Carnegie Mellon University
Browse

Lehman Matrices

Download (244.34 kB)
journal contribution
posted on 1968-02-01, 00:00 authored by Gerard CornuejolsGerard Cornuejols, Betrand Guenin, Levent Tunçel
A pair of square 0, 1 matrices A,B such that AB<sup>T</sup> = E + kI (where E is the n × n matrix of all 1s and k is a positive integer) are called Lehman matrices. These matrices figure prominently in Lehman’s seminal theorem on minimally nonideal matrices. There are two choices of k for which this matrix equation is known to have infinite families of solutions. When n = k<sup>2</sup>+k+1 and A = B, we get point-line incidence matrices of finite projective planes, which have been widely studied in the literature. The other case occurs when k = 1 and n is arbitrary, but very little is known in this case. This paper studies this class of Lehman matrices and classifies them according to their similarity to circulant matrices.

History

Related Materials

Date

1968-02-01