heuristics That Use Handcrafted

Probabilistic Models

The previous experiments have demonstrated that using the evolving mixture to combine

two n-gram models delivered a good result. It shows some improvement over the bigram
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Table 6.3: Experiment Results

(a) ulysses16

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 5461.3 902.4
3G 23/30 7207.0 10552.4

2G+3G 30/30 5040.0 1250.3
2G+3G+DH 30/30 4597.3 973.0

DH 30/30 17725.3 12070.3

(b) gr24

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 18436.0 2356.7
3G 25/30 16574.4 11117.6

2G+3G 30/30 16492.0 2325.1
2G+3G+DH 30/30 11432.0 1717.7

DH 30/30 13340.0 6265.2

(c) bay29

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 36332.0 3914.3
3G 22/30 40336.4 43365.6

2G+3G 30/30 31218.5 3409.1
2G+3G+DH 29/30 22785.0 3251.0

DH 19/30 107063.4 44051.6

(d) att48

Method
Success

Rate
# of Evaluations
mean std

2G 27/30 298053.3 54469.6
3G 10/30 196176.0 127370.7

2G+3G 26/30 215021.5 18175.5
2G+3G+DH 30/30 111544.0 10272.6

DH 28/30 265637.1 90849.8

(e) gr48

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 277024.0 34535.4
3G 9/30 224640.0 118490.2

2G+3G 30/30 230048.0 23985.8
2G+3G+DH 30/30 154984.0 20243.5

DH 0/30 N/A N/A

(f) eil51

Method
Success

Rate
# of Evaluations
mean std

2G 19/30 493572.6 73781.0
3G 2/30 199665.0 39308.1

2G+3G 21/30 391182.1 90013.1
2G+3G+DH 29/30 217031.4 52819.1

DH 8/30 448513.1 157609.4

(g) berlin52

Method
Success

Rate
# of Evaluations
mean std

2G 29/30 264276.6 74339.8
3G 9/30 320348.9 237082.3

2G+3G 29/30 217171.7 26798.3
2G+3G+DH 30/30 113906.0 9854.6

DH 30/30 180882.0 77478.7

(h) st70

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 1426938.3 201534.3
3G 12/30 554983.3 69040.0

2G+3G 29/30 930444.8 76827.8
2G+3G+DH 30/30 298841.7 16886.3

DH 0/30 N/A N/A

(i) kroA100

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 3484900.0 208750.7
3G 7/30 2068357.1 233884.2

2G+3G 30/30 2773483.3 107248.1
2G+3G+DH 30/30 650783.3 46476.1

DH 0/30 N/A N/A

(j) lin105

Method
Success

Rate
# of Evaluations
mean std

2G 30/30 3772142.5 230364.5
3G 3/30 1984325.0 154667.8

2G+3G 28/30 2844131.3 119353.2
2G+3G+DH 30/30 572197.5 19629.8

DH 0/30 N/A N/A
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approach in the usage of function evaluations. And it does not suffer low success rate as

the trigram approach does. As we will show in this section, this technique is actually more

versatile than what we have just demonstrated in the previous section.

In its formulation of Eq. (6.1), we did not put a restriction on the type of the models

that can be included. It does not have to be an n-gram model for the evolving mixture

to work. The only constraint is that the model takes the form of a compatible probability

distribution so that we can evaluate its corresponding estimate of P (wi|hi). Thus, we

can even incorporate sampling-based heuristics that use handcrafted probabilistic models

without a change in the overall process.

For example, if we want to incorporate a distance-based heuristic for TSP into the

search mechanism, we could do so by crafting an “artificial distribution”

PDH(wi|wi−1) =
d(wi−1, wi)

−10∑
v∈V d(wi−1, v)−10

where d(u, v) is the distance between city u and city v. This formula assigns a probability

mass to each remaining city according to the distance between that city and the previous

one in the partial tour constructed so far. This basically says that the shorter the link

between two cities, the more likely that link will be adopted in the solution.

To see the effect of incorporating such a heuristic, we performed experiments on the

same set of TSP instances as previous section. The results are presented in the fourth rows

of Table 6.3. It can be observed that the performance improves significantly. Comparing

to using only n-gram models, it uses far less function evaluations, especially for larger

instances, while retaining a high success rate.

For completeness, we also include the results of using solely the distance-based heuristic

for updating the population. For more than half of the tested instances, this heuristic alone

does not provide a satisfying success rate. It seems that the effectiveness of relying solely on

this distance-based heuristic will depend on the property of that particular TSP instance.

Nevertheless, when combined with bigram and trigram model, this tends to give a great

performance boost to the algorithm.

The results also yield some interesting insight into how the algorithm utilizes the pro-

vided heuristics. For example, Figure 6.2 shows the shifts of weights among three distribu-
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Figure 6.2: Typical variation of weights from a run using a combination of bigram, trigram
models and distance heuristics. This illustration was generated from a run on gr48 with
population size 450 and using 30% of the population as the holdout set.
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tions when solving gr48. It illustrates how the evolving mixture adjusts the emphasis on

different n-gram models and the distance heuristic at different stages of the process. This

adjustment is dynamically determined based on the promising solutions in the holdout set.

We believe this dynamic behavior can lead to a more flexible search strategy and easier

integration of multiple heuristics. This can also be extended beyond solving TSPs, to other

types of problems as well, where we have different sampling-based heuristics available for

guiding the search.

6.6 Performance Comparison with Other Approaches

This section offers some performance comparisons between our method and other population-

based approaches. We are especially interested in comparing our results to Tsutsui’s

EHBSA [100]. Note that in the review by [20], a variant of EHBSA, EHBSA-WT, gave the

best empirical performance on TSPs comparing to 13 other EDAs for permutation-based

problems. In addition to EHBSA, we also include several well-known classical GAs for

sequencing problems: OX [81], eER [95] and PMX [40]. These are traditional GAs with

crossover operators tailored for manipulating permutations of items.

To have a meaningful comparsion with EHBSA-WT2 we adopt the parameter settings

used in [101] for running our algorithms. Parameters specific to our approach (pseudocount

and the size of the holdout set) are still set according to Table 6.2. The results of our

methods along with the data taken from [101] are listed in Table 6.4. From these results,

several observations can be made. The first thing to note is that the traditional GAs are not

very good at finding the global optima. Except for the smallest problem tested here, the

traditional GAs’ success rates are significantly lower than EHBSA-WT and our approaches.

For gr24, eER seems to gain a decent increase in success rate when the population size

N is increased from 60 to 240. However, the other two traditional GAs were still having

trouble in obtaining high success rate, even when the population size was increased to

fourfold. This inadequacy is more pronounced when we move to larger problems. We can

see that for gr48 and pr76, the success rates of OX, eER and PMX are not ideal even

2More specifically, we compare our approach to the results of configuration EHBSA-WT2, which shows
a more stable performance overall. Also it is more similar to our proposal in the way of doing partial
sampling.
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when population size is increased to eight times larger. On the other hand, EHBSA-WT

and our methods delivered pretty high success rates in all three problems, while using a

fairly small population size.

To further compare our methods with EHBSA-WT, we should turn our attention to

the differences between them in the number of function evaluations used. As we can see in

Table 6.4, our approaches perform better than EHBSA-WT, both in the average number

of function evaluations used and in having smaller standard deviations. The difference is

especially prominent when we compare it with the combination of bigram, trigram and

distance-based heuristic (2G+3G+DH, the last row of each table.) We can see that this

combination spent only about half of the function evaluations required by EHBSA-WT,

and it also has much smaller standard deviations. We think this result indicates that our

proposal offers an improvement over the traditional GAs and EHBSA.

6.7 A Framework for Combining Multiple Sampling-

based Heuristics

In this chapter, we demonstrated a method that combines multiple sampling-based heuris-

tics. Algorithmically, there are two interesting pieces that are crucial for the operations

of this approach. We will discuss them in the following, and based on the discussion, we

further distill a framework for combining sampling-based heuristics.

The first core algorithmic component is that our method maintains a population of good

solutions. This population provides an important function: It serves as a communication

medium among heuristics. To see how this works, first note that each solution being kept

in the population contains some good solution segments discovered by some heuristics, and

subsequently, these good solution segments can be learned by other heuristics that estimate

their probabilistic models based on the population. In this way, we allow knowledge that

originally resides in one heuristic to be propagated to other heuristics. For instance, in our

TSP case, some solution segments discovered by sampling the distance-based heuristic can

be subsequently learned by the bigram and trigram heuristics if a solution bearing these

segments is kept in the population.

The second core algorithmic component that supports our approach is the adoption of
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Table 6.4: Performance Comparisons

(a) Solving gr24

Method N
Success

Rate
# of Evaluations
mean std

OX 60 0/10 N/A N/A
OX 240 4/10 34140 3793
eER 60 1/10 4738 0
eER 240 10/10 13394 1726
PMX 60 0/10 N/A N/A
PMX 240 2/10 23191 1798

EHBSA-WT 60 10/10 10713 7419
2G+3G 60 10/10 9522 1739

2G+3G+DH 60 10/10 5982 983

(b) Solving gr48

Method N
Success

Rate
# of Evaluations
mean std

OX 120 0/10 N/A N/A
OX 960 2/10 287852 6706
eER 120 0/10 N/A N/A
eER 960 5/10 166286 4932
PMX 120 0/10 N/A N/A
PMX 960 0/10 N/A N/A

EHBSA-WT 120 10/10 144032 29115
2G+3G 120 10/10 131724 16748

2G+3G+DH 120 10/10 83508 17105

(c) Solving pr76

Method N
Success

Rate
# of Evaluations
mean std

OX 120 0/10 N/A N/A
OX 960 0/10 N/A N/A
eER 120 0/10 N/A N/A
eER 960 3/10 394887 22321
PMX 120 0/10 N/A N/A
PMX 960 0/10 N/A N/A

EHBSA-WT 120 9/10 457147 65821
2G+3G 120 10/10 405660 54893

2G+3G+DH 120 10/10 195960 28123
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Algorithm 13 A Framework for Combining Sampling-based Heuristics

Require: a set of heuristics H, a policy P for maintaining a population of good solutions,

and a policy S for selecting which heuristic to sample.

1: P← initial population of solutions.

2: while stopping criteria not met do

3: x← φ or some initial partial solution.

4: while x is not a complete solution do

5: h← a heuristic selected from H according to S.

6: y ← a solution segment obtained by sampling h conditioned on x.

7: x← x ∪ {y}
8: end while

9: Update P with x using policy P .

10: Update the parameters of policy S. (Optional)

11: end while

a parameterizable policy for selecting heuristics. This allows us to adjust the policy for

selecting heuristics based on a reserved portion of the population. It also relates to the

notion described above that the population can be seen as a storage for keeping what have

been discovered so that we can adjust algorithm’s behavior based on that.

Now having identified the above two algorithmic components, we can further formulate

a framework for combining multiple sampling-based heuristics that provides a generaliza-

tion over the approach described earlier in this chapter. As shown in Algorithm 13, this

framework takes as input a set of sampling-based heuristics H, a policy P for maintaining

a population, and a policy S for selecting which heuristic from H to sample. For each

iteration, we will construct a new candidate solution x by sampling a series of heuristics

selected by the policy S. This new candidate solution is then incorporated into the pop-

ulation according to the policy P . For example, in our approach described earlier in this

chapter, the policy P corresponds to the rule that the new candidate solution will compete

with its parent solution, and if it has a better objective value, then it will replace the parent

solution’s spot in the population. Finally, we can also update the parameters of the policy

S to adjust its selection behavior. This can happen at each iteration or at some interval

like our approach described earlier, which only updates once per |P| iterations. Also note

that we mark line 10 of Algorithm 13 as optional. In general, the policy S can be a fixed
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selection policy that provides no adjustable parameters. In that case, the behavior of S is

fixed throughout the run, as opposed to our approach described earlier, which dynamically

adjusting S’s behavior as the population updates with new solutions.

6.8 Summary

In this chapter, we examined a way of using multiple sampling-based heuristics, and based

on that, extracted a generalized framework. We begun with looking at sampling-based

heuristics that use estimated n-gram models. In this case, in order to provide a smooth

transition from lower-order models to higher-order ones, we proposed using a linear inter-

polation for combining multiple probabilistic models. The weights associated with those

models are estimated automatically from a reserved portion of the population of good

solutions. Then we also showed that this method can as well be used to incorporate

sampling-based heuristics that use handcrafted probabilistic models.

