Carnegie Mellon University
Browse
- No file added yet -

Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate

Download (256.28 kB)
journal contribution
posted on 2004-07-01, 00:00 authored by Christopher Genovese, Nicole A. Lazar, Thomas Nichols

Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a long-standing problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures for multiple hypothesis testing (e.g., Bonferroni) tend to not be sensitive enough to be useful in this context. This paper introduces to the neuroscience literature statistical procedures for controlling the False Discovery Rate (FDR). Recent theoretical work in statistics suggests that FDR-controlling procedures will be effective for the analysis of neuroimaging data. These procedures operate simultaneously on all voxelwise test statistics to determine which tests should be considered statistically significant. The innovation of the procedures is that they control the expected proportion of the rejected hypotheses that are falsely rejected. We demonstrate this approach using both simulations and functional Magnetic Resonance Imaging data from two simple experiments.

History

Publisher Statement

All Rights Reserved

Date

2004-07-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC