Carnegie Mellon University
Browse
file.pdf (208.72 kB)
Download file

The Computational Content of Classical Arithmetic to Appear in a Festschrift for Grigori Mints

Download (208.72 kB)
journal contribution
posted on 2009-01-01, 00:00 authored by Jeremy AvigadJeremy Avigad
Almost from the inception of Hilbert's program, foundational and structural efforts in proof theory have been directed towards the goal of clarifying the computational content of modern mathematical methods. This essay surveys various methods of extracting computational information from proofs in classical first-order arithmetic, and reflects on some of the relationships between them. Variants of the Godel-Gentzen double-negation translation, some not so well known, serve to provide canonical and efficient computational interpretations of that theory.

History

Publisher Statement

All Rights Reserved

Date

2009-01-01

Usage metrics

    Categories

    Keywords

    Exports