Qualitative inspection of the experimental results obtained also provides some support

for our intuition that different heuristics may be more suitable than others at different

stages of a run. For example, Figure 6.2 shows the shifts of weights among three distri-

butions in a run for solving gr48. It illustrates how the proposed technique adjusts the

emphasis toward using different heuristics at different stages of the process, and this ad-

justment is done dynamically based on the good solutions retained in the holdout set. As

a further illustration, Figure 6.3 shows the weight shifts when solving st70. Compared to

Figure 6.2, we can observe that a different degree of utilization of the distance heuristic

was adopted in this case. We believe this discrepancy was due to the condition that the

search bias provided by the distance heuristic was more appropriate in one case than in

the other. Since this kind of knowledge of the degree of appropriateness of the search bias

may be unavailable for most cases, we argue that our approach of automatically adjusting

the emphasis on each heuristic can potentially bring convenience to the process. In the

next chapter, we will explore this aspect in more detail through a series of experiments.
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Figure 6.3: Typical variation of weights with P2G, P3G and PDH. This illustration was
generated from a run on st70 with population size 500 and using 30% of the population
as the holdout set.
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Chapter 7

A Deeper Look at the Dynamic

Combinations of Sampling-based

Heuristics

In the previous chapter, we looked at the results of using a linear interpolation to com-

bine multiple sampling-based heuristics. Compared to using only a single sampling-based

heuristic (which uses a bigram, trigram, or handcrafted model), this approach demon-

strated a significantly better performance. Now, having established that combining mul-

tiple sampling-based heuristics is worthwhile, we turn attention to examination of our

design decision of adopting an automated procedure for estimating the weight associated

with each sampling-based heuristics.

This design decision is worth further investigation for a couple of reasons:

1. An obvious alternative is to manually assign weights to the constituent heuristics and

hold them fixed throughout the run. And although we demonstrated the convenience

of adopting an automated procedure for estimating the weights of the mixture, we

didn’t offer a comparison to this simple alternative.

2. In order to automatically estimate the weights assigned to the heuristics, we need

to reserve a portion of the population of solutions for the calibration procedure.

This may cause the overall algorithm to require more computational resources, and

we provided no justification as to whether this is actually a worthwhile tradeoff to
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make.

Finally, since our approach re-estimates the weights at each iteration, we are interested

in whether this dynamic adjustment will compare favorably to a static weight assignment1.

For example, given that we formulate the combination as

P2G+3G+DH(wi|hi) = λ2GP2G(wi|wi−1) + λ3GP3G(wi|wi−2wi−1) + λDHPDH(wi|wi−1)

we would like to know the advantage of using a holdout set to re-estimate the weights for

each iteration, compared to using a static combination, which fixes the λ’s to some values

throughout a run. Obviously, using holdout sets alleviates the users from having to decide

the values of the weights. However, one may wonder whether it is the case that merely

setting the weights to some fixed values will provide an adequate performance in most

cases2. Thus, in this chapter, we investigate how easy or hard is it to pick an adequate set

of parameters for a fixed mixture, and how the performance of this approach compares to

our approach of using dynamic adjustment.

7.1 Comparisons Arbitrarily Picking Static Weights

To have a preliminary idea of the level of difficulty of picking a good set of weights, as a

first step, we simulate the situation of having no knowledge or experience on how to set

the parameters of the mixture. So for static combination, we randomly choose values for

the λ’s and use these fixed values throughout a run. This experiment was repeated 100

times on kroA100 and lin105, each time with a different set of λ values.

The results are listed in Table 7.1, along with the results of using dynamic adjustment

(also repeated 100 times.) As shown in the table, our approach outperforms this static

combination approach. It uses a lower number of function evaluations on average, and the

hypothesis testing also indicates the significance of this observation (µfix and µdyn denote

the average number of function evaluations spent by the static combination and dynamic

adjustment approaches, respectively.) This fact, along with high standard deviations ob-

1In terms of the framework we laid out as Algorithm 13, using a static weight assignment corresponds
to skipping the update at line 10 of Algorithm 13.

2This assumption relates to the widespread success of Ant Colony Optimizations (ACOs), which fix the
parameters of combination. We will offer some discussion on this in a later section.
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Table 7.1: Static Combination vs. Dynamic Adjustment on (λ2G, λ3G, λDH)-Mixture

(a) Solving kroA100

(λ2G, λ3G, λDH)
Success

Rate
# of Evaluations

mean (µ) std (σ)

Random & Fixed 100/100 1091580.0 404080.7
Dynamic 100/100 656555.0 46400.7

∗ t-test on null hypothesis: µfix ≤ µdyn using α = 0.05
⇒ reject null hypothesis, p = 1.2e-18

(b) Solving lin105

(λ2G, λ3G, λDH)
Success

Rate
# of Evaluations

mean (µ) std (σ)

Random & Fixed 99/100 1019210.6 463858.2
Dynamic 100/100 573525.7 21389.2

∗ t-test on null hypothesis: µfix ≤ µdyn using α = 0.05
⇒ reject null hypothesis, p = 5.5e-16

Table 7.2: Proportions of Static Combination Runs Thresholded by Function Evaluations

TSP > µdyn > µdyn + σdyn > µdyn + 2σdyn

kroA100 91/100 88/100 81/100
lin105 89/100 86/100 85/100
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served in Table 7.1, suggests that we can easily get significantly inferior performance in

terms of function evaluations if we don’t choose the λ’s carefully for a static combination.

To see how frequently this can happen, Table 7.2 shows how many times out of the 100

runs that the number of function evaluations spent by a static combination run is higher

than the average number of function evaluations spent by the dynamic adjustment. The

numbers are listed in the “> µdyn” column. In the same way, we also list the number

of runs exceeding more than one standard deviation “> µdyn + σdyn” and more than two

standard deviations “> µdyn + 2σdyn”. From this table, we can see that only about ten

percents of the runs that use static weights achieved an average level of performance of the

dynamic adjustment. And most of the runs that use static weights are distributed at least

two standard deviations away from the average performance of dynamic adjustment. This

shows that the range of appropriate weights can be quite small, and this also reinforces

our belief that using an estimation procedure for calibrating the weights associated with

each heuristic can be a lot easier than manually picking an appropriate set of weights.

7.2 Comparisons to Tuned Static Weights

In this section, we compare our dynamic adjustment approach to tuned static weights.

Obviously, tuning λ’s for the mixture of three heuristics considered above is not very easy,

considering we have to tweak three values simultaneously. To further our discussion, we

simplify the mixture to

P2G+DH(wi|hi) = λ2GP2G(wi|wi−1) + λDHPDH(wi|wi−1)

to provide a basis for more systematic testing, despite the fact that this form of the mixture

loses some advantages provided by the trigram model. In this case, we only have to vary

one of the parameters, say λ2G, and the other will be 1 − λ2G, since they have to sum to

one.

To gain some initial perspective, we first repeated the experiment of randomly sampling

weights as done above for this simplified form. Figure 7.1 shows the plots of λ2G versus

the number of function evaluations used, from the successful runs. As can be seen from

the graphs, the better range of the parameters is between 0.3 and 0.7. Based on this, we
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(a) Solving kroA100

(b) Solving lin105

Figure 7.1: Static Combination vs. Dynamic Adjustment on (λ2G, λDH)-Mixture
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Table 7.3: Parameter Sweep on Static (λ2G, λDH)-Mixture vs. Dynamic Adjustment

(a) Solving kroA100

(λ2G, λDH)
Success

Rate
# of Evaluations

mean (µ) std (σ)

(0.3, 0.7) 30/30 1503733.3 363151.3
(0.4, 0.6) 30/30 1360650.0 337795.9
(0.5, 0.5) 30/30 1165400.0 210292.8
(0.6, 0.4) 30/30 1389116.6 246623.9
(0.7, 0.3) 30/30 1432833.3 213297.1
Dynamic 30/30 981233.3 113005.4

(b) Solving lin105

(λ2G, λDH)
Success

Rate
# of Evaluations
mean std

(0.3, 0.7) 30/30 1123027.5 210353.0
(0.4, 0.6) 30/30 994367.5 161215.8
(0.5, 0.5) 30/30 993142.5 135707.8
(0.6, 0.4) 30/30 1146705.0 125444.0
(0.7, 0.3) 30/30 1310610.0 131794.1
Dynamic 30/30 913955.0 69474.3

systematically varied the λ2G from 0.3 to 0.7 (and hence the λDH from 0.7 to 0.3.) The

results are listed in Table 7.3 . It can be observed that even when comparing to the best

choice of λ’s among these configurations, our approach of using dynamic adjustment still

compares favorably to the static combination. This provides an evidence that although the

dynamic adjustment approach requires a portion of the population of solutions reserved

for the purpose of estimating the weights associated with the heuristics, it does not incur

an excess overhead (or in the case of these problems, none at all) in terms of the number of

objective function evaluations3 compared to using static weight assignments. Furthermore,

the dynamic adjustment approach shows a much smaller standard deviation comparing to

3As mentioned before, we use the number of objective function evaluations as the measure of how
much computational resources was used by the algorithm. This measure is commonly used in research
concerning evolutionary algorithms, in which the implicit assumption is that in order to generalize the
results, evaluating the object function should be treated as the bottleneck because it can involve some
complex computation such as running a simulation.
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all (λ2G, λDH) configurations of the static combination. We think this smaller standard

deviation shows that using a reserved set for re-estimating the weights at each iteration

offers a more stable performance and a much better average behavior.

Note that although for both kroA100 and lin105, (λ2G, λDH) = (0.5, 0.5) seems to be

the best choice for a static combination, we think that there may be some situations in

which (0.5, 0.5) is not ideal. For example, it might be the case that the distance heuristic

is less informative for a particular problem instance. This can happen for TSPs when the

distances between cities are more uniform, thus the distance heuristic will not provide as

effective a guidance. Taking this to an extreme, we can consider the case where the provided

heuristic model is largely misleading. In this case, the sensible action would be to set the

corresponding λ to zero or near zero. However, there might be no easy way to assess

the quality of an externally supplied heuristic model except by doing some preliminary

trial runs. The problem gets even more complicated when we move to adopting more

than two sampling-based heuristics. For example, consider the case of combining bigram,

trigram and distance heuristics that we experimented with in the previous chapter. In

this case, setting a set of equal weights to these three heuristics will not be ideal since at

the beginning of a run, trigram model will not be very effective (as we have shown in the

previous chapter.) Thus, we believe our method offers some advantage in this aspect.

7.3 Contrast to Ant Colony Optimization: Difference

and Implications for Combining Heuristics

Readers who are familiar with the Ant Colony Optimization (ACO, [29]) might relate ACO

to our approach in the aspect that both combine multiple sources of information. To briefly

recap, the canonical ACO uses the following form for constructing a model for sampling

new solutions:

pxy =
(ταxy)(η

β
xy)∑

y′∈{allowed y′}(τ
α
xy′)(η

β
xy′)
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where pxy stands for the probability of choosing y as the next state given the previous

state is x, τxy represents the amount of “pheromone” deposited in the transition from state

x to state y, and ηxy represents the desirability of state transition of x to y (for TSP,

this usually corresponds to the inverse of the distance between x and y, and hence it is

roughly equivalent to our distance-based heuristic). For the above form, α and β are the

parameters that control the relative influences of τxy and ηxy respectively.

Comparing to our approach, one should first notice the difference in the form of the

combination: we use a linear interpolation to combine components while ACO uses a

product of component values (which is then converted to probability using a normalization

term.) The benefit of adopting our linear form is that we then have a procedure for

estimating the weights associated with heuristics automatically. On the other hand, ACO’s

product form makes it difficult to adopt a similar estimation procedure for tuning its

parameters (i.e. α and β in the above form.) Thus, ACO usually holds those parameters

constant throughout a run.

As mentioned in the previous sections, we think that using a dynamic adjustment pro-

cedure can offer several advantages in terms of convenience and robustness. Furthermore,

in order to have a good performance, ACO requires the user to manually pick a good set of

parameters, which might not be an easy task if we relate that to our earlier experiments.

Furthermore, because our approach automatically adjusts the weight associated with

each component heuristic, in the case that we have an ACO with properly tuned parame-

ters, we can just incorporate the ACO into our mixture without any change in the overall

algorithm.

7.4 Conclusions

In this chapter, we performed a set of experiments to evaluate the benefits of adopting our

dynamic approach to adjust the weights associated with various component heuristics in

the case of sampling-based search. Specifically, we compared this approach to a couple of

schemes for establishing a good set of static weight assignments. From the results of the

experiments, we believe that this approach offers several advantages in terms of convenience

and robustness.
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In terms of convenience, the experiments showed that adopting our automated proce-

dure for estimating the mixture weights does not increase the number of objective function

evaluations. And we also gave a preliminary assessment on the likelihood of manually

picking a good set of weights.

In terms of robustness, we showed that using the dynamic adjustment of weights gives

a more consistent behavior: Comparing to runs that use static weight assignments, we

observed that adopting dynamic weight adjustments generally results in a much smaller

standard deviation in the number of objective function evaluations used.

As future work, we would also like to apply our approach to other sequencing and

routing problems. Problems such as the Generalized Traveling Salesman Problem [94]

and the Sequential Ordering Problem [34] may be good extensions to this work. We are

also very interested in problems like the Orienteering Problem [102] and the TSP with

profit [36], for which the length of solution representation is not fixed. For some heuristic

approaches such as traditional EAs, it is less convenient to work with variable length

representation. However, because our approach composes a new solution sequentially, it

may have an advantage in these kinds of problems.
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Chapter 8

Conclusions

In this thesis, we investigated the subject of how to combine multiple heuristics. The

setting that we considered is to use existing heuristics as algorithmic components and

combine them in an automatic fashion. Particular emphasis was given to the collaborative

aspect of utilizing multiple heuristics and showed how this can be achieved for the cases

that we studied. In the sections below, we summarize the principal contributions of this

thesis toward mechanisms for collaborative problem solving with multiple heuristics. We

start with the case of combining multiple neighborhood-based heuristics and then follow

on to the case of combining multiple sampling-based heuristics.

8.1 Combining Multiple Neighborhood-based Heuris-

tics

In Chapter 3, we described an architecture that allows us to chain multiple heuristics in

a pipelined fashion. Schematically, this architecture is an algorithmic framework that has

two user-defined policy components. To derive a concrete algorithm from this framework,

one needs to plug in 1) a policy H for selecting heuristics, and 2) a policy L for choosing

the length of the pipeline that chains the selected heuristics.

We laid out this framework in order to further discuss the subject of how to combine

multiple neighborhood-based heuristics in a more principled manner: For the L component,

we first offered a theoretical discussion on its design in Chapter 3 and described a policy

101



based on Luby’s sequence that has an asymptotic guarantee. This policy is then used as

the default L policy for the rest of this research.

For the H component, we first looked at a baseline policy Hu, that each time selects a

heuristic uniformly at random from the set of heuristics. Based on that, in Chapter 4, we

experimented with three simple learning mechanisms that change the search algorithm’s

behavior for choosing heuristics during a run. We first showed that even in the case of

just using a simple pruning strategy, we can achieve a relatively high rank in the CHeSC

benchmark that is used in the hyper-heuristics research community. Following that, we

demonstrated that by learning the frequency of applying each heuristic, we can further

boost the performance, and our method of learning the bigram statistics, i.e. modeling

P (hi|hi−1), was shown to rank better in the CHeSC benchmark than any of the original

competitors.

In Chapter 5, we further developed a policy construction procedure which can produce

policies that have explicit collaboration patterns embedded in them. In addition to that, in

Chapter 5, we also adopted a setting that has a distributional assumption over the problem

instances, which enabled us to evaluate the learned policies with a more rigorous cross-

validation assessment. As future works, we would like to study other forms for expressing

the potentially useful collaboration patterns among heuristics, and more importantly, how

to distill these patterns automatically from past experience.

Another direction for future research is to develop a way of using the baseline scheme

presented in Chapter 3 as an analysis tool for gaining information about the optimization

problem. For example, using the idea that we can run the baseline algorithm and collect a

log of sequences that are chains of heuristics which had led to improving solutions, we can

get some idea about the characteristics of the landscape of the objective function: We can

look at the proportion of perturbation heuristics in the log to have a coarse understanding

of the roughness of the landscape (and if we have more detailed information about how

much perturbation each heuristic induces, we can gain even more information.) On the

other hand, we can also look at the lengths of the sequences to determine whether good

solutions are clustered in the landscape.

Finally, we are also curious about whether we can extend the proposed framework to

a population-based search scheme. For example, what are the criteria for effective use of
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crossover operators and how to carry the anytime property that we desire to a population-

based algorithm.

8.2 Combining Multiple Sampling-based Heuristics

In the second part of this thesis, we studied the problem of combining multiple sampling-

based heuristics. In this case, each component heuristic uses a probabilistic model for

sampling candidate solutions. As mentioned in Section 2.5, the underlying probabilistic

models can be either handcrafted or estimated from some data source.

In Chapter 6, we proposed a method for combining heuristics of this type. We begun

by looking at sampling-based heuristics that use estimated n-gram models. In this case,

in order to provide a smooth transition from lower-order model to higher-order ones, we

proposed using a linear interpolation for combining multiple probabilistic models. The

weights associated with those models are estimated automatically from a reserved portion

of the population of good solutions, and this weight estimation is done repeatedly from

iteration to iteration to provide a dynamic adjustment. Furthermore, we also showed

that this method can as well be used for incorporating sampling-based heuristics that use

handcrafted probabilistic models. The experiments demonstrated that using the proposed

integration mechanism, we can achieve better results than are possible using any individual

component heuristic exclusively. Furthermore, using this mechanism, we obtained a more

stable performance as evidenced by the generally much smaller standard deviations.

Two distinguishing characteristics of the proposed technique are that 1) the weights

associated with each sampling-based heuristics are automatically estimated based on a

reserved portion of the population of good solutions (instead of manually assigned), and

2) these weights are re-estimatd at each iteration to provide a dynamic adjustment. In

Chapter 7, we looked further into these characteristics by offering comparisons to other

alternatives. From the results of the experiments, we believe that our approach offers

several advantages in terms of convenience and robustness. In terms of convenience, our

experiments showed that adopting our automated procedure for estimating the mixture

weights does not increase the number of objective function evaluations. And we also

gave an assessment of the likelihood of manually picking a good set of weights. In terms
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of robustness, we showed that using the dynamic adjustment of weights gives a more

consistent behavior, as evidenced by generally much smaller standard deviations.

Based on an analysis that identifies two crucial algorithmic components of the pro-

posed method, i.e. maintaining a population of solutions and adopting a parameterizable

policy for selecting heuristics, we also formulated a more general framework for combin-

ing sampling-based heuristics in Section 6.7. This framework can serve as a skeleton for

creating other methods that combine multiple sampling-based heuristics.

As a future research direction, we are especially interested in the possibility that we can

plug in additional heuristics to enhance the search mechanism. Of course, this idea itself

is nothing new. Previous works such as ACOs have demonstrated the possible benefits of

adopting this concept. However, here we presented a method that allows us to automati-

cally determine the parameters associated with the heuristic incorporation. We think this

can be very useful for certain types of scheduling problems for which multiple “dispatching

rules” have been designed and studied.

Another potential future project is to study the effect of integrating local search into the

mechanism. In practice, excellent results have been obtained with local search algorithms

for a wide range of problems. We would like to see if there is some complementary effect

from hybriding our technique with local search methods. We would also like to apply our

approach to other sequencing and routing problems. Problems such as Generalized Travel-

ing Salesman Problem [94] and Sequential Ordering Problem [34] may be good extensions

to this work. Furthermore, we are very interested in problems like the Orienteering Prob-

lem [102] and the TSP with profit [36], for which the length of solution representation

is not fixed. For some heuristic approaches such as traditional evolutionary algorithms,

it is less convenient to work with variable length representations. However, because our

approach can build up a solution sequentially, it may have an advantage in such kind of

problems.
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Framework and applications. In Michel Gendreau and Jean-Yves Potvin, editors,

Handbook of Metaheuristics, pages 363–397. Springer US, Boston, MA, 2010. 2.2,

2.4.2, 2.4.2, 4.2

[65] Helena Ramalhinho Lourenço. Job-shop scheduling: Computational study of local

search and large-step optimization methods. European Journal of Operational Re-

search, 83(2):347 – 364, 1995. 2.4.2

111



[66] Helena Ramalhinho Lourenço and Michiel Zwijnenburg. Combining the large-step

optimization with tabu-search: Application to the job-shop scheduling problem. In

Meta-Heuristics: Theory & Applications, pages 219–236. Springer, 1996. 2.4.2

[67] J. A. Lozano and A. Mendiburu. Solving job scheduling with estimation of dis-

tribution algorithms. In Estimation of Distribution Algorithms: A New Tool for

Evolutionary Computation, pages 231–242. Kluwer Academic Publishers, Norwell,

MA, USA, 2002. 6.1
